Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_CALLBACK_H_
      6 #define BASE_CALLBACK_H_
      7 
      8 #include "base/callback_forward.h"
      9 #include "base/callback_internal.h"
     10 #include "base/template_util.h"
     11 
     12 // NOTE: Header files that do not require the full definition of Callback or
     13 // Closure should #include "base/callback_forward.h" instead of this file.
     14 
     15 // -----------------------------------------------------------------------------
     16 // Introduction
     17 // -----------------------------------------------------------------------------
     18 //
     19 // The templated Callback class is a generalized function object. Together
     20 // with the Bind() function in bind.h, they provide a type-safe method for
     21 // performing partial application of functions.
     22 //
     23 // Partial application (or "currying") is the process of binding a subset of
     24 // a function's arguments to produce another function that takes fewer
     25 // arguments. This can be used to pass around a unit of delayed execution,
     26 // much like lexical closures are used in other languages. For example, it
     27 // is used in Chromium code to schedule tasks on different MessageLoops.
     28 //
     29 // A callback with no unbound input parameters (base::Callback<void()>)
     30 // is called a base::Closure. Note that this is NOT the same as what other
     31 // languages refer to as a closure -- it does not retain a reference to its
     32 // enclosing environment.
     33 //
     34 // MEMORY MANAGEMENT AND PASSING
     35 //
     36 // The Callback objects themselves should be passed by const-reference, and
     37 // stored by copy. They internally store their state via a refcounted class
     38 // and thus do not need to be deleted.
     39 //
     40 // The reason to pass via a const-reference is to avoid unnecessary
     41 // AddRef/Release pairs to the internal state.
     42 //
     43 //
     44 // -----------------------------------------------------------------------------
     45 // Quick reference for basic stuff
     46 // -----------------------------------------------------------------------------
     47 //
     48 // BINDING A BARE FUNCTION
     49 //
     50 //   int Return5() { return 5; }
     51 //   base::Callback<int()> func_cb = base::Bind(&Return5);
     52 //   LOG(INFO) << func_cb.Run();  // Prints 5.
     53 //
     54 // BINDING A CLASS METHOD
     55 //
     56 //   The first argument to bind is the member function to call, the second is
     57 //   the object on which to call it.
     58 //
     59 //   class Ref : public base::RefCountedThreadSafe<Ref> {
     60 //    public:
     61 //     int Foo() { return 3; }
     62 //     void PrintBye() { LOG(INFO) << "bye."; }
     63 //   };
     64 //   scoped_refptr<Ref> ref = new Ref();
     65 //   base::Callback<void()> ref_cb = base::Bind(&Ref::Foo, ref);
     66 //   LOG(INFO) << ref_cb.Run();  // Prints out 3.
     67 //
     68 //   By default the object must support RefCounted or you will get a compiler
     69 //   error. If you're passing between threads, be sure it's
     70 //   RefCountedThreadSafe! See "Advanced binding of member functions" below if
     71 //   you don't want to use reference counting.
     72 //
     73 // RUNNING A CALLBACK
     74 //
     75 //   Callbacks can be run with their "Run" method, which has the same
     76 //   signature as the template argument to the callback.
     77 //
     78 //   void DoSomething(const base::Callback<void(int, std::string)>& callback) {
     79 //     callback.Run(5, "hello");
     80 //   }
     81 //
     82 //   Callbacks can be run more than once (they don't get deleted or marked when
     83 //   run). However, this precludes using base::Passed (see below).
     84 //
     85 //   void DoSomething(const base::Callback<double(double)>& callback) {
     86 //     double myresult = callback.Run(3.14159);
     87 //     myresult += callback.Run(2.71828);
     88 //   }
     89 //
     90 // PASSING UNBOUND INPUT PARAMETERS
     91 //
     92 //   Unbound parameters are specified at the time a callback is Run(). They are
     93 //   specified in the Callback template type:
     94 //
     95 //   void MyFunc(int i, const std::string& str) {}
     96 //   base::Callback<void(int, const std::string&)> cb = base::Bind(&MyFunc);
     97 //   cb.Run(23, "hello, world");
     98 //
     99 // PASSING BOUND INPUT PARAMETERS
    100 //
    101 //   Bound parameters are specified when you create thee callback as arguments
    102 //   to Bind(). They will be passed to the function and the Run()ner of the
    103 //   callback doesn't see those values or even know that the function it's
    104 //   calling.
