Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCTargetDesc/ARMMCTargetDesc.h"
     11 #include "MCTargetDesc/ARMAddressingModes.h"
     12 #include "MCTargetDesc/ARMAsmBackend.h"
     13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
     14 #include "MCTargetDesc/ARMAsmBackendELF.h"
     15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
     16 #include "MCTargetDesc/ARMBaseInfo.h"
     17 #include "MCTargetDesc/ARMFixupKinds.h"
     18 #include "llvm/ADT/StringSwitch.h"
     19 #include "llvm/MC/MCAsmBackend.h"
     20 #include "llvm/MC/MCAssembler.h"
     21 #include "llvm/MC/MCContext.h"
     22 #include "llvm/MC/MCDirectives.h"
     23 #include "llvm/MC/MCELFObjectWriter.h"
     24 #include "llvm/MC/MCExpr.h"
     25 #include "llvm/MC/MCFixupKindInfo.h"
     26 #include "llvm/MC/MCMachObjectWriter.h"
     27 #include "llvm/MC/MCObjectWriter.h"
     28 #include "llvm/MC/MCRegisterInfo.h"
     29 #include "llvm/MC/MCSectionELF.h"
     30 #include "llvm/MC/MCSectionMachO.h"
     31 #include "llvm/MC/MCSubtargetInfo.h"
     32 #include "llvm/MC/MCValue.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ELF.h"
     35 #include "llvm/Support/ErrorHandling.h"
     36 #include "llvm/Support/Format.h"
     37 #include "llvm/Support/MachO.h"
     38 #include "llvm/Support/TargetParser.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 using namespace llvm;
     41 
     42 namespace {
     43 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
     44 public:
     45   ARMELFObjectWriter(uint8_t OSABI)
     46       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
     47                                 /*HasRelocationAddend*/ false) {}
     48 };
     49 
     50 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
     51   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
     52       // This table *must* be in the order that the fixup_* kinds are defined in
     53       // ARMFixupKinds.h.
     54       //
     55       // Name                      Offset (bits) Size (bits)     Flags
     56       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     57       {"fixup_t2_ldst_pcrel_12", 0, 32,
     58        MCFixupKindInfo::FKF_IsPCRel |
     59            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     60       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     61       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     62       {"fixup_t2_pcrel_10", 0, 32,
     63        MCFixupKindInfo::FKF_IsPCRel |
     64            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     65       {"fixup_thumb_adr_pcrel_10", 0, 8,
     66        MCFixupKindInfo::FKF_IsPCRel |
     67            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     68       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     69       {"fixup_t2_adr_pcrel_12", 0, 32,
     70        MCFixupKindInfo::FKF_IsPCRel |
     71            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     72       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
     73       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
     74       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     75       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     76       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
     77       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
     78       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
     79       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
     80       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     81       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
     82       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
     83       {"fixup_arm_thumb_cp", 0, 8,
     84        MCFixupKindInfo::FKF_IsPCRel |
     85            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
     86       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
     87       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
     88       // - 19.
     89       {"fixup_arm_movt_hi16", 0, 20, 0},
     90       {"fixup_arm_movw_lo16", 0, 20, 0},
     91       {"fixup_t2_movt_hi16", 0, 20, 0},
     92       {"fixup_t2_movw_lo16", 0, 20, 0},
     93   };
     94   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
     95       // This table *must* be in the order that the fixup_* kinds are defined in
     96       // ARMFixupKinds.h.
     97       //
     98       // Name                      Offset (bits) Size (bits)     Flags
     99       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    100       {"fixup_t2_ldst_pcrel_12", 0, 32,
    101        MCFixupKindInfo::FKF_IsPCRel |
    102            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
    103       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    104       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    105       {"fixup_t2_pcrel_10", 0, 32,
    106        MCFixupKindInfo::FKF_IsPCRel |
    107            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
    108       {"fixup_thumb_adr_pcrel_10", 8, 8,
    109        MCFixupKindInfo::FKF_IsPCRel |
    110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
    111       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    112       {"fixup_t2_adr_pcrel_12", 0, 32,
    113        MCFixupKindInfo::FKF_IsPCRel |
    114            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
    115       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
    116       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
    117       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    118       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    119       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
    120       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
    121       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
    122       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
    123       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    124       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
    125       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
    126       {"fixup_arm_thumb_cp", 8, 8,
    127        MCFixupKindInfo::FKF_IsPCRel |
    128            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
    129       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
    130       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
    131       // - 19.
