Home | History | Annotate | Download | only in X86
      1 //===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This describes the calling conventions for the X86-32 and X86-64
     11 // architectures.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 /// CCIfSubtarget - Match if the current subtarget has a feature F.
     16 class CCIfSubtarget<string F, CCAction A>
     17     : CCIf<!strconcat("static_cast<const X86Subtarget&>"
     18                        "(State.getMachineFunction().getSubtarget()).", F),
     19            A>;
     20 
     21 //===----------------------------------------------------------------------===//
     22 // Return Value Calling Conventions
     23 //===----------------------------------------------------------------------===//
     24 
     25 // Return-value conventions common to all X86 CC's.
     26 def RetCC_X86Common : CallingConv<[
     27   // Scalar values are returned in AX first, then DX.  For i8, the ABI
     28   // requires the values to be in AL and AH, however this code uses AL and DL
     29   // instead. This is because using AH for the second register conflicts with
     30   // the way LLVM does multiple return values -- a return of {i16,i8} would end
     31   // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
     32   // for functions that return two i8 values are currently expected to pack the
     33   // values into an i16 (which uses AX, and thus AL:AH).
     34   //
     35   // For code that doesn't care about the ABI, we allow returning more than two
     36   // integer values in registers.
     37   CCIfType<[i1],  CCPromoteToType<i8>>,
     38   CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
     39   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
     40   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
     41   CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
     42 
     43   // Boolean vectors of AVX-512 are returned in SIMD registers.
     44   // The call from AVX to AVX-512 function should work,
     45   // since the boolean types in AVX/AVX2 are promoted by default.
     46   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
     47   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
     48   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
     49   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
     50   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
     51   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
     52 
     53   // Vector types are returned in XMM0 and XMM1, when they fit.  XMM2 and XMM3
     54   // can only be used by ABI non-compliant code. If the target doesn't have XMM
     55   // registers, it won't have vector types.
     56   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
     57             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
     58 
     59   // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
     60   // can only be used by ABI non-compliant code. This vector type is only
     61   // supported while using the AVX target feature.
     62   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
     63             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
     64 
     65   // 512-bit vectors are returned in ZMM0 and ZMM1, when they fit. ZMM2 and ZMM3
     66   // can only be used by ABI non-compliant code. This vector type is only
     67   // supported while using the AVX-512 target feature.
     68   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
     69             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
     70 
     71   // MMX vector types are always returned in MM0. If the target doesn't have
     72   // MM0, it doesn't support these vector types.
     73   CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
     74 
     75   // Long double types are always returned in FP0 (even with SSE).
     76   CCIfType<[f80], CCAssignToReg<[FP0, FP1]>>
     77 ]>;
     78 
     79 // X86-32 C return-value convention.
     80 def RetCC_X86_32_C : CallingConv<[
     81   // The X86-32 calling convention returns FP values in FP0, unless marked
     82   // with "inreg" (used here to distinguish one kind of reg from another,
     83   // weirdly; this is really the sse-regparm calling convention) in which
     84   // case they use XMM0, otherwise it is the same as the common X86 calling
     85   // conv.
     86   CCIfInReg<CCIfSubtarget<"hasSSE2()",
     87     CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
     88   CCIfType<[f32,f64], CCAssignToReg<[FP0, FP1]>>,
     89   CCDelegateTo<RetCC_X86Common>
     90 ]>;
     91 
     92 // X86-32 FastCC return-value convention.
     93 def RetCC_X86_32_Fast : CallingConv<[
     94   // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
     95   // SSE2.
     96   // This can happen when a float, 2 x float, or 3 x float vector is split by
     97   // target lowering, and is returned in 1-3 sse regs.
     98   CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
     99   CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
    100 
    101   // For integers, ECX can be used as an extra return register
    102   CCIfType<[i8],  CCAssignToReg<[AL, DL, CL]>>,
    103   CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
    104   CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
    105 
    106   // Otherwise, it is the same as the common X86 calling convention.
    107   CCDelegateTo<RetCC_X86Common>
    108 ]>;
    109 
    110 // Intel_OCL_BI return-value convention.
    111 def RetCC_Intel_OCL_BI : CallingConv<[
    112   // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
    113   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
    114             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
    115 
    116   // 256-bit FP vectors
    117   // No more than 4 registers
    118   CCIfType<[v8f32, v4f64, v8i32, v4i64],
    119             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
    120 
    121   // 512-bit FP vectors
    122   CCIfType<[v16f32, v8f64, v16i32, v8i64],
    123             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
    124 
    125   // i32, i64 in the standard way
    126   CCDelegateTo<RetCC_X86Common>
    127 ]>;
    128 
    129 // X86-32 HiPE return-value convention.
