Home | History | Annotate | Download | only in Hexagon
      1 //==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the Hexagon instructions in TableGen format.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 include "HexagonInstrFormats.td"
     15 include "HexagonOperands.td"
     16 include "HexagonInstrEnc.td"
     17 // Pattern fragment that combines the value type and the register class
     18 // into a single parameter.
     19 // The pat frags in the definitions below need to have a named register,
     20 // otherwise i32 will be assumed regardless of the register class. The
     21 // name of the register does not matter.
     22 def I1  : PatLeaf<(i1 PredRegs:$R)>;
     23 def I32 : PatLeaf<(i32 IntRegs:$R)>;
     24 def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
     25 def F32 : PatLeaf<(f32 IntRegs:$R)>;
     26 def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
     27 
     28 // Pattern fragments to extract the low and high subregisters from a
     29 // 64-bit value.
     30 def LoReg: OutPatFrag<(ops node:$Rs),
     31                       (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>;
     32 def HiReg: OutPatFrag<(ops node:$Rs),
     33                       (EXTRACT_SUBREG (i64 $Rs), subreg_hireg)>;
     34 
     35 // SDNode for converting immediate C to C-1.
     36 def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
     37    // Return the byte immediate const-1 as an SDNode.
     38    int32_t imm = N->getSExtValue();
     39    return XformSToSM1Imm(imm, SDLoc(N));
     40 }]>;
     41 
     42 // SDNode for converting immediate C to C-2.
     43 def DEC2_CONST_SIGNED : SDNodeXForm<imm, [{
     44    // Return the byte immediate const-2 as an SDNode.
     45    int32_t imm = N->getSExtValue();
     46    return XformSToSM2Imm(imm, SDLoc(N));
     47 }]>;
     48 
     49 // SDNode for converting immediate C to C-3.
     50 def DEC3_CONST_SIGNED : SDNodeXForm<imm, [{
     51    // Return the byte immediate const-3 as an SDNode.
     52    int32_t imm = N->getSExtValue();
     53    return XformSToSM3Imm(imm, SDLoc(N));
     54 }]>;
     55 
     56 // SDNode for converting immediate C to C-1.
     57 def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
     58    // Return the byte immediate const-1 as an SDNode.
     59    uint32_t imm = N->getZExtValue();
     60    return XformUToUM1Imm(imm, SDLoc(N));
     61 }]>;
     62 
     63 //===----------------------------------------------------------------------===//
     64 // Compare
     65 //===----------------------------------------------------------------------===//
     66 let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1,
     67     opExtendable = 2 in
     68 class T_CMP <string mnemonic, bits<2> MajOp, bit isNot, Operand ImmOp>
     69   : ALU32Inst <(outs PredRegs:$dst),
     70                (ins IntRegs:$src1, ImmOp:$src2),
     71   "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)",
     72   [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel {
     73     bits<2> dst;
     74     bits<5> src1;
     75     bits<10> src2;
     76     let CextOpcode = mnemonic;
     77     let opExtentBits  = !if(!eq(mnemonic, "cmp.gtu"), 9, 10);
     78     let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1);
     79 
     80     let IClass = 0b0111;
     81 
     82     let Inst{27-24} = 0b0101;
     83     let Inst{23-22} = MajOp;
     84     let Inst{21}    = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9});
     85     let Inst{20-16} = src1;
     86     let Inst{13-5}  = src2{8-0};
     87     let Inst{4}     = isNot;
     88     let Inst{3-2}   = 0b00;
     89     let Inst{1-0}   = dst;
     90   }
     91 
     92 def C2_cmpeqi   : T_CMP <"cmp.eq",  0b00, 0, s10Ext>;
     93 def C2_cmpgti   : T_CMP <"cmp.gt",  0b01, 0, s10Ext>;
     94 def C2_cmpgtui  : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>;
     95 
     96 class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
     97   : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)),
     98         (MI IntRegs:$src1, ImmPred:$src2)>;
     99 
    100 def : T_CMP_pat <C2_cmpeqi,  seteq,  s10ImmPred>;
    101 def : T_CMP_pat <C2_cmpgti,  setgt,  s10ImmPred>;
    102 def : T_CMP_pat <C2_cmpgtui, setugt, u9ImmPred>;
    103 
    104 //===----------------------------------------------------------------------===//
    105 // ALU32/ALU +
    106 //===----------------------------------------------------------------------===//
    107 // Add.
    108 
    109 def SDT_Int32Leaf  : SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>;
    110 def SDT_Int32Unary : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
    111 
    112 def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
    113   [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
    114 
    115 def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
    116 def HexagonPACKHL  : SDNode<"HexagonISD::PACKHL",  SDTHexagonI64I32I32>;
    117 
    118 let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in
    119 class T_ALU32_3op<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev,
    120                   bit IsComm>
    121   : ALU32_rr<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
    122              "$Rd = "#mnemonic#"($Rs, $Rt)",
    123              [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredRel {
    124   let isCommutable = IsComm;
    125   let BaseOpcode = mnemonic#_rr;
    126   let CextOpcode = mnemonic;
    127 
    128   bits<5> Rs;
    129   bits<5> Rt;
    130   bits<5> Rd;
    131 
    132   let IClass = 0b1111;
    133   let Inst{27} = 0b0;
    134   let Inst{26-24} = MajOp;
    135   let Inst{23-21} = MinOp;
    136   let Inst{20-16} = !if(OpsRev,Rt,Rs);
    137   let Inst{12-8} = !if(OpsRev,Rs,Rt);
    138   let Inst{4-0} = Rd;
    139 }
    140 
    141 let hasSideEffects = 0, hasNewValue = 1 in
    142 class T_ALU32_3op_pred<string mnemonic, bits<3> MajOp, bits<3> MinOp,
    143                        bit OpsRev, bit PredNot, bit PredNew>
    144   : ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
    145              "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") "#
    146              "$Rd = "#mnemonic#"($Rs, $Rt)",
    147              [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
    148   let isPredicated = 1;
    149   let isPredicatedFalse = PredNot;
    150   let isPredicatedNew = PredNew;
    151   let BaseOpcode = mnemonic#_rr;
    152   let CextOpcode = mnemonic;
    153 
    154   bits<2> Pu;
    155   bits<5> Rs;
    156   bits<5> Rt;
    157   bits<5> Rd;
    158 
    159   let IClass = 0b1111;
    160   let Inst{27} = 0b1;
    161   let Inst{26-24} = MajOp;
    162   let Inst{23-21} = MinOp;
    163   let Inst{20-16} = !if(OpsRev,Rt,Rs);
    164   let Inst{13} = PredNew;
    165   let Inst{12-8} = !if(OpsRev,Rs,Rt);
    166   let Inst{7} = PredNot;
    167   let Inst{6-5} = Pu;
    168   let Inst{4-0} = Rd;
    169 }
    170 
    171 class T_ALU32_combineh<string Op1, string Op2, bits<3> MajOp, bits<3> MinOp,
    172                       bit OpsRev>
    173   : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> {
    174   let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")";
    175 }
    176 
    177 def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>;
    178 def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>;
    179 def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>;
    180 def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>;
    181 
    182 class T_ALU32_3op_sfx<string mnemonic, string suffix, bits<3> MajOp,
    183                       bits<3> MinOp, bit OpsRev, bit IsComm>
    184   : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> {
    185   let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix;
    186 }
    187 
    188 def A2_svaddh   : T_ALU32_3op<"vaddh",   0b110, 0b000, 0, 1>;
    189 def A2_svsubh   : T_ALU32_3op<"vsubh",   0b110, 0b100, 1, 0>;
    190 
    191 let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123 in {
    192   def A2_svaddhs  : T_ALU32_3op_sfx<"vaddh",  ":sat", 0b110, 0b001, 0, 1>;
    193   def A2_addsat   : T_ALU32_3op_sfx<"add",    ":sat", 0b110, 0b010, 0, 1>;
    194   def A2_svadduhs : T_ALU32_3op_sfx<"vadduh", ":sat", 0b110, 0b011, 0, 1>;
    195   def A2_svsubhs  : T_ALU32_3op_sfx<"vsubh",  ":sat", 0b110, 0b101, 1, 0>;
    196   def A2_subsat   : T_ALU32_3op_sfx<"sub",    ":sat", 0b110, 0b110, 1, 0>;
    197   def A2_svsubuhs : T_ALU32_3op_sfx<"vsubuh", ":sat", 0b110, 0b111, 1, 0>;
    198 }
    199 
    200 let Itinerary = ALU32_3op_tc_2_SLOT0123 in
    201 def A2_svavghs  : T_ALU32_3op_sfx<"vavgh",  ":rnd", 0b111, 0b001, 0, 1>;
    202 
    203 def A2_svavgh   : T_ALU32_3op<"vavgh",   0b111, 0b000, 0, 1>;
    204 def A2_svnavgh  : T_ALU32_3op<"vnavgh",  0b111, 0b011, 1, 0>;
    205 
    206 multiclass T_ALU32_3op_p<string mnemonic, bits<3> MajOp, bits<3> MinOp,
    207                          bit OpsRev> {
    208   def t    : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 0>;
    209   def f    : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 0>;
    210   def tnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 1>;
    211   def fnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 1>;
    212 }
    213 
    214 multiclass T_ALU32_3op_A2<string mnemonic, bits<3> MajOp, bits<3> MinOp,
    215                           bit OpsRev, bit IsComm> {
    216   let isPredicable = 1 in
    217   def  A2_#NAME  : T_ALU32_3op  <mnemonic, MajOp, MinOp, OpsRev, IsComm>;
    218   defm A2_p#NAME : T_ALU32_3op_p<mnemonic, MajOp, MinOp, OpsRev>;
    219 }
    220 
    221 defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>;
    222 defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>;
    223 defm or  : T_ALU32_3op_A2<"or",  0b001, 0b001, 0, 1>;
    224 defm sub : T_ALU32_3op_A2<"sub", 0b011, 0b001, 1, 0>;
    225 defm xor : T_ALU32_3op_A2<"xor", 0b001, 0b011, 0, 1>;
    226 
    227 // Pats for instruction selection.
    228 class BinOp32_pat<SDNode Op, InstHexagon MI, ValueType ResT>
    229   : Pat<(ResT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
    230         (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>;
    231 
    232 def: BinOp32_pat<add, A2_add, i32>;
    233 def: BinOp32_pat<and, A2_and, i32>;
    234 def: BinOp32_pat<or,  A2_or,  i32>;
    235 def: BinOp32_pat<sub, A2_sub, i32>;
    236 def: BinOp32_pat<xor, A2_xor, i32>;
    237 
    238 // A few special cases producing register pairs:
    239 let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0 in {
    240   def S2_packhl    : T_ALU32_3op  <"packhl",  0b101, 0b100, 0, 0>;
    241 
    242   let isPredicable = 1 in
    243     def A2_combinew  : T_ALU32_3op  <"combine", 0b101, 0b000, 0, 0>;
    244 
    245   // Conditional combinew uses "newt/f" instead of "t/fnew".
    246   def C2_ccombinewt    : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>;
    247   def C2_ccombinewf    : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>;
    248   def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>;
    249   def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>;
    250 }
    251 
    252 def: BinOp32_pat<HexagonCOMBINE, A2_combinew, i64>;
    253 def: BinOp32_pat<HexagonPACKHL,  S2_packhl,   i64>;
    254 
    255 let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg"  in
    256 class T_ALU32_3op_cmp<string mnemonic, bits<2> MinOp, bit IsNeg, bit IsComm>
    257   : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
    258              "$Pd = "#mnemonic#"($Rs, $Rt)",
    259              [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
    260   let CextOpcode = mnemonic;
    261   let isCommutable = IsComm;
    262   bits<5> Rs;
    263   bits<5> Rt;
    264   bits<2> Pd;
    265 
    266   let IClass = 0b1111;
    267   let Inst{27-24} = 0b0010;
    268   let Inst{22-21} = MinOp;
    269   let Inst{20-16} = Rs;
    270   let Inst{12-8} = Rt;
    271   let Inst{4} = IsNeg;
    272   let Inst{3-2} = 0b00;
    273   let Inst{1-0} = Pd;
    274 }
    275 
    276 let Itinerary = ALU32_3op_tc_2early_SLOT0123 in {
    277   def C2_cmpeq   : T_ALU32_3op_cmp< "cmp.eq",  0b00, 0, 1>;
    278   def C2_cmpgt   : T_ALU32_3op_cmp< "cmp.gt",  0b10, 0, 0>;
    279   def C2_cmpgtu  : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>;
    280 }
    281 
    282 // Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
    283 // that reverse the order of the operands.
    284 class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>;
    285 
    286 // Pats for compares. They use PatFrags as operands, not SDNodes,
    287 // since seteq/setgt/etc. are defined as ParFrags.
    288 class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT>
    289   : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
    290         (VT (MI IntRegs:$Rs, IntRegs:$Rt))>;
    291 
    292 def: T_cmp32_rr_pat<C2_cmpeq,  seteq, i1>;
    293 def: T_cmp32_rr_pat<C2_cmpgt,  setgt, i1>;
    294 def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>;
    295 
    296 def: T_cmp32_rr_pat<C2_cmpgt,  RevCmp<setlt>,  i1>;
    297 def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>;
    298 
    299 let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1 in
    300 def C2_mux: ALU32_rr<(outs IntRegs:$Rd),
    301                      (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
    302       "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
    303   bits<5> Rd;
    304   bits<2> Pu;
    305   bits<5> Rs;
    306   bits<5> Rt;
    307 
    308   let CextOpcode = "mux";
    309   let InputType = "reg";
    310   let hasSideEffects = 0;
    311   let IClass = 0b1111;
    312 
    313   let Inst{27-24} = 0b0100;
    314   let Inst{20-16} = Rs;
    315   let Inst{12-8} = Rt;
    316   let Inst{6-5} = Pu;
    317   let Inst{4-0} = Rd;
    318 }
    319 
    320 def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
    321          (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>;
    322 
    323 // Combines the two immediates into a double register.
    324 // Increase complexity to make it greater than any complexity of a combine
    325 // that involves a register.
    326 
    327 let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
    328     isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1,
    329     AddedComplexity = 75 in
    330 def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8),
    331   "$Rdd = combine(#$s8, #$S8)",
    332   [(set (i64 DoubleRegs:$Rdd),
    333         (i64 (HexagonCOMBINE(i32 s32ImmPred:$s8), (i32 s8ImmPred:$S8))))]> {
    334     bits<5> Rdd;
    335     bits<8> s8;
    336     bits<8> S8;
    337 
    338     let IClass = 0b0111;
    339     let Inst{27-23} = 0b11000;
    340     let Inst{22-16} = S8{7-1};
    341     let Inst{13}    = S8{0};
    342     let Inst{12-5}  = s8;
    343     let Inst{4-0}   = Rdd;
    344   }
    345 
    346 //===----------------------------------------------------------------------===//
    347 // Template class for predicated ADD of a reg and an Immediate value.
    348 //===----------------------------------------------------------------------===//
    349 let hasNewValue = 1, hasSideEffects = 0 in
    350 class T_Addri_Pred <bit PredNot, bit PredNew>
    351   : ALU32_ri <(outs IntRegs:$Rd),
    352               (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
    353   !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ",
    354   ") $Rd = ")#"add($Rs, #$s8)"> {
    355     bits<5> Rd;
    356     bits<2> Pu;
    357     bits<5> Rs;
    358     bits<8> s8;
    359 
    360     let isPredicatedNew = PredNew;
    361     let IClass = 0b0111;
    362 
    363     let Inst{27-24} = 0b0100;
    364     let Inst{23}    = PredNot;
    365     let Inst{22-21} = Pu;
    366     let Inst{20-16} = Rs;
    367     let Inst{13}    = PredNew;
    368     let Inst{12-5}  = s8;
    369     let Inst{4-0}   = Rd;
    370   }
    371 
    372 //===----------------------------------------------------------------------===//
    373 // A2_addi: Add a signed immediate to a register.
    374 //===----------------------------------------------------------------------===//
    375 let hasNewValue = 1, hasSideEffects = 0 in
    376 class T_Addri <Operand immOp>
    377   : ALU32_ri <(outs IntRegs:$Rd),
    378               (ins IntRegs:$Rs, immOp:$s16),
    379   "$Rd = add($Rs, #$s16)", [], "", ALU32_ADDI_tc_1_SLOT0123> {
    380     bits<5> Rd;
    381     bits<5> Rs;
    382     bits<16> s16;
    383 
    384     let IClass = 0b1011;
    385 
    386     let Inst{27-21} = s16{15-9};
    387     let Inst{20-16} = Rs;
    388     let Inst{13-5}  = s16{8-0};
    389     let Inst{4-0}   = Rd;
    390   }
    391 
    392 //===----------------------------------------------------------------------===//
    393 // Multiclass for ADD of a register and an immediate value.
    394 //===----------------------------------------------------------------------===//
    395 multiclass Addri_Pred<string mnemonic, bit PredNot> {
    396   let isPredicatedFalse = PredNot in {
    397     def NAME     : T_Addri_Pred<PredNot, 0>;
    398     // Predicate new
    399     def NAME#new : T_Addri_Pred<PredNot, 1>;
    400   }
    401 }
    402 
    403 let isExtendable = 1, isExtentSigned = 1, InputType = "imm" in
    404 multiclass Addri_base<string mnemonic, SDNode OpNode> {
    405   let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in {
    406     let opExtendable = 2, opExtentBits = 16, isPredicable = 1 in
    407     def A2_#NAME : T_Addri<s16Ext>;
    408 
    409     let opExtendable = 3, opExtentBits = 8, isPredicated = 1 in {
    410       defm A2_p#NAME#t : Addri_Pred<mnemonic, 0>;
    411       defm A2_p#NAME#f : Addri_Pred<mnemonic, 1>;
    412     }
    413   }
    414 }
    415 
    416 defm addi : Addri_base<"add", add>, ImmRegRel, PredNewRel;
    417 
    418 def: Pat<(i32 (add I32:$Rs, s32ImmPred:$s16)),
    419          (i32 (A2_addi I32:$Rs, imm:$s16))>;
    420 
    421 //===----------------------------------------------------------------------===//
    422 // Template class used for the following ALU32 instructions.
    423 // Rd=and(Rs,#s10)
    424 // Rd=or(Rs,#s10)
    425 //===----------------------------------------------------------------------===//
    426 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
    427 InputType = "imm", hasNewValue = 1 in
    428 class T_ALU32ri_logical <string mnemonic, SDNode OpNode, bits<2> MinOp>
    429   : ALU32_ri <(outs IntRegs:$Rd),
    430               (ins IntRegs:$Rs, s10Ext:$s10),
    431   "$Rd = "#mnemonic#"($Rs, #$s10)" ,
    432   [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10))]> {
    433     bits<5> Rd;
    434     bits<5> Rs;
    435     bits<10> s10;
    436     let CextOpcode = mnemonic;
    437 
    438     let IClass = 0b0111;
    439 
    440     let Inst{27-24} = 0b0110;
    441     let Inst{23-22} = MinOp;
    442     let Inst{21}    = s10{9};
    443     let Inst{20-16} = Rs;
    444     let Inst{13-5}  = s10{8-0};
    445     let Inst{4-0}   = Rd;
    446   }
    447 
    448 def A2_orir  : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel;
    449 def A2_andir : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel;
    450 
    451 // Subtract register from immediate
    452 // Rd32=sub(#s10,Rs32)
    453 let isExtendable = 1, CextOpcode = "sub", opExtendable = 1, isExtentSigned = 1,
    454     opExtentBits = 10, InputType = "imm", hasNewValue = 1, hasSideEffects = 0 in
    455 def A2_subri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs),
    456   "$Rd = sub(#$s10, $Rs)", []>, ImmRegRel {
    457     bits<5> Rd;
    458     bits<10> s10;
    459     bits<5> Rs;
    460 
    461     let IClass = 0b0111;
    462 
    463     let Inst{27-22} = 0b011001;
    464     let Inst{21}    = s10{9};
    465     let Inst{20-16} = Rs;
    466     let Inst{13-5}  = s10{8-0};
    467     let Inst{4-0}   = Rd;
    468   }
    469 
    470 // Nop.
    471 let hasSideEffects = 0 in
    472 def A2_nop: ALU32Inst <(outs), (ins), "nop" > {
    473   let IClass = 0b0111;
    474   let Inst{27-24} = 0b1111;
    475 }
    476 
    477 def: Pat<(sub s32ImmPred:$s10, IntRegs:$Rs),
    478          (A2_subri imm:$s10, IntRegs:$Rs)>;
    479 
    480 // Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
    481 def: Pat<(not (i32 IntRegs:$src1)),
    482          (A2_subri -1, IntRegs:$src1)>;
    483 
    484 let hasSideEffects = 0, hasNewValue = 1 in
    485 class T_tfr16<bit isHi>
    486   : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16),
    487   "$Rx"#!if(isHi, ".h", ".l")#" = #$u16",
    488   [], "$src1 = $Rx" > {
    489     bits<5> Rx;
    490     bits<16> u16;
    491 
    492     let IClass = 0b0111;
    493     let Inst{27-26} = 0b00;
    494     let Inst{25-24} = !if(isHi, 0b10, 0b01);
    495     let Inst{23-22} = u16{15-14};
    496     let Inst{21}    = 0b1;
    497     let Inst{20-16} = Rx;
    498     let Inst{13-0}  = u16{13-0};
    499   }
    500 
    501 def A2_tfril: T_tfr16<0>;
    502 def A2_tfrih: T_tfr16<1>;
    503 
    504 // Conditional transfer is an alias to conditional "Rd = add(Rs, #0)".
    505 let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in
    506 class T_tfr_pred<bit isPredNot, bit isPredNew>
    507   : ALU32Inst<(outs IntRegs:$dst),
    508               (ins PredRegs:$src1, IntRegs:$src2),
    509               "if ("#!if(isPredNot, "!", "")#
    510               "$src1"#!if(isPredNew, ".new", "")#
    511               ") $dst = $src2"> {
    512     bits<5> dst;
    513     bits<2> src1;
    514     bits<5> src2;
    515 
    516     let isPredicatedFalse = isPredNot;
    517     let isPredicatedNew = isPredNew;
    518     let IClass = 0b0111;
    519 
    520     let Inst{27-24} = 0b0100;
    521     let Inst{23} = isPredNot;
    522     let Inst{13} = isPredNew;
    523     let Inst{12-5} = 0;
    524     let Inst{4-0} = dst;
    525     let Inst{22-21} = src1;
    526     let Inst{20-16} = src2;
    527   }
    528 
    529 let isPredicable = 1 in
    530 class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src),
    531               "$dst = $src"> {
    532     bits<5> dst;
    533     bits<5> src;
    534 
    535     let IClass = 0b0111;
    536 
    537     let Inst{27-21} = 0b0000011;
    538     let Inst{20-16} = src;
    539     let Inst{13}    = 0b0;
    540     let Inst{4-0}   = dst;
    541   }
    542 
    543 let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in
    544 multiclass tfr_base<string CextOp> {
    545   let CextOpcode = CextOp, BaseOpcode = CextOp in {
    546     def NAME : T_tfr;
    547 
    548     // Predicate
    549     def t : T_tfr_pred<0, 0>;
    550     def f : T_tfr_pred<1, 0>;
    551     // Predicate new
    552     def tnew : T_tfr_pred<0, 1>;
    553     def fnew : T_tfr_pred<1, 1>;
    554   }
    555 }
    556 
    557 // Assembler mapped to C2_ccombinew[t|f|newt|newf].
    558 // Please don't add bits to this instruction as it'll be converted into
    559 // 'combine' before object code emission.
    560 let isPredicated = 1 in
    561 class T_tfrp_pred<bit PredNot, bit PredNew>
    562   : ALU32_rr <(outs DoubleRegs:$dst),
    563               (ins PredRegs:$src1, DoubleRegs:$src2),
    564   "if ("#!if(PredNot, "!", "")#"$src1"
    565         #!if(PredNew, ".new", "")#") $dst = $src2" > {
    566     let isPredicatedFalse = PredNot;
    567     let isPredicatedNew = PredNew;
    568   }
    569 
    570 // Assembler mapped to A2_combinew.
    571 // Please don't add bits to this instruction as it'll be converted into
    572 // 'combine' before object code emission.
    573 class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst),
    574                (ins DoubleRegs:$src),
    575     "$dst = $src">;
    576 
    577 let hasSideEffects = 0 in
    578 multiclass TFR64_base<string BaseName> {
    579   let BaseOpcode = BaseName in {
    580     let isPredicable = 1 in
    581     def NAME : T_tfrp;
    582     // Predicate
    583     def t : T_tfrp_pred <0, 0>;
    584     def f : T_tfrp_pred <1, 0>;
    585     // Predicate new
    586     def tnew : T_tfrp_pred <0, 1>;
    587     def fnew : T_tfrp_pred <1, 1>;
    588   }
    589 }
    590 
    591 let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12,
    592     isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR",
    593     hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in
    594 class T_TFRI_Pred<bit PredNot, bit PredNew>
    595   : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12),
    596     "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12",
    597     [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
    598   let isPredicatedFalse = PredNot;
    599   let isPredicatedNew = PredNew;
    600 
    601   bits<5> Rd;
    602   bits<2> Pu;
    603   bits<12> s12;
    604 
    605   let IClass = 0b0111;
    606   let Inst{27-24} = 0b1110;
    607   let Inst{23} = PredNot;
    608   let Inst{22-21} = Pu;
    609   let Inst{20} = 0b0;
    610   let Inst{19-16,12-5} = s12;
    611   let Inst{13} = PredNew;
    612   let Inst{4-0} = Rd;
    613 }
    614 
    615 def C2_cmoveit    : T_TFRI_Pred<0, 0>;
    616 def C2_cmoveif    : T_TFRI_Pred<1, 0>;
    617 def C2_cmovenewit : T_TFRI_Pred<0, 1>;
    618 def C2_cmovenewif : T_TFRI_Pred<1, 1>;
    619 
    620 let InputType = "imm", isExtendable = 1, isExtentSigned = 1,
    621     CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0,
    622     isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1,
    623     isPredicated = 0, isPredicable = 1, isReMaterializable = 1 in
    624 def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16",
    625     [(set (i32 IntRegs:$Rd), s32ImmPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>,
    626     ImmRegRel, PredRel {
    627   bits<5> Rd;
    628   bits<16> s16;
    629 
    630   let IClass = 0b0111;
    631   let Inst{27-24} = 0b1000;
    632   let Inst{23-22,20-16,13-5} = s16;
    633   let Inst{4-0} = Rd;
    634 }
    635 
    636 defm A2_tfr  : tfr_base<"TFR">, ImmRegRel, PredNewRel;
    637 let isAsmParserOnly = 1 in
    638 defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel;
    639 
    640 // Assembler mapped
    641 let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
    642     isAsmParserOnly = 1 in
    643 def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
    644                       "$dst = #$src1",
    645                       [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
    646 
    647 // TODO: see if this instruction can be deleted..
    648 let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
    649     isAsmParserOnly = 1 in {
    650 def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u64Imm:$src1),
    651                          "$dst = #$src1">;
    652 def TFRI64_V2_ext : ALU64_rr<(outs DoubleRegs:$dst),
    653                              (ins s8Ext:$src1, s8Imm:$src2),
    654                              "$dst = combine(##$src1, #$src2)">;
    655 }
    656 
    657 //===----------------------------------------------------------------------===//
    658 // ALU32/ALU -
    659 //===----------------------------------------------------------------------===//
    660 
    661 
    662 //===----------------------------------------------------------------------===//
    663 // ALU32/PERM +
    664 //===----------------------------------------------------------------------===//
    665 // Scalar mux register immediate.
    666 let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX",
    667     InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in
    668 class T_MUX1 <bit MajOp, dag ins, string AsmStr>
    669       : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel {
    670   bits<5> Rd;
    671   bits<2> Pu;
    672   bits<8> s8;
    673   bits<5> Rs;
    674 
    675   let IClass = 0b0111;
    676   let Inst{27-24} = 0b0011;
    677   let Inst{23} = MajOp;
    678   let Inst{22-21} = Pu;
    679   let Inst{20-16} = Rs;
    680   let Inst{13}    = 0b0;
    681   let Inst{12-5}  = s8;
    682   let Inst{4-0}   = Rd;
    683 }
    684 
    685 let opExtendable = 2 in
    686 def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs),
    687                            "$Rd = mux($Pu, #$s8, $Rs)">;
    688 
    689 let opExtendable = 3 in
    690 def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
    691                            "$Rd = mux($Pu, $Rs, #$s8)">;
    692 
    693 def : Pat<(i32 (select I1:$Pu, s32ImmPred:$s8, I32:$Rs)),
    694           (C2_muxri I1:$Pu, s32ImmPred:$s8, I32:$Rs)>;
    695 
    696 def : Pat<(i32 (select I1:$Pu, I32:$Rs, s32ImmPred:$s8)),
    697           (C2_muxir I1:$Pu, I32:$Rs, s32ImmPred:$s8)>;
    698 
    699 // C2_muxii: Scalar mux immediates.
    700 let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1,
    701     opExtentBits = 8, opExtendable = 2 in
    702 def C2_muxii: ALU32Inst <(outs IntRegs:$Rd),
    703                          (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8),
    704   "$Rd = mux($Pu, #$s8, #$S8)" ,
    705   [(set (i32 IntRegs:$Rd),
    706         (i32 (select I1:$Pu, s32ImmPred:$s8, s8ImmPred:$S8)))] > {
    707     bits<5> Rd;
    708     bits<2> Pu;
    709     bits<8> s8;
    710     bits<8> S8;
    711 
    712     let IClass = 0b0111;
    713 
    714     let Inst{27-25} = 0b101;
    715     let Inst{24-23} = Pu;
    716     let Inst{22-16} = S8{7-1};
    717     let Inst{13}    = S8{0};
    718     let Inst{12-5}  = s8;
    719     let Inst{4-0}   = Rd;
    720   }
    721 
    722 let isCodeGenOnly = 1, isPseudo = 1 in
    723 def MUX64_rr : ALU64_rr<(outs DoubleRegs:$Rd),
    724                (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
    725                ".error \"should not emit\" ", []>;
    726 
    727 
    728 //===----------------------------------------------------------------------===//
    729 // template class for non-predicated alu32_2op instructions
    730 // - aslh, asrh, sxtb, sxth, zxth
    731 //===----------------------------------------------------------------------===//
    732 let hasNewValue = 1, opNewValue = 0 in
    733 class T_ALU32_2op <string mnemonic, bits<3> minOp> :
    734   ALU32Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs),
    735              "$Rd = "#mnemonic#"($Rs)", [] > {
    736   bits<5> Rd;
    737   bits<5> Rs;
    738 
    739   let IClass = 0b0111;
    740 
    741   let Inst{27-24} = 0b0000;
    742   let Inst{23-21} = minOp;
    743   let Inst{13} = 0b0;
    744   let Inst{4-0} = Rd;
    745   let Inst{20-16} = Rs;
    746 }
    747 
    748 //===----------------------------------------------------------------------===//
    749 // template class for predicated alu32_2op instructions
    750 // - aslh, asrh, sxtb, sxth, zxtb, zxth
    751 //===----------------------------------------------------------------------===//
    752 let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
    753 class T_ALU32_2op_Pred <string mnemonic, bits<3> minOp, bit isPredNot,
    754                         bit isPredNew > :
    755   ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs),
    756              !if(isPredNot, "if (!$Pu", "if ($Pu")
    757              #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> {
    758   bits<5> Rd;
    759   bits<2> Pu;
    760   bits<5> Rs;
    761 
    762   let IClass = 0b0111;
    763 
    764   let Inst{27-24} = 0b0000;
    765   let Inst{23-21} = minOp;
    766   let Inst{13} = 0b1;
    767   let Inst{11} = isPredNot;
    768   let Inst{10} = isPredNew;
    769   let Inst{4-0} = Rd;
    770   let Inst{9-8} = Pu;
    771   let Inst{20-16} = Rs;
    772 }
    773 
    774 multiclass ALU32_2op_Pred<string mnemonic, bits<3> minOp, bit PredNot> {
    775   let isPredicatedFalse = PredNot in {
    776     def NAME : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 0>;
    777 
    778     // Predicate new
    779     let isPredicatedNew = 1 in
    780     def NAME#new : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 1>;
    781   }
    782 }
    783 
    784 multiclass ALU32_2op_base<string mnemonic, bits<3> minOp> {
    785   let BaseOpcode = mnemonic in {
    786     let isPredicable = 1, hasSideEffects = 0 in
    787     def A2_#NAME : T_ALU32_2op<mnemonic, minOp>;
    788 
    789     let isPredicated = 1, hasSideEffects = 0 in {
    790       defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
    791       defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
    792     }
    793   }
    794 }
    795 
    796 defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel;
    797 defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel;
    798 defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel;
    799 defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel;
    800 defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel;
    801 
    802 // Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255).