    132       {"fixup_arm_movt_hi16", 12, 20, 0},
    133       {"fixup_arm_movw_lo16", 12, 20, 0},
    134       {"fixup_t2_movt_hi16", 12, 20, 0},
    135       {"fixup_t2_movw_lo16", 12, 20, 0},
    136   };
    137 
    138   if (Kind < FirstTargetFixupKind)
    139     return MCAsmBackend::getFixupKindInfo(Kind);
    140 
    141   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
    142          "Invalid kind!");
    143   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
    144 }
    145 
    146 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
    147   switch (Flag) {
    148   default:
    149     break;
    150   case MCAF_Code16:
    151     setIsThumb(true);
    152     break;
    153   case MCAF_Code32:
    154     setIsThumb(false);
    155     break;
    156   }
    157 }
    158 } // end anonymous namespace
    159 
    160 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
    161   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
    162 
    163   switch (Op) {
    164   default:
    165     return Op;
    166   case ARM::tBcc:
    167     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
    168   case ARM::tLDRpci:
    169     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
    170   case ARM::tADR:
    171     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
    172   case ARM::tB:
    173     return HasThumb2 ? (unsigned)ARM::t2B : Op;
    174   case ARM::tCBZ:
    175     return ARM::tHINT;
    176   case ARM::tCBNZ:
    177     return ARM::tHINT;
    178   }
    179 }
    180 
    181 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
    182   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
    183     return true;
    184   return false;
    185 }
    186 
    187 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
    188                                                     uint64_t Value) const {
    189   switch ((unsigned)Fixup.getKind()) {
    190   case ARM::fixup_arm_thumb_br: {
    191     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
    192     // low bit being an implied zero. There's an implied +4 offset for the
    193     // branch, so we adjust the other way here to determine what's
    194     // encodable.
    195     //
    196     // Relax if the value is too big for a (signed) i8.
    197     int64_t Offset = int64_t(Value) - 4;
    198     if (Offset > 2046 || Offset < -2048)
    199       return "out of range pc-relative fixup value";
    200     break;
    201   }
    202   case ARM::fixup_arm_thumb_bcc: {
    203     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
    204     // low bit being an implied zero. There's an implied +4 offset for the
    205     // branch, so we adjust the other way here to determine what's
    206     // encodable.
    207     //
    208     // Relax if the value is too big for a (signed) i8.
    209     int64_t Offset = int64_t(Value) - 4;
    210     if (Offset > 254 || Offset < -256)
    211       return "out of range pc-relative fixup value";
    212     break;
    213   }
    214   case ARM::fixup_thumb_adr_pcrel_10:
    215   case ARM::fixup_arm_thumb_cp: {
    216     // If the immediate is negative, greater than 1020, or not a multiple
    217     // of four, the wide version of the instruction must be used.
    218     int64_t Offset = int64_t(Value) - 4;
    219     if (Offset & 3)
    220       return "misaligned pc-relative fixup value";
    221     else if (Offset > 1020 || Offset < 0)
    222       return "out of range pc-relative fixup value";
    223     break;
    224   }
    225   case ARM::fixup_arm_thumb_cb: {
    226     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
    227     // instruction it is is actually out of range for the instruction.
    228     // It will be changed to a NOP.
    229     int64_t Offset = (Value & ~1);
    230     if (Offset == 2)
    231       return "will be converted to nop";
    232     break;
    233   }
    234   default:
    235     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
    236   }
    237   return nullptr;
    238 }
    239 
    240 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
    241                                          const MCRelaxableFragment *DF,
    242                                          const MCAsmLayout &Layout) const {
    243   return reasonForFixupRelaxation(Fixup, Value);
    244 }
    245 
    246 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
    247   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
    248 
    249   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
    250   if (RelaxedOp == Inst.getOpcode()) {
    251     SmallString<256> Tmp;
    252     raw_svector_ostream OS(Tmp);
    253     Inst.dump_pretty(OS);
    254     OS << "\n";
    255     report_fatal_error("unexpected instruction to relax: " + OS.str());
    256   }
    257 
    258   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
    259   // have to change the operands too.
    260   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
    261       RelaxedOp == ARM::tHINT) {
    262     Res.setOpcode(RelaxedOp);
    263     Res.addOperand(MCOperand::createImm(0));
    264     Res.addOperand(MCOperand::createImm(14));
    265     Res.addOperand(MCOperand::createReg(0));
    266     return;
    267   }
    268 
    269   // The rest of instructions we're relaxing have the same operands.
    270   // We just need to update to the proper opcode.
    271   Res = Inst;
    272   Res.setOpcode(RelaxedOp);
    273 }
    274 
    275 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
    276   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
    277   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
    278   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
    279   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
    280   if (isThumb()) {
    281     const uint16_t nopEncoding =
    282         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
    283     uint64_t NumNops = Count / 2;
    284     for (uint64_t i = 0; i != NumNops; ++i)
    285       OW->write16(nopEncoding);
    286     if (Count & 1)
    287       OW->write8(0);
    288     return true;
    289   }
    290   // ARM mode
    291   const uint32_t nopEncoding =
    292       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
    293   uint64_t NumNops = Count / 4;
    294   for (uint64_t i = 0; i != NumNops; ++i)
    295     OW->write32(nopEncoding);
    296   // FIXME: should this function return false when unable to write exactly
    297   // 'Count' bytes with NOP encodings?
