Home | History | Annotate | Download | only in CodeGen
      1 //===-- StackColoring.cpp -------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements the stack-coloring optimization that looks for
     11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
     12 // which represent the possible lifetime of stack slots. It attempts to
     13 // merge disjoint stack slots and reduce the used stack space.
     14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
     15 //
     16 // TODO: In the future we plan to improve stack coloring in the following ways:
     17 // 1. Allow merging multiple small slots into a single larger slot at different
     18 //    offsets.
     19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
     20 //    spill slots.
     21 //
     22 //===----------------------------------------------------------------------===//
     23 
     24 #include "llvm/CodeGen/Passes.h"
     25 #include "llvm/ADT/BitVector.h"
     26 #include "llvm/ADT/DepthFirstIterator.h"
     27 #include "llvm/ADT/PostOrderIterator.h"
     28 #include "llvm/ADT/SetVector.h"
     29 #include "llvm/ADT/SmallPtrSet.h"
     30 #include "llvm/ADT/SparseSet.h"
     31 #include "llvm/ADT/Statistic.h"
     32 #include "llvm/Analysis/ValueTracking.h"
     33 #include "llvm/CodeGen/LiveInterval.h"
     34 #include "llvm/CodeGen/MachineBasicBlock.h"
     35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     36 #include "llvm/CodeGen/MachineDominators.h"
     37 #include "llvm/CodeGen/MachineFrameInfo.h"
     38 #include "llvm/CodeGen/MachineFunctionPass.h"
     39 #include "llvm/CodeGen/MachineLoopInfo.h"
     40 #include "llvm/CodeGen/MachineMemOperand.h"
     41 #include "llvm/CodeGen/MachineModuleInfo.h"
     42 #include "llvm/CodeGen/MachineRegisterInfo.h"
     43 #include "llvm/CodeGen/PseudoSourceValue.h"
     44 #include "llvm/CodeGen/SlotIndexes.h"
     45 #include "llvm/CodeGen/StackProtector.h"
     46 #include "llvm/IR/DebugInfo.h"
     47 #include "llvm/IR/Dominators.h"
     48 #include "llvm/IR/Function.h"
     49 #include "llvm/IR/Instructions.h"
     50 #include "llvm/IR/Module.h"
     51 #include "llvm/Support/CommandLine.h"
     52 #include "llvm/Support/Debug.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetInstrInfo.h"
     55 #include "llvm/Target/TargetRegisterInfo.h"
     56 
     57 using namespace llvm;
     58 
     59 #define DEBUG_TYPE "stackcoloring"
     60 
     61 static cl::opt<bool>
     62 DisableColoring("no-stack-coloring",
     63         cl::init(false), cl::Hidden,
     64         cl::desc("Disable stack coloring"));
     65 
     66 /// The user may write code that uses allocas outside of the declared lifetime
     67 /// zone. This can happen when the user returns a reference to a local
     68 /// data-structure. We can detect these cases and decide not to optimize the
     69 /// code. If this flag is enabled, we try to save the user.
     70 static cl::opt<bool>
     71 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
     72                           cl::init(false), cl::Hidden,
     73                           cl::desc("Do not optimize lifetime zones that "
     74                                    "are broken"));
     75 
     76 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
     77 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
     78 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
     79 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
     80 
     81 //===----------------------------------------------------------------------===//
     82 //                           StackColoring Pass
     83 //===----------------------------------------------------------------------===//
     84 
     85 namespace {
     86 /// StackColoring - A machine pass for merging disjoint stack allocations,
     87 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
     88 class StackColoring : public MachineFunctionPass {
     89   MachineFrameInfo *MFI;
     90   MachineFunction *MF;
     91 
     92   /// A class representing liveness information for a single basic block.
     93   /// Each bit in the BitVector represents the liveness property
     94   /// for a different stack slot.
     95   struct BlockLifetimeInfo {
     96     /// Which slots BEGINs in each basic block.
     97     BitVector Begin;
     98     /// Which slots ENDs in each basic block.
     99     BitVector End;
    100     /// Which slots are marked as LIVE_IN, coming into each basic block.
