Home | History | Annotate | Download | only in Utils
      1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the interface to tear out a code region, such as an
     11 // individual loop or a parallel section, into a new function, replacing it with
     12 // a call to the new function.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/CodeExtractor.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/ADT/SetVector.h"
     19 #include "llvm/ADT/StringExtras.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 #include "llvm/Analysis/RegionInfo.h"
     22 #include "llvm/Analysis/RegionIterator.h"
     23 #include "llvm/IR/Constants.h"
     24 #include "llvm/IR/DerivedTypes.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Module.h"
     30 #include "llvm/IR/Verifier.h"
     31 #include "llvm/Pass.h"
     32 #include "llvm/Support/CommandLine.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     37 #include <algorithm>
     38 #include <set>
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "code-extractor"
     42 
     43 // Provide a command-line option to aggregate function arguments into a struct
     44 // for functions produced by the code extractor. This is useful when converting
     45 // extracted functions to pthread-based code, as only one argument (void*) can
     46 // be passed in to pthread_create().
     47 static cl::opt<bool>
     48 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
     49                  cl::desc("Aggregate arguments to code-extracted functions"));
     50 
     51 /// \brief Test whether a block is valid for extraction.
     52 static bool isBlockValidForExtraction(const BasicBlock &BB) {
     53   // Landing pads must be in the function where they were inserted for cleanup.
     54   if (BB.isEHPad())
     55     return false;
     56 
     57   // Don't hoist code containing allocas, invokes, or vastarts.
     58   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
     59     if (isa<AllocaInst>(I) || isa<InvokeInst>(I))
     60       return false;
     61     if (const CallInst *CI = dyn_cast<CallInst>(I))
     62       if (const Function *F = CI->getCalledFunction())
     63         if (F->getIntrinsicID() == Intrinsic::vastart)
     64           return false;
     65   }
     66 
     67   return true;
     68 }
     69 
     70 /// \brief Build a set of blocks to extract if the input blocks are viable.
     71 template <typename IteratorT>
     72 static SetVector<BasicBlock *> buildExtractionBlockSet(IteratorT BBBegin,
     73                                                        IteratorT BBEnd) {
     74   SetVector<BasicBlock *> Result;
     75 
     76   assert(BBBegin != BBEnd);
     77 
     78   // Loop over the blocks, adding them to our set-vector, and aborting with an
     79   // empty set if we encounter invalid blocks.
     80   for (IteratorT I = BBBegin, E = BBEnd; I != E; ++I) {
     81     if (!Result.insert(*I))
     82       llvm_unreachable("Repeated basic blocks in extraction input");
     83 
     84     if (!isBlockValidForExtraction(**I)) {
     85       Result.clear();
     86       return Result;
     87     }
     88   }
     89 
     90 #ifndef NDEBUG
     91   for (SetVector<BasicBlock *>::iterator I = std::next(Result.begin()),
     92                                          E = Result.end();
     93        I != E; ++I)
     94     for (pred_iterator PI = pred_begin(*I), PE = pred_end(*I);
     95          PI != PE; ++PI)
     96       assert(Result.count(*PI) &&
     97              "No blocks in this region may have entries from outside the region"
     98              " except for the first block!");
     99 #endif
    100 
    101   return Result;
    102 }
    103 
    104 /// \brief Helper to call buildExtractionBlockSet with an ArrayRef.
    105 static SetVector<BasicBlock *>
    106 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs) {
    107   return buildExtractionBlockSet(BBs.begin(), BBs.end());
    108 }
    109 
    110 /// \brief Helper to call buildExtractionBlockSet with a RegionNode.
    111 static SetVector<BasicBlock *>
    112 buildExtractionBlockSet(const RegionNode &RN) {
    113   if (!RN.isSubRegion())
    114     // Just a single BasicBlock.