    803 // Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has
    804 // predicated forms while 'and' doesn't. Since integrated assembler can't
    805 // handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where
    806 // immediate operand is set to '255'.
    807 
    808 let hasNewValue = 1, opNewValue = 0 in
    809 class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs),
    810   "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255)
    811     bits<5> Rd;
    812     bits<5> Rs;
    813     bits<10> s10 = 255;
    814 
    815     let IClass = 0b0111;
    816 
    817     let Inst{27-22} = 0b011000;
    818     let Inst{4-0} = Rd;
    819     let Inst{20-16} = Rs;
    820     let Inst{21} = s10{9};
    821     let Inst{13-5} = s10{8-0};
    822 }
    823 
    824 //Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255)
    825 multiclass ZXTB_base <string mnemonic, bits<3> minOp> {
    826   let BaseOpcode = mnemonic in {
    827     let isPredicable = 1, hasSideEffects = 0 in
    828     def A2_#NAME : T_ZXTB;
    829 
    830     let isPredicated = 1, hasSideEffects = 0 in {
    831       defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
    832       defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
    833     }
    834   }
    835 }
    836 
    837 defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel;
    838 
    839 def: Pat<(shl I32:$src1, (i32 16)),   (A2_aslh I32:$src1)>;
    840 def: Pat<(sra I32:$src1, (i32 16)),   (A2_asrh I32:$src1)>;
    841 def: Pat<(sext_inreg I32:$src1, i8),  (A2_sxtb I32:$src1)>;
    842 def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>;
    843 
    844 //===----------------------------------------------------------------------===//
    845 // Template class for vector add and avg
    846 //===----------------------------------------------------------------------===//
    847 
    848 class T_VectALU_64 <string opc, bits<3> majOp, bits<3> minOp,
    849                    bit isSat, bit isRnd, bit isCrnd, bit SwapOps >
    850   : ALU64_rr < (outs DoubleRegs:$Rdd),
    851                 (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
    852   "$Rdd = "#opc#"($Rss, $Rtt)"#!if(isRnd, ":rnd", "")
    853                              #!if(isCrnd,":crnd","")
    854                              #!if(isSat, ":sat", ""),
    855   [], "", ALU64_tc_2_SLOT23 > {
    856     bits<5> Rdd;
    857     bits<5> Rss;
    858     bits<5> Rtt;
    859 
    860     let IClass = 0b1101;
    861 
    862     let Inst{27-24} = 0b0011;
    863     let Inst{23-21} = majOp;
    864     let Inst{20-16} = !if (SwapOps, Rtt, Rss);
    865     let Inst{12-8} = !if (SwapOps, Rss, Rtt);
    866     let Inst{7-5} = minOp;
    867     let Inst{4-0} = Rdd;
    868   }
    869 
    870 // ALU64 - Vector add
    871 // Rdd=vadd[u][bhw](Rss,Rtt)
    872 let Itinerary = ALU64_tc_1_SLOT23 in {
    873   def A2_vaddub  : T_VectALU_64 < "vaddub", 0b000, 0b000, 0, 0, 0, 0>;
    874   def A2_vaddh   : T_VectALU_64 < "vaddh",  0b000, 0b010, 0, 0, 0, 0>;
    875   def A2_vaddw   : T_VectALU_64 < "vaddw",  0b000, 0b101, 0, 0, 0, 0>;
    876 }
    877 
    878 // Rdd=vadd[u][bhw](Rss,Rtt):sat
    879 let Defs = [USR_OVF] in {
    880   def A2_vaddubs : T_VectALU_64 < "vaddub", 0b000, 0b001, 1, 0, 0, 0>;
    881   def A2_vaddhs  : T_VectALU_64 < "vaddh",  0b000, 0b011, 1, 0, 0, 0>;
    882   def A2_vadduhs : T_VectALU_64 < "vadduh", 0b000, 0b100, 1, 0, 0, 0>;
    883   def A2_vaddws  : T_VectALU_64 < "vaddw",  0b000, 0b110, 1, 0, 0, 0>;
    884 }
    885 
    886 // ALU64 - Vector average
    887 // Rdd=vavg[u][bhw](Rss,Rtt)
    888 let Itinerary = ALU64_tc_1_SLOT23 in {
    889   def A2_vavgub : T_VectALU_64 < "vavgub", 0b010, 0b000, 0, 0, 0, 0>;
    890   def A2_vavgh  : T_VectALU_64 < "vavgh",  0b010, 0b010, 0, 0, 0, 0>;
    891   def A2_vavguh : T_VectALU_64 < "vavguh", 0b010, 0b101, 0, 0, 0, 0>;
    892   def A2_vavgw  : T_VectALU_64 < "vavgw",  0b011, 0b000, 0, 0, 0, 0>;
    893   def A2_vavguw : T_VectALU_64 < "vavguw", 0b011, 0b011, 0, 0, 0, 0>;
    894 }
    895 
    896 // Rdd=vavg[u][bhw](Rss,Rtt)[:rnd|:crnd]
    897 def A2_vavgubr : T_VectALU_64 < "vavgub", 0b010, 0b001, 0, 1, 0, 0>;
    898 def A2_vavghr  : T_VectALU_64 < "vavgh",  0b010, 0b011, 0, 1, 0, 0>;
    899 def A2_vavghcr : T_VectALU_64 < "vavgh",  0b010, 0b100, 0, 0, 1, 0>;
    900 def A2_vavguhr : T_VectALU_64 < "vavguh", 0b010, 0b110, 0, 1, 0, 0>;
    901 
    902 def A2_vavgwr  : T_VectALU_64 < "vavgw",  0b011, 0b001, 0, 1, 0, 0>;
    903 def A2_vavgwcr : T_VectALU_64 < "vavgw",  0b011, 0b010, 0, 0, 1, 0>;
    904 def A2_vavguwr : T_VectALU_64 < "vavguw", 0b011, 0b100, 0, 1, 0, 0>;
    905 
    906 // Rdd=vnavg[bh](Rss,Rtt)
    907 let Itinerary = ALU64_tc_1_SLOT23 in {
    908   def A2_vnavgh   : T_VectALU_64 < "vnavgh", 0b100, 0b000, 0, 0, 0, 1>;
    909   def A2_vnavgw   : T_VectALU_64 < "vnavgw", 0b100, 0b011, 0, 0, 0, 1>;
    910 }
    911 
    912 // Rdd=vnavg[bh](Rss,Rtt)[:rnd|:crnd]:sat
    913 let Defs = [USR_OVF] in {
    914   def A2_vnavghr  : T_VectALU_64 < "vnavgh", 0b100, 0b001, 1, 1, 0, 1>;
    915   def A2_vnavghcr : T_VectALU_64 < "vnavgh", 0b100, 0b010, 1, 0, 1, 1>;
    916   def A2_vnavgwr  : T_VectALU_64 < "vnavgw", 0b100, 0b100, 1, 1, 0, 1>;
    917   def A2_vnavgwcr : T_VectALU_64 < "vnavgw", 0b100, 0b110, 1, 0, 1, 1>;
    918 }
    919 
    920 // Rdd=vsub[u][bh](Rss,Rtt)
    921 let Itinerary = ALU64_tc_1_SLOT23 in {
    922   def A2_vsubub  : T_VectALU_64 < "vsubub", 0b001, 0b000, 0, 0, 0, 1>;
    923   def A2_vsubh   : T_VectALU_64 < "vsubh",  0b001, 0b010, 0, 0, 0, 1>;
    924   def A2_vsubw   : T_VectALU_64 < "vsubw",  0b001, 0b101, 0, 0, 0, 1>;
    925 }
    926 
    927 // Rdd=vsub[u][bh](Rss,Rtt):sat
    928 let Defs = [USR_OVF] in {
    929   def A2_vsububs : T_VectALU_64 < "vsubub", 0b001, 0b001, 1, 0, 0, 1>;
    930   def A2_vsubhs  : T_VectALU_64 < "vsubh",  0b001, 0b011, 1, 0, 0, 1>;
    931   def A2_vsubuhs : T_VectALU_64 < "vsubuh", 0b001, 0b100, 1, 0, 0, 1>;
    932   def A2_vsubws  : T_VectALU_64 < "vsubw",  0b001, 0b110, 1, 0, 0, 1>;
    933 }
    934 
    935 // Rdd=vmax[u][bhw](Rss,Rtt)
    936 def A2_vmaxb  : T_VectALU_64 < "vmaxb",  0b110, 0b110, 0, 0, 0, 1>;
    937 def A2_vmaxub : T_VectALU_64 < "vmaxub", 0b110, 0b000, 0, 0, 0, 1>;
    938 def A2_vmaxh  : T_VectALU_64 < "vmaxh",  0b110, 0b001, 0, 0, 0, 1>;
    939 def A2_vmaxuh : T_VectALU_64 < "vmaxuh", 0b110, 0b010, 0, 0, 0, 1>;
    940 def A2_vmaxw  : T_VectALU_64 < "vmaxw",  0b110, 0b011, 0, 0, 0, 1>;
    941 def A2_vmaxuw : T_VectALU_64 < "vmaxuw", 0b101, 0b101, 0, 0, 0, 1>;
    942 
    943 // Rdd=vmin[u][bhw](Rss,Rtt)
    944 def A2_vminb  : T_VectALU_64 < "vminb",  0b110, 0b111, 0, 0, 0, 1>;
    945 def A2_vminub : T_VectALU_64 < "vminub", 0b101, 0b000, 0, 0, 0, 1>;
    946 def A2_vminh  : T_VectALU_64 < "vminh",  0b101, 0b001, 0, 0, 0, 1>;
    947 def A2_vminuh : T_VectALU_64 < "vminuh", 0b101, 0b010, 0, 0, 0, 1>;
    948 def A2_vminw  : T_VectALU_64 < "vminw",  0b101, 0b011, 0, 0, 0, 1>;
    949 def A2_vminuw : T_VectALU_64 < "vminuw", 0b101, 0b100, 0, 0, 0, 1>;
    950 
    951 //===----------------------------------------------------------------------===//
    952 // Template class for vector compare
    953 //===----------------------------------------------------------------------===//
    954 let hasSideEffects = 0 in
    955 class T_vcmp <string Str, bits<4> minOp>
    956   : ALU64_rr <(outs PredRegs:$Pd),
    957               (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
    958   "$Pd = "#Str#"($Rss, $Rtt)", [],
    959   "", ALU64_tc_2early_SLOT23> {
    960     bits<2> Pd;
    961     bits<5> Rss;
    962     bits<5> Rtt;
    963 
    964     let IClass = 0b1101;
    965 
    966     let Inst{27-23} = 0b00100;
    967     let Inst{13} = minOp{3};
    968     let Inst{7-5} = minOp{2-0};
    969     let Inst{1-0} = Pd;
    970     let Inst{20-16} = Rss;
    971     let Inst{12-8} = Rtt;
    972   }
    973 
    974 class T_vcmp_pat<InstHexagon MI, PatFrag Op, ValueType T>
    975   : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))),
    976         (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>;
    977 
    978 // Vector compare bytes
    979 def A2_vcmpbeq  : T_vcmp <"vcmpb.eq",  0b0110>;
    980 def A2_vcmpbgtu : T_vcmp <"vcmpb.gtu", 0b0111>;
    981 
    982 // Vector compare halfwords
    983 def A2_vcmpheq  : T_vcmp <"vcmph.eq",  0b0011>;
    984 def A2_vcmphgt  : T_vcmp <"vcmph.gt",  0b0100>;
    985 def A2_vcmphgtu : T_vcmp <"vcmph.gtu", 0b0101>;
    986 
    987 // Vector compare words
    988 def A2_vcmpweq  : T_vcmp <"vcmpw.eq",  0b0000>;
    989 def A2_vcmpwgt  : T_vcmp <"vcmpw.gt",  0b0001>;
    990 def A2_vcmpwgtu : T_vcmp <"vcmpw.gtu", 0b0010>;
    991 
    992 def: T_vcmp_pat<A2_vcmpbeq,  seteq,  v8i8>;
    993 def: T_vcmp_pat<A2_vcmpbgtu, setugt, v8i8>;
    994 def: T_vcmp_pat<A2_vcmpheq,  seteq,  v4i16>;
    995 def: T_vcmp_pat<A2_vcmphgt,  setgt,  v4i16>;
    996 def: T_vcmp_pat<A2_vcmphgtu, setugt, v4i16>;
    997 def: T_vcmp_pat<A2_vcmpweq,  seteq,  v2i32>;
    998 def: T_vcmp_pat<A2_vcmpwgt,  setgt,  v2i32>;
    999 def: T_vcmp_pat<A2_vcmpwgtu, setugt, v2i32>;
   1000 
   1001 //===----------------------------------------------------------------------===//
   1002 // ALU32/PERM -
   1003 //===----------------------------------------------------------------------===//
   1004 
   1005 
   1006 //===----------------------------------------------------------------------===//
   1007 // ALU32/PRED +
   1008 //===----------------------------------------------------------------------===//
   1009 // No bits needed.  If cmp.ge is found the assembler parser will
   1010 // transform it to cmp.gt subtracting 1 from the immediate.
   1011 let isPseudo = 1 in {
   1012 def C2_cmpgei: ALU32Inst <
   1013   (outs PredRegs:$Pd), (ins IntRegs:$Rs, s8Ext:$s8),
   1014   "$Pd = cmp.ge($Rs, #$s8)">;
   1015 def C2_cmpgeui: ALU32Inst <
   1016   (outs PredRegs:$Pd), (ins IntRegs:$Rs, u8Ext:$s8),
   1017   "$Pd = cmp.geu($Rs, #$s8)">;
   1018 }
   1019 
   1020 
   1021 //===----------------------------------------------------------------------===//
   1022 // ALU32/PRED -
   1023 //===----------------------------------------------------------------------===//
   1024 
   1025 
   1026 //===----------------------------------------------------------------------===//
   1027 // ALU64/ALU +
   1028 //===----------------------------------------------------------------------===//
   1029 // Add.
   1030 //===----------------------------------------------------------------------===//
   1031 // Template Class
   1032 // Add/Subtract halfword
   1033 // Rd=add(Rt.L,Rs.[HL])[:sat]
   1034 // Rd=sub(Rt.L,Rs.[HL])[:sat]
   1035 // Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16]
   1036 // Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16]
   1037 //===----------------------------------------------------------------------===//
   1038 
   1039 let  hasNewValue = 1, opNewValue = 0 in
   1040 class T_XTYPE_ADD_SUB <bits<2> LHbits, bit isSat, bit hasShift, bit isSub>
   1041   : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
   1042   "$Rd = "#!if(isSub,"sub","add")#"($Rt."
   1043           #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs."
   1044           #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)"))
   1045           #!if(isSat,":sat","")
   1046           #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> {
   1047     bits<5> Rd;
   1048     bits<5> Rt;
   1049     bits<5> Rs;
   1050     let IClass = 0b1101;
   1051 
   1052     let Inst{27-23} = 0b01010;
   1053     let Inst{22} = hasShift;
   1054     let Inst{21} = isSub;
   1055     let Inst{7} = isSat;
   1056     let Inst{6-5} = LHbits;
   1057     let Inst{4-0} = Rd;
   1058     let Inst{12-8} = Rt;
   1059     let Inst{20-16} = Rs;
   1060   }
   1061 
   1062 //Rd=sub(Rt.L,Rs.[LH])
   1063 def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>;
   1064 def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>;
   1065 
   1066 //Rd=add(Rt.L,Rs.[LH])
   1067 def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>;
   1068 def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>;
   1069 
   1070 let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
   1071   //Rd=sub(Rt.L,Rs.[LH]):sat
   1072   def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>;
   1073   def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>;
   1074 
   1075   //Rd=add(Rt.L,Rs.[LH]):sat
   1076   def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>;
   1077   def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>;
   1078 }
   1079 
   1080 //Rd=sub(Rt.[LH],Rs.[LH]):<<16
   1081 def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>;
   1082 def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>;
   1083 def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>;
   1084 def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>;
   1085 
   1086 //Rd=add(Rt.[LH],Rs.[LH]):<<16
   1087 def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>;
   1088 def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>;
   1089 def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>;
   1090 def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>;
   1091 
   1092 let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
   1093   //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16
   1094   def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>;
   1095   def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>;
   1096   def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>;
   1097   def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>;
   1098 
   1099   //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16
   1100   def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>;
   1101   def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>;
   1102   def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>;
   1103   def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>;
   1104 }
   1105 
   1106 // Add halfword.
   1107 def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16),
   1108          (A2_addh_l16_ll I32:$src1, I32:$src2)>;
   1109 
   1110 def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)),
   1111          (A2_addh_l16_hl I32:$src1, I32:$src2)>;
   1112 
   1113 def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)),
   1114          (A2_addh_h16_ll I32:$src1, I32:$src2)>;
   1115 
   1116 // Subtract halfword.
   1117 def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16),
   1118          (A2_subh_l16_ll I32:$src1, I32:$src2)>;
   1119 
   1120 def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)),
   1121          (A2_subh_h16_ll I32:$src1, I32:$src2)>;
   1122 
   1123 let hasSideEffects = 0, hasNewValue = 1 in
   1124 def S2_parityp: ALU64Inst<(outs IntRegs:$Rd),
   1125       (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
   1126       "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
   1127   bits<5> Rd;
   1128   bits<5> Rs;
   1129   bits<5> Rt;
   1130 
   1131   let IClass = 0b1101;
   1132   let Inst{27-24} = 0b0000;
   1133   let Inst{20-16} = Rs;
   1134   let Inst{12-8} = Rt;
   1135   let Inst{4-0} = Rd;
   1136 }
   1137 
   1138 let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in
   1139 class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned >
   1140   : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
   1141   "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","")
   1142           #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> {
   1143     bits<5> Rd;
   1144     bits<5> Rt;
   1145     bits<5> Rs;
   1146 
   1147     let IClass = 0b1101;
   1148 
   1149     let Inst{27-23} = 0b01011;
   1150     let Inst{22-21} = !if(isMax, 0b10, 0b01);
   1151     let Inst{7} = isUnsigned;
   1152     let Inst{4-0} = Rd;
   1153     let Inst{12-8} = !if(isMax, Rs, Rt);
   1154     let Inst{20-16} = !if(isMax, Rt, Rs);
   1155   }
   1156 
   1157 def A2_min  : T_XTYPE_MIN_MAX < 0, 0 >;
   1158 def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >;
   1159 def A2_max  : T_XTYPE_MIN_MAX < 1, 0 >;
   1160 def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >;
   1161 
   1162 // Here, depending on  the operand being selected, we'll either generate a
   1163 // min or max instruction.
   1164 // Ex:
   1165 // (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected
   1166 // is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'.
   1167 // (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value
   1168 // is selected and the corresponding HexagonInst is passed in 'SwapInst'.
   1169 
   1170 multiclass T_MinMax_pats <PatFrag Op, RegisterClass RC, ValueType VT,
   1171                           InstHexagon Inst, InstHexagon SwapInst> {
   1172   def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
   1173                    (VT RC:$src1), (VT RC:$src2)),
   1174            (Inst RC:$src1, RC:$src2)>;
   1175   def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
   1176                    (VT RC:$src2), (VT RC:$src1)),
   1177            (SwapInst RC:$src1, RC:$src2)>;
   1178 }
   1179 
   1180 
   1181 multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
   1182   defm: T_MinMax_pats<Op, IntRegs, i32, Inst, SwapInst>;
   1183 
   1184   def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
   1185                                             (i32 PositiveHalfWord:$src2))),
   1186                                     (i32 PositiveHalfWord:$src1),
   1187                                     (i32 PositiveHalfWord:$src2))), i16),
   1188            (Inst IntRegs:$src1, IntRegs:$src2)>;
   1189 
   1190   def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
   1191                                             (i32 PositiveHalfWord:$src2))),
   1192                                     (i32 PositiveHalfWord:$src2),
   1193                                     (i32 PositiveHalfWord:$src1))), i16),
   1194            (SwapInst IntRegs:$src1, IntRegs:$src2)>;
   1195 }
   1196 
   1197 let AddedComplexity = 200 in {
   1198   defm: MinMax_pats<setge,  A2_max,  A2_min>;
   1199   defm: MinMax_pats<setgt,  A2_max,  A2_min>;
   1200   defm: MinMax_pats<setle,  A2_min,  A2_max>;
   1201   defm: MinMax_pats<setlt,  A2_min,  A2_max>;
   1202   defm: MinMax_pats<setuge, A2_maxu, A2_minu>;
   1203   defm: MinMax_pats<setugt, A2_maxu, A2_minu>;
   1204   defm: MinMax_pats<setule, A2_minu, A2_maxu>;
   1205   defm: MinMax_pats<setult, A2_minu, A2_maxu>;
   1206 }
   1207 
   1208 class T_cmp64_rr<string mnemonic, bits<3> MinOp, bit IsComm>
   1209   : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
   1210              "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> {
   1211   let isCompare = 1;
   1212   let isCommutable = IsComm;
   1213   let hasSideEffects = 0;
   1214 
   1215   bits<2> Pd;
   1216   bits<5> Rs;
   1217   bits<5> Rt;
   1218 
   1219   let IClass = 0b1101;
   1220   let Inst{27-21} = 0b0010100;
   1221   let Inst{20-16} = Rs;
   1222   let Inst{12-8} = Rt;
   1223   let Inst{7-5} = MinOp;
   1224   let Inst{1-0} = Pd;
   1225 }
   1226 
   1227 def C2_cmpeqp  : T_cmp64_rr<"cmp.eq",  0b000, 1>;
   1228 def C2_cmpgtp  : T_cmp64_rr<"cmp.gt",  0b010, 0>;
   1229 def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>;
   1230 
   1231 class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp>
   1232   : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))),
   1233         (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>;
   1234 
   1235 def: T_cmp64_rr_pat<C2_cmpeqp,  seteq>;
   1236 def: T_cmp64_rr_pat<C2_cmpgtp,  setgt>;
   1237 def: T_cmp64_rr_pat<C2_cmpgtup, setugt>;
   1238 def: T_cmp64_rr_pat<C2_cmpgtp,  RevCmp<setlt>>;
   1239 def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>;
   1240 
   1241 def C2_vmux : ALU64_rr<(outs DoubleRegs:$Rd),
   1242       (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
   1243       "$Rd = vmux($Pu, $Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
   1244   let hasSideEffects = 0;
   1245 
   1246   bits<5> Rd;
   1247   bits<2> Pu;
   1248   bits<5> Rs;
   1249   bits<5> Rt;
   1250 
   1251   let IClass = 0b1101;
   1252   let Inst{27-24} = 0b0001;
   1253   let Inst{20-16} = Rs;
   1254   let Inst{12-8} = Rt;
   1255   let Inst{6-5} = Pu;
   1256   let Inst{4-0} = Rd;
   1257 }
   1258 
   1259 class T_ALU64_rr<string mnemonic, string suffix, bits<4> RegType,
   1260                  bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm,
   1261                  string Op2Pfx>
   1262   : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
   1263              "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [],
   1264              "", ALU64_tc_1_SLOT23> {
   1265   let hasSideEffects = 0;
   1266   let isCommutable = IsComm;
   1267 
   1268   bits<5> Rs;
   1269   bits<5> Rt;
   1270   bits<5> Rd;
   1271 
   1272   let IClass = 0b1101;
   1273   let Inst{27-24} = RegType;
   1274   let Inst{23-21} = MajOp;
   1275   let Inst{20-16} = !if (OpsRev,Rt,Rs);
   1276   let Inst{12-8} = !if (OpsRev,Rs,Rt);
   1277   let Inst{7-5} = MinOp;
   1278   let Inst{4-0} = Rd;
   1279 }
   1280 
   1281 class T_ALU64_arith<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit IsSat,
   1282                     bit OpsRev, bit IsComm>
   1283   : T_ALU64_rr<mnemonic, !if(IsSat,":sat",""), 0b0011, MajOp, MinOp, OpsRev,
   1284                IsComm, "">;
   1285 
   1286 def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>;
   1287 def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>;
   1288 
   1289 def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>;
   1290 def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>;
   1291 
   1292 class T_ALU64_logical<string mnemonic, bits<3> MinOp, bit OpsRev, bit IsComm,
   1293                       bit IsNeg>
   1294   : T_ALU64_rr<mnemonic, "", 0b0011, 0b111, MinOp, OpsRev, IsComm,
   1295                !if(IsNeg,"~","")>;
   1296 
   1297 def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>;
   1298 def A2_orp  : T_ALU64_logical<"or",  0b010, 0, 1, 0>;
   1299 def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>;
   1300 
   1301 def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>;
   1302 def: Pat<(i64 (or  I64:$Rs, I64:$Rt)), (A2_orp  I64:$Rs, I64:$Rt)>;
   1303 def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>;
   1304 
   1305 //===----------------------------------------------------------------------===//
   1306 // ALU64/ALU -
   1307 //===----------------------------------------------------------------------===//
   1308 
   1309 //===----------------------------------------------------------------------===//
   1310 // ALU64/BIT +
   1311 //===----------------------------------------------------------------------===//
   1312 //
   1313 //===----------------------------------------------------------------------===//
   1314 // ALU64/BIT -
   1315 //===----------------------------------------------------------------------===//
   1316 
   1317 //===----------------------------------------------------------------------===//
   1318 // ALU64/PERM +
   1319 //===----------------------------------------------------------------------===//
   1320 //
   1321 //===----------------------------------------------------------------------===//
   1322 // ALU64/PERM -
   1323 //===----------------------------------------------------------------------===//
   1324 
   1325 //===----------------------------------------------------------------------===//
   1326 // CR +
   1327 //===----------------------------------------------------------------------===//
   1328 // Logical reductions on predicates.
   1329 
   1330 // Looping instructions.
   1331 
   1332 // Pipelined looping instructions.
   1333 
   1334 // Logical operations on predicates.
   1335 let hasSideEffects = 0 in
   1336 class T_LOGICAL_1OP<string MnOp, bits<2> OpBits>
   1337     : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps),
   1338              "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> {
   1339   bits<2> Pd;
   1340   bits<2> Ps;
   1341 
   1342   let IClass = 0b0110;
   1343   let Inst{27-23} = 0b10111;
   1344   let Inst{22-21} = OpBits;
   1345   let Inst{20} = 0b0;
   1346   let Inst{17-16} = Ps;
   1347   let Inst{13} = 0b0;
   1348   let Inst{1-0} = Pd;
   1349 }
   1350 
   1351 def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>;
   1352 def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>;
   1353 def C2_not  : T_LOGICAL_1OP<"not",  0b10>;
   1354 
   1355 def: Pat<(i1 (not (i1 PredRegs:$Ps))),
   1356          (C2_not PredRegs:$Ps)>;
   1357 
   1358 let hasSideEffects = 0 in
   1359 class T_LOGICAL_2OP<string MnOp, bits<3> OpBits, bit IsNeg, bit Rev>
   1360     : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt),
   1361              "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)",
   1362              [], "", CR_tc_2early_SLOT23> {
   1363   bits<2> Pd;
   1364   bits<2> Ps;
   1365   bits<2> Pt;
   1366 
   1367   let IClass = 0b0110;
   1368   let Inst{27-24} = 0b1011;
   1369   let Inst{23-21} = OpBits;
   1370   let Inst{20} = 0b0;
   1371   let Inst{17-16} = !if(Rev,Pt,Ps);  // Rs and Rt are reversed for some
   1372   let Inst{13} = 0b0;                // instructions.
   1373   let Inst{9-8} = !if(Rev,Ps,Pt);
   1374   let Inst{1-0} = Pd;
   1375 }
   1376 
   1377 def C2_and  : T_LOGICAL_2OP<"and", 0b000, 0, 1>;
   1378 def C2_or   : T_LOGICAL_2OP<"or",  0b001, 0, 1>;
   1379 def C2_xor  : T_LOGICAL_2OP<"xor", 0b010, 0, 0>;
   1380 def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>;
   1381 def C2_orn  : T_LOGICAL_2OP<"or",  0b111, 1, 1>;
   1382 
   1383 def: Pat<(i1 (and I1:$Ps, I1:$Pt)),       (C2_and  I1:$Ps, I1:$Pt)>;
   1384 def: Pat<(i1 (or  I1:$Ps, I1:$Pt)),       (C2_or   I1:$Ps, I1:$Pt)>;
   1385 def: Pat<(i1 (xor I1:$Ps, I1:$Pt)),       (C2_xor  I1:$Ps, I1:$Pt)>;
   1386 def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>;
   1387 def: Pat<(i1 (or  I1:$Ps, (not I1:$Pt))), (C2_orn  I1:$Ps, I1:$Pt)>;
   1388 
   1389 let hasSideEffects = 0, hasNewValue = 1 in
   1390 def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt),
   1391       "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> {
   1392   bits<5> Rd;
   1393   bits<2> Ps;
   1394   bits<2> Pt;
   1395 
   1396   let IClass = 0b1000;
   1397   let Inst{27-24} = 0b1001;
   1398   let Inst{22-21} = 0b00;
   1399   let Inst{17-16} = Ps;
   1400   let Inst{9-8} = Pt;
   1401   let Inst{4-0} = Rd;
   1402 }
   1403 
   1404 let hasSideEffects = 0 in
   1405 def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt),
   1406       "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> {
   1407   bits<5> Rd;
   1408   bits<2> Pt;
   1409 
   1410   let IClass = 0b1000;
   1411   let Inst{27-24} = 0b0110;
   1412   let Inst{9-8} = Pt;
   1413   let Inst{4-0} = Rd;
   1414 }
   1415 
   1416 // User control register transfer.