    130 def RetCC_X86_32_HiPE : CallingConv<[
    131   // Promote all types to i32
    132   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    133 
    134   // Return: HP, P, VAL1, VAL2
    135   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX]>>
    136 ]>;
    137 
    138 // X86-32 HiPE return-value convention.
    139 def RetCC_X86_32_VectorCall : CallingConv<[
    140   // Vector types are returned in XMM0,XMM1,XMMM2 and XMM3.
    141   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    142             CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
    143 
    144   // 256-bit FP vectors
    145   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    146             CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
    147 
    148   // 512-bit FP vectors
    149   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    150             CCAssignToReg<[ZMM0,ZMM1,ZMM2,ZMM3]>>,
    151 
    152   // Return integers in the standard way.
    153   CCDelegateTo<RetCC_X86Common>
    154 ]>;
    155 
    156 // X86-64 C return-value convention.
    157 def RetCC_X86_64_C : CallingConv<[
    158   // The X86-64 calling convention always returns FP values in XMM0.
    159   CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
    160   CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
    161   CCIfType<[f128], CCAssignToReg<[XMM0, XMM1]>>,
    162 
    163   // MMX vector types are always returned in XMM0.
    164   CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
    165   CCDelegateTo<RetCC_X86Common>
    166 ]>;
    167 
    168 // X86-Win64 C return-value convention.
    169 def RetCC_X86_Win64_C : CallingConv<[
    170   // The X86-Win64 calling convention always returns __m64 values in RAX.
    171   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
    172 
    173   // Otherwise, everything is the same as 'normal' X86-64 C CC.
    174   CCDelegateTo<RetCC_X86_64_C>
    175 ]>;
    176 
    177 // X86-64 HiPE return-value convention.
    178 def RetCC_X86_64_HiPE : CallingConv<[
    179   // Promote all types to i64
    180   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    181 
    182   // Return: HP, P, VAL1, VAL2
    183   CCIfType<[i64], CCAssignToReg<[R15, RBP, RAX, RDX]>>
    184 ]>;
    185 
    186 // X86-64 WebKit_JS return-value convention.
    187 def RetCC_X86_64_WebKit_JS : CallingConv<[
    188   // Promote all types to i64
    189   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    190 
    191   // Return: RAX
    192   CCIfType<[i64], CCAssignToReg<[RAX]>>
    193 ]>;
    194 
    195 // X86-64 AnyReg return-value convention. No explicit register is specified for
    196 // the return-value. The register allocator is allowed and expected to choose
    197 // any free register.
    198 //
    199 // This calling convention is currently only supported by the stackmap and
    200 // patchpoint intrinsics. All other uses will result in an assert on Debug
    201 // builds. On Release builds we fallback to the X86 C calling convention.
    202 def RetCC_X86_64_AnyReg : CallingConv<[
    203   CCCustom<"CC_X86_AnyReg_Error">
    204 ]>;
    205 
    206 // X86-64 HHVM return-value convention.
    207 def RetCC_X86_64_HHVM: CallingConv<[
    208   // Promote all types to i64
    209   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    210 
    211   // Return: could return in any GP register save RSP and R12.
    212   CCIfType<[i64], CCAssignToReg<[RBX, RBP, RDI, RSI, RDX, RCX, R8, R9,
    213                                  RAX, R10, R11, R13, R14, R15]>>
    214 ]>;
    215 
    216 // This is the root return-value convention for the X86-32 backend.
    217 def RetCC_X86_32 : CallingConv<[
    218   // If FastCC, use RetCC_X86_32_Fast.
    219   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
    220   // If HiPE, use RetCC_X86_32_HiPE.
    221   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_32_HiPE>>,
    222   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<RetCC_X86_32_VectorCall>>,
    223 
    224   // Otherwise, use RetCC_X86_32_C.
    225   CCDelegateTo<RetCC_X86_32_C>
    226 ]>;
    227 
    228 // This is the root return-value convention for the X86-64 backend.
    229 def RetCC_X86_64 : CallingConv<[
    230   // HiPE uses RetCC_X86_64_HiPE
    231   CCIfCC<"CallingConv::HiPE", CCDelegateTo<RetCC_X86_64_HiPE>>,
    232 
    233   // Handle JavaScript calls.
    234   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<RetCC_X86_64_WebKit_JS>>,
    235   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<RetCC_X86_64_AnyReg>>,
    236 
    237   // Handle explicit CC selection
    238   CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<RetCC_X86_Win64_C>>,
    239   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<RetCC_X86_64_C>>,
    240 
    241   // Handle HHVM calls.
