Home | History | Annotate | Download | only in X86
      1 //===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the various pseudo instructions used by the compiler,
     11 // as well as Pat patterns used during instruction selection.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // Pattern Matching Support
     17 
     18 def GetLo32XForm : SDNodeXForm<imm, [{
     19   // Transformation function: get the low 32 bits.
     20   return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
     21 }]>;
     22 
     23 def GetLo8XForm : SDNodeXForm<imm, [{
     24   // Transformation function: get the low 8 bits.
     25   return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
     26 }]>;
     27 
     28 
     29 //===----------------------------------------------------------------------===//
     30 // Random Pseudo Instructions.
     31 
     32 // PIC base construction.  This expands to code that looks like this:
     33 //     call  $next_inst
     34 //     popl %destreg"
     35 let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
     36   def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
     37                       "", []>;
     38 
     39 
     40 // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
     41 // a stack adjustment and the codegen must know that they may modify the stack
     42 // pointer before prolog-epilog rewriting occurs.
     43 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     44 // sub / add which can clobber EFLAGS.
     45 let Defs = [ESP, EFLAGS], Uses = [ESP] in {
     46 def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     47                            "#ADJCALLSTACKDOWN",
     48                            []>,
     49                           Requires<[NotLP64]>;
     50 def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     51                            "#ADJCALLSTACKUP",
     52                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     53                           Requires<[NotLP64]>;
     54 }
     55 def : Pat<(X86callseq_start timm:$amt1),
     56           (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
     57 
     58 
     59 // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
     60 // a stack adjustment and the codegen must know that they may modify the stack
     61 // pointer before prolog-epilog rewriting occurs.
     62 // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
     63 // sub / add which can clobber EFLAGS.
     64 let Defs = [RSP, EFLAGS], Uses = [RSP] in {
     65 def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     66                            "#ADJCALLSTACKDOWN",
     67                            []>,
     68                           Requires<[IsLP64]>;
     69 def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
     70                            "#ADJCALLSTACKUP",
     71                            [(X86callseq_end timm:$amt1, timm:$amt2)]>,
     72                           Requires<[IsLP64]>;
     73 }
     74 def : Pat<(X86callseq_start timm:$amt1),
     75           (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
     76 
     77 
     78 // x86-64 va_start lowering magic.
     79 let usesCustomInserter = 1, Defs = [EFLAGS] in {
     80 def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
     81                               (outs),
     82                               (ins GR8:$al,
     83                                    i64imm:$regsavefi, i64imm:$offset,
     84                                    variable_ops),
     85                               "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
     86                               [(X86vastart_save_xmm_regs GR8:$al,
     87                                                          imm:$regsavefi,
     88                                                          imm:$offset),
     89                                (implicit EFLAGS)]>;
     90 
     91 // The VAARG_64 pseudo-instruction takes the address of the va_list,
     92 // and places the address of the next argument into a register.
     93 let Defs = [EFLAGS] in
     94 def VAARG_64 : I<0, Pseudo,
     95                  (outs GR64:$dst),
     96                  (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
     97                  "#VAARG_64 $dst, $ap, $size, $mode, $align",
     98                  [(set GR64:$dst,
     99                     (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
    100                   (implicit EFLAGS)]>;
    101 
    102 // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
    103 // targets.  These calls are needed to probe the stack when allocating more than
    104 // 4k bytes in one go. Touching the stack at 4K increments is necessary to
    105 // ensure that the guard pages used by the OS virtual memory manager are
    106 // allocated in correct sequence.
    107 // The main point of having separate instruction are extra unmodelled effects
    108 // (compared to ordinary calls) like stack pointer change.
    109 
    110 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    111   def WIN_ALLOCA : I<0, Pseudo, (outs), (ins),
    112                      "# dynamic stack allocation",
    113                      [(X86WinAlloca)]>;
    114 
    115 // When using segmented stacks these are lowered into instructions which first
    116 // check if the current stacklet has enough free memory. If it does, memory is
    117 // allocated by bumping the stack pointer. Otherwise memory is allocated from
    118 // the heap.
    119 
    120 let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
    121 def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
    122                       "# variable sized alloca for segmented stacks",
    123                       [(set GR32:$dst,
    124                          (X86SegAlloca GR32:$size))]>,
    125                     Requires<[NotLP64]>;
    126 
    127 let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
    128 def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
    129                       "# variable sized alloca for segmented stacks",
    130                       [(set GR64:$dst,
    131                          (X86SegAlloca GR64:$size))]>,
    132                     Requires<[In64BitMode]>;
    133 }
    134 
    135 //===----------------------------------------------------------------------===//
    136 // EH Pseudo Instructions
    137 //
    138 let SchedRW = [WriteSystem] in {
    139 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    140     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    141 def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
    142                     "ret\t#eh_return, addr: $addr",
    143                     [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    144 
    145 }
    146 
    147 let isTerminator = 1, isReturn = 1, isBarrier = 1,
    148     hasCtrlDep = 1, isCodeGenOnly = 1 in {
    149 def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
    150                      "ret\t#eh_return, addr: $addr",
    151                      [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
    152 
    153 }
    154 
    155 let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    156     isCodeGenOnly = 1, isReturn = 1 in {
    157   def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
    158 
    159   // CATCHRET needs a custom inserter for SEH.
    160   let usesCustomInserter = 1 in
    161     def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
    162                      "# CATCHRET",
    163                      [(catchret bb:$dst, bb:$from)]>;
    164 }
    165 
    166 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
    167     usesCustomInserter = 1 in
    168 def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
    169 
    170 // This instruction is responsible for re-establishing stack pointers after an
    171 // exception has been caught and we are rejoining normal control flow in the
    172 // parent function or funclet. It generally sets ESP and EBP, and optionally
    173 // ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
    174 // elsewhere.
    175 let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
    176 def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
    177 
    178 let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
    179     usesCustomInserter = 1 in {
    180   def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
    181                             "#EH_SJLJ_SETJMP32",
    182                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    183                           Requires<[Not64BitMode]>;
    184   def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
    185                             "#EH_SJLJ_SETJMP64",
    186                             [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
    187                           Requires<[In64BitMode]>;
    188   let isTerminator = 1 in {
    189   def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
    190                             "#EH_SJLJ_LONGJMP32",
    191                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    192                           Requires<[Not64BitMode]>;
    193   def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
    194                             "#EH_SJLJ_LONGJMP64",
    195                             [(X86eh_sjlj_longjmp addr:$buf)]>,
    196                           Requires<[In64BitMode]>;
    197   }
    198 }
    199 } // SchedRW
    200 
    201 let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
    202   def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
    203                         "#EH_SjLj_Setup\t$dst", []>;
    204 }
    205 
    206 //===----------------------------------------------------------------------===//
    207 // Pseudo instructions used by unwind info.
    208 //
    209 let isPseudo = 1 in {
    210   def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
    211                             "#SEH_PushReg $reg", []>;
    212   def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    213                             "#SEH_SaveReg $reg, $dst", []>;
    214   def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
    215                             "#SEH_SaveXMM $reg, $dst", []>;
    216   def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
    217                             "#SEH_StackAlloc $size", []>;
    218   def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
    219                             "#SEH_SetFrame $reg, $offset", []>;
    220   def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
    221                             "#SEH_PushFrame $mode", []>;
    222   def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
    223                             "#SEH_EndPrologue", []>;
    224   def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
    225                             "#SEH_Epilogue", []>;
    226 }
    227 
    228 //===----------------------------------------------------------------------===//
    229 // Pseudo instructions used by segmented stacks.
    230 //
    231 
    232 // This is lowered into a RET instruction by MCInstLower.  We need
    233 // this so that we don't have to have a MachineBasicBlock which ends
    234 // with a RET and also has successors.
    235 let isPseudo = 1 in {
    236 def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
    237                           "", []>;
    238 
    239 // This instruction is lowered to a RET followed by a MOV.  The two
    240 // instructions are not generated on a higher level since then the
    241 // verifier sees a MachineBasicBlock ending with a non-terminator.
    242 def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
    243                                   "", []>;
    244 }
    245 
    246 //===----------------------------------------------------------------------===//
    247 // Alias Instructions
    248 //===----------------------------------------------------------------------===//
    249 
    250 // Alias instruction mapping movr0 to xor.
    251 // FIXME: remove when we can teach regalloc that xor reg, reg is ok.