    298   switch (Count % 4) {
    299   default:
    300     break; // No leftover bytes to write
    301   case 1:
    302     OW->write8(0);
    303     break;
    304   case 2:
    305     OW->write16(0);
    306     break;
    307   case 3:
    308     OW->write16(0);
    309     OW->write8(0xa0);
    310     break;
    311   }
    312 
    313   return true;
    314 }
    315 
    316 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
    317   if (IsLittleEndian) {
    318     // Note that the halfwords are stored high first and low second in thumb;
    319     // so we need to swap the fixup value here to map properly.
    320     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
    321     Swapped |= (Value & 0x0000FFFF) << 16;
    322     return Swapped;
    323   } else
    324     return Value;
    325 }
    326 
    327 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
    328                               bool IsLittleEndian) {
    329   uint32_t Value;
    330 
    331   if (IsLittleEndian) {
    332     Value = (SecondHalf & 0xFFFF) << 16;
    333     Value |= (FirstHalf & 0xFFFF);
    334   } else {
    335     Value = (SecondHalf & 0xFFFF);
    336     Value |= (FirstHalf & 0xFFFF) << 16;
    337   }
    338 
    339   return Value;
    340 }
    341 
    342 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
    343                                          bool IsPCRel, MCContext *Ctx,
    344                                          bool IsLittleEndian,
    345                                          bool IsResolved) const {
    346   unsigned Kind = Fixup.getKind();
    347   switch (Kind) {
    348   default:
    349     llvm_unreachable("Unknown fixup kind!");
    350   case FK_Data_1:
    351   case FK_Data_2:
    352   case FK_Data_4:
    353     return Value;
    354   case FK_SecRel_2:
    355     return Value;
    356   case FK_SecRel_4:
    357     return Value;
    358   case ARM::fixup_arm_movt_hi16:
    359     if (!IsPCRel)
    360       Value >>= 16;
    361   // Fallthrough
    362   case ARM::fixup_arm_movw_lo16: {
    363     unsigned Hi4 = (Value & 0xF000) >> 12;
    364     unsigned Lo12 = Value & 0x0FFF;
    365     // inst{19-16} = Hi4;
    366     // inst{11-0} = Lo12;
    367     Value = (Hi4 << 16) | (Lo12);
    368     return Value;
    369   }
    370   case ARM::fixup_t2_movt_hi16:
    371     if (!IsPCRel)
    372       Value >>= 16;
    373   // Fallthrough
    374   case ARM::fixup_t2_movw_lo16: {
    375     unsigned Hi4 = (Value & 0xF000) >> 12;
    376     unsigned i = (Value & 0x800) >> 11;
    377     unsigned Mid3 = (Value & 0x700) >> 8;
    378     unsigned Lo8 = Value & 0x0FF;
    379     // inst{19-16} = Hi4;
    380     // inst{26} = i;
    381     // inst{14-12} = Mid3;
    382     // inst{7-0} = Lo8;
    383     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
    384     return swapHalfWords(Value, IsLittleEndian);
    385   }
    386   case ARM::fixup_arm_ldst_pcrel_12:
    387     // ARM PC-relative values are offset by 8.
    388     Value -= 4;
    389   // FALLTHROUGH
    390   case ARM::fixup_t2_ldst_pcrel_12: {
    391     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    392     Value -= 4;
    393     bool isAdd = true;
    394     if ((int64_t)Value < 0) {
    395       Value = -Value;
    396       isAdd = false;
    397     }
    398     if (Ctx && Value >= 4096) {
    399       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
    400       return 0;
    401     }
    402     Value |= isAdd << 23;
    403 
    404     // Same addressing mode as fixup_arm_pcrel_10,
    405     // but with 16-bit halfwords swapped.
    406     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
    407       return swapHalfWords(Value, IsLittleEndian);
    408 
    409     return Value;
    410   }
    411   case ARM::fixup_arm_adr_pcrel_12: {
    412     // ARM PC-relative values are offset by 8.
    413     Value -= 8;
    414     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
    415     if ((int64_t)Value < 0) {
    416       Value = -Value;
    417       opc = 2; // 0b0010
    418     }
    419     if (Ctx && ARM_AM::getSOImmVal(Value) == -1) {
    420       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
    421       return 0;
    422     }
    423     // Encode the immediate and shift the opcode into place.