    242   CCIfCC<"CallingConv::HHVM", CCDelegateTo<RetCC_X86_64_HHVM>>,
    243 
    244   // Mingw64 and native Win64 use Win64 CC
    245   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
    246 
    247   // Otherwise, drop to normal X86-64 CC
    248   CCDelegateTo<RetCC_X86_64_C>
    249 ]>;
    250 
    251 // This is the return-value convention used for the entire X86 backend.
    252 def RetCC_X86 : CallingConv<[
    253 
    254   // Check if this is the Intel OpenCL built-ins calling convention
    255   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<RetCC_Intel_OCL_BI>>,
    256 
    257   CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
    258   CCDelegateTo<RetCC_X86_32>
    259 ]>;
    260 
    261 //===----------------------------------------------------------------------===//
    262 // X86-64 Argument Calling Conventions
    263 //===----------------------------------------------------------------------===//
    264 
    265 def CC_X86_64_C : CallingConv<[
    266   // Handles byval parameters.
    267   CCIfByVal<CCPassByVal<8, 8>>,
    268 
    269   // Promote i1/i8/i16 arguments to i32.
    270   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    271 
    272   // The 'nest' parameter, if any, is passed in R10.
    273   CCIfNest<CCIfSubtarget<"isTarget64BitILP32()", CCAssignToReg<[R10D]>>>,
    274   CCIfNest<CCAssignToReg<[R10]>>,
    275 
    276   // The first 6 integer arguments are passed in integer registers.
    277   CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
    278   CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
    279 
    280   // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
    281   CCIfType<[x86mmx],
    282             CCIfSubtarget<"isTargetDarwin()",
    283             CCIfSubtarget<"hasSSE2()",
    284             CCPromoteToType<v2i64>>>>,
    285 
    286   // Boolean vectors of AVX-512 are passed in SIMD registers.
    287   // The call from AVX to AVX-512 function should work,
    288   // since the boolean types in AVX/AVX2 are promoted by default.
    289   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
    290   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
    291   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
    292   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
    293   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
    294   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
    295 
    296   // The first 8 FP/Vector arguments are passed in XMM registers.
    297   CCIfType<[f32, f64, f128, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    298             CCIfSubtarget<"hasSSE1()",
    299             CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
    300 
    301   // The first 8 256-bit vector arguments are passed in YMM registers, unless
    302   // this is a vararg function.
    303   // FIXME: This isn't precisely correct; the x86-64 ABI document says that
    304   // fixed arguments to vararg functions are supposed to be passed in
    305   // registers.  Actually modeling that would be a lot of work, though.
    306   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    307                           CCIfSubtarget<"hasFp256()",
    308                           CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
    309                                          YMM4, YMM5, YMM6, YMM7]>>>>,
    310 
    311   // The first 8 512-bit vector arguments are passed in ZMM registers.
    312   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    313             CCIfSubtarget<"hasAVX512()",
    314             CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5, ZMM6, ZMM7]>>>>,
    315 
    316   // Integer/FP values get stored in stack slots that are 8 bytes in size and
    317   // 8-byte aligned if there are no more registers to hold them.
    318   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
    319 
    320   // Long doubles get stack slots whose size and alignment depends on the
    321   // subtarget.
    322   CCIfType<[f80, f128], CCAssignToStack<0, 0>>,
    323 
    324   // Vectors get 16-byte stack slots that are 16-byte aligned.
    325   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
    326 
    327   // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
    328   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    329            CCAssignToStack<32, 32>>,
    330 
    331   // 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
    332   CCIfType<[v16i32, v8i64, v16f32, v8f64],
    333            CCAssignToStack<64, 64>>
    334 ]>;
    335 
    336 // Calling convention for X86-64 HHVM.
    337 def CC_X86_64_HHVM : CallingConv<[
    338   // Use all/any GP registers for args, except RSP.
    339   CCIfType<[i64], CCAssignToReg<[RBX, R12, RBP, R15,
    340                                  RDI, RSI, RDX, RCX, R8, R9,
    341                                  RAX, R10, R11, R13, R14]>>
    342 ]>;
    343 
    344 // Calling convention for helper functions in HHVM.
    345 def CC_X86_64_HHVM_C : CallingConv<[
    346   // Pass the first argument in RBP.
    347   CCIfType<[i64], CCAssignToReg<[RBP]>>,
    348 
    349   // Otherwise it's the same as the regular C calling convention.
    350   CCDelegateTo<CC_X86_64_C>
    351 ]>;
    352 
    353 // Calling convention used on Win64
    354 def CC_X86_Win64_C : CallingConv<[
    355   // FIXME: Handle byval stuff.
