Home | History | Annotate | Download | only in MC
      1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/MC/MCAssembler.h"
     11 #include "llvm/ADT/Statistic.h"
     12 #include "llvm/ADT/StringExtras.h"
     13 #include "llvm/ADT/Twine.h"
     14 #include "llvm/MC/MCAsmBackend.h"
     15 #include "llvm/MC/MCAsmInfo.h"
     16 #include "llvm/MC/MCAsmLayout.h"
     17 #include "llvm/MC/MCCodeEmitter.h"
     18 #include "llvm/MC/MCContext.h"
     19 #include "llvm/MC/MCDwarf.h"
     20 #include "llvm/MC/MCExpr.h"
     21 #include "llvm/MC/MCFixupKindInfo.h"
     22 #include "llvm/MC/MCObjectWriter.h"
     23 #include "llvm/MC/MCSection.h"
     24 #include "llvm/MC/MCSectionELF.h"
     25 #include "llvm/MC/MCSymbol.h"
     26 #include "llvm/MC/MCValue.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Support/LEB128.h"
     30 #include "llvm/Support/TargetRegistry.h"
     31 #include "llvm/Support/raw_ostream.h"
     32 #include <tuple>
     33 using namespace llvm;
     34 
     35 #define DEBUG_TYPE "assembler"
     36 
     37 namespace {
     38 namespace stats {
     39 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
     40 STATISTIC(EmittedRelaxableFragments,
     41           "Number of emitted assembler fragments - relaxable");
     42 STATISTIC(EmittedDataFragments,
     43           "Number of emitted assembler fragments - data");
     44 STATISTIC(EmittedCompactEncodedInstFragments,
     45           "Number of emitted assembler fragments - compact encoded inst");
     46 STATISTIC(EmittedAlignFragments,
     47           "Number of emitted assembler fragments - align");
     48 STATISTIC(EmittedFillFragments,
     49           "Number of emitted assembler fragments - fill");
     50 STATISTIC(EmittedOrgFragments,
     51           "Number of emitted assembler fragments - org");
     52 STATISTIC(evaluateFixup, "Number of evaluated fixups");
     53 STATISTIC(FragmentLayouts, "Number of fragment layouts");
     54 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
     55 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
     56 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
     57 }
     58 }
     59 
     60 // FIXME FIXME FIXME: There are number of places in this file where we convert
     61 // what is a 64-bit assembler value used for computation into a value in the
     62 // object file, which may truncate it. We should detect that truncation where
     63 // invalid and report errors back.
     64 
     65 /* *** */
     66 
     67 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
     68   : Assembler(Asm), LastValidFragment()
     69  {
     70   // Compute the section layout order. Virtual sections must go last.
     71   for (MCSection &Sec : Asm)
     72     if (!Sec.isVirtualSection())
     73       SectionOrder.push_back(&Sec);
     74   for (MCSection &Sec : Asm)
     75     if (Sec.isVirtualSection())
     76       SectionOrder.push_back(&Sec);
     77 }
     78 
     79 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
     80   const MCSection *Sec = F->getParent();
     81   const MCFragment *LastValid = LastValidFragment.lookup(Sec);
     82   if (!LastValid)
     83     return false;
     84   assert(LastValid->getParent() == Sec);
     85   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
     86 }
     87 
     88 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
     89   // If this fragment wasn't already valid, we don't need to do anything.
     90   if (!isFragmentValid(F))
     91     return;
     92 
     93   // Otherwise, reset the last valid fragment to the previous fragment
     94   // (if this is the first fragment, it will be NULL).
     95   LastValidFragment[F->getParent()] = F->getPrevNode();
     96 }
     97 
     98 void MCAsmLayout::ensureValid(const MCFragment *F) const {
     99   MCSection *Sec = F->getParent();
    100   MCSection::iterator I;
    101   if (MCFragment *Cur = LastValidFragment[Sec])
    102     I = ++MCSection::iterator(Cur);
    103   else
    104     I = Sec->begin();
    105 
    106   // Advance the layout position until the fragment is valid.
    107   while (!isFragmentValid(F)) {
    108     assert(I != Sec->end() && "Layout bookkeeping error");
    109     const_cast<MCAsmLayout *>(this)->layoutFragment(&*I);
    110     ++I;
    111   }
    112 }
    113 
    114 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
    115   ensureValid(F);
    116   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
    117   return F->Offset;
    118 }
    119 
    120 // Simple getSymbolOffset helper for the non-varibale case.
    121 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S,
    122                            bool ReportError, uint64_t &Val) {
    123   if (!S.getFragment()) {
    124     if (ReportError)
    125       report_fatal_error("unable to evaluate offset to undefined symbol '" +
    126                          S.getName() + "'");
    127     return false;
    128   }
    129   Val = Layout.getFragmentOffset(S.getFragment()) + S.getOffset();
    130   return true;
    131 }
    132 
    133 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S,
    134                                 bool ReportError, uint64_t &Val) {
    135   if (!S.isVariable())
    136     return getLabelOffset(Layout, S, ReportError, Val);
    137 
    138   // If SD is a variable, evaluate it.