    424     return ARM_AM::getSOImmVal(Value) | (opc << 21);
    425   }
    426 
    427   case ARM::fixup_t2_adr_pcrel_12: {
    428     Value -= 4;
    429     unsigned opc = 0;
    430     if ((int64_t)Value < 0) {
    431       Value = -Value;
    432       opc = 5;
    433     }
    434 
    435     uint32_t out = (opc << 21);
    436     out |= (Value & 0x800) << 15;
    437     out |= (Value & 0x700) << 4;
    438     out |= (Value & 0x0FF);
    439 
    440     return swapHalfWords(out, IsLittleEndian);
    441   }
    442 
    443   case ARM::fixup_arm_condbranch:
    444   case ARM::fixup_arm_uncondbranch:
    445   case ARM::fixup_arm_uncondbl:
    446   case ARM::fixup_arm_condbl:
    447   case ARM::fixup_arm_blx:
    448     // These values don't encode the low two bits since they're always zero.
    449     // Offset by 8 just as above.
    450     if (const MCSymbolRefExpr *SRE =
    451             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
    452       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
    453         return 0;
    454     return 0xffffff & ((Value - 8) >> 2);
    455   case ARM::fixup_t2_uncondbranch: {
    456     Value = Value - 4;
    457     Value >>= 1; // Low bit is not encoded.
    458 
    459     uint32_t out = 0;
    460     bool I = Value & 0x800000;
    461     bool J1 = Value & 0x400000;
    462     bool J2 = Value & 0x200000;
    463     J1 ^= I;
    464     J2 ^= I;
    465 
    466     out |= I << 26;                 // S bit
    467     out |= !J1 << 13;               // J1 bit
    468     out |= !J2 << 11;               // J2 bit
    469     out |= (Value & 0x1FF800) << 5; // imm6 field
    470     out |= (Value & 0x0007FF);      // imm11 field
    471 
    472     return swapHalfWords(out, IsLittleEndian);
    473   }
    474   case ARM::fixup_t2_condbranch: {
    475     Value = Value - 4;
    476     Value >>= 1; // Low bit is not encoded.
    477 
    478     uint64_t out = 0;
    479     out |= (Value & 0x80000) << 7; // S bit
    480     out |= (Value & 0x40000) >> 7; // J2 bit
    481     out |= (Value & 0x20000) >> 4; // J1 bit
    482     out |= (Value & 0x1F800) << 5; // imm6 field
    483     out |= (Value & 0x007FF);      // imm11 field
    484 
    485     return swapHalfWords(out, IsLittleEndian);
    486   }
    487   case ARM::fixup_arm_thumb_bl: {
    488     // The value doesn't encode the low bit (always zero) and is offset by
    489     // four. The 32-bit immediate value is encoded as
    490     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
    491     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    492     // The value is encoded into disjoint bit positions in the destination
    493     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    494     // J = either J1 or J2 bit
    495     //
    496     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
    497     //
    498     // Note that the halfwords are stored high first, low second; so we need
    499     // to transpose the fixup value here to map properly.
    500     uint32_t offset = (Value - 4) >> 1;
    501     uint32_t signBit = (offset & 0x800000) >> 23;
    502     uint32_t I1Bit = (offset & 0x400000) >> 22;
    503     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    504     uint32_t I2Bit = (offset & 0x200000) >> 21;
    505     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    506     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
    507     uint32_t imm11Bits = (offset & 0x000007FF);
    508 
    509     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
    510     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
    511                            (uint16_t)imm11Bits);
    512     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
    513   }
    514   case ARM::fixup_arm_thumb_blx: {
    515     // The value doesn't encode the low two bits (always zero) and is offset by
    516     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
    517     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
    518     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
    519     // The value is encoded into disjoint bit positions in the destination
    520     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
    521     // J = either J1 or J2 bit, 0 = zero.
    522     //
    523     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
    524     //
    525     // Note that the halfwords are stored high first, low second; so we need
    526     // to transpose the fixup value here to map properly.
    527     uint32_t offset = (Value - 2) >> 2;
    528     if (const MCSymbolRefExpr *SRE =
    529             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
    530       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
    531         offset = 0;
    532     uint32_t signBit = (offset & 0x400000) >> 22;
    533     uint32_t I1Bit = (offset & 0x200000) >> 21;
    534     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
    535     uint32_t I2Bit = (offset & 0x100000) >> 20;
    536     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
    537     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
    538     uint32_t imm10LBits = (offset & 0x3FF);
    539 
    540     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
    541     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
    542                            ((uint16_t)imm10LBits) << 1);
    543     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
    544   }
    545   case ARM::fixup_thumb_adr_pcrel_10:
    546   case ARM::fixup_arm_thumb_cp:
    547     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
    548     // could have an error on our hands.
    549     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
    550       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    551       if (FixupDiagnostic) {
    552         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
    553         return 0;
    554       }
    555     }
    556     // Offset by 4, and don't encode the low two bits.