    105 //
    106 //   void MyFunc(int i, const std::string& str) {}
    107 //   base::Callback<void()> cb = base::Bind(&MyFunc, 23, "hello world");
    108 //   cb.Run();
    109 //
    110 //   A callback with no unbound input parameters (base::Callback<void()>)
    111 //   is called a base::Closure. So we could have also written:
    112 //
    113 //   base::Closure cb = base::Bind(&MyFunc, 23, "hello world");
    114 //
    115 //   When calling member functions, bound parameters just go after the object
    116 //   pointer.
    117 //
    118 //   base::Closure cb = base::Bind(&MyClass::MyFunc, this, 23, "hello world");
    119 //
    120 // PARTIAL BINDING OF PARAMETERS
    121 //
    122 //   You can specify some parameters when you create the callback, and specify
    123 //   the rest when you execute the callback.
    124 //
    125 //   void MyFunc(int i, const std::string& str) {}
    126 //   base::Callback<void(const std::string&)> cb = base::Bind(&MyFunc, 23);
    127 //   cb.Run("hello world");
    128 //
    129 //   When calling a function bound parameters are first, followed by unbound
    130 //   parameters.
    131 //
    132 //
    133 // -----------------------------------------------------------------------------
    134 // Quick reference for advanced binding
    135 // -----------------------------------------------------------------------------
    136 //
    137 // BINDING A CLASS METHOD WITH WEAK POINTERS
    138 //
    139 //   base::Bind(&MyClass::Foo, GetWeakPtr());
    140 //
    141 //   The callback will not be run if the object has already been destroyed.
    142 //   DANGER: weak pointers are not threadsafe, so don't use this
    143 //   when passing between threads!
    144 //
    145 // BINDING A CLASS METHOD WITH MANUAL LIFETIME MANAGEMENT
    146 //
    147 //   base::Bind(&MyClass::Foo, base::Unretained(this));
    148 //
    149 //   This disables all lifetime management on the object. You're responsible
    150 //   for making sure the object is alive at the time of the call. You break it,
    151 //   you own it!
    152 //
    153 // BINDING A CLASS METHOD AND HAVING THE CALLBACK OWN THE CLASS
    154 //
    155 //   MyClass* myclass = new MyClass;
    156 //   base::Bind(&MyClass::Foo, base::Owned(myclass));
    157 //
    158 //   The object will be deleted when the callback is destroyed, even if it's
    159 //   not run (like if you post a task during shutdown). Potentially useful for
    160 //   "fire and forget" cases.
    161 //
    162 // IGNORING RETURN VALUES
    163 //
    164 //   Sometimes you want to call a function that returns a value in a callback
    165 //   that doesn't expect a return value.
    166 //
    167 //   int DoSomething(int arg) { cout << arg << endl; }
    168 //   base::Callback<void(int)> cb =
    169 //       base::Bind(base::IgnoreResult(&DoSomething));
    170 //
    171 //
    172 // -----------------------------------------------------------------------------
    173 // Quick reference for binding parameters to Bind()
    174 // -----------------------------------------------------------------------------
    175 //
    176 // Bound parameters are specified as arguments to Bind() and are passed to the
    177 // function. A callback with no parameters or no unbound parameters is called a
    178 // Closure (base::Callback<void()> and base::Closure are the same thing).
    179 //
    180 // PASSING PARAMETERS OWNED BY THE CALLBACK
    181 //
    182 //   void Foo(int* arg) { cout << *arg << endl; }
    183 //   int* pn = new int(1);
    184 //   base::Closure foo_callback = base::Bind(&foo, base::Owned(pn));
    185 //
    186 //   The parameter will be deleted when the callback is destroyed, even if it's
    187 //   not run (like if you post a task during shutdown).
    188 //
    189 // PASSING PARAMETERS AS A scoped_ptr
    190 //
    191 //   void TakesOwnership(scoped_ptr<Foo> arg) {}
    192 //   scoped_ptr<Foo> f(new Foo);
    193 //   // f becomes null during the following call.
    194 //   base::Closure cb = base::Bind(&TakesOwnership, base::Passed(&f));
    195 //
    196 //   Ownership of the parameter will be with the callback until the it is run,
    197 //   when ownership is passed to the callback function. This means the callback
    198 //   can only be run once. If the callback is never run, it will delete the
    199 //   object when it's destroyed.
    200 //
    201 // PASSING PARAMETERS AS A scoped_refptr
    202 //
    203 //   void TakesOneRef(scoped_refptr<Foo> arg) {}
    204 //   scoped_refptr<Foo> f(new Foo)
    205 //   base::Closure cb = base::Bind(&TakesOneRef, f);
    206 //
    207 //   This should "just work." The closure will take a reference as long as it
    208 //   is alive, and another reference will be taken for the called function.
