Home | History | Annotate | Download | only in Analysis
      1 //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file provides interfaces used to build and manipulate a call graph,
     12 /// which is a very useful tool for interprocedural optimization.
     13 ///
     14 /// Every function in a module is represented as a node in the call graph.  The
     15 /// callgraph node keeps track of which functions are called by the function
     16 /// corresponding to the node.
     17 ///
     18 /// A call graph may contain nodes where the function that they correspond to
     19 /// is null.  These 'external' nodes are used to represent control flow that is
     20 /// not represented (or analyzable) in the module.  In particular, this
     21 /// analysis builds one external node such that:
     22 ///   1. All functions in the module without internal linkage will have edges
     23 ///      from this external node, indicating that they could be called by
     24 ///      functions outside of the module.
     25 ///   2. All functions whose address is used for something more than a direct
     26 ///      call, for example being stored into a memory location will also have
     27 ///      an edge from this external node.  Since they may be called by an
     28 ///      unknown caller later, they must be tracked as such.
     29 ///
     30 /// There is a second external node added for calls that leave this module.
     31 /// Functions have a call edge to the external node iff:
     32 ///   1. The function is external, reflecting the fact that they could call
     33 ///      anything without internal linkage or that has its address taken.
     34 ///   2. The function contains an indirect function call.
     35 ///
     36 /// As an extension in the future, there may be multiple nodes with a null
     37 /// function.  These will be used when we can prove (through pointer analysis)
     38 /// that an indirect call site can call only a specific set of functions.
     39 ///
     40 /// Because of these properties, the CallGraph captures a conservative superset
     41 /// of all of the caller-callee relationships, which is useful for
     42 /// transformations.
     43 ///
     44 /// The CallGraph class also attempts to figure out what the root of the
     45 /// CallGraph is, which it currently does by looking for a function named
     46 /// 'main'. If no function named 'main' is found, the external node is used as
     47 /// the entry node, reflecting the fact that any function without internal
     48 /// linkage could be called into (which is common for libraries).
     49 ///
     50 //===----------------------------------------------------------------------===//
     51 
     52 #ifndef LLVM_ANALYSIS_CALLGRAPH_H
     53 #define LLVM_ANALYSIS_CALLGRAPH_H
     54 
     55 #include "llvm/ADT/GraphTraits.h"
     56 #include "llvm/ADT/STLExtras.h"
     57 #include "llvm/IR/CallSite.h"
     58 #include "llvm/IR/Function.h"
     59 #include "llvm/IR/Intrinsics.h"
     60 #include "llvm/IR/ValueHandle.h"
     61 #include "llvm/Pass.h"
     62 #include <map>
     63 
     64 namespace llvm {
     65 
     66 class Function;
     67 class Module;
     68 class CallGraphNode;
     69 
     70 /// \brief The basic data container for the call graph of a \c Module of IR.
     71 ///
     72 /// This class exposes both the interface to the call graph for a module of IR.
     73 ///
     74 /// The core call graph itself can also be updated to reflect changes to the IR.
     75 class CallGraph {
     76   Module &M;
     77 
     78   typedef std::map<const Function *, std::unique_ptr<CallGraphNode>>
     79       FunctionMapTy;
     80 
     81   /// \brief A map from \c Function* to \c CallGraphNode*.
     82   FunctionMapTy FunctionMap;
     83 
     84   /// \brief Root is root of the call graph, or the external node if a 'main'
     85   /// function couldn't be found.
     86   CallGraphNode *Root;
     87 
     88   /// \brief This node has edges to all external functions and those internal
     89   /// functions that have their address taken.
     90   CallGraphNode *ExternalCallingNode;
     91 
     92   /// \brief This node has edges to it from all functions making indirect calls
     93   /// or calling an external function.
     94   std::unique_ptr<CallGraphNode> CallsExternalNode;
     95 
     96   /// \brief Replace the function represented by this node by another.
     97   ///
     98   /// This does not rescan the body of the function, so it is suitable when
     99   /// splicing the body of one function to another while also updating all
    100   /// callers from the old function to the new.