   1417 //===----------------------------------------------------------------------===//
   1418 // CR -
   1419 //===----------------------------------------------------------------------===//
   1420 
   1421 //===----------------------------------------------------------------------===//
   1422 // JR +
   1423 //===----------------------------------------------------------------------===//
   1424 
   1425 def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
   1426                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
   1427 def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
   1428 
   1429 class CondStr<string CReg, bit True, bit New> {
   1430   string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
   1431 }
   1432 class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
   1433   string S = Mnemonic # !if(Taken, ":t", !if(New, ":nt", ""));
   1434 }
   1435 
   1436 let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
   1437     isPredicable = 1,
   1438     isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
   1439     opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
   1440 class T_JMP<string ExtStr>
   1441   : JInst<(outs), (ins brtarget:$dst),
   1442       "jump " # ExtStr # "$dst",
   1443       [], "", J_tc_2early_SLOT23> {
   1444     bits<24> dst;
   1445     let IClass = 0b0101;
   1446 
   1447     let Inst{27-25} = 0b100;
   1448     let Inst{24-16} = dst{23-15};
   1449     let Inst{13-1} = dst{14-2};
   1450 }
   1451 
   1452 let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1,
   1453     isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
   1454     opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in
   1455 class T_JMP_c<bit PredNot, bit isPredNew, bit isTak, string ExtStr>
   1456   : JInst<(outs), (ins PredRegs:$src, brtarget:$dst),
   1457       CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
   1458         JumpOpcStr<"jump", isPredNew, isTak>.S # " " #
   1459         ExtStr # "$dst",
   1460       [], "", J_tc_2early_SLOT23>, ImmRegRel {
   1461     let isTaken = isTak;
   1462     let isPredicatedFalse = PredNot;
   1463     let isPredicatedNew = isPredNew;
   1464     bits<2> src;
   1465     bits<17> dst;
   1466 
   1467     let IClass = 0b0101;
   1468 
   1469     let Inst{27-24} = 0b1100;
   1470     let Inst{21} = PredNot;
   1471     let Inst{12} = isTak;
   1472     let Inst{11} = isPredNew;
   1473     let Inst{9-8} = src;
   1474     let Inst{23-22} = dst{16-15};
   1475     let Inst{20-16} = dst{14-10};
   1476     let Inst{13} = dst{9};
   1477     let Inst{7-1} = dst{8-2};
   1478   }
   1479 
   1480 multiclass JMP_Pred<bit PredNot, string ExtStr> {
   1481   def NAME       : T_JMP_c<PredNot, 0, 0, ExtStr>; // not taken
   1482   // Predicate new
   1483   def NAME#newpt : T_JMP_c<PredNot, 1, 1, ExtStr>; // taken
   1484   def NAME#new   : T_JMP_c<PredNot, 1, 0, ExtStr>; // not taken
   1485 }
   1486 
   1487 multiclass JMP_base<string BaseOp, string ExtStr> {
   1488   let BaseOpcode = BaseOp in {
   1489     def NAME : T_JMP<ExtStr>;
   1490     defm t : JMP_Pred<0, ExtStr>;
   1491     defm f : JMP_Pred<1, ExtStr>;
   1492   }
   1493 }
   1494 
   1495 // Jumps to address stored in a register, JUMPR_MISC
   1496 // if ([[!]P[.new]]) jumpr[:t/nt] Rs
   1497 let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
   1498     isPredicable = 1, hasSideEffects = 0, InputType = "reg" in
   1499 class T_JMPr
   1500   : JRInst<(outs), (ins IntRegs:$dst),
   1501       "jumpr $dst", [], "", J_tc_2early_SLOT2> {
   1502     bits<5> dst;
   1503 
   1504     let IClass = 0b0101;
   1505     let Inst{27-21} = 0b0010100;
   1506     let Inst{20-16} = dst;
   1507 }
   1508 
   1509 let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
   1510     hasSideEffects = 0, InputType = "reg" in
   1511 class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>
   1512   : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst),
   1513       CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
   1514         JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [],
   1515       "", J_tc_2early_SLOT2> {
   1516 
   1517     let isTaken = isTak;
   1518     let isPredicatedFalse = PredNot;
   1519     let isPredicatedNew = isPredNew;
   1520     bits<2> src;
   1521     bits<5> dst;
   1522 
   1523     let IClass = 0b0101;
   1524 
   1525     let Inst{27-22} = 0b001101;
   1526     let Inst{21} = PredNot;
   1527     let Inst{20-16} = dst;
   1528     let Inst{12} = isTak;
   1529     let Inst{11} = isPredNew;
   1530     let Inst{9-8} = src;
   1531 }
   1532 
   1533 multiclass JMPR_Pred<bit PredNot> {
   1534   def NAME        : T_JMPr_c<PredNot, 0, 0>; // not taken
   1535   // Predicate new
   1536   def NAME#newpt  : T_JMPr_c<PredNot, 1, 1>; // taken
   1537   def NAME#new    : T_JMPr_c<PredNot, 1, 0>; // not taken
   1538 }
   1539 
   1540 multiclass JMPR_base<string BaseOp> {
   1541   let BaseOpcode = BaseOp in {
   1542     def NAME : T_JMPr;
   1543     defm t : JMPR_Pred<0>;
   1544     defm f : JMPR_Pred<1>;
   1545   }
   1546 }
   1547 
   1548 let isCall = 1, hasSideEffects = 1 in
   1549 class JUMPR_MISC_CALLR<bit isPred, bit isPredNot,
   1550                dag InputDag = (ins IntRegs:$Rs)>
   1551   : JRInst<(outs), InputDag,
   1552       !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs",
   1553                                  "if ($Pu) callr $Rs"),
   1554                                  "callr $Rs"),
   1555       [], "", J_tc_2early_SLOT2> {
   1556     bits<5> Rs;
   1557     bits<2> Pu;
   1558     let isPredicated = isPred;
   1559     let isPredicatedFalse = isPredNot;
   1560 
   1561     let IClass = 0b0101;
   1562     let Inst{27-25} = 0b000;
   1563     let Inst{24-23} = !if (isPred, 0b10, 0b01);
   1564     let Inst{22} = 0;
   1565     let Inst{21} = isPredNot;
   1566     let Inst{9-8} = !if (isPred, Pu, 0b00);
   1567     let Inst{20-16} = Rs;
   1568 
   1569   }
   1570 
   1571 let Defs = VolatileV3.Regs in {
   1572   def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>;
   1573   def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>;
   1574 }
   1575 
   1576 let isTerminator = 1, hasSideEffects = 0 in {
   1577   defm J2_jump : JMP_base<"JMP", "">, PredNewRel;
   1578 
   1579   // Deal with explicit assembly
   1580   //  - never extened a jump #,  always extend a jump ##
   1581   let isAsmParserOnly = 1 in {
   1582     defm J2_jump_ext   : JMP_base<"JMP", "##">;
   1583     defm J2_jump_noext : JMP_base<"JMP", "#">;
   1584   }
   1585 
   1586   defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel;
   1587 
   1588   let isReturn = 1, isCodeGenOnly = 1 in
   1589   defm JMPret : JMPR_base<"JMPret">, PredNewRel;
   1590 }
   1591 
   1592 def: Pat<(br bb:$dst),
   1593          (J2_jump brtarget:$dst)>;
   1594 def: Pat<(retflag),
   1595          (JMPret (i32 R31))>;
   1596 def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset),
   1597          (J2_jumpt PredRegs:$src1, bb:$offset)>;
   1598 
   1599 // A return through builtin_eh_return.
   1600 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
   1601     isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
   1602 def EH_RETURN_JMPR : T_JMPr;
   1603 
   1604 def: Pat<(eh_return),
   1605          (EH_RETURN_JMPR (i32 R31))>;
   1606 def: Pat<(brind (i32 IntRegs:$dst)),
   1607          (J2_jumpr IntRegs:$dst)>;
   1608 
   1609 //===----------------------------------------------------------------------===//
   1610 // JR -
   1611 //===----------------------------------------------------------------------===//
   1612 
   1613 //===----------------------------------------------------------------------===//
   1614 // LD +
   1615 //===----------------------------------------------------------------------===//
   1616 
   1617 // Load - Base with Immediate offset addressing mode
   1618 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in
   1619 class T_load_io <string mnemonic, RegisterClass RC, bits<4> MajOp,
   1620                  Operand ImmOp>
   1621   : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
   1622   "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel {
   1623     bits<4> name;
   1624     bits<5> dst;
   1625     bits<5> src1;
   1626     bits<14> offset;
   1627     bits<11> offsetBits;
   1628 
   1629     string ImmOpStr = !cast<string>(ImmOp);
   1630     let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3},
   1631                      !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2},
   1632                      !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1},
   1633                                       /* s11_0Ext */ offset{10-0})));
   1634     let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
   1635                        !if (!eq(ImmOpStr, "s11_2Ext"), 13,
   1636                        !if (!eq(ImmOpStr, "s11_1Ext"), 12,
   1637                                         /* s11_0Ext */ 11)));
   1638     let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
   1639 
   1640     let IClass = 0b1001;
   1641 
   1642     let Inst{27}    = 0b0;
   1643     let Inst{26-25} = offsetBits{10-9};
   1644     let Inst{24-21} = MajOp;
   1645     let Inst{20-16} = src1;
   1646     let Inst{13-5}  = offsetBits{8-0};
   1647     let Inst{4-0}   = dst;
   1648   }
   1649 
   1650 let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in
   1651 class T_pload_io <string mnemonic, RegisterClass RC, bits<4>MajOp,
   1652                   Operand ImmOp, bit isNot, bit isPredNew>
   1653   : LDInst<(outs RC:$dst),
   1654            (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
   1655   "if ("#!if(isNot, "!$src1", "$src1")
   1656        #!if(isPredNew, ".new", "")
   1657        #") $dst = "#mnemonic#"($src2 + #$offset)",
   1658   [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel {
   1659     bits<5> dst;
   1660     bits<2> src1;
   1661     bits<5> src2;
   1662     bits<9> offset;
   1663     bits<6> offsetBits;
   1664     string ImmOpStr = !cast<string>(ImmOp);
   1665 
   1666     let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3},
   1667                      !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2},
   1668                      !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1},
   1669                                       /* u6_0Ext */ offset{5-0})));
   1670     let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
   1671                        !if (!eq(ImmOpStr, "u6_2Ext"), 8,
   1672                        !if (!eq(ImmOpStr, "u6_1Ext"), 7,
   1673                                         /* u6_0Ext */ 6)));
   1674     let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1);
   1675     let isPredicatedNew = isPredNew;
   1676     let isPredicatedFalse = isNot;
   1677 
   1678     let IClass = 0b0100;
   1679 
   1680     let Inst{27}    = 0b0;
   1681     let Inst{27}    = 0b0;
   1682     let Inst{26}    = isNot;
   1683     let Inst{25}    = isPredNew;
   1684     let Inst{24-21} = MajOp;
   1685     let Inst{20-16} = src2;
   1686     let Inst{13}    = 0b0;
   1687     let Inst{12-11} = src1;
   1688     let Inst{10-5}  = offsetBits;
   1689     let Inst{4-0}   = dst;
   1690   }
   1691 
   1692 let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in
   1693 multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
   1694                    Operand ImmOp, Operand predImmOp, bits<4>MajOp> {
   1695   let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
   1696     let isPredicable = 1 in
   1697     def L2_#NAME#_io : T_load_io <mnemonic, RC, MajOp, ImmOp>;
   1698 
   1699     // Predicated
   1700     def L2_p#NAME#t_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 0>;
   1701     def L2_p#NAME#f_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 0>;
   1702 
   1703     // Predicated new
   1704     def L2_p#NAME#tnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 1>;
   1705     def L2_p#NAME#fnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 1>;
   1706   }
   1707 }
   1708 
   1709 let accessSize = ByteAccess in {
   1710   defm loadrb:  LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>;
   1711   defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>;
   1712 }
   1713 
   1714 let accessSize = HalfWordAccess, opExtentAlign = 1 in {
   1715   defm loadrh:  LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>;
   1716   defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>;
   1717 }
   1718 
   1719 let accessSize = WordAccess, opExtentAlign = 2 in
   1720 defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>;
   1721 
   1722 let accessSize = DoubleWordAccess, opExtentAlign = 3 in
   1723 defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>;
   1724 
   1725 let accessSize = HalfWordAccess, opExtentAlign = 1 in {
   1726   def L2_loadbsw2_io:   T_load_io<"membh",  IntRegs, 0b0001, s11_1Ext>;
   1727   def L2_loadbzw2_io:   T_load_io<"memubh", IntRegs, 0b0011, s11_1Ext>;
   1728 }
   1729 
   1730 let accessSize = WordAccess, opExtentAlign = 2 in {
   1731   def L2_loadbzw4_io: T_load_io<"memubh", DoubleRegs, 0b0101, s11_2Ext>;
   1732   def L2_loadbsw4_io: T_load_io<"membh",  DoubleRegs, 0b0111, s11_2Ext>;
   1733 }
   1734 
   1735 let addrMode = BaseImmOffset, isExtendable = 1, hasSideEffects = 0,
   1736     opExtendable = 3, isExtentSigned = 1  in
   1737 class T_loadalign_io <string str, bits<4> MajOp, Operand ImmOp>
   1738   : LDInst<(outs DoubleRegs:$dst),
   1739            (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
   1740   "$dst = "#str#"($src2 + #$offset)", [],
   1741   "$src1 = $dst">, AddrModeRel {
   1742     bits<4> name;
   1743     bits<5> dst;
   1744     bits<5> src2;
   1745     bits<12> offset;
   1746     bits<11> offsetBits;
   1747 
   1748     let offsetBits = !if (!eq(!cast<string>(ImmOp), "s11_1Ext"), offset{11-1},
   1749                                                   /* s11_0Ext */ offset{10-0});
   1750     let IClass = 0b1001;
   1751 
   1752     let Inst{27}    = 0b0;
   1753     let Inst{26-25} = offsetBits{10-9};
   1754     let Inst{24-21} = MajOp;
   1755     let Inst{20-16} = src2;
   1756     let Inst{13-5}  = offsetBits{8-0};
   1757     let Inst{4-0}   = dst;
   1758   }
   1759 
   1760 let accessSize = HalfWordAccess, opExtentBits = 12, opExtentAlign = 1 in
   1761 def L2_loadalignh_io: T_loadalign_io <"memh_fifo", 0b0010, s11_1Ext>;
   1762 
   1763 let accessSize = ByteAccess, opExtentBits = 11 in
   1764 def L2_loadalignb_io: T_loadalign_io <"memb_fifo", 0b0100, s11_0Ext>;
   1765 
   1766 // Patterns to select load-indexed (i.e. load from base+offset).
   1767 multiclass Loadx_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
   1768                      InstHexagon MI> {
   1769   def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
   1770   def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
   1771            (VT (MI AddrFI:$fi, imm:$Off))>;
   1772   def: Pat<(VT (Load (add (i32 IntRegs:$Rs), ImmPred:$Off))),
   1773            (VT (MI IntRegs:$Rs, imm:$Off))>;
   1774   def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (MI IntRegs:$Rs, 0))>;
   1775 }
   1776 
   1777 let AddedComplexity = 20 in {
   1778   defm: Loadx_pat<load,           i32, s30_2ImmPred, L2_loadri_io>;
   1779   defm: Loadx_pat<load,           i64, s29_3ImmPred, L2_loadrd_io>;
   1780   defm: Loadx_pat<atomic_load_8 , i32, s32_0ImmPred, L2_loadrub_io>;
   1781   defm: Loadx_pat<atomic_load_16, i32, s31_1ImmPred, L2_loadruh_io>;
   1782   defm: Loadx_pat<atomic_load_32, i32, s30_2ImmPred, L2_loadri_io>;
   1783   defm: Loadx_pat<atomic_load_64, i64, s29_3ImmPred, L2_loadrd_io>;
   1784 
   1785   defm: Loadx_pat<extloadi1,      i32, s32_0ImmPred, L2_loadrub_io>;
   1786   defm: Loadx_pat<extloadi8,      i32, s32_0ImmPred, L2_loadrub_io>;
   1787   defm: Loadx_pat<extloadi16,     i32, s31_1ImmPred, L2_loadruh_io>;
   1788   defm: Loadx_pat<sextloadi8,     i32, s32_0ImmPred, L2_loadrb_io>;
   1789   defm: Loadx_pat<sextloadi16,    i32, s31_1ImmPred, L2_loadrh_io>;
   1790   defm: Loadx_pat<zextloadi1,     i32, s32_0ImmPred, L2_loadrub_io>;
   1791   defm: Loadx_pat<zextloadi8,     i32, s32_0ImmPred, L2_loadrub_io>;
   1792   defm: Loadx_pat<zextloadi16,    i32, s31_1ImmPred, L2_loadruh_io>;
   1793   // No sextloadi1.
   1794 }
   1795 
   1796 // Sign-extending loads of i1 need to replicate the lowest bit throughout
   1797 // the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
   1798 // do the trick.
   1799 let AddedComplexity = 20 in
   1800 def: Pat<(i32 (sextloadi1 (i32 IntRegs:$Rs))),
   1801          (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
   1802 
   1803 //===----------------------------------------------------------------------===//
   1804 // Post increment load
   1805 //===----------------------------------------------------------------------===//
   1806 //===----------------------------------------------------------------------===//
   1807 // Template class for non-predicated post increment loads with immediate offset.
   1808 //===----------------------------------------------------------------------===//
   1809 let hasSideEffects = 0, addrMode = PostInc in
   1810 class T_load_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
   1811                      bits<4> MajOp >
   1812   : LDInstPI <(outs RC:$dst, IntRegs:$dst2),
   1813   (ins IntRegs:$src1, ImmOp:$offset),
   1814   "$dst = "#mnemonic#"($src1++#$offset)" ,
   1815   [],
   1816   "$src1 = $dst2" > ,
   1817   PredNewRel {
   1818     bits<5> dst;
   1819     bits<5> src1;
   1820     bits<7> offset;
   1821     bits<4> offsetBits;
   1822 
   1823     string ImmOpStr = !cast<string>(ImmOp);
   1824     let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
   1825                      !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
   1826                      !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
   1827                                       /* s4_0Imm */ offset{3-0})));
   1828     let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
   1829 
   1830     let IClass = 0b1001;
   1831 
   1832     let Inst{27-25} = 0b101;
   1833     let Inst{24-21} = MajOp;
   1834     let Inst{20-16} = src1;
   1835     let Inst{13-12} = 0b00;
   1836     let Inst{8-5} = offsetBits;
   1837     let Inst{4-0}   = dst;
   1838   }
   1839 
   1840 //===----------------------------------------------------------------------===//
   1841 // Template class for predicated post increment loads with immediate offset.
   1842 //===----------------------------------------------------------------------===//
   1843 let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
   1844 class T_pload_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
   1845                           bits<4> MajOp, bit isPredNot, bit isPredNew >
   1846   : LDInst <(outs RC:$dst, IntRegs:$dst2),
   1847             (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
   1848   !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   1849   ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
   1850   [] ,
   1851   "$src2 = $dst2" > ,
   1852   PredNewRel {
   1853     bits<5> dst;
   1854     bits<2> src1;
   1855     bits<5> src2;
   1856     bits<7> offset;
   1857     bits<4> offsetBits;
   1858 
   1859     let isPredicatedNew = isPredNew;
   1860     let isPredicatedFalse = isPredNot;
   1861 
   1862     string ImmOpStr = !cast<string>(ImmOp);
   1863     let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
   1864                      !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
   1865                      !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
   1866                                       /* s4_0Imm */ offset{3-0})));
   1867     let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
   1868 
   1869     let IClass = 0b1001;
   1870 
   1871     let Inst{27-25} = 0b101;
   1872     let Inst{24-21} = MajOp;
   1873     let Inst{20-16} = src2;
   1874     let Inst{13} = 0b1;
   1875     let Inst{12} = isPredNew;
   1876     let Inst{11} = isPredNot;
   1877     let Inst{10-9} = src1;
   1878     let Inst{8-5}  = offsetBits;
   1879     let Inst{4-0}  = dst;
   1880   }
   1881 
   1882 //===----------------------------------------------------------------------===//
   1883 // Multiclass for post increment loads with immediate offset.
   1884 //===----------------------------------------------------------------------===//
   1885 
   1886 multiclass LD_PostInc <string mnemonic, string BaseOp, RegisterClass RC,
   1887                        Operand ImmOp, bits<4> MajOp> {
   1888   let BaseOpcode = "POST_"#BaseOp in {
   1889     let isPredicable = 1 in
   1890     def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>;
   1891 
   1892     // Predicated
   1893     def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>;
   1894     def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>;
   1895 
   1896     // Predicated new
   1897     def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>;
   1898     def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>;
   1899   }
   1900 }
   1901 
   1902 // post increment byte loads with immediate offset
   1903 let accessSize = ByteAccess in {
   1904   defm loadrb  : LD_PostInc <"memb",  "LDrib", IntRegs, s4_0Imm, 0b1000>;
   1905   defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>;
   1906 }
   1907 
   1908 // post increment halfword loads with immediate offset
   1909 let accessSize = HalfWordAccess, opExtentAlign = 1 in {
   1910   defm loadrh  : LD_PostInc <"memh",  "LDrih", IntRegs, s4_1Imm, 0b1010>;
   1911   defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>;
   1912 }
   1913 
   1914 // post increment word loads with immediate offset
   1915 let accessSize = WordAccess, opExtentAlign = 2 in
   1916 defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>;
   1917 
   1918 // post increment doubleword loads with immediate offset
   1919 let accessSize = DoubleWordAccess, opExtentAlign = 3 in
   1920 defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>;
   1921 
   1922 // Rd=memb[u]h(Rx++#s4:1)
   1923 // Rdd=memb[u]h(Rx++#s4:2)
   1924 let accessSize = HalfWordAccess, opExtentAlign = 1 in {
   1925   def L2_loadbsw2_pi   : T_load_pi <"membh", IntRegs, s4_1Imm, 0b0001>;
   1926   def L2_loadbzw2_pi   : T_load_pi <"memubh", IntRegs, s4_1Imm, 0b0011>;
   1927 }
   1928 let accessSize = WordAccess, opExtentAlign = 2, hasNewValue = 0 in {
   1929   def L2_loadbsw4_pi   : T_load_pi <"membh", DoubleRegs, s4_2Imm, 0b0111>;
   1930   def L2_loadbzw4_pi   : T_load_pi <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
   1931 }
   1932 
   1933 //===----------------------------------------------------------------------===//
   1934 // Template class for post increment fifo loads with immediate offset.
   1935 //===----------------------------------------------------------------------===//
   1936 let hasSideEffects = 0, addrMode = PostInc in
   1937 class T_loadalign_pi <string mnemonic, Operand ImmOp, bits<4> MajOp >
   1938   : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$dst2),
   1939   (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
   1940   "$dst = "#mnemonic#"($src2++#$offset)" ,
   1941   [], "$src2 = $dst2, $src1 = $dst" > ,
   1942   PredNewRel {
   1943     bits<5> dst;
   1944     bits<5> src2;
   1945     bits<5> offset;
   1946     bits<4> offsetBits;
   1947 
   1948     let offsetBits = !if (!eq(!cast<string>(ImmOp), "s4_1Imm"), offset{4-1},
   1949                                                   /* s4_0Imm */ offset{3-0});
   1950     let IClass = 0b1001;
   1951 
   1952     let Inst{27-25} = 0b101;
   1953     let Inst{24-21} = MajOp;
   1954     let Inst{20-16} = src2;
   1955     let Inst{13-12} = 0b00;
   1956     let Inst{8-5} = offsetBits;
   1957     let Inst{4-0}   = dst;
   1958   }
   1959 
   1960 // Ryy=memh_fifo(Rx++#s4:1)
   1961 // Ryy=memb_fifo(Rx++#s4:0)
   1962 let accessSize = ByteAccess in
   1963 def L2_loadalignb_pi : T_loadalign_pi <"memb_fifo", s4_0Imm, 0b0100>;
   1964 
   1965 let accessSize = HalfWordAccess, opExtentAlign = 1 in
   1966 def L2_loadalignh_pi : T_loadalign_pi <"memh_fifo", s4_1Imm, 0b0010>;
   1967 
   1968 //===----------------------------------------------------------------------===//
   1969 // Template class for post increment loads with register offset.
   1970 //===----------------------------------------------------------------------===//
   1971 let hasSideEffects = 0, addrMode = PostInc in
   1972 class T_load_pr <string mnemonic, RegisterClass RC, bits<4> MajOp,
   1973                        MemAccessSize AccessSz>
   1974   : LDInstPI <(outs RC:$dst, IntRegs:$_dst_),
   1975               (ins IntRegs:$src1, ModRegs:$src2),
   1976   "$dst = "#mnemonic#"($src1++$src2)" ,
   1977   [], "$src1 = $_dst_" > {
   1978     bits<5> dst;
   1979     bits<5> src1;
   1980     bits<1> src2;
   1981 
   1982     let accessSize = AccessSz;
   1983     let IClass = 0b1001;
   1984 
   1985     let Inst{27-25} = 0b110;
   1986     let Inst{24-21} = MajOp;
   1987     let Inst{20-16} = src1;
   1988     let Inst{13}    = src2;
   1989     let Inst{12}    = 0b0;
   1990     let Inst{7}     = 0b0;
   1991     let Inst{4-0}   = dst;
   1992   }
   1993 
   1994 let hasNewValue = 1 in {
   1995   def L2_loadrb_pr  : T_load_pr <"memb",  IntRegs, 0b1000, ByteAccess>;
   1996   def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>;
   1997   def L2_loadrh_pr  : T_load_pr <"memh",  IntRegs, 0b1010, HalfWordAccess>;
   1998   def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>;
   1999   def L2_loadri_pr  : T_load_pr <"memw",  IntRegs, 0b1100, WordAccess>;
   2000 
   2001   def L2_loadbzw2_pr : T_load_pr <"memubh", IntRegs, 0b0011, HalfWordAccess>;
   2002 }
   2003 
   2004 def L2_loadrd_pr   : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
   2005 def L2_loadbzw4_pr : T_load_pr <"memubh", DoubleRegs, 0b0101, WordAccess>;
   2006 
   2007 // Load predicate.
   2008 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
   2009     isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
   2010 def LDriw_pred : LDInst<(outs PredRegs:$dst),
   2011                         (ins IntRegs:$addr, s11_2Ext:$off),
   2012                         ".error \"should not emit\"", []>;
   2013 
   2014 let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0 in
   2015   def L2_deallocframe : LDInst<(outs), (ins),
   2016                      "deallocframe",
   2017                      []> {
   2018     let IClass = 0b1001;
   2019 
   2020     let Inst{27-16} = 0b000000011110;
   2021     let Inst{13} = 0b0;
   2022     let Inst{4-0} = 0b11110;
   2023 }
   2024 
   2025 // Load / Post increment circular addressing mode.
   2026 let Uses = [CS], hasSideEffects = 0 in
   2027 class T_load_pcr<string mnemonic, RegisterClass RC, bits<4> MajOp>
   2028   : LDInst <(outs RC:$dst, IntRegs:$_dst_),
   2029             (ins IntRegs:$Rz, ModRegs:$Mu),
   2030   "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
   2031   "$Rz = $_dst_" > {
   2032     bits<5> dst;
   2033     bits<5> Rz;
   2034     bit Mu;
   2035 
   2036     let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
   2037     let IClass = 0b1001;
   2038 
   2039     let Inst{27-25} = 0b100;
   2040     let Inst{24-21} = MajOp;
   2041     let Inst{20-16} = Rz;
   2042     let Inst{13} = Mu;
   2043     let Inst{12} = 0b0;
   2044     let Inst{9} = 0b1;
   2045     let Inst{7} = 0b0;
   2046     let Inst{4-0} = dst;
   2047  }
   2048 
   2049 let accessSize = ByteAccess in {
   2050   def L2_loadrb_pcr  : T_load_pcr <"memb",  IntRegs, 0b1000>;
   2051   def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>;
   2052 }
   2053 
   2054 let accessSize = HalfWordAccess in {
   2055   def L2_loadrh_pcr   : T_load_pcr <"memh",   IntRegs, 0b1010>;
   2056   def L2_loadruh_pcr  : T_load_pcr <"memuh",  IntRegs, 0b1011>;
   2057   def L2_loadbsw2_pcr : T_load_pcr <"membh",  IntRegs, 0b0001>;
   2058   def L2_loadbzw2_pcr : T_load_pcr <"memubh", IntRegs, 0b0011>;
   2059 }
   2060 
   2061 let accessSize = WordAccess in {
   2062   def  L2_loadri_pcr  : T_load_pcr <"memw", IntRegs, 0b1100>;
   2063   let hasNewValue = 0 in {
   2064     def L2_loadbzw4_pcr : T_load_pcr <"memubh", DoubleRegs, 0b0101>;
   2065     def L2_loadbsw4_pcr : T_load_pcr <"membh",  DoubleRegs, 0b0111>;
   2066   }
   2067 }
   2068 
   2069 let accessSize = DoubleWordAccess in
   2070 def L2_loadrd_pcr  : T_load_pcr <"memd", DoubleRegs, 0b1110>;
   2071 
   2072 // Load / Post increment circular addressing mode.
   2073 let Uses = [CS], hasSideEffects = 0 in
   2074 class T_loadalign_pcr<string mnemonic, bits<4> MajOp, MemAccessSize AccessSz >
   2075   : LDInst <(outs DoubleRegs:$dst, IntRegs:$_dst_),
   2076             (ins DoubleRegs:$_src_, IntRegs:$Rz, ModRegs:$Mu),
   2077   "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
   2078   "$Rz = $_dst_, $dst = $_src_" > {
   2079     bits<5> dst;
   2080     bits<5> Rz;
   2081     bit Mu;
   2082 
   2083     let accessSize = AccessSz;
   2084     let IClass = 0b1001;
   2085 
   2086     let Inst{27-25} = 0b100;
   2087     let Inst{24-21} = MajOp;
   2088     let Inst{20-16} = Rz;
   2089     let Inst{13}    = Mu;
   2090     let Inst{12}    = 0b0;
   2091     let Inst{9}     = 0b1;
   2092     let Inst{7}     = 0b0;
   2093     let Inst{4-0}   = dst;
   2094  }
   2095 
   2096 def L2_loadalignb_pcr : T_loadalign_pcr <"memb_fifo", 0b0100, ByteAccess>;
   2097 def L2_loadalignh_pcr : T_loadalign_pcr <"memh_fifo", 0b0010, HalfWordAccess>;
   2098 
   2099 //===----------------------------------------------------------------------===//
   2100 // Circular loads with immediate offset.
   2101 //===----------------------------------------------------------------------===//
   2102 let Uses = [CS], mayLoad = 1, hasSideEffects = 0 in
   2103 class T_load_pci <string mnemonic, RegisterClass RC,
   2104                   Operand ImmOp, bits<4> MajOp>
   2105   : LDInstPI<(outs RC:$dst, IntRegs:$_dst_),
   2106              (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu),
   2107   "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [],
   2108   "$Rz = $_dst_"> {
   2109     bits<5> dst;
   2110     bits<5> Rz;
   2111     bits<1> Mu;
   2112     bits<7> offset;
   2113     bits<4> offsetBits;
   2114 
   2115     string ImmOpStr = !cast<string>(ImmOp);
   2116     let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
   2117     let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
   2118                      !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
   2119                      !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
   2120                                       /* s4_0Imm */ offset{3-0})));
   2121     let IClass      = 0b1001;
   2122     let Inst{27-25} = 0b100;
   2123     let Inst{24-21} = MajOp;
   2124     let Inst{20-16} = Rz;
   2125     let Inst{13}    = Mu;
   2126     let Inst{12}    = 0b0;
   2127     let Inst{9}     = 0b0;
   2128     let Inst{8-5}   = offsetBits;
   2129     let Inst{4-0}   = dst;
   2130   }
   2131 
   2132 // Byte variants of circ load
   2133 let accessSize = ByteAccess in {
   2134   def L2_loadrb_pci  : T_load_pci <"memb",  IntRegs, s4_0Imm, 0b1000>;
   2135   def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>;
   2136 }
   2137 
   2138 // Half word variants of circ load
   2139 let accessSize = HalfWordAccess in {
   2140   def L2_loadrh_pci   : T_load_pci <"memh",   IntRegs, s4_1Imm, 0b1010>;
   2141   def L2_loadruh_pci  : T_load_pci <"memuh",  IntRegs, s4_1Imm, 0b1011>;
   2142   def L2_loadbzw2_pci : T_load_pci <"memubh", IntRegs, s4_1Imm, 0b0011>;
   2143   def L2_loadbsw2_pci : T_load_pci <"membh",  IntRegs, s4_1Imm, 0b0001>;
   2144 }
   2145 
   2146 // Word variants of circ load
   2147 let accessSize = WordAccess in
   2148 def L2_loadri_pci   : T_load_pci <"memw",   IntRegs,    s4_2Imm, 0b1100>;
   2149 
   2150 let accessSize = WordAccess, hasNewValue = 0 in {
   2151   def L2_loadbzw4_pci : T_load_pci <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
   2152   def L2_loadbsw4_pci : T_load_pci <"membh",  DoubleRegs, s4_2Imm, 0b0111>;
   2153 }
   2154 
   2155 let accessSize = DoubleWordAccess, hasNewValue = 0 in
   2156 def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>;
   2157 
   2158 //===----------------------------------------------------------------------===//
   2159 // Circular loads - Pseudo
   2160 //
   2161 // Please note that the input operand order in the pseudo instructions
   2162 // doesn't match with the real instructions. Pseudo instructions operand
   2163 // order should mimics the ordering in the intrinsics. Also, 'src2' doesn't
   2164 // appear in the AsmString because it's same as 'dst'.
   2165 //===----------------------------------------------------------------------===//
   2166 let isCodeGenOnly = 1,  mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
   2167 class T_load_pci_pseudo <string opc, RegisterClass RC>
   2168   : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
   2169              (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4Imm:$src4),
   2170   ".error \"$dst = "#opc#"($src1++#$src4:circ($src3))\"",
   2171   [], "$src1 = $_dst_">;
   2172 
   2173 def L2_loadrb_pci_pseudo  : T_load_pci_pseudo <"memb",  IntRegs>;
   2174 def L2_loadrub_pci_pseudo : T_load_pci_pseudo <"memub", IntRegs>;
   2175 def L2_loadrh_pci_pseudo  : T_load_pci_pseudo <"memh",  IntRegs>;
   2176 def L2_loadruh_pci_pseudo : T_load_pci_pseudo <"memuh", IntRegs>;
   2177 def L2_loadri_pci_pseudo  : T_load_pci_pseudo <"memw",  IntRegs>;
   2178 def L2_loadrd_pci_pseudo  : T_load_pci_pseudo <"memd",  DoubleRegs>;
   2179 
   2180 
   2181 // TODO: memb_fifo and memh_fifo must take destination register as input.
   2182 // One-off circ loads - not enough in common to break into a class.
   2183 let accessSize = ByteAccess in
   2184 def L2_loadalignb_pci : T_load_pci <"memb_fifo", DoubleRegs, s4_0Imm, 0b0100>;
   2185 
   2186 let accessSize = HalfWordAccess, opExtentAlign = 1 in
   2187 def L2_loadalignh_pci : T_load_pci <"memh_fifo", DoubleRegs, s4_1Imm, 0b0010>;
   2188 
   2189 // L[24]_load[wd]_locked: Load word/double with lock.
   2190 let isSoloAX = 1 in
   2191 class T_load_locked <string mnemonic, RegisterClass RC>
   2192   : LD0Inst <(outs RC:$dst),
   2193              (ins IntRegs:$src),
   2194     "$dst = "#mnemonic#"($src)"> {
   2195     bits<5> dst;
   2196     bits<5> src;
   2197     let IClass = 0b1001;
   2198     let Inst{27-21} = 0b0010000;
   2199     let Inst{20-16} = src;
   2200     let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00);
   2201     let Inst{5}   = 0;
   2202     let Inst{4-0} = dst;
   2203 }
   2204 let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0 in
   2205   def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>;
   2206 let accessSize = DoubleWordAccess in
   2207   def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>;
   2208 
   2209 // S[24]_store[wd]_locked: Store word/double conditionally.
