Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
     15 #include "RuntimeDyldCheckerImpl.h"
     16 #include "RuntimeDyldCOFF.h"
     17 #include "RuntimeDyldELF.h"
     18 #include "RuntimeDyldImpl.h"
     19 #include "RuntimeDyldMachO.h"
     20 #include "llvm/Object/ELFObjectFile.h"
     21 #include "llvm/Object/COFF.h"
     22 #include "llvm/Support/MathExtras.h"
     23 #include "llvm/Support/MutexGuard.h"
     24 
     25 using namespace llvm;
     26 using namespace llvm::object;
     27 
     28 #define DEBUG_TYPE "dyld"
     29 
     30 // Empty out-of-line virtual destructor as the key function.
     31 RuntimeDyldImpl::~RuntimeDyldImpl() {}
     32 
     33 // Pin LoadedObjectInfo's vtables to this file.
     34 void RuntimeDyld::LoadedObjectInfo::anchor() {}
     35 
     36 namespace llvm {
     37 
     38 void RuntimeDyldImpl::registerEHFrames() {}
     39 
     40 void RuntimeDyldImpl::deregisterEHFrames() {}
     41 
     42 #ifndef NDEBUG
     43 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
     44   dbgs() << "----- Contents of section " << S.getName() << " " << State
     45          << " -----";
     46 
     47   if (S.getAddress() == nullptr) {
     48     dbgs() << "\n          <section not emitted>\n";
     49     return;
     50   }
     51 
     52   const unsigned ColsPerRow = 16;
     53 
     54   uint8_t *DataAddr = S.getAddress();
     55   uint64_t LoadAddr = S.getLoadAddress();
     56 
     57   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
     58   unsigned BytesRemaining = S.getSize();
     59 
     60   if (StartPadding) {
     61     dbgs() << "\n" << format("0x%016" PRIx64,
     62                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
     63     while (StartPadding--)
     64       dbgs() << "   ";
     65   }
     66 
     67   while (BytesRemaining > 0) {
     68     if ((LoadAddr & (ColsPerRow - 1)) == 0)
     69       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
     70 
     71     dbgs() << " " << format("%02x", *DataAddr);
     72 
     73     ++DataAddr;
     74     ++LoadAddr;
     75     --BytesRemaining;
     76   }
     77 
     78   dbgs() << "\n";
     79 }
     80 #endif
     81 
     82 // Resolve the relocations for all symbols we currently know about.
     83 void RuntimeDyldImpl::resolveRelocations() {
     84   MutexGuard locked(lock);
     85 
     86   // Print out the sections prior to relocation.
     87   DEBUG(
     88     for (int i = 0, e = Sections.size(); i != e; ++i)
     89       dumpSectionMemory(Sections[i], "before relocations");
     90   );
     91 
     92   // First, resolve relocations associated with external symbols.
     93   resolveExternalSymbols();
     94 
     95   // Iterate over all outstanding relocations
     96   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
     97     // The Section here (Sections[i]) refers to the section in which the
     98     // symbol for the relocation is located.  The SectionID in the relocation
     99     // entry provides the section to which the relocation will be applied.
    100     int Idx = it->first;
    101     uint64_t Addr = Sections[Idx].getLoadAddress();
    102     DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
    103                  << format("%p", (uintptr_t)Addr) << "\n");
    104     resolveRelocationList(it->second, Addr);
    105   }
    106   Relocations.clear();
    107 
    108   // Print out sections after relocation.