    101     BitVector LiveIn;
    102     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
    103     BitVector LiveOut;
    104   };
    105 
    106   /// Maps active slots (per bit) for each basic block.
    107   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
    108   LivenessMap BlockLiveness;
    109 
    110   /// Maps serial numbers to basic blocks.
    111   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
    112   /// Maps basic blocks to a serial number.
    113   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
    114 
    115   /// Maps liveness intervals for each slot.
    116   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
    117   /// VNInfo is used for the construction of LiveIntervals.
    118   VNInfo::Allocator VNInfoAllocator;
    119   /// SlotIndex analysis object.
    120   SlotIndexes *Indexes;
    121   /// The stack protector object.
    122   StackProtector *SP;
    123 
    124   /// The list of lifetime markers found. These markers are to be removed
    125   /// once the coloring is done.
    126   SmallVector<MachineInstr*, 8> Markers;
    127 
    128 public:
    129   static char ID;
    130   StackColoring() : MachineFunctionPass(ID) {
    131     initializeStackColoringPass(*PassRegistry::getPassRegistry());
    132   }
    133   void getAnalysisUsage(AnalysisUsage &AU) const override;
    134   bool runOnMachineFunction(MachineFunction &MF) override;
    135 
    136 private:
    137   /// Debug.
    138   void dump() const;
    139 
    140   /// Removes all of the lifetime marker instructions from the function.
    141   /// \returns true if any markers were removed.
    142   bool removeAllMarkers();
    143 
    144   /// Scan the machine function and find all of the lifetime markers.
    145   /// Record the findings in the BEGIN and END vectors.
    146   /// \returns the number of markers found.
    147   unsigned collectMarkers(unsigned NumSlot);
    148 
    149   /// Perform the dataflow calculation and calculate the lifetime for each of
    150   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
    151   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
    152   /// in and out blocks.
    153   void calculateLocalLiveness();
    154 
    155   /// Construct the LiveIntervals for the slots.
    156   void calculateLiveIntervals(unsigned NumSlots);
    157 
    158   /// Go over the machine function and change instructions which use stack
    159   /// slots to use the joint slots.
    160   void remapInstructions(DenseMap<int, int> &SlotRemap);
    161 
    162   /// The input program may contain instructions which are not inside lifetime
    163   /// markers. This can happen due to a bug in the compiler or due to a bug in
    164   /// user code (for example, returning a reference to a local variable).
    165   /// This procedure checks all of the instructions in the function and
    166   /// invalidates lifetime ranges which do not contain all of the instructions
    167   /// which access that frame slot.
    168   void removeInvalidSlotRanges();
    169 
    170   /// Map entries which point to other entries to their destination.
    171   ///   A->B->C becomes A->C.
    172    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
    173 };
    174 } // end anonymous namespace
    175 
    176 char StackColoring::ID = 0;
    177 char &llvm::StackColoringID = StackColoring::ID;
    178 
    179 INITIALIZE_PASS_BEGIN(StackColoring,
    180                    "stack-coloring", "Merge disjoint stack slots", false, false)
    181 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    182 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    183 INITIALIZE_PASS_DEPENDENCY(StackProtector)
    184 INITIALIZE_PASS_END(StackColoring,
    185                    "stack-coloring", "Merge disjoint stack slots", false, false)
    186 
    187 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
    188   AU.addRequired<MachineDominatorTree>();
    189   AU.addPreserved<MachineDominatorTree>();
    190   AU.addRequired<SlotIndexes>();
    191   AU.addRequired<StackProtector>();
    192   MachineFunctionPass::getAnalysisUsage(AU);
    193 }
    194 
    195 void StackColoring::dump() const {
    196   for (MachineBasicBlock *MBB : depth_first(MF)) {
    197     DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " ["
    198                  << MBB->getName() << "]\n");
    199 
    200     LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
    201     assert(BI != BlockLiveness.end() && "Block not found");
    202     const BlockLifetimeInfo &BlockInfo = BI->second;
    203 
    204     DEBUG(dbgs()<<"BEGIN  : {");
    205     for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
    206       DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
    207     DEBUG(dbgs()<<"}\n");
    208 
    209     DEBUG(dbgs()<<"END    : {");
    210     for (unsigned i=0; i < BlockInfo.End.size(); ++i)
    211       DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
    212 
    213     DEBUG(dbgs()<<"}\n");
    214 
    215     DEBUG(dbgs()<<"LIVE_IN: {");
    216     for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
    217       DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
    218 
    219     DEBUG(dbgs()<<"}\n");
    220     DEBUG(dbgs()<<"LIVEOUT: {");
    221     for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
    222       DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
    223     DEBUG(dbgs()<<"}\n");
    224   }
    225 }
    226 
    227 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
    228   unsigned MarkersFound = 0;
    229   // Scan the function to find all lifetime markers.