    115     return buildExtractionBlockSet(RN.getNodeAs<BasicBlock>());
    116 
    117   const Region &R = *RN.getNodeAs<Region>();
    118 
    119   return buildExtractionBlockSet(R.block_begin(), R.block_end());
    120 }
    121 
    122 CodeExtractor::CodeExtractor(BasicBlock *BB, bool AggregateArgs)
    123   : DT(nullptr), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    124     Blocks(buildExtractionBlockSet(BB)), NumExitBlocks(~0U) {}
    125 
    126 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
    127                              bool AggregateArgs)
    128   : DT(DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    129     Blocks(buildExtractionBlockSet(BBs)), NumExitBlocks(~0U) {}
    130 
    131 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs)
    132   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    133     Blocks(buildExtractionBlockSet(L.getBlocks())), NumExitBlocks(~0U) {}
    134 
    135 CodeExtractor::CodeExtractor(DominatorTree &DT, const RegionNode &RN,
    136                              bool AggregateArgs)
    137   : DT(&DT), AggregateArgs(AggregateArgs||AggregateArgsOpt),
    138     Blocks(buildExtractionBlockSet(RN)), NumExitBlocks(~0U) {}
    139 
    140 /// definedInRegion - Return true if the specified value is defined in the
    141 /// extracted region.
    142 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
    143   if (Instruction *I = dyn_cast<Instruction>(V))
    144     if (Blocks.count(I->getParent()))
    145       return true;
    146   return false;
    147 }
    148 
    149 /// definedInCaller - Return true if the specified value is defined in the
    150 /// function being code extracted, but not in the region being extracted.
    151 /// These values must be passed in as live-ins to the function.
    152 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
    153   if (isa<Argument>(V)) return true;
    154   if (Instruction *I = dyn_cast<Instruction>(V))
    155     if (!Blocks.count(I->getParent()))
    156       return true;
    157   return false;
    158 }
    159 
    160 void CodeExtractor::findInputsOutputs(ValueSet &Inputs,
    161                                       ValueSet &Outputs) const {
    162   for (SetVector<BasicBlock *>::const_iterator I = Blocks.begin(),
    163                                                E = Blocks.end();
    164        I != E; ++I) {
    165     BasicBlock *BB = *I;
    166 
    167     // If a used value is defined outside the region, it's an input.  If an
    168     // instruction is used outside the region, it's an output.
    169     for (BasicBlock::iterator II = BB->begin(), IE = BB->end();
    170          II != IE; ++II) {
    171       for (User::op_iterator OI = II->op_begin(), OE = II->op_end();
    172            OI != OE; ++OI)
    173         if (definedInCaller(Blocks, *OI))
    174           Inputs.insert(*OI);
    175 
    176       for (User *U : II->users())
    177         if (!definedInRegion(Blocks, U)) {
    178           Outputs.insert(&*II);
    179           break;
    180         }
    181     }
    182   }
    183 }
    184 
    185 /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the
    186 /// region, we need to split the entry block of the region so that the PHI node
    187 /// is easier to deal with.
    188 void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) {
    189   unsigned NumPredsFromRegion = 0;
    190   unsigned NumPredsOutsideRegion = 0;
    191 
    192   if (Header != &Header->getParent()->getEntryBlock()) {
    193     PHINode *PN = dyn_cast<PHINode>(Header->begin());
    194     if (!PN) return;  // No PHI nodes.
    195 
    196     // If the header node contains any PHI nodes, check to see if there is more
    197     // than one entry from outside the region.  If so, we need to sever the
    198     // header block into two.
    199     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    200       if (Blocks.count(PN->getIncomingBlock(i)))
    201         ++NumPredsFromRegion;
    202       else
    203         ++NumPredsOutsideRegion;
    204 
    205     // If there is one (or fewer) predecessor from outside the region, we don't
    206     // need to do anything special.
    207     if (NumPredsOutsideRegion <= 1) return;
    208   }
    209 
    210   // Otherwise, we need to split the header block into two pieces: one
    211   // containing PHI nodes merging values from outside of the region, and a
    212   // second that contains all of the code for the block and merges back any
    213   // incoming values from inside of the region.