    109   DEBUG(
    110     for (int i = 0, e = Sections.size(); i != e; ++i)
    111       dumpSectionMemory(Sections[i], "after relocations");
    112   );
    113 
    114 }
    115 
    116 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
    117                                         uint64_t TargetAddress) {
    118   MutexGuard locked(lock);
    119   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
    120     if (Sections[i].getAddress() == LocalAddress) {
    121       reassignSectionAddress(i, TargetAddress);
    122       return;
    123     }
    124   }
    125   llvm_unreachable("Attempting to remap address of unknown section!");
    126 }
    127 
    128 static std::error_code getOffset(const SymbolRef &Sym, SectionRef Sec,
    129                                  uint64_t &Result) {
    130   ErrorOr<uint64_t> AddressOrErr = Sym.getAddress();
    131   if (std::error_code EC = AddressOrErr.getError())
    132     return EC;
    133   Result = *AddressOrErr - Sec.getAddress();
    134   return std::error_code();
    135 }
    136 
    137 RuntimeDyldImpl::ObjSectionToIDMap
    138 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
    139   MutexGuard locked(lock);
    140 
    141   // Save information about our target
    142   Arch = (Triple::ArchType)Obj.getArch();
    143   IsTargetLittleEndian = Obj.isLittleEndian();
    144   setMipsABI(Obj);
    145 
    146   // Compute the memory size required to load all sections to be loaded
    147   // and pass this information to the memory manager
    148   if (MemMgr.needsToReserveAllocationSpace()) {
    149     uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
    150     computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
    151     MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
    152   }
    153 
    154   // Used sections from the object file
    155   ObjSectionToIDMap LocalSections;
    156 
    157   // Common symbols requiring allocation, with their sizes and alignments
    158   CommonSymbolList CommonSymbols;
    159 
    160   // Parse symbols
    161   DEBUG(dbgs() << "Parse symbols:\n");
    162   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    163        ++I) {
    164     uint32_t Flags = I->getFlags();
    165 
    166     if (Flags & SymbolRef::SF_Common)
    167       CommonSymbols.push_back(*I);
    168     else {
    169       object::SymbolRef::Type SymType = I->getType();
    170 
    171       // Get symbol name.
    172       ErrorOr<StringRef> NameOrErr = I->getName();
    173       Check(NameOrErr.getError());
    174       StringRef Name = *NameOrErr;
    175 
    176       // Compute JIT symbol flags.
    177       JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    178       if (Flags & SymbolRef::SF_Weak)
    179         RTDyldSymFlags |= JITSymbolFlags::Weak;
    180       if (Flags & SymbolRef::SF_Exported)
    181         RTDyldSymFlags |= JITSymbolFlags::Exported;
    182 
    183       if (Flags & SymbolRef::SF_Absolute &&
    184           SymType != object::SymbolRef::ST_File) {
    185         auto Addr = I->getAddress();
    186         Check(Addr.getError());
    187         uint64_t SectOffset = *Addr;
    188         unsigned SectionID = AbsoluteSymbolSection;
    189 
    190         DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
    191                      << " SID: " << SectionID << " Offset: "
    192                      << format("%p", (uintptr_t)SectOffset)
    193                      << " flags: " << Flags << "\n");
    194         GlobalSymbolTable[Name] =
    195           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
    196       } else if (SymType == object::SymbolRef::ST_Function ||
    197                  SymType == object::SymbolRef::ST_Data ||
    198                  SymType == object::SymbolRef::ST_Unknown ||
    199                  SymType == object::SymbolRef::ST_Other) {
    200 
    201         ErrorOr<section_iterator> SIOrErr = I->getSection();
    202         Check(SIOrErr.getError());
    203         section_iterator SI = *SIOrErr;
    204         if (SI == Obj.section_end())
    205           continue;
    206         // Get symbol offset.
    207         uint64_t SectOffset;
    208         Check(getOffset(*I, *SI, SectOffset));
    209         bool IsCode = SI->isText();
    210         unsigned SectionID = findOrEmitSection(Obj, *SI, IsCode, LocalSections);
    211 
    212         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
    213                      << " SID: " << SectionID << " Offset: "
    214                      << format("%p", (uintptr_t)SectOffset)
    215                      << " flags: " << Flags << "\n");
    216         GlobalSymbolTable[Name] =
    217           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
    218       }
    219     }
    220   }
    221 
    222   // Allocate common symbols
    223   emitCommonSymbols(Obj, CommonSymbols);
    224 
    225   // Parse and process relocations
    226   DEBUG(dbgs() << "Parse relocations:\n");
    227   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    228        SI != SE; ++SI) {
    229     unsigned SectionID = 0;
    230     StubMap Stubs;
    231     section_iterator RelocatedSection = SI->getRelocatedSection();
    232 
    233     if (RelocatedSection == SE)
    234       continue;
    235 
    236     relocation_iterator I = SI->relocation_begin();
    237     relocation_iterator E = SI->relocation_end();
    238 
    239     if (I == E && !ProcessAllSections)
    240       continue;
    241 
    242     bool IsCode = RelocatedSection->isText();
    243     SectionID =
    244         findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
    245     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
    246 
    247     for (; I != E;)
    248       I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
    249 
    250     // If there is an attached checker, notify it about the stubs for this
    251     // section so that they can be verified.