    252 let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
    253     isPseudo = 1, AddedComplexity = 20 in
    254 def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    255                  [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
    256 
    257 // Other widths can also make use of the 32-bit xor, which may have a smaller
    258 // encoding and avoid partial register updates.
    259 def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
    260 def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
    261 def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
    262   let AddedComplexity = 20;
    263 }
    264 
    265 let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
    266     AddedComplexity = 15 in {
    267   // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
    268   // which only require 3 bytes compared to MOV32ri which requires 5.
    269   let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
    270     def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    271                         [(set GR32:$dst, 1)]>;
    272     def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    273                         [(set GR32:$dst, -1)]>;
    274   }
    275 
    276   // MOV16ri is 4 bytes, so the instructions above are smaller.
    277   def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
    278   def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
    279 }
    280 
    281 let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in {
    282 // AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
    283 // FIXME: Add itinerary class and Schedule.
    284 def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
    285                        [(set GR32:$dst, i32immSExt8:$src)]>,
    286                      Requires<[OptForMinSize]>;
    287 def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
    288                        [(set GR64:$dst, i64immSExt8:$src)]>,
    289                      Requires<[OptForMinSize, NotWin64WithoutFP]>;
    290 }
    291 
    292 // Materialize i64 constant where top 32-bits are zero. This could theoretically
    293 // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
    294 // that would make it more difficult to rematerialize.
    295 let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1,
    296     isCodeGenOnly = 1, hasSideEffects = 0 in
    297 def MOV32ri64 : Ii32<0xb8, AddRegFrm, (outs GR32:$dst), (ins i64i32imm:$src),
    298                      "", [], IIC_ALU_NONMEM>, Sched<[WriteALU]>;
    299 
    300 // This 64-bit pseudo-move can be used for both a 64-bit constant that is
    301 // actually the zero-extension of a 32-bit constant and for labels in the
    302 // x86-64 small code model.
    303 def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
    304 
    305 let AddedComplexity = 1 in
    306 def : Pat<(i64 mov64imm32:$src),
    307           (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
    308 
    309 // Use sbb to materialize carry bit.
    310 let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
    311 // FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
    312 // However, Pat<> can't replicate the destination reg into the inputs of the
    313 // result.
    314 def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
    315                  [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    316 def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
    317                  [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    318 def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
    319                  [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    320 def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
    321                  [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
    322 } // isCodeGenOnly
    323 
    324 
    325 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    326           (SETB_C16r)>;
    327 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    328           (SETB_C32r)>;
    329 def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    330           (SETB_C64r)>;
    331 
    332 def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    333           (SETB_C16r)>;
    334 def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    335           (SETB_C32r)>;
    336 def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
    337           (SETB_C64r)>;
    338 
    339 // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
    340 // will be eliminated and that the sbb can be extended up to a wider type.  When
    341 // this happens, it is great.  However, if we are left with an 8-bit sbb and an
    342 // and, we might as well just match it as a setb.
    343 def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
    344           (SETBr)>;
    345 
    346 // (add OP, SETB) -> (adc OP, 0)
    347 def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
    348           (ADC8ri GR8:$op, 0)>;
    349 def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
    350           (ADC32ri8 GR32:$op, 0)>;
    351 def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
    352           (ADC64ri8 GR64:$op, 0)>;
    353 
    354 // (sub OP, SETB) -> (sbb OP, 0)
    355 def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    356           (SBB8ri GR8:$op, 0)>;
    357 def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    358           (SBB32ri8 GR32:$op, 0)>;
    359 def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
    360           (SBB64ri8 GR64:$op, 0)>;
    361 
    362 // (sub OP, SETCC_CARRY) -> (adc OP, 0)
    363 def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
    364           (ADC8ri GR8:$op, 0)>;
    365 def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
    366           (ADC32ri8 GR32:$op, 0)>;
    367 def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
    368           (ADC64ri8 GR64:$op, 0)>;
    369 
    370 //===----------------------------------------------------------------------===//
    371 // String Pseudo Instructions
    372 //
    373 let SchedRW = [WriteMicrocoded] in {
    374 let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
    375 def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    376                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    377                    Requires<[Not64BitMode]>;
    378 def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    379                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    380                    Requires<[Not64BitMode]>;
    381 def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    382                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    383                    Requires<[Not64BitMode]>;
    384 }
    385 
    386 let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
    387 def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
    388                     [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
    389                    Requires<[In64BitMode]>;
    390 def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
    391                     [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
    392                    Requires<[In64BitMode]>;
    393 def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
    394                     [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
    395                    Requires<[In64BitMode]>;
    396 def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
    397                     [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
    398                    Requires<[In64BitMode]>;
    399 }
    400 
    401 // FIXME: Should use "(X86rep_stos AL)" as the pattern.
    402 let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
    403   let Uses = [AL,ECX,EDI] in
    404   def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    405                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    406                      Requires<[Not64BitMode]>;
    407   let Uses = [AX,ECX,EDI] in
    408   def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    409                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    410                      Requires<[Not64BitMode]>;
    411   let Uses = [EAX,ECX,EDI] in
    412   def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    413                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    414                      Requires<[Not64BitMode]>;
    415 }
    416 
    417 let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
    418   let Uses = [AL,RCX,RDI] in
    419   def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
    420                       [(X86rep_stos i8)], IIC_REP_STOS>, REP,
    421                      Requires<[In64BitMode]>;
    422   let Uses = [AX,RCX,RDI] in
    423   def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
    424                       [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
    425                      Requires<[In64BitMode]>;
    426   let Uses = [RAX,RCX,RDI] in
    427   def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
    428                       [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
    429                      Requires<[In64BitMode]>;
    430 
    431   let Uses = [RAX,RCX,RDI] in
    432   def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
    433                       [(X86rep_stos i64)], IIC_REP_STOS>, REP,
    434                      Requires<[In64BitMode]>;
    435 }
    436 } // SchedRW
    437 
    438 //===----------------------------------------------------------------------===//
    439 // Thread Local Storage Instructions
    440 //
    441 
    442 // ELF TLS Support
    443 // All calls clobber the non-callee saved registers. ESP is marked as
    444 // a use to prevent stack-pointer assignments that appear immediately
    445 // before calls from potentially appearing dead.
    446 let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    447             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    448             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    449             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    450             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    451     Uses = [ESP] in {
    452 def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    453                   "# TLS_addr32",
    454                   [(X86tlsaddr tls32addr:$sym)]>,
    455                   Requires<[Not64BitMode]>;
    456 def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    457                   "# TLS_base_addr32",
    458                   [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
    459                   Requires<[Not64BitMode]>;
    460 }
    461 
    462 // All calls clobber the non-callee saved registers. RSP is marked as
    463 // a use to prevent stack-pointer assignments that appear immediately
    464 // before calls from potentially appearing dead.
    465 let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
    466             FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
    467             ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
    468             MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
    469             XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
    470             XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
    471     Uses = [RSP] in {
    472 def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    473                    "# TLS_addr64",
    474                   [(X86tlsaddr tls64addr:$sym)]>,
    475                   Requires<[In64BitMode]>;
    476 def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    477                    "# TLS_base_addr64",
    478                   [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
    479                   Requires<[In64BitMode]>;
    480 }
    481 
    482 // Darwin TLS Support
    483 // For i386, the address of the thunk is passed on the stack, on return the
    484 // address of the variable is in %eax.  %ecx is trashed during the function
    485 // call.  All other registers are preserved.
    486 let Defs = [EAX, ECX, EFLAGS],
    487     Uses = [ESP],
    488     usesCustomInserter = 1 in
    489 def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
    490                 "# TLSCall_32",
    491                 [(X86TLSCall addr:$sym)]>,
    492                 Requires<[Not64BitMode]>;
    493 
    494 // For x86_64, the address of the thunk is passed in %rdi, on return
    495 // the address of the variable is in %rax.  All other registers are preserved.
    496 let Defs = [RAX, EFLAGS],
    497     Uses = [RSP, RDI],
    498     usesCustomInserter = 1 in
    499 def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
    500                   "# TLSCall_64",
    501                   [(X86TLSCall addr:$sym)]>,
    502                   Requires<[In64BitMode]>;
    503 
    504 
    505 //===----------------------------------------------------------------------===//
    506 // Conditional Move Pseudo Instructions
    507 
    508 // CMOV* - Used to implement the SELECT DAG operation.  Expanded after
    509 // instruction selection into a branch sequence.