    557     return ((Value - 4) >> 2) & 0xff;
    558   case ARM::fixup_arm_thumb_cb: {
    559     // Offset by 4 and don't encode the lower bit, which is always 0.
    560     // FIXME: diagnose if no Thumb2
    561     uint32_t Binary = (Value - 4) >> 1;
    562     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
    563   }
    564   case ARM::fixup_arm_thumb_br:
    565     // Offset by 4 and don't encode the lower bit, which is always 0.
    566     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
    567       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    568       if (FixupDiagnostic) {
    569         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
    570         return 0;
    571       }
    572     }
    573     return ((Value - 4) >> 1) & 0x7ff;
    574   case ARM::fixup_arm_thumb_bcc:
    575     // Offset by 4 and don't encode the lower bit, which is always 0.
    576     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
    577       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
    578       if (FixupDiagnostic) {
    579         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
    580         return 0;
    581       }
    582     }
    583     return ((Value - 4) >> 1) & 0xff;
    584   case ARM::fixup_arm_pcrel_10_unscaled: {
    585     Value = Value - 8; // ARM fixups offset by an additional word and don't
    586                        // need to adjust for the half-word ordering.
    587     bool isAdd = true;
    588     if ((int64_t)Value < 0) {
    589       Value = -Value;
    590       isAdd = false;
    591     }
    592     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
    593     if (Ctx && Value >= 256) {
    594       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
    595       return 0;
    596     }
    597     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
    598     return Value | (isAdd << 23);
    599   }
    600   case ARM::fixup_arm_pcrel_10:
    601     Value = Value - 4; // ARM fixups offset by an additional word and don't
    602                        // need to adjust for the half-word ordering.
    603                        // Fall through.
    604   case ARM::fixup_t2_pcrel_10: {
    605     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
    606     Value = Value - 4;
    607     bool isAdd = true;
    608     if ((int64_t)Value < 0) {
    609       Value = -Value;
    610       isAdd = false;
    611     }
    612     // These values don't encode the low two bits since they're always zero.
    613     Value >>= 2;
    614     if (Ctx && Value >= 256) {
    615       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
    616       return 0;
    617     }
    618     Value |= isAdd << 23;
    619 
    620     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
    621     // swapped.
    622     if (Kind == ARM::fixup_t2_pcrel_10)
    623       return swapHalfWords(Value, IsLittleEndian);
    624 
    625     return Value;
    626   }
    627   }
    628 }
    629 
    630 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
    631                                       const MCAsmLayout &Layout,
    632                                       const MCFixup &Fixup,
    633                                       const MCFragment *DF,
    634                                       const MCValue &Target, uint64_t &Value,
    635                                       bool &IsResolved) {
    636   const MCSymbolRefExpr *A = Target.getSymA();
    637   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
    638   // Some fixups to thumb function symbols need the low bit (thumb bit)
    639   // twiddled.
    640   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
    641       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
    642       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
    643       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
    644       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
    645       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
    646     if (Sym) {
    647       if (Asm.isThumbFunc(Sym))
    648         Value |= 1;
    649     }
    650   }
    651   if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
    652     assert(Sym && "How did we resolve this?");
    653 
    654     // If the symbol is external the linker will handle it.
    655     // FIXME: Should we handle it as an optimization?
    656 
    657     // If the symbol is out of range, produce a relocation and hope the
    658     // linker can handle it. GNU AS produces an error in this case.
    659     if (Sym->isExternal() || Value >= 0x400004)
    660       IsResolved = false;
    661   }
    662   // We must always generate a relocation for BL/BLX instructions if we have
    663   // a symbol to reference, as the linker relies on knowing the destination
    664   // symbol's thumb-ness to get interworking right.
    665   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
    666             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
    667             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
    668             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
    669     IsResolved = false;
    670 
    671   // Try to get the encoded value for the fixup as-if we're mapping it into
    672   // the instruction. This allows adjustFixupValue() to issue a diagnostic
    673   // if the value aren't invalid.
    674   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
    675                          IsLittleEndian, IsResolved);
    676 }
    677 
    678 /// getFixupKindNumBytes - The number of bytes the fixup may change.