    252     if (Checker)
    253       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
    254   }
    255 
    256   // Give the subclasses a chance to tie-up any loose ends.
    257   finalizeLoad(Obj, LocalSections);
    258 
    259 //   for (auto E : LocalSections)
    260 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
    261 
    262   return LocalSections;
    263 }
    264 
    265 // A helper method for computeTotalAllocSize.
    266 // Computes the memory size required to allocate sections with the given sizes,
    267 // assuming that all sections are allocated with the given alignment
    268 static uint64_t
    269 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
    270                                  uint64_t Alignment) {
    271   uint64_t TotalSize = 0;
    272   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
    273     uint64_t AlignedSize =
    274         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
    275     TotalSize += AlignedSize;
    276   }
    277   return TotalSize;
    278 }
    279 
    280 static bool isRequiredForExecution(const SectionRef Section) {
    281   const ObjectFile *Obj = Section.getObject();
    282   if (isa<object::ELFObjectFileBase>(Obj))
    283     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
    284   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
    285     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
    286     // Avoid loading zero-sized COFF sections.
    287     // In PE files, VirtualSize gives the section size, and SizeOfRawData
    288     // may be zero for sections with content. In Obj files, SizeOfRawData
    289     // gives the section size, and VirtualSize is always zero. Hence
    290     // the need to check for both cases below.
    291     bool HasContent = (CoffSection->VirtualSize > 0)
    292       || (CoffSection->SizeOfRawData > 0);
    293     bool IsDiscardable = CoffSection->Characteristics &
    294       (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
    295     return HasContent && !IsDiscardable;
    296   }
    297 
    298   assert(isa<MachOObjectFile>(Obj));
    299   return true;
    300 }
    301 
    302 static bool isReadOnlyData(const SectionRef Section) {
    303   const ObjectFile *Obj = Section.getObject();
    304   if (isa<object::ELFObjectFileBase>(Obj))
    305     return !(ELFSectionRef(Section).getFlags() &
    306              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
    307   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    308     return ((COFFObj->getCOFFSection(Section)->Characteristics &
    309              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    310              | COFF::IMAGE_SCN_MEM_READ
    311              | COFF::IMAGE_SCN_MEM_WRITE))
    312              ==
    313              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
    314              | COFF::IMAGE_SCN_MEM_READ));
    315 
    316   assert(isa<MachOObjectFile>(Obj));
    317   return false;
    318 }
    319 
    320 static bool isZeroInit(const SectionRef Section) {
    321   const ObjectFile *Obj = Section.getObject();
    322   if (isa<object::ELFObjectFileBase>(Obj))
    323     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
    324   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
    325     return COFFObj->getCOFFSection(Section)->Characteristics &
    326             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
    327 
    328   auto *MachO = cast<MachOObjectFile>(Obj);
    329   unsigned SectionType = MachO->getSectionType(Section);
    330   return SectionType == MachO::S_ZEROFILL ||
    331          SectionType == MachO::S_GB_ZEROFILL;
    332 }
    333 
    334 // Compute an upper bound of the memory size that is required to load all
    335 // sections
    336 void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
    337                                             uint64_t &CodeSize,
    338                                             uint64_t &DataSizeRO,
    339                                             uint64_t &DataSizeRW) {
    340   // Compute the size of all sections required for execution
    341   std::vector<uint64_t> CodeSectionSizes;
    342   std::vector<uint64_t> ROSectionSizes;
    343   std::vector<uint64_t> RWSectionSizes;
    344   uint64_t MaxAlignment = sizeof(void *);
    345 
    346   // Collect sizes of all sections to be loaded;
    347   // also determine the max alignment of all sections
    348   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    349        SI != SE; ++SI) {
    350     const SectionRef &Section = *SI;
    351 
    352     bool IsRequired = isRequiredForExecution(Section);
    353 
    354     // Consider only the sections that are required to be loaded for execution
    355     if (IsRequired) {
    356       StringRef Name;
    357       uint64_t DataSize = Section.getSize();
    358       uint64_t Alignment64 = Section.getAlignment();
    359       bool IsCode = Section.isText();
    360       bool IsReadOnly = isReadOnlyData(Section);
    361       Check(Section.getName(Name));
    362       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    363 
    364       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
    365       uint64_t SectionSize = DataSize + StubBufSize;
    366 
    367       // The .eh_frame section (at least on Linux) needs an extra four bytes
    368       // padded
    369       // with zeroes added at the end.  For MachO objects, this section has a
    370       // slightly different name, so this won't have any effect for MachO
    371       // objects.