    214   BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI()->getIterator();
    215   BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs,
    216                                               Header->getName()+".ce");
    217 
    218   // We only want to code extract the second block now, and it becomes the new
    219   // header of the region.
    220   BasicBlock *OldPred = Header;
    221   Blocks.remove(OldPred);
    222   Blocks.insert(NewBB);
    223   Header = NewBB;
    224 
    225   // Okay, update dominator sets. The blocks that dominate the new one are the
    226   // blocks that dominate TIBB plus the new block itself.
    227   if (DT)
    228     DT->splitBlock(NewBB);
    229 
    230   // Okay, now we need to adjust the PHI nodes and any branches from within the
    231   // region to go to the new header block instead of the old header block.
    232   if (NumPredsFromRegion) {
    233     PHINode *PN = cast<PHINode>(OldPred->begin());
    234     // Loop over all of the predecessors of OldPred that are in the region,
    235     // changing them to branch to NewBB instead.
    236     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    237       if (Blocks.count(PN->getIncomingBlock(i))) {
    238         TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator();
    239         TI->replaceUsesOfWith(OldPred, NewBB);
    240       }
    241 
    242     // Okay, everything within the region is now branching to the right block, we
    243     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
    244     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
    245       PHINode *PN = cast<PHINode>(AfterPHIs);
    246       // Create a new PHI node in the new region, which has an incoming value
    247       // from OldPred of PN.
    248       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
    249                                        PN->getName() + ".ce", &NewBB->front());
    250       NewPN->addIncoming(PN, OldPred);
    251 
    252       // Loop over all of the incoming value in PN, moving them to NewPN if they
    253       // are from the extracted region.
    254       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
    255         if (Blocks.count(PN->getIncomingBlock(i))) {
    256           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
    257           PN->removeIncomingValue(i);
    258           --i;
    259         }
    260       }
    261     }
    262   }
    263 }
    264 
    265 void CodeExtractor::splitReturnBlocks() {
    266   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
    267        I != E; ++I)
    268     if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) {
    269       BasicBlock *New =
    270           (*I)->splitBasicBlock(RI->getIterator(), (*I)->getName() + ".ret");
    271       if (DT) {
    272         // Old dominates New. New node dominates all other nodes dominated
    273         // by Old.
    274         DomTreeNode *OldNode = DT->getNode(*I);
    275         SmallVector<DomTreeNode*, 8> Children;
    276         for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end();
    277              DI != DE; ++DI)
    278           Children.push_back(*DI);
    279 
    280         DomTreeNode *NewNode = DT->addNewBlock(New, *I);
    281 
    282         for (SmallVectorImpl<DomTreeNode *>::iterator I = Children.begin(),
    283                E = Children.end(); I != E; ++I)
    284           DT->changeImmediateDominator(*I, NewNode);
    285       }
    286     }
    287 }
    288 
    289 /// constructFunction - make a function based on inputs and outputs, as follows:
    290 /// f(in0, ..., inN, out0, ..., outN)
    291 ///
    292 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
    293                                            const ValueSet &outputs,
    294                                            BasicBlock *header,
    295                                            BasicBlock *newRootNode,
    296                                            BasicBlock *newHeader,
    297                                            Function *oldFunction,
    298                                            Module *M) {
    299   DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
    300   DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
    301 
    302   // This function returns unsigned, outputs will go back by reference.
    303   switch (NumExitBlocks) {
    304   case 0:
    305   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
    306   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
    307   default: RetTy = Type::getInt16Ty(header->getContext()); break;
    308   }
    309 
    310   std::vector<Type*> paramTy;
    311 
    312   // Add the types of the input values to the function's argument list
    313   for (ValueSet::const_iterator i = inputs.begin(), e = inputs.end();
    314        i != e; ++i) {
    315     const Value *value = *i;
    316     DEBUG(dbgs() << "value used in func: " << *value << "\n");
    317     paramTy.push_back(value->getType());
    318   }
    319 
    320   // Add the types of the output values to the function's argument list.