    510 multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
    511   def CMOV#NAME  : I<0, Pseudo,
    512                     (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
    513                     "#CMOV_"#NAME#" PSEUDO!",
    514                     [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
    515                                                 EFLAGS)))]>;
    516 }
    517 
    518 let usesCustomInserter = 1, Uses = [EFLAGS] in {
    519   // X86 doesn't have 8-bit conditional moves. Use a customInserter to
    520   // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
    521   // however that requires promoting the operands, and can induce additional
    522   // i8 register pressure.
    523   defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
    524 
    525   let Predicates = [NoCMov] in {
    526     defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
    527     defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
    528   } // Predicates = [NoCMov]
    529 
    530   // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
    531   // SSE1/SSE2.
    532   let Predicates = [FPStackf32] in
    533     defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
    534 
    535   let Predicates = [FPStackf64] in
    536     defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
    537 
    538   defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
    539 
    540   defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
    541   defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
    542   defm _FR128  : CMOVrr_PSEUDO<FR128, f128>;
    543   defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
    544   defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
    545   defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
    546   defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
    547   defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
    548   defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
    549   defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
    550   defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
    551   defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
    552   defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
    553   defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
    554   defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
    555   defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
    556 } // usesCustomInserter = 1, Uses = [EFLAGS]
    557 
    558 //===----------------------------------------------------------------------===//
    559 // Normal-Instructions-With-Lock-Prefix Pseudo Instructions
    560 //===----------------------------------------------------------------------===//
    561 
    562 // FIXME: Use normal instructions and add lock prefix dynamically.
    563 
    564 // Memory barriers
    565 
    566 // TODO: Get this to fold the constant into the instruction.
    567 let isCodeGenOnly = 1, Defs = [EFLAGS] in
    568 def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
    569                       "or{l}\t{$zero, $dst|$dst, $zero}",
    570                       [], IIC_ALU_MEM>, Requires<[Not64BitMode]>, LOCK,
    571                     Sched<[WriteALULd, WriteRMW]>;
    572 
    573 let hasSideEffects = 1 in
    574 def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
    575                      "#MEMBARRIER",
    576                      [(X86MemBarrier)]>, Sched<[WriteLoad]>;
    577 
    578 // RegOpc corresponds to the mr version of the instruction
    579 // ImmOpc corresponds to the mi version of the instruction
    580 // ImmOpc8 corresponds to the mi8 version of the instruction
    581 // ImmMod corresponds to the instruction format of the mi and mi8 versions
    582 multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
    583                            Format ImmMod, string mnemonic> {
    584 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    585     SchedRW = [WriteALULd, WriteRMW] in {
    586 
    587 def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    588                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
    589                   MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
    590                   !strconcat(mnemonic, "{b}\t",
    591                              "{$src2, $dst|$dst, $src2}"),
    592                   [], IIC_ALU_NONMEM>, LOCK;
    593 def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    594                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    595                    MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
    596                    !strconcat(mnemonic, "{w}\t",
    597                               "{$src2, $dst|$dst, $src2}"),
    598                    [], IIC_ALU_NONMEM>, OpSize16, LOCK;
    599 def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    600                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    601                    MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
    602                    !strconcat(mnemonic, "{l}\t",
    603                               "{$src2, $dst|$dst, $src2}"),
    604                    [], IIC_ALU_NONMEM>, OpSize32, LOCK;
    605 def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
    606                     RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
    607                     MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
    608                     !strconcat(mnemonic, "{q}\t",
    609                                "{$src2, $dst|$dst, $src2}"),
    610                     [], IIC_ALU_NONMEM>, LOCK;
    611 
    612 def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    613                     ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
    614                     ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
    615                     !strconcat(mnemonic, "{b}\t",
    616                                "{$src2, $dst|$dst, $src2}"),
    617                     [], IIC_ALU_MEM>, LOCK;
    618 
    619 def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    620                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    621                       ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
    622                       !strconcat(mnemonic, "{w}\t",
    623                                  "{$src2, $dst|$dst, $src2}"),
    624                       [], IIC_ALU_MEM>, OpSize16, LOCK;
    625 
    626 def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    627                       ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    628                       ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
    629                       !strconcat(mnemonic, "{l}\t",
    630                                  "{$src2, $dst|$dst, $src2}"),
    631                       [], IIC_ALU_MEM>, OpSize32, LOCK;
    632 
    633 def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
    634                           ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
    635                           ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
    636                           !strconcat(mnemonic, "{q}\t",
    637                                      "{$src2, $dst|$dst, $src2}"),
    638                           [], IIC_ALU_MEM>, LOCK;
    639 
    640 def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    641                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    642                       ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
    643                       !strconcat(mnemonic, "{w}\t",
    644                                  "{$src2, $dst|$dst, $src2}"),
    645                       [], IIC_ALU_MEM>, OpSize16, LOCK;
    646 def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    647                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    648                       ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
    649                       !strconcat(mnemonic, "{l}\t",
    650                                  "{$src2, $dst|$dst, $src2}"),
    651                       [], IIC_ALU_MEM>, OpSize32, LOCK;
    652 def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
    653                        ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
    654                        ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
    655                        !strconcat(mnemonic, "{q}\t",
    656                                   "{$src2, $dst|$dst, $src2}"),
    657                        [], IIC_ALU_MEM>, LOCK;
    658 
    659 }
    660 
    661 }
    662 
    663 defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">;
    664 defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">;
    665 defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">;
    666 defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">;
    667 defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">;
    668 
    669 // Optimized codegen when the non-memory output is not used.
    670 multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
    671                           string mnemonic> {
    672 let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
    673     SchedRW = [WriteALULd, WriteRMW] in {
    674 
    675 def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
    676                  !strconcat(mnemonic, "{b}\t$dst"),
    677                  [], IIC_UNARY_MEM>, LOCK;
    678 def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
    679                  !strconcat(mnemonic, "{w}\t$dst"),
    680                  [], IIC_UNARY_MEM>, OpSize16, LOCK;
    681 def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
    682                  !strconcat(mnemonic, "{l}\t$dst"),
    683                  [], IIC_UNARY_MEM>, OpSize32, LOCK;
    684 def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
    685                   !strconcat(mnemonic, "{q}\t$dst"),
    686                   [], IIC_UNARY_MEM>, LOCK;
    687 }
    688 }
    689 
    690 defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">;
    691 defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">;
    692 
    693 // Atomic compare and swap.
    694 multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
    695                          SDPatternOperator frag, X86MemOperand x86memop,
    696                          InstrItinClass itin> {
    697 let isCodeGenOnly = 1 in {
    698   def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
    699                !strconcat(mnemonic, "\t$ptr"),
    700                [(frag addr:$ptr)], itin>, TB, LOCK;
    701 }
    702 }
    703 
    704 multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
    705                           string mnemonic, SDPatternOperator frag,
    706                           InstrItinClass itin8, InstrItinClass itin> {
    707 let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
    708   let Defs = [AL, EFLAGS], Uses = [AL] in
    709   def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
    710                   !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
    711                   [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
    712   let Defs = [AX, EFLAGS], Uses = [AX] in
    713   def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
    714                   !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
    715                   [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
    716   let Defs = [EAX, EFLAGS], Uses = [EAX] in
    717   def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
    718                   !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
    719                   [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
    720   let Defs = [RAX, EFLAGS], Uses = [RAX] in
    721   def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
    722                    !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
    723                    [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
    724 }
    725 }
    726 
    727 let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
    728     SchedRW = [WriteALULd, WriteRMW] in {
    729 defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
    730                                 X86cas8, i64mem,
    731                                 IIC_CMPX_LOCK_8B>;
    732 }
    733 
    734 let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
    735     Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
    736 defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
    737                                  X86cas16, i128mem,
    738                                  IIC_CMPX_LOCK_16B>, REX_W;
    739 }
    740 
    741 defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
    742                                X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
    743 
    744 // Atomic exchange and add
    745 multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
    746                              string frag,
    747                              InstrItinClass itin8, InstrItinClass itin> {
    748   let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
    749       SchedRW = [WriteALULd, WriteRMW] in {
    750     def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
    751                     (ins GR8:$val, i8mem:$ptr),
    752                     !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
    753                     [(set GR8:$dst,
    754                           (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
    755                     itin8>;
    756     def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
    757                     (ins GR16:$val, i16mem:$ptr),
    758                     !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
    759                     [(set
    760                        GR16:$dst,
    761                        (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
    762                     itin>, OpSize16;
    763     def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
    764                     (ins GR32:$val, i32mem:$ptr),
    765                     !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
    766                     [(set
    767                        GR32:$dst,
    768                        (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
    769                     itin>, OpSize32;
    770     def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
    771                      (ins GR64:$val, i64mem:$ptr),
    772                      !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
    773                      [(set
    774                         GR64:$dst,
    775                         (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
    776                      itin>;
    777   }
    778 }
    779 
    780 defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
    781                                IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
    782              TB, LOCK;
    783 
    784 /* The following multiclass tries to make sure that in code like
    785  *    x.store (immediate op x.load(acquire), release)
    786  * and
    787  *    x.store (register op x.load(acquire), release)
    788  * an operation directly on memory is generated instead of wasting a register.