    372       if (Name == ".eh_frame")
    373         SectionSize += 4;
    374 
    375       if (!SectionSize)
    376         SectionSize = 1;
    377 
    378       if (IsCode) {
    379         CodeSectionSizes.push_back(SectionSize);
    380       } else if (IsReadOnly) {
    381         ROSectionSizes.push_back(SectionSize);
    382       } else {
    383         RWSectionSizes.push_back(SectionSize);
    384       }
    385 
    386       // update the max alignment
    387       if (Alignment > MaxAlignment) {
    388         MaxAlignment = Alignment;
    389       }
    390     }
    391   }
    392 
    393   // Compute the size of all common symbols
    394   uint64_t CommonSize = 0;
    395   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
    396        ++I) {
    397     uint32_t Flags = I->getFlags();
    398     if (Flags & SymbolRef::SF_Common) {
    399       // Add the common symbols to a list.  We'll allocate them all below.
    400       uint64_t Size = I->getCommonSize();
    401       CommonSize += Size;
    402     }
    403   }
    404   if (CommonSize != 0) {
    405     RWSectionSizes.push_back(CommonSize);
    406   }
    407 
    408   // Compute the required allocation space for each different type of sections
    409   // (code, read-only data, read-write data) assuming that all sections are
    410   // allocated with the max alignment. Note that we cannot compute with the
    411   // individual alignments of the sections, because then the required size
    412   // depends on the order, in which the sections are allocated.
    413   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
    414   DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
    415   DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
    416 }
    417 
    418 // compute stub buffer size for the given section
    419 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
    420                                                     const SectionRef &Section) {
    421   unsigned StubSize = getMaxStubSize();
    422   if (StubSize == 0) {
    423     return 0;
    424   }
    425   // FIXME: this is an inefficient way to handle this. We should computed the
    426   // necessary section allocation size in loadObject by walking all the sections
    427   // once.
    428   unsigned StubBufSize = 0;
    429   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
    430        SI != SE; ++SI) {
    431     section_iterator RelSecI = SI->getRelocatedSection();
    432     if (!(RelSecI == Section))
    433       continue;
    434 
    435     for (const RelocationRef &Reloc : SI->relocations())
    436       if (relocationNeedsStub(Reloc))
    437         StubBufSize += StubSize;
    438   }
    439 
    440   // Get section data size and alignment
    441   uint64_t DataSize = Section.getSize();
    442   uint64_t Alignment64 = Section.getAlignment();
    443 
    444   // Add stubbuf size alignment
    445   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    446   unsigned StubAlignment = getStubAlignment();
    447   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
    448   if (StubAlignment > EndAlignment)
    449     StubBufSize += StubAlignment - EndAlignment;
    450   return StubBufSize;
    451 }
    452 
    453 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
    454                                              unsigned Size) const {
    455   uint64_t Result = 0;
    456   if (IsTargetLittleEndian) {
    457     Src += Size - 1;
    458     while (Size--)
    459       Result = (Result << 8) | *Src--;
    460   } else
    461     while (Size--)
    462       Result = (Result << 8) | *Src++;
    463 
    464   return Result;
    465 }
    466 
    467 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
    468                                           unsigned Size) const {
    469   if (IsTargetLittleEndian) {
    470     while (Size--) {
    471       *Dst++ = Value & 0xFF;
    472       Value >>= 8;
    473     }
    474   } else {
    475     Dst += Size - 1;
    476     while (Size--) {
    477       *Dst-- = Value & 0xFF;
    478       Value >>= 8;
    479     }
    480   }
    481 }
    482 
    483 void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
    484                                         CommonSymbolList &CommonSymbols) {
    485   if (CommonSymbols.empty())
    486     return;
    487 
    488   uint64_t CommonSize = 0;
    489   CommonSymbolList SymbolsToAllocate;
    490 
    491   DEBUG(dbgs() << "Processing common symbols...\n");
    492 
    493   for (const auto &Sym : CommonSymbols) {
    494     ErrorOr<StringRef> NameOrErr = Sym.getName();
    495     Check(NameOrErr.getError());
    496     StringRef Name = *NameOrErr;
    497 
    498     // Skip common symbols already elsewhere.