    101   void spliceFunction(const Function *From, const Function *To);
    102 
    103   /// \brief Add a function to the call graph, and link the node to all of the
    104   /// functions that it calls.
    105   void addToCallGraph(Function *F);
    106 
    107 public:
    108   explicit CallGraph(Module &M);
    109   CallGraph(CallGraph &&Arg);
    110   ~CallGraph();
    111 
    112   void print(raw_ostream &OS) const;
    113   void dump() const;
    114 
    115   typedef FunctionMapTy::iterator iterator;
    116   typedef FunctionMapTy::const_iterator const_iterator;
    117 
    118   /// \brief Returns the module the call graph corresponds to.
    119   Module &getModule() const { return M; }
    120 
    121   inline iterator begin() { return FunctionMap.begin(); }
    122   inline iterator end() { return FunctionMap.end(); }
    123   inline const_iterator begin() const { return FunctionMap.begin(); }
    124   inline const_iterator end() const { return FunctionMap.end(); }
    125 
    126   /// \brief Returns the call graph node for the provided function.
    127   inline const CallGraphNode *operator[](const Function *F) const {
    128     const_iterator I = FunctionMap.find(F);
    129     assert(I != FunctionMap.end() && "Function not in callgraph!");
    130     return I->second.get();
    131   }
    132 
    133   /// \brief Returns the call graph node for the provided function.
    134   inline CallGraphNode *operator[](const Function *F) {
    135     const_iterator I = FunctionMap.find(F);
    136     assert(I != FunctionMap.end() && "Function not in callgraph!");
    137     return I->second.get();
    138   }
    139 
    140   /// \brief Returns the \c CallGraphNode which is used to represent
    141   /// undetermined calls into the callgraph.
    142   CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
    143 
    144   CallGraphNode *getCallsExternalNode() const {
    145     return CallsExternalNode.get();
    146   }
    147 
    148   //===---------------------------------------------------------------------
    149   // Functions to keep a call graph up to date with a function that has been
    150   // modified.
    151   //
    152 
    153   /// \brief Unlink the function from this module, returning it.
    154   ///
    155   /// Because this removes the function from the module, the call graph node is
    156   /// destroyed.  This is only valid if the function does not call any other
    157   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
    158   /// this is to dropAllReferences before calling this.
    159   Function *removeFunctionFromModule(CallGraphNode *CGN);
    160 
    161   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
    162   /// \c F if one does not already exist.
    163   CallGraphNode *getOrInsertFunction(const Function *F);
    164 };
    165 
    166 /// \brief A node in the call graph for a module.
    167 ///
    168 /// Typically represents a function in the call graph. There are also special
    169 /// "null" nodes used to represent theoretical entries in the call graph.
    170 class CallGraphNode {
    171 public:
    172   /// \brief A pair of the calling instruction (a call or invoke)
    173   /// and the call graph node being called.
    174   typedef std::pair<WeakVH, CallGraphNode *> CallRecord;
    175 
    176 public:
    177   typedef std::vector<CallRecord> CalledFunctionsVector;
    178 
    179   /// \brief Creates a node for the specified function.
    180   inline CallGraphNode(Function *F) : F(F), NumReferences(0) {}
    181 
    182   ~CallGraphNode() {
    183     assert(NumReferences == 0 && "Node deleted while references remain");
    184   }
    185 
    186   typedef std::vector<CallRecord>::iterator iterator;
    187   typedef std::vector<CallRecord>::const_iterator const_iterator;
    188 
    189   /// \brief Returns the function that this call graph node represents.
    190   Function *getFunction() const { return F; }
    191 
    192   inline iterator begin() { return CalledFunctions.begin(); }
    193   inline iterator end() { return CalledFunctions.end(); }
    194   inline const_iterator begin() const { return CalledFunctions.begin(); }
    195   inline const_iterator end() const { return CalledFunctions.end(); }
    196   inline bool empty() const { return CalledFunctions.empty(); }
    197   inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
    198 
    199   /// \brief Returns the number of other CallGraphNodes in this CallGraph that
    200   /// reference this node in their callee list.