    321   for (ValueSet::const_iterator I = outputs.begin(), E = outputs.end();
    322        I != E; ++I) {
    323     DEBUG(dbgs() << "instr used in func: " << **I << "\n");
    324     if (AggregateArgs)
    325       paramTy.push_back((*I)->getType());
    326     else
    327       paramTy.push_back(PointerType::getUnqual((*I)->getType()));
    328   }
    329 
    330   DEBUG(dbgs() << "Function type: " << *RetTy << " f(");
    331   for (std::vector<Type*>::iterator i = paramTy.begin(),
    332          e = paramTy.end(); i != e; ++i)
    333     DEBUG(dbgs() << **i << ", ");
    334   DEBUG(dbgs() << ")\n");
    335 
    336   StructType *StructTy;
    337   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    338     StructTy = StructType::get(M->getContext(), paramTy);
    339     paramTy.clear();
    340     paramTy.push_back(PointerType::getUnqual(StructTy));
    341   }
    342   FunctionType *funcType =
    343                   FunctionType::get(RetTy, paramTy, false);
    344 
    345   // Create the new function
    346   Function *newFunction = Function::Create(funcType,
    347                                            GlobalValue::InternalLinkage,
    348                                            oldFunction->getName() + "_" +
    349                                            header->getName(), M);
    350   // If the old function is no-throw, so is the new one.
    351   if (oldFunction->doesNotThrow())
    352     newFunction->setDoesNotThrow();
    353 
    354   newFunction->getBasicBlockList().push_back(newRootNode);
    355 
    356   // Create an iterator to name all of the arguments we inserted.
    357   Function::arg_iterator AI = newFunction->arg_begin();
    358 
    359   // Rewrite all users of the inputs in the extracted region to use the
    360   // arguments (or appropriate addressing into struct) instead.
    361   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    362     Value *RewriteVal;
    363     if (AggregateArgs) {
    364       Value *Idx[2];
    365       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
    366       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
    367       TerminatorInst *TI = newFunction->begin()->getTerminator();
    368       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    369           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
    370       RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI);
    371     } else
    372       RewriteVal = &*AI++;
    373 
    374     std::vector<User*> Users(inputs[i]->user_begin(), inputs[i]->user_end());
    375     for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
    376          use != useE; ++use)
    377       if (Instruction* inst = dyn_cast<Instruction>(*use))
    378         if (Blocks.count(inst->getParent()))
    379           inst->replaceUsesOfWith(inputs[i], RewriteVal);
    380   }
    381 
    382   // Set names for input and output arguments.
    383   if (!AggregateArgs) {
    384     AI = newFunction->arg_begin();
    385     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
    386       AI->setName(inputs[i]->getName());
    387     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
    388       AI->setName(outputs[i]->getName()+".out");
    389   }
    390 
    391   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
    392   // within the new function. This must be done before we lose track of which
    393   // blocks were originally in the code region.
    394   std::vector<User*> Users(header->user_begin(), header->user_end());
    395   for (unsigned i = 0, e = Users.size(); i != e; ++i)
    396     // The BasicBlock which contains the branch is not in the region
    397     // modify the branch target to a new block
    398     if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i]))
    399       if (!Blocks.count(TI->getParent()) &&
    400           TI->getParent()->getParent() == oldFunction)
    401         TI->replaceUsesOfWith(header, newHeader);
    402 
    403   return newFunction;
    404 }
    405 
    406 /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI
    407 /// that uses the value within the basic block, and return the predecessor
    408 /// block associated with that use, or return 0 if none is found.
    409 static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) {
    410   for (Use &U : Used->uses()) {
    411      PHINode *P = dyn_cast<PHINode>(U.getUser());
    412      if (P && P->getParent() == BB)
    413        return P->getIncomingBlock(U);
    414   }
    415 
    416   return nullptr;
    417 }
    418 
    419 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
    420 /// the call instruction, splitting any PHI nodes in the header block as
    421 /// necessary.