    499     if (GlobalSymbolTable.count(Name) ||
    500         Resolver.findSymbolInLogicalDylib(Name)) {
    501       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
    502                    << "'\n");
    503       continue;
    504     }
    505 
    506     uint32_t Align = Sym.getAlignment();
    507     uint64_t Size = Sym.getCommonSize();
    508 
    509     CommonSize += Align + Size;
    510     SymbolsToAllocate.push_back(Sym);
    511   }
    512 
    513   // Allocate memory for the section
    514   unsigned SectionID = Sections.size();
    515   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
    516                                              SectionID, StringRef(), false);
    517   if (!Addr)
    518     report_fatal_error("Unable to allocate memory for common symbols!");
    519   uint64_t Offset = 0;
    520   Sections.push_back(
    521       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
    522   memset(Addr, 0, CommonSize);
    523 
    524   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
    525                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
    526 
    527   // Assign the address of each symbol
    528   for (auto &Sym : SymbolsToAllocate) {
    529     uint32_t Align = Sym.getAlignment();
    530     uint64_t Size = Sym.getCommonSize();
    531     ErrorOr<StringRef> NameOrErr = Sym.getName();
    532     Check(NameOrErr.getError());
    533     StringRef Name = *NameOrErr;
    534     if (Align) {
    535       // This symbol has an alignment requirement.
    536       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
    537       Addr += AlignOffset;
    538       Offset += AlignOffset;
    539     }
    540     uint32_t Flags = Sym.getFlags();
    541     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
    542     if (Flags & SymbolRef::SF_Weak)
    543       RTDyldSymFlags |= JITSymbolFlags::Weak;
    544     if (Flags & SymbolRef::SF_Exported)
    545       RTDyldSymFlags |= JITSymbolFlags::Exported;
    546     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
    547                  << format("%p", Addr) << "\n");
    548     GlobalSymbolTable[Name] =
    549       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
    550     Offset += Size;
    551     Addr += Size;
    552   }
    553 
    554   if (Checker)
    555     Checker->registerSection(Obj.getFileName(), SectionID);
    556 }
    557 
    558 unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
    559                                       const SectionRef &Section, bool IsCode) {
    560 
    561   StringRef data;
    562   uint64_t Alignment64 = Section.getAlignment();
    563 
    564   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
    565   unsigned PaddingSize = 0;
    566   unsigned StubBufSize = 0;
    567   StringRef Name;
    568   bool IsRequired = isRequiredForExecution(Section);
    569   bool IsVirtual = Section.isVirtual();
    570   bool IsZeroInit = isZeroInit(Section);
    571   bool IsReadOnly = isReadOnlyData(Section);
    572   uint64_t DataSize = Section.getSize();
    573   Check(Section.getName(Name));
    574 
    575   StubBufSize = computeSectionStubBufSize(Obj, Section);
    576 
    577   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
    578   // with zeroes added at the end.  For MachO objects, this section has a
    579   // slightly different name, so this won't have any effect for MachO objects.
    580   if (Name == ".eh_frame")
    581     PaddingSize = 4;
    582 
    583   uintptr_t Allocate;
    584   unsigned SectionID = Sections.size();
    585   uint8_t *Addr;
    586   const char *pData = nullptr;
    587 
    588   // If this section contains any bits (i.e. isn't a virtual or bss section),
    589   // grab a reference to them.
    590   if (!IsVirtual && !IsZeroInit) {
    591     // In either case, set the location of the unrelocated section in memory,
    592     // since we still process relocations for it even if we're not applying them.
    593     Check(Section.getContents(data));
    594     pData = data.data();
    595   }
    596 
    597   // Code section alignment needs to be at least as high as stub alignment or
    598   // padding calculations may by incorrect when the section is remapped to a
    599   // higher alignment.
    600   if (IsCode)
    601     Alignment = std::max(Alignment, getStubAlignment());
    602 
    603   // Some sections, such as debug info, don't need to be loaded for execution.
    604   // Leave those where they are.