    230   // NOTE: We use a reverse-post-order iteration to ensure that we obtain a
    231   // deterministic numbering, and because we'll need a post-order iteration
    232   // later for solving the liveness dataflow problem.
    233   for (MachineBasicBlock *MBB : depth_first(MF)) {
    234 
    235     // Assign a serial number to this basic block.
    236     BasicBlocks[MBB] = BasicBlockNumbering.size();
    237     BasicBlockNumbering.push_back(MBB);
    238 
    239     // Keep a reference to avoid repeated lookups.
    240     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
    241 
    242     BlockInfo.Begin.resize(NumSlot);
    243     BlockInfo.End.resize(NumSlot);
    244 
    245     for (MachineInstr &MI : *MBB) {
    246       if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
    247           MI.getOpcode() != TargetOpcode::LIFETIME_END)
    248         continue;
    249 
    250       Markers.push_back(&MI);
    251 
    252       bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
    253       const MachineOperand &MO = MI.getOperand(0);
    254       unsigned Slot = MO.getIndex();
    255 
    256       MarkersFound++;
    257 
    258       const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
    259       if (Allocation) {
    260         DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
    261               " with allocation: "<< Allocation->getName()<<"\n");
    262       }
    263 
    264       if (IsStart) {
    265         BlockInfo.Begin.set(Slot);
    266       } else {
    267         if (BlockInfo.Begin.test(Slot)) {
    268           // Allocas that start and end within a single block are handled
    269           // specially when computing the LiveIntervals to avoid pessimizing
    270           // the liveness propagation.
    271           BlockInfo.Begin.reset(Slot);
    272         } else {
    273           BlockInfo.End.set(Slot);
    274         }
    275       }
    276     }
    277   }
    278 
    279   // Update statistics.
    280   NumMarkerSeen += MarkersFound;
    281   return MarkersFound;
    282 }
    283 
    284 void StackColoring::calculateLocalLiveness() {
    285   // Perform a standard reverse dataflow computation to solve for
    286   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
    287   // formulation, and END is equivalent to GEN.  The result of this computation
    288   // is a map from blocks to bitvectors where the bitvectors represent which
    289   // allocas are live in/out of that block.
    290   SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
    291                                                  BasicBlockNumbering.end());
    292   unsigned NumSSMIters = 0;
    293   bool changed = true;
    294   while (changed) {
    295     changed = false;
    296     ++NumSSMIters;
    297 
    298     SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
    299 
    300     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
    301       if (!BBSet.count(BB)) continue;
    302 
    303       // Use an iterator to avoid repeated lookups.
    304       LivenessMap::iterator BI = BlockLiveness.find(BB);
    305       assert(BI != BlockLiveness.end() && "Block not found");
    306       BlockLifetimeInfo &BlockInfo = BI->second;
    307 
    308       BitVector LocalLiveIn;
    309       BitVector LocalLiveOut;
    310 
    311       // Forward propagation from begins to ends.
    312       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
    313            PE = BB->pred_end(); PI != PE; ++PI) {
    314         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
    315         assert(I != BlockLiveness.end() && "Predecessor not found");
    316         LocalLiveIn |= I->second.LiveOut;
    317       }
    318       LocalLiveIn |= BlockInfo.End;
    319       LocalLiveIn.reset(BlockInfo.Begin);
    320 
    321       // Reverse propagation from ends to begins.
