Home | History | Annotate | Download | only in Mips
      1 //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // This describes the calling conventions for Mips architecture.
     10 //===----------------------------------------------------------------------===//
     11 
     12 /// CCIfSubtarget - Match if the current subtarget has a feature F.
     13 class CCIfSubtarget<string F, CCAction A, string Invert = "">
     14     : CCIf<!strconcat(Invert,
     15                       "static_cast<const MipsSubtarget&>"
     16 			"(State.getMachineFunction().getSubtarget()).",
     17                       F),
     18            A>;
     19 
     20 // The inverse of CCIfSubtarget
     21 class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
     22 
     23 /// Match if the original argument (before lowering) was a float.
     24 /// For example, this is true for i32's that were lowered from soft-float.
     25 class CCIfOrigArgWasNotFloat<CCAction A>
     26     : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
     27            A>;
     28 
     29 /// Match if the original argument (before lowering) was a 128-bit float (i.e.
     30 /// long double).
     31 class CCIfOrigArgWasF128<CCAction A>
     32     : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
     33 
     34 /// Match if this specific argument is a vararg.
     35 /// This is slightly different fro CCIfIsVarArg which matches if any argument is
     36 /// a vararg.
     37 class CCIfArgIsVarArg<CCAction A>
     38     : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
     39 
     40 
     41 /// Match if the special calling conv is the specified value.
     42 class CCIfSpecialCallingConv<string CC, CCAction A>
     43     : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
     44                "MipsCCState::" # CC, A>;
     45 
     46 // For soft-float, f128 values are returned in A0_64 rather than V1_64.
     47 def RetCC_F128SoftFloat : CallingConv<[
     48   CCAssignToReg<[V0_64, A0_64]>
     49 ]>;
     50 
     51 // For hard-float, f128 values are returned as a pair of f64's rather than a
     52 // pair of i64's.
     53 def RetCC_F128HardFloat : CallingConv<[
     54   CCBitConvertToType<f64>,
     55 
     56   // Contrary to the ABI documentation, a struct containing a long double is
     57   // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
     58   // match the de facto ABI as implemented by GCC.
     59   CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
     60 
     61   CCAssignToReg<[D0_64, D2_64]>
     62 ]>;
     63 
     64 // Handle F128 specially since we can't identify the original type during the
     65 // tablegen-erated code.
     66 def RetCC_F128 : CallingConv<[
     67   CCIfSubtarget<"useSoftFloat()",
     68       CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
     69   CCIfSubtargetNot<"useSoftFloat()",
     70       CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
     71 ]>;
     72 
     73 //===----------------------------------------------------------------------===//
     74 // Mips O32 Calling Convention
     75 //===----------------------------------------------------------------------===//
     76 
     77 def CC_MipsO32 : CallingConv<[
     78   // Promote i8/i16 arguments to i32.
     79   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
     80 
     81   // Integer values get stored in stack slots that are 4 bytes in
     82   // size and 4-byte aligned.
     83   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
     84 
     85   // Integer values get stored in stack slots that are 8 bytes in
     86   // size and 8-byte aligned.
     87   CCIfType<[f64], CCAssignToStack<8, 8>>
     88 ]>;
     89 
     90 // Only the return rules are defined here for O32. The rules for argument
     91 // passing are defined in MipsISelLowering.cpp.
     92 def RetCC_MipsO32 : CallingConv<[
     93   // Promote i1/i8/i16 return values to i32.
     94   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
     95 
     96   // i32 are returned in registers V0, V1, A0, A1
     97   CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
     98 
     99   // f32 are returned in registers F0, F2
    100   CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
    101 
    102   // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
    103   // in D0 and D1 in FP32bit mode.