    209 //
    210 // PASSING PARAMETERS BY REFERENCE
    211 //
    212 //   Const references are *copied* unless ConstRef is used. Example:
    213 //
    214 //   void foo(const int& arg) { printf("%d %p\n", arg, &arg); }
    215 //   int n = 1;
    216 //   base::Closure has_copy = base::Bind(&foo, n);
    217 //   base::Closure has_ref = base::Bind(&foo, base::ConstRef(n));
    218 //   n = 2;
    219 //   foo(n);                        // Prints "2 0xaaaaaaaaaaaa"
    220 //   has_copy.Run();                // Prints "1 0xbbbbbbbbbbbb"
    221 //   has_ref.Run();                 // Prints "2 0xaaaaaaaaaaaa"
    222 //
    223 //   Normally parameters are copied in the closure. DANGER: ConstRef stores a
    224 //   const reference instead, referencing the original parameter. This means
    225 //   that you must ensure the object outlives the callback!
    226 //
    227 //
    228 // -----------------------------------------------------------------------------
    229 // Implementation notes
    230 // -----------------------------------------------------------------------------
    231 //
    232 // WHERE IS THIS DESIGN FROM:
    233 //
    234 // The design Callback and Bind is heavily influenced by C++'s
    235 // tr1::function/tr1::bind, and by the "Google Callback" system used inside
    236 // Google.
    237 //
    238 //
    239 // HOW THE IMPLEMENTATION WORKS:
    240 //
    241 // There are three main components to the system:
    242 //   1) The Callback classes.
    243 //   2) The Bind() functions.
    244 //   3) The arguments wrappers (e.g., Unretained() and ConstRef()).
    245 //
    246 // The Callback classes represent a generic function pointer. Internally,
    247 // it stores a refcounted piece of state that represents the target function
    248 // and all its bound parameters.  Each Callback specialization has a templated
    249 // constructor that takes an BindState<>*.  In the context of the constructor,
    250 // the static type of this BindState<> pointer uniquely identifies the
    251 // function it is representing, all its bound parameters, and a Run() method
    252 // that is capable of invoking the target.
    253 //
    254 // Callback's constructor takes the BindState<>* that has the full static type
    255 // and erases the target function type as well as the types of the bound
    256 // parameters.  It does this by storing a pointer to the specific Run()
    257 // function, and upcasting the state of BindState<>* to a
    258 // BindStateBase*. This is safe as long as this BindStateBase pointer
    259 // is only used with the stored Run() pointer.
    260 //
    261 // To BindState<> objects are created inside the Bind() functions.
    262 // These functions, along with a set of internal templates, are responsible for
    263 //
    264 //  - Unwrapping the function signature into return type, and parameters
    265 //  - Determining the number of parameters that are bound
    266 //  - Creating the BindState storing the bound parameters
    267 //  - Performing compile-time asserts to avoid error-prone behavior
    268 //  - Returning an Callback<> with an arity matching the number of unbound
    269 //    parameters and that knows the correct refcounting semantics for the
    270 //    target object if we are binding a method.
    271 //
    272 // The Bind functions do the above using type-inference, and template
    273 // specializations.
    274 //
    275 // By default Bind() will store copies of all bound parameters, and attempt
    276 // to refcount a target object if the function being bound is a class method.
    277 // These copies are created even if the function takes parameters as const
    278 // references. (Binding to non-const references is forbidden, see bind.h.)
    279 //
    280 // To change this behavior, we introduce a set of argument wrappers
    281 // (e.g., Unretained(), and ConstRef()).  These are simple container templates
    282 // that are passed by value, and wrap a pointer to argument.  See the
    283 // file-level comment in base/bind_helpers.h for more info.
    284 //
    285 // These types are passed to the Unwrap() functions, and the MaybeRefcount()
    286 // functions respectively to modify the behavior of Bind().  The Unwrap()
    287 // and MaybeRefcount() functions change behavior by doing partial
    288 // specialization based on whether or not a parameter is a wrapper type.
    289 //
    290 // ConstRef() is similar to tr1::cref.  Unretained() is specific to Chromium.
    291 //
    292 //
    293 // WHY NOT TR1 FUNCTION/BIND?
    294 //
    295 // Direct use of tr1::function and tr1::bind was considered, but ultimately
    296 // rejected because of the number of copy constructors invocations involved
    297 // in the binding of arguments during construction, and the forwarding of
    298 // arguments during invocation.  These copies will no longer be an issue in
    299 // C++0x because C++0x will support rvalue reference allowing for the compiler
    300 // to avoid these copies.  However, waiting for C++0x is not an option.