    139   MCValue Target;
    140   if (!S.getVariableValue()->evaluateAsValue(Target, Layout))
    141     report_fatal_error("unable to evaluate offset for variable '" +
    142                        S.getName() + "'");
    143 
    144   uint64_t Offset = Target.getConstant();
    145 
    146   const MCSymbolRefExpr *A = Target.getSymA();
    147   if (A) {
    148     uint64_t ValA;
    149     if (!getLabelOffset(Layout, A->getSymbol(), ReportError, ValA))
    150       return false;
    151     Offset += ValA;
    152   }
    153 
    154   const MCSymbolRefExpr *B = Target.getSymB();
    155   if (B) {
    156     uint64_t ValB;
    157     if (!getLabelOffset(Layout, B->getSymbol(), ReportError, ValB))
    158       return false;
    159     Offset -= ValB;
    160   }
    161 
    162   Val = Offset;
    163   return true;
    164 }
    165 
    166 bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
    167   return getSymbolOffsetImpl(*this, S, false, Val);
    168 }
    169 
    170 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const {
    171   uint64_t Val;
    172   getSymbolOffsetImpl(*this, S, true, Val);
    173   return Val;
    174 }
    175 
    176 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
    177   if (!Symbol.isVariable())
    178     return &Symbol;
    179 
    180   const MCExpr *Expr = Symbol.getVariableValue();
    181   MCValue Value;
    182   if (!Expr->evaluateAsValue(Value, *this)) {
    183     Assembler.getContext().reportError(
    184         SMLoc(), "expression could not be evaluated");
    185     return nullptr;
    186   }
    187 
    188   const MCSymbolRefExpr *RefB = Value.getSymB();
    189   if (RefB) {
    190     Assembler.getContext().reportError(
    191         SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
    192                      "' could not be evaluated in a subtraction expression");
    193     return nullptr;
    194   }
    195 
    196   const MCSymbolRefExpr *A = Value.getSymA();
    197   if (!A)
    198     return nullptr;
    199 
    200   const MCSymbol &ASym = A->getSymbol();
    201   const MCAssembler &Asm = getAssembler();
    202   if (ASym.isCommon()) {
    203     // FIXME: we should probably add a SMLoc to MCExpr.
    204     Asm.getContext().reportError(SMLoc(),
    205                                  "Common symbol '" + ASym.getName() +
    206                                      "' cannot be used in assignment expr");
    207     return nullptr;
    208   }
    209 
    210   return &ASym;
    211 }
    212 
    213 uint64_t MCAsmLayout::getSectionAddressSize(const MCSection *Sec) const {
    214   // The size is the last fragment's end offset.
    215   const MCFragment &F = Sec->getFragmentList().back();
    216   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
    217 }
    218 
    219 uint64_t MCAsmLayout::getSectionFileSize(const MCSection *Sec) const {
    220   // Virtual sections have no file size.
    221   if (Sec->isVirtualSection())
    222     return 0;
    223 
    224   // Otherwise, the file size is the same as the address space size.
    225   return getSectionAddressSize(Sec);
    226 }
    227 
    228 uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
    229                                     const MCFragment *F,
    230                                     uint64_t FOffset, uint64_t FSize) {
    231   uint64_t BundleSize = Assembler.getBundleAlignSize();
    232   assert(BundleSize > 0 &&
    233          "computeBundlePadding should only be called if bundling is enabled");
    234   uint64_t BundleMask = BundleSize - 1;
    235   uint64_t OffsetInBundle = FOffset & BundleMask;
    236   uint64_t EndOfFragment = OffsetInBundle + FSize;
    237 
    238   // There are two kinds of bundling restrictions:
    239   //
    240   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
    241   //    *end* on a bundle boundary.
    242   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
    243   //    would, add padding until the end of the bundle so that the fragment
    244   //    will start in a new one.
    245   if (F->alignToBundleEnd()) {
    246     // Three possibilities here:
    247     //
    248     // A) The fragment just happens to end at a bundle boundary, so we're good.
    249     // B) The fragment ends before the current bundle boundary: pad it just
    250     //    enough to reach the boundary.
    251     // C) The fragment ends after the current bundle boundary: pad it until it
    252     //    reaches the end of the next bundle boundary.
    253     //
    254     // Note: this code could be made shorter with some modulo trickery, but it's
    255     // intentionally kept in its more explicit form for simplicity.
    256     if (EndOfFragment == BundleSize)
    257       return 0;
    258     else if (EndOfFragment < BundleSize)
    259       return BundleSize - EndOfFragment;
    260     else { // EndOfFragment > BundleSize
    261       return 2 * BundleSize - EndOfFragment;
    262     }
    263   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
    264     return BundleSize - OffsetInBundle;
    265   else
    266     return 0;
    267 }
    268 
    269 /* *** */
    270 
    271 void ilist_node_traits<MCFragment>::deleteNode(MCFragment *V) {
    272   V->destroy();
    273 }
    274 
    275 MCFragment::MCFragment() : Kind(FragmentType(~0)), HasInstructions(false),
    276                            AlignToBundleEnd(false), BundlePadding(0) {
    277 }
    278 
    279 MCFragment::~MCFragment() { }
    280 
    281 MCFragment::MCFragment(FragmentType Kind, bool HasInstructions,
    282                        uint8_t BundlePadding, MCSection *Parent)
    283     : Kind(Kind), HasInstructions(HasInstructions), AlignToBundleEnd(false),
    284       BundlePadding(BundlePadding), Parent(Parent), Atom(nullptr),
    285       Offset(~UINT64_C(0)) {
    286   if (Parent && !isDummy())
    287     Parent->getFragmentList().push_back(this);
    288 }
    289 
    290 void MCFragment::destroy() {
    291   // First check if we are the sentinal.