    789  * It is not automatic as atomic_store/load are only lowered to MOV instructions
    790  * extremely late to prevent them from being accidentally reordered in the backend
    791  * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
    792  */
    793 multiclass RELEASE_BINOP_MI<SDNode op> {
    794     def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    795         "#BINOP "#NAME#"8mi PSEUDO!",
    796         [(atomic_store_8 addr:$dst, (op
    797             (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
    798     def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
    799         "#BINOP "#NAME#"8mr PSEUDO!",
    800         [(atomic_store_8 addr:$dst, (op
    801             (atomic_load_8 addr:$dst), GR8:$src))]>;
    802     // NAME#16 is not generated as 16-bit arithmetic instructions are considered
    803     // costly and avoided as far as possible by this backend anyway
    804     def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    805         "#BINOP "#NAME#"32mi PSEUDO!",
    806         [(atomic_store_32 addr:$dst, (op
    807             (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
    808     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
    809         "#BINOP "#NAME#"32mr PSEUDO!",
    810         [(atomic_store_32 addr:$dst, (op
    811             (atomic_load_32 addr:$dst), GR32:$src))]>;
    812     def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    813         "#BINOP "#NAME#"64mi32 PSEUDO!",
    814         [(atomic_store_64 addr:$dst, (op
    815             (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
    816     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
    817         "#BINOP "#NAME#"64mr PSEUDO!",
    818         [(atomic_store_64 addr:$dst, (op
    819             (atomic_load_64 addr:$dst), GR64:$src))]>;
    820 }
    821 let Defs = [EFLAGS] in {
    822   defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
    823   defm RELEASE_AND : RELEASE_BINOP_MI<and>;
    824   defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
    825   defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
    826   // Note: we don't deal with sub, because substractions of constants are
    827   //       optimized into additions before this code can run.
    828 }
    829 
    830 // Same as above, but for floating-point.
    831 // FIXME: imm version.
    832 // FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
    833 // FIXME: This could also handle SIMD operations with *ps and *pd instructions.
    834 let usesCustomInserter = 1 in {
    835 multiclass RELEASE_FP_BINOP_MI<SDNode op> {
    836     def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
    837         "#BINOP "#NAME#"32mr PSEUDO!",
    838         [(atomic_store_32 addr:$dst,
    839 	   (i32 (bitconvert (op
    840              (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
    841 	      FR32:$src))))]>, Requires<[HasSSE1]>;
    842     def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
    843         "#BINOP "#NAME#"64mr PSEUDO!",
    844         [(atomic_store_64 addr:$dst,
    845 	   (i64 (bitconvert (op
    846              (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
    847 	      FR64:$src))))]>, Requires<[HasSSE2]>;
    848 }
    849 defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
    850 // FIXME: Add fsub, fmul, fdiv, ...
    851 }
    852 
    853 multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
    854     def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
    855         "#UNOP "#NAME#"8m PSEUDO!",
    856         [(atomic_store_8 addr:$dst, dag8)]>;
    857     def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
    858         "#UNOP "#NAME#"16m PSEUDO!",
    859         [(atomic_store_16 addr:$dst, dag16)]>;
    860     def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
    861         "#UNOP "#NAME#"32m PSEUDO!",
    862         [(atomic_store_32 addr:$dst, dag32)]>;
    863     def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
    864         "#UNOP "#NAME#"64m PSEUDO!",
    865         [(atomic_store_64 addr:$dst, dag64)]>;
    866 }
    867 
    868 let Defs = [EFLAGS] in {
    869   defm RELEASE_INC : RELEASE_UNOP<
    870       (add (atomic_load_8  addr:$dst), (i8 1)),
    871       (add (atomic_load_16 addr:$dst), (i16 1)),
    872       (add (atomic_load_32 addr:$dst), (i32 1)),
    873       (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
    874   defm RELEASE_DEC : RELEASE_UNOP<
    875       (add (atomic_load_8  addr:$dst), (i8 -1)),
    876       (add (atomic_load_16 addr:$dst), (i16 -1)),
    877       (add (atomic_load_32 addr:$dst), (i32 -1)),
    878       (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
    879 }
    880 /*
    881 TODO: These don't work because the type inference of TableGen fails.
    882 TODO: find a way to fix it.
    883 let Defs = [EFLAGS] in {
    884   defm RELEASE_NEG : RELEASE_UNOP<
    885       (ineg (atomic_load_8  addr:$dst)),
    886       (ineg (atomic_load_16 addr:$dst)),
    887       (ineg (atomic_load_32 addr:$dst)),
    888       (ineg (atomic_load_64 addr:$dst))>;
    889 }
    890 // NOT doesn't set flags.
    891 defm RELEASE_NOT : RELEASE_UNOP<
    892     (not (atomic_load_8  addr:$dst)),
    893     (not (atomic_load_16 addr:$dst)),
    894     (not (atomic_load_32 addr:$dst)),
    895     (not (atomic_load_64 addr:$dst))>;
    896 */
    897 
    898 def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
    899 			"#RELEASE_MOV8mi PSEUDO!",
    900 			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
    901 def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
    902 			"#RELEASE_MOV16mi PSEUDO!",
    903 			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
    904 def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
    905 			"#RELEASE_MOV32mi PSEUDO!",
    906 			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
    907 def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
    908 			"#RELEASE_MOV64mi32 PSEUDO!",
    909 			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
    910 
    911 def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
    912                         "#RELEASE_MOV8mr PSEUDO!",
    913                         [(atomic_store_8  addr:$dst, GR8 :$src)]>;
    914 def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
    915                         "#RELEASE_MOV16mr PSEUDO!",
    916                         [(atomic_store_16 addr:$dst, GR16:$src)]>;
    917 def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
    918                         "#RELEASE_MOV32mr PSEUDO!",
    919                         [(atomic_store_32 addr:$dst, GR32:$src)]>;
    920 def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
    921                         "#RELEASE_MOV64mr PSEUDO!",
    922                         [(atomic_store_64 addr:$dst, GR64:$src)]>;
    923 
    924 def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
    925                       "#ACQUIRE_MOV8rm PSEUDO!",
    926                       [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
    927 def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
    928                       "#ACQUIRE_MOV16rm PSEUDO!",
    929                       [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
    930 def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
    931                       "#ACQUIRE_MOV32rm PSEUDO!",
    932                       [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
    933 def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
    934                       "#ACQUIRE_MOV64rm PSEUDO!",
    935                       [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
    936 
    937 //===----------------------------------------------------------------------===//
    938 // DAG Pattern Matching Rules
    939 //===----------------------------------------------------------------------===//
    940 
    941 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
    942 def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
    943 def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
    944 def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
    945 def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
    946 def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
    947 def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
    948 def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
    949 
    950 def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
    951           (ADD32ri GR32:$src1, tconstpool:$src2)>;
    952 def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
    953           (ADD32ri GR32:$src1, tjumptable:$src2)>;
    954 def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
    955           (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
    956 def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
    957           (ADD32ri GR32:$src1, texternalsym:$src2)>;
    958 def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
    959           (ADD32ri GR32:$src1, mcsym:$src2)>;
    960 def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
    961           (ADD32ri GR32:$src1, tblockaddress:$src2)>;
    962 
    963 def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
    964           (MOV32mi addr:$dst, tglobaladdr:$src)>;
    965 def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
    966           (MOV32mi addr:$dst, texternalsym:$src)>;
    967 def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
    968           (MOV32mi addr:$dst, mcsym:$src)>;
    969 def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
    970           (MOV32mi addr:$dst, tblockaddress:$src)>;
    971 
    972 // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
    973 // code model mode, should use 'movabs'.  FIXME: This is really a hack, the
    974 //  'movabs' predicate should handle this sort of thing.
    975 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
    976           (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
    977 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
    978           (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
    979 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
    980           (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
    981 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
    982           (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
    983 def : Pat<(i64 (X86Wrapper mcsym:$dst)),
    984           (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
    985 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
    986           (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
    987 
    988 // In kernel code model, we can get the address of a label
    989 // into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
    990 // the MOV64ri32 should accept these.