    605   if (IsRequired) {
    606     Allocate = DataSize + PaddingSize + StubBufSize;
    607     if (!Allocate)
    608       Allocate = 1;
    609     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
    610                                                Name)
    611                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
    612                                                Name, IsReadOnly);
    613     if (!Addr)
    614       report_fatal_error("Unable to allocate section memory!");
    615 
    616     // Zero-initialize or copy the data from the image
    617     if (IsZeroInit || IsVirtual)
    618       memset(Addr, 0, DataSize);
    619     else
    620       memcpy(Addr, pData, DataSize);
    621 
    622     // Fill in any extra bytes we allocated for padding
    623     if (PaddingSize != 0) {
    624       memset(Addr + DataSize, 0, PaddingSize);
    625       // Update the DataSize variable so that the stub offset is set correctly.
    626       DataSize += PaddingSize;
    627     }
    628 
    629     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    630                  << " obj addr: " << format("%p", pData)
    631                  << " new addr: " << format("%p", Addr)
    632                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    633                  << " Allocate: " << Allocate << "\n");
    634   } else {
    635     // Even if we didn't load the section, we need to record an entry for it
    636     // to handle later processing (and by 'handle' I mean don't do anything
    637     // with these sections).
    638     Allocate = 0;
    639     Addr = nullptr;
    640     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
    641                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
    642                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
    643                  << " Allocate: " << Allocate << "\n");
    644   }
    645 
    646   Sections.push_back(
    647       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
    648 
    649   if (Checker)
    650     Checker->registerSection(Obj.getFileName(), SectionID);
    651 
    652   return SectionID;
    653 }
    654 
    655 unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
    656                                             const SectionRef &Section,
    657                                             bool IsCode,
    658                                             ObjSectionToIDMap &LocalSections) {
    659 
    660   unsigned SectionID = 0;
    661   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
    662   if (i != LocalSections.end())
    663     SectionID = i->second;
    664   else {
    665     SectionID = emitSection(Obj, Section, IsCode);
    666     LocalSections[Section] = SectionID;
    667   }
    668   return SectionID;
    669 }
    670 
    671 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
    672                                               unsigned SectionID) {
    673   Relocations[SectionID].push_back(RE);
    674 }
    675 
    676 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
    677                                              StringRef SymbolName) {
    678   // Relocation by symbol.  If the symbol is found in the global symbol table,
    679   // create an appropriate section relocation.  Otherwise, add it to
    680   // ExternalSymbolRelocations.
    681   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
    682   if (Loc == GlobalSymbolTable.end()) {
    683     ExternalSymbolRelocations[SymbolName].push_back(RE);
    684   } else {
    685     // Copy the RE since we want to modify its addend.
    686     RelocationEntry RECopy = RE;
    687     const auto &SymInfo = Loc->second;
    688     RECopy.Addend += SymInfo.getOffset();
    689     Relocations[SymInfo.getSectionID()].push_back(RECopy);
    690   }
    691 }
    692 
    693 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
    694                                              unsigned AbiVariant) {
    695   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
    696     // This stub has to be able to access the full address space,
    697     // since symbol lookup won't necessarily find a handy, in-range,
    698     // PLT stub for functions which could be anywhere.
    699     // Stub can use ip0 (== x16) to calculate address
    700     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
    701     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
    702     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
    703     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
    704     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
    705 
    706     return Addr;
    707   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
    708     // TODO: There is only ARM far stub now. We should add the Thumb stub,
    709     // and stubs for branches Thumb - ARM and ARM - Thumb.
    710     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
    711     return Addr + 4;
    712   } else if (IsMipsO32ABI) {
    713     // 0:   3c190000        lui     t9,%hi(addr).
    714     // 4:   27390000        addiu   t9,t9,%lo(addr).
    715     // 8:   03200008        jr      t9.
    716     // c:   00000000        nop.
    717     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
    718     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
    719 
    720     writeBytesUnaligned(LuiT9Instr, Addr, 4);
    721     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
    722     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
    723     writeBytesUnaligned(NopInstr, Addr+12, 4);
    724     return Addr;
    725   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
    726     // Depending on which version of the ELF ABI is in use, we need to
    727     // generate one of two variants of the stub.  They both start with
    728     // the same sequence to load the target address into r12.
    729     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
    730     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
    731     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
    732     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
    733     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
    734     if (AbiVariant == 2) {
    735       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
    736       // The address is already in r12 as required by the ABI.  Branch to it.
    737       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
    738       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
    739       writeInt32BE(Addr+28, 0x4E800420); // bctr
    740     } else {
    741       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
    742       // Load the function address on r11 and sets it to control register. Also
    743       // loads the function TOC in r2 and environment pointer to r11.