    356   // FIXME: Handle varargs.
    357 
    358   // Promote i1/i8/i16 arguments to i32.
    359   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    360 
    361   // The 'nest' parameter, if any, is passed in R10.
    362   CCIfNest<CCAssignToReg<[R10]>>,
    363 
    364   // 128 bit vectors are passed by pointer
    365   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
    366 
    367 
    368   // 256 bit vectors are passed by pointer
    369   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
    370 
    371   // 512 bit vectors are passed by pointer
    372   CCIfType<[v16i32, v16f32, v8f64, v8i64], CCPassIndirect<i64>>,
    373 
    374   // The first 4 MMX vector arguments are passed in GPRs.
    375   CCIfType<[x86mmx], CCBitConvertToType<i64>>,
    376 
    377   // The first 4 integer arguments are passed in integer registers.
    378   CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
    379                                           [XMM0, XMM1, XMM2, XMM3]>>,
    380 
    381   // Do not pass the sret argument in RCX, the Win64 thiscall calling
    382   // convention requires "this" to be passed in RCX.
    383   CCIfCC<"CallingConv::X86_ThisCall",
    384     CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8  , R9  ],
    385                                                      [XMM1, XMM2, XMM3]>>>>,
    386 
    387   CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
    388                                           [XMM0, XMM1, XMM2, XMM3]>>,
    389 
    390   // The first 4 FP/Vector arguments are passed in XMM registers.
    391   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    392            CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
    393                                    [RCX , RDX , R8  , R9  ]>>,
    394 
    395   // Integer/FP values get stored in stack slots that are 8 bytes in size and
    396   // 8-byte aligned if there are no more registers to hold them.
    397   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
    398 
    399   // Long doubles get stack slots whose size and alignment depends on the
    400   // subtarget.
    401   CCIfType<[f80], CCAssignToStack<0, 0>>
    402 ]>;
    403 
    404 def CC_X86_Win64_VectorCall : CallingConv<[
    405   // The first 6 floating point and vector types of 128 bits or less use
    406   // XMM0-XMM5.
    407   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    408            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
    409 
    410   // 256-bit vectors use YMM registers.
    411   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    412            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
    413 
    414   // 512-bit vectors use ZMM registers.
    415   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    416            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
    417 
    418   // Delegate to fastcall to handle integer types.
    419   CCDelegateTo<CC_X86_Win64_C>
    420 ]>;
    421 
    422 
    423 def CC_X86_64_GHC : CallingConv<[
    424   // Promote i8/i16/i32 arguments to i64.
    425   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    426 
    427   // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
    428   CCIfType<[i64],
    429             CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
    430 
    431   // Pass in STG registers: F1, F2, F3, F4, D1, D2
    432   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    433             CCIfSubtarget<"hasSSE1()",
    434             CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
    435 ]>;
    436 
    437 def CC_X86_64_HiPE : CallingConv<[
    438   // Promote i8/i16/i32 arguments to i64.
    439   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
    440 
    441   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2, ARG3
    442   CCIfType<[i64], CCAssignToReg<[R15, RBP, RSI, RDX, RCX, R8]>>,
    443 
    444   // Integer/FP values get stored in stack slots that are 8 bytes in size and
    445   // 8-byte aligned if there are no more registers to hold them.
    446   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
    447 ]>;
    448 
    449 def CC_X86_64_WebKit_JS : CallingConv<[
    450   // Promote i8/i16 arguments to i32.
    451   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    452 
    453   // Only the first integer argument is passed in register.
    454   CCIfType<[i32], CCAssignToReg<[EAX]>>,
    455   CCIfType<[i64], CCAssignToReg<[RAX]>>,
    456 
    457   // The remaining integer arguments are passed on the stack. 32bit integer and
    458   // floating-point arguments are aligned to 4 byte and stored in 4 byte slots.
    459   // 64bit integer and floating-point arguments are aligned to 8 byte and stored
    460   // in 8 byte stack slots.
    461   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    462   CCIfType<[i64, f64], CCAssignToStack<8, 8>>
    463 ]>;
    464 
    465 // No explicit register is specified for the AnyReg calling convention. The
    466 // register allocator may assign the arguments to any free register.
    467 //
    468 // This calling convention is currently only supported by the stackmap and
    469 // patchpoint intrinsics. All other uses will result in an assert on Debug
    470 // builds. On Release builds we fallback to the X86 C calling convention.