    422 void CodeExtractor::
    423 emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
    424                            ValueSet &inputs, ValueSet &outputs) {
    425   // Emit a call to the new function, passing in: *pointer to struct (if
    426   // aggregating parameters), or plan inputs and allocated memory for outputs
    427   std::vector<Value*> params, StructValues, ReloadOutputs, Reloads;
    428 
    429   LLVMContext &Context = newFunction->getContext();
    430 
    431   // Add inputs as params, or to be filled into the struct
    432   for (ValueSet::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i)
    433     if (AggregateArgs)
    434       StructValues.push_back(*i);
    435     else
    436       params.push_back(*i);
    437 
    438   // Create allocas for the outputs
    439   for (ValueSet::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) {
    440     if (AggregateArgs) {
    441       StructValues.push_back(*i);
    442     } else {
    443       AllocaInst *alloca =
    444           new AllocaInst((*i)->getType(), nullptr, (*i)->getName() + ".loc",
    445                          &codeReplacer->getParent()->front().front());
    446       ReloadOutputs.push_back(alloca);
    447       params.push_back(alloca);
    448     }
    449   }
    450 
    451   StructType *StructArgTy = nullptr;
    452   AllocaInst *Struct = nullptr;
    453   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
    454     std::vector<Type*> ArgTypes;
    455     for (ValueSet::iterator v = StructValues.begin(),
    456            ve = StructValues.end(); v != ve; ++v)
    457       ArgTypes.push_back((*v)->getType());
    458 
    459     // Allocate a struct at the beginning of this function
    460     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
    461     Struct = new AllocaInst(StructArgTy, nullptr, "structArg",
    462                             &codeReplacer->getParent()->front().front());
    463     params.push_back(Struct);
    464 
    465     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
    466       Value *Idx[2];
    467       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    468       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
    469       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    470           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
    471       codeReplacer->getInstList().push_back(GEP);
    472       StoreInst *SI = new StoreInst(StructValues[i], GEP);
    473       codeReplacer->getInstList().push_back(SI);
    474     }
    475   }
    476 
    477   // Emit the call to the function
    478   CallInst *call = CallInst::Create(newFunction, params,
    479                                     NumExitBlocks > 1 ? "targetBlock" : "");
    480   codeReplacer->getInstList().push_back(call);
    481 
    482   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
    483   unsigned FirstOut = inputs.size();
    484   if (!AggregateArgs)
    485     std::advance(OutputArgBegin, inputs.size());
    486 
    487   // Reload the outputs passed in by reference
    488   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
    489     Value *Output = nullptr;
    490     if (AggregateArgs) {
    491       Value *Idx[2];
    492       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    493       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
    494       GetElementPtrInst *GEP = GetElementPtrInst::Create(
    495           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
    496       codeReplacer->getInstList().push_back(GEP);
    497       Output = GEP;
    498     } else {
    499       Output = ReloadOutputs[i];
    500     }
    501     LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload");
    502     Reloads.push_back(load);
    503     codeReplacer->getInstList().push_back(load);
    504     std::vector<User*> Users(outputs[i]->user_begin(), outputs[i]->user_end());
    505     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
    506       Instruction *inst = cast<Instruction>(Users[u]);
    507       if (!Blocks.count(inst->getParent()))
    508         inst->replaceUsesOfWith(outputs[i], load);
    509     }
    510   }
    511 
    512   // Now we can emit a switch statement using the call as a value.
    513   SwitchInst *TheSwitch =
    514       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
    515                          codeReplacer, 0, codeReplacer);
    516 
    517   // Since there may be multiple exits from the original region, make the new
    518   // function return an unsigned, switch on that number.  This loop iterates
    519   // over all of the blocks in the extracted region, updating any terminator
    520   // instructions in the to-be-extracted region that branch to blocks that are
    521   // not in the region to be extracted.
    522   std::map<BasicBlock*, BasicBlock*> ExitBlockMap;
    523 
    524   unsigned switchVal = 0;
    525   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
    526          e = Blocks.end(); i != e; ++i) {
    527     TerminatorInst *TI = (*i)->getTerminator();
    528     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    529       if (!Blocks.count(TI->getSuccessor(i))) {
    530         BasicBlock *OldTarget = TI->getSuccessor(i);
    531         // add a new basic block which returns the appropriate value
    532         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
    533         if (!NewTarget) {
    534           // If we don't already have an exit stub for this non-extracted
    535           // destination, create one now!