    292   if (Kind == FragmentType(~0)) {
    293     delete this;
    294     return;
    295   }
    296 
    297   switch (Kind) {
    298     case FT_Align:
    299       delete cast<MCAlignFragment>(this);
    300       return;
    301     case FT_Data:
    302       delete cast<MCDataFragment>(this);
    303       return;
    304     case FT_CompactEncodedInst:
    305       delete cast<MCCompactEncodedInstFragment>(this);
    306       return;
    307     case FT_Fill:
    308       delete cast<MCFillFragment>(this);
    309       return;
    310     case FT_Relaxable:
    311       delete cast<MCRelaxableFragment>(this);
    312       return;
    313     case FT_Org:
    314       delete cast<MCOrgFragment>(this);
    315       return;
    316     case FT_Dwarf:
    317       delete cast<MCDwarfLineAddrFragment>(this);
    318       return;
    319     case FT_DwarfFrame:
    320       delete cast<MCDwarfCallFrameFragment>(this);
    321       return;
    322     case FT_LEB:
    323       delete cast<MCLEBFragment>(this);
    324       return;
    325     case FT_SafeSEH:
    326       delete cast<MCSafeSEHFragment>(this);
    327       return;
    328     case FT_Dummy:
    329       delete cast<MCDummyFragment>(this);
    330       return;
    331   }
    332 }
    333 
    334 /* *** */
    335 
    336 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
    337                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_)
    338     : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
    339       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
    340       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
    341   VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
    342 }
    343 
    344 MCAssembler::~MCAssembler() {
    345 }
    346 
    347 void MCAssembler::reset() {
    348   Sections.clear();
    349   Symbols.clear();
    350   IndirectSymbols.clear();
    351   DataRegions.clear();
    352   LinkerOptions.clear();
    353   FileNames.clear();
    354   ThumbFuncs.clear();
    355   BundleAlignSize = 0;
    356   RelaxAll = false;
    357   SubsectionsViaSymbols = false;
    358   IncrementalLinkerCompatible = false;
    359   ELFHeaderEFlags = 0;
    360   LOHContainer.reset();
    361   VersionMinInfo.Major = 0;
    362 
    363   // reset objects owned by us
    364   getBackend().reset();
    365   getEmitter().reset();
    366   getWriter().reset();
    367   getLOHContainer().reset();
    368 }
    369 
    370 bool MCAssembler::registerSection(MCSection &Section) {
    371   if (Section.isRegistered())
    372     return false;
    373   Sections.push_back(&Section);
    374   Section.setIsRegistered(true);
    375   return true;
    376 }
    377 
    378 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
    379   if (ThumbFuncs.count(Symbol))
    380     return true;
    381 
    382   if (!Symbol->isVariable())
    383     return false;
    384 
    385   // FIXME: It looks like gas supports some cases of the form "foo + 2". It
    386   // is not clear if that is a bug or a feature.
    387   const MCExpr *Expr = Symbol->getVariableValue();
    388   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
    389   if (!Ref)
    390     return false;
    391 
    392   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
    393     return false;
    394 
    395   const MCSymbol &Sym = Ref->getSymbol();
    396   if (!isThumbFunc(&Sym))
    397     return false;
    398 
    399   ThumbFuncs.insert(Symbol); // Cache it.
    400   return true;
    401 }
    402 
    403 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
    404   // Non-temporary labels should always be visible to the linker.
    405   if (!Symbol.isTemporary())
    406     return true;
    407 
    408   // Absolute temporary labels are never visible.
    409   if (!Symbol.isInSection())
    410     return false;
    411 
    412   if (Symbol.isUsedInReloc())
    413     return true;
    414 
    415   return false;
    416 }
    417 
    418 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
    419   // Linker visible symbols define atoms.
    420   if (isSymbolLinkerVisible(S))
    421     return &S;
    422 
    423   // Absolute and undefined symbols have no defining atom.
    424   if (!S.isInSection())
    425     return nullptr;
    426 
    427   // Non-linker visible symbols in sections which can't be atomized have no
    428   // defining atom.
    429   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
    430           *S.getFragment()->getParent()))
    431     return nullptr;
    432 
    433   // Otherwise, return the atom for the containing fragment.
    434   return S.getFragment()->getAtom();
    435 }
    436 
    437 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
    438                                 const MCFixup &Fixup, const MCFragment *DF,
    439                                 MCValue &Target, uint64_t &Value) const {
    440   ++stats::evaluateFixup;
    441 
    442   // FIXME: This code has some duplication with recordRelocation. We should
    443   // probably merge the two into a single callback that tries to evaluate a
    444   // fixup and records a relocation if one is needed.
    445   const MCExpr *Expr = Fixup.getValue();
    446   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
    447     getContext().reportError(Fixup.getLoc(), "expected relocatable expression");
    448     // Claim to have completely evaluated the fixup, to prevent any further
    449     // processing from being done.
    450     Value = 0;
    451     return true;
    452   }
    453 
    454   bool IsPCRel = Backend.getFixupKindInfo(
    455     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
    456 
    457   bool IsResolved;
    458   if (IsPCRel) {
    459     if (Target.getSymB()) {
    460       IsResolved = false;
    461     } else if (!Target.getSymA()) {
    462       IsResolved = false;
    463     } else {
    464       const MCSymbolRefExpr *A = Target.getSymA();
    465       const MCSymbol &SA = A->getSymbol();
    466       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
    467         IsResolved = false;
    468       } else {
    469         IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
    470             *this, SA, *DF, false, true);
    471       }
    472     }
    473   } else {
    474     IsResolved = Target.isAbsolute();
    475   }
    476 
    477   Value = Target.getConstant();
    478 
    479   if (const MCSymbolRefExpr *A = Target.getSymA()) {
    480     const MCSymbol &Sym = A->getSymbol();
    481     if (Sym.isDefined())
    482       Value += Layout.getSymbolOffset(Sym);
    483   }
    484   if (const MCSymbolRefExpr *B = Target.getSymB()) {
    485     const MCSymbol &Sym = B->getSymbol();
    486     if (Sym.isDefined())
    487       Value -= Layout.getSymbolOffset(Sym);
    488   }
    489 
    490 
    491   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
    492                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
    493   assert((ShouldAlignPC ? IsPCRel : true) &&
    494     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
    495 
    496   if (IsPCRel) {
    497     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
    498 
    499     // A number of ARM fixups in Thumb mode require that the effective PC
    500     // address be determined as the 32-bit aligned version of the actual offset.