    471 def CC_X86_64_AnyReg : CallingConv<[
    472   CCCustom<"CC_X86_AnyReg_Error">
    473 ]>;
    474 
    475 //===----------------------------------------------------------------------===//
    476 // X86 C Calling Convention
    477 //===----------------------------------------------------------------------===//
    478 
    479 /// CC_X86_32_Vector_Common - In all X86-32 calling conventions, extra vector
    480 /// values are spilled on the stack.
    481 def CC_X86_32_Vector_Common : CallingConv<[
    482   // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
    483   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
    484 
    485   // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
    486   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    487            CCAssignToStack<32, 32>>,
    488 
    489   // 512-bit AVX 512-bit vectors get 64-byte stack slots that are 64-byte aligned.
    490   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    491            CCAssignToStack<64, 64>>
    492 ]>;
    493 
    494 // CC_X86_32_Vector_Standard - The first 3 vector arguments are passed in
    495 // vector registers
    496 def CC_X86_32_Vector_Standard : CallingConv<[
    497   // SSE vector arguments are passed in XMM registers.
    498   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    499                 CCAssignToReg<[XMM0, XMM1, XMM2]>>>,
    500 
    501   // AVX 256-bit vector arguments are passed in YMM registers.
    502   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    503                 CCIfSubtarget<"hasFp256()",
    504                 CCAssignToReg<[YMM0, YMM1, YMM2]>>>>,
    505 
    506   // AVX 512-bit vector arguments are passed in ZMM registers.
    507   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    508                 CCAssignToReg<[ZMM0, ZMM1, ZMM2]>>>,
    509 
    510   CCDelegateTo<CC_X86_32_Vector_Common>
    511 ]>;
    512 
    513 // CC_X86_32_Vector_Darwin - The first 4 vector arguments are passed in
    514 // vector registers.
    515 def CC_X86_32_Vector_Darwin : CallingConv<[
    516   // SSE vector arguments are passed in XMM registers.
    517   CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    518                 CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
    519 
    520   // AVX 256-bit vector arguments are passed in YMM registers.
    521   CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    522                 CCIfSubtarget<"hasFp256()",
    523                 CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
    524 
    525   // AVX 512-bit vector arguments are passed in ZMM registers.
    526   CCIfNotVarArg<CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    527                 CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>>,
    528 
    529   CCDelegateTo<CC_X86_32_Vector_Common>
    530 ]>;
    531 
    532 /// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
    533 /// values are spilled on the stack.
    534 def CC_X86_32_Common : CallingConv<[
    535   // Handles byval parameters.
    536   CCIfByVal<CCPassByVal<4, 4>>,
    537 
    538   // The first 3 float or double arguments, if marked 'inreg' and if the call
    539   // is not a vararg call and if SSE2 is available, are passed in SSE registers.
    540   CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
    541                 CCIfSubtarget<"hasSSE2()",
    542                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
    543 
    544   // The first 3 __m64 vector arguments are passed in mmx registers if the
    545   // call is not a vararg call.
    546   CCIfNotVarArg<CCIfType<[x86mmx],
    547                 CCAssignToReg<[MM0, MM1, MM2]>>>,
    548 
    549   // Integer/Float values get stored in stack slots that are 4 bytes in
    550   // size and 4-byte aligned.
    551   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
    552 
    553   // Doubles get 8-byte slots that are 4-byte aligned.
    554   CCIfType<[f64], CCAssignToStack<8, 4>>,
    555 
    556   // Long doubles get slots whose size depends on the subtarget.
    557   CCIfType<[f80], CCAssignToStack<0, 4>>,
    558 
    559   // Boolean vectors of AVX-512 are passed in SIMD registers.
    560   // The call from AVX to AVX-512 function should work,
    561   // since the boolean types in AVX/AVX2 are promoted by default.
    562   CCIfType<[v2i1],  CCPromoteToType<v2i64>>,
    563   CCIfType<[v4i1],  CCPromoteToType<v4i32>>,
    564   CCIfType<[v8i1],  CCPromoteToType<v8i16>>,
    565   CCIfType<[v16i1], CCPromoteToType<v16i8>>,
    566   CCIfType<[v32i1], CCPromoteToType<v32i8>>,
    567   CCIfType<[v64i1], CCPromoteToType<v64i8>>,
    568 
    569   // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
    570   // passed in the parameter area.
    571   CCIfType<[x86mmx], CCAssignToStack<8, 4>>,
    572 
    573   // Darwin passes vectors in a form that differs from the i386 psABI
    574   CCIfSubtarget<"isTargetDarwin()", CCDelegateTo<CC_X86_32_Vector_Darwin>>,
    575 
    576   // Otherwise, drop to 'normal' X86-32 CC
    577   CCDelegateTo<CC_X86_32_Vector_Standard>
    578 ]>;
    579 
    580 def CC_X86_32_C : CallingConv<[
    581   // Promote i1/i8/i16 arguments to i32.