    744       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
    745       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
    746       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
    747       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
    748       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
    749       writeInt32BE(Addr+40, 0x4E800420); // bctr
    750     }
    751     return Addr;
    752   } else if (Arch == Triple::systemz) {
    753     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
    754     writeInt16BE(Addr+2,  0x0000);
    755     writeInt16BE(Addr+4,  0x0004);
    756     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
    757     // 8-byte address stored at Addr + 8
    758     return Addr;
    759   } else if (Arch == Triple::x86_64) {
    760     *Addr      = 0xFF; // jmp
    761     *(Addr+1)  = 0x25; // rip
    762     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
    763   } else if (Arch == Triple::x86) {
    764     *Addr      = 0xE9; // 32-bit pc-relative jump.
    765   }
    766   return Addr;
    767 }
    768 
    769 // Assign an address to a symbol name and resolve all the relocations
    770 // associated with it.
    771 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
    772                                              uint64_t Addr) {
    773   // The address to use for relocation resolution is not
    774   // the address of the local section buffer. We must be doing
    775   // a remote execution environment of some sort. Relocations can't
    776   // be applied until all the sections have been moved.  The client must
    777   // trigger this with a call to MCJIT::finalize() or
    778   // RuntimeDyld::resolveRelocations().
    779   //
    780   // Addr is a uint64_t because we can't assume the pointer width
    781   // of the target is the same as that of the host. Just use a generic
    782   // "big enough" type.
    783   DEBUG(dbgs() << "Reassigning address for section " << SectionID << " ("
    784                << Sections[SectionID].getName() << "): "
    785                << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
    786                << " -> " << format("0x%016" PRIx64, Addr) << "\n");
    787   Sections[SectionID].setLoadAddress(Addr);
    788 }
    789 
    790 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
    791                                             uint64_t Value) {
    792   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    793     const RelocationEntry &RE = Relocs[i];
    794     // Ignore relocations for sections that were not loaded
    795     if (Sections[RE.SectionID].getAddress() == nullptr)
    796       continue;
    797     resolveRelocation(RE, Value);
    798   }
    799 }
    800 
    801 void RuntimeDyldImpl::resolveExternalSymbols() {
    802   while (!ExternalSymbolRelocations.empty()) {
    803     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
    804 
    805     StringRef Name = i->first();
    806     if (Name.size() == 0) {
    807       // This is an absolute symbol, use an address of zero.
    808       DEBUG(dbgs() << "Resolving absolute relocations."
    809                    << "\n");
    810       RelocationList &Relocs = i->second;
    811       resolveRelocationList(Relocs, 0);
    812     } else {
    813       uint64_t Addr = 0;
    814       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
    815       if (Loc == GlobalSymbolTable.end()) {
    816         // This is an external symbol, try to get its address from the symbol
    817         // resolver.
    818         Addr = Resolver.findSymbol(Name.data()).getAddress();
    819         // The call to getSymbolAddress may have caused additional modules to
    820         // be loaded, which may have added new entries to the
    821         // ExternalSymbolRelocations map.  Consquently, we need to update our
    822         // iterator.  This is also why retrieval of the relocation list
    823         // associated with this symbol is deferred until below this point.
    824         // New entries may have been added to the relocation list.
    825         i = ExternalSymbolRelocations.find(Name);
    826       } else {
    827         // We found the symbol in our global table.  It was probably in a
    828         // Module that we loaded previously.
    829         const auto &SymInfo = Loc->second;
    830         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
    831                SymInfo.getOffset();
    832       }
    833 
    834       // FIXME: Implement error handling that doesn't kill the host program!
    835       if (!Addr)
    836         report_fatal_error("Program used external function '" + Name +
    837                            "' which could not be resolved!");
    838 
    839       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
    840       // manually and we shouldn't resolve its relocations.
    841       if (Addr != UINT64_MAX) {
    842         DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
    843                      << format("0x%lx", Addr) << "\n");
    844         // This list may have been updated when we called getSymbolAddress, so
    845         // don't change this code to get the list earlier.