    991 def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
    992           (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
    993 def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
    994           (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
    995 def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
    996           (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
    997 def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
    998           (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
    999 def : Pat<(i64 (X86Wrapper mcsym:$dst)),
   1000           (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
   1001 def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
   1002           (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
   1003 
   1004 // If we have small model and -static mode, it is safe to store global addresses
   1005 // directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
   1006 // for MOV64mi32 should handle this sort of thing.
   1007 def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
   1008           (MOV64mi32 addr:$dst, tconstpool:$src)>,
   1009           Requires<[NearData, IsStatic]>;
   1010 def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
   1011           (MOV64mi32 addr:$dst, tjumptable:$src)>,
   1012           Requires<[NearData, IsStatic]>;
   1013 def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
   1014           (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
   1015           Requires<[NearData, IsStatic]>;
   1016 def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
   1017           (MOV64mi32 addr:$dst, texternalsym:$src)>,
   1018           Requires<[NearData, IsStatic]>;
   1019 def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
   1020           (MOV64mi32 addr:$dst, mcsym:$src)>,
   1021           Requires<[NearData, IsStatic]>;
   1022 def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
   1023           (MOV64mi32 addr:$dst, tblockaddress:$src)>,
   1024           Requires<[NearData, IsStatic]>;
   1025 
   1026 def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
   1027 def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
   1028 
   1029 // Calls
   1030 
   1031 // tls has some funny stuff here...
   1032 // This corresponds to movabs $foo@tpoff, %rax
   1033 def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
   1034           (MOV64ri32 tglobaltlsaddr :$dst)>;
   1035 // This corresponds to add $foo@tpoff, %rax
   1036 def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
   1037           (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
   1038 
   1039 
   1040 // Direct PC relative function call for small code model. 32-bit displacement
   1041 // sign extended to 64-bit.
   1042 def : Pat<(X86call (i64 tglobaladdr:$dst)),
   1043           (CALL64pcrel32 tglobaladdr:$dst)>;
   1044 def : Pat<(X86call (i64 texternalsym:$dst)),
   1045           (CALL64pcrel32 texternalsym:$dst)>;
   1046 
   1047 // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
   1048 // can never use callee-saved registers. That is the purpose of the GR64_TC
   1049 // register classes.
   1050 //
   1051 // The only volatile register that is never used by the calling convention is
   1052 // %r11. This happens when calling a vararg function with 6 arguments.
   1053 //
   1054 // Match an X86tcret that uses less than 7 volatile registers.
   1055 def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
   1056                              (X86tcret node:$ptr, node:$off), [{
   1057   // X86tcret args: (*chain, ptr, imm, regs..., glue)
   1058   unsigned NumRegs = 0;
   1059   for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
   1060     if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
   1061       return false;
   1062   return true;
   1063 }]>;
   1064 
   1065 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
   1066           (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
   1067           Requires<[Not64BitMode]>;
   1068 
   1069 // FIXME: This is disabled for 32-bit PIC mode because the global base
   1070 // register which is part of the address mode may be assigned a
   1071 // callee-saved register.
   1072 def : Pat<(X86tcret (load addr:$dst), imm:$off),
   1073           (TCRETURNmi addr:$dst, imm:$off)>,
   1074           Requires<[Not64BitMode, IsNotPIC]>;
   1075 
   1076 def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
   1077           (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
   1078           Requires<[NotLP64]>;
   1079 
   1080 def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
   1081           (TCRETURNdi texternalsym:$dst, imm:$off)>,
   1082           Requires<[NotLP64]>;
   1083 
   1084 def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
   1085           (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
   1086           Requires<[In64BitMode]>;
   1087 
   1088 // Don't fold loads into X86tcret requiring more than 6 regs.
   1089 // There wouldn't be enough scratch registers for base+index.
   1090 def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
   1091           (TCRETURNmi64 addr:$dst, imm:$off)>,
   1092           Requires<[In64BitMode]>;
   1093 
   1094 def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
   1095           (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
   1096           Requires<[IsLP64]>;
   1097 
   1098 def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
   1099           (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
   1100           Requires<[IsLP64]>;
   1101 
   1102 // Normal calls, with various flavors of addresses.
   1103 def : Pat<(X86call (i32 tglobaladdr:$dst)),
   1104           (CALLpcrel32 tglobaladdr:$dst)>;
   1105 def : Pat<(X86call (i32 texternalsym:$dst)),
   1106           (CALLpcrel32 texternalsym:$dst)>;
   1107 def : Pat<(X86call (i32 imm:$dst)),
   1108           (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
   1109 
   1110 // Comparisons.
   1111 
   1112 // TEST R,R is smaller than CMP R,0
   1113 def : Pat<(X86cmp GR8:$src1, 0),
   1114           (TEST8rr GR8:$src1, GR8:$src1)>;
   1115 def : Pat<(X86cmp GR16:$src1, 0),
   1116           (TEST16rr GR16:$src1, GR16:$src1)>;
   1117 def : Pat<(X86cmp GR32:$src1, 0),
   1118           (TEST32rr GR32:$src1, GR32:$src1)>;
   1119 def : Pat<(X86cmp GR64:$src1, 0),
   1120           (TEST64rr GR64:$src1, GR64:$src1)>;
   1121 
   1122 // Conditional moves with folded loads with operands swapped and conditions
   1123 // inverted.
   1124 multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
   1125                   Instruction Inst64> {
   1126   let Predicates = [HasCMov] in {
   1127     def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
   1128               (Inst16 GR16:$src2, addr:$src1)>;
   1129     def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
   1130               (Inst32 GR32:$src2, addr:$src1)>;
   1131     def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
   1132               (Inst64 GR64:$src2, addr:$src1)>;
   1133   }
   1134 }
   1135 
   1136 defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
   1137 defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
   1138 defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
   1139 defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
   1140 defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
   1141 defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
   1142 defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
   1143 defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
   1144 defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
   1145 defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
   1146 defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
   1147 defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
   1148 defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
   1149 defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
   1150 defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
   1151 defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
   1152 
   1153 // zextload bool -> zextload byte
   1154 def : Pat<(zextloadi8i1  addr:$src), (AND8ri (MOV8rm addr:$src), (i8 1))>;
   1155 def : Pat<(zextloadi16i1 addr:$src), (AND16ri8 (MOVZX16rm8 addr:$src), (i16 1))>;
   1156 def : Pat<(zextloadi32i1 addr:$src), (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1))>;
   1157 def : Pat<(zextloadi64i1 addr:$src),
   1158           (SUBREG_TO_REG (i64 0),
   1159            (AND32ri8 (MOVZX32rm8 addr:$src), (i32 1)), sub_32bit)>;
   1160 
   1161 // extload bool -> extload byte
   1162 // When extloading from 16-bit and smaller memory locations into 64-bit
   1163 // registers, use zero-extending loads so that the entire 64-bit register is
   1164 // defined, avoiding partial-register updates.
   1165 
   1166 def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
   1167 def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1168 def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1169 def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
   1170 def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
   1171 def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
   1172 
   1173 // For other extloads, use subregs, since the high contents of the register are
   1174 // defined after an extload.
   1175 def : Pat<(extloadi64i1 addr:$src),
   1176           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1177 def : Pat<(extloadi64i8 addr:$src),
   1178           (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
   1179 def : Pat<(extloadi64i16 addr:$src),
   1180           (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
   1181 def : Pat<(extloadi64i32 addr:$src),
   1182           (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
   1183 
   1184 // anyext. Define these to do an explicit zero-extend to
   1185 // avoid partial-register updates.
   1186 def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
   1187                                      (MOVZX32rr8 GR8 :$src), sub_16bit)>;
   1188 def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
   1189 
   1190 // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
   1191 def : Pat<(i32 (anyext GR16:$src)),
   1192           (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
   1193 
   1194 def : Pat<(i64 (anyext GR8 :$src)),
   1195           (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
   1196 def : Pat<(i64 (anyext GR16:$src)),
   1197           (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
   1198 def : Pat<(i64 (anyext GR32:$src)),
   1199           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1200 
   1201 
   1202 // Any instruction that defines a 32-bit result leaves the high half of the
   1203 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
   1204 // be copying from a truncate. And x86's cmov doesn't do anything if the
   1205 // condition is false. But any other 32-bit operation will zero-extend
   1206 // up to 64 bits.
