Home | History | Annotate | Download | only in CodeGen
      1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the spill code placement analysis.
     11 //
     12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
     13 // basic blocks are weighted by the block frequency and added to become the node
     14 // bias.
     15 //
     16 // Transparent basic blocks have the variable live through, but don't care if it
     17 // is spilled or in a register. These blocks become connections in the Hopfield
     18 // network, again weighted by block frequency.
     19 //
     20 // The Hopfield network minimizes (possibly locally) its energy function:
     21 //
     22 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
     23 //
     24 // The energy function represents the expected spill code execution frequency,
     25 // or the cost of spilling. This is a Lyapunov function which never increases
     26 // when a node is updated. It is guaranteed to converge to a local minimum.
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #include "SpillPlacement.h"
     31 #include "llvm/ADT/BitVector.h"
     32 #include "llvm/CodeGen/EdgeBundles.h"
     33 #include "llvm/CodeGen/MachineBasicBlock.h"
     34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     35 #include "llvm/CodeGen/MachineFunction.h"
     36 #include "llvm/CodeGen/MachineLoopInfo.h"
     37 #include "llvm/CodeGen/Passes.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/ManagedStatic.h"
     40 
     41 using namespace llvm;
     42 
     43 #define DEBUG_TYPE "spillplacement"
     44 
     45 char SpillPlacement::ID = 0;
     46 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
     47                       "Spill Code Placement Analysis", true, true)
     48 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
     49 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     50 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
     51                     "Spill Code Placement Analysis", true, true)
     52 
     53 char &llvm::SpillPlacementID = SpillPlacement::ID;
     54 
     55 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
     56   AU.setPreservesAll();
     57   AU.addRequired<MachineBlockFrequencyInfo>();
     58   AU.addRequiredTransitive<EdgeBundles>();
     59   AU.addRequiredTransitive<MachineLoopInfo>();
     60   MachineFunctionPass::getAnalysisUsage(AU);
     61 }
     62 
     63 /// Node - Each edge bundle corresponds to a Hopfield node.
     64 ///
     65 /// The node contains precomputed frequency data that only depends on the CFG,
     66 /// but Bias and Links are computed each time placeSpills is called.
     67 ///
     68 /// The node Value is positive when the variable should be in a register. The
     69 /// value can change when linked nodes change, but convergence is very fast
     70 /// because all weights are positive.
     71 ///
     72 struct SpillPlacement::Node {
     73   /// BiasN - Sum of blocks that prefer a spill.
     74   BlockFrequency BiasN;
     75   /// BiasP - Sum of blocks that prefer a register.
     76   BlockFrequency BiasP;
     77 
     78   /// Value - Output value of this node computed from the Bias and links.
     79   /// This is always on of the values {-1, 0, 1}. A positive number means the
     80   /// variable should go in a register through this bundle.
     81   int Value;
     82 
     83   typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
     84 
     85   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
     86   /// bundles. The weights are all positive block frequencies.
     87   LinkVector Links;
     88 
     89   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
     90   BlockFrequency SumLinkWeights;
     91 
     92   /// preferReg - Return true when this node prefers to be in a register.
     93   bool preferReg() const {
     94     // Undecided nodes (Value==0) go on the stack.
     95     return Value > 0;
     96   }
     97 
     98   /// mustSpill - Return True if this node is so biased that it must spill.
     99   bool mustSpill() const {
    100     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
    101     // BiasN is saturated when MustSpill is set, make sure this still returns
    102     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
    103     return BiasN >= BiasP + SumLinkWeights;
    104   }
    105 
    106   /// clear - Reset per-query data, but preserve frequencies that only depend on
    107   // the CFG.
    108   void clear(const BlockFrequency &Threshold) {
    109     BiasN = BiasP = Value = 0;
    110     SumLinkWeights = Threshold;
    111     Links.clear();
    112   }
    113 
    114   /// addLink - Add a link to bundle b with weight w.
    115   void addLink(unsigned b, BlockFrequency w) {
    116     // Update cached sum.
    117     SumLinkWeights += w;
    118 
    119     // There can be multiple links to the same bundle, add them up.
    120     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
    121       if (I->second == b) {
    122         I->first += w;
    123         return;
    124       }
    125     // This must be the first link to b.
    126     Links.push_back(std::make_pair(w, b));
    127   }
    128 
    129   /// addBias - Bias this node.