    501     if (ShouldAlignPC) Offset &= ~0x3;
    502     Value -= Offset;
    503   }
    504 
    505   // Let the backend adjust the fixup value if necessary, including whether
    506   // we need a relocation.
    507   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
    508                             IsResolved);
    509 
    510   return IsResolved;
    511 }
    512 
    513 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
    514                                           const MCFragment &F) const {
    515   switch (F.getKind()) {
    516   case MCFragment::FT_Data:
    517     return cast<MCDataFragment>(F).getContents().size();
    518   case MCFragment::FT_Relaxable:
    519     return cast<MCRelaxableFragment>(F).getContents().size();
    520   case MCFragment::FT_CompactEncodedInst:
    521     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
    522   case MCFragment::FT_Fill:
    523     return cast<MCFillFragment>(F).getSize();
    524 
    525   case MCFragment::FT_LEB:
    526     return cast<MCLEBFragment>(F).getContents().size();
    527 
    528   case MCFragment::FT_SafeSEH:
    529     return 4;
    530 
    531   case MCFragment::FT_Align: {
    532     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    533     unsigned Offset = Layout.getFragmentOffset(&AF);
    534     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
    535     // If we are padding with nops, force the padding to be larger than the
    536     // minimum nop size.
    537     if (Size > 0 && AF.hasEmitNops()) {
    538       while (Size % getBackend().getMinimumNopSize())
    539         Size += AF.getAlignment();
    540     }
    541     if (Size > AF.getMaxBytesToEmit())
    542       return 0;
    543     return Size;
    544   }
    545 
    546   case MCFragment::FT_Org: {
    547     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    548     MCValue Value;
    549     if (!OF.getOffset().evaluateAsValue(Value, Layout))
    550       report_fatal_error("expected assembly-time absolute expression");
    551 
    552     // FIXME: We need a way to communicate this error.
    553     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
    554     int64_t TargetLocation = Value.getConstant();
    555     if (const MCSymbolRefExpr *A = Value.getSymA()) {
    556       uint64_t Val;
    557       if (!Layout.getSymbolOffset(A->getSymbol(), Val))
    558         report_fatal_error("expected absolute expression");
    559       TargetLocation += Val;
    560     }
    561     int64_t Size = TargetLocation - FragmentOffset;
    562     if (Size < 0 || Size >= 0x40000000)
    563       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
    564                          "' (at offset '" + Twine(FragmentOffset) + "')");
    565     return Size;
    566   }
    567 
    568   case MCFragment::FT_Dwarf:
    569     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
    570   case MCFragment::FT_DwarfFrame:
    571     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
    572   case MCFragment::FT_Dummy:
    573     llvm_unreachable("Should not have been added");
    574   }
    575 
    576   llvm_unreachable("invalid fragment kind");
    577 }
    578 
    579 void MCAsmLayout::layoutFragment(MCFragment *F) {
    580   MCFragment *Prev = F->getPrevNode();
    581 
    582   // We should never try to recompute something which is valid.
    583   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
    584   // We should never try to compute the fragment layout if its predecessor
    585   // isn't valid.
    586   assert((!Prev || isFragmentValid(Prev)) &&
    587          "Attempt to compute fragment before its predecessor!");
    588 
    589   ++stats::FragmentLayouts;
    590 
    591   // Compute fragment offset and size.
    592   if (Prev)
    593     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
    594   else
    595     F->Offset = 0;
    596   LastValidFragment[F->getParent()] = F;
    597 
    598   // If bundling is enabled and this fragment has instructions in it, it has to
    599   // obey the bundling restrictions. With padding, we'll have:
    600   //
    601   //
    602   //        BundlePadding
    603   //             |||
    604   // -------------------------------------
    605   //   Prev  |##########|       F        |
    606   // -------------------------------------
    607   //                    ^
    608   //                    |
    609   //                    F->Offset
    610   //
    611   // The fragment's offset will point to after the padding, and its computed
    612   // size won't include the padding.
    613   //
    614   // When the -mc-relax-all flag is used, we optimize bundling by writting the
    615   // padding directly into fragments when the instructions are emitted inside
    616   // the streamer. When the fragment is larger than the bundle size, we need to
    617   // ensure that it's bundle aligned. This means that if we end up with
    618   // multiple fragments, we must emit bundle padding between fragments.
    619   //
    620   // ".align N" is an example of a directive that introduces multiple
    621   // fragments. We could add a special case to handle ".align N" by emitting
    622   // within-fragment padding (which would produce less padding when N is less
    623   // than the bundle size), but for now we don't.
    624   //
    625   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
    626     assert(isa<MCEncodedFragment>(F) &&
    627            "Only MCEncodedFragment implementations have instructions");
    628     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
    629 
    630     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
    631       report_fatal_error("Fragment can't be larger than a bundle size");
    632 
    633     uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
    634                                                           F->Offset, FSize);
    635     if (RequiredBundlePadding > UINT8_MAX)
    636       report_fatal_error("Padding cannot exceed 255 bytes");
    637     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
    638     F->Offset += RequiredBundlePadding;
    639   }
    640 }
    641 
    642 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
    643   bool New = !Symbol.isRegistered();
    644   if (Created)
    645     *Created = New;
    646   if (New) {
    647     Symbol.setIsRegistered(true);
    648     Symbols.push_back(&Symbol);
    649   }
    650 }
    651 
    652 void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
    653                                        MCObjectWriter *OW) const {
    654   // Should NOP padding be written out before this fragment?
    655   unsigned BundlePadding = F.getBundlePadding();
    656   if (BundlePadding > 0) {
    657     assert(isBundlingEnabled() &&
    658            "Writing bundle padding with disabled bundling");
    659     assert(F.hasInstructions() &&
    660            "Writing bundle padding for a fragment without instructions");
    661 
    662     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
    663     if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
    664       // If the padding itself crosses a bundle boundary, it must be emitted
    665       // in 2 pieces, since even nop instructions must not cross boundaries.