    679 static unsigned getFixupKindNumBytes(unsigned Kind) {
    680   switch (Kind) {
    681   default:
    682     llvm_unreachable("Unknown fixup kind!");
    683 
    684   case FK_Data_1:
    685   case ARM::fixup_arm_thumb_bcc:
    686   case ARM::fixup_arm_thumb_cp:
    687   case ARM::fixup_thumb_adr_pcrel_10:
    688     return 1;
    689 
    690   case FK_Data_2:
    691   case ARM::fixup_arm_thumb_br:
    692   case ARM::fixup_arm_thumb_cb:
    693     return 2;
    694 
    695   case ARM::fixup_arm_pcrel_10_unscaled:
    696   case ARM::fixup_arm_ldst_pcrel_12:
    697   case ARM::fixup_arm_pcrel_10:
    698   case ARM::fixup_arm_adr_pcrel_12:
    699   case ARM::fixup_arm_uncondbl:
    700   case ARM::fixup_arm_condbl:
    701   case ARM::fixup_arm_blx:
    702   case ARM::fixup_arm_condbranch:
    703   case ARM::fixup_arm_uncondbranch:
    704     return 3;
    705 
    706   case FK_Data_4:
    707   case ARM::fixup_t2_ldst_pcrel_12:
    708   case ARM::fixup_t2_condbranch:
    709   case ARM::fixup_t2_uncondbranch:
    710   case ARM::fixup_t2_pcrel_10:
    711   case ARM::fixup_t2_adr_pcrel_12:
    712   case ARM::fixup_arm_thumb_bl:
    713   case ARM::fixup_arm_thumb_blx:
    714   case ARM::fixup_arm_movt_hi16:
    715   case ARM::fixup_arm_movw_lo16:
    716   case ARM::fixup_t2_movt_hi16:
    717   case ARM::fixup_t2_movw_lo16:
    718     return 4;
    719 
    720   case FK_SecRel_2:
    721     return 2;
    722   case FK_SecRel_4:
    723     return 4;
    724   }
    725 }
    726 
    727 /// getFixupKindContainerSizeBytes - The number of bytes of the
    728 /// container involved in big endian.
    729 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
    730   switch (Kind) {
    731   default:
    732     llvm_unreachable("Unknown fixup kind!");
    733 
    734   case FK_Data_1:
    735     return 1;
    736   case FK_Data_2:
    737     return 2;
    738   case FK_Data_4:
    739     return 4;
    740 
    741   case ARM::fixup_arm_thumb_bcc:
    742   case ARM::fixup_arm_thumb_cp:
    743   case ARM::fixup_thumb_adr_pcrel_10:
    744   case ARM::fixup_arm_thumb_br:
    745   case ARM::fixup_arm_thumb_cb:
    746     // Instruction size is 2 bytes.
    747     return 2;
    748 
    749   case ARM::fixup_arm_pcrel_10_unscaled:
    750   case ARM::fixup_arm_ldst_pcrel_12:
    751   case ARM::fixup_arm_pcrel_10:
    752   case ARM::fixup_arm_adr_pcrel_12:
    753   case ARM::fixup_arm_uncondbl:
    754   case ARM::fixup_arm_condbl:
    755   case ARM::fixup_arm_blx:
    756   case ARM::fixup_arm_condbranch:
    757   case ARM::fixup_arm_uncondbranch:
    758   case ARM::fixup_t2_ldst_pcrel_12:
    759   case ARM::fixup_t2_condbranch:
    760   case ARM::fixup_t2_uncondbranch:
    761   case ARM::fixup_t2_pcrel_10:
    762   case ARM::fixup_t2_adr_pcrel_12:
    763   case ARM::fixup_arm_thumb_bl:
    764   case ARM::fixup_arm_thumb_blx:
    765   case ARM::fixup_arm_movt_hi16:
    766   case ARM::fixup_arm_movw_lo16:
    767   case ARM::fixup_t2_movt_hi16:
    768   case ARM::fixup_t2_movw_lo16:
    769     // Instruction size is 4 bytes.
    770     return 4;
    771   }
    772 }
    773 
    774 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
    775                                unsigned DataSize, uint64_t Value,
    776                                bool IsPCRel) const {
    777   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
    778   Value =
    779       adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true);
    780   if (!Value)
    781     return; // Doesn't change encoding.
    782 
    783   unsigned Offset = Fixup.getOffset();
    784   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
    785 
    786   // Used to point to big endian bytes.
    787   unsigned FullSizeBytes;
    788   if (!IsLittleEndian) {
    789     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
    790     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
    791     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
    792   }
    793 
    794   // For each byte of the fragment that the fixup touches, mask in the bits from
    795   // the fixup value. The Value has been "split up" into the appropriate
    796   // bitfields above.
    797   for (unsigned i = 0; i != NumBytes; ++i) {
    798     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
    799     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
    800   }
    801 }
    802 
    803 namespace CU {
    804 
    805 /// \brief Compact unwind encoding values.
    806 enum CompactUnwindEncodings {
    807   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
    808   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
    809   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
    810   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
    811 
    812   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
    813 
    814   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
    815   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
    816   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
    817 
    818   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
    819   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
    820   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
    821   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
    822   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
    823 
    824   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
    825 
    826   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
    827 };
    828 
    829 } // end CU namespace
    830 
    831 /// Generate compact unwind encoding for the function based on the CFI
    832 /// instructions. If the CFI instructions describe a frame that cannot be
    833 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
    834 /// tells the runtime to fallback and unwind using dwarf.