    536           NewTarget = BasicBlock::Create(Context,
    537                                          OldTarget->getName() + ".exitStub",
    538                                          newFunction);
    539           unsigned SuccNum = switchVal++;
    540 
    541           Value *brVal = nullptr;
    542           switch (NumExitBlocks) {
    543           case 0:
    544           case 1: break;  // No value needed.
    545           case 2:         // Conditional branch, return a bool
    546             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
    547             break;
    548           default:
    549             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
    550             break;
    551           }
    552 
    553           ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget);
    554 
    555           // Update the switch instruction.
    556           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
    557                                               SuccNum),
    558                              OldTarget);
    559 
    560           // Restore values just before we exit
    561           Function::arg_iterator OAI = OutputArgBegin;
    562           for (unsigned out = 0, e = outputs.size(); out != e; ++out) {
    563             // For an invoke, the normal destination is the only one that is
    564             // dominated by the result of the invocation
    565             BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent();
    566 
    567             bool DominatesDef = true;
    568 
    569             BasicBlock *NormalDest = nullptr;
    570             if (auto *Invoke = dyn_cast<InvokeInst>(outputs[out]))
    571               NormalDest = Invoke->getNormalDest();
    572 
    573             if (NormalDest) {
    574               DefBlock = NormalDest;
    575 
    576               // Make sure we are looking at the original successor block, not
    577               // at a newly inserted exit block, which won't be in the dominator
    578               // info.
    579               for (std::map<BasicBlock*, BasicBlock*>::iterator I =
    580                      ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I)
    581                 if (DefBlock == I->second) {
    582                   DefBlock = I->first;
    583                   break;
    584                 }
    585 
    586               // In the extract block case, if the block we are extracting ends
    587               // with an invoke instruction, make sure that we don't emit a
    588               // store of the invoke value for the unwind block.
    589               if (!DT && DefBlock != OldTarget)
    590                 DominatesDef = false;
    591             }
    592 
    593             if (DT) {
    594               DominatesDef = DT->dominates(DefBlock, OldTarget);
    595 
    596               // If the output value is used by a phi in the target block,
    597               // then we need to test for dominance of the phi's predecessor
    598               // instead.  Unfortunately, this a little complicated since we
    599               // have already rewritten uses of the value to uses of the reload.
    600               BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out],
    601                                                           OldTarget);
    602               if (pred && DT && DT->dominates(DefBlock, pred))
    603                 DominatesDef = true;
    604             }
    605 
    606             if (DominatesDef) {
    607               if (AggregateArgs) {
    608                 Value *Idx[2];
    609                 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
    610                 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context),
    611                                           FirstOut+out);
    612                 GetElementPtrInst *GEP = GetElementPtrInst::Create(
    613                     StructArgTy, &*OAI, Idx, "gep_" + outputs[out]->getName(),
    614                     NTRet);
    615                 new StoreInst(outputs[out], GEP, NTRet);
    616               } else {
    617                 new StoreInst(outputs[out], &*OAI, NTRet);
    618               }
    619             }
    620             // Advance output iterator even if we don't emit a store
    621             if (!AggregateArgs) ++OAI;
    622           }
    623         }
    624 
    625         // rewrite the original branch instruction with this new target
    626         TI->setSuccessor(i, NewTarget);
    627       }
    628   }
    629 
    630   // Now that we've done the deed, simplify the switch instruction.
    631   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
    632   switch (NumExitBlocks) {
    633   case 0:
    634     // There are no successors (the block containing the switch itself), which
    635     // means that previously this was the last part of the function, and hence
    636     // this should be rewritten as a `ret'
    637 
    638     // Check if the function should return a value
    639     if (OldFnRetTy->isVoidTy()) {
    640       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
    641     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
    642       // return what we have
    643       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
    644     } else {
    645       // Otherwise we must have code extracted an unwind or something, just
    646       // return whatever we want.