    666       //             v--------------v   <- BundleAlignSize
    667       //        v---------v             <- BundlePadding
    668       // ----------------------------
    669       // | Prev |####|####|    F    |
    670       // ----------------------------
    671       //        ^-------------------^   <- TotalLength
    672       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
    673       if (!getBackend().writeNopData(DistanceToBoundary, OW))
    674           report_fatal_error("unable to write NOP sequence of " +
    675                              Twine(DistanceToBoundary) + " bytes");
    676       BundlePadding -= DistanceToBoundary;
    677     }
    678     if (!getBackend().writeNopData(BundlePadding, OW))
    679       report_fatal_error("unable to write NOP sequence of " +
    680                          Twine(BundlePadding) + " bytes");
    681   }
    682 }
    683 
    684 /// \brief Write the fragment \p F to the output file.
    685 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
    686                           const MCFragment &F) {
    687   MCObjectWriter *OW = &Asm.getWriter();
    688 
    689   // FIXME: Embed in fragments instead?
    690   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
    691 
    692   Asm.writeFragmentPadding(F, FragmentSize, OW);
    693 
    694   // This variable (and its dummy usage) is to participate in the assert at
    695   // the end of the function.
    696   uint64_t Start = OW->getStream().tell();
    697   (void) Start;
    698 
    699   ++stats::EmittedFragments;
    700 
    701   switch (F.getKind()) {
    702   case MCFragment::FT_Align: {
    703     ++stats::EmittedAlignFragments;
    704     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    705     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
    706 
    707     uint64_t Count = FragmentSize / AF.getValueSize();
    708 
    709     // FIXME: This error shouldn't actually occur (the front end should emit
    710     // multiple .align directives to enforce the semantics it wants), but is
    711     // severe enough that we want to report it. How to handle this?
    712     if (Count * AF.getValueSize() != FragmentSize)
    713       report_fatal_error("undefined .align directive, value size '" +
    714                         Twine(AF.getValueSize()) +
    715                         "' is not a divisor of padding size '" +
    716                         Twine(FragmentSize) + "'");
    717 
    718     // See if we are aligning with nops, and if so do that first to try to fill
    719     // the Count bytes.  Then if that did not fill any bytes or there are any
    720     // bytes left to fill use the Value and ValueSize to fill the rest.
    721     // If we are aligning with nops, ask that target to emit the right data.
    722     if (AF.hasEmitNops()) {
    723       if (!Asm.getBackend().writeNopData(Count, OW))
    724         report_fatal_error("unable to write nop sequence of " +
    725                           Twine(Count) + " bytes");
    726       break;
    727     }
    728 
    729     // Otherwise, write out in multiples of the value size.
    730     for (uint64_t i = 0; i != Count; ++i) {
    731       switch (AF.getValueSize()) {
    732       default: llvm_unreachable("Invalid size!");
    733       case 1: OW->write8 (uint8_t (AF.getValue())); break;
    734       case 2: OW->write16(uint16_t(AF.getValue())); break;
    735       case 4: OW->write32(uint32_t(AF.getValue())); break;
    736       case 8: OW->write64(uint64_t(AF.getValue())); break;
    737       }
    738     }
    739     break;
    740   }
    741 
    742   case MCFragment::FT_Data:
    743     ++stats::EmittedDataFragments;
    744     OW->writeBytes(cast<MCDataFragment>(F).getContents());
    745     break;
    746 
    747   case MCFragment::FT_Relaxable:
    748     ++stats::EmittedRelaxableFragments;
    749     OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
    750     break;
    751 
    752   case MCFragment::FT_CompactEncodedInst:
    753     ++stats::EmittedCompactEncodedInstFragments;
    754     OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
    755     break;
    756 
    757   case MCFragment::FT_Fill: {
    758     ++stats::EmittedFillFragments;
    759     const MCFillFragment &FF = cast<MCFillFragment>(F);
    760 
    761     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
    762 
    763     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
    764       switch (FF.getValueSize()) {
    765       default: llvm_unreachable("Invalid size!");
    766       case 1: OW->write8 (uint8_t (FF.getValue())); break;
    767       case 2: OW->write16(uint16_t(FF.getValue())); break;
    768       case 4: OW->write32(uint32_t(FF.getValue())); break;
    769       case 8: OW->write64(uint64_t(FF.getValue())); break;
    770       }
    771     }
    772     break;
    773   }
    774 
    775   case MCFragment::FT_LEB: {
    776     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
    777     OW->writeBytes(LF.getContents());
    778     break;
    779   }
    780 
    781   case MCFragment::FT_SafeSEH: {
    782     const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
    783     OW->write32(SF.getSymbol()->getIndex());
    784     break;
    785   }
    786 
    787   case MCFragment::FT_Org: {
    788     ++stats::EmittedOrgFragments;
    789     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    790 
    791     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
    792       OW->write8(uint8_t(OF.getValue()));
    793 
    794     break;
    795   }
    796 
    797   case MCFragment::FT_Dwarf: {
    798     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
    799     OW->writeBytes(OF.getContents());
    800     break;
    801   }
    802   case MCFragment::FT_DwarfFrame: {
    803     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
    804     OW->writeBytes(CF.getContents());
    805     break;
    806   }
    807   case MCFragment::FT_Dummy:
    808     llvm_unreachable("Should not have been added");
    809   }
    810 
    811   assert(OW->getStream().tell() - Start == FragmentSize &&
    812          "The stream should advance by fragment size");
    813 }
    814 
    815 void MCAssembler::writeSectionData(const MCSection *Sec,
    816                                    const MCAsmLayout &Layout) const {
    817   // Ignore virtual sections.