   2210 let isSoloAX = 1, isPredicateLate = 1 in
   2211 class T_store_locked <string mnemonic, RegisterClass RC>
   2212   : ST0Inst <(outs PredRegs:$Pd), (ins IntRegs:$Rs, RC:$Rt),
   2213     mnemonic#"($Rs, $Pd) = $Rt"> {
   2214     bits<2> Pd;
   2215     bits<5> Rs;
   2216     bits<5> Rt;
   2217 
   2218     let IClass = 0b1010;
   2219     let Inst{27-23} = 0b00001;
   2220     let Inst{22} = !if (!eq(mnemonic, "memw_locked"), 0b0, 0b1);
   2221     let Inst{21} = 0b1;
   2222     let Inst{20-16} = Rs;
   2223     let Inst{12-8} = Rt;
   2224     let Inst{1-0} = Pd;
   2225 }
   2226 
   2227 let accessSize = WordAccess in
   2228 def S2_storew_locked : T_store_locked <"memw_locked", IntRegs>;
   2229 
   2230 let accessSize = DoubleWordAccess in
   2231 def S4_stored_locked : T_store_locked <"memd_locked", DoubleRegs>;
   2232 
   2233 //===----------------------------------------------------------------------===//
   2234 // Bit-reversed loads with auto-increment register
   2235 //===----------------------------------------------------------------------===//
   2236 let hasSideEffects = 0 in
   2237 class T_load_pbr<string mnemonic, RegisterClass RC,
   2238                             MemAccessSize addrSize, bits<4> majOp>
   2239   : LDInst
   2240     <(outs RC:$dst, IntRegs:$_dst_),
   2241      (ins IntRegs:$Rz, ModRegs:$Mu),
   2242      "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" ,
   2243       [] , "$Rz = $_dst_" > {
   2244 
   2245       let accessSize = addrSize;
   2246 
   2247       bits<5> dst;
   2248       bits<5> Rz;
   2249       bits<1> Mu;
   2250 
   2251       let IClass = 0b1001;
   2252 
   2253       let Inst{27-25} = 0b111;
   2254       let Inst{24-21} = majOp;
   2255       let Inst{20-16} = Rz;
   2256       let Inst{13} = Mu;
   2257       let Inst{12} = 0b0;
   2258       let Inst{7} = 0b0;
   2259       let Inst{4-0} = dst;
   2260   }
   2261 
   2262 let hasNewValue =1, opNewValue = 0 in {
   2263   def L2_loadrb_pbr   : T_load_pbr <"memb",  IntRegs, ByteAccess, 0b1000>;
   2264   def L2_loadrub_pbr  : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>;
   2265   def L2_loadrh_pbr   : T_load_pbr <"memh",  IntRegs, HalfWordAccess, 0b1010>;
   2266   def L2_loadruh_pbr  : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>;
   2267   def L2_loadbsw2_pbr : T_load_pbr <"membh", IntRegs, HalfWordAccess, 0b0001>;
   2268   def L2_loadbzw2_pbr : T_load_pbr <"memubh", IntRegs, HalfWordAccess, 0b0011>;
   2269   def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>;
   2270 }
   2271 
   2272 def L2_loadbzw4_pbr : T_load_pbr <"memubh", DoubleRegs, WordAccess, 0b0101>;
   2273 def L2_loadbsw4_pbr : T_load_pbr <"membh",  DoubleRegs, WordAccess, 0b0111>;
   2274 def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>;
   2275 
   2276 def L2_loadalignb_pbr :T_load_pbr <"memb_fifo", DoubleRegs, ByteAccess, 0b0100>;
   2277 def L2_loadalignh_pbr :T_load_pbr <"memh_fifo", DoubleRegs,
   2278                                    HalfWordAccess, 0b0010>;
   2279 
   2280 //===----------------------------------------------------------------------===//
   2281 // Bit-reversed loads - Pseudo
   2282 //
   2283 // Please note that 'src2' doesn't appear in the AsmString because
   2284 // it's same as 'dst'.
   2285 //===----------------------------------------------------------------------===//
   2286 let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
   2287 class T_load_pbr_pseudo <string opc, RegisterClass RC>
   2288   : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
   2289              (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   2290   ".error \"$dst = "#opc#"($src1++$src3:brev)\"",
   2291   [], "$src1 = $_dst_">;
   2292 
   2293 def L2_loadrb_pbr_pseudo  : T_load_pbr_pseudo <"memb",  IntRegs>;
   2294 def L2_loadrub_pbr_pseudo : T_load_pbr_pseudo <"memub", IntRegs>;
   2295 def L2_loadrh_pbr_pseudo  : T_load_pbr_pseudo <"memh",  IntRegs>;
   2296 def L2_loadruh_pbr_pseudo : T_load_pbr_pseudo <"memuh", IntRegs>;
   2297 def L2_loadri_pbr_pseudo  : T_load_pbr_pseudo <"memw",  IntRegs>;
   2298 def L2_loadrd_pbr_pseudo  : T_load_pbr_pseudo <"memd",  DoubleRegs>;
   2299 
   2300 //===----------------------------------------------------------------------===//
   2301 // LD -
   2302 //===----------------------------------------------------------------------===//
   2303 
   2304 //===----------------------------------------------------------------------===//
   2305 // MTYPE/ALU +
   2306 //===----------------------------------------------------------------------===//
   2307 //===----------------------------------------------------------------------===//
   2308 // MTYPE/ALU -
   2309 //===----------------------------------------------------------------------===//
   2310 
   2311 //===----------------------------------------------------------------------===//
   2312 // MTYPE/COMPLEX +
   2313 //===----------------------------------------------------------------------===//
   2314 //===----------------------------------------------------------------------===//
   2315 // MTYPE/COMPLEX -
   2316 //===----------------------------------------------------------------------===//
   2317 
   2318 //===----------------------------------------------------------------------===//
   2319 // MTYPE/MPYH +
   2320 //===----------------------------------------------------------------------===//
   2321 
   2322 //===----------------------------------------------------------------------===//
   2323 // Template Class
   2324 // MPYS / Multipy signed/unsigned halfwords
   2325 //Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
   2326 //===----------------------------------------------------------------------===//
   2327 
   2328 let hasNewValue = 1, opNewValue = 0 in
   2329 class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd,
   2330                  bit hasShift, bit isUnsigned>
   2331   : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
   2332   "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
   2333                                        #", $Rt."#!if(LHbits{0},"h)","l)")
   2334                                        #!if(hasShift,":<<1","")
   2335                                        #!if(isRnd,":rnd","")
   2336                                        #!if(isSat,":sat",""),
   2337   [], "", M_tc_3x_SLOT23 > {
   2338     bits<5> Rd;
   2339     bits<5> Rs;
   2340     bits<5> Rt;
   2341 
   2342     let IClass = 0b1110;
   2343 
   2344     let Inst{27-24} = 0b1100;
   2345     let Inst{23} = hasShift;
   2346     let Inst{22} = isUnsigned;
   2347     let Inst{21} = isRnd;
   2348     let Inst{7} = isSat;
   2349     let Inst{6-5} = LHbits;
   2350     let Inst{4-0} = Rd;
   2351     let Inst{20-16} = Rs;
   2352     let Inst{12-8} = Rt;
   2353   }
   2354 
   2355 //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]
   2356 def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>;
   2357 def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>;
   2358 def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>;
   2359 def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>;
   2360 def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>;
   2361 def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>;
   2362 def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>;
   2363 def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>;
   2364 
   2365 //Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
   2366 def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>;
   2367 def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>;
   2368 def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>;
   2369 def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>;
   2370 def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>;
   2371 def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>;
   2372 def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>;
   2373 def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>;
   2374 
   2375 //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd
   2376 def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>;
   2377 def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>;
   2378 def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>;
   2379 def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>;
   2380 def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>;
   2381 def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>;
   2382 def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>;
   2383 def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>;
   2384 
   2385 //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat]
   2386 //Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
   2387 let Defs = [USR_OVF] in {
   2388   def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>;
   2389   def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>;
   2390   def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>;
   2391   def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>;
   2392   def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>;
   2393   def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>;
   2394   def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>;
   2395   def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>;
   2396 
   2397   def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>;
   2398   def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>;
   2399   def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>;
   2400   def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>;
   2401   def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>;
   2402   def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>;
   2403   def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>;
   2404   def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>;
   2405 }
   2406 
   2407 //===----------------------------------------------------------------------===//
   2408 // Template Class
   2409 // MPYS / Multipy signed/unsigned halfwords and add/subtract the
   2410 // result from the accumulator.
   2411 //Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
   2412 //===----------------------------------------------------------------------===//
   2413 
   2414 let hasNewValue = 1, opNewValue = 0 in
   2415 class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac,
   2416                  bit hasShift, bit isUnsigned >
   2417   : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
   2418   "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
   2419                               #"($Rs."#!if(LHbits{1},"h","l")
   2420                               #", $Rt."#!if(LHbits{0},"h)","l)")
   2421                               #!if(hasShift,":<<1","")
   2422                               #!if(isSat,":sat",""),
   2423   [], "$dst2 = $Rx", M_tc_3x_SLOT23 > {
   2424     bits<5> Rx;
   2425     bits<5> Rs;
   2426     bits<5> Rt;
   2427 
   2428     let IClass = 0b1110;
   2429     let Inst{27-24} = 0b1110;
   2430     let Inst{23} = hasShift;
   2431     let Inst{22} = isUnsigned;
   2432     let Inst{21} = isNac;
   2433     let Inst{7} = isSat;
   2434     let Inst{6-5} = LHbits;
   2435     let Inst{4-0} = Rx;
   2436     let Inst{20-16} = Rs;
   2437     let Inst{12-8} = Rt;
   2438   }
   2439 
   2440 //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]
   2441 def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>;
   2442 def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>;
   2443 def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>;
   2444 def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>;
   2445 def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>;
   2446 def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>;
   2447 def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>;
   2448 def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>;
   2449 
   2450 //Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
   2451 def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>;
   2452 def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>;
   2453 def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>;
   2454 def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>;
   2455 def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>;
   2456 def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>;
   2457 def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>;
   2458 def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>;
   2459 
   2460 //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]
   2461 def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>;
   2462 def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>;
   2463 def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>;
   2464 def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>;
   2465 def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>;
   2466 def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>;
   2467 def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>;
   2468 def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>;
   2469 
   2470 //Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
   2471 def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>;
   2472 def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>;
   2473 def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>;
   2474 def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>;
   2475 def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>;
   2476 def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>;
   2477 def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>;
   2478 def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>;
   2479 
   2480 //Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
   2481 def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>;
   2482 def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>;
   2483 def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>;
   2484 def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>;
   2485 def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>;
   2486 def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>;
   2487 def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>;
   2488 def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>;
   2489 
   2490 //Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
   2491 def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>;
   2492 def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>;
   2493 def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>;
   2494 def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>;
   2495 def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>;
   2496 def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>;
   2497 def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>;
   2498 def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>;
   2499 
   2500 //===----------------------------------------------------------------------===//
   2501 // Template Class
   2502 // MPYS / Multipy signed/unsigned halfwords and add/subtract the
   2503 // result from the 64-bit destination register.
   2504 //Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
   2505 //===----------------------------------------------------------------------===//
   2506 
   2507 class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned>
   2508   : MInst_acc<(outs DoubleRegs:$Rxx),
   2509               (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
   2510   "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
   2511                                 #"($Rs."#!if(LHbits{1},"h","l")
   2512                                 #", $Rt."#!if(LHbits{0},"h)","l)")
   2513                                 #!if(hasShift,":<<1",""),
   2514   [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > {
   2515     bits<5> Rxx;
   2516     bits<5> Rs;
   2517     bits<5> Rt;
   2518 
   2519     let IClass = 0b1110;
   2520 
   2521     let Inst{27-24} = 0b0110;
   2522     let Inst{23} = hasShift;
   2523     let Inst{22} = isUnsigned;
   2524     let Inst{21} = isNac;
   2525     let Inst{7} = 0;
   2526     let Inst{6-5} = LHbits;
   2527     let Inst{4-0} = Rxx;
   2528     let Inst{20-16} = Rs;
   2529     let Inst{12-8} = Rt;
   2530   }
   2531 
   2532 def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>;
   2533 def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>;
   2534 def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>;
   2535 def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>;
   2536 
   2537 def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>;
   2538 def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>;
   2539 def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>;
   2540 def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>;
   2541 
   2542 def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>;
   2543 def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>;
   2544 def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>;
   2545 def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>;
   2546 
   2547 def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>;
   2548 def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>;
   2549 def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>;
   2550 def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>;
   2551 
   2552 def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>;
   2553 def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>;
   2554 def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>;
   2555 def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>;
   2556 
   2557 def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>;
   2558 def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>;
   2559 def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>;
   2560 def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>;
   2561 
   2562 def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>;
   2563 def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>;
   2564 def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>;
   2565 def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>;
   2566 
   2567 def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>;
   2568 def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>;
   2569 def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>;
   2570 def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>;
   2571 
   2572 //===----------------------------------------------------------------------===//
   2573 // Template Class -- Vector Multipy
   2574 // Used for complex multiply real or imaginary, dual multiply and even halfwords
   2575 //===----------------------------------------------------------------------===//
   2576 class T_M2_vmpy < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift,
   2577                   bit isRnd, bit isSat >
   2578   : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
   2579   "$Rdd = "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
   2580                               #!if(isRnd,":rnd","")
   2581                               #!if(isSat,":sat",""),
   2582   [] > {
   2583     bits<5> Rdd;
   2584     bits<5> Rss;
   2585     bits<5> Rtt;
   2586 
   2587     let IClass = 0b1110;
   2588 
   2589     let Inst{27-24} = 0b1000;
   2590     let Inst{23-21} = MajOp;
   2591     let Inst{7-5} = MinOp;
   2592     let Inst{4-0} = Rdd;
   2593     let Inst{20-16} = Rss;
   2594     let Inst{12-8} = Rtt;
   2595   }
   2596 
   2597 // Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat
   2598 let Defs = [USR_OVF] in {
   2599 def M2_vcmpy_s1_sat_i: T_M2_vmpy <"vcmpyi", 0b110, 0b110, 1, 0, 1>;
   2600 def M2_vcmpy_s0_sat_i: T_M2_vmpy <"vcmpyi", 0b010, 0b110, 0, 0, 1>;
   2601 
   2602 // Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat
   2603 def M2_vcmpy_s1_sat_r: T_M2_vmpy <"vcmpyr", 0b101, 0b110, 1, 0, 1>;
   2604 def M2_vcmpy_s0_sat_r: T_M2_vmpy <"vcmpyr", 0b001, 0b110, 0, 0, 1>;
   2605 
   2606 // Vector dual multiply: Rdd=vdmpy(Rss,Rtt)[:<<1]:sat
   2607 def M2_vdmpys_s1: T_M2_vmpy <"vdmpy", 0b100, 0b100, 1, 0, 1>;
   2608 def M2_vdmpys_s0: T_M2_vmpy <"vdmpy", 0b000, 0b100, 0, 0, 1>;
   2609 
   2610 // Vector multiply even halfwords: Rdd=vmpyeh(Rss,Rtt)[:<<1]:sat
   2611 def M2_vmpy2es_s1: T_M2_vmpy <"vmpyeh", 0b100, 0b110, 1, 0, 1>;
   2612 def M2_vmpy2es_s0: T_M2_vmpy <"vmpyeh", 0b000, 0b110, 0, 0, 1>;
   2613 
   2614 //Rdd=vmpywoh(Rss,Rtt)[:<<1][:rnd]:sat
   2615 def M2_mmpyh_s0:  T_M2_vmpy <"vmpywoh", 0b000, 0b111, 0, 0, 1>;
   2616 def M2_mmpyh_s1:  T_M2_vmpy <"vmpywoh", 0b100, 0b111, 1, 0, 1>;
   2617 def M2_mmpyh_rs0: T_M2_vmpy <"vmpywoh", 0b001, 0b111, 0, 1, 1>;
   2618 def M2_mmpyh_rs1: T_M2_vmpy <"vmpywoh", 0b101, 0b111, 1, 1, 1>;
   2619 
   2620 //Rdd=vmpyweh(Rss,Rtt)[:<<1][:rnd]:sat
   2621 def M2_mmpyl_s0:  T_M2_vmpy <"vmpyweh", 0b000, 0b101, 0, 0, 1>;
   2622 def M2_mmpyl_s1:  T_M2_vmpy <"vmpyweh", 0b100, 0b101, 1, 0, 1>;
   2623 def M2_mmpyl_rs0: T_M2_vmpy <"vmpyweh", 0b001, 0b101, 0, 1, 1>;
   2624 def M2_mmpyl_rs1: T_M2_vmpy <"vmpyweh", 0b101, 0b101, 1, 1, 1>;
   2625 
   2626 //Rdd=vmpywouh(Rss,Rtt)[:<<1][:rnd]:sat
   2627 def M2_mmpyuh_s0:  T_M2_vmpy <"vmpywouh", 0b010, 0b111, 0, 0, 1>;
   2628 def M2_mmpyuh_s1:  T_M2_vmpy <"vmpywouh", 0b110, 0b111, 1, 0, 1>;
   2629 def M2_mmpyuh_rs0: T_M2_vmpy <"vmpywouh", 0b011, 0b111, 0, 1, 1>;
   2630 def M2_mmpyuh_rs1: T_M2_vmpy <"vmpywouh", 0b111, 0b111, 1, 1, 1>;
   2631 
   2632 //Rdd=vmpyweuh(Rss,Rtt)[:<<1][:rnd]:sat
   2633 def M2_mmpyul_s0:  T_M2_vmpy <"vmpyweuh", 0b010, 0b101, 0, 0, 1>;
   2634 def M2_mmpyul_s1:  T_M2_vmpy <"vmpyweuh", 0b110, 0b101, 1, 0, 1>;
   2635 def M2_mmpyul_rs0: T_M2_vmpy <"vmpyweuh", 0b011, 0b101, 0, 1, 1>;
   2636 def M2_mmpyul_rs1: T_M2_vmpy <"vmpyweuh", 0b111, 0b101, 1, 1, 1>;
   2637 }
   2638 
   2639 let hasNewValue = 1, opNewValue = 0 in
   2640 class T_MType_mpy <string mnemonic, bits<4> RegTyBits, RegisterClass RC,
   2641                    bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0,
   2642                    string op2Suffix = "", bit isRaw = 0, bit isHi = 0 >
   2643   : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2),
   2644   "$dst = "#mnemonic
   2645            #"($src1, $src2"#op2Suffix#")"
   2646            #!if(MajOp{2}, ":<<1", "")
   2647            #!if(isRnd, ":rnd", "")
   2648            #!if(isSat, ":sat", "")
   2649            #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > {
   2650     bits<5> dst;
   2651     bits<5> src1;
   2652     bits<5> src2;
   2653 
   2654     let IClass = 0b1110;
   2655 
   2656     let Inst{27-24} = RegTyBits;
   2657     let Inst{23-21} = MajOp;
   2658     let Inst{20-16} = src1;
   2659     let Inst{13}    = 0b0;
   2660     let Inst{12-8}  = src2;
   2661     let Inst{7-5}   = MinOp;
   2662     let Inst{4-0}   = dst;
   2663   }
   2664 
   2665 class T_MType_vrcmpy <string mnemonic, bits<3> MajOp, bits<3> MinOp, bit isHi>
   2666   : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, 1, 1, "", 1, isHi>;
   2667 
   2668 class T_MType_dd  <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   2669                    bit isSat = 0, bit isRnd = 0 >
   2670   : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, isSat, isRnd>;
   2671 
   2672 class T_MType_rr1  <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   2673                     bit isSat = 0, bit isRnd = 0 >
   2674   : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd>;
   2675 
   2676 class T_MType_rr2 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   2677                    bit isSat = 0, bit isRnd = 0, string op2str = "" >
   2678   : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd, op2str>;
   2679 
   2680 def M2_vradduh    : T_MType_dd <"vradduh", 0b000, 0b001, 0, 0>;
   2681 def M2_vdmpyrs_s0 : T_MType_dd <"vdmpy",   0b000, 0b000, 1, 1>;
   2682 def M2_vdmpyrs_s1 : T_MType_dd <"vdmpy",   0b100, 0b000, 1, 1>;
   2683 
   2684 let CextOpcode = "mpyi", InputType = "reg" in
   2685 def M2_mpyi    : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel;
   2686 
   2687 def M2_mpy_up  : T_MType_rr1 <"mpy",  0b000, 0b001>;
   2688 def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>;
   2689 
   2690 def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>;
   2691 
   2692 def M2_vmpy2s_s0pack : T_MType_rr1 <"vmpyh", 0b001, 0b111, 1, 1>;
   2693 def M2_vmpy2s_s1pack : T_MType_rr1 <"vmpyh", 0b101, 0b111, 1, 1>;
   2694 
   2695 def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">;
   2696 def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">;
   2697 
   2698 def M2_cmpyrs_s0  : T_MType_rr2 <"cmpy", 0b001, 0b110, 1, 1>;
   2699 def M2_cmpyrs_s1  : T_MType_rr2 <"cmpy", 0b101, 0b110, 1, 1>;
   2700 def M2_cmpyrsc_s0 : T_MType_rr2 <"cmpy", 0b011, 0b110, 1, 1, "*">;
   2701 def M2_cmpyrsc_s1 : T_MType_rr2 <"cmpy", 0b111, 0b110, 1, 1, "*">;
   2702 
   2703 // V4 Instructions
   2704 def M2_vraddh : T_MType_dd <"vraddh", 0b001, 0b111, 0>;
   2705 def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>;
   2706 def M2_mpy_up_s1 : T_MType_rr1 <"mpy", 0b101, 0b010, 0>;
   2707 def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>;
   2708 
   2709 def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">;
   2710 def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">;
   2711 
   2712 def: Pat<(i32 (mul   I32:$src1, I32:$src2)), (M2_mpyi    I32:$src1, I32:$src2)>;
   2713 def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up  I32:$src1, I32:$src2)>;
   2714 def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>;
   2715 
   2716 let hasNewValue = 1, opNewValue = 0 in
   2717 class T_MType_mpy_ri <bit isNeg, Operand ImmOp, list<dag> pattern>
   2718   : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8),
   2719   "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" ,
   2720    pattern, "", M_tc_3x_SLOT23> {
   2721     bits<5> Rd;
   2722     bits<5> Rs;
   2723     bits<8> u8;
   2724 
   2725     let IClass = 0b1110;
   2726 
   2727     let Inst{27-24} = 0b0000;
   2728     let Inst{23} = isNeg;
   2729     let Inst{13} = 0b0;
   2730     let Inst{4-0} = Rd;
   2731     let Inst{20-16} = Rs;
   2732     let Inst{12-5} = u8;
   2733   }
   2734 
   2735 let isExtendable = 1, opExtentBits = 8, opExtendable = 2 in
   2736 def M2_mpysip : T_MType_mpy_ri <0, u8Ext,
   2737                 [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u32ImmPred:$u8))]>;
   2738 
   2739 def M2_mpysin :  T_MType_mpy_ri <1, u8Imm,
   2740                 [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs,
   2741                                                     u8ImmPred:$u8)))]>;
   2742 
   2743 // Assember mapped to M2_mpyi
   2744 let isAsmParserOnly = 1 in
   2745 def M2_mpyui : MInst<(outs IntRegs:$dst),
   2746                      (ins IntRegs:$src1, IntRegs:$src2),
   2747   "$dst = mpyui($src1, $src2)">;
   2748 
   2749 // Rd=mpyi(Rs,#m9)
   2750 // s9 is NOT the same as m9 - but it works.. so far.
   2751 // Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8)
   2752 // depending on the value of m9. See Arch Spec.
   2753 let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
   2754     CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1,
   2755     isAsmParserOnly = 1 in
   2756 def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
   2757     "$dst = mpyi($src1, #$src2)",
   2758     [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
   2759                                    s32ImmPred:$src2))]>, ImmRegRel;
   2760 
   2761 let hasNewValue = 1, isExtendable = 1,  opExtentBits = 8, opExtendable = 3,
   2762     InputType = "imm" in
   2763 class T_MType_acc_ri <string mnemonic, bits<3> MajOp, Operand ImmOp,
   2764                       list<dag> pattern = []>
   2765  : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3),
   2766   "$dst "#mnemonic#"($src2, #$src3)",
   2767   pattern, "$src1 = $dst", M_tc_2_SLOT23> {
   2768     bits<5> dst;
   2769     bits<5> src2;
   2770     bits<8> src3;
   2771 
   2772     let IClass = 0b1110;
   2773 
   2774     let Inst{27-26} = 0b00;
   2775     let Inst{25-23} = MajOp;
   2776     let Inst{20-16} = src2;
   2777     let Inst{13} = 0b0;
   2778     let Inst{12-5} = src3;
   2779     let Inst{4-0} = dst;
   2780   }
   2781 
   2782 let InputType = "reg", hasNewValue = 1 in
   2783 class T_MType_acc_rr <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   2784                       bit isSwap = 0, list<dag> pattern = [], bit hasNot = 0,
   2785                       bit isSat = 0, bit isShift = 0>
   2786   : MInst < (outs IntRegs:$dst),
   2787             (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
   2788   "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)")
   2789                           #!if(isShift, ":<<1", "")
   2790                           #!if(isSat, ":sat", ""),
   2791   pattern, "$src1 = $dst", M_tc_2_SLOT23 > {
   2792     bits<5> dst;
   2793     bits<5> src2;
   2794     bits<5> src3;
   2795 
   2796     let IClass = 0b1110;
   2797 
   2798     let Inst{27-24} = 0b1111;
   2799     let Inst{23-21} = MajOp;
   2800     let Inst{20-16} = !if(isSwap, src3, src2);
   2801     let Inst{13} = 0b0;
   2802     let Inst{12-8} = !if(isSwap, src2, src3);
   2803     let Inst{7-5} = MinOp;
   2804     let Inst{4-0} = dst;
   2805   }
   2806 
   2807 let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23 in {
   2808   def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext,
   2809                   [(set (i32 IntRegs:$dst),
   2810                         (add (mul IntRegs:$src2, u32ImmPred:$src3),
   2811                              IntRegs:$src1))]>, ImmRegRel;
   2812 
   2813   def M2_maci   : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0,
   2814                  [(set (i32 IntRegs:$dst),
   2815                        (add (mul IntRegs:$src2, IntRegs:$src3),
   2816                             IntRegs:$src1))]>, ImmRegRel;
   2817 }
   2818 
   2819 let CextOpcode = "ADD_acc" in {
   2820   let isExtentSigned = 1 in
   2821   def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext,
   2822                  [(set (i32 IntRegs:$dst),
   2823                        (add (add (i32 IntRegs:$src2), s32ImmPred:$src3),
   2824                             (i32 IntRegs:$src1)))]>, ImmRegRel;
   2825 
   2826   def M2_acci  : T_MType_acc_rr <"+= add",  0b000, 0b001, 0,
   2827                  [(set (i32 IntRegs:$dst),
   2828                        (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
   2829                             (i32 IntRegs:$src1)))]>, ImmRegRel;
   2830 }
   2831 
   2832 let CextOpcode = "SUB_acc" in {
   2833   let isExtentSigned = 1 in
   2834   def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel;
   2835 
   2836   def M2_nacci  : T_MType_acc_rr <"-= add",  0b100, 0b001, 0>, ImmRegRel;
   2837 }
   2838 
   2839 let Itinerary = M_tc_3x_SLOT23 in
   2840 def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>;
   2841 
   2842 def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>;
   2843 def M2_subacc : T_MType_acc_rr <"+= sub",  0b000, 0b011, 1>;
   2844 
   2845 class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp,
   2846                         PatLeaf ImmPred>
   2847   : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)),
   2848          (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>;
   2849 
   2850 class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp>
   2851   : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))),
   2852          (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   2853 
   2854 def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>;
   2855 def : T_MType_acc_pat1 <M2_macsin, mul, sub, u32ImmPred>;
   2856 
   2857 def : T_MType_acc_pat1 <M2_naccii, add, sub, s32ImmPred>;
   2858 def : T_MType_acc_pat2 <M2_nacci, add, sub>;
   2859 
   2860 //===----------------------------------------------------------------------===//
   2861 // Template Class -- XType Vector Instructions
   2862 //===----------------------------------------------------------------------===//
   2863 class T_XTYPE_Vect < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
   2864   : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
   2865   "$Rdd = "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
   2866   [] > {
   2867     bits<5> Rdd;
   2868     bits<5> Rss;
   2869     bits<5> Rtt;
   2870 
   2871     let IClass = 0b1110;
   2872 
   2873     let Inst{27-24} = 0b1000;
   2874     let Inst{23-21} = MajOp;
   2875     let Inst{7-5} = MinOp;
   2876     let Inst{4-0} = Rdd;
   2877     let Inst{20-16} = Rss;
   2878     let Inst{12-8} = Rtt;
   2879   }
   2880 
   2881 class T_XTYPE_Vect_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
   2882   : MInst <(outs DoubleRegs:$Rdd),
   2883            (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
   2884   "$Rdd += "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
   2885   [], "$dst2 = $Rdd",M_tc_3x_SLOT23 > {
   2886     bits<5> Rdd;
   2887     bits<5> Rss;
   2888     bits<5> Rtt;
   2889 
   2890     let IClass = 0b1110;
   2891 
   2892     let Inst{27-24} = 0b1010;
   2893     let Inst{23-21} = MajOp;
   2894     let Inst{7-5} = MinOp;
   2895     let Inst{4-0} = Rdd;
   2896     let Inst{20-16} = Rss;
   2897     let Inst{12-8} = Rtt;
   2898   }
   2899 
   2900 class T_XTYPE_Vect_diff < bits<3> MajOp, string opc >
   2901   : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rtt, DoubleRegs:$Rss),
   2902   "$Rdd = "#opc#"($Rtt, $Rss)",
   2903   [], "",M_tc_2_SLOT23 > {
   2904     bits<5> Rdd;
   2905     bits<5> Rss;
   2906     bits<5> Rtt;
   2907 
   2908     let IClass = 0b1110;
   2909 
   2910     let Inst{27-24} = 0b1000;
   2911     let Inst{23-21} = MajOp;
   2912     let Inst{7-5} = 0b000;
   2913     let Inst{4-0} = Rdd;
   2914     let Inst{20-16} = Rss;
   2915     let Inst{12-8} = Rtt;
   2916   }
   2917 
   2918 // Vector reduce add unsigned bytes: Rdd32=vrmpybu(Rss32,Rtt32)
   2919 def A2_vraddub: T_XTYPE_Vect <"vraddub", 0b010, 0b001, 0>;
   2920 def A2_vraddub_acc: T_XTYPE_Vect_acc <"vraddub", 0b010, 0b001, 0>;
   2921 
   2922 // Vector sum of absolute differences unsigned bytes: Rdd=vrsadub(Rss,Rtt)
   2923 def A2_vrsadub: T_XTYPE_Vect <"vrsadub", 0b010, 0b010, 0>;
   2924 def A2_vrsadub_acc: T_XTYPE_Vect_acc <"vrsadub", 0b010, 0b010, 0>;
   2925 
   2926 // Vector absolute difference: Rdd=vabsdiffh(Rtt,Rss)
   2927 def M2_vabsdiffh: T_XTYPE_Vect_diff<0b011, "vabsdiffh">;
   2928 
   2929 // Vector absolute difference words: Rdd=vabsdiffw(Rtt,Rss)
   2930 def M2_vabsdiffw: T_XTYPE_Vect_diff<0b001, "vabsdiffw">;
   2931 
   2932 // Vector reduce complex multiply real or imaginary:
   2933 // Rdd[+]=vrcmpy[ir](Rss,Rtt[*])
   2934 def M2_vrcmpyi_s0:  T_XTYPE_Vect <"vrcmpyi", 0b000, 0b000, 0>;
   2935 def M2_vrcmpyi_s0c: T_XTYPE_Vect <"vrcmpyi", 0b010, 0b000, 1>;
   2936 def M2_vrcmaci_s0:  T_XTYPE_Vect_acc <"vrcmpyi", 0b000, 0b000, 0>;
   2937 def M2_vrcmaci_s0c: T_XTYPE_Vect_acc <"vrcmpyi", 0b010, 0b000, 1>;
   2938 
   2939 def M2_vrcmpyr_s0:  T_XTYPE_Vect <"vrcmpyr", 0b000, 0b001, 0>;
   2940 def M2_vrcmpyr_s0c: T_XTYPE_Vect <"vrcmpyr", 0b011, 0b001, 1>;
   2941 def M2_vrcmacr_s0:  T_XTYPE_Vect_acc <"vrcmpyr", 0b000, 0b001, 0>;
   2942 def M2_vrcmacr_s0c: T_XTYPE_Vect_acc <"vrcmpyr", 0b011, 0b001, 1>;
   2943 
   2944 // Vector reduce halfwords:
   2945 // Rdd[+]=vrmpyh(Rss,Rtt)
   2946 def M2_vrmpy_s0: T_XTYPE_Vect <"vrmpyh", 0b000, 0b010, 0>;
   2947 def M2_vrmac_s0: T_XTYPE_Vect_acc <"vrmpyh", 0b000, 0b010, 0>;
   2948 
   2949 //===----------------------------------------------------------------------===//
   2950 // Template Class -- Vector Multipy with accumulation.