   1207 def def32 : PatLeaf<(i32 GR32:$src), [{
   1208   return N->getOpcode() != ISD::TRUNCATE &&
   1209          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
   1210          N->getOpcode() != ISD::CopyFromReg &&
   1211          N->getOpcode() != ISD::AssertSext &&
   1212          N->getOpcode() != X86ISD::CMOV;
   1213 }]>;
   1214 
   1215 // In the case of a 32-bit def that is known to implicitly zero-extend,
   1216 // we can use a SUBREG_TO_REG.
   1217 def : Pat<(i64 (zext def32:$src)),
   1218           (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
   1219 
   1220 //===----------------------------------------------------------------------===//
   1221 // Pattern match OR as ADD
   1222 //===----------------------------------------------------------------------===//
   1223 
   1224 // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
   1225 // 3-addressified into an LEA instruction to avoid copies.  However, we also
   1226 // want to finally emit these instructions as an or at the end of the code
   1227 // generator to make the generated code easier to read.  To do this, we select
   1228 // into "disjoint bits" pseudo ops.
   1229 
   1230 // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
   1231 def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
   1232   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
   1233     return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
   1234 
   1235   APInt KnownZero0, KnownOne0;
   1236   CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
   1237   APInt KnownZero1, KnownOne1;
   1238   CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
   1239   return (~KnownZero0 & ~KnownZero1) == 0;
   1240 }]>;
   1241 
   1242 
   1243 // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
   1244 // Try this before the selecting to OR.
   1245 let AddedComplexity = 5, SchedRW = [WriteALU] in {
   1246 
   1247 let isConvertibleToThreeAddress = 1,
   1248     Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
   1249 let isCommutable = 1 in {
   1250 def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
   1251                     "", // orw/addw REG, REG
   1252                     [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
   1253 def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
   1254                     "", // orl/addl REG, REG
   1255                     [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
   1256 def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
   1257                     "", // orq/addq REG, REG
   1258                     [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
   1259 } // isCommutable
   1260 
   1261 // NOTE: These are order specific, we want the ri8 forms to be listed
   1262 // first so that they are slightly preferred to the ri forms.
   1263 
   1264 def ADD16ri8_DB : I<0, Pseudo,
   1265                     (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
   1266                     "", // orw/addw REG, imm8
   1267                     [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
   1268 def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
   1269                     "", // orw/addw REG, imm
   1270                     [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
   1271 
   1272 def ADD32ri8_DB : I<0, Pseudo,
   1273                     (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
   1274                     "", // orl/addl REG, imm8
   1275                     [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
   1276 def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
   1277                     "", // orl/addl REG, imm
   1278                     [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
   1279 
   1280 
   1281 def ADD64ri8_DB : I<0, Pseudo,
   1282                     (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
   1283                     "", // orq/addq REG, imm8
   1284                     [(set GR64:$dst, (or_is_add GR64:$src1,
   1285                                                 i64immSExt8:$src2))]>;
   1286 def ADD64ri32_DB : I<0, Pseudo,
   1287                      (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
   1288                       "", // orq/addq REG, imm
   1289                       [(set GR64:$dst, (or_is_add GR64:$src1,
   1290                                                   i64immSExt32:$src2))]>;
   1291 }
   1292 } // AddedComplexity, SchedRW
   1293 
   1294 
   1295 //===----------------------------------------------------------------------===//
   1296 // Some peepholes
   1297 //===----------------------------------------------------------------------===//
   1298 
   1299 // Odd encoding trick: -128 fits into an 8-bit immediate field while
   1300 // +128 doesn't, so in this special case use a sub instead of an add.
   1301 def : Pat<(add GR16:$src1, 128),
   1302           (SUB16ri8 GR16:$src1, -128)>;
   1303 def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
   1304           (SUB16mi8 addr:$dst, -128)>;
   1305 
   1306 def : Pat<(add GR32:$src1, 128),
   1307           (SUB32ri8 GR32:$src1, -128)>;
   1308 def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
   1309           (SUB32mi8 addr:$dst, -128)>;
   1310 
   1311 def : Pat<(add GR64:$src1, 128),
   1312           (SUB64ri8 GR64:$src1, -128)>;
   1313 def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
   1314           (SUB64mi8 addr:$dst, -128)>;
   1315 
   1316 // The same trick applies for 32-bit immediate fields in 64-bit
   1317 // instructions.
   1318 def : Pat<(add GR64:$src1, 0x0000000080000000),
   1319           (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
   1320 def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
   1321           (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
   1322 
   1323 // To avoid needing to materialize an immediate in a register, use a 32-bit and
   1324 // with implicit zero-extension instead of a 64-bit and if the immediate has at
   1325 // least 32 bits of leading zeros. If in addition the last 32 bits can be
   1326 // represented with a sign extension of a 8 bit constant, use that.
   1327 // This can also reduce instruction size by eliminating the need for the REX
   1328 // prefix.
   1329 
   1330 // AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
   1331 let AddedComplexity = 1 in {
   1332 def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
   1333           (SUBREG_TO_REG
   1334             (i64 0),
   1335             (AND32ri8
   1336               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1337               (i32 (GetLo8XForm imm:$imm))),
   1338             sub_32bit)>;
   1339 
   1340 def : Pat<(and GR64:$src, i64immZExt32:$imm),
   1341           (SUBREG_TO_REG
   1342             (i64 0),
   1343             (AND32ri
   1344               (EXTRACT_SUBREG GR64:$src, sub_32bit),
   1345               (i32 (GetLo32XForm imm:$imm))),
   1346             sub_32bit)>;
   1347 } // AddedComplexity = 1
   1348 
   1349 
   1350 // AddedComplexity is needed due to the increased complexity on the
   1351 // i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
   1352 // the MOVZX patterns keeps thems together in DAGIsel tables.
   1353 let AddedComplexity = 1 in {
   1354 // r & (2^16-1) ==> movz
   1355 def : Pat<(and GR32:$src1, 0xffff),
   1356           (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
   1357 // r & (2^8-1) ==> movz
   1358 def : Pat<(and GR32:$src1, 0xff),
   1359           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
   1360                                                              GR32_ABCD)),
   1361                                       sub_8bit))>,
   1362       Requires<[Not64BitMode]>;
   1363 // r & (2^8-1) ==> movz
   1364 def : Pat<(and GR16:$src1, 0xff),
   1365            (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
   1366             (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
   1367              sub_16bit)>,
   1368       Requires<[Not64BitMode]>;
   1369 
   1370 // r & (2^32-1) ==> movz
   1371 def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
   1372           (SUBREG_TO_REG (i64 0),
   1373                          (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
   1374                          sub_32bit)>;
   1375 // r & (2^16-1) ==> movz
   1376 def : Pat<(and GR64:$src, 0xffff),
   1377           (SUBREG_TO_REG (i64 0),
   1378                       (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
   1379                       sub_32bit)>;
   1380 // r & (2^8-1) ==> movz
   1381 def : Pat<(and GR64:$src, 0xff),
   1382           (SUBREG_TO_REG (i64 0),
   1383                          (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
   1384                          sub_32bit)>;
   1385 // r & (2^8-1) ==> movz
   1386 def : Pat<(and GR32:$src1, 0xff),
   1387            (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
   1388       Requires<[In64BitMode]>;
   1389 // r & (2^8-1) ==> movz
   1390 def : Pat<(and GR16:$src1, 0xff),
   1391            (EXTRACT_SUBREG (MOVZX32rr8 (i8
   1392             (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
   1393       Requires<[In64BitMode]>;
   1394 } // AddedComplexity = 1
   1395 
   1396 
   1397 // sext_inreg patterns
   1398 def : Pat<(sext_inreg GR32:$src, i16),
   1399           (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
   1400 def : Pat<(sext_inreg GR32:$src, i8),
   1401           (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1402                                                              GR32_ABCD)),