    818   if (Sec->isVirtualSection()) {
    819     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
    820 
    821     // Check that contents are only things legal inside a virtual section.
    822     for (const MCFragment &F : *Sec) {
    823       switch (F.getKind()) {
    824       default: llvm_unreachable("Invalid fragment in virtual section!");
    825       case MCFragment::FT_Data: {
    826         // Check that we aren't trying to write a non-zero contents (or fixups)
    827         // into a virtual section. This is to support clients which use standard
    828         // directives to fill the contents of virtual sections.
    829         const MCDataFragment &DF = cast<MCDataFragment>(F);
    830         assert(DF.fixup_begin() == DF.fixup_end() &&
    831                "Cannot have fixups in virtual section!");
    832         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
    833           if (DF.getContents()[i]) {
    834             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
    835               report_fatal_error("non-zero initializer found in section '" +
    836                   ELFSec->getSectionName() + "'");
    837             else
    838               report_fatal_error("non-zero initializer found in virtual section");
    839           }
    840         break;
    841       }
    842       case MCFragment::FT_Align:
    843         // Check that we aren't trying to write a non-zero value into a virtual
    844         // section.
    845         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
    846                 cast<MCAlignFragment>(F).getValue() == 0) &&
    847                "Invalid align in virtual section!");
    848         break;
    849       case MCFragment::FT_Fill:
    850         assert((cast<MCFillFragment>(F).getValueSize() == 0 ||
    851                 cast<MCFillFragment>(F).getValue() == 0) &&
    852                "Invalid fill in virtual section!");
    853         break;
    854       }
    855     }
    856 
    857     return;
    858   }
    859 
    860   uint64_t Start = getWriter().getStream().tell();
    861   (void)Start;
    862 
    863   for (const MCFragment &F : *Sec)
    864     writeFragment(*this, Layout, F);
    865 
    866   assert(getWriter().getStream().tell() - Start ==
    867          Layout.getSectionAddressSize(Sec));
    868 }
    869 
    870 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
    871                                                    MCFragment &F,
    872                                                    const MCFixup &Fixup) {
    873   // Evaluate the fixup.
    874   MCValue Target;
    875   uint64_t FixedValue;
    876   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
    877                  MCFixupKindInfo::FKF_IsPCRel;
    878   if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
    879     // The fixup was unresolved, we need a relocation. Inform the object
    880     // writer of the relocation, and give it an opportunity to adjust the
    881     // fixup value if need be.
    882     getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
    883                                  FixedValue);
    884   }
    885   return std::make_pair(FixedValue, IsPCRel);
    886 }
    887 
    888 void MCAssembler::layout(MCAsmLayout &Layout) {
    889   DEBUG_WITH_TYPE("mc-dump", {
    890       llvm::errs() << "assembler backend - pre-layout\n--\n";
    891       dump(); });
    892 
    893   // Create dummy fragments and assign section ordinals.
    894   unsigned SectionIndex = 0;
    895   for (MCSection &Sec : *this) {
    896     // Create dummy fragments to eliminate any empty sections, this simplifies
    897     // layout.
    898     if (Sec.getFragmentList().empty())
    899       new MCDataFragment(&Sec);
    900 
    901     Sec.setOrdinal(SectionIndex++);
    902   }
    903 
    904   // Assign layout order indices to sections and fragments.
    905   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
    906     MCSection *Sec = Layout.getSectionOrder()[i];
    907     Sec->setLayoutOrder(i);
    908 
    909     unsigned FragmentIndex = 0;
    910     for (MCFragment &Frag : *Sec)
    911       Frag.setLayoutOrder(FragmentIndex++);
    912   }
    913 
    914   // Layout until everything fits.
    915   while (layoutOnce(Layout))
    916     continue;
    917 
    918   DEBUG_WITH_TYPE("mc-dump", {
    919       llvm::errs() << "assembler backend - post-relaxation\n--\n";
    920       dump(); });
    921 
    922   // Finalize the layout, including fragment lowering.
    923   finishLayout(Layout);
    924 
    925   DEBUG_WITH_TYPE("mc-dump", {
    926       llvm::errs() << "assembler backend - final-layout\n--\n";
    927       dump(); });
    928 
    929   // Allow the object writer a chance to perform post-layout binding (for
    930   // example, to set the index fields in the symbol data).
    931   getWriter().executePostLayoutBinding(*this, Layout);
    932 
    933   // Evaluate and apply the fixups, generating relocation entries as necessary.
    934   for (MCSection &Sec : *this) {
    935     for (MCFragment &Frag : Sec) {
    936       MCEncodedFragment *F = dyn_cast<MCEncodedFragment>(&Frag);
    937       // Data and relaxable fragments both have fixups.  So only process
    938       // those here.
    939       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
    940       // being templated makes this tricky.
    941       if (!F || isa<MCCompactEncodedInstFragment>(F))
    942         continue;
    943       ArrayRef<MCFixup> Fixups;
    944       MutableArrayRef<char> Contents;
    945       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(F)) {
    946         Fixups = FragWithFixups->getFixups();
    947         Contents = FragWithFixups->getContents();
    948       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(F)) {
    949         Fixups = FragWithFixups->getFixups();
    950         Contents = FragWithFixups->getContents();
    951       } else
    952         llvm_unreachable("Unknown fragment with fixups!");
    953       for (const MCFixup &Fixup : Fixups) {
    954         uint64_t FixedValue;
    955         bool IsPCRel;
    956         std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
    957         getBackend().applyFixup(Fixup, Contents.data(),
    958                                 Contents.size(), FixedValue, IsPCRel);
    959       }
    960     }
    961   }
    962 }
    963 
    964 void MCAssembler::Finish() {
    965   // Create the layout object.