    301 //
    302 // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the
    303 // tr1::bind call itself will invoke a non-trivial copy constructor three times
    304 // for each bound parameter.  Also, each when passing a tr1::function, each
    305 // bound argument will be copied again.
    306 //
    307 // In addition to the copies taken at binding and invocation, copying a
    308 // tr1::function causes a copy to be made of all the bound parameters and
    309 // state.
    310 //
    311 // Furthermore, in Chromium, it is desirable for the Callback to take a
    312 // reference on a target object when representing a class method call.  This
    313 // is not supported by tr1.
    314 //
    315 // Lastly, tr1::function and tr1::bind has a more general and flexible API.
    316 // This includes things like argument reordering by use of
    317 // tr1::bind::placeholder, support for non-const reference parameters, and some
    318 // limited amount of subtyping of the tr1::function object (e.g.,
    319 // tr1::function<int(int)> is convertible to tr1::function<void(int)>).
    320 //
    321 // These are not features that are required in Chromium. Some of them, such as
    322 // allowing for reference parameters, and subtyping of functions, may actually
    323 // become a source of errors. Removing support for these features actually
    324 // allows for a simpler implementation, and a terser Currying API.
    325 //
    326 //
    327 // WHY NOT GOOGLE CALLBACKS?
    328 //
    329 // The Google callback system also does not support refcounting.  Furthermore,
    330 // its implementation has a number of strange edge cases with respect to type
    331 // conversion of its arguments.  In particular, the argument's constness must
    332 // at times match exactly the function signature, or the type-inference might
    333 // break.  Given the above, writing a custom solution was easier.
    334 //
    335 //
    336 // MISSING FUNCTIONALITY
    337 //  - Invoking the return of Bind.  Bind(&foo).Run() does not work;
    338 //  - Binding arrays to functions that take a non-const pointer.
    339 //    Example:
    340 //      void Foo(const char* ptr);
    341 //      void Bar(char* ptr);
    342 //      Bind(&Foo, "test");
    343 //      Bind(&Bar, "test");  // This fails because ptr is not const.
    344 
    345 namespace base {
    346 
    347 // First, we forward declare the Callback class template. This informs the
    348 // compiler that the template only has 1 type parameter which is the function
    349 // signature that the Callback is representing.
    350 //
    351 // After this, create template specializations for 0-7 parameters. Note that
    352 // even though the template typelist grows, the specialization still
    353 // only has one type: the function signature.
    354 //
    355 // If you are thinking of forward declaring Callback in your own header file,
    356 // please include "base/callback_forward.h" instead.
    357 
    358 namespace internal {
    359 template <typename Runnable, typename RunType, typename... BoundArgsType>
    360 struct BindState;
    361 }  // namespace internal
    362 
    363 template <typename R, typename... Args>
    364 class Callback<R(Args...)> : public internal::CallbackBase {
    365  public:
    366   // MSVC 2013 doesn't support Type Alias of function types.
    367   // Revisit this after we update it to newer version.
    368   typedef R RunType(Args...);
    369 
    370   Callback() : CallbackBase(nullptr) { }
    371 
    372   template <typename Runnable, typename BindRunType, typename... BoundArgsType>
    373   explicit Callback(
    374       internal::BindState<Runnable, BindRunType, BoundArgsType...>* bind_state)
    375       : CallbackBase(bind_state) {
    376     // Force the assignment to a local variable of PolymorphicInvoke
    377     // so the compiler will typecheck that the passed in Run() method has
    378     // the correct type.
    379     PolymorphicInvoke invoke_func =
    380         &internal::BindState<Runnable, BindRunType, BoundArgsType...>
    381             ::InvokerType::Run;
    382     polymorphic_invoke_ = reinterpret_cast<InvokeFuncStorage>(invoke_func);
    383   }
    384 
    385   bool Equals(const Callback& other) const {
    386     return CallbackBase::Equals(other);
    387   }
    388 
    389   R Run(typename internal::CallbackParamTraits<Args>::ForwardType... args)
    390       const {
    391     PolymorphicInvoke f =
    392         reinterpret_cast<PolymorphicInvoke>(polymorphic_invoke_);
    393 
    394     return f(bind_state_.get(), internal::CallbackForward(args)...);
    395   }
    396 
    397  private:
    398   using PolymorphicInvoke =
    399       R(*)(internal::BindStateBase*,
    400            typename internal::CallbackParamTraits<Args>::ForwardType...);
    401 };
    402 
    403 }  // namespace base
    404 
    405 #endif  // BASE_CALLBACK_H_
    406