    846         RelocationList &Relocs = i->second;
    847         resolveRelocationList(Relocs, Addr);
    848       }
    849     }
    850 
    851     ExternalSymbolRelocations.erase(i);
    852   }
    853 }
    854 
    855 //===----------------------------------------------------------------------===//
    856 // RuntimeDyld class implementation
    857 
    858 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
    859                                           const object::SectionRef &Sec) const {
    860 
    861   auto I = ObjSecToIDMap.find(Sec);
    862   if (I != ObjSecToIDMap.end())
    863     return RTDyld.Sections[I->second].getLoadAddress();
    864 
    865   return 0;
    866 }
    867 
    868 void RuntimeDyld::MemoryManager::anchor() {}
    869 void RuntimeDyld::SymbolResolver::anchor() {}
    870 
    871 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
    872                          RuntimeDyld::SymbolResolver &Resolver)
    873     : MemMgr(MemMgr), Resolver(Resolver) {
    874   // FIXME: There's a potential issue lurking here if a single instance of
    875   // RuntimeDyld is used to load multiple objects.  The current implementation
    876   // associates a single memory manager with a RuntimeDyld instance.  Even
    877   // though the public class spawns a new 'impl' instance for each load,
    878   // they share a single memory manager.  This can become a problem when page
    879   // permissions are applied.
    880   Dyld = nullptr;
    881   ProcessAllSections = false;
    882   Checker = nullptr;
    883 }
    884 
    885 RuntimeDyld::~RuntimeDyld() {}
    886 
    887 static std::unique_ptr<RuntimeDyldCOFF>
    888 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
    889                       RuntimeDyld::SymbolResolver &Resolver,
    890                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
    891   std::unique_ptr<RuntimeDyldCOFF> Dyld =
    892     RuntimeDyldCOFF::create(Arch, MM, Resolver);
    893   Dyld->setProcessAllSections(ProcessAllSections);
    894   Dyld->setRuntimeDyldChecker(Checker);
    895   return Dyld;
    896 }
    897 
    898 static std::unique_ptr<RuntimeDyldELF>
    899 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
    900                      RuntimeDyld::SymbolResolver &Resolver,
    901                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
    902   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
    903   Dyld->setProcessAllSections(ProcessAllSections);
    904   Dyld->setRuntimeDyldChecker(Checker);
    905   return Dyld;
    906 }
    907 
    908 static std::unique_ptr<RuntimeDyldMachO>
    909 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
    910                        RuntimeDyld::SymbolResolver &Resolver,
    911                        bool ProcessAllSections,
    912                        RuntimeDyldCheckerImpl *Checker) {
    913   std::unique_ptr<RuntimeDyldMachO> Dyld =
    914     RuntimeDyldMachO::create(Arch, MM, Resolver);
    915   Dyld->setProcessAllSections(ProcessAllSections);
    916   Dyld->setRuntimeDyldChecker(Checker);
    917   return Dyld;
    918 }
    919 
    920 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
    921 RuntimeDyld::loadObject(const ObjectFile &Obj) {
    922   if (!Dyld) {
    923     if (Obj.isELF())
    924       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
    925     else if (Obj.isMachO())
    926       Dyld = createRuntimeDyldMachO(
    927                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
    928                ProcessAllSections, Checker);
    929     else if (Obj.isCOFF())
    930       Dyld = createRuntimeDyldCOFF(
    931                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
    932                ProcessAllSections, Checker);
    933     else
    934       report_fatal_error("Incompatible object format!");
    935   }
    936 
    937   if (!Dyld->isCompatibleFile(Obj))
    938     report_fatal_error("Incompatible object format!");
    939 
    940   return Dyld->loadObject(Obj);
    941 }
    942 
    943 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
    944   if (!Dyld)
    945     return nullptr;
    946   return Dyld->getSymbolLocalAddress(Name);
    947 }
    948 
    949 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
    950   if (!Dyld)
    951     return nullptr;
    952   return Dyld->getSymbol(Name);
    953 }
    954 
    955 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
    956 
    957 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
    958   Dyld->reassignSectionAddress(SectionID, Addr);
    959 }
    960 
    961 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
    962                                     uint64_t TargetAddress) {
    963   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
    964 }
    965 
    966 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
    967 
    968 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
    969 
    970 void RuntimeDyld::registerEHFrames() {
    971   if (Dyld)
    972     Dyld->registerEHFrames();
    973 }
    974 
    975 void RuntimeDyld::deregisterEHFrames() {
    976   if (Dyld)
    977     Dyld->deregisterEHFrames();
    978 }
    979 
    980 } // end namespace llvm
    981