    322       for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
    323            SE = BB->succ_end(); SI != SE; ++SI) {
    324         LivenessMap::const_iterator I = BlockLiveness.find(*SI);
    325         assert(I != BlockLiveness.end() && "Successor not found");
    326         LocalLiveOut |= I->second.LiveIn;
    327       }
    328       LocalLiveOut |= BlockInfo.Begin;
    329       LocalLiveOut.reset(BlockInfo.End);
    330 
    331       LocalLiveIn |= LocalLiveOut;
    332       LocalLiveOut |= LocalLiveIn;
    333 
    334       // After adopting the live bits, we need to turn-off the bits which
    335       // are de-activated in this block.
    336       LocalLiveOut.reset(BlockInfo.End);
    337       LocalLiveIn.reset(BlockInfo.Begin);
    338 
    339       // If we have both BEGIN and END markers in the same basic block then
    340       // we know that the BEGIN marker comes after the END, because we already
    341       // handle the case where the BEGIN comes before the END when collecting
    342       // the markers (and building the BEGIN/END vectore).
    343       // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
    344       // BEGIN and END because it means that the value lives before and after
    345       // this basic block.
    346       BitVector LocalEndBegin = BlockInfo.End;
    347       LocalEndBegin &= BlockInfo.Begin;
    348       LocalLiveIn |= LocalEndBegin;
    349       LocalLiveOut |= LocalEndBegin;
    350 
    351       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
    352         changed = true;
    353         BlockInfo.LiveIn |= LocalLiveIn;
    354 
    355         NextBBSet.insert(BB->pred_begin(), BB->pred_end());
    356       }
    357 
    358       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
    359         changed = true;
    360         BlockInfo.LiveOut |= LocalLiveOut;
    361 
    362         NextBBSet.insert(BB->succ_begin(), BB->succ_end());
    363       }
    364     }
    365 
    366     BBSet = std::move(NextBBSet);
    367   }// while changed.
    368 }
    369 
    370 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
    371   SmallVector<SlotIndex, 16> Starts;
    372   SmallVector<SlotIndex, 16> Finishes;
    373 
    374   // For each block, find which slots are active within this block
    375   // and update the live intervals.
    376   for (const MachineBasicBlock &MBB : *MF) {
    377     Starts.clear();
    378     Starts.resize(NumSlots);
    379     Finishes.clear();
    380     Finishes.resize(NumSlots);
    381 
    382     // Create the interval for the basic blocks with lifetime markers in them.
    383     for (const MachineInstr *MI : Markers) {
    384       if (MI->getParent() != &MBB)
    385         continue;
    386 
    387       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
    388               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
    389              "Invalid Lifetime marker");
    390 
    391       bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
    392       const MachineOperand &Mo = MI->getOperand(0);
    393       int Slot = Mo.getIndex();
    394       assert(Slot >= 0 && "Invalid slot");
    395 
    396       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
    397 
    398       if (IsStart) {
    399         if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
    400           Starts[Slot] = ThisIndex;
    401       } else {
    402         if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
    403           Finishes[Slot] = ThisIndex;
    404       }
    405     }
    406 
    407     // Create the interval of the blocks that we previously found to be 'alive'.
    408     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
    409     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
    410          pos = MBBLiveness.LiveIn.find_next(pos)) {
    411       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
    412     }
    413     for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
    414          pos = MBBLiveness.LiveOut.find_next(pos)) {
    415       Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
    416     }
    417 
    418     for (unsigned i = 0; i < NumSlots; ++i) {
    419       assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
    420       if (!Starts[i].isValid())
    421         continue;
    422 
    423       assert(Starts[i] && Finishes[i] && "Invalid interval");
    424       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
    425       SlotIndex S = Starts[i];
    426       SlotIndex F = Finishes[i];
    427       if (S < F) {
    428         // We have a single consecutive region.
    429         Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
    430       } else {
    431         // We have two non-consecutive regions. This happens when
    432         // LIFETIME_START appears after the LIFETIME_END marker.