    582   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    583 
    584   // The 'nest' parameter, if any, is passed in ECX.
    585   CCIfNest<CCAssignToReg<[ECX]>>,
    586 
    587   // The first 3 integer arguments, if marked 'inreg' and if the call is not
    588   // a vararg call, are passed in integer registers.
    589   CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
    590 
    591   // Otherwise, same as everything else.
    592   CCDelegateTo<CC_X86_32_Common>
    593 ]>;
    594 
    595 def CC_X86_32_FastCall : CallingConv<[
    596   // Promote i1/i8/i16 arguments to i32.
    597   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    598 
    599   // The 'nest' parameter, if any, is passed in EAX.
    600   CCIfNest<CCAssignToReg<[EAX]>>,
    601 
    602   // The first 2 integer arguments are passed in ECX/EDX
    603   CCIfInReg<CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>>,
    604 
    605   // Otherwise, same as everything else.
    606   CCDelegateTo<CC_X86_32_Common>
    607 ]>;
    608 
    609 def CC_X86_32_VectorCall : CallingConv<[
    610   // The first 6 floating point and vector types of 128 bits or less use
    611   // XMM0-XMM5.
    612   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    613            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5]>>,
    614 
    615   // 256-bit vectors use YMM registers.
    616   CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    617            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3, YMM4, YMM5]>>,
    618 
    619   // 512-bit vectors use ZMM registers.
    620   CCIfType<[v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    621            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3, ZMM4, ZMM5]>>,
    622 
    623   // Otherwise, pass it indirectly.
    624   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64,
    625             v32i8, v16i16, v8i32, v4i64, v8f32, v4f64,
    626             v64i8, v32i16, v16i32, v8i64, v16f32, v8f64],
    627            CCCustom<"CC_X86_32_VectorCallIndirect">>,
    628 
    629   // Delegate to fastcall to handle integer types.
    630   CCDelegateTo<CC_X86_32_FastCall>
    631 ]>;
    632 
    633 def CC_X86_32_ThisCall_Common : CallingConv<[
    634   // The first integer argument is passed in ECX
    635   CCIfType<[i32], CCAssignToReg<[ECX]>>,
    636 
    637   // Otherwise, same as everything else.
    638   CCDelegateTo<CC_X86_32_Common>
    639 ]>;
    640 
    641 def CC_X86_32_ThisCall_Mingw : CallingConv<[
    642   // Promote i1/i8/i16 arguments to i32.
    643   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    644 
    645   CCDelegateTo<CC_X86_32_ThisCall_Common>
    646 ]>;
    647 
    648 def CC_X86_32_ThisCall_Win : CallingConv<[
    649   // Promote i1/i8/i16 arguments to i32.
    650   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    651 
    652   // Pass sret arguments indirectly through stack.
    653   CCIfSRet<CCAssignToStack<4, 4>>,
    654 
    655   CCDelegateTo<CC_X86_32_ThisCall_Common>
    656 ]>;
    657 
    658 def CC_X86_32_ThisCall : CallingConv<[
    659   CCIfSubtarget<"isTargetCygMing()", CCDelegateTo<CC_X86_32_ThisCall_Mingw>>,
    660   CCDelegateTo<CC_X86_32_ThisCall_Win>
    661 ]>;
    662 
    663 def CC_X86_32_FastCC : CallingConv<[
    664   // Handles byval parameters.  Note that we can't rely on the delegation
    665   // to CC_X86_32_Common for this because that happens after code that
    666   // puts arguments in registers.
    667   CCIfByVal<CCPassByVal<4, 4>>,
    668 
    669   // Promote i1/i8/i16 arguments to i32.
    670   CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
    671 
    672   // The 'nest' parameter, if any, is passed in EAX.
    673   CCIfNest<CCAssignToReg<[EAX]>>,
    674 
    675   // The first 2 integer arguments are passed in ECX/EDX
    676   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
    677 
    678   // The first 3 float or double arguments, if the call is not a vararg
    679   // call and if SSE2 is available, are passed in SSE registers.
    680   CCIfNotVarArg<CCIfType<[f32,f64],
    681                 CCIfSubtarget<"hasSSE2()",
    682                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
    683 
    684   // Doubles get 8-byte slots that are 8-byte aligned.
    685   CCIfType<[f64], CCAssignToStack<8, 8>>,
    686 
    687   // Otherwise, same as everything else.