    130   void addBias(BlockFrequency freq, BorderConstraint direction) {
    131     switch (direction) {
    132     default:
    133       break;
    134     case PrefReg:
    135       BiasP += freq;
    136       break;
    137     case PrefSpill:
    138       BiasN += freq;
    139       break;
    140     case MustSpill:
    141       BiasN = BlockFrequency::getMaxFrequency();
    142       break;
    143     }
    144   }
    145 
    146   /// update - Recompute Value from Bias and Links. Return true when node
    147   /// preference changes.
    148   bool update(const Node nodes[], const BlockFrequency &Threshold) {
    149     // Compute the weighted sum of inputs.
    150     BlockFrequency SumN = BiasN;
    151     BlockFrequency SumP = BiasP;
    152     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
    153       if (nodes[I->second].Value == -1)
    154         SumN += I->first;
    155       else if (nodes[I->second].Value == 1)
    156         SumP += I->first;
    157     }
    158 
    159     // Each weighted sum is going to be less than the total frequency of the
    160     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
    161     // will add a dead zone around 0 for two reasons:
    162     //
    163     //  1. It avoids arbitrary bias when all links are 0 as is possible during
    164     //     initial iterations.
    165     //  2. It helps tame rounding errors when the links nominally sum to 0.
    166     //
    167     bool Before = preferReg();
    168     if (SumN >= SumP + Threshold)
    169       Value = -1;
    170     else if (SumP >= SumN + Threshold)
    171       Value = 1;
    172     else
    173       Value = 0;
    174     return Before != preferReg();
    175   }
    176 };
    177 
    178 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
    179   MF = &mf;
    180   bundles = &getAnalysis<EdgeBundles>();
    181   loops = &getAnalysis<MachineLoopInfo>();
    182 
    183   assert(!nodes && "Leaking node array");
    184   nodes = new Node[bundles->getNumBundles()];
    185 
    186   // Compute total ingoing and outgoing block frequencies for all bundles.
    187   BlockFrequencies.resize(mf.getNumBlockIDs());
    188   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
    189   setThreshold(MBFI->getEntryFreq());
    190   for (auto &I : mf) {
    191     unsigned Num = I.getNumber();
    192     BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
    193   }
    194 
    195   // We never change the function.
    196   return false;
    197 }
    198 
    199 void SpillPlacement::releaseMemory() {
    200   delete[] nodes;
    201   nodes = nullptr;
    202 }
    203 
    204 /// activate - mark node n as active if it wasn't already.
    205 void SpillPlacement::activate(unsigned n) {
    206   if (ActiveNodes->test(n))
    207     return;
    208   ActiveNodes->set(n);
    209   nodes[n].clear(Threshold);
    210 
    211   // Very large bundles usually come from big switches, indirect branches,
    212   // landing pads, or loops with many 'continue' statements. It is difficult to
    213   // allocate registers when so many different blocks are involved.
    214   //
    215   // Give a small negative bias to large bundles such that a substantial
    216   // fraction of the connected blocks need to be interested before we consider
    217   // expanding the region through the bundle. This helps compile time by
    218   // limiting the number of blocks visited and the number of links in the
    219   // Hopfield network.
    220   if (bundles->getBlocks(n).size() > 100) {
    221     nodes[n].BiasP = 0;
    222     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
    223   }
    224 }
    225 
    226 /// \brief Set the threshold for a given entry frequency.
    227 ///
    228 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
    229 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
    230 /// threshold.
    231 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
    232   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
    233   // it.  Divide by 2^13, rounding as appropriate.
    234   uint64_t Freq = Entry.getFrequency();
    235   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
    236   Threshold = std::max(UINT64_C(1), Scaled);
    237 }
    238 
    239 /// addConstraints - Compute node biases and weights from a set of constraints.
    240 /// Set a bit in NodeMask for each active node.
    241 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
    242   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
    243        E = LiveBlocks.end(); I != E; ++I) {
    244     BlockFrequency Freq = BlockFrequencies[I->Number];
    245 
    246     // Live-in to block?
    247     if (I->Entry != DontCare) {
    248       unsigned ib = bundles->getBundle(I->Number, 0);
    249       activate(ib);
    250       nodes[ib].addBias(Freq, I->Entry);
    251     }
    252 
    253     // Live-out from block?