    966   MCAsmLayout Layout(*this);
    967   layout(Layout);
    968 
    969   raw_ostream &OS = getWriter().getStream();
    970   uint64_t StartOffset = OS.tell();
    971 
    972   // Write the object file.
    973   getWriter().writeObject(*this, Layout);
    974 
    975   stats::ObjectBytes += OS.tell() - StartOffset;
    976 }
    977 
    978 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
    979                                        const MCRelaxableFragment *DF,
    980                                        const MCAsmLayout &Layout) const {
    981   MCValue Target;
    982   uint64_t Value;
    983   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
    984   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
    985                                                    Layout);
    986 }
    987 
    988 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
    989                                           const MCAsmLayout &Layout) const {
    990   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
    991   // are intentionally pushing out inst fragments, or because we relaxed a
    992   // previous instruction to one that doesn't need relaxation.
    993   if (!getBackend().mayNeedRelaxation(F->getInst()))
    994     return false;
    995 
    996   for (const MCFixup &Fixup : F->getFixups())
    997     if (fixupNeedsRelaxation(Fixup, F, Layout))
    998       return true;
    999 
   1000   return false;
   1001 }
   1002 
   1003 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
   1004                                    MCRelaxableFragment &F) {
   1005   if (!fragmentNeedsRelaxation(&F, Layout))
   1006     return false;
   1007 
   1008   ++stats::RelaxedInstructions;
   1009 
   1010   // FIXME-PERF: We could immediately lower out instructions if we can tell
   1011   // they are fully resolved, to avoid retesting on later passes.
   1012 
   1013   // Relax the fragment.
   1014 
   1015   MCInst Relaxed;
   1016   getBackend().relaxInstruction(F.getInst(), Relaxed);
   1017 
   1018   // Encode the new instruction.
   1019   //
   1020   // FIXME-PERF: If it matters, we could let the target do this. It can
   1021   // probably do so more efficiently in many cases.
   1022   SmallVector<MCFixup, 4> Fixups;
   1023   SmallString<256> Code;
   1024   raw_svector_ostream VecOS(Code);
   1025   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
   1026 
   1027   // Update the fragment.
   1028   F.setInst(Relaxed);
   1029   F.getContents() = Code;
   1030   F.getFixups() = Fixups;
   1031 
   1032   return true;
   1033 }
   1034 
   1035 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
   1036   uint64_t OldSize = LF.getContents().size();
   1037   int64_t Value;
   1038   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
   1039   if (!Abs)
   1040     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
   1041   SmallString<8> &Data = LF.getContents();
   1042   Data.clear();
   1043   raw_svector_ostream OSE(Data);
   1044   if (LF.isSigned())
   1045     encodeSLEB128(Value, OSE);
   1046   else
   1047     encodeULEB128(Value, OSE);
   1048   return OldSize != LF.getContents().size();
   1049 }
   1050 
   1051 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
   1052                                      MCDwarfLineAddrFragment &DF) {
   1053   MCContext &Context = Layout.getAssembler().getContext();
   1054   uint64_t OldSize = DF.getContents().size();
   1055   int64_t AddrDelta;
   1056   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
   1057   assert(Abs && "We created a line delta with an invalid expression");
   1058   (void) Abs;
   1059   int64_t LineDelta;
   1060   LineDelta = DF.getLineDelta();
   1061   SmallString<8> &Data = DF.getContents();
   1062   Data.clear();
   1063   raw_svector_ostream OSE(Data);
   1064   MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
   1065                           AddrDelta, OSE);
   1066   return OldSize != Data.size();
   1067 }
   1068 
   1069 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
   1070                                               MCDwarfCallFrameFragment &DF) {
   1071   MCContext &Context = Layout.getAssembler().getContext();
   1072   uint64_t OldSize = DF.getContents().size();
   1073   int64_t AddrDelta;
   1074   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
   1075   assert(Abs && "We created call frame with an invalid expression");
   1076   (void) Abs;
   1077   SmallString<8> &Data = DF.getContents();
   1078   Data.clear();
   1079   raw_svector_ostream OSE(Data);
   1080   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
   1081   return OldSize != Data.size();
   1082 }
   1083 
   1084 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
   1085   // Holds the first fragment which needed relaxing during this layout. It will
   1086   // remain NULL if none were relaxed.
   1087   // When a fragment is relaxed, all the fragments following it should get
   1088   // invalidated because their offset is going to change.
   1089   MCFragment *FirstRelaxedFragment = nullptr;
   1090 
   1091   // Attempt to relax all the fragments in the section.
   1092   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
   1093     // Check if this is a fragment that needs relaxation.
   1094     bool RelaxedFrag = false;
   1095     switch(I->getKind()) {
   1096     default:
   1097       break;
   1098     case MCFragment::FT_Relaxable:
   1099       assert(!getRelaxAll() &&
   1100              "Did not expect a MCRelaxableFragment in RelaxAll mode");
   1101       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
   1102       break;
   1103     case MCFragment::FT_Dwarf:
   1104       RelaxedFrag = relaxDwarfLineAddr(Layout,
   1105                                        *cast<MCDwarfLineAddrFragment>(I));
   1106       break;
   1107     case MCFragment::FT_DwarfFrame:
   1108       RelaxedFrag =
   1109         relaxDwarfCallFrameFragment(Layout,
   1110                                     *cast<MCDwarfCallFrameFragment>(I));
   1111       break;
   1112     case MCFragment::FT_LEB:
   1113       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
   1114       break;
   1115     }
   1116     if (RelaxedFrag && !FirstRelaxedFragment)
   1117       FirstRelaxedFragment = &*I;
   1118   }
   1119   if (FirstRelaxedFragment) {
   1120     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
   1121     return true;
   1122   }
   1123   return false;
   1124 }
   1125 
   1126 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
   1127   ++stats::RelaxationSteps;
   1128 
   1129   bool WasRelaxed = false;
   1130   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1131     MCSection &Sec = *it;
   1132     while (layoutSectionOnce(Layout, Sec))
   1133       WasRelaxed = true;
   1134   }
   1135 
   1136   return WasRelaxed;
   1137 }
   1138 
   1139 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
   1140   // The layout is done. Mark every fragment as valid.