    835 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
    836     ArrayRef<MCCFIInstruction> Instrs) const {
    837   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
    838   // Only armv7k uses CFI based unwinding.
    839   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
    840     return 0;
    841   // No .cfi directives means no frame.
    842   if (Instrs.empty())
    843     return 0;
    844   // Start off assuming CFA is at SP+0.
    845   int CFARegister = ARM::SP;
    846   int CFARegisterOffset = 0;
    847   // Mark savable registers as initially unsaved
    848   DenseMap<unsigned, int> RegOffsets;
    849   int FloatRegCount = 0;
    850   // Process each .cfi directive and build up compact unwind info.
    851   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
    852     int Reg;
    853     const MCCFIInstruction &Inst = Instrs[i];
    854     switch (Inst.getOperation()) {
    855     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
    856       CFARegisterOffset = -Inst.getOffset();
    857       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
    858       break;
    859     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
    860       CFARegisterOffset = -Inst.getOffset();
    861       break;
    862     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
    863       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
    864       break;
    865     case MCCFIInstruction::OpOffset: // DW_CFA_offset
    866       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
    867       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
    868         RegOffsets[Reg] = Inst.getOffset();
    869       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
    870         RegOffsets[Reg] = Inst.getOffset();
    871         ++FloatRegCount;
    872       } else {
    873         DEBUG_WITH_TYPE("compact-unwind",
    874                         llvm::dbgs() << ".cfi_offset on unknown register="
    875                                      << Inst.getRegister() << "\n");
    876         return CU::UNWIND_ARM_MODE_DWARF;
    877       }
    878       break;
    879     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
    880       // Ignore
    881       break;
    882     default:
    883       // Directive not convertable to compact unwind, bail out.
    884       DEBUG_WITH_TYPE("compact-unwind",
    885                       llvm::dbgs()
    886                           << "CFI directive not compatiable with comact "
    887                              "unwind encoding, opcode=" << Inst.getOperation()
    888                           << "\n");
    889       return CU::UNWIND_ARM_MODE_DWARF;
    890       break;
    891     }
    892   }
    893 
    894   // If no frame set up, return no unwind info.
    895   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
    896     return 0;
    897 
    898   // Verify standard frame (lr/r7) was used.
    899   if (CFARegister != ARM::R7) {
    900     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
    901                                                    << CFARegister
    902                                                    << " instead of r7\n");
    903     return CU::UNWIND_ARM_MODE_DWARF;
    904   }
    905   int StackAdjust = CFARegisterOffset - 8;
    906   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
    907     DEBUG_WITH_TYPE("compact-unwind",
    908                     llvm::dbgs()
    909                         << "LR not saved as standard frame, StackAdjust="
    910                         << StackAdjust
    911                         << ", CFARegisterOffset=" << CFARegisterOffset
    912                         << ", lr save at offset=" << RegOffsets[14] << "\n");
    913     return CU::UNWIND_ARM_MODE_DWARF;
    914   }
    915   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
    916     DEBUG_WITH_TYPE("compact-unwind",
    917                     llvm::dbgs() << "r7 not saved as standard frame\n");
    918     return CU::UNWIND_ARM_MODE_DWARF;
    919   }
    920   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
    921 
    922   // If var-args are used, there may be a stack adjust required.
    923   switch (StackAdjust) {
    924   case 0:
    925     break;
    926   case 4:
    927     CompactUnwindEncoding |= 0x00400000;
    928     break;
    929   case 8:
    930     CompactUnwindEncoding |= 0x00800000;
    931     break;
    932   case 12:
    933     CompactUnwindEncoding |= 0x00C00000;
    934     break;
    935   default:
    936     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
    937                                           << ".cfi_def_cfa stack adjust ("
    938                                           << StackAdjust << ") out of range\n");
    939     return CU::UNWIND_ARM_MODE_DWARF;
    940   }
    941 
    942   // If r6 is saved, it must be right below r7.
    943   static struct {
    944     unsigned Reg;
    945     unsigned Encoding;
    946   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
    947                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
    948                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
    949                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
    950                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
    951                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
    952                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
    953                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
    954 
    955   int CurOffset = -8 - StackAdjust;
    956   for (auto CSReg : GPRCSRegs) {
    957     auto Offset = RegOffsets.find(CSReg.Reg);
    958     if (Offset == RegOffsets.end())
    959       continue;
    960 
    961     int RegOffset = Offset->second;
    962     if (RegOffset != CurOffset - 4) {
    963       DEBUG_WITH_TYPE("compact-unwind",
    964                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
    965                                    << RegOffset << " but only supported at "
    966                                    << CurOffset << "\n");
    967       return CU::UNWIND_ARM_MODE_DWARF;
    968     }
    969     CompactUnwindEncoding |= CSReg.Encoding;
    970     CurOffset -= 4;
    971   }
    972 
    973   // If no floats saved, we are done.