    254     if (I->Exit != DontCare) {
    255       unsigned ob = bundles->getBundle(I->Number, 1);
    256       activate(ob);
    257       nodes[ob].addBias(Freq, I->Exit);
    258     }
    259   }
    260 }
    261 
    262 /// addPrefSpill - Same as addConstraints(PrefSpill)
    263 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
    264   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    265        I != E; ++I) {
    266     BlockFrequency Freq = BlockFrequencies[*I];
    267     if (Strong)
    268       Freq += Freq;
    269     unsigned ib = bundles->getBundle(*I, 0);
    270     unsigned ob = bundles->getBundle(*I, 1);
    271     activate(ib);
    272     activate(ob);
    273     nodes[ib].addBias(Freq, PrefSpill);
    274     nodes[ob].addBias(Freq, PrefSpill);
    275   }
    276 }
    277 
    278 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
    279   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
    280        ++I) {
    281     unsigned Number = *I;
    282     unsigned ib = bundles->getBundle(Number, 0);
    283     unsigned ob = bundles->getBundle(Number, 1);
    284 
    285     // Ignore self-loops.
    286     if (ib == ob)
    287       continue;
    288     activate(ib);
    289     activate(ob);
    290     if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
    291       Linked.push_back(ib);
    292     if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
    293       Linked.push_back(ob);
    294     BlockFrequency Freq = BlockFrequencies[Number];
    295     nodes[ib].addLink(ob, Freq);
    296     nodes[ob].addLink(ib, Freq);
    297   }
    298 }
    299 
    300 bool SpillPlacement::scanActiveBundles() {
    301   Linked.clear();
    302   RecentPositive.clear();
    303   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
    304     nodes[n].update(nodes, Threshold);
    305     // A node that must spill, or a node without any links is not going to
    306     // change its value ever again, so exclude it from iterations.
    307     if (nodes[n].mustSpill())
    308       continue;
    309     if (!nodes[n].Links.empty())
    310       Linked.push_back(n);
    311     if (nodes[n].preferReg())
    312       RecentPositive.push_back(n);
    313   }
    314   return !RecentPositive.empty();
    315 }
    316 
    317 /// iterate - Repeatedly update the Hopfield nodes until stability or the
    318 /// maximum number of iterations is reached.
    319 /// @param Linked - Numbers of linked nodes that need updating.
    320 void SpillPlacement::iterate() {
    321   // First update the recently positive nodes. They have likely received new
    322   // negative bias that will turn them off.
    323   while (!RecentPositive.empty())
    324     nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
    325 
    326   if (Linked.empty())
    327     return;
    328 
    329   // Run up to 10 iterations. The edge bundle numbering is closely related to
    330   // basic block numbering, so there is a strong tendency towards chains of
    331   // linked nodes with sequential numbers. By scanning the linked nodes
    332   // backwards and forwards, we make it very likely that a single node can
    333   // affect the entire network in a single iteration. That means very fast
    334   // convergence, usually in a single iteration.
    335   for (unsigned iteration = 0; iteration != 10; ++iteration) {
    336     // Scan backwards, skipping the last node when iteration is not zero. When
    337     // iteration is not zero, the last node was just updated.
    338     bool Changed = false;
    339     for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
    340            iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
    341            E = Linked.rend(); I != E; ++I) {
    342       unsigned n = *I;
    343       if (nodes[n].update(nodes, Threshold)) {
    344         Changed = true;
    345         if (nodes[n].preferReg())
    346           RecentPositive.push_back(n);
    347       }
    348     }
    349     if (!Changed || !RecentPositive.empty())
    350       return;
    351 
    352     // Scan forwards, skipping the first node which was just updated.
    353     Changed = false;
    354     for (SmallVectorImpl<unsigned>::const_iterator I =
    355            std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
    356       unsigned n = *I;
    357       if (nodes[n].update(nodes, Threshold)) {
    358         Changed = true;
    359         if (nodes[n].preferReg())
    360           RecentPositive.push_back(n);
    361       }
    362     }
    363     if (!Changed || !RecentPositive.empty())
    364       return;
    365   }
    366 }
    367 
    368 void SpillPlacement::prepare(BitVector &RegBundles) {
    369   Linked.clear();
    370   RecentPositive.clear();
    371   // Reuse RegBundles as our ActiveNodes vector.
    372   ActiveNodes = &RegBundles;
    373   ActiveNodes->clear();
    374   ActiveNodes->resize(bundles->getNumBundles());
    375 }
    376 
    377 bool
    378 SpillPlacement::finish() {
    379   assert(ActiveNodes && "Call prepare() first");
    380 
    381   // Write preferences back to ActiveNodes.
    382   bool Perfect = true;
    383   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
    384     if (!nodes[n].preferReg()) {
    385       ActiveNodes->reset(n);
    386       Perfect = false;
    387     }
    388   ActiveNodes = nullptr;
    389   return Perfect;
    390 }
    391