    433         SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
    434         SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
    435         Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
    436         Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
    437       }
    438     }
    439   }
    440 }
    441 
    442 bool StackColoring::removeAllMarkers() {
    443   unsigned Count = 0;
    444   for (MachineInstr *MI : Markers) {
    445     MI->eraseFromParent();
    446     Count++;
    447   }
    448   Markers.clear();
    449 
    450   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
    451   return Count;
    452 }
    453 
    454 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
    455   unsigned FixedInstr = 0;
    456   unsigned FixedMemOp = 0;
    457   unsigned FixedDbg = 0;
    458   MachineModuleInfo *MMI = &MF->getMMI();
    459 
    460   // Remap debug information that refers to stack slots.
    461   for (auto &VI : MMI->getVariableDbgInfo()) {
    462     if (!VI.Var)
    463       continue;
    464     if (SlotRemap.count(VI.Slot)) {
    465       DEBUG(dbgs() << "Remapping debug info for ["
    466                    << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
    467       VI.Slot = SlotRemap[VI.Slot];
    468       FixedDbg++;
    469     }
    470   }
    471 
    472   // Keep a list of *allocas* which need to be remapped.
    473   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
    474   for (const std::pair<int, int> &SI : SlotRemap) {
    475     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
    476     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
    477     assert(To && From && "Invalid allocation object");
    478     Allocas[From] = To;
    479 
    480     // AA might be used later for instruction scheduling, and we need it to be
    481     // able to deduce the correct aliasing releationships between pointers
    482     // derived from the alloca being remapped and the target of that remapping.
    483     // The only safe way, without directly informing AA about the remapping
    484     // somehow, is to directly update the IR to reflect the change being made
    485     // here.
    486     Instruction *Inst = const_cast<AllocaInst *>(To);
    487     if (From->getType() != To->getType()) {
    488       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
    489       Cast->insertAfter(Inst);
    490       Inst = Cast;
    491     }
    492 
    493     // Allow the stack protector to adjust its value map to account for the
    494     // upcoming replacement.
    495     SP->adjustForColoring(From, To);
    496 
    497     // Note that this will not replace uses in MMOs (which we'll update below),
    498     // or anywhere else (which is why we won't delete the original
    499     // instruction).
    500     const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
    501   }
    502 
    503   // Remap all instructions to the new stack slots.
    504   for (MachineBasicBlock &BB : *MF)
    505     for (MachineInstr &I : BB) {
    506       // Skip lifetime markers. We'll remove them soon.
    507       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    508           I.getOpcode() == TargetOpcode::LIFETIME_END)
    509         continue;
    510 
    511       // Update the MachineMemOperand to use the new alloca.
    512       for (MachineMemOperand *MMO : I.memoperands()) {
    513         // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
    514         // we'll also need to update the TBAA nodes in MMOs with values
    515         // derived from the merged allocas. When doing this, we'll need to use
    516         // the same variant of GetUnderlyingObjects that is used by the
    517         // instruction scheduler (that can look through ptrtoint/inttoptr
    518         // pairs).
    519 
    520         // We've replaced IR-level uses of the remapped allocas, so we only
    521         // need to replace direct uses here.
    522         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
    523         if (!AI)
    524           continue;
    525 
    526         if (!Allocas.count(AI))
    527           continue;
    528 
    529         MMO->setValue(Allocas[AI]);
    530         FixedMemOp++;
    531       }
    532 
    533       // Update all of the machine instruction operands.
    534       for (MachineOperand &MO : I.operands()) {
    535         if (!MO.isFI())
    536           continue;
    537         int FromSlot = MO.getIndex();
    538 
    539         // Don't touch arguments.
    540         if (FromSlot<0)
    541           continue;
    542 
    543         // Only look at mapped slots.
    544         if (!SlotRemap.count(FromSlot))
    545           continue;
    546 
    547         // In a debug build, check that the instruction that we are modifying is
    548         // inside the expected live range. If the instruction is not inside
    549         // the calculated range then it means that the alloca usage moved
    550         // outside of the lifetime markers, or that the user has a bug.
    551         // NOTE: Alloca address calculations which happen outside the lifetime
    552         // zone are are okay, despite the fact that we don't have a good way
    553         // for validating all of the usages of the calculation.