   2951 // Used for complex multiply real or imaginary, dual multiply and even halfwords
   2952 //===----------------------------------------------------------------------===//
   2953 let Defs = [USR_OVF] in
   2954 class T_M2_vmpy_acc_sat < string opc, bits<3> MajOp, bits<3> MinOp,
   2955                           bit hasShift, bit isRnd >
   2956   : MInst <(outs DoubleRegs:$Rxx),
   2957            (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
   2958   "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
   2959                                #!if(isRnd,":rnd","")#":sat",
   2960   [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
   2961     bits<5> Rxx;
   2962     bits<5> Rss;
   2963     bits<5> Rtt;
   2964 
   2965     let IClass = 0b1110;
   2966 
   2967     let Inst{27-24} = 0b1010;
   2968     let Inst{23-21} = MajOp;
   2969     let Inst{7-5} = MinOp;
   2970     let Inst{4-0} = Rxx;
   2971     let Inst{20-16} = Rss;
   2972     let Inst{12-8} = Rtt;
   2973   }
   2974 
   2975 class T_M2_vmpy_acc < string opc, bits<3> MajOp, bits<3> MinOp,
   2976                       bit hasShift, bit isRnd >
   2977   : MInst <(outs DoubleRegs:$Rxx),
   2978            (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
   2979   "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
   2980                                #!if(isRnd,":rnd",""),
   2981   [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
   2982     bits<5> Rxx;
   2983     bits<5> Rss;
   2984     bits<5> Rtt;
   2985 
   2986     let IClass = 0b1110;
   2987 
   2988     let Inst{27-24} = 0b1010;
   2989     let Inst{23-21} = MajOp;
   2990     let Inst{7-5} = MinOp;
   2991     let Inst{4-0} = Rxx;
   2992     let Inst{20-16} = Rss;
   2993     let Inst{12-8} = Rtt;
   2994   }
   2995 
   2996 // Vector multiply word by signed half with accumulation
   2997 // Rxx+=vmpyw[eo]h(Rss,Rtt)[:<<1][:rnd]:sat
   2998 def M2_mmacls_s1:  T_M2_vmpy_acc_sat <"vmpyweh", 0b100, 0b101, 1, 0>;
   2999 def M2_mmacls_s0:  T_M2_vmpy_acc_sat <"vmpyweh", 0b000, 0b101, 0, 0>;
   3000 def M2_mmacls_rs1: T_M2_vmpy_acc_sat <"vmpyweh", 0b101, 0b101, 1, 1>;
   3001 def M2_mmacls_rs0: T_M2_vmpy_acc_sat <"vmpyweh", 0b001, 0b101, 0, 1>;
   3002 
   3003 def M2_mmachs_s1:  T_M2_vmpy_acc_sat <"vmpywoh", 0b100, 0b111, 1, 0>;
   3004 def M2_mmachs_s0:  T_M2_vmpy_acc_sat <"vmpywoh", 0b000, 0b111, 0, 0>;
   3005 def M2_mmachs_rs1: T_M2_vmpy_acc_sat <"vmpywoh", 0b101, 0b111, 1, 1>;
   3006 def M2_mmachs_rs0: T_M2_vmpy_acc_sat <"vmpywoh", 0b001, 0b111, 0, 1>;
   3007 
   3008 // Vector multiply word by unsigned half with accumulation
   3009 // Rxx+=vmpyw[eo]uh(Rss,Rtt)[:<<1][:rnd]:sat
   3010 def M2_mmaculs_s1:  T_M2_vmpy_acc_sat <"vmpyweuh", 0b110, 0b101, 1, 0>;
   3011 def M2_mmaculs_s0:  T_M2_vmpy_acc_sat <"vmpyweuh", 0b010, 0b101, 0, 0>;
   3012 def M2_mmaculs_rs1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b111, 0b101, 1, 1>;
   3013 def M2_mmaculs_rs0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b011, 0b101, 0, 1>;
   3014 
   3015 def M2_mmacuhs_s1:  T_M2_vmpy_acc_sat <"vmpywouh", 0b110, 0b111, 1, 0>;
   3016 def M2_mmacuhs_s0:  T_M2_vmpy_acc_sat <"vmpywouh", 0b010, 0b111, 0, 0>;
   3017 def M2_mmacuhs_rs1: T_M2_vmpy_acc_sat <"vmpywouh", 0b111, 0b111, 1, 1>;
   3018 def M2_mmacuhs_rs0: T_M2_vmpy_acc_sat <"vmpywouh", 0b011, 0b111, 0, 1>;
   3019 
   3020 // Vector multiply even halfwords with accumulation
   3021 // Rxx+=vmpyeh(Rss,Rtt)[:<<1][:sat]
   3022 def M2_vmac2es:    T_M2_vmpy_acc     <"vmpyeh", 0b001, 0b010, 0, 0>;
   3023 def M2_vmac2es_s1: T_M2_vmpy_acc_sat <"vmpyeh", 0b100, 0b110, 1, 0>;
   3024 def M2_vmac2es_s0: T_M2_vmpy_acc_sat <"vmpyeh", 0b000, 0b110, 0, 0>;
   3025 
   3026 // Vector dual multiply with accumulation
   3027 // Rxx+=vdmpy(Rss,Rtt)[:sat]
   3028 def M2_vdmacs_s1: T_M2_vmpy_acc_sat <"vdmpy", 0b100, 0b100, 1, 0>;
   3029 def M2_vdmacs_s0: T_M2_vmpy_acc_sat <"vdmpy", 0b000, 0b100, 0, 0>;
   3030 
   3031 // Vector complex multiply real or imaginary with accumulation
   3032 // Rxx+=vcmpy[ir](Rss,Rtt):sat
   3033 def M2_vcmac_s0_sat_r: T_M2_vmpy_acc_sat <"vcmpyr", 0b001, 0b100, 0, 0>;
   3034 def M2_vcmac_s0_sat_i: T_M2_vmpy_acc_sat <"vcmpyi", 0b010, 0b100, 0, 0>;
   3035 
   3036 //===----------------------------------------------------------------------===//
   3037 // Template Class -- Multiply signed/unsigned halfwords with and without
   3038 // saturation and rounding
   3039 //===----------------------------------------------------------------------===//
   3040 class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned >
   3041   : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt),
   3042   "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
   3043                                        #", $Rt."#!if(LHbits{0},"h)","l)")
   3044                                        #!if(hasShift,":<<1","")
   3045                                        #!if(isRnd,":rnd",""),
   3046   [] > {
   3047     bits<5> Rdd;
   3048     bits<5> Rs;
   3049     bits<5> Rt;
   3050 
   3051     let IClass = 0b1110;
   3052 
   3053     let Inst{27-24} = 0b0100;
   3054     let Inst{23} = hasShift;
   3055     let Inst{22} = isUnsigned;
   3056     let Inst{21} = isRnd;
   3057     let Inst{6-5} = LHbits;
   3058     let Inst{4-0} = Rdd;
   3059     let Inst{20-16} = Rs;
   3060     let Inst{12-8} = Rt;
   3061 }
   3062 
   3063 def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>;
   3064 def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>;
   3065 def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>;
   3066 def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>;
   3067 
   3068 def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>;
   3069 def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>;
   3070 def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>;
   3071 def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>;
   3072 
   3073 def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>;
   3074 def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>;
   3075 def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>;
   3076 def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>;
   3077 
   3078 def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>;
   3079 def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>;
   3080 def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>;
   3081 def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>;
   3082 
   3083 //Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1]
   3084 def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>;
   3085 def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>;
   3086 def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>;
   3087 def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>;
   3088 
   3089 def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>;
   3090 def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>;
   3091 def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>;
   3092 def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>;
   3093 
   3094 //===----------------------------------------------------------------------===//
   3095 // Template Class for xtype mpy:
   3096 // Vector multiply
   3097 // Complex multiply
   3098 // multiply 32X32 and use full result
   3099 //===----------------------------------------------------------------------===//
   3100 let hasSideEffects = 0 in
   3101 class T_XTYPE_mpy64 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   3102                      bit isSat, bit hasShift, bit isConj>
   3103    : MInst <(outs DoubleRegs:$Rdd),
   3104             (ins IntRegs:$Rs, IntRegs:$Rt),
   3105   "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")")
   3106                                 #!if(hasShift,":<<1","")
   3107                                 #!if(isSat,":sat",""),
   3108   [] > {
   3109     bits<5> Rdd;
   3110     bits<5> Rs;
   3111     bits<5> Rt;
   3112 
   3113     let IClass = 0b1110;
   3114 
   3115     let Inst{27-24} = 0b0101;
   3116     let Inst{23-21} = MajOp;
   3117     let Inst{20-16} = Rs;
   3118     let Inst{12-8} = Rt;
   3119     let Inst{7-5} = MinOp;
   3120     let Inst{4-0} = Rdd;
   3121   }
   3122 
   3123 //===----------------------------------------------------------------------===//
   3124 // Template Class for xtype mpy with accumulation into 64-bit:
   3125 // Vector multiply
   3126 // Complex multiply
   3127 // multiply 32X32 and use full result
   3128 //===----------------------------------------------------------------------===//
   3129 class T_XTYPE_mpy64_acc <string op1, string op2, bits<3> MajOp, bits<3> MinOp,
   3130                          bit isSat, bit hasShift, bit isConj>
   3131   : MInst <(outs DoubleRegs:$Rxx),
   3132            (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
   3133   "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")")
   3134                                    #!if(hasShift,":<<1","")
   3135                                    #!if(isSat,":sat",""),
   3136 
   3137   [] , "$dst2 = $Rxx" > {
   3138     bits<5> Rxx;
   3139     bits<5> Rs;
   3140     bits<5> Rt;
   3141 
   3142     let IClass = 0b1110;
   3143 
   3144     let Inst{27-24} = 0b0111;
   3145     let Inst{23-21} = MajOp;
   3146     let Inst{20-16} = Rs;
   3147     let Inst{12-8} = Rt;
   3148     let Inst{7-5} = MinOp;
   3149     let Inst{4-0} = Rxx;
   3150   }
   3151 
   3152 // MPY - Multiply and use full result
   3153 // Rdd = mpy[u](Rs,Rt)
   3154 def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>;
   3155 def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>;
   3156 
   3157 // Rxx[+-]= mpy[u](Rs,Rt)
   3158 def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy",  "+", 0b000, 0b000, 0, 0, 0>;
   3159 def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy",  "-", 0b001, 0b000, 0, 0, 0>;
   3160 def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>;
   3161 def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>;
   3162 
   3163 // Complex multiply real or imaginary
   3164 // Rxx=cmpy[ir](Rs,Rt)
   3165 def M2_cmpyi_s0 : T_XTYPE_mpy64 < "cmpyi", 0b000, 0b001, 0, 0, 0>;
   3166 def M2_cmpyr_s0 : T_XTYPE_mpy64 < "cmpyr", 0b000, 0b010, 0, 0, 0>;
   3167 
   3168 // Rxx+=cmpy[ir](Rs,Rt)
   3169 def M2_cmaci_s0 : T_XTYPE_mpy64_acc < "cmpyi", "+", 0b000, 0b001, 0, 0, 0>;
   3170 def M2_cmacr_s0 : T_XTYPE_mpy64_acc < "cmpyr", "+", 0b000, 0b010, 0, 0, 0>;
   3171 
   3172 // Complex multiply
   3173 // Rdd=cmpy(Rs,Rt)[:<<]:sat
   3174 def M2_cmpys_s0 : T_XTYPE_mpy64 < "cmpy", 0b000, 0b110, 1, 0, 0>;
   3175 def M2_cmpys_s1 : T_XTYPE_mpy64 < "cmpy", 0b100, 0b110, 1, 1, 0>;
   3176 
   3177 // Rdd=cmpy(Rs,Rt*)[:<<]:sat
   3178 def M2_cmpysc_s0 : T_XTYPE_mpy64 < "cmpy", 0b010, 0b110, 1, 0, 1>;
   3179 def M2_cmpysc_s1 : T_XTYPE_mpy64 < "cmpy", 0b110, 0b110, 1, 1, 1>;
   3180 
   3181 // Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat
   3182 def M2_cmacs_s0  : T_XTYPE_mpy64_acc < "cmpy", "+", 0b000, 0b110, 1, 0, 0>;
   3183 def M2_cnacs_s0  : T_XTYPE_mpy64_acc < "cmpy", "-", 0b000, 0b111, 1, 0, 0>;
   3184 def M2_cmacs_s1  : T_XTYPE_mpy64_acc < "cmpy", "+", 0b100, 0b110, 1, 1, 0>;
   3185 def M2_cnacs_s1  : T_XTYPE_mpy64_acc < "cmpy", "-", 0b100, 0b111, 1, 1, 0>;
   3186 
   3187 // Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat
   3188 def M2_cmacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b010, 0b110, 1, 0, 1>;
   3189 def M2_cnacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b010, 0b111, 1, 0, 1>;
   3190 def M2_cmacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b110, 0b110, 1, 1, 1>;
   3191 def M2_cnacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b110, 0b111, 1, 1, 1>;
   3192 
   3193 // Vector multiply halfwords
   3194 // Rdd=vmpyh(Rs,Rt)[:<<]:sat
   3195 //let Defs = [USR_OVF] in {
   3196   def M2_vmpy2s_s1 : T_XTYPE_mpy64 < "vmpyh", 0b100, 0b101, 1, 1, 0>;
   3197   def M2_vmpy2s_s0 : T_XTYPE_mpy64 < "vmpyh", 0b000, 0b101, 1, 0, 0>;
   3198 //}
   3199 
   3200 // Rxx+=vmpyh(Rs,Rt)[:<<1][:sat]
   3201 def M2_vmac2     : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b001, 0b001, 0, 0, 0>;
   3202 def M2_vmac2s_s1 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b100, 0b101, 1, 1, 0>;
   3203 def M2_vmac2s_s0 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b000, 0b101, 1, 0, 0>;
   3204 
   3205 def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))),
   3206                    (i64 (anyext (i32 IntRegs:$src2))))),
   3207          (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>;
   3208 
   3209 def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))),
   3210                    (i64 (sext (i32 IntRegs:$src2))))),
   3211          (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>;
   3212 
   3213 def: Pat<(i64 (mul (is_sext_i32:$src1),
   3214                    (is_sext_i32:$src2))),
   3215          (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>;
   3216 
   3217 // Multiply and accumulate, use full result.
   3218 // Rxx[+-]=mpy(Rs,Rt)
   3219 
   3220 def: Pat<(i64 (add (i64 DoubleRegs:$src1),
   3221                    (mul (i64 (sext (i32 IntRegs:$src2))),
   3222                         (i64 (sext (i32 IntRegs:$src3)))))),
   3223          (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3224 
   3225 def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
   3226                    (mul (i64 (sext (i32 IntRegs:$src2))),
   3227                         (i64 (sext (i32 IntRegs:$src3)))))),
   3228          (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3229 
   3230 def: Pat<(i64 (add (i64 DoubleRegs:$src1),
   3231                    (mul (i64 (anyext (i32 IntRegs:$src2))),
   3232                         (i64 (anyext (i32 IntRegs:$src3)))))),
   3233          (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3234 
   3235 def: Pat<(i64 (add (i64 DoubleRegs:$src1),
   3236                    (mul (i64 (zext (i32 IntRegs:$src2))),
   3237                         (i64 (zext (i32 IntRegs:$src3)))))),
   3238          (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3239 
   3240 def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
   3241                    (mul (i64 (anyext (i32 IntRegs:$src2))),
   3242                         (i64 (anyext (i32 IntRegs:$src3)))))),
   3243          (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3244 
   3245 def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
   3246                    (mul (i64 (zext (i32 IntRegs:$src2))),
   3247                         (i64 (zext (i32 IntRegs:$src3)))))),
   3248          (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
   3249 
   3250 //===----------------------------------------------------------------------===//
   3251 // MTYPE/MPYH -
   3252 //===----------------------------------------------------------------------===//
   3253 
   3254 //===----------------------------------------------------------------------===//
   3255 // MTYPE/MPYS +
   3256 //===----------------------------------------------------------------------===//
   3257 //===----------------------------------------------------------------------===//
   3258 // MTYPE/MPYS -
   3259 //===----------------------------------------------------------------------===//
   3260 
   3261 //===----------------------------------------------------------------------===//
   3262 // MTYPE/VB +
   3263 //===----------------------------------------------------------------------===//
   3264 //===----------------------------------------------------------------------===//
   3265 // MTYPE/VB -
   3266 //===----------------------------------------------------------------------===//
   3267 
   3268 //===----------------------------------------------------------------------===//
   3269 // MTYPE/VH  +
   3270 //===----------------------------------------------------------------------===//
   3271 //===----------------------------------------------------------------------===//
   3272 // MTYPE/VH  -
   3273 //===----------------------------------------------------------------------===//
   3274 
   3275 //===----------------------------------------------------------------------===//
   3276 // ST +
   3277 //===----------------------------------------------------------------------===//
   3278 ///
   3279 // Store doubleword.
   3280 //===----------------------------------------------------------------------===//
   3281 // Template class for non-predicated post increment stores with immediate offset
   3282 //===----------------------------------------------------------------------===//
   3283 let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in
   3284 class T_store_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
   3285                  bits<4> MajOp, bit isHalf >
   3286   : STInst <(outs IntRegs:$_dst_),
   3287             (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
   3288   mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""),
   3289   [], "$src1 = $_dst_" >,
   3290   AddrModeRel {
   3291     bits<5> src1;
   3292     bits<5> src2;
   3293     bits<7> offset;
   3294     bits<4> offsetBits;
   3295 
   3296     string ImmOpStr = !cast<string>(ImmOp);
   3297     let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
   3298                      !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
   3299                      !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
   3300                                       /* s4_0Imm */ offset{3-0})));
   3301     // Store upper-half and store doubleword cannot be NV.
   3302     let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, !if(isHalf,0,1));
   3303 
   3304     let IClass = 0b1010;
   3305 
   3306     let Inst{27-25} = 0b101;
   3307     let Inst{24-21} = MajOp;
   3308     let Inst{20-16} = src1;
   3309     let Inst{13}    = 0b0;
   3310     let Inst{12-8}  = src2;
   3311     let Inst{7}     = 0b0;
   3312     let Inst{6-3}   = offsetBits;
   3313     let Inst{1}     = 0b0;
   3314   }
   3315 
   3316 //===----------------------------------------------------------------------===//
   3317 // Template class for predicated post increment stores with immediate offset
   3318 //===----------------------------------------------------------------------===//
   3319 let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
   3320 class T_pstore_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
   3321                    bits<4> MajOp, bit isHalf, bit isPredNot, bit isPredNew>
   3322   : STInst <(outs IntRegs:$_dst_),
   3323             (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
   3324   !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   3325   ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""),
   3326   [], "$src2 = $_dst_" >,
   3327   AddrModeRel {
   3328     bits<2> src1;
   3329     bits<5> src2;
   3330     bits<7> offset;
   3331     bits<5> src3;
   3332     bits<4> offsetBits;
   3333 
   3334     string ImmOpStr = !cast<string>(ImmOp);
   3335     let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
   3336                      !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
   3337                      !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
   3338                                       /* s4_0Imm */ offset{3-0})));
   3339 
   3340     // Store upper-half and store doubleword cannot be NV.
   3341     let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, !if(isHalf,0,1));
   3342     let isPredicatedNew = isPredNew;
   3343     let isPredicatedFalse = isPredNot;
   3344 
   3345     let IClass = 0b1010;
   3346 
   3347     let Inst{27-25} = 0b101;
   3348     let Inst{24-21} = MajOp;
   3349     let Inst{20-16} = src2;
   3350     let Inst{13} = 0b1;
   3351     let Inst{12-8} = src3;
   3352     let Inst{7} = isPredNew;
   3353     let Inst{6-3} = offsetBits;
   3354     let Inst{2} = isPredNot;
   3355     let Inst{1-0} = src1;
   3356   }
   3357 
   3358 multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
   3359                       Operand ImmOp, bits<4> MajOp, bit isHalf = 0 > {
   3360 
   3361   let BaseOpcode = "POST_"#BaseOp in {
   3362     def S2_#NAME#_pi : T_store_pi <mnemonic, RC, ImmOp, MajOp, isHalf>;
   3363 
   3364     // Predicated
   3365     def S2_p#NAME#t_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 0, 0>;
   3366     def S2_p#NAME#f_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 1, 0>;
   3367 
   3368     // Predicated new
   3369     def S2_p#NAME#tnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
   3370                                           isHalf, 0, 1>;
   3371     def S2_p#NAME#fnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
   3372                                           isHalf, 1, 1>;
   3373   }
   3374 }
   3375 
   3376 let accessSize = ByteAccess in
   3377 defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>;
   3378 
   3379 let accessSize = HalfWordAccess in
   3380 defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>;
   3381 
   3382 let accessSize = WordAccess in
   3383 defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>;
   3384 
   3385 let accessSize = DoubleWordAccess in
   3386 defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>;
   3387 
   3388 let accessSize = HalfWordAccess, isNVStorable = 0 in
   3389 defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>;
   3390 
   3391 class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset,
   3392                   InstHexagon MI>
   3393   : Pat<(Store Value:$src1, I32:$src2, Offset:$offset),
   3394         (MI I32:$src2, imm:$offset, Value:$src1)>;
   3395 
   3396 def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
   3397 def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
   3398 def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
   3399 def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
   3400 
   3401 //===----------------------------------------------------------------------===//
   3402 // Template class for post increment stores with register offset.
   3403 //===----------------------------------------------------------------------===//
   3404 class T_store_pr <string mnemonic, RegisterClass RC, bits<3> MajOp,
   3405                      MemAccessSize AccessSz, bit isHalf = 0>
   3406   : STInst <(outs IntRegs:$_dst_),
   3407             (ins IntRegs:$src1, ModRegs:$src2, RC:$src3),
   3408   mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""),
   3409   [], "$src1 = $_dst_" > {
   3410     bits<5> src1;
   3411     bits<1> src2;
   3412     bits<5> src3;
   3413     let accessSize = AccessSz;
   3414 
   3415     // Store upper-half and store doubleword cannot be NV.
   3416     let isNVStorable = !if(!eq(mnemonic,"memd"), 0, !if(isHalf,0,1));
   3417 
   3418     let IClass = 0b1010;
   3419 
   3420     let Inst{27-24} = 0b1101;
   3421     let Inst{23-21} = MajOp;
   3422     let Inst{20-16} = src1;
   3423     let Inst{13} = src2;
   3424     let Inst{12-8} = src3;
   3425     let Inst{7} = 0b0;
   3426   }
   3427 
   3428 def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>;
   3429 def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>;
   3430 def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>;
   3431 def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>;
   3432 def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>;
   3433 
   3434 let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
   3435 class T_store_io <string mnemonic, RegisterClass RC, Operand ImmOp,
   3436                   bits<3> MajOp, bit isH = 0>
   3437   : STInst <(outs),
   3438             (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
   3439   mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>,
   3440   AddrModeRel, ImmRegRel {
   3441     bits<5> src1;
   3442     bits<14> src2; // Actual address offset
   3443     bits<5> src3;
   3444     bits<11> offsetBits; // Represents offset encoding
   3445 
   3446     string ImmOpStr = !cast<string>(ImmOp);
   3447 
   3448     let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
   3449                        !if (!eq(ImmOpStr, "s11_2Ext"), 13,
   3450                        !if (!eq(ImmOpStr, "s11_1Ext"), 12,
   3451                                         /* s11_0Ext */ 11)));
   3452     let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3},
   3453                      !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2},
   3454                      !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1},
   3455                                       /* s11_0Ext */ src2{10-0})));
   3456     // Store upper-half and store doubleword cannot be NV.
   3457     let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
   3458     let IClass = 0b1010;
   3459 
   3460     let Inst{27} = 0b0;
   3461     let Inst{26-25} = offsetBits{10-9};
   3462     let Inst{24} = 0b1;
   3463     let Inst{23-21} = MajOp;
   3464     let Inst{20-16} = src1;
   3465     let Inst{13} = offsetBits{8};
   3466     let Inst{12-8} = src3;
   3467     let Inst{7-0} = offsetBits{7-0};
   3468   }
   3469 
   3470 let opExtendable = 2, isPredicated = 1 in
   3471 class T_pstore_io <string mnemonic, RegisterClass RC, Operand ImmOp,
   3472                    bits<3>MajOp, bit PredNot, bit isPredNew, bit isH = 0>
   3473   : STInst <(outs),
   3474             (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4),
   3475   !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
   3476   ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""),
   3477   [],"",V2LDST_tc_st_SLOT01 >,
   3478    AddrModeRel, ImmRegRel {
   3479     bits<2> src1;
   3480     bits<5> src2;
   3481     bits<9> src3; // Actual address offset
   3482     bits<5> src4;
   3483     bits<6> offsetBits; // Represents offset encoding
   3484 
   3485     let isPredicatedNew = isPredNew;
   3486     let isPredicatedFalse = PredNot;
   3487 
   3488     string ImmOpStr = !cast<string>(ImmOp);
   3489     let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
   3490                        !if (!eq(ImmOpStr, "u6_2Ext"), 8,
   3491                        !if (!eq(ImmOpStr, "u6_1Ext"), 7,
   3492                                         /* u6_0Ext */ 6)));
   3493     let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3},
   3494                      !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2},
   3495                      !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1},
   3496                                       /* u6_0Ext */ src3{5-0})));
   3497     // Store upper-half and store doubleword cannot be NV.
   3498     let isNVStorable = !if (!eq(mnemonic, "memd"), 0, !if(isH,0,1));
   3499 
   3500     let IClass = 0b0100;
   3501 
   3502     let Inst{27} = 0b0;
   3503     let Inst{26} = PredNot;
   3504     let Inst{25} = isPredNew;
   3505     let Inst{24} = 0b0;
   3506     let Inst{23-21} = MajOp;
   3507     let Inst{20-16} = src2;
   3508     let Inst{13} = offsetBits{5};
   3509     let Inst{12-8} = src4;
   3510     let Inst{7-3} = offsetBits{4-0};
   3511     let Inst{1-0} = src1;
   3512   }
   3513 
   3514 let isExtendable = 1, hasSideEffects = 0 in
   3515 multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
   3516                  Operand ImmOp, Operand predImmOp, bits<3> MajOp, bit isH = 0> {
   3517   let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
   3518     def S2_#NAME#_io : T_store_io <mnemonic, RC, ImmOp, MajOp, isH>;
   3519 
   3520     // Predicated
   3521     def S2_p#NAME#t_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 0, 0, isH>;
   3522     def S2_p#NAME#f_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 1, 0, isH>;
   3523 
   3524     // Predicated new
   3525     def S4_p#NAME#tnew_io : T_pstore_io <mnemonic, RC, predImmOp,
   3526                                          MajOp, 0, 1, isH>;
   3527     def S4_p#NAME#fnew_io : T_pstore_io <mnemonic, RC, predImmOp,
   3528                                          MajOp, 1, 1, isH>;
   3529   }
   3530 }
   3531 
   3532 let addrMode = BaseImmOffset, InputType = "imm" in {
   3533   let accessSize = ByteAccess in
   3534     defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>;
   3535 
   3536   let accessSize = HalfWordAccess, opExtentAlign = 1 in
   3537     defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>;
   3538 
   3539   let accessSize = WordAccess, opExtentAlign = 2 in
   3540     defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>;
   3541 
   3542   let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in
   3543     defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
   3544                             u6_3Ext, 0b110>;
   3545 
   3546   let accessSize = HalfWordAccess, opExtentAlign = 1 in
   3547     defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext,
   3548                             u6_1Ext, 0b011, 1>;
   3549 }
   3550 
   3551 // Patterns for generating stores, where the address takes different forms:
   3552 // - frameindex,
   3553 // - frameindex + offset,
   3554 // - base + offset,
   3555 // - simple (base address without offset).
   3556 // These would usually be used together (via Storex_pat defined below), but
   3557 // in some cases one may want to apply different properties (such as
   3558 // AddedComplexity) to the individual patterns.
   3559 class Storex_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
   3560   : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
   3561 class Storex_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
   3562                         InstHexagon MI>
   3563   : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
   3564         (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
   3565 class Storex_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
   3566                      InstHexagon MI>
   3567   : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
   3568         (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
   3569 class Storex_simple_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
   3570   : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
   3571         (MI IntRegs:$Rs, 0, Value:$Rt)>;
   3572 
   3573 // Patterns for generating stores, where the address takes different forms,
   3574 // and where the value being stored is transformed through the value modifier
   3575 // ValueMod.  The address forms are same as above.
   3576 class Storexm_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
   3577                      InstHexagon MI>
   3578   : Pat<(Store Value:$Rs, AddrFI:$fi),
   3579         (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
   3580 class Storexm_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
   3581                          PatFrag ValueMod, InstHexagon MI>
   3582   : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
   3583         (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
   3584 class Storexm_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
   3585                       PatFrag ValueMod, InstHexagon MI>
   3586   : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
   3587         (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
   3588 class Storexm_simple_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
   3589                          InstHexagon MI>
   3590   : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
   3591         (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
   3592 
   3593 multiclass Storex_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
   3594                       InstHexagon MI> {
   3595   def: Storex_fi_pat     <Store, Value,          MI>;
   3596   def: Storex_fi_add_pat <Store, Value, ImmPred, MI>;
   3597   def: Storex_add_pat    <Store, Value, ImmPred, MI>;
   3598 }
   3599 
   3600 multiclass Storexm_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
   3601                        PatFrag ValueMod, InstHexagon MI> {
   3602   def: Storexm_fi_pat     <Store, Value,          ValueMod, MI>;
   3603   def: Storexm_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
   3604   def: Storexm_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
   3605 }
   3606 
   3607 // Regular stores in the DAG have two operands: value and address.
   3608 // Atomic stores also have two, but they are reversed: address, value.
   3609 // To use atomic stores with the patterns, they need to have their operands
   3610 // swapped. This relies on the knowledge that the F.Fragment uses names
   3611 // "ptr" and "val".
   3612 class SwapSt<PatFrag F>
   3613   : PatFrag<(ops node:$val, node:$ptr), F.Fragment>;
   3614 
   3615 let AddedComplexity = 20 in {
   3616   defm: Storex_pat<truncstorei8,    I32, s32_0ImmPred, S2_storerb_io>;
   3617   defm: Storex_pat<truncstorei16,   I32, s31_1ImmPred, S2_storerh_io>;
   3618   defm: Storex_pat<store,           I32, s30_2ImmPred, S2_storeri_io>;
   3619   defm: Storex_pat<store,           I64, s29_3ImmPred, S2_storerd_io>;
   3620 
   3621   defm: Storex_pat<SwapSt<atomic_store_8>,  I32, s32_0ImmPred, S2_storerb_io>;
   3622   defm: Storex_pat<SwapSt<atomic_store_16>, I32, s31_1ImmPred, S2_storerh_io>;
   3623   defm: Storex_pat<SwapSt<atomic_store_32>, I32, s30_2ImmPred, S2_storeri_io>;
   3624   defm: Storex_pat<SwapSt<atomic_store_64>, I64, s29_3ImmPred, S2_storerd_io>;
   3625 }
   3626 
   3627 // Simple patterns should be tried with the least priority.
   3628 def: Storex_simple_pat<truncstorei8,    I32, S2_storerb_io>;
   3629 def: Storex_simple_pat<truncstorei16,   I32, S2_storerh_io>;
   3630 def: Storex_simple_pat<store,           I32, S2_storeri_io>;
   3631 def: Storex_simple_pat<store,           I64, S2_storerd_io>;
   3632 
   3633 def: Storex_simple_pat<SwapSt<atomic_store_8>,  I32, S2_storerb_io>;
   3634 def: Storex_simple_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>;
   3635 def: Storex_simple_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>;
   3636 def: Storex_simple_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>;
   3637 
   3638 let AddedComplexity = 20 in {
   3639   defm: Storexm_pat<truncstorei8,  I64, s32_0ImmPred, LoReg, S2_storerb_io>;
   3640   defm: Storexm_pat<truncstorei16, I64, s31_1ImmPred, LoReg, S2_storerh_io>;
   3641   defm: Storexm_pat<truncstorei32, I64, s30_2ImmPred, LoReg, S2_storeri_io>;
   3642 }
   3643 
   3644 def: Storexm_simple_pat<truncstorei8,  I64, LoReg, S2_storerb_io>;
   3645 def: Storexm_simple_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
   3646 def: Storexm_simple_pat<truncstorei32, I64, LoReg, S2_storeri_io>;
   3647 
   3648 // Store predicate.