    201   unsigned getNumReferences() const { return NumReferences; }
    202 
    203   /// \brief Returns the i'th called function.
    204   CallGraphNode *operator[](unsigned i) const {
    205     assert(i < CalledFunctions.size() && "Invalid index");
    206     return CalledFunctions[i].second;
    207   }
    208 
    209   /// \brief Print out this call graph node.
    210   void dump() const;
    211   void print(raw_ostream &OS) const;
    212 
    213   //===---------------------------------------------------------------------
    214   // Methods to keep a call graph up to date with a function that has been
    215   // modified
    216   //
    217 
    218   /// \brief Removes all edges from this CallGraphNode to any functions it
    219   /// calls.
    220   void removeAllCalledFunctions() {
    221     while (!CalledFunctions.empty()) {
    222       CalledFunctions.back().second->DropRef();
    223       CalledFunctions.pop_back();
    224     }
    225   }
    226 
    227   /// \brief Moves all the callee information from N to this node.
    228   void stealCalledFunctionsFrom(CallGraphNode *N) {
    229     assert(CalledFunctions.empty() &&
    230            "Cannot steal callsite information if I already have some");
    231     std::swap(CalledFunctions, N->CalledFunctions);
    232   }
    233 
    234   /// \brief Adds a function to the list of functions called by this one.
    235   void addCalledFunction(CallSite CS, CallGraphNode *M) {
    236     assert(!CS.getInstruction() || !CS.getCalledFunction() ||
    237            !CS.getCalledFunction()->isIntrinsic() ||
    238            !Intrinsic::isLeaf(CS.getCalledFunction()->getIntrinsicID()));
    239     CalledFunctions.emplace_back(CS.getInstruction(), M);
    240     M->AddRef();
    241   }
    242 
    243   void removeCallEdge(iterator I) {
    244     I->second->DropRef();
    245     *I = CalledFunctions.back();
    246     CalledFunctions.pop_back();
    247   }
    248 
    249   /// \brief Removes the edge in the node for the specified call site.
    250   ///
    251   /// Note that this method takes linear time, so it should be used sparingly.
    252   void removeCallEdgeFor(CallSite CS);
    253 
    254   /// \brief Removes all call edges from this node to the specified callee
    255   /// function.
    256   ///
    257   /// This takes more time to execute than removeCallEdgeTo, so it should not
    258   /// be used unless necessary.
    259   void removeAnyCallEdgeTo(CallGraphNode *Callee);
    260 
    261   /// \brief Removes one edge associated with a null callsite from this node to
    262   /// the specified callee function.
    263   void removeOneAbstractEdgeTo(CallGraphNode *Callee);
    264 
    265   /// \brief Replaces the edge in the node for the specified call site with a
    266   /// new one.
    267   ///
    268   /// Note that this method takes linear time, so it should be used sparingly.
    269   void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
    270 
    271 private:
    272   friend class CallGraph;
    273 
    274   AssertingVH<Function> F;
    275 
    276   std::vector<CallRecord> CalledFunctions;
    277 
    278   /// \brief The number of times that this CallGraphNode occurs in the
    279   /// CalledFunctions array of this or other CallGraphNodes.
    280   unsigned NumReferences;
    281 
    282   CallGraphNode(const CallGraphNode &) = delete;
    283   void operator=(const CallGraphNode &) = delete;
    284 
    285   void DropRef() { --NumReferences; }
    286   void AddRef() { ++NumReferences; }
    287 
    288   /// \brief A special function that should only be used by the CallGraph class.
    289   void allReferencesDropped() { NumReferences = 0; }
    290 };
    291 
    292 /// \brief An analysis pass to compute the \c CallGraph for a \c Module.
    293 ///
    294 /// This class implements the concept of an analysis pass used by the \c
    295 /// ModuleAnalysisManager to run an analysis over a module and cache the
    296 /// resulting data.