    554 #ifndef NDEBUG
    555         bool TouchesMemory = I.mayLoad() || I.mayStore();
    556         // If we *don't* protect the user from escaped allocas, don't bother
    557         // validating the instructions.
    558         if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
    559           SlotIndex Index = Indexes->getInstructionIndex(&I);
    560           const LiveInterval *Interval = &*Intervals[FromSlot];
    561           assert(Interval->find(Index) != Interval->end() &&
    562                  "Found instruction usage outside of live range.");
    563         }
    564 #endif
    565 
    566         // Fix the machine instructions.
    567         int ToSlot = SlotRemap[FromSlot];
    568         MO.setIndex(ToSlot);
    569         FixedInstr++;
    570       }
    571     }
    572 
    573   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
    574   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
    575   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
    576 }
    577 
    578 void StackColoring::removeInvalidSlotRanges() {
    579   for (MachineBasicBlock &BB : *MF)
    580     for (MachineInstr &I : BB) {
    581       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
    582           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
    583         continue;
    584 
    585       // Some intervals are suspicious! In some cases we find address
    586       // calculations outside of the lifetime zone, but not actual memory
    587       // read or write. Memory accesses outside of the lifetime zone are a clear
    588       // violation, but address calculations are okay. This can happen when
    589       // GEPs are hoisted outside of the lifetime zone.
    590       // So, in here we only check instructions which can read or write memory.
    591       if (!I.mayLoad() && !I.mayStore())
    592         continue;
    593 
    594       // Check all of the machine operands.
    595       for (const MachineOperand &MO : I.operands()) {
    596         if (!MO.isFI())
    597           continue;
    598 
    599         int Slot = MO.getIndex();
    600 
    601         if (Slot<0)
    602           continue;
    603 
    604         if (Intervals[Slot]->empty())
    605           continue;
    606 
    607         // Check that the used slot is inside the calculated lifetime range.
    608         // If it is not, warn about it and invalidate the range.
    609         LiveInterval *Interval = &*Intervals[Slot];
    610         SlotIndex Index = Indexes->getInstructionIndex(&I);
    611         if (Interval->find(Index) == Interval->end()) {
    612           Interval->clear();
    613           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
    614           EscapedAllocas++;
    615         }
    616       }
    617     }
    618 }
    619 
    620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
    621                                    unsigned NumSlots) {
    622   // Expunge slot remap map.
    623   for (unsigned i=0; i < NumSlots; ++i) {
    624     // If we are remapping i
    625     if (SlotRemap.count(i)) {
    626       int Target = SlotRemap[i];
    627       // As long as our target is mapped to something else, follow it.
    628       while (SlotRemap.count(Target)) {
    629         Target = SlotRemap[Target];
    630         SlotRemap[i] = Target;
    631       }
    632     }
    633   }
    634 }
    635 
    636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
    637   if (skipOptnoneFunction(*Func.getFunction()))
    638     return false;
    639 
    640   DEBUG(dbgs() << "********** Stack Coloring **********\n"
    641                << "********** Function: "
    642                << ((const Value*)Func.getFunction())->getName() << '\n');
    643   MF = &Func;
    644   MFI = MF->getFrameInfo();
    645   Indexes = &getAnalysis<SlotIndexes>();
    646   SP = &getAnalysis<StackProtector>();
    647   BlockLiveness.clear();
    648   BasicBlocks.clear();
    649   BasicBlockNumbering.clear();
    650   Markers.clear();
    651   Intervals.clear();
    652   VNInfoAllocator.Reset();
    653 
    654   unsigned NumSlots = MFI->getObjectIndexEnd();
    655 
    656   // If there are no stack slots then there are no markers to remove.
    657   if (!NumSlots)
    658     return false;
    659 
    660   SmallVector<int, 8> SortedSlots;
    661 
    662   SortedSlots.reserve(NumSlots);
    663   Intervals.reserve(NumSlots);
    664 
    665   unsigned NumMarkers = collectMarkers(NumSlots);
    666 
    667   unsigned TotalSize = 0;
    668   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
    669   DEBUG(dbgs()<<"Slot structure:\n");
    670 
    671   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
    672     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
    673     TotalSize += MFI->getObjectSize(i);
    674   }
    675 
    676   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
    677 
    678   // Don't continue because there are not enough lifetime markers, or the
    679   // stack is too small, or we are told not to optimize the slots.