   1403                                       sub_8bit))>,
   1404       Requires<[Not64BitMode]>;
   1405 
   1406 def : Pat<(sext_inreg GR16:$src, i8),
   1407            (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
   1408             (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
   1409              sub_16bit)>,
   1410       Requires<[Not64BitMode]>;
   1411 
   1412 def : Pat<(sext_inreg GR64:$src, i32),
   1413           (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
   1414 def : Pat<(sext_inreg GR64:$src, i16),
   1415           (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
   1416 def : Pat<(sext_inreg GR64:$src, i8),
   1417           (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
   1418 def : Pat<(sext_inreg GR32:$src, i8),
   1419           (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
   1420       Requires<[In64BitMode]>;
   1421 def : Pat<(sext_inreg GR16:$src, i8),
   1422            (EXTRACT_SUBREG (MOVSX32rr8
   1423             (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
   1424       Requires<[In64BitMode]>;
   1425 
   1426 // sext, sext_load, zext, zext_load
   1427 def: Pat<(i16 (sext GR8:$src)),
   1428           (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
   1429 def: Pat<(sextloadi16i8 addr:$src),
   1430           (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
   1431 def: Pat<(i16 (zext GR8:$src)),
   1432           (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
   1433 def: Pat<(zextloadi16i8 addr:$src),
   1434           (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
   1435 
   1436 // trunc patterns
   1437 def : Pat<(i16 (trunc GR32:$src)),
   1438           (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
   1439 def : Pat<(i8 (trunc GR32:$src)),
   1440           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1441                           sub_8bit)>,
   1442       Requires<[Not64BitMode]>;
   1443 def : Pat<(i8 (trunc GR16:$src)),
   1444           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1445                           sub_8bit)>,
   1446       Requires<[Not64BitMode]>;
   1447 def : Pat<(i32 (trunc GR64:$src)),
   1448           (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
   1449 def : Pat<(i16 (trunc GR64:$src)),
   1450           (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
   1451 def : Pat<(i8 (trunc GR64:$src)),
   1452           (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
   1453 def : Pat<(i8 (trunc GR32:$src)),
   1454           (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
   1455       Requires<[In64BitMode]>;
   1456 def : Pat<(i8 (trunc GR16:$src)),
   1457           (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
   1458       Requires<[In64BitMode]>;
   1459 
   1460 // h-register tricks
   1461 def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
   1462           (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1463                           sub_8bit_hi)>,
   1464       Requires<[Not64BitMode]>;
   1465 def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
   1466           (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1467                           sub_8bit_hi)>,
   1468       Requires<[Not64BitMode]>;
   1469 def : Pat<(srl GR16:$src, (i8 8)),
   1470           (EXTRACT_SUBREG
   1471             (MOVZX32rr8
   1472               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1473                               sub_8bit_hi)),
   1474             sub_16bit)>,
   1475       Requires<[Not64BitMode]>;
   1476 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1477           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1478                                                              GR16_ABCD)),
   1479                                       sub_8bit_hi))>,
   1480       Requires<[Not64BitMode]>;
   1481 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1482           (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
   1483                                                              GR16_ABCD)),
   1484                                       sub_8bit_hi))>,
   1485       Requires<[Not64BitMode]>;
   1486 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1487           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1488                                                              GR32_ABCD)),
   1489                                       sub_8bit_hi))>,
   1490       Requires<[Not64BitMode]>;
   1491 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1492           (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1493                                                              GR32_ABCD)),
   1494                                       sub_8bit_hi))>,
   1495       Requires<[Not64BitMode]>;
   1496 
   1497 // h-register tricks.
   1498 // For now, be conservative on x86-64 and use an h-register extract only if the
   1499 // value is immediately zero-extended or stored, which are somewhat common
   1500 // cases. This uses a bunch of code to prevent a register requiring a REX prefix
   1501 // from being allocated in the same instruction as the h register, as there's
   1502 // currently no way to describe this requirement to the register allocator.
   1503 
   1504 // h-register extract and zero-extend.
   1505 def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
   1506           (SUBREG_TO_REG
   1507             (i64 0),
   1508             (MOVZX32_NOREXrr8
   1509               (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1510                               sub_8bit_hi)),
   1511             sub_32bit)>;
   1512 def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
   1513           (MOVZX32_NOREXrr8
   1514             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1515                             sub_8bit_hi))>,
   1516       Requires<[In64BitMode]>;
   1517 def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
   1518           (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
   1519                                                                    GR32_ABCD)),
   1520                                              sub_8bit_hi))>,
   1521       Requires<[In64BitMode]>;
   1522 def : Pat<(srl GR16:$src, (i8 8)),
   1523           (EXTRACT_SUBREG
   1524             (MOVZX32_NOREXrr8
   1525               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1526                               sub_8bit_hi)),
   1527             sub_16bit)>,
   1528       Requires<[In64BitMode]>;
   1529 def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
   1530           (MOVZX32_NOREXrr8
   1531             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1532                             sub_8bit_hi))>,
   1533       Requires<[In64BitMode]>;
   1534 def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
   1535           (MOVZX32_NOREXrr8
   1536             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1537                             sub_8bit_hi))>,
   1538       Requires<[In64BitMode]>;
   1539 def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
   1540           (SUBREG_TO_REG
   1541             (i64 0),
   1542             (MOVZX32_NOREXrr8
   1543               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1544                               sub_8bit_hi)),
   1545             sub_32bit)>;
   1546 def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
   1547           (SUBREG_TO_REG
   1548             (i64 0),
   1549             (MOVZX32_NOREXrr8
   1550               (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1551                               sub_8bit_hi)),
   1552             sub_32bit)>;
   1553 
   1554 // h-register extract and store.
   1555 def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
   1556           (MOV8mr_NOREX
   1557             addr:$dst,
   1558             (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
   1559                             sub_8bit_hi))>;
   1560 def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
   1561           (MOV8mr_NOREX
   1562             addr:$dst,
   1563             (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
   1564                             sub_8bit_hi))>,
   1565       Requires<[In64BitMode]>;
   1566 def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
   1567           (MOV8mr_NOREX
   1568             addr:$dst,
   1569             (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
   1570                             sub_8bit_hi))>,
   1571       Requires<[In64BitMode]>;
   1572 
   1573 
   1574 // (shl x, 1) ==> (add x, x)
   1575 // Note that if x is undef (immediate or otherwise), we could theoretically
   1576 // end up with the two uses of x getting different values, producing a result
   1577 // where the least significant bit is not 0. However, the probability of this
   1578 // happening is considered low enough that this is officially not a
   1579 // "real problem".
   1580 def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
   1581 def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
   1582 def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
   1583 def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
   1584 
   1585 // Helper imms that check if a mask doesn't change significant shift bits.
   1586 def immShift32 : ImmLeaf<i8, [{
   1587   return countTrailingOnes<uint64_t>(Imm) >= 5;
   1588 }]>;
   1589 def immShift64 : ImmLeaf<i8, [{
   1590   return countTrailingOnes<uint64_t>(Imm) >= 6;
   1591 }]>;
   1592 
   1593 // Shift amount is implicitly masked.