    297 class CallGraphAnalysis {
    298 public:
    299   /// \brief A formulaic typedef to inform clients of the result type.
    300   typedef CallGraph Result;
    301 
    302   static void *ID() { return (void *)&PassID; }
    303 
    304   /// \brief Compute the \c CallGraph for the module \c M.
    305   ///
    306   /// The real work here is done in the \c CallGraph constructor.
    307   CallGraph run(Module *M) { return CallGraph(*M); }
    308 
    309 private:
    310   static char PassID;
    311 };
    312 
    313 /// \brief The \c ModulePass which wraps up a \c CallGraph and the logic to
    314 /// build it.
    315 ///
    316 /// This class exposes both the interface to the call graph container and the
    317 /// module pass which runs over a module of IR and produces the call graph. The
    318 /// call graph interface is entirelly a wrapper around a \c CallGraph object
    319 /// which is stored internally for each module.
    320 class CallGraphWrapperPass : public ModulePass {
    321   std::unique_ptr<CallGraph> G;
    322 
    323 public:
    324   static char ID; // Class identification, replacement for typeinfo
    325 
    326   CallGraphWrapperPass();
    327   ~CallGraphWrapperPass() override;
    328 
    329   /// \brief The internal \c CallGraph around which the rest of this interface
    330   /// is wrapped.
    331   const CallGraph &getCallGraph() const { return *G; }
    332   CallGraph &getCallGraph() { return *G; }
    333 
    334   typedef CallGraph::iterator iterator;
    335   typedef CallGraph::const_iterator const_iterator;
    336 
    337   /// \brief Returns the module the call graph corresponds to.
    338   Module &getModule() const { return G->getModule(); }
    339 
    340   inline iterator begin() { return G->begin(); }
    341   inline iterator end() { return G->end(); }
    342   inline const_iterator begin() const { return G->begin(); }
    343   inline const_iterator end() const { return G->end(); }
    344 
    345   /// \brief Returns the call graph node for the provided function.
    346   inline const CallGraphNode *operator[](const Function *F) const {
    347     return (*G)[F];
    348   }
    349 
    350   /// \brief Returns the call graph node for the provided function.
    351   inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
    352 
    353   /// \brief Returns the \c CallGraphNode which is used to represent
    354   /// undetermined calls into the callgraph.
    355   CallGraphNode *getExternalCallingNode() const {
    356     return G->getExternalCallingNode();
    357   }
    358 
    359   CallGraphNode *getCallsExternalNode() const {
    360     return G->getCallsExternalNode();
    361   }
    362 
    363   //===---------------------------------------------------------------------
    364   // Functions to keep a call graph up to date with a function that has been
    365   // modified.
    366   //
    367 
    368   /// \brief Unlink the function from this module, returning it.
    369   ///
    370   /// Because this removes the function from the module, the call graph node is
    371   /// destroyed.  This is only valid if the function does not call any other
    372   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
    373   /// this is to dropAllReferences before calling this.
    374   Function *removeFunctionFromModule(CallGraphNode *CGN) {
    375     return G->removeFunctionFromModule(CGN);
    376   }
    377 
    378   /// \brief Similar to operator[], but this will insert a new CallGraphNode for
    379   /// \c F if one does not already exist.
    380   CallGraphNode *getOrInsertFunction(const Function *F) {
    381     return G->getOrInsertFunction(F);
    382   }
    383 
    384   //===---------------------------------------------------------------------
    385   // Implementation of the ModulePass interface needed here.
    386   //
    387 
    388   void getAnalysisUsage(AnalysisUsage &AU) const override;
    389   bool runOnModule(Module &M) override;
    390   void releaseMemory() override;
    391 
    392   void print(raw_ostream &o, const Module *) const override;
    393   void dump() const;
    394 };
    395 
    396 //===----------------------------------------------------------------------===//
    397 // GraphTraits specializations for call graphs so that they can be treated as
    398 // graphs by the generic graph algorithms.
    399 //
    400 
    401 // Provide graph traits for tranversing call graphs using standard graph
    402 // traversals.