    104   CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
    105   CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
    106 ]>;
    107 
    108 def CC_MipsO32_FP32 : CustomCallingConv;
    109 def CC_MipsO32_FP64 : CustomCallingConv;
    110 
    111 def CC_MipsO32_FP : CallingConv<[
    112   CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
    113   CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
    114 ]>;
    115 
    116 //===----------------------------------------------------------------------===//
    117 // Mips N32/64 Calling Convention
    118 //===----------------------------------------------------------------------===//
    119 
    120 def CC_MipsN_SoftFloat : CallingConv<[
    121   CCAssignToRegWithShadow<[A0, A1, A2, A3,
    122                            T0, T1, T2, T3],
    123                           [D12_64, D13_64, D14_64, D15_64,
    124                            D16_64, D17_64, D18_64, D19_64]>,
    125   CCAssignToStack<4, 8>
    126 ]>;
    127 
    128 def CC_MipsN : CallingConv<[
    129   CCIfType<[i8, i16, i32, i64],
    130       CCIfSubtargetNot<"isLittle()",
    131           CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
    132 
    133   // All integers (except soft-float integers) are promoted to 64-bit.
    134   CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
    135 
    136   // The only i32's we have left are soft-float arguments.
    137   CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
    138 
    139   // Integer arguments are passed in integer registers.
    140   CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
    141                                            T0_64, T1_64, T2_64, T3_64],
    142                                           [D12_64, D13_64, D14_64, D15_64,
    143                                            D16_64, D17_64, D18_64, D19_64]>>,
    144 
    145   // f32 arguments are passed in single precision FP registers.
    146   CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
    147                                            F16, F17, F18, F19],
    148                                           [A0_64, A1_64, A2_64, A3_64,
    149                                            T0_64, T1_64, T2_64, T3_64]>>,
    150 
    151   // f64 arguments are passed in double precision FP registers.
    152   CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
    153                                            D16_64, D17_64, D18_64, D19_64],
    154                                           [A0_64, A1_64, A2_64, A3_64,
    155                                            T0_64, T1_64, T2_64, T3_64]>>,
    156 
    157   // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
    158   CCIfType<[f32], CCAssignToStack<4, 8>>,
    159   CCIfType<[i64, f64], CCAssignToStack<8, 8>>
    160 ]>;
    161 
    162 // N32/64 variable arguments.
    163 // All arguments are passed in integer registers.
    164 def CC_MipsN_VarArg : CallingConv<[
    165   CCIfType<[i8, i16, i32, i64],
    166       CCIfSubtargetNot<"isLittle()",
    167           CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
    168 
    169   // All integers are promoted to 64-bit.
    170   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    171 
    172   CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
    173 
    174   CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
    175                                       T0_64, T1_64, T2_64, T3_64]>>,
    176 
    177   // All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
    178   CCIfType<[f32], CCAssignToStack<4, 8>>,
    179   CCIfType<[i64, f64], CCAssignToStack<8, 8>>
    180 ]>;
    181 
    182 def RetCC_MipsN : CallingConv<[
    183   // f128 needs to be handled similarly to f32 and f64. However, f128 is not
    184   // legal and is lowered to i128 which is further lowered to a pair of i64's.
    185   // This presents us with a problem for the calling convention since hard-float
    186   // still needs to pass them in FPU registers, and soft-float needs to use $v0,
    187   // and $a0 instead of the usual $v0, and $v1. We therefore resort to a
    188   // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
    189   // whether the result was originally an f128 into the tablegen-erated code.
    190   //
    191   // f128 should only occur for the N64 ABI where long double is 128-bit. On
    192   // N32, long double is equivalent to double.
    193   CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
    194 
    195   // Aggregate returns are positioned at the lowest address in the slot for
    196   // both little and big-endian targets. When passing in registers, this
    197   // requires that big-endian targets shift the value into the upper bits.
    198   CCIfSubtarget<"isLittle()",
    199       CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
    200   CCIfSubtargetNot<"isLittle()",
    201       CCIfType<[i8, i16, i32, i64],
    202           CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
    203 
    204   // i64 are returned in registers V0_64, V1_64
    205   CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
    206 
    207   // f32 are returned in registers F0, F2
    208   CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
    209 
    210   // f64 are returned in registers D0, D2
    211   CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
    212 ]>;
    213 
    214 //===----------------------------------------------------------------------===//
    215 // Mips EABI Calling Convention
    216 //===----------------------------------------------------------------------===//
    217 
    218 def CC_MipsEABI : CallingConv<[
    219   // Promote i8/i16 arguments to i32.
    220   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    221 
    222   // Integer arguments are passed in integer registers.