   3649 let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
   3650     isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
   3651 def STriw_pred : STInst<(outs),
   3652       (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1),
   3653       ".error \"should not emit\"", []>;
   3654 
   3655 // S2_allocframe: Allocate stack frame.
   3656 let Defs = [R29, R30], Uses = [R29, R31, R30],
   3657     hasSideEffects = 0, accessSize = DoubleWordAccess in
   3658 def S2_allocframe: ST0Inst <
   3659   (outs), (ins u11_3Imm:$u11_3),
   3660   "allocframe(#$u11_3)" > {
   3661     bits<14> u11_3;
   3662 
   3663     let IClass = 0b1010;
   3664     let Inst{27-16} = 0b000010011101;
   3665     let Inst{13-11} = 0b000;
   3666     let Inst{10-0} = u11_3{13-3};
   3667   }
   3668 
   3669 // S2_storer[bhwdf]_pci: Store byte/half/word/double.
   3670 // S2_storer[bhwdf]_pci -> S2_storerbnew_pci
   3671 let Uses = [CS] in
   3672 class T_store_pci <string mnemonic, RegisterClass RC,
   3673                          Operand Imm, bits<4>MajOp,
   3674                          MemAccessSize AlignSize, string RegSrc = "Rt">
   3675   : STInst <(outs IntRegs:$_dst_),
   3676   (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt),
   3677   #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"",
   3678   [] ,
   3679   "$Rz = $_dst_" > {
   3680     bits<5> Rz;
   3681     bits<7> offset;
   3682     bits<1> Mu;
   3683     bits<5> Rt;
   3684     let accessSize = AlignSize;
   3685     let isNVStorable = !if(!eq(mnemonic,"memd"), 0,
   3686                        !if(!eq(RegSrc,"Rt.h"), 0, 1));
   3687 
   3688     let IClass = 0b1010;
   3689     let Inst{27-25} = 0b100;
   3690     let Inst{24-21} = MajOp;
   3691     let Inst{20-16} = Rz;
   3692     let Inst{13} = Mu;
   3693     let Inst{12-8} = Rt;
   3694     let Inst{7} = 0b0;
   3695     let Inst{6-3} =
   3696       !if (!eq(!cast<string>(AlignSize), "DoubleWordAccess"), offset{6-3},
   3697       !if (!eq(!cast<string>(AlignSize), "WordAccess"),       offset{5-2},
   3698       !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"),   offset{4-1},
   3699                                        /* ByteAccess */       offset{3-0})));
   3700     let Inst{1} = 0b0;
   3701   }
   3702 
   3703 def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000,
   3704                                  ByteAccess>;
   3705 def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010,
   3706                                  HalfWordAccess>;
   3707 def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011,
   3708                                  HalfWordAccess, "Rt.h">;
   3709 def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100,
   3710                                  WordAccess>;
   3711 def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110,
   3712                                  DoubleWordAccess>;
   3713 
   3714 let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 4 in
   3715 class T_storenew_pci <string mnemonic, Operand Imm,
   3716                              bits<2>MajOp, MemAccessSize AlignSize>
   3717   : NVInst < (outs IntRegs:$_dst_),
   3718   (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, IntRegs:$Nt),
   3719   #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $Nt.new",
   3720   [],
   3721   "$Rz = $_dst_"> {
   3722     bits<5> Rz;
   3723     bits<6> offset;
   3724     bits<1> Mu;
   3725     bits<3> Nt;
   3726 
   3727     let accessSize = AlignSize;
   3728 
   3729     let IClass = 0b1010;
   3730     let Inst{27-21} = 0b1001101;
   3731     let Inst{20-16} = Rz;
   3732     let Inst{13} = Mu;
   3733     let Inst{12-11} = MajOp;
   3734     let Inst{10-8} = Nt;
   3735     let Inst{7} = 0b0;
   3736     let Inst{6-3} =
   3737       !if (!eq(!cast<string>(AlignSize), "WordAccess"),     offset{5-2},
   3738       !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1},
   3739                                        /* ByteAccess */     offset{3-0}));
   3740     let Inst{1} = 0b0;
   3741   }
   3742 
   3743 def S2_storerbnew_pci : T_storenew_pci <"memb", s4_0Imm, 0b00, ByteAccess>;
   3744 def S2_storerhnew_pci : T_storenew_pci <"memh", s4_1Imm, 0b01, HalfWordAccess>;
   3745 def S2_storerinew_pci : T_storenew_pci <"memw", s4_2Imm, 0b10, WordAccess>;
   3746 
   3747 //===----------------------------------------------------------------------===//
   3748 // Circular stores - Pseudo
   3749 //
   3750 // Please note that the input operand order in the pseudo instructions
   3751 // doesn't match with the real instructions. Pseudo instructions operand
   3752 // order should mimics the ordering in the intrinsics.
   3753 //===----------------------------------------------------------------------===//
   3754 let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
   3755 class T_store_pci_pseudo <string opc, RegisterClass RC>
   3756   : STInstPI<(outs IntRegs:$_dst_),
   3757              (ins IntRegs:$src1, RC:$src2, IntRegs:$src3, s4Imm:$src4),
   3758   ".error \""#opc#"($src1++#$src4:circ($src3)) = $src2\"",
   3759   [], "$_dst_ = $src1">;
   3760 
   3761 def S2_storerb_pci_pseudo : T_store_pci_pseudo <"memb", IntRegs>;
   3762 def S2_storerh_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
   3763 def S2_storerf_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
   3764 def S2_storeri_pci_pseudo : T_store_pci_pseudo <"memw", IntRegs>;
   3765 def S2_storerd_pci_pseudo : T_store_pci_pseudo <"memd", DoubleRegs>;
   3766 
   3767 //===----------------------------------------------------------------------===//
   3768 // Circular stores with auto-increment register
   3769 //===----------------------------------------------------------------------===//
   3770 let Uses = [CS] in
   3771 class T_store_pcr <string mnemonic, RegisterClass RC, bits<4>MajOp,
   3772                                MemAccessSize AlignSize, string RegSrc = "Rt">
   3773   : STInst <(outs IntRegs:$_dst_),
   3774   (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt),
   3775   #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"",
   3776   [],
   3777   "$Rz = $_dst_" > {
   3778     bits<5> Rz;
   3779     bits<1> Mu;
   3780     bits<5> Rt;
   3781 
   3782     let accessSize = AlignSize;
   3783     let isNVStorable = !if(!eq(mnemonic,"memd"), 0,
   3784                        !if(!eq(RegSrc,"Rt.h"), 0, 1));
   3785 
   3786     let IClass = 0b1010;
   3787     let Inst{27-25} = 0b100;
   3788     let Inst{24-21} = MajOp;
   3789     let Inst{20-16} = Rz;
   3790     let Inst{13} = Mu;
   3791     let Inst{12-8} = Rt;
   3792     let Inst{7} = 0b0;
   3793     let Inst{1} = 0b1;
   3794   }
   3795 
   3796 def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>;
   3797 def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>;
   3798 def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>;
   3799 def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
   3800 def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011,
   3801                                  HalfWordAccess, "Rt.h">;
   3802 
   3803 //===----------------------------------------------------------------------===//
   3804 // Circular .new stores with auto-increment register
   3805 //===----------------------------------------------------------------------===//
   3806 let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
   3807 class T_storenew_pcr <string mnemonic, bits<2>MajOp,
   3808                                    MemAccessSize AlignSize>
   3809   : NVInst <(outs IntRegs:$_dst_),
   3810   (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
   3811   #mnemonic#"($Rz ++ I:circ($Mu)) = $Nt.new" ,
   3812   [] ,
   3813   "$Rz = $_dst_"> {
   3814     bits<5> Rz;
   3815     bits<1> Mu;
   3816     bits<3> Nt;
   3817 
   3818     let accessSize = AlignSize;
   3819 
   3820     let IClass = 0b1010;
   3821     let Inst{27-21} = 0b1001101;
   3822     let Inst{20-16} = Rz;
   3823     let Inst{13} = Mu;
   3824     let Inst{12-11} = MajOp;
   3825     let Inst{10-8} = Nt;
   3826     let Inst{7} = 0b0;
   3827     let Inst{1} = 0b1;
   3828   }
   3829 
   3830 def S2_storerbnew_pcr : T_storenew_pcr <"memb", 0b00, ByteAccess>;
   3831 def S2_storerhnew_pcr : T_storenew_pcr <"memh", 0b01, HalfWordAccess>;
   3832 def S2_storerinew_pcr : T_storenew_pcr <"memw", 0b10, WordAccess>;
   3833 
   3834 //===----------------------------------------------------------------------===//
   3835 // Bit-reversed stores with auto-increment register
   3836 //===----------------------------------------------------------------------===//
   3837 let hasSideEffects = 0 in
   3838 class T_store_pbr<string mnemonic, RegisterClass RC,
   3839                             MemAccessSize addrSize, bits<3> majOp,
   3840                             bit isHalf = 0>
   3841   : STInst
   3842     <(outs IntRegs:$_dst_),
   3843      (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src),
   3844      #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""),
   3845      [], "$Rz = $_dst_" > {
   3846 
   3847       let accessSize = addrSize;
   3848 
   3849       bits<5> Rz;
   3850       bits<1> Mu;
   3851       bits<5> src;
   3852 
   3853       let IClass = 0b1010;
   3854 
   3855       let Inst{27-24} = 0b1111;
   3856       let Inst{23-21} = majOp;
   3857       let Inst{7} = 0b0;
   3858       let Inst{20-16} = Rz;
   3859       let Inst{13} = Mu;
   3860       let Inst{12-8} = src;
   3861     }
   3862 
   3863 let isNVStorable = 1 in {
   3864   let BaseOpcode = "S2_storerb_pbr" in
   3865   def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess,
   3866                                              0b000>, NewValueRel;
   3867   let BaseOpcode = "S2_storerh_pbr" in
   3868   def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess,
   3869                                              0b010>, NewValueRel;
   3870   let BaseOpcode = "S2_storeri_pbr" in
   3871   def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess,
   3872                                              0b100>, NewValueRel;
   3873 }
   3874 
   3875 def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>;
   3876 def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>;
   3877 
   3878 //===----------------------------------------------------------------------===//
   3879 // Bit-reversed .new stores with auto-increment register
   3880 //===----------------------------------------------------------------------===//
   3881 let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3,
   3882     hasSideEffects = 0 in
   3883 class T_storenew_pbr<string mnemonic, MemAccessSize addrSize, bits<2> majOp>
   3884   : NVInst <(outs IntRegs:$_dst_),
   3885             (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
   3886      #mnemonic#"($Rz ++ $Mu:brev) = $Nt.new", [],
   3887      "$Rz = $_dst_">, NewValueRel {
   3888     let accessSize = addrSize;
   3889     bits<5> Rz;
   3890     bits<1> Mu;
   3891     bits<3> Nt;
   3892 
   3893     let IClass = 0b1010;
   3894 
   3895     let Inst{27-21} = 0b1111101;
   3896     let Inst{12-11} = majOp;
   3897     let Inst{7} = 0b0;
   3898     let Inst{20-16} = Rz;
   3899     let Inst{13} = Mu;
   3900     let Inst{10-8} = Nt;
   3901   }
   3902 
   3903 let BaseOpcode = "S2_storerb_pbr" in
   3904 def S2_storerbnew_pbr : T_storenew_pbr<"memb", ByteAccess, 0b00>;
   3905 
   3906 let BaseOpcode = "S2_storerh_pbr" in
   3907 def S2_storerhnew_pbr : T_storenew_pbr<"memh", HalfWordAccess, 0b01>;
   3908 
   3909 let BaseOpcode = "S2_storeri_pbr" in
   3910 def S2_storerinew_pbr : T_storenew_pbr<"memw", WordAccess, 0b10>;
   3911 
   3912 //===----------------------------------------------------------------------===//
   3913 // Bit-reversed stores - Pseudo
   3914 //
   3915 // Please note that the input operand order in the pseudo instructions
   3916 // doesn't match with the real instructions. Pseudo instructions operand
   3917 // order should mimics the ordering in the intrinsics.
   3918 //===----------------------------------------------------------------------===//
   3919 let isCodeGenOnly = 1,  mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
   3920 class T_store_pbr_pseudo <string opc, RegisterClass RC>
   3921   : STInstPI<(outs IntRegs:$_dst_),
   3922              (ins IntRegs:$src1, RC:$src2, IntRegs:$src3),
   3923   ".error \""#opc#"($src1++$src3:brev) = $src2\"",
   3924   [], "$_dst_ = $src1">;
   3925 
   3926 def S2_storerb_pbr_pseudo : T_store_pbr_pseudo <"memb", IntRegs>;
   3927 def S2_storerh_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
   3928 def S2_storeri_pbr_pseudo : T_store_pbr_pseudo <"memw", IntRegs>;
   3929 def S2_storerf_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
   3930 def S2_storerd_pbr_pseudo : T_store_pbr_pseudo <"memd", DoubleRegs>;
   3931 
   3932 //===----------------------------------------------------------------------===//
   3933 // ST -
   3934 //===----------------------------------------------------------------------===//
   3935 
   3936 //===----------------------------------------------------------------------===//
   3937 // Template class for S_2op instructions.
   3938 //===----------------------------------------------------------------------===//
   3939 let hasSideEffects = 0 in
   3940 class T_S2op_1 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
   3941                 RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat>
   3942   : SInst <(outs RCOut:$dst), (ins RCIn:$src),
   3943   "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""),
   3944   [], "", S_2op_tc_1_SLOT23 > {
   3945     bits<5> dst;
   3946     bits<5> src;
   3947 
   3948     let IClass = 0b1000;
   3949 
   3950     let Inst{27-24} = RegTyBits;
   3951     let Inst{23-22} = MajOp;
   3952     let Inst{21} = 0b0;
   3953     let Inst{20-16} = src;
   3954     let Inst{7-5} = MinOp;
   3955     let Inst{4-0} = dst;
   3956   }
   3957 
   3958 class T_S2op_1_di <string mnemonic, bits<2> MajOp, bits<3> MinOp>
   3959   : T_S2op_1 <mnemonic, 0b0100, DoubleRegs, IntRegs, MajOp, MinOp, 0>;
   3960 
   3961 let hasNewValue = 1 in
   3962 class T_S2op_1_id <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
   3963   : T_S2op_1 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, isSat>;
   3964 
   3965 let hasNewValue = 1 in
   3966 class T_S2op_1_ii <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
   3967   : T_S2op_1 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, isSat>;
   3968 
   3969 // Vector sign/zero extend
   3970 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
   3971   def S2_vsxtbh : T_S2op_1_di <"vsxtbh", 0b00, 0b000>;
   3972   def S2_vsxthw : T_S2op_1_di <"vsxthw", 0b00, 0b100>;
   3973   def S2_vzxtbh : T_S2op_1_di <"vzxtbh", 0b00, 0b010>;
   3974   def S2_vzxthw : T_S2op_1_di <"vzxthw", 0b00, 0b110>;
   3975 }
   3976 
   3977 // Vector splat bytes/halfwords
   3978 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
   3979   def S2_vsplatrb : T_S2op_1_ii <"vsplatb", 0b01, 0b111>;
   3980   def S2_vsplatrh : T_S2op_1_di <"vsplath", 0b01, 0b010>;
   3981 }
   3982 
   3983 // Sign extend word to doubleword
   3984 def A2_sxtw   : T_S2op_1_di <"sxtw", 0b01, 0b000>;
   3985 
   3986 def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>;
   3987 
   3988 // Vector saturate and pack
   3989 let Defs = [USR_OVF] in {
   3990   def S2_svsathb  : T_S2op_1_ii <"vsathb", 0b10, 0b000>;
   3991   def S2_svsathub : T_S2op_1_ii <"vsathub", 0b10, 0b010>;
   3992   def S2_vsathb   : T_S2op_1_id <"vsathb", 0b00, 0b110>;
   3993   def S2_vsathub  : T_S2op_1_id <"vsathub", 0b00, 0b000>;
   3994   def S2_vsatwh   : T_S2op_1_id <"vsatwh", 0b00, 0b010>;
   3995   def S2_vsatwuh  : T_S2op_1_id <"vsatwuh", 0b00, 0b100>;
   3996 }
   3997 
   3998 // Vector truncate
   3999 def S2_vtrunohb : T_S2op_1_id <"vtrunohb", 0b10, 0b000>;
   4000 def S2_vtrunehb : T_S2op_1_id <"vtrunehb", 0b10, 0b010>;
   4001 
   4002 // Swizzle the bytes of a word
   4003 def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>;
   4004 
   4005 // Saturate
   4006 let Defs = [USR_OVF] in {
   4007   def A2_sat   : T_S2op_1_id <"sat", 0b11, 0b000>;
   4008   def A2_satb  : T_S2op_1_ii <"satb", 0b11, 0b111>;
   4009   def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>;
   4010   def A2_sath  : T_S2op_1_ii <"sath", 0b11, 0b100>;
   4011   def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>;
   4012   def A2_roundsat : T_S2op_1_id <"round", 0b11, 0b001, 0b1>;
   4013 }
   4014 
   4015 let Itinerary = S_2op_tc_2_SLOT23 in {
   4016   // Vector round and pack
   4017   def S2_vrndpackwh   : T_S2op_1_id <"vrndwh", 0b10, 0b100>;
   4018 
   4019   let Defs = [USR_OVF] in
   4020   def S2_vrndpackwhs  : T_S2op_1_id <"vrndwh", 0b10, 0b110, 1>;
   4021 
   4022   // Bit reverse
   4023   def S2_brev : T_S2op_1_ii <"brev", 0b01, 0b110>;
   4024 
   4025   // Absolute value word
   4026   def A2_abs    : T_S2op_1_ii <"abs", 0b10, 0b100>;
   4027 
   4028   let Defs = [USR_OVF] in
   4029   def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>;
   4030 
   4031   // Negate with saturation
   4032   let Defs = [USR_OVF] in
   4033   def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>;
   4034 }
   4035 
   4036 def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)),
   4037                       (i32 (sub 0, (i32 IntRegs:$src))),
   4038                       (i32 IntRegs:$src))),
   4039          (A2_abs IntRegs:$src)>;
   4040 
   4041 let AddedComplexity = 50 in
   4042 def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)),
   4043                         (i32 IntRegs:$src)),
   4044                    (sra (i32 IntRegs:$src), (i32 31)))),
   4045          (A2_abs IntRegs:$src)>;
   4046 
   4047 class T_S2op_2 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
   4048                 RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp,
   4049                 bit isSat, bit isRnd, list<dag> pattern = []>
   4050   : SInst <(outs RCOut:$dst),
   4051   (ins RCIn:$src, u5Imm:$u5),
   4052   "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "")
   4053                                    #!if(isRnd, ":rnd", ""),
   4054   pattern, "", S_2op_tc_2_SLOT23> {
   4055     bits<5> dst;
   4056     bits<5> src;
   4057     bits<5> u5;
   4058 
   4059     let IClass = 0b1000;
   4060 
   4061     let Inst{27-24} = RegTyBits;
   4062     let Inst{23-21} = MajOp;
   4063     let Inst{20-16} = src;
   4064     let Inst{13} = 0b0;
   4065     let Inst{12-8} = u5;
   4066     let Inst{7-5} = MinOp;
   4067     let Inst{4-0} = dst;
   4068   }
   4069 
   4070 class T_S2op_2_di <string mnemonic, bits<3> MajOp, bits<3> MinOp>
   4071   : T_S2op_2 <mnemonic, 0b1000, DoubleRegs, IntRegs, MajOp, MinOp, 0, 0>;
   4072 
   4073 let hasNewValue = 1 in
   4074 class T_S2op_2_id <string mnemonic, bits<3> MajOp, bits<3> MinOp>
   4075   : T_S2op_2 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, 0, 0>;
   4076 
   4077 let hasNewValue = 1 in
   4078 class T_S2op_2_ii <string mnemonic, bits<3> MajOp, bits<3> MinOp,
   4079                    bit isSat = 0, bit isRnd = 0, list<dag> pattern = []>
   4080   : T_S2op_2 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp,
   4081               isSat, isRnd, pattern>;
   4082 
   4083 class T_S2op_shift <string mnemonic, bits<3> MajOp, bits<3> MinOp, SDNode OpNd>
   4084   : T_S2op_2_ii <mnemonic, MajOp, MinOp, 0, 0,
   4085     [(set (i32 IntRegs:$dst), (OpNd (i32 IntRegs:$src),
   4086                                     (u5ImmPred:$u5)))]>;
   4087 
   4088 // Vector arithmetic shift right by immediate with truncate and pack
   4089 def S2_asr_i_svw_trun : T_S2op_2_id <"vasrw", 0b110, 0b010>;
   4090 
   4091 // Arithmetic/logical shift right/left by immediate
   4092 let Itinerary = S_2op_tc_1_SLOT23 in {
   4093   def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>;
   4094   def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>;
   4095   def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>;
   4096 }
   4097 
   4098 // Shift left by immediate with saturation
   4099 let Defs = [USR_OVF] in
   4100 def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>;
   4101 
   4102 // Shift right with round
   4103 def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>;
   4104 
   4105 let isAsmParserOnly = 1 in
   4106 def S2_asr_i_r_rnd_goodsyntax
   4107   : SInst <(outs IntRegs:$dst), (ins  IntRegs:$src, u5Imm:$u5),
   4108   "$dst = asrrnd($src, #$u5)",
   4109   [], "", S_2op_tc_1_SLOT23>;
   4110 
   4111 let isAsmParserOnly = 1 in
   4112 def A2_not: ALU32_rr<(outs IntRegs:$dst),(ins IntRegs:$src),
   4113   "$dst = not($src)">;
   4114 
   4115 def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)),
   4116                              (i32 1))),
   4117                    (i32 1))),
   4118          (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>;
   4119 
   4120 class T_S2op_3<string opc, bits<2>MajOp, bits<3>minOp, bits<1> sat = 0>
   4121   : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss),
   4122            "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> {
   4123   bits<5> Rss;
   4124   bits<5> Rdd;
   4125   let IClass = 0b1000;
   4126   let Inst{27-24} = 0;
   4127   let Inst{23-22} = MajOp;
   4128   let Inst{20-16} = Rss;
   4129   let Inst{7-5} = minOp;
   4130   let Inst{4-0} = Rdd;
   4131 }
   4132 
   4133 def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>;
   4134 def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>;
   4135 def A2_notp : T_S2op_3 <"not", 0b10, 0b100>;
   4136 
   4137 // Innterleave/deinterleave
   4138 def S2_interleave   : T_S2op_3 <"interleave",   0b11, 0b101>;
   4139 def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>;
   4140 
   4141 // Vector Complex conjugate
   4142 def A2_vconj : T_S2op_3 <"vconj", 0b10, 0b111, 1>;
   4143 
   4144 // Vector saturate without pack
   4145 def S2_vsathb_nopack  : T_S2op_3 <"vsathb",  0b00, 0b111>;
   4146 def S2_vsathub_nopack : T_S2op_3 <"vsathub", 0b00, 0b100>;
   4147 def S2_vsatwh_nopack  : T_S2op_3 <"vsatwh",  0b00, 0b110>;
   4148 def S2_vsatwuh_nopack : T_S2op_3 <"vsatwuh", 0b00, 0b101>;
   4149 
   4150 // Vector absolute value halfwords with and without saturation
   4151 // Rdd64=vabsh(Rss64)[:sat]
   4152 def A2_vabsh    : T_S2op_3 <"vabsh", 0b01, 0b100>;
   4153 def A2_vabshsat : T_S2op_3 <"vabsh", 0b01, 0b101, 1>;
   4154 
   4155 // Vector absolute value words with and without saturation
   4156 def A2_vabsw    : T_S2op_3 <"vabsw", 0b01, 0b110>;
   4157 def A2_vabswsat : T_S2op_3 <"vabsw", 0b01, 0b111, 1>;
   4158 
   4159 def : Pat<(not (i64 DoubleRegs:$src1)),
   4160           (A2_notp DoubleRegs:$src1)>;
   4161 
   4162 //===----------------------------------------------------------------------===//
   4163 // STYPE/BIT +
   4164 //===----------------------------------------------------------------------===//
   4165 // Bit count
   4166 
   4167 let hasSideEffects = 0, hasNewValue = 1 in
   4168 class T_COUNT_LEADING<string MnOp, bits<3> MajOp, bits<3> MinOp, bit Is32,
   4169                 dag Out, dag Inp>
   4170     : SInst<Out, Inp, "$Rd = "#MnOp#"($Rs)", [], "", S_2op_tc_1_SLOT23> {
   4171   bits<5> Rs;
   4172   bits<5> Rd;
   4173   let IClass = 0b1000;
   4174   let Inst{27} = 0b1;
   4175   let Inst{26} = Is32;
   4176   let Inst{25-24} = 0b00;
   4177   let Inst{23-21} = MajOp;
   4178   let Inst{20-16} = Rs;
   4179   let Inst{7-5} = MinOp;
   4180   let Inst{4-0} = Rd;
   4181 }
   4182 
   4183 class T_COUNT_LEADING_32<string MnOp, bits<3> MajOp, bits<3> MinOp>
   4184     : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b1,
   4185                       (outs IntRegs:$Rd), (ins IntRegs:$Rs)>;
   4186 
   4187 class T_COUNT_LEADING_64<string MnOp, bits<3> MajOp, bits<3> MinOp>
   4188     : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b0,
   4189                       (outs IntRegs:$Rd), (ins DoubleRegs:$Rs)>;
   4190 
   4191 def S2_cl0     : T_COUNT_LEADING_32<"cl0",     0b000, 0b101>;
   4192 def S2_cl1     : T_COUNT_LEADING_32<"cl1",     0b000, 0b110>;
   4193 def S2_ct0     : T_COUNT_LEADING_32<"ct0",     0b010, 0b100>;
   4194 def S2_ct1     : T_COUNT_LEADING_32<"ct1",     0b010, 0b101>;
   4195 def S2_cl0p    : T_COUNT_LEADING_64<"cl0",     0b010, 0b010>;
   4196 def S2_cl1p    : T_COUNT_LEADING_64<"cl1",     0b010, 0b100>;
   4197 def S2_clb     : T_COUNT_LEADING_32<"clb",     0b000, 0b100>;
   4198 def S2_clbp    : T_COUNT_LEADING_64<"clb",     0b010, 0b000>;
   4199 def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>;
   4200 
   4201 // Count leading zeros.
   4202 def: Pat<(i32 (ctlz I32:$Rs)), (S2_cl0 I32:$Rs)>;
   4203 def: Pat<(i32 (trunc (ctlz I64:$Rss))), (S2_cl0p I64:$Rss)>;
   4204 def: Pat<(i32 (ctlz_zero_undef I32:$Rs)), (S2_cl0 I32:$Rs)>;
   4205 def: Pat<(i32 (trunc (ctlz_zero_undef I64:$Rss))), (S2_cl0p I64:$Rss)>;
   4206 
   4207 // Count trailing zeros: 32-bit.
   4208 def: Pat<(i32 (cttz I32:$Rs)), (S2_ct0 I32:$Rs)>;
   4209 def: Pat<(i32 (cttz_zero_undef I32:$Rs)), (S2_ct0 I32:$Rs)>;
   4210 
   4211 // Count leading ones.
   4212 def: Pat<(i32 (ctlz (not I32:$Rs))), (S2_cl1 I32:$Rs)>;
   4213 def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
   4214 def: Pat<(i32 (ctlz_zero_undef (not I32:$Rs))), (S2_cl1 I32:$Rs)>;
   4215 def: Pat<(i32 (trunc (ctlz_zero_undef (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
   4216 
   4217 // Count trailing ones: 32-bit.
   4218 def: Pat<(i32 (cttz (not I32:$Rs))), (S2_ct1 I32:$Rs)>;
   4219 def: Pat<(i32 (cttz_zero_undef (not I32:$Rs))), (S2_ct1 I32:$Rs)>;
   4220 
   4221 // The 64-bit counts leading/trailing are defined in HexagonInstrInfoV4.td.
   4222 
   4223 // Bit set/clear/toggle
   4224 
   4225 let hasSideEffects = 0, hasNewValue = 1 in
   4226 class T_SCT_BIT_IMM<string MnOp, bits<3> MinOp>
   4227     : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5),
   4228             "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> {
   4229   bits<5> Rd;
   4230   bits<5> Rs;
   4231   bits<5> u5;
   4232   let IClass = 0b1000;
   4233   let Inst{27-21} = 0b1100110;
   4234   let Inst{20-16} = Rs;
   4235   let Inst{13} = 0b0;
   4236   let Inst{12-8} = u5;
   4237   let Inst{7-5} = MinOp;
   4238   let Inst{4-0} = Rd;
   4239 }
   4240 
   4241 let hasSideEffects = 0, hasNewValue = 1 in
   4242 class T_SCT_BIT_REG<string MnOp, bits<2> MinOp>
   4243     : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
   4244             "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> {
   4245   bits<5> Rd;
   4246   bits<5> Rs;
   4247   bits<5> Rt;
   4248   let IClass = 0b1100;
   4249   let Inst{27-22} = 0b011010;
   4250   let Inst{20-16} = Rs;
   4251   let Inst{12-8} = Rt;
   4252   let Inst{7-6} = MinOp;
   4253   let Inst{4-0} = Rd;
   4254 }
   4255 
   4256 def S2_clrbit_i    : T_SCT_BIT_IMM<"clrbit",    0b001>;
   4257 def S2_setbit_i    : T_SCT_BIT_IMM<"setbit",    0b000>;
   4258 def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>;
   4259 def S2_clrbit_r    : T_SCT_BIT_REG<"clrbit",    0b01>;
   4260 def S2_setbit_r    : T_SCT_BIT_REG<"setbit",    0b00>;
   4261 def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>;
   4262 
   4263 def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))),
   4264          (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
   4265 def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
   4266          (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
   4267 def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
   4268          (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>;
   4269 def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))),
   4270          (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
   4271 def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
   4272          (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
   4273 def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
   4274          (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
   4275 
   4276 // Bit test
   4277 
   4278 let hasSideEffects = 0 in
   4279 class T_TEST_BIT_IMM<string MnOp, bits<3> MajOp>
   4280     : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5),
   4281             "$Pd = "#MnOp#"($Rs, #$u5)",
   4282             [], "", S_2op_tc_2early_SLOT23> {
   4283   bits<2> Pd;
   4284   bits<5> Rs;
   4285   bits<5> u5;
   4286   let IClass = 0b1000;
   4287   let Inst{27-24} = 0b0101;
   4288   let Inst{23-21} = MajOp;
   4289   let Inst{20-16} = Rs;
   4290   let Inst{13} = 0;
   4291   let Inst{12-8} = u5;
   4292   let Inst{1-0} = Pd;
   4293 }
   4294 
   4295 let hasSideEffects = 0 in
   4296 class T_TEST_BIT_REG<string MnOp, bit IsNeg>
   4297     : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
   4298             "$Pd = "#MnOp#"($Rs, $Rt)",
   4299             [], "", S_3op_tc_2early_SLOT23> {
   4300   bits<2> Pd;
   4301   bits<5> Rs;
   4302   bits<5> Rt;
   4303   let IClass = 0b1100;
   4304   let Inst{27-22} = 0b011100;
   4305   let Inst{21} = IsNeg;
   4306   let Inst{20-16} = Rs;
   4307   let Inst{12-8} = Rt;
   4308   let Inst{1-0} = Pd;
   4309 }
   4310 
   4311 def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>;
   4312 def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>;
   4313 
   4314 let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
   4315   def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
   4316            (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
   4317   def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
   4318            (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
   4319   def: Pat<(i1 (trunc (i32 IntRegs:$Rs))),
   4320            (S2_tstbit_i IntRegs:$Rs, 0)>;
   4321   def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))),
   4322            (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
   4323 }
   4324 
   4325 let hasSideEffects = 0 in
   4326 class T_TEST_BITS_IMM<string MnOp, bits<2> MajOp, bit IsNeg>
   4327     : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6),
   4328             "$Pd = "#MnOp#"($Rs, #$u6)",
   4329             [], "", S_2op_tc_2early_SLOT23> {
   4330   bits<2> Pd;
   4331   bits<5> Rs;
   4332   bits<6> u6;
   4333   let IClass = 0b1000;
   4334   let Inst{27-24} = 0b0101;
   4335   let Inst{23-22} = MajOp;
   4336   let Inst{21} = IsNeg;
   4337   let Inst{20-16} = Rs;
   4338   let Inst{13-8} = u6;
   4339   let Inst{1-0} = Pd;
   4340 }
   4341 
   4342 let hasSideEffects = 0 in
   4343 class T_TEST_BITS_REG<string MnOp, bits<2> MajOp, bit IsNeg>
   4344     : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
   4345             "$Pd = "#MnOp#"($Rs, $Rt)",
   4346             [], "", S_3op_tc_2early_SLOT23> {
   4347   bits<2> Pd;
   4348   bits<5> Rs;
   4349   bits<5> Rt;
   4350   let IClass = 0b1100;
   4351   let Inst{27-24} = 0b0111;
   4352   let Inst{23-22} = MajOp;
   4353   let Inst{21} = IsNeg;
   4354   let Inst{20-16} = Rs;
   4355   let Inst{12-8} = Rt;
   4356   let Inst{1-0} = Pd;
   4357 }
   4358 
   4359 def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>;
   4360 def C2_bitsclr  : T_TEST_BITS_REG<"bitsclr", 0b10, 0>;
   4361 def C2_bitsset  : T_TEST_BITS_REG<"bitsset", 0b01, 0>;
   4362 
   4363 let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
   4364   def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)),
   4365            (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>;
   4366   def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)),
   4367            (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
   4368 }
   4369 
   4370 let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
   4371 def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)),
   4372          (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
   4373 
   4374 //===----------------------------------------------------------------------===//
   4375 // STYPE/BIT -
   4376 //===----------------------------------------------------------------------===//
   4377 
   4378 //===----------------------------------------------------------------------===//
   4379 // STYPE/COMPLEX +
   4380 //===----------------------------------------------------------------------===//
   4381 //===----------------------------------------------------------------------===//
   4382 // STYPE/COMPLEX -
   4383 //===----------------------------------------------------------------------===//
   4384 
   4385 //===----------------------------------------------------------------------===//
   4386 // XTYPE/PERM +
   4387 //===----------------------------------------------------------------------===//
   4388 
   4389 def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add (i32 IntRegs:$b), 3))),
   4390                                (i32 8)),
   4391                           (i32 (zextloadi8 (add (i32 IntRegs:$b), 2)))),
   4392                       (i32 16)),
   4393                  (shl (i32 (zextloadi8 (add (i32 IntRegs:$b), 1))), (i32 8))),
   4394              (zextloadi8 (i32 IntRegs:$b))),
   4395          (A2_swiz (L2_loadri_io IntRegs:$b, 0))>;
   4396 
   4397 //===----------------------------------------------------------------------===//
   4398 // XTYPE/PERM -
   4399 //===----------------------------------------------------------------------===//
   4400 
   4401 //===----------------------------------------------------------------------===//
   4402 // STYPE/PRED +
   4403 //===----------------------------------------------------------------------===//
   4404 
   4405 // Predicate transfer.