    688   CCDelegateTo<CC_X86_32_Common>
    689 ]>;
    690 
    691 def CC_X86_32_GHC : CallingConv<[
    692   // Promote i8/i16 arguments to i32.
    693   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    694 
    695   // Pass in STG registers: Base, Sp, Hp, R1
    696   CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
    697 ]>;
    698 
    699 def CC_X86_32_HiPE : CallingConv<[
    700   // Promote i8/i16 arguments to i32.
    701   CCIfType<[i8, i16], CCPromoteToType<i32>>,
    702 
    703   // Pass in VM's registers: HP, P, ARG0, ARG1, ARG2
    704   CCIfType<[i32], CCAssignToReg<[ESI, EBP, EAX, EDX, ECX]>>,
    705 
    706   // Integer/Float values get stored in stack slots that are 4 bytes in
    707   // size and 4-byte aligned.
    708   CCIfType<[i32, f32], CCAssignToStack<4, 4>>
    709 ]>;
    710 
    711 // X86-64 Intel OpenCL built-ins calling convention.
    712 def CC_Intel_OCL_BI : CallingConv<[
    713 
    714   CCIfType<[i32], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[ECX, EDX, R8D, R9D]>>>,
    715   CCIfType<[i64], CCIfSubtarget<"isTargetWin64()", CCAssignToReg<[RCX, RDX, R8,  R9 ]>>>,
    716 
    717   CCIfType<[i32], CCIfSubtarget<"is64Bit()", CCAssignToReg<[EDI, ESI, EDX, ECX]>>>,
    718   CCIfType<[i64], CCIfSubtarget<"is64Bit()", CCAssignToReg<[RDI, RSI, RDX, RCX]>>>,
    719 
    720   CCIfType<[i32], CCAssignToStack<4, 4>>,
    721 
    722   // The SSE vector arguments are passed in XMM registers.
    723   CCIfType<[f32, f64, v4i32, v2i64, v4f32, v2f64],
    724            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
    725 
    726   // The 256-bit vector arguments are passed in YMM registers.
    727   CCIfType<[v8f32, v4f64, v8i32, v4i64],
    728            CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>,
    729 
    730   // The 512-bit vector arguments are passed in ZMM registers.
    731   CCIfType<[v16f32, v8f64, v16i32, v8i64],
    732            CCAssignToReg<[ZMM0, ZMM1, ZMM2, ZMM3]>>,
    733 
    734   // Pass masks in mask registers
    735   CCIfType<[v16i1, v8i1], CCAssignToReg<[K1]>>,
    736 
    737   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
    738   CCIfSubtarget<"is64Bit()",       CCDelegateTo<CC_X86_64_C>>,
    739   CCDelegateTo<CC_X86_32_C>
    740 ]>;
    741 
    742 def CC_X86_32_Intr : CallingConv<[
    743   CCAssignToStack<4, 4>
    744 ]>;
    745 
    746 def CC_X86_64_Intr : CallingConv<[
    747   CCAssignToStack<8, 8>
    748 ]>;
    749 
    750 //===----------------------------------------------------------------------===//
    751 // X86 Root Argument Calling Conventions
    752 //===----------------------------------------------------------------------===//
    753 
    754 // This is the root argument convention for the X86-32 backend.
    755 def CC_X86_32 : CallingConv<[
    756   CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
    757   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_32_VectorCall>>,
    758   CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
    759   CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
    760   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
    761   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_32_HiPE>>,
    762   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_32_Intr>>,
    763 
    764   // Otherwise, drop to normal X86-32 CC
    765   CCDelegateTo<CC_X86_32_C>
    766 ]>;
    767 
    768 // This is the root argument convention for the X86-64 backend.
    769 def CC_X86_64 : CallingConv<[
    770   CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
    771   CCIfCC<"CallingConv::HiPE", CCDelegateTo<CC_X86_64_HiPE>>,
    772   CCIfCC<"CallingConv::WebKit_JS", CCDelegateTo<CC_X86_64_WebKit_JS>>,
    773   CCIfCC<"CallingConv::AnyReg", CCDelegateTo<CC_X86_64_AnyReg>>,
    774   CCIfCC<"CallingConv::X86_64_Win64", CCDelegateTo<CC_X86_Win64_C>>,
    775   CCIfCC<"CallingConv::X86_64_SysV", CCDelegateTo<CC_X86_64_C>>,
    776   CCIfCC<"CallingConv::X86_VectorCall", CCDelegateTo<CC_X86_Win64_VectorCall>>,
    777   CCIfCC<"CallingConv::HHVM", CCDelegateTo<CC_X86_64_HHVM>>,
    778   CCIfCC<"CallingConv::HHVM_C", CCDelegateTo<CC_X86_64_HHVM_C>>,
    779   CCIfCC<"CallingConv::X86_INTR", CCDelegateTo<CC_X86_64_Intr>>,
    780 
    781   // Mingw64 and native Win64 use Win64 CC
    782   CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
    783 
    784   // Otherwise, drop to normal X86-64 CC
    785   CCDelegateTo<CC_X86_64_C>
    786 ]>;
    787 
    788 // This is the argument convention used for the entire X86 backend.