    223   CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
    224 
    225   // Single fp arguments are passed in pairs within 32-bit mode
    226   CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
    227                   CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
    228 
    229   CCIfType<[f32], CCIfSubtargetNot<"isSingleFloat()",
    230                   CCAssignToReg<[F12, F14, F16, F18]>>>,
    231 
    232   // The first 4 double fp arguments are passed in single fp registers.
    233   CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()",
    234                   CCAssignToReg<[D6, D7, D8, D9]>>>,
    235 
    236   // Integer values get stored in stack slots that are 4 bytes in
    237   // size and 4-byte aligned.
    238   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    239 
    240   // Integer values get stored in stack slots that are 8 bytes in
    241   // size and 8-byte aligned.
    242   CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToStack<8, 8>>>
    243 ]>;
    244 
    245 def RetCC_MipsEABI : CallingConv<[
    246   // i32 are returned in registers V0, V1
    247   CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
    248 
    249   // f32 are returned in registers F0, F1
    250   CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
    251 
    252   // f64 are returned in register D0
    253   CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToReg<[D0]>>>
    254 ]>;
    255 
    256 //===----------------------------------------------------------------------===//
    257 // Mips FastCC Calling Convention
    258 //===----------------------------------------------------------------------===//
    259 def CC_MipsO32_FastCC : CallingConv<[
    260   // f64 arguments are passed in double-precision floating pointer registers.
    261   CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
    262                                    CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
    263                                                   D7, D8, D9]>>>,
    264   CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
    265                                 CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
    266                                                D4_64, D5_64, D6_64, D7_64,
    267                                                D8_64, D9_64, D10_64, D11_64,
    268                                                D12_64, D13_64, D14_64, D15_64,
    269                                                D16_64, D17_64, D18_64,
    270                                                D19_64]>>>>,
    271   CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
    272                                 CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
    273                                                D8_64, D10_64, D12_64, D14_64,
    274                                                D16_64, D18_64]>>>>,
    275 
    276   // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
    277   CCIfType<[f64], CCAssignToStack<8, 8>>
    278 ]>;
    279 
    280 def CC_MipsN_FastCC : CallingConv<[
    281   // Integer arguments are passed in integer registers.
    282   CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
    283                                  T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
    284                                  T8_64, V1_64]>>,
    285 
    286   // f64 arguments are passed in double-precision floating pointer registers.
    287   CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
    288                                  D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
    289                                  D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
    290                                  D18_64, D19_64]>>,
    291 
    292   // Stack parameter slots for i64 and f64 are 64-bit doublewords and
    293   // 8-byte aligned.
    294   CCIfType<[i64, f64], CCAssignToStack<8, 8>>
    295 ]>;
    296 
    297 def CC_Mips_FastCC : CallingConv<[
    298   // Handles byval parameters.
    299   CCIfByVal<CCPassByVal<4, 4>>,
    300 
    301   // Promote i8/i16 arguments to i32.
    302   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    303 
    304   // Integer arguments are passed in integer registers. All scratch registers,
    305   // except for AT, V0 and T9, are available to be used as argument registers.
    306   CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
    307       CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
    308 
    309   // In NaCl, T6, T7 and T8 are reserved and not available as argument
    310   // registers for fastcc.  T6 contains the mask for sandboxing control flow
    311   // (indirect jumps and calls).  T7 contains the mask for sandboxing memory
    312   // accesses (loads and stores).  T8 contains the thread pointer.
    313   CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
    314       CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
    315 
    316   // f32 arguments are passed in single-precision floating pointer registers.
    317   CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
    318       CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
    319                      F14, F15, F16, F17, F18, F19]>>>,
    320 
    321   // Don't use odd numbered single-precision registers for -mno-odd-spreg.
    322   CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
    323       CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
    324 
    325   // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
    326   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    327 
    328   CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
    329   CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
    330   CCDelegateTo<CC_MipsN_FastCC>
    331 ]>;
    332 
    333 //===----------------------------------------------------------------------===//
    334 // Mips Calling Convention Dispatch
    335 //===----------------------------------------------------------------------===//
    336 
    337 def RetCC_Mips : CallingConv<[
    338   CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
    339   CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
    340   CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
    341   CCDelegateTo<RetCC_MipsO32>
    342 ]>;
    343 
    344 def CC_Mips_ByVal : CallingConv<[
    345   CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
    346   CCIfByVal<CCPassByVal<8, 8>>
    347 ]>;
    348 
    349 def CC_Mips16RetHelper : CallingConv<[
    350   CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
    351 
    352   // Integer arguments are passed in integer registers.