   4406 let hasSideEffects = 0, hasNewValue = 1 in
   4407 def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps),
   4408       "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> {
   4409   bits<5> Rd;
   4410   bits<2> Ps;
   4411 
   4412   let IClass = 0b1000;
   4413   let Inst{27-24} = 0b1001;
   4414   let Inst{22} = 0b1;
   4415   let Inst{17-16} = Ps;
   4416   let Inst{4-0} = Rd;
   4417 }
   4418 
   4419 // Transfer general register to predicate.
   4420 let hasSideEffects = 0 in
   4421 def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs),
   4422       "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> {
   4423   bits<2> Pd;
   4424   bits<5> Rs;
   4425 
   4426   let IClass = 0b1000;
   4427   let Inst{27-21} = 0b0101010;
   4428   let Inst{20-16} = Rs;
   4429   let Inst{1-0} = Pd;
   4430 }
   4431 
   4432 let hasSideEffects = 0, isCodeGenOnly = 1 in
   4433 def C2_pxfer_map: SInst<(outs PredRegs:$dst), (ins PredRegs:$src),
   4434      "$dst = $src">;
   4435 
   4436 
   4437 // Patterns for loads of i1:
   4438 def: Pat<(i1 (load AddrFI:$fi)),
   4439          (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
   4440 def: Pat<(i1 (load (add (i32 IntRegs:$Rs), s32ImmPred:$Off))),
   4441          (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
   4442 def: Pat<(i1 (load (i32 IntRegs:$Rs))),
   4443          (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
   4444 
   4445 def I1toI32: OutPatFrag<(ops node:$Rs),
   4446                         (C2_muxii (i1 $Rs), 1, 0)>;
   4447 
   4448 def I32toI1: OutPatFrag<(ops node:$Rs),
   4449                         (i1 (C2_tfrrp (i32 $Rs)))>;
   4450 
   4451 defm: Storexm_pat<store, I1, s32ImmPred, I1toI32, S2_storerb_io>;
   4452 def: Storexm_simple_pat<store, I1, I1toI32, S2_storerb_io>;
   4453 
   4454 //===----------------------------------------------------------------------===//
   4455 // STYPE/PRED -
   4456 //===----------------------------------------------------------------------===//
   4457 
   4458 //===----------------------------------------------------------------------===//
   4459 // STYPE/SHIFT +
   4460 //===----------------------------------------------------------------------===//
   4461 class S_2OpInstImm<string Mnemonic, bits<3>MajOp, bits<3>MinOp,
   4462                    Operand Imm, list<dag> pattern = [], bit isRnd = 0>
   4463   : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2),
   4464            "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""),
   4465            pattern> {
   4466   bits<5> src1;
   4467   bits<5> dst;
   4468   let IClass = 0b1000;
   4469   let Inst{27-24} = 0;
   4470   let Inst{23-21} = MajOp;
   4471   let Inst{20-16} = src1;
   4472   let Inst{7-5} = MinOp;
   4473   let Inst{4-0} = dst;
   4474 }
   4475 
   4476 class S_2OpInstImmI6<string Mnemonic, SDNode OpNode, bits<3>MinOp>
   4477   : S_2OpInstImm<Mnemonic, 0b000, MinOp, u6Imm,
   4478   [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
   4479                                         u6ImmPred:$src2))]> {
   4480   bits<6> src2;
   4481   let Inst{13-8} = src2;
   4482 }
   4483 
   4484 // Shift by immediate.
   4485 def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>;
   4486 def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>;
   4487 def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>;
   4488 
   4489 // Shift left by small amount and add.
   4490 let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0 in
   4491 def S2_addasl_rrri: SInst <(outs IntRegs:$Rd),
   4492                            (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3),
   4493   "$Rd = addasl($Rt, $Rs, #$u3)" ,
   4494   [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt),
   4495                                 (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))],
   4496   "", S_3op_tc_2_SLOT23> {
   4497     bits<5> Rd;
   4498     bits<5> Rt;
   4499     bits<5> Rs;
   4500     bits<3> u3;
   4501 
   4502     let IClass = 0b1100;
   4503 
   4504     let Inst{27-21} = 0b0100000;
   4505     let Inst{20-16} = Rs;
   4506     let Inst{13}    = 0b0;
   4507     let Inst{12-8}  = Rt;
   4508     let Inst{7-5}   = u3;
   4509     let Inst{4-0}   = Rd;
   4510   }
   4511 
   4512 //===----------------------------------------------------------------------===//
   4513 // STYPE/SHIFT -
   4514 //===----------------------------------------------------------------------===//
   4515 
   4516 //===----------------------------------------------------------------------===//
   4517 // STYPE/VH +
   4518 //===----------------------------------------------------------------------===//
   4519 //===----------------------------------------------------------------------===//
   4520 // STYPE/VH -
   4521 //===----------------------------------------------------------------------===//
   4522 
   4523 //===----------------------------------------------------------------------===//
   4524 // STYPE/VW +
   4525 //===----------------------------------------------------------------------===//
   4526 //===----------------------------------------------------------------------===//
   4527 // STYPE/VW -
   4528 //===----------------------------------------------------------------------===//
   4529 
   4530 //===----------------------------------------------------------------------===//
   4531 // SYSTEM/SUPER +
   4532 //===----------------------------------------------------------------------===//
   4533 
   4534 //===----------------------------------------------------------------------===//
   4535 // SYSTEM/USER +
   4536 //===----------------------------------------------------------------------===//
   4537 def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
   4538 
   4539 let hasSideEffects = 1, isSoloAX = 1 in
   4540 def Y2_barrier : SYSInst<(outs), (ins),
   4541                      "barrier",
   4542                      [(HexagonBARRIER)],"",ST_tc_st_SLOT0> {
   4543   let Inst{31-28} = 0b1010;
   4544   let Inst{27-21} = 0b1000000;
   4545 }
   4546 
   4547 //===----------------------------------------------------------------------===//
   4548 // SYSTEM/SUPER -
   4549 //===----------------------------------------------------------------------===//
   4550 
   4551 // Generate frameindex addresses. The main reason for the offset operand is
   4552 // that every instruction that is allowed to have frame index as an operand
   4553 // will then have that operand followed by an immediate operand (the offset).
   4554 // This simplifies the frame-index elimination code.
   4555 //
   4556 let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
   4557     isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0 in {
   4558   def TFR_FI  : ALU32_ri<(outs IntRegs:$Rd),
   4559                          (ins IntRegs:$fi, s32Imm:$off), "">;
   4560   def TFR_FIA : ALU32_ri<(outs IntRegs:$Rd),
   4561                          (ins IntRegs:$Rs, IntRegs:$fi, s32Imm:$off), "">;
   4562 }
   4563 
   4564 //===----------------------------------------------------------------------===//
   4565 // CRUSER - Type.
   4566 //===----------------------------------------------------------------------===//
   4567 // HW loop
   4568 let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
   4569     opExtendable = 0, hasSideEffects = 0 in
   4570 class LOOP_iBase<string mnemonic, Operand brOp, bit mustExtend = 0>
   4571          : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2),
   4572            #mnemonic#"($offset, #$src2)",
   4573            [], "" , CR_tc_3x_SLOT3> {
   4574     bits<9> offset;
   4575     bits<10> src2;
   4576 
   4577     let IClass = 0b0110;
   4578 
   4579     let Inst{27-22} = 0b100100;
   4580     let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
   4581     let Inst{20-16} = src2{9-5};
   4582     let Inst{12-8} = offset{8-4};
   4583     let Inst{7-5} = src2{4-2};
   4584     let Inst{4-3} = offset{3-2};
   4585     let Inst{1-0} = src2{1-0};
   4586 }
   4587 
   4588 let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
   4589     opExtendable = 0, hasSideEffects = 0 in
   4590 class LOOP_rBase<string mnemonic, Operand brOp, bit mustExtend = 0>
   4591          : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2),
   4592            #mnemonic#"($offset, $src2)",
   4593            [], "" ,CR_tc_3x_SLOT3> {
   4594     bits<9> offset;
   4595     bits<5> src2;
   4596 
   4597     let IClass = 0b0110;
   4598 
   4599     let Inst{27-22} = 0b000000;
   4600     let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
   4601     let Inst{20-16} = src2;
   4602     let Inst{12-8} = offset{8-4};
   4603     let Inst{4-3} = offset{3-2};
   4604   }
   4605 
   4606 multiclass LOOP_ri<string mnemonic> {
   4607   def i : LOOP_iBase<mnemonic, brtarget>;
   4608   def r : LOOP_rBase<mnemonic, brtarget>;
   4609 
   4610   let isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
   4611     def iext: LOOP_iBase<mnemonic, brtargetExt, 1>;
   4612     def rext: LOOP_rBase<mnemonic, brtargetExt, 1>;
   4613   }
   4614 }
   4615 
   4616 
   4617 let Defs = [SA0, LC0, USR] in
   4618 defm J2_loop0 : LOOP_ri<"loop0">;
   4619 
   4620 // Interestingly only loop0's appear to set usr.lpcfg
   4621 let Defs = [SA1, LC1] in
   4622 defm J2_loop1 : LOOP_ri<"loop1">;
   4623 
   4624 let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
   4625     Defs = [PC, LC0], Uses = [SA0, LC0] in {
   4626 def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
   4627                        ":endloop0",
   4628                        []>;
   4629 }
   4630 
   4631 let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
   4632     Defs = [PC, LC1], Uses = [SA1, LC1] in {
   4633 def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset),
   4634                        ":endloop1",
   4635                        []>;
   4636 }
   4637 
   4638 // Pipelined loop instructions, sp[123]loop0
   4639 let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
   4640     isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
   4641     opExtendable = 0, isPredicateLate = 1 in
   4642 class SPLOOP_iBase<string SP, bits<2> op>
   4643   : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10),
   4644   "p3 = sp"#SP#"loop0($r7_2, #$U10)" > {
   4645     bits<9> r7_2;
   4646     bits<10> U10;
   4647 
   4648     let IClass = 0b0110;
   4649 
   4650     let Inst{22-21} = op;
   4651     let Inst{27-23} = 0b10011;
   4652     let Inst{20-16} = U10{9-5};
   4653     let Inst{12-8} = r7_2{8-4};
   4654     let Inst{7-5} = U10{4-2};
   4655     let Inst{4-3} = r7_2{3-2};
   4656     let Inst{1-0} = U10{1-0};
   4657   }
   4658 
   4659 let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
   4660     isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
   4661     opExtendable = 0, isPredicateLate = 1 in
   4662 class SPLOOP_rBase<string SP, bits<2> op>
   4663   : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs),
   4664   "p3 = sp"#SP#"loop0($r7_2, $Rs)" > {
   4665     bits<9> r7_2;
   4666     bits<5> Rs;
   4667 
   4668     let IClass = 0b0110;
   4669 
   4670     let Inst{22-21} = op;
   4671     let Inst{27-23} = 0b00001;
   4672     let Inst{20-16} = Rs;
   4673     let Inst{12-8} = r7_2{8-4};
   4674     let Inst{4-3} = r7_2{3-2};
   4675   }
   4676 
   4677 multiclass SPLOOP_ri<string mnemonic, bits<2> op> {
   4678   def i : SPLOOP_iBase<mnemonic, op>;
   4679   def r : SPLOOP_rBase<mnemonic, op>;
   4680 }
   4681 
   4682 defm J2_ploop1s : SPLOOP_ri<"1", 0b01>;
   4683 defm J2_ploop2s : SPLOOP_ri<"2", 0b10>;
   4684 defm J2_ploop3s : SPLOOP_ri<"3", 0b11>;
   4685 
   4686 // if (Rs[!>=<]=#0) jump:[t/nt]
   4687 let Defs = [PC], isPredicated = 1, isBranch = 1, hasSideEffects = 0,
   4688     hasSideEffects = 0 in
   4689 class J2_jump_0_Base<string compare, bit isTak, bits<2> op>
   4690   : CRInst <(outs), (ins IntRegs:$Rs, brtarget:$r13_2),
   4691   "if ($Rs"#compare#"#0) jump"#!if(isTak, ":t", ":nt")#" $r13_2" > {
   4692     bits<5> Rs;
   4693     bits<15> r13_2;
   4694 
   4695     let IClass = 0b0110;
   4696 
   4697     let Inst{27-24} = 0b0001;
   4698     let Inst{23-22} = op;
   4699     let Inst{12} = isTak;
   4700     let Inst{21} = r13_2{14};
   4701     let Inst{20-16} = Rs;
   4702     let Inst{11-1} = r13_2{12-2};
   4703     let Inst{13} = r13_2{13};
   4704   }
   4705 
   4706 multiclass J2_jump_compare_0<string compare, bits<2> op> {
   4707   def NAME    : J2_jump_0_Base<compare, 0, op>;
   4708   def NAME#pt : J2_jump_0_Base<compare, 1, op>;
   4709 }
   4710 
   4711 defm J2_jumprz    : J2_jump_compare_0<"!=", 0b00>;
   4712 defm J2_jumprgtez : J2_jump_compare_0<">=", 0b01>;
   4713 defm J2_jumprnz   : J2_jump_compare_0<"==", 0b10>;
   4714 defm J2_jumprltez : J2_jump_compare_0<"<=", 0b11>;
   4715 
   4716 // Transfer to/from Control/GPR Guest/GPR
   4717 let hasSideEffects = 0 in
   4718 class TFR_CR_RS_base<RegisterClass CTRC, RegisterClass RC, bit isDouble>
   4719   : CRInst <(outs CTRC:$dst), (ins RC:$src),
   4720   "$dst = $src", [], "", CR_tc_3x_SLOT3> {
   4721     bits<5> dst;
   4722     bits<5> src;
   4723 
   4724     let IClass = 0b0110;
   4725 
   4726     let Inst{27-25} = 0b001;
   4727     let Inst{24} = isDouble;
   4728     let Inst{23-21} = 0b001;
   4729     let Inst{20-16} = src;
   4730     let Inst{4-0} = dst;
   4731   }
   4732 
   4733 def A2_tfrrcr : TFR_CR_RS_base<CtrRegs, IntRegs, 0b0>;
   4734 def A4_tfrpcp : TFR_CR_RS_base<CtrRegs64, DoubleRegs, 0b1>;
   4735 def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>;
   4736 def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>;
   4737 
   4738 let hasSideEffects = 0 in
   4739 class TFR_RD_CR_base<RegisterClass RC, RegisterClass CTRC, bit isSingle>
   4740   : CRInst <(outs RC:$dst), (ins CTRC:$src),
   4741   "$dst = $src", [], "", CR_tc_3x_SLOT3> {
   4742     bits<5> dst;
   4743     bits<5> src;
   4744 
   4745     let IClass = 0b0110;
   4746 
   4747     let Inst{27-26} = 0b10;
   4748     let Inst{25} = isSingle;
   4749     let Inst{24-21} = 0b0000;
   4750     let Inst{20-16} = src;
   4751     let Inst{4-0} = dst;
   4752   }
   4753 
   4754 let hasNewValue = 1, opNewValue = 0 in
   4755 def A2_tfrcrr : TFR_RD_CR_base<IntRegs, CtrRegs, 1>;
   4756 def A4_tfrcpp : TFR_RD_CR_base<DoubleRegs, CtrRegs64, 0>;
   4757 def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>;
   4758 def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>;
   4759 
   4760 // Y4_trace: Send value to etm trace.
   4761 let isSoloAX = 1, hasSideEffects = 0 in
   4762 def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs),
   4763   "trace($Rs)"> {
   4764     bits<5> Rs;
   4765 
   4766     let IClass = 0b0110;
   4767     let Inst{27-21} = 0b0010010;
   4768     let Inst{20-16} = Rs;
   4769   }
   4770 
   4771 // Support for generating global address.
   4772 // Taken from X86InstrInfo.td.
   4773 def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
   4774                                              SDTCisVT<1, i32>,
   4775                                              SDTCisPtrTy<0>]>;
   4776 def HexagonCONST32    : SDNode<"HexagonISD::CONST32",    SDTHexagonCONST32>;
   4777 def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
   4778 
   4779 // HI/LO Instructions
   4780 let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
   4781     hasNewValue = 1, opNewValue = 0 in
   4782 class REG_IMMED<string RegHalf, string Op, bit Rs, bits<3> MajOp, bit MinOp>
   4783   : ALU32_ri<(outs IntRegs:$dst),
   4784               (ins i32imm:$imm_value),
   4785               "$dst"#RegHalf#" = #"#Op#"($imm_value)", []> {
   4786     bits<5> dst;
   4787     bits<32> imm_value;
   4788     let IClass = 0b0111;
   4789 
   4790     let Inst{27} = Rs;
   4791     let Inst{26-24} = MajOp;
   4792     let Inst{21} = MinOp;
   4793     let Inst{20-16} = dst;
   4794     let Inst{23-22} = !if (!eq(Op, "LO"), imm_value{15-14}, imm_value{31-30});
   4795     let Inst{13-0} = !if (!eq(Op, "LO"), imm_value{13-0}, imm_value{29-16});
   4796 }
   4797 
   4798 let isAsmParserOnly = 1 in {
   4799   def LO : REG_IMMED<".l", "LO", 0b0, 0b001, 0b1>;
   4800   def LO_H : REG_IMMED<".l", "HI", 0b0, 0b001, 0b1>;
   4801   def HI : REG_IMMED<".h", "HI", 0b0, 0b010, 0b1>;
   4802   def HI_L : REG_IMMED<".h", "LO", 0b0, 0b010, 0b1>;
   4803 }
   4804 
   4805 let  isMoveImm = 1, isCodeGenOnly = 1 in
   4806 def LO_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
   4807              "$dst.l = #LO($label@GOTREL)",
   4808              []>;
   4809 
   4810 let  isMoveImm = 1, isCodeGenOnly = 1 in
   4811 def HI_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
   4812              "$dst.h = #HI($label@GOTREL)",
   4813              []>;
   4814 
   4815 let isReMaterializable = 1, isMoveImm = 1,
   4816     isCodeGenOnly = 1, hasSideEffects = 0 in
   4817 def HI_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   4818              "$dst.h = #HI($global@GOT)",
   4819              []>;
   4820 
   4821 let isReMaterializable = 1, isMoveImm = 1,
   4822     isCodeGenOnly = 1, hasSideEffects = 0 in
   4823 def LO_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   4824              "$dst.l = #LO($global@GOT)",
   4825              []>;
   4826 
   4827 let isReMaterializable = 1, isMoveImm = 1,
   4828     isCodeGenOnly = 1, hasSideEffects = 0 in
   4829 def HI_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   4830                 "$dst.h = #HI($global@GOTREL)",
   4831                 []>;
   4832 
   4833 let isReMaterializable = 1, isMoveImm = 1,
   4834     isCodeGenOnly = 1, hasSideEffects = 0 in
   4835 def LO_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
   4836                "$dst.l = #LO($global@GOTREL)",
   4837                []>;
   4838 
   4839 // This pattern is incorrect. When we add small data, we should change
   4840 // this pattern to use memw(#foo).
   4841 // This is for sdata.
   4842 let isMoveImm = 1, isAsmParserOnly = 1 in
   4843 def CONST32 : CONSTLDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
   4844               "$dst = CONST32(#$global)",
   4845               [(set (i32 IntRegs:$dst),
   4846                     (load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
   4847 
   4848 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
   4849 def CONST32_Int_Real : CONSTLDInst<(outs IntRegs:$dst), (ins i32imm:$global),
   4850                        "$dst = CONST32(#$global)",
   4851                        [(set (i32 IntRegs:$dst), imm:$global) ]>;
   4852 
   4853 // Map TLS addressses to a CONST32 instruction
   4854 def: Pat<(HexagonCONST32 tglobaltlsaddr:$addr), (A2_tfrsi s16Ext:$addr)>;
   4855 def: Pat<(HexagonCONST32 bbl:$label),           (A2_tfrsi s16Ext:$label)>;
   4856 
   4857 let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
   4858 def CONST64_Int_Real : CONSTLDInst<(outs DoubleRegs:$dst), (ins i64imm:$global),
   4859                        "$dst = CONST64(#$global)",
   4860                        [(set (i64 DoubleRegs:$dst), imm:$global)]>;
   4861 
   4862 let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
   4863     isCodeGenOnly = 1 in
   4864 def TFR_PdTrue : SInst<(outs PredRegs:$dst), (ins), "",
   4865                  [(set (i1 PredRegs:$dst), 1)]>;
   4866 
   4867 let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
   4868     isCodeGenOnly = 1 in
   4869 def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)",
   4870                   [(set (i1 PredRegs:$dst), 0)]>;
   4871 
   4872 // Pseudo instructions.
   4873 def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
   4874 def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
   4875                                         SDTCisVT<1, i32> ]>;
   4876 
   4877 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
   4878                     [SDNPHasChain, SDNPOutGlue]>;
   4879 def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
   4880                     [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
   4881 
   4882 def SDT_SPCall  : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
   4883 
   4884 // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
   4885 // Optional Flag and Variable Arguments.
   4886 // Its 1 Operand has pointer type.
   4887 def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
   4888                           [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
   4889 
   4890 let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
   4891 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
   4892                               ".error \"should not emit\" ",
   4893                               [(callseq_start timm:$amt)]>;
   4894 
   4895 let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
   4896 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
   4897                              ".error \"should not emit\" ",
   4898                              [(callseq_end timm:$amt1, timm:$amt2)]>;
   4899 
   4900 // Call subroutine indirectly.
   4901 let Defs = VolatileV3.Regs in
   4902 def J2_callr : JUMPR_MISC_CALLR<0, 1>;
   4903 
   4904 // Indirect tail-call.
   4905 let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
   4906     isTerminator = 1, isCodeGenOnly = 1 in
   4907 def TCRETURNr : T_JMPr;
   4908 
   4909 // Direct tail-calls.
   4910 let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
   4911     isTerminator = 1, isCodeGenOnly = 1 in
   4912 def TCRETURNi : JInst<(outs), (ins calltarget:$dst), "", []>;
   4913 
   4914 //Tail calls.
   4915 def: Pat<(HexagonTCRet tglobaladdr:$dst),
   4916          (TCRETURNi tglobaladdr:$dst)>;
   4917 def: Pat<(HexagonTCRet texternalsym:$dst),
   4918          (TCRETURNi texternalsym:$dst)>;
   4919 def: Pat<(HexagonTCRet (i32 IntRegs:$dst)),
   4920          (TCRETURNr IntRegs:$dst)>;
   4921 
   4922 // Map from r0 = and(r1, 65535) to r0 = zxth(r1)
   4923 def: Pat<(and (i32 IntRegs:$src1), 65535),
   4924          (A2_zxth IntRegs:$src1)>;
   4925 
   4926 // Map from r0 = and(r1, 255) to r0 = zxtb(r1).
   4927 def: Pat<(and (i32 IntRegs:$src1), 255),
   4928          (A2_zxtb IntRegs:$src1)>;
   4929 
   4930 // Map Add(p1, true) to p1 = not(p1).
   4931 //     Add(p1, false) should never be produced,
   4932 //     if it does, it got to be mapped to NOOP.
   4933 def: Pat<(add (i1 PredRegs:$src1), -1),
   4934          (C2_not PredRegs:$src1)>;
   4935 
   4936 // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
   4937 def: Pat<(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s32ImmPred:$src3),
   4938          (C2_muxii PredRegs:$src1, s32ImmPred:$src3, s8ImmPred:$src2)>;
   4939 
   4940 // Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
   4941 // => r0 = C2_muxir(p0, r1, #i)
   4942 def: Pat<(select (not (i1 PredRegs:$src1)), s32ImmPred:$src2,
   4943                  (i32 IntRegs:$src3)),
   4944          (C2_muxir PredRegs:$src1, IntRegs:$src3, s32ImmPred:$src2)>;
   4945 
   4946 // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
   4947 // => r0 = C2_muxri (p0, #i, r1)
   4948 def: Pat<(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s32ImmPred:$src3),
   4949          (C2_muxri PredRegs:$src1, s32ImmPred:$src3, IntRegs:$src2)>;
   4950 
   4951 // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
   4952 def: Pat<(brcond (not (i1 PredRegs:$src1)), bb:$offset),
   4953          (J2_jumpf PredRegs:$src1, bb:$offset)>;
   4954 
   4955 // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo).
   4956 def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
   4957          (A2_sxtw (LoReg DoubleRegs:$src1))>;
   4958 
   4959 // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)).
   4960 def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
   4961          (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>;
   4962 
   4963 // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)).
   4964 def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
   4965          (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>;
   4966 
   4967 // We want to prevent emitting pnot's as much as possible.
   4968 // Map brcond with an unsupported setcc to a J2_jumpf.
   4969 def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   4970                         bb:$offset),
   4971       (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
   4972                 bb:$offset)>;
   4973 
   4974 def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
   4975                         bb:$offset),
   4976       (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
   4977 
   4978 def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
   4979          (J2_jumpf PredRegs:$src1, bb:$offset)>;
   4980 
   4981 def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
   4982          (J2_jumpt PredRegs:$src1, bb:$offset)>;
   4983 
   4984 // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
   4985 def: Pat<(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset),
   4986         (J2_jumpf (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ImmPred:$src2)),
   4987                   bb:$offset)>;
   4988 
   4989 // Map from a 64-bit select to an emulated 64-bit mux.
   4990 // Hexagon does not support 64-bit MUXes; so emulate with combines.
   4991 def: Pat<(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
   4992                  (i64 DoubleRegs:$src3)),
   4993          (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2),
   4994                                               (HiReg DoubleRegs:$src3)),
   4995                       (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2),
   4996                                               (LoReg DoubleRegs:$src3)))>;
   4997 
   4998 // Map from a 1-bit select to logical ops.
   4999 // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
   5000 def: Pat<(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)),
   5001          (C2_or (C2_and PredRegs:$src1, PredRegs:$src2),
   5002                 (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>;
   5003 
   5004 // Map for truncating from 64 immediates to 32 bit immediates.
   5005 def: Pat<(i32 (trunc (i64 DoubleRegs:$src))),
   5006          (LoReg DoubleRegs:$src)>;
   5007 
   5008 // Map for truncating from i64 immediates to i1 bit immediates.
   5009 def: Pat<(i1 (trunc (i64 DoubleRegs:$src))),
   5010          (C2_tfrrp (LoReg DoubleRegs:$src))>;
   5011 
   5012 // rs <= rt -> !(rs > rt).
   5013 let AddedComplexity = 30 in
   5014 def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)),
   5015          (C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>;
   5016 
   5017 // rs <= rt -> !(rs > rt).
   5018 def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   5019       (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
   5020 
   5021 // Rss <= Rtt -> !(Rss > Rtt).
   5022 def: Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   5023          (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>;
   5024 
   5025 // Map cmpne -> cmpeq.
   5026 // Hexagon_TODO: We should improve on this.
   5027 // rs != rt -> !(rs == rt).
   5028 let AddedComplexity = 30 in
   5029 def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)),
   5030          (C2_not (C2_cmpeqi IntRegs:$src1, s32ImmPred:$src2))>;
   5031 
   5032 // Convert setne back to xor for hexagon since we compute w/ pred registers.
   5033 def: Pat<(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
   5034          (C2_xor PredRegs:$src1, PredRegs:$src2)>;
   5035 
   5036 // Map cmpne(Rss) -> !cmpew(Rss).
   5037 // rs != rt -> !(rs == rt).
   5038 def: Pat<(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   5039          (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>;
   5040 
   5041 // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
   5042 // rs >= rt -> !(rt > rs).
   5043 def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
   5044       (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
   5045 
   5046 // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
   5047 let AddedComplexity = 30 in
   5048 def: Pat<(i1 (setge (i32 IntRegs:$src1), s32ImmPred:$src2)),
   5049          (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>;
   5050 
   5051 // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
   5052 // rss >= rtt -> !(rtt > rss).
   5053 def: Pat<(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   5054          (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>;
   5055 
   5056 // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
   5057 // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
   5058 // rs < rt -> !(rs >= rt).
   5059 let AddedComplexity = 30 in
   5060 def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)),
   5061          (C2_not (C2_cmpgti IntRegs:$src1,
   5062                             (DEC_CONST_SIGNED s32ImmPred:$src2)))>;
   5063 
   5064 // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
   5065 def: Pat<(i1 (setuge (i32 IntRegs:$src1), 0)),
   5066          (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>;
   5067 
   5068 // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
   5069 def: Pat<(i1 (setuge (i32 IntRegs:$src1), u32ImmPred:$src2)),
   5070          (C2_cmpgtui IntRegs:$src1, (DEC_CONST_UNSIGNED u32ImmPred:$src2))>;
   5071 
   5072 // Generate cmpgtu(Rs, #u9)
   5073 def: Pat<(i1 (setugt (i32 IntRegs:$src1), u32ImmPred:$src2)),
   5074          (C2_cmpgtui IntRegs:$src1, u32ImmPred:$src2)>;
   5075 
   5076 // Map from Rs >= Rt -> !(Rt > Rs).
   5077 // rs >= rt -> !(rt > rs).
   5078 def: Pat<(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   5079          (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>;
   5080 
   5081 // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
   5082 // Map from (Rs <= Rt) -> !(Rs > Rt).
   5083 def: Pat<(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
   5084          (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>;
   5085 
   5086 // Sign extends.
   5087 // i1 -> i32
   5088 def: Pat<(i32 (sext (i1 PredRegs:$src1))),
   5089          (C2_muxii PredRegs:$src1, -1, 0)>;
   5090 
   5091 // i1 -> i64
   5092 def: Pat<(i64 (sext (i1 PredRegs:$src1))),
   5093          (A2_combinew (A2_tfrsi -1), (C2_muxii PredRegs:$src1, -1, 0))>;
   5094 
   5095 // Zero extends.