    403 template <> struct GraphTraits<CallGraphNode *> {
    404   typedef CallGraphNode NodeType;
    405 
    406   typedef CallGraphNode::CallRecord CGNPairTy;
    407   typedef std::pointer_to_unary_function<CGNPairTy, CallGraphNode *>
    408   CGNDerefFun;
    409 
    410   static NodeType *getEntryNode(CallGraphNode *CGN) { return CGN; }
    411 
    412   typedef mapped_iterator<NodeType::iterator, CGNDerefFun> ChildIteratorType;
    413 
    414   static inline ChildIteratorType child_begin(NodeType *N) {
    415     return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
    416   }
    417   static inline ChildIteratorType child_end(NodeType *N) {
    418     return map_iterator(N->end(), CGNDerefFun(CGNDeref));
    419   }
    420 
    421   static CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
    422 };
    423 
    424 template <> struct GraphTraits<const CallGraphNode *> {
    425   typedef const CallGraphNode NodeType;
    426 
    427   typedef CallGraphNode::CallRecord CGNPairTy;
    428   typedef std::pointer_to_unary_function<CGNPairTy, const CallGraphNode *>
    429       CGNDerefFun;
    430 
    431   static NodeType *getEntryNode(const CallGraphNode *CGN) { return CGN; }
    432 
    433   typedef mapped_iterator<NodeType::const_iterator, CGNDerefFun>
    434       ChildIteratorType;
    435 
    436   static inline ChildIteratorType child_begin(NodeType *N) {
    437     return map_iterator(N->begin(), CGNDerefFun(CGNDeref));
    438   }
    439   static inline ChildIteratorType child_end(NodeType *N) {
    440     return map_iterator(N->end(), CGNDerefFun(CGNDeref));
    441   }
    442 
    443   static const CallGraphNode *CGNDeref(CGNPairTy P) { return P.second; }
    444 };
    445 
    446 template <>
    447 struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
    448   static NodeType *getEntryNode(CallGraph *CGN) {
    449     return CGN->getExternalCallingNode(); // Start at the external node!
    450   }
    451   typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>>
    452       PairTy;
    453   typedef std::pointer_to_unary_function<const PairTy &, CallGraphNode &>
    454       DerefFun;
    455 
    456   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    457   typedef mapped_iterator<CallGraph::iterator, DerefFun> nodes_iterator;
    458   static nodes_iterator nodes_begin(CallGraph *CG) {
    459     return map_iterator(CG->begin(), DerefFun(CGdereference));
    460   }
    461   static nodes_iterator nodes_end(CallGraph *CG) {
    462     return map_iterator(CG->end(), DerefFun(CGdereference));
    463   }
    464 
    465   static CallGraphNode &CGdereference(const PairTy &P) { return *P.second; }
    466 };
    467 
    468 template <>
    469 struct GraphTraits<const CallGraph *> : public GraphTraits<
    470                                             const CallGraphNode *> {
    471   static NodeType *getEntryNode(const CallGraph *CGN) {
    472     return CGN->getExternalCallingNode(); // Start at the external node!
    473   }
    474   typedef std::pair<const Function *const, std::unique_ptr<CallGraphNode>>
    475       PairTy;
    476   typedef std::pointer_to_unary_function<const PairTy &, const CallGraphNode &>
    477       DerefFun;
    478 
    479   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    480   typedef mapped_iterator<CallGraph::const_iterator, DerefFun> nodes_iterator;
    481   static nodes_iterator nodes_begin(const CallGraph *CG) {
    482     return map_iterator(CG->begin(), DerefFun(CGdereference));
    483   }
    484   static nodes_iterator nodes_end(const CallGraph *CG) {
    485     return map_iterator(CG->end(), DerefFun(CGdereference));
    486   }
    487 
    488   static const CallGraphNode &CGdereference(const PairTy &P) {
    489     return *P.second;
    490   }
    491 };
    492 
    493 } // End llvm namespace
    494 
    495 #endif
    496