    353   CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
    354 ]>;
    355 
    356 def CC_Mips_FixedArg : CallingConv<[
    357   // Mips16 needs special handling on some functions.
    358   CCIf<"State.getCallingConv() != CallingConv::Fast",
    359       CCIfSpecialCallingConv<"Mips16RetHelperConv",
    360            CCDelegateTo<CC_Mips16RetHelper>>>,
    361 
    362   CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
    363 
    364   // f128 needs to be handled similarly to f32 and f64 on hard-float. However,
    365   // f128 is not legal and is lowered to i128 which is further lowered to a pair
    366   // of i64's.
    367   // This presents us with a problem for the calling convention since hard-float
    368   // still needs to pass them in FPU registers. We therefore resort to a
    369   // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
    370   // whether the argument was originally an f128 into the tablegen-erated code.
    371   //
    372   // f128 should only occur for the N64 ABI where long double is 128-bit. On
    373   // N32, long double is equivalent to double.
    374   CCIfType<[i64],
    375       CCIfSubtargetNot<"useSoftFloat()",
    376           CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
    377 
    378   CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
    379 
    380   // FIXME: There wasn't an EABI case in the original code and it seems unlikely
    381   //        that it's the same as CC_MipsN
    382   CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
    383   CCDelegateTo<CC_MipsN>
    384 ]>;
    385 
    386 def CC_Mips_VarArg : CallingConv<[
    387   CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
    388 
    389   // FIXME: There wasn't an EABI case in the original code and it seems unlikely
    390   //        that it's the same as CC_MipsN_VarArg
    391   CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
    392   CCDelegateTo<CC_MipsN_VarArg>
    393 ]>;
    394 
    395 def CC_Mips : CallingConv<[
    396   CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
    397   CCDelegateTo<CC_Mips_FixedArg>
    398 ]>;
    399 
    400 //===----------------------------------------------------------------------===//
    401 // Callee-saved register lists.
    402 //===----------------------------------------------------------------------===//
    403 
    404 def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
    405                                                (sequence "S%u", 7, 0))>;
    406 
    407 def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
    408                                         (sequence "S%u", 7, 0))> {
    409   let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
    410 }
    411 
    412 def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
    413                                    (sequence "S%u", 7, 0))>;
    414 
    415 def CSR_O32_FP64 :
    416   CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
    417                        (sequence "S%u", 7, 0))>;
    418 
    419 def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
    420                                    D30_64, RA_64, FP_64, GP_64,
    421                                    (sequence "S%u_64", 7, 0))>;
    422 
    423 def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
    424                                    GP_64, (sequence "S%u_64", 7, 0))>;
    425 
    426 def CSR_Mips16RetHelper :
    427   CalleeSavedRegs<(add V0, V1, FP,
    428                    (sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
    429                    (sequence "D%u", 15, 10))>;
    430 
    431 def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
    432                                               (sequence "S%u", 7, 0),
    433                                               (sequence "V%u", 1, 0),
    434                                               (sequence "T%u", 9, 0),
    435                                               RA, FP, GP, AT)>;
    436 
    437 def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
    438                                             (sequence "S%u", 7, 0),
    439                                             (sequence "V%u", 1, 0),
    440                                             (sequence "T%u", 9, 0),
    441                                             RA, FP, GP, AT, LO0, HI0)>;
    442 
    443 def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
    444                                               (sequence "V%u_64", 1, 0),
    445                                               (sequence "S%u_64", 7, 0),
    446                                               (sequence "T%u_64", 9, 0),
    447                                               RA_64, FP_64, GP_64, AT_64)>;
    448 
    449 def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
    450                                             (sequence "S%u_64", 7, 0),
    451                                             (sequence "T%u_64", 9, 0),
    452                                             (sequence "V%u_64", 1, 0),
    453                                             RA_64, FP_64, GP_64, AT_64,
    454                                             LO0_64, HI0_64)>;
    455