   1594 multiclass MaskedShiftAmountPats<SDNode frag, string name> {
   1595   // (shift x (and y, 31)) ==> (shift x, y)
   1596   def : Pat<(frag GR8:$src1, (and CL, immShift32)),
   1597             (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
   1598   def : Pat<(frag GR16:$src1, (and CL, immShift32)),
   1599             (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
   1600   def : Pat<(frag GR32:$src1, (and CL, immShift32)),
   1601             (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
   1602   def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
   1603             (!cast<Instruction>(name # "8mCL") addr:$dst)>;
   1604   def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
   1605             (!cast<Instruction>(name # "16mCL") addr:$dst)>;
   1606   def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
   1607             (!cast<Instruction>(name # "32mCL") addr:$dst)>;
   1608 
   1609   // (shift x (and y, 63)) ==> (shift x, y)
   1610   def : Pat<(frag GR64:$src1, (and CL, immShift64)),
   1611             (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
   1612   def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
   1613             (!cast<Instruction>(name # "64mCL") addr:$dst)>;
   1614 }
   1615 
   1616 defm : MaskedShiftAmountPats<shl, "SHL">;
   1617 defm : MaskedShiftAmountPats<srl, "SHR">;
   1618 defm : MaskedShiftAmountPats<sra, "SAR">;
   1619 defm : MaskedShiftAmountPats<rotl, "ROL">;
   1620 defm : MaskedShiftAmountPats<rotr, "ROR">;
   1621 
   1622 // (anyext (setcc_carry)) -> (setcc_carry)
   1623 def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1624           (SETB_C16r)>;
   1625 def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
   1626           (SETB_C32r)>;
   1627 def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
   1628           (SETB_C32r)>;
   1629 
   1630 
   1631 
   1632 
   1633 //===----------------------------------------------------------------------===//
   1634 // EFLAGS-defining Patterns
   1635 //===----------------------------------------------------------------------===//
   1636 
   1637 // add reg, reg
   1638 def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
   1639 def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
   1640 def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
   1641 
   1642 // add reg, mem
   1643 def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
   1644           (ADD8rm GR8:$src1, addr:$src2)>;
   1645 def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
   1646           (ADD16rm GR16:$src1, addr:$src2)>;
   1647 def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
   1648           (ADD32rm GR32:$src1, addr:$src2)>;
   1649 
   1650 // add reg, imm
   1651 def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
   1652 def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
   1653 def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
   1654 def : Pat<(add GR16:$src1, i16immSExt8:$src2),
   1655           (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1656 def : Pat<(add GR32:$src1, i32immSExt8:$src2),
   1657           (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1658 
   1659 // sub reg, reg
   1660 def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
   1661 def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
   1662 def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
   1663 
   1664 // sub reg, mem
   1665 def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
   1666           (SUB8rm GR8:$src1, addr:$src2)>;
   1667 def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
   1668           (SUB16rm GR16:$src1, addr:$src2)>;
   1669 def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
   1670           (SUB32rm GR32:$src1, addr:$src2)>;
   1671 
   1672 // sub reg, imm
   1673 def : Pat<(sub GR8:$src1, imm:$src2),
   1674           (SUB8ri GR8:$src1, imm:$src2)>;
   1675 def : Pat<(sub GR16:$src1, imm:$src2),
   1676           (SUB16ri GR16:$src1, imm:$src2)>;
   1677 def : Pat<(sub GR32:$src1, imm:$src2),
   1678           (SUB32ri GR32:$src1, imm:$src2)>;
   1679 def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
   1680           (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1681 def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
   1682           (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1683 
   1684 // sub 0, reg
   1685 def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
   1686 def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
   1687 def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
   1688 def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
   1689 
   1690 // mul reg, reg
   1691 def : Pat<(mul GR16:$src1, GR16:$src2),
   1692           (IMUL16rr GR16:$src1, GR16:$src2)>;
   1693 def : Pat<(mul GR32:$src1, GR32:$src2),
   1694           (IMUL32rr GR32:$src1, GR32:$src2)>;
   1695 
   1696 // mul reg, mem
   1697 def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
   1698           (IMUL16rm GR16:$src1, addr:$src2)>;
   1699 def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
   1700           (IMUL32rm GR32:$src1, addr:$src2)>;
   1701 
   1702 // mul reg, imm
   1703 def : Pat<(mul GR16:$src1, imm:$src2),
   1704           (IMUL16rri GR16:$src1, imm:$src2)>;
   1705 def : Pat<(mul GR32:$src1, imm:$src2),
   1706           (IMUL32rri GR32:$src1, imm:$src2)>;
   1707 def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
   1708           (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
   1709 def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
   1710           (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
   1711 
   1712 // reg = mul mem, imm
   1713 def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
   1714           (IMUL16rmi addr:$src1, imm:$src2)>;
   1715 def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
   1716           (IMUL32rmi addr:$src1, imm:$src2)>;
   1717 def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
   1718           (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
   1719 def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
   1720           (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
   1721 
   1722 // Patterns for nodes that do not produce flags, for instructions that do.
   1723 
   1724 // addition
   1725 def : Pat<(add GR64:$src1, GR64:$src2),
   1726           (ADD64rr GR64:$src1, GR64:$src2)>;
   1727 def : Pat<(add GR64:$src1, i64immSExt8:$src2),
   1728           (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1729 def : Pat<(add GR64:$src1, i64immSExt32:$src2),
   1730           (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1731 def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
   1732           (ADD64rm GR64:$src1, addr:$src2)>;
   1733 
   1734 // subtraction
   1735 def : Pat<(sub GR64:$src1, GR64:$src2),
   1736           (SUB64rr GR64:$src1, GR64:$src2)>;
   1737 def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
   1738           (SUB64rm GR64:$src1, addr:$src2)>;
   1739 def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
   1740           (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1741 def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
   1742           (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1743 
   1744 // Multiply
   1745 def : Pat<(mul GR64:$src1, GR64:$src2),
   1746           (IMUL64rr GR64:$src1, GR64:$src2)>;
   1747 def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
   1748           (IMUL64rm GR64:$src1, addr:$src2)>;
   1749 def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
   1750           (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
   1751 def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
   1752           (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
   1753 def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
   1754           (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
   1755 def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
   1756           (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
   1757 
   1758 // Increment/Decrement reg.
   1759 // Do not make INC/DEC if it is slow
   1760 let Predicates = [NotSlowIncDec] in {
   1761   def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
   1762   def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
   1763   def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
   1764   def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
   1765   def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
   1766   def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
   1767   def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
   1768   def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
   1769 }
   1770 
   1771 // or reg/reg.
   1772 def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
   1773 def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
   1774 def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
   1775 def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
   1776 
   1777 // or reg/mem
   1778 def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
   1779           (OR8rm GR8:$src1, addr:$src2)>;
   1780 def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
   1781           (OR16rm GR16:$src1, addr:$src2)>;
   1782 def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
   1783           (OR32rm GR32:$src1, addr:$src2)>;
   1784 def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
   1785           (OR64rm GR64:$src1, addr:$src2)>;
   1786 
   1787 // or reg/imm
   1788 def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
   1789 def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
   1790 def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
   1791 def : Pat<(or GR16:$src1, i16immSExt8:$src2),
   1792           (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1793 def : Pat<(or GR32:$src1, i32immSExt8:$src2),
   1794           (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1795 def : Pat<(or GR64:$src1, i64immSExt8:$src2),
   1796           (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1797 def : Pat<(or GR64:$src1, i64immSExt32:$src2),
   1798           (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1799 
   1800 // xor reg/reg
   1801 def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
   1802 def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
   1803 def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
   1804 def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
   1805 
   1806 // xor reg/mem
   1807 def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
   1808           (XOR8rm GR8:$src1, addr:$src2)>;
   1809 def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
   1810           (XOR16rm GR16:$src1, addr:$src2)>;
   1811 def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
   1812           (XOR32rm GR32:$src1, addr:$src2)>;
   1813 def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
   1814           (XOR64rm GR64:$src1, addr:$src2)>;
   1815 
   1816 // xor reg/imm
   1817 def : Pat<(xor GR8:$src1, imm:$src2),
   1818           (XOR8ri GR8:$src1, imm:$src2)>;
   1819 def : Pat<(xor GR16:$src1, imm:$src2),
   1820           (XOR16ri GR16:$src1, imm:$src2)>;
   1821 def : Pat<(xor GR32:$src1, imm:$src2),
   1822           (XOR32ri GR32:$src1, imm:$src2)>;
   1823 def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
   1824           (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1825 def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
   1826           (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1827 def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
   1828           (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1829 def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
   1830           (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1831 
   1832 // and reg/reg
   1833 def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
   1834 def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
   1835 def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
   1836 def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
   1837 
   1838 // and reg/mem
   1839 def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
   1840           (AND8rm GR8:$src1, addr:$src2)>;
   1841 def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
   1842           (AND16rm GR16:$src1, addr:$src2)>;
   1843 def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
   1844           (AND32rm GR32:$src1, addr:$src2)>;
   1845 def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
   1846           (AND64rm GR64:$src1, addr:$src2)>;
   1847 
   1848 // and reg/imm
   1849 def : Pat<(and GR8:$src1, imm:$src2),
   1850           (AND8ri GR8:$src1, imm:$src2)>;
   1851 def : Pat<(and GR16:$src1, imm:$src2),
   1852           (AND16ri GR16:$src1, imm:$src2)>;
   1853 def : Pat<(and GR32:$src1, imm:$src2),
   1854           (AND32ri GR32:$src1, imm:$src2)>;
   1855 def : Pat<(and GR16:$src1, i16immSExt8:$src2),
   1856           (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
   1857 def : Pat<(and GR32:$src1, i32immSExt8:$src2),
   1858           (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
   1859 def : Pat<(and GR64:$src1, i64immSExt8:$src2),
   1860           (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
   1861 def : Pat<(and GR64:$src1, i64immSExt32:$src2),
   1862           (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
   1863 
   1864 // Bit scan instruction patterns to match explicit zero-undef behavior.
   1865 def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
   1866 def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
   1867 def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
   1868 def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
   1869 def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
   1870 def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
   1871 
   1872 // When HasMOVBE is enabled it is possible to get a non-legalized
   1873 // register-register 16 bit bswap. This maps it to a ROL instruction.
   1874 let Predicates = [HasMOVBE] in {
   1875  def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
   1876 }
   1877