    680   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
    681     DEBUG(dbgs()<<"Will not try to merge slots.\n");
    682     return removeAllMarkers();
    683   }
    684 
    685   for (unsigned i=0; i < NumSlots; ++i) {
    686     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
    687     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
    688     Intervals.push_back(std::move(LI));
    689     SortedSlots.push_back(i);
    690   }
    691 
    692   // Calculate the liveness of each block.
    693   calculateLocalLiveness();
    694 
    695   // Propagate the liveness information.
    696   calculateLiveIntervals(NumSlots);
    697 
    698   // Search for allocas which are used outside of the declared lifetime
    699   // markers.
    700   if (ProtectFromEscapedAllocas)
    701     removeInvalidSlotRanges();
    702 
    703   // Maps old slots to new slots.
    704   DenseMap<int, int> SlotRemap;
    705   unsigned RemovedSlots = 0;
    706   unsigned ReducedSize = 0;
    707 
    708   // Do not bother looking at empty intervals.
    709   for (unsigned I = 0; I < NumSlots; ++I) {
    710     if (Intervals[SortedSlots[I]]->empty())
    711       SortedSlots[I] = -1;
    712   }
    713 
    714   // This is a simple greedy algorithm for merging allocas. First, sort the
    715   // slots, placing the largest slots first. Next, perform an n^2 scan and look
    716   // for disjoint slots. When you find disjoint slots, merge the samller one
    717   // into the bigger one and update the live interval. Remove the small alloca
    718   // and continue.
    719 
    720   // Sort the slots according to their size. Place unused slots at the end.
    721   // Use stable sort to guarantee deterministic code generation.
    722   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
    723                    [this](int LHS, int RHS) {
    724     // We use -1 to denote a uninteresting slot. Place these slots at the end.
    725     if (LHS == -1) return false;
    726     if (RHS == -1) return true;
    727     // Sort according to size.
    728     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
    729   });
    730 
    731   bool Changed = true;
    732   while (Changed) {
    733     Changed = false;
    734     for (unsigned I = 0; I < NumSlots; ++I) {
    735       if (SortedSlots[I] == -1)
    736         continue;
    737 
    738       for (unsigned J=I+1; J < NumSlots; ++J) {
    739         if (SortedSlots[J] == -1)
    740           continue;
    741 
    742         int FirstSlot = SortedSlots[I];
    743         int SecondSlot = SortedSlots[J];
    744         LiveInterval *First = &*Intervals[FirstSlot];
    745         LiveInterval *Second = &*Intervals[SecondSlot];
    746         assert (!First->empty() && !Second->empty() && "Found an empty range");
    747 
    748         // Merge disjoint slots.
    749         if (!First->overlaps(*Second)) {
    750           Changed = true;
    751           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
    752           SlotRemap[SecondSlot] = FirstSlot;
    753           SortedSlots[J] = -1;
    754           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
    755                 SecondSlot<<" together.\n");
    756           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
    757                                            MFI->getObjectAlignment(SecondSlot));
    758 
    759           assert(MFI->getObjectSize(FirstSlot) >=
    760                  MFI->getObjectSize(SecondSlot) &&
    761                  "Merging a small object into a larger one");
    762 
    763           RemovedSlots+=1;
    764           ReducedSize += MFI->getObjectSize(SecondSlot);
    765           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
    766           MFI->RemoveStackObject(SecondSlot);
    767         }
    768       }
    769     }
    770   }// While changed.
    771 
    772   // Record statistics.
    773   StackSpaceSaved += ReducedSize;
    774   StackSlotMerged += RemovedSlots;
    775   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
    776         ReducedSize<<" bytes\n");
    777 
    778   // Scan the entire function and update all machine operands that use frame
    779   // indices to use the remapped frame index.
    780   expungeSlotMap(SlotRemap, NumSlots);
    781   remapInstructions(SlotRemap);
    782 
    783   return removeAllMarkers();
    784 }
    785