    789 def CC_X86 : CallingConv<[
    790   CCIfCC<"CallingConv::Intel_OCL_BI", CCDelegateTo<CC_Intel_OCL_BI>>,
    791   CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
    792   CCDelegateTo<CC_X86_32>
    793 ]>;
    794 
    795 //===----------------------------------------------------------------------===//
    796 // Callee-saved Registers.
    797 //===----------------------------------------------------------------------===//
    798 
    799 def CSR_NoRegs : CalleeSavedRegs<(add)>;
    800 
    801 def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
    802 def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
    803 
    804 def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
    805 def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
    806 
    807 def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
    808                                      (sequence "XMM%u", 6, 15))>;
    809 
    810 // The function used by Darwin to obtain the address of a thread-local variable
    811 // uses rdi to pass a single parameter and rax for the return value. All other
    812 // GPRs are preserved.
    813 def CSR_64_TLS_Darwin : CalleeSavedRegs<(add CSR_64, RCX, RDX, RSI,
    814                                              R8, R9, R10, R11)>;
    815 
    816 // All GPRs - except r11
    817 def CSR_64_RT_MostRegs : CalleeSavedRegs<(add CSR_64, RAX, RCX, RDX, RSI, RDI,
    818                                               R8, R9, R10, RSP)>;
    819 
    820 // All registers - except r11
    821 def CSR_64_RT_AllRegs     : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
    822                                                  (sequence "XMM%u", 0, 15))>;
    823 def CSR_64_RT_AllRegs_AVX : CalleeSavedRegs<(add CSR_64_RT_MostRegs,
    824                                                  (sequence "YMM%u", 0, 15))>;
    825 
    826 def CSR_64_MostRegs : CalleeSavedRegs<(add RBX, RCX, RDX, RSI, RDI, R8, R9, R10,
    827                                            R11, R12, R13, R14, R15, RBP,
    828                                            (sequence "XMM%u", 0, 15))>;
    829 
    830 def CSR_32_AllRegs     : CalleeSavedRegs<(add EAX, EBX, ECX, EDX, EBP, ESI,
    831                                               EDI, ESP)>;
    832 def CSR_32_AllRegs_SSE : CalleeSavedRegs<(add CSR_32_AllRegs,
    833                                               (sequence "XMM%u", 0, 7))>;
    834 
    835 def CSR_64_AllRegs     : CalleeSavedRegs<(add CSR_64_MostRegs, RAX, RSP,
    836                                               (sequence "XMM%u", 16, 31))>;
    837 def CSR_64_AllRegs_AVX : CalleeSavedRegs<(sub (add CSR_64_MostRegs, RAX, RSP,
    838                                                    (sequence "YMM%u", 0, 31)),
    839                                               (sequence "XMM%u", 0, 15))>;
    840 
    841 // Standard C + YMM6-15
    842 def CSR_Win64_Intel_OCL_BI_AVX : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12,
    843                                                   R13, R14, R15,
    844                                                   (sequence "YMM%u", 6, 15))>;
    845 
    846 def CSR_Win64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI,
    847                                                      R12, R13, R14, R15,
    848                                                      (sequence "ZMM%u", 6, 21),
    849                                                      K4, K5, K6, K7)>;
    850 //Standard C + XMM 8-15
    851 def CSR_64_Intel_OCL_BI       : CalleeSavedRegs<(add CSR_64,
    852                                                  (sequence "XMM%u", 8, 15))>;
    853 
    854 //Standard C + YMM 8-15
    855 def CSR_64_Intel_OCL_BI_AVX    : CalleeSavedRegs<(add CSR_64,
    856                                                   (sequence "YMM%u", 8, 15))>;
    857 
    858 def CSR_64_Intel_OCL_BI_AVX512 : CalleeSavedRegs<(add RBX, RDI, RSI, R14, R15,
    859                                                   (sequence "ZMM%u", 16, 31),
    860                                                   K4, K5, K6, K7)>;
    861 
    862 // Only R12 is preserved for PHP calls in HHVM.
    863 def CSR_64_HHVM : CalleeSavedRegs<(add R12)>;
    864