   5096 // i1 -> i32
   5097 def: Pat<(i32 (zext (i1 PredRegs:$src1))),
   5098          (C2_muxii PredRegs:$src1, 1, 0)>;
   5099 
   5100 // Map from Rs = Pd to Pd = mux(Pd, #1, #0)
   5101 def: Pat<(i32 (anyext (i1 PredRegs:$src1))),
   5102          (C2_muxii PredRegs:$src1, 1, 0)>;
   5103 
   5104 // Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
   5105 def: Pat<(i64 (anyext (i1 PredRegs:$src1))),
   5106          (A2_sxtw (C2_muxii PredRegs:$src1, 1, 0))>;
   5107 
   5108 // Multiply 64-bit unsigned and use upper result.
   5109 def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
   5110   (A2_addp
   5111     (M2_dpmpyuu_acc_s0
   5112       (S2_lsr_i_p
   5113         (A2_addp
   5114           (M2_dpmpyuu_acc_s0
   5115             (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (LoReg $src2)), 32),
   5116             (HiReg $src1),
   5117             (LoReg $src2)),
   5118           (A2_combinew (A2_tfrsi 0),
   5119                        (LoReg (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2))))),
   5120         32),
   5121       (HiReg $src1),
   5122       (HiReg $src2)),
   5123     (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2)), 32)
   5124 )>;
   5125 
   5126 // Hexagon specific ISD nodes.
   5127 def SDTHexagonALLOCA : SDTypeProfile<1, 2,
   5128       [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
   5129 def HexagonALLOCA : SDNode<"HexagonISD::ALLOCA", SDTHexagonALLOCA,
   5130       [SDNPHasChain]>;
   5131 
   5132 // The reason for the custom inserter is to record all ALLOCA instructions
   5133 // in MachineFunctionInfo.
   5134 let Defs = [R29], isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 1,
   5135     usesCustomInserter = 1 in
   5136 def ALLOCA: ALU32Inst<(outs IntRegs:$Rd),
   5137       (ins IntRegs:$Rs, u32Imm:$A), "",
   5138       [(set (i32 IntRegs:$Rd),
   5139             (HexagonALLOCA (i32 IntRegs:$Rs), (i32 imm:$A)))]>;
   5140 
   5141 let isCodeGenOnly = 1, isPseudo = 1, Uses = [R30], hasSideEffects = 0 in
   5142 def ALIGNA : ALU32Inst<(outs IntRegs:$Rd), (ins u32Imm:$A), "", []>;
   5143 
   5144 def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
   5145 def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
   5146 let isCodeGenOnly = 1 in
   5147 def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
   5148                 "$dst = $src1",
   5149                 [(set (i32 IntRegs:$dst),
   5150                       (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
   5151 
   5152 let AddedComplexity = 100 in
   5153 def: Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
   5154          (i32 IntRegs:$src1)>;
   5155 
   5156 def HexagonJT:     SDNode<"HexagonISD::JT", SDTIntUnaryOp>;
   5157 def HexagonCP:     SDNode<"HexagonISD::CP", SDTIntUnaryOp>;
   5158 
   5159 def: Pat<(HexagonJT tjumptable:$dst), (A2_tfrsi s16Ext:$dst)>;
   5160 def: Pat<(HexagonCP tconstpool:$dst), (A2_tfrsi s16Ext:$dst)>;
   5161 
   5162 // XTYPE/SHIFT
   5163 //
   5164 //===----------------------------------------------------------------------===//
   5165 // Template Class
   5166 // Shift by immediate/register and accumulate/logical
   5167 //===----------------------------------------------------------------------===//
   5168 
   5169 // Rx[+-&|]=asr(Rs,#u5)
   5170 // Rx[+-&|^]=lsr(Rs,#u5)
   5171 // Rx[+-&|^]=asl(Rs,#u5)
   5172 
   5173 let hasNewValue = 1, opNewValue = 0 in
   5174 class T_shift_imm_acc_r <string opc1, string opc2, SDNode OpNode1,
   5175                          SDNode OpNode2, bits<3> majOp, bits<2> minOp>
   5176   : SInst_acc<(outs IntRegs:$Rx),
   5177               (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5),
   5178   "$Rx "#opc2#opc1#"($Rs, #$u5)",
   5179   [(set (i32 IntRegs:$Rx),
   5180          (OpNode2 (i32 IntRegs:$src1),
   5181                   (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))],
   5182   "$src1 = $Rx", S_2op_tc_2_SLOT23> {
   5183     bits<5> Rx;
   5184     bits<5> Rs;
   5185     bits<5> u5;
   5186 
   5187     let IClass = 0b1000;
   5188 
   5189     let Inst{27-24} = 0b1110;
   5190     let Inst{23-22} = majOp{2-1};
   5191     let Inst{13} = 0b0;
   5192     let Inst{7} = majOp{0};
   5193     let Inst{6-5} = minOp;
   5194     let Inst{4-0} = Rx;
   5195     let Inst{20-16} = Rs;
   5196     let Inst{12-8} = u5;
   5197   }
   5198 
   5199 // Rx[+-&|]=asr(Rs,Rt)
   5200 // Rx[+-&|^]=lsr(Rs,Rt)
   5201 // Rx[+-&|^]=asl(Rs,Rt)
   5202 
   5203 let hasNewValue = 1, opNewValue = 0 in
   5204 class T_shift_reg_acc_r <string opc1, string opc2, SDNode OpNode1,
   5205                          SDNode OpNode2, bits<2> majOp, bits<2> minOp>
   5206   : SInst_acc<(outs IntRegs:$Rx),
   5207               (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt),
   5208   "$Rx "#opc2#opc1#"($Rs, $Rt)",
   5209   [(set (i32 IntRegs:$Rx),
   5210          (OpNode2 (i32 IntRegs:$src1),
   5211                   (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))],
   5212   "$src1 = $Rx", S_3op_tc_2_SLOT23 > {
   5213     bits<5> Rx;
   5214     bits<5> Rs;
   5215     bits<5> Rt;
   5216 
   5217     let IClass = 0b1100;
   5218 
   5219     let Inst{27-24} = 0b1100;
   5220     let Inst{23-22} = majOp;
   5221     let Inst{7-6} = minOp;
   5222     let Inst{4-0} = Rx;
   5223     let Inst{20-16} = Rs;
   5224     let Inst{12-8} = Rt;
   5225   }
   5226 
   5227 // Rxx[+-&|]=asr(Rss,#u6)
   5228 // Rxx[+-&|^]=lsr(Rss,#u6)
   5229 // Rxx[+-&|^]=asl(Rss,#u6)
   5230 
   5231 class T_shift_imm_acc_p <string opc1, string opc2, SDNode OpNode1,
   5232                          SDNode OpNode2, bits<3> majOp, bits<2> minOp>
   5233   : SInst_acc<(outs DoubleRegs:$Rxx),
   5234               (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6),
   5235   "$Rxx "#opc2#opc1#"($Rss, #$u6)",
   5236   [(set (i64 DoubleRegs:$Rxx),
   5237         (OpNode2 (i64 DoubleRegs:$src1),
   5238                  (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))],
   5239   "$src1 = $Rxx", S_2op_tc_2_SLOT23> {
   5240     bits<5> Rxx;
   5241     bits<5> Rss;
   5242     bits<6> u6;
   5243 
   5244     let IClass = 0b1000;
   5245 
   5246     let Inst{27-24} = 0b0010;
   5247     let Inst{23-22} = majOp{2-1};
   5248     let Inst{7} = majOp{0};
   5249     let Inst{6-5} = minOp;
   5250     let Inst{4-0} = Rxx;
   5251     let Inst{20-16} = Rss;
   5252     let Inst{13-8} = u6;
   5253   }
   5254 
   5255 
   5256 // Rxx[+-&|]=asr(Rss,Rt)
   5257 // Rxx[+-&|^]=lsr(Rss,Rt)
   5258 // Rxx[+-&|^]=asl(Rss,Rt)
   5259 // Rxx[+-&|^]=lsl(Rss,Rt)
   5260 
   5261 class T_shift_reg_acc_p <string opc1, string opc2, SDNode OpNode1,
   5262                          SDNode OpNode2, bits<3> majOp, bits<2> minOp>
   5263   : SInst_acc<(outs DoubleRegs:$Rxx),
   5264               (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt),
   5265   "$Rxx "#opc2#opc1#"($Rss, $Rt)",
   5266   [(set (i64 DoubleRegs:$Rxx),
   5267         (OpNode2 (i64 DoubleRegs:$src1),
   5268                  (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))],
   5269   "$src1 = $Rxx", S_3op_tc_2_SLOT23> {
   5270     bits<5> Rxx;
   5271     bits<5> Rss;
   5272     bits<5> Rt;
   5273 
   5274     let IClass = 0b1100;
   5275 
   5276     let Inst{27-24} = 0b1011;
   5277     let Inst{23-21} = majOp;
   5278     let Inst{20-16} = Rss;
   5279     let Inst{12-8} = Rt;
   5280     let Inst{7-6} = minOp;
   5281     let Inst{4-0} = Rxx;
   5282   }
   5283 
   5284 //===----------------------------------------------------------------------===//
   5285 // Multi-class for the shift instructions with logical/arithmetic operators.
   5286 //===----------------------------------------------------------------------===//
   5287 
   5288 multiclass xtype_imm_base<string OpcStr1, string OpcStr2, SDNode OpNode1,
   5289                          SDNode OpNode2, bits<3> majOp, bits<2> minOp > {
   5290   def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1,
   5291                                      OpNode2, majOp, minOp >;
   5292   def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1,
   5293                                      OpNode2, majOp, minOp >;
   5294 }
   5295 
   5296 multiclass xtype_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
   5297   let AddedComplexity = 100 in
   5298   defm _acc  : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>;
   5299 
   5300   defm _nac  : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>;
   5301   defm _and  : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>;
   5302   defm _or   : xtype_imm_base< opc1, "|= ", OpNode,  or, 0b011, minOp>;
   5303 }
   5304 
   5305 multiclass xtype_xor_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
   5306 let AddedComplexity = 100 in
   5307   defm _xacc  : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>;
   5308 }
   5309 
   5310 defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>;
   5311 
   5312 defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>,
   5313               xtype_xor_imm_acc<"lsr", srl, 0b01>;
   5314 
   5315 defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>,
   5316               xtype_xor_imm_acc<"asl", shl, 0b10>;
   5317 
   5318 multiclass xtype_reg_acc_r<string opc1, SDNode OpNode, bits<2>minOp> {
   5319   let AddedComplexity = 100 in
   5320   def _acc : T_shift_reg_acc_r <opc1, "+= ", OpNode, add, 0b11, minOp>;
   5321 
   5322   def _nac : T_shift_reg_acc_r <opc1, "-= ", OpNode, sub, 0b10, minOp>;
   5323   def _and : T_shift_reg_acc_r <opc1, "&= ", OpNode, and, 0b01, minOp>;
   5324   def _or  : T_shift_reg_acc_r <opc1, "|= ", OpNode,  or, 0b00, minOp>;
   5325 }
   5326 
   5327 multiclass xtype_reg_acc_p<string opc1, SDNode OpNode, bits<2>minOp> {
   5328   let AddedComplexity = 100 in
   5329   def _acc : T_shift_reg_acc_p <opc1, "+= ", OpNode, add, 0b110, minOp>;
   5330 
   5331   def _nac : T_shift_reg_acc_p <opc1, "-= ", OpNode, sub, 0b100, minOp>;
   5332   def _and : T_shift_reg_acc_p <opc1, "&= ", OpNode, and, 0b010, minOp>;
   5333   def _or  : T_shift_reg_acc_p <opc1, "|= ", OpNode,  or, 0b000, minOp>;
   5334   def _xor : T_shift_reg_acc_p <opc1, "^= ", OpNode, xor, 0b011, minOp>;
   5335 }
   5336 
   5337 multiclass xtype_reg_acc<string OpcStr, SDNode OpNode, bits<2> minOp > {
   5338   defm _r_r : xtype_reg_acc_r <OpcStr, OpNode, minOp>;
   5339   defm _r_p : xtype_reg_acc_p <OpcStr, OpNode, minOp>;
   5340 }
   5341 
   5342 defm S2_asl : xtype_reg_acc<"asl", shl, 0b10>;
   5343 defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>;
   5344 defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>;
   5345 defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>;
   5346 
   5347 //===----------------------------------------------------------------------===//
   5348 let hasSideEffects = 0 in
   5349 class T_S3op_1 <string mnemonic, RegisterClass RC, bits<2> MajOp, bits<3> MinOp,
   5350                 bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0>
   5351   : SInst <(outs RC:$dst),
   5352            (ins DoubleRegs:$src1, DoubleRegs:$src2),
   5353   "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "")
   5354                                      #!if(hasShift,":>>1","")
   5355                                      #!if(isSat, ":sat", ""),
   5356   [], "", S_3op_tc_2_SLOT23 > {
   5357     bits<5> dst;
   5358     bits<5> src1;
   5359     bits<5> src2;
   5360 
   5361     let IClass = 0b1100;
   5362 
   5363     let Inst{27-24} = 0b0001;
   5364     let Inst{23-22} = MajOp;
   5365     let Inst{20-16} = !if (SwapOps, src2, src1);
   5366     let Inst{12-8}  = !if (SwapOps, src1, src2);
   5367     let Inst{7-5}   = MinOp;
   5368     let Inst{4-0}   = dst;
   5369   }
   5370 
   5371 class T_S3op_64 <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit SwapOps,
   5372                  bit isSat = 0, bit isRnd = 0, bit hasShift = 0 >
   5373   : T_S3op_1 <mnemonic, DoubleRegs, MajOp, MinOp, SwapOps,
   5374               isSat, isRnd, hasShift>;
   5375 
   5376 let Itinerary = S_3op_tc_1_SLOT23 in {
   5377   def S2_shuffeb : T_S3op_64 < "shuffeb", 0b00, 0b010, 0>;
   5378   def S2_shuffeh : T_S3op_64 < "shuffeh", 0b00, 0b110, 0>;
   5379   def S2_shuffob : T_S3op_64 < "shuffob", 0b00, 0b100, 1>;
   5380   def S2_shuffoh : T_S3op_64 < "shuffoh", 0b10, 0b000, 1>;
   5381 
   5382   def S2_vtrunewh : T_S3op_64 < "vtrunewh", 0b10, 0b010, 0>;
   5383   def S2_vtrunowh : T_S3op_64 < "vtrunowh", 0b10, 0b100, 0>;
   5384 }
   5385 
   5386 def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>;
   5387 
   5388 let hasSideEffects = 0 in
   5389 class T_S3op_2 <string mnemonic, bits<3> MajOp, bit SwapOps>
   5390   : SInst < (outs DoubleRegs:$Rdd),
   5391             (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
   5392   "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu)",
   5393   [], "", S_3op_tc_1_SLOT23 > {
   5394     bits<5> Rdd;
   5395     bits<5> Rss;
   5396     bits<5> Rtt;
   5397     bits<2> Pu;
   5398 
   5399     let IClass = 0b1100;
   5400 
   5401     let Inst{27-24} = 0b0010;
   5402     let Inst{23-21} = MajOp;
   5403     let Inst{20-16} = !if (SwapOps, Rtt, Rss);
   5404     let Inst{12-8} = !if (SwapOps, Rss, Rtt);
   5405     let Inst{6-5} = Pu;
   5406     let Inst{4-0} = Rdd;
   5407   }
   5408 
   5409 def S2_valignrb  : T_S3op_2 < "valignb",  0b000, 1>;
   5410 def S2_vsplicerb : T_S3op_2 < "vspliceb", 0b100, 0>;
   5411 
   5412 //===----------------------------------------------------------------------===//
   5413 // Template class used by vector shift, vector rotate, vector neg,
   5414 // 32-bit shift, 64-bit shifts, etc.
   5415 //===----------------------------------------------------------------------===//
   5416 
   5417 let hasSideEffects = 0 in
   5418 class T_S3op_3 <string mnemonic, RegisterClass RC, bits<2> MajOp,
   5419                  bits<2> MinOp, bit isSat = 0, list<dag> pattern = [] >
   5420   : SInst <(outs RC:$dst),
   5421            (ins RC:$src1, IntRegs:$src2),
   5422   "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""),
   5423   pattern, "", S_3op_tc_1_SLOT23> {
   5424     bits<5> dst;
   5425     bits<5> src1;
   5426     bits<5> src2;
   5427 
   5428     let IClass = 0b1100;
   5429 
   5430     let Inst{27-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b0110, 0b0011);
   5431     let Inst{23-22} = MajOp;
   5432     let Inst{20-16} = src1;
   5433     let Inst{12-8} = src2;
   5434     let Inst{7-6} = MinOp;
   5435     let Inst{4-0} = dst;
   5436   }
   5437 
   5438 let hasNewValue = 1 in
   5439 class T_S3op_shift32 <string mnemonic, SDNode OpNode, bits<2> MinOp>
   5440   : T_S3op_3 <mnemonic, IntRegs, 0b01, MinOp, 0,
   5441     [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
   5442                                       (i32 IntRegs:$src2)))]>;
   5443 
   5444 let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in
   5445 class T_S3op_shift32_Sat <string mnemonic, bits<2> MinOp>
   5446   : T_S3op_3 <mnemonic, IntRegs, 0b00, MinOp, 1, []>;
   5447 
   5448 
   5449 class T_S3op_shift64 <string mnemonic, SDNode OpNode, bits<2> MinOp>
   5450   : T_S3op_3 <mnemonic, DoubleRegs, 0b10, MinOp, 0,
   5451     [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
   5452                                          (i32 IntRegs:$src2)))]>;
   5453 
   5454 
   5455 class T_S3op_shiftVect <string mnemonic, bits<2> MajOp, bits<2> MinOp>
   5456   : T_S3op_3 <mnemonic, DoubleRegs, MajOp, MinOp, 0, []>;
   5457 
   5458 
   5459 // Shift by register
   5460 // Rdd=[asr|lsr|asl|lsl](Rss,Rt)
   5461 
   5462 def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>;
   5463 def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>;
   5464 def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>;
   5465 def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>;
   5466 
   5467 // Rd=[asr|lsr|asl|lsl](Rs,Rt)
   5468 
   5469 def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>;
   5470 def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>;
   5471 def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>;
   5472 def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>;
   5473 
   5474 // Shift by register with saturation
   5475 // Rd=asr(Rs,Rt):sat
   5476 // Rd=asl(Rs,Rt):sat
   5477 
   5478 let Defs = [USR_OVF] in {
   5479   def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>;
   5480   def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>;
   5481 }
   5482 
   5483 let hasNewValue = 1, hasSideEffects = 0 in
   5484 class T_S3op_8 <string opc, bits<3> MinOp, bit isSat, bit isRnd, bit hasShift, bit hasSplat = 0>
   5485   : SInst < (outs IntRegs:$Rd),
   5486             (ins DoubleRegs:$Rss, IntRegs:$Rt),
   5487   "$Rd = "#opc#"($Rss, $Rt"#!if(hasSplat, "*", "")#")"
   5488                            #!if(hasShift, ":<<1", "")
   5489                            #!if(isRnd, ":rnd", "")
   5490                            #!if(isSat, ":sat", ""),
   5491   [], "", S_3op_tc_1_SLOT23 > {
   5492     bits<5> Rd;
   5493     bits<5> Rss;
   5494     bits<5> Rt;
   5495 
   5496     let IClass = 0b1100;
   5497 
   5498     let Inst{27-24} = 0b0101;
   5499     let Inst{20-16} = Rss;
   5500     let Inst{12-8}  = Rt;
   5501     let Inst{7-5}   = MinOp;
   5502     let Inst{4-0}   = Rd;
   5503   }
   5504 
   5505 def S2_asr_r_svw_trun : T_S3op_8<"vasrw", 0b010, 0, 0, 0>;
   5506 
   5507 let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
   5508 def S2_vcrotate : T_S3op_shiftVect < "vcrotate", 0b11, 0b00>;
   5509 
   5510 let hasSideEffects = 0 in
   5511 class T_S3op_7 <string mnemonic, bit MajOp >
   5512   : SInst <(outs DoubleRegs:$Rdd),
   5513            (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, u3Imm:$u3),
   5514   "$Rdd = "#mnemonic#"($Rss, $Rtt, #$u3)" ,
   5515   [], "", S_3op_tc_1_SLOT23 > {
   5516     bits<5> Rdd;
   5517     bits<5> Rss;
   5518     bits<5> Rtt;
   5519     bits<3> u3;
   5520 
   5521     let IClass = 0b1100;
   5522 
   5523     let Inst{27-24} = 0b0000;
   5524     let Inst{23}    = MajOp;
   5525     let Inst{20-16} = !if(MajOp, Rss, Rtt);
   5526     let Inst{12-8}  =  !if(MajOp, Rtt, Rss);
   5527     let Inst{7-5}   = u3;
   5528     let Inst{4-0}   = Rdd;
   5529   }
   5530 
   5531 def S2_valignib  : T_S3op_7 < "valignb", 0>;
   5532 def S2_vspliceib : T_S3op_7 < "vspliceb", 1>;
   5533 
   5534 //===----------------------------------------------------------------------===//
   5535 // Template class for 'insert bitfield' instructions
   5536 //===----------------------------------------------------------------------===//
   5537 let hasSideEffects = 0 in
   5538 class T_S3op_insert <string mnemonic, RegisterClass RC>
   5539   : SInst <(outs RC:$dst),
   5540            (ins RC:$src1, RC:$src2, DoubleRegs:$src3),
   5541   "$dst = "#mnemonic#"($src2, $src3)" ,
   5542   [], "$src1 = $dst", S_3op_tc_1_SLOT23 > {
   5543     bits<5> dst;
   5544     bits<5> src2;
   5545     bits<5> src3;
   5546 
   5547     let IClass = 0b1100;
   5548 
   5549     let Inst{27-26} = 0b10;
   5550     let Inst{25-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b00, 0b10);
   5551     let Inst{23}    = 0b0;
   5552     let Inst{20-16} = src2;
   5553     let Inst{12-8}  = src3;
   5554     let Inst{4-0}   = dst;
   5555   }
   5556 
   5557 let hasSideEffects = 0 in
   5558 class T_S2op_insert <bits<4> RegTyBits, RegisterClass RC, Operand ImmOp>
   5559   : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3),
   5560   "$dst = insert($src1, #$src2, #$src3)",
   5561   [], "$dst2 = $dst", S_2op_tc_2_SLOT23> {
   5562     bits<5> dst;
   5563     bits<5> src1;
   5564     bits<6> src2;
   5565     bits<6> src3;
   5566     bit bit23;
   5567     bit bit13;
   5568     string ImmOpStr = !cast<string>(ImmOp);
   5569 
   5570     let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0);
   5571     let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
   5572 
   5573     let IClass = 0b1000;
   5574 
   5575     let Inst{27-24} = RegTyBits;
   5576     let Inst{23}    = bit23;
   5577     let Inst{22-21} = src3{4-3};
   5578     let Inst{20-16} = src1;
   5579     let Inst{13}    = bit13;
   5580     let Inst{12-8}  = src2{4-0};
   5581     let Inst{7-5}   = src3{2-0};
   5582     let Inst{4-0}   = dst;
   5583   }
   5584 
   5585 // Rx=insert(Rs,Rtt)
   5586 // Rx=insert(Rs,#u5,#U5)
   5587 let hasNewValue = 1 in {
   5588   def S2_insert_rp : T_S3op_insert <"insert", IntRegs>;
   5589   def S2_insert    : T_S2op_insert <0b1111, IntRegs, u5Imm>;
   5590 }
   5591 
   5592 // Rxx=insert(Rss,Rtt)
   5593 // Rxx=insert(Rss,#u6,#U6)
   5594 def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>;
   5595 def S2_insertp    : T_S2op_insert <0b0011, DoubleRegs, u6Imm>;
   5596 
   5597 
   5598 def SDTHexagonINSERT:
   5599   SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
   5600                        SDTCisInt<0>, SDTCisVT<3, i32>, SDTCisVT<4, i32>]>;
   5601 def SDTHexagonINSERTRP:
   5602   SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
   5603                        SDTCisInt<0>, SDTCisVT<3, i64>]>;
   5604 
   5605 def HexagonINSERT   : SDNode<"HexagonISD::INSERT",   SDTHexagonINSERT>;
   5606 def HexagonINSERTRP : SDNode<"HexagonISD::INSERTRP", SDTHexagonINSERTRP>;
   5607 
   5608 def: Pat<(HexagonINSERT I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2),
   5609          (S2_insert I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2)>;
   5610 def: Pat<(HexagonINSERT I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2),
   5611          (S2_insertp I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2)>;
   5612 def: Pat<(HexagonINSERTRP I32:$Rs, I32:$Rt, I64:$Ru),
   5613          (S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>;
   5614 def: Pat<(HexagonINSERTRP I64:$Rs, I64:$Rt, I64:$Ru),
   5615          (S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>;
   5616 
   5617 let AddedComplexity = 100 in
   5618 def: Pat<(or (or (shl (HexagonINSERT (i32 (zextloadi8 (add I32:$b, 2))),
   5619                                      (i32 (extloadi8  (add I32:$b, 3))),
   5620                                      24, 8),
   5621                       (i32 16)),
   5622                  (shl (i32 (zextloadi8 (add I32:$b, 1))), (i32 8))),
   5623              (zextloadi8 I32:$b)),
   5624          (A2_swiz (L2_loadri_io I32:$b, 0))>;
   5625 
   5626 
   5627 //===----------------------------------------------------------------------===//
   5628 // Template class for 'extract bitfield' instructions
   5629 //===----------------------------------------------------------------------===//
   5630 let hasNewValue = 1, hasSideEffects = 0 in
   5631 class T_S3op_extract <string mnemonic, bits<2> MinOp>
   5632   : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
   5633   "$Rd = "#mnemonic#"($Rs, $Rtt)",
   5634   [], "", S_3op_tc_2_SLOT23 > {
   5635     bits<5> Rd;
   5636     bits<5> Rs;
   5637     bits<5> Rtt;
   5638 
   5639     let IClass = 0b1100;
   5640 
   5641     let Inst{27-22} = 0b100100;
   5642     let Inst{20-16} = Rs;
   5643     let Inst{12-8}  = Rtt;
   5644     let Inst{7-6}   = MinOp;
   5645     let Inst{4-0}   = Rd;
   5646   }
   5647 
   5648 let hasSideEffects = 0 in
   5649 class T_S2op_extract <string mnemonic, bits<4> RegTyBits,
   5650                       RegisterClass RC, Operand ImmOp>
   5651   : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3),
   5652   "$dst = "#mnemonic#"($src1, #$src2, #$src3)",
   5653   [], "", S_2op_tc_2_SLOT23> {
   5654     bits<5> dst;
   5655     bits<5> src1;
   5656     bits<6> src2;
   5657     bits<6> src3;
   5658     bit bit23;
   5659     bit bit13;
   5660     string ImmOpStr = !cast<string>(ImmOp);
   5661 
   5662     let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5},
   5663                 !if (!eq(mnemonic, "extractu"), 0, 1));
   5664 
   5665     let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
   5666 
   5667     let IClass = 0b1000;
   5668 
   5669     let Inst{27-24} = RegTyBits;
   5670     let Inst{23}    = bit23;
   5671     let Inst{22-21} = src3{4-3};
   5672     let Inst{20-16} = src1;
   5673     let Inst{13}    = bit13;
   5674     let Inst{12-8}  = src2{4-0};
   5675     let Inst{7-5}   = src3{2-0};
   5676     let Inst{4-0}   = dst;
   5677   }
   5678 
   5679 // Extract bitfield
   5680 
   5681 // Rdd=extractu(Rss,Rtt)
   5682 // Rdd=extractu(Rss,#u6,#U6)
   5683 def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>;
   5684 def S2_extractup    : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>;
   5685 
   5686 // Rd=extractu(Rs,Rtt)
   5687 // Rd=extractu(Rs,#u5,#U5)
   5688 let hasNewValue = 1 in {
   5689   def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>;
   5690   def S2_extractu    : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>;
   5691 }
   5692 
   5693 def SDTHexagonEXTRACTU:
   5694   SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
   5695                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
   5696 def SDTHexagonEXTRACTURP:
   5697   SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<1>,
   5698                        SDTCisVT<2, i64>]>;
   5699 
   5700 def HexagonEXTRACTU   : SDNode<"HexagonISD::EXTRACTU",   SDTHexagonEXTRACTU>;
   5701 def HexagonEXTRACTURP : SDNode<"HexagonISD::EXTRACTURP", SDTHexagonEXTRACTURP>;
   5702 
   5703 def: Pat<(HexagonEXTRACTU I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3),
   5704          (S2_extractu I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3)>;
   5705 def: Pat<(HexagonEXTRACTU I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3),
   5706          (S2_extractup I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3)>;
   5707 def: Pat<(HexagonEXTRACTURP I32:$src1, I64:$src2),
   5708          (S2_extractu_rp I32:$src1, I64:$src2)>;
   5709 def: Pat<(HexagonEXTRACTURP I64:$src1, I64:$src2),
   5710          (S2_extractup_rp I64:$src1, I64:$src2)>;
   5711 
   5712 // Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
   5713 def: Pat<(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
   5714          (M2_mpysin IntRegs:$src1, u8ImmPred:$src2)>;
   5715 
   5716 //===----------------------------------------------------------------------===//
   5717 // :raw for of tableindx[bdhw] insns
   5718 //===----------------------------------------------------------------------===//
   5719 
   5720 let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
   5721 class tableidxRaw<string OpStr, bits<2>MinOp>
   5722   : SInst <(outs IntRegs:$Rx),
   5723            (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6),
   5724            "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw",
   5725     [], "$Rx = $_dst_" > {
   5726     bits<5> Rx;
   5727     bits<5> Rs;
   5728     bits<4> u4;
   5729     bits<6> S6;
   5730 
   5731     let IClass = 0b1000;
   5732 
   5733     let Inst{27-24} = 0b0111;
   5734     let Inst{23-22} = MinOp;
   5735     let Inst{21}    = u4{3};
   5736     let Inst{20-16} = Rs;
   5737     let Inst{13-8}  = S6;
   5738     let Inst{7-5}   = u4{2-0};
   5739     let Inst{4-0}   = Rx;
   5740   }
   5741 
   5742 def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>;
   5743 def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>;
   5744 def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>;
   5745 def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>;
   5746 
   5747 //===----------------------------------------------------------------------===//
   5748 // Template class for 'table index' instructions which are assembler mapped
   5749 // to their :raw format.
   5750 //===----------------------------------------------------------------------===//
   5751 let isPseudo = 1 in
   5752 class tableidx_goodsyntax <string mnemonic>
   5753   : SInst <(outs IntRegs:$Rx),
   5754            (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, u5Imm:$u5),
   5755            "$Rx = "#mnemonic#"($Rs, #$u4, #$u5)",
   5756            [], "$Rx = $_dst_" >;
   5757 
   5758 def S2_tableidxb_goodsyntax : tableidx_goodsyntax<"tableidxb">;
   5759 def S2_tableidxh_goodsyntax : tableidx_goodsyntax<"tableidxh">;
   5760 def S2_tableidxw_goodsyntax : tableidx_goodsyntax<"tableidxw">;
   5761 def S2_tableidxd_goodsyntax : tableidx_goodsyntax<"tableidxd">;
   5762 
   5763 //===----------------------------------------------------------------------===//
   5764 // V3 Instructions +
   5765 //===----------------------------------------------------------------------===//
   5766 
   5767 include "HexagonInstrInfoV3.td"
   5768 
   5769 //===----------------------------------------------------------------------===//
   5770 // V3 Instructions -
   5771 //===----------------------------------------------------------------------===//
   5772 
   5773 //===----------------------------------------------------------------------===//
   5774 // V4 Instructions +
   5775 //===----------------------------------------------------------------------===//
   5776 
   5777 include "HexagonInstrInfoV4.td"
   5778 
   5779 //===----------------------------------------------------------------------===//
   5780 // V4 Instructions -
   5781 //===----------------------------------------------------------------------===//
   5782 
   5783 //===----------------------------------------------------------------------===//
   5784 // V5 Instructions +
   5785 //===----------------------------------------------------------------------===//
   5786 
   5787 include "HexagonInstrInfoV5.td"
   5788 
   5789 //===----------------------------------------------------------------------===//
   5790 // V5 Instructions -
   5791 //===----------------------------------------------------------------------===//
   5792 
   5793 //===----------------------------------------------------------------------===//
   5794 // V60 Instructions +
   5795 //===----------------------------------------------------------------------===//
   5796 
   5797 include "HexagonInstrInfoV60.td"
   5798 
   5799 //===----------------------------------------------------------------------===//
   5800 // V60 Instructions -
   5801 //===----------------------------------------------------------------------===//
   5802 
   5803 //===----------------------------------------------------------------------===//
   5804 // ALU32/64/Vector +
   5805 //===----------------------------------------------------------------------===///
   5806 
   5807 include "HexagonInstrInfoVector.td"
   5808 
   5809 include "HexagonInstrAlias.td"
   5810