    974   if (FloatRegCount == 0)
    975     return CompactUnwindEncoding;
    976 
    977   // Switch mode to include D register saving.
    978   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
    979   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
    980 
    981   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
    982   // but needs coordination with the linker and libunwind.
    983   if (FloatRegCount > 4) {
    984     DEBUG_WITH_TYPE("compact-unwind",
    985                     llvm::dbgs() << "unsupported number of D registers saved ("
    986                                  << FloatRegCount << ")\n");
    987       return CU::UNWIND_ARM_MODE_DWARF;
    988   }
    989 
    990   // Floating point registers must either be saved sequentially, or we defer to
    991   // DWARF. No gaps allowed here so check that each saved d-register is
    992   // precisely where it should be.
    993   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
    994   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
    995     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
    996     if (Offset == RegOffsets.end()) {
    997       DEBUG_WITH_TYPE("compact-unwind",
    998                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
    999                                    << MRI.getName(FPRCSRegs[Idx])
   1000                                    << " not saved\n");
   1001       return CU::UNWIND_ARM_MODE_DWARF;
   1002     } else if (Offset->second != CurOffset - 8) {
   1003       DEBUG_WITH_TYPE("compact-unwind",
   1004                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
   1005                                    << MRI.getName(FPRCSRegs[Idx])
   1006                                    << " saved at " << Offset->second
   1007                                    << ", expected at " << CurOffset - 8
   1008                                    << "\n");
   1009       return CU::UNWIND_ARM_MODE_DWARF;
   1010     }
   1011     CurOffset -= 8;
   1012   }
   1013 
   1014   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
   1015 }
   1016 
   1017 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
   1018   unsigned AK = ARM::parseArch(Arch);
   1019   switch (AK) {
   1020   default:
   1021     return MachO::CPU_SUBTYPE_ARM_V7;
   1022   case ARM::AK_ARMV4T:
   1023     return MachO::CPU_SUBTYPE_ARM_V4T;
   1024   case ARM::AK_ARMV5T:
   1025   case ARM::AK_ARMV5TE:
   1026   case ARM::AK_ARMV5TEJ:
   1027     return MachO::CPU_SUBTYPE_ARM_V5;
   1028   case ARM::AK_ARMV6:
   1029   case ARM::AK_ARMV6K:
   1030     return MachO::CPU_SUBTYPE_ARM_V6;
   1031   case ARM::AK_ARMV7A:
   1032     return MachO::CPU_SUBTYPE_ARM_V7;
   1033   case ARM::AK_ARMV7S:
   1034     return MachO::CPU_SUBTYPE_ARM_V7S;
   1035   case ARM::AK_ARMV7K:
   1036     return MachO::CPU_SUBTYPE_ARM_V7K;
   1037   case ARM::AK_ARMV6M:
   1038     return MachO::CPU_SUBTYPE_ARM_V6M;
   1039   case ARM::AK_ARMV7M:
   1040     return MachO::CPU_SUBTYPE_ARM_V7M;
   1041   case ARM::AK_ARMV7EM:
   1042     return MachO::CPU_SUBTYPE_ARM_V7EM;
   1043   }
   1044 }
   1045 
   1046 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
   1047                                         const MCRegisterInfo &MRI,
   1048                                         const Triple &TheTriple, StringRef CPU,
   1049                                         bool isLittle) {
   1050   switch (TheTriple.getObjectFormat()) {
   1051   default:
   1052     llvm_unreachable("unsupported object format");
   1053   case Triple::MachO: {
   1054     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
   1055     return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS);
   1056   }
   1057   case Triple::COFF:
   1058     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
   1059     return new ARMAsmBackendWinCOFF(T, TheTriple);
   1060   case Triple::ELF:
   1061     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
   1062     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
   1063     return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
   1064   }
   1065 }
   1066 
   1067 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
   1068                                           const MCRegisterInfo &MRI,
   1069                                           const Triple &TT, StringRef CPU) {
   1070   return createARMAsmBackend(T, MRI, TT, CPU, true);
   1071 }
   1072 
   1073 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
   1074                                           const MCRegisterInfo &MRI,
   1075                                           const Triple &TT, StringRef CPU) {
   1076   return createARMAsmBackend(T, MRI, TT, CPU, false);
   1077 }
   1078 
   1079 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
   1080                                             const MCRegisterInfo &MRI,
   1081                                             const Triple &TT, StringRef CPU) {
   1082   return createARMAsmBackend(T, MRI, TT, CPU, true);
   1083 }
   1084 
   1085 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
   1086                                             const MCRegisterInfo &MRI,
   1087                                             const Triple &TT, StringRef CPU) {
   1088   return createARMAsmBackend(T, MRI, TT, CPU, false);
   1089 }
   1090