   1141   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
   1142     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
   1143   }
   1144 }
   1145 
   1146 // Debugging methods
   1147 
   1148 namespace llvm {
   1149 
   1150 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
   1151   OS << "<MCFixup" << " Offset:" << AF.getOffset()
   1152      << " Value:" << *AF.getValue()
   1153      << " Kind:" << AF.getKind() << ">";
   1154   return OS;
   1155 }
   1156 
   1157 }
   1158 
   1159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1160 void MCFragment::dump() {
   1161   raw_ostream &OS = llvm::errs();
   1162 
   1163   OS << "<";
   1164   switch (getKind()) {
   1165   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
   1166   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
   1167   case MCFragment::FT_CompactEncodedInst:
   1168     OS << "MCCompactEncodedInstFragment"; break;
   1169   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
   1170   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
   1171   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
   1172   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
   1173   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
   1174   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
   1175   case MCFragment::FT_SafeSEH:    OS << "MCSafeSEHFragment"; break;
   1176   case MCFragment::FT_Dummy:
   1177     OS << "MCDummyFragment";
   1178     break;
   1179   }
   1180 
   1181   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
   1182      << " Offset:" << Offset
   1183      << " HasInstructions:" << hasInstructions()
   1184      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
   1185 
   1186   switch (getKind()) {
   1187   case MCFragment::FT_Align: {
   1188     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
   1189     if (AF->hasEmitNops())
   1190       OS << " (emit nops)";
   1191     OS << "\n       ";
   1192     OS << " Alignment:" << AF->getAlignment()
   1193        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
   1194        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
   1195     break;
   1196   }
   1197   case MCFragment::FT_Data:  {
   1198     const MCDataFragment *DF = cast<MCDataFragment>(this);
   1199     OS << "\n       ";
   1200     OS << " Contents:[";
   1201     const SmallVectorImpl<char> &Contents = DF->getContents();
   1202     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1203       if (i) OS << ",";
   1204       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1205     }
   1206     OS << "] (" << Contents.size() << " bytes)";
   1207 
   1208     if (DF->fixup_begin() != DF->fixup_end()) {
   1209       OS << ",\n       ";
   1210       OS << " Fixups:[";
   1211       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
   1212              ie = DF->fixup_end(); it != ie; ++it) {
   1213         if (it != DF->fixup_begin()) OS << ",\n                ";
   1214         OS << *it;
   1215       }
   1216       OS << "]";
   1217     }
   1218     break;
   1219   }
   1220   case MCFragment::FT_CompactEncodedInst: {
   1221     const MCCompactEncodedInstFragment *CEIF =
   1222       cast<MCCompactEncodedInstFragment>(this);
   1223     OS << "\n       ";
   1224     OS << " Contents:[";
   1225     const SmallVectorImpl<char> &Contents = CEIF->getContents();
   1226     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
   1227       if (i) OS << ",";
   1228       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
   1229     }
   1230     OS << "] (" << Contents.size() << " bytes)";
   1231     break;
   1232   }
   1233   case MCFragment::FT_Fill:  {
   1234     const MCFillFragment *FF = cast<MCFillFragment>(this);
   1235     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
   1236        << " Size:" << FF->getSize();
   1237     break;
   1238   }
   1239   case MCFragment::FT_Relaxable:  {
   1240     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
   1241     OS << "\n       ";
   1242     OS << " Inst:";
   1243     F->getInst().dump_pretty(OS);
   1244     break;
   1245   }
   1246   case MCFragment::FT_Org:  {
   1247     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
   1248     OS << "\n       ";
   1249     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
   1250     break;
   1251   }
   1252   case MCFragment::FT_Dwarf:  {
   1253     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
   1254     OS << "\n       ";
   1255     OS << " AddrDelta:" << OF->getAddrDelta()
   1256        << " LineDelta:" << OF->getLineDelta();
   1257     break;
   1258   }
   1259   case MCFragment::FT_DwarfFrame:  {
   1260     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
   1261     OS << "\n       ";
   1262     OS << " AddrDelta:" << CF->getAddrDelta();
   1263     break;
   1264   }
   1265   case MCFragment::FT_LEB: {
   1266     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
   1267     OS << "\n       ";
   1268     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
   1269     break;
   1270   }
   1271   case MCFragment::FT_SafeSEH: {
   1272     const MCSafeSEHFragment *F = cast<MCSafeSEHFragment>(this);
   1273     OS << "\n       ";
   1274     OS << " Sym:" << F->getSymbol();
   1275     break;
   1276   }
   1277   case MCFragment::FT_Dummy:
   1278     break;
   1279   }
   1280   OS << ">";
   1281 }
   1282 
   1283 void MCAssembler::dump() {
   1284   raw_ostream &OS = llvm::errs();
   1285 
   1286   OS << "<MCAssembler\n";
   1287   OS << "  Sections:[\n    ";
   1288   for (iterator it = begin(), ie = end(); it != ie; ++it) {
   1289     if (it != begin()) OS << ",\n    ";
   1290     it->dump();
   1291   }
   1292   OS << "],\n";
   1293   OS << "  Symbols:[";
   1294 
   1295   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
   1296     if (it != symbol_begin()) OS << ",\n           ";
   1297     OS << "(";
   1298     it->dump();
   1299     OS << ", Index:" << it->getIndex() << ", ";
   1300     OS << ")";
   1301   }
   1302   OS << "]>\n";
   1303 }
   1304 #endif
   1305