    647       ReturnInst::Create(Context,
    648                          Constant::getNullValue(OldFnRetTy), TheSwitch);
    649     }
    650 
    651     TheSwitch->eraseFromParent();
    652     break;
    653   case 1:
    654     // Only a single destination, change the switch into an unconditional
    655     // branch.
    656     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
    657     TheSwitch->eraseFromParent();
    658     break;
    659   case 2:
    660     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
    661                        call, TheSwitch);
    662     TheSwitch->eraseFromParent();
    663     break;
    664   default:
    665     // Otherwise, make the default destination of the switch instruction be one
    666     // of the other successors.
    667     TheSwitch->setCondition(call);
    668     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
    669     // Remove redundant case
    670     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
    671     break;
    672   }
    673 }
    674 
    675 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
    676   Function *oldFunc = (*Blocks.begin())->getParent();
    677   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
    678   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
    679 
    680   for (SetVector<BasicBlock*>::const_iterator i = Blocks.begin(),
    681          e = Blocks.end(); i != e; ++i) {
    682     // Delete the basic block from the old function, and the list of blocks
    683     oldBlocks.remove(*i);
    684 
    685     // Insert this basic block into the new function
    686     newBlocks.push_back(*i);
    687   }
    688 }
    689 
    690 Function *CodeExtractor::extractCodeRegion() {
    691   if (!isEligible())
    692     return nullptr;
    693 
    694   ValueSet inputs, outputs;
    695 
    696   // Assumption: this is a single-entry code region, and the header is the first
    697   // block in the region.
    698   BasicBlock *header = *Blocks.begin();
    699 
    700   // If we have to split PHI nodes or the entry block, do so now.
    701   severSplitPHINodes(header);
    702 
    703   // If we have any return instructions in the region, split those blocks so
    704   // that the return is not in the region.
    705   splitReturnBlocks();
    706 
    707   Function *oldFunction = header->getParent();
    708 
    709   // This takes place of the original loop
    710   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
    711                                                 "codeRepl", oldFunction,
    712                                                 header);
    713 
    714   // The new function needs a root node because other nodes can branch to the
    715   // head of the region, but the entry node of a function cannot have preds.
    716   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
    717                                                "newFuncRoot");
    718   newFuncRoot->getInstList().push_back(BranchInst::Create(header));
    719 
    720   // Find inputs to, outputs from the code region.
    721   findInputsOutputs(inputs, outputs);
    722 
    723   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
    724   for (SetVector<BasicBlock *>::iterator I = Blocks.begin(), E = Blocks.end();
    725        I != E; ++I)
    726     for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
    727       if (!Blocks.count(*SI))
    728         ExitBlocks.insert(*SI);
    729   NumExitBlocks = ExitBlocks.size();
    730 
    731   // Construct new function based on inputs/outputs & add allocas for all defs.
    732   Function *newFunction = constructFunction(inputs, outputs, header,
    733                                             newFuncRoot,
    734                                             codeReplacer, oldFunction,
    735                                             oldFunction->getParent());
    736 
    737   emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
    738 
    739   moveCodeToFunction(newFunction);
    740 
    741   // Loop over all of the PHI nodes in the header block, and change any
    742   // references to the old incoming edge to be the new incoming edge.
    743   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
    744     PHINode *PN = cast<PHINode>(I);
    745     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    746       if (!Blocks.count(PN->getIncomingBlock(i)))
    747         PN->setIncomingBlock(i, newFuncRoot);
    748   }
    749 
    750   // Look at all successors of the codeReplacer block.  If any of these blocks
    751   // had PHI nodes in them, we need to update the "from" block to be the code
    752   // replacer, not the original block in the extracted region.
    753   std::vector<BasicBlock*> Succs(succ_begin(codeReplacer),
    754                                  succ_end(codeReplacer));
    755   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
    756     for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) {
    757       PHINode *PN = cast<PHINode>(I);
    758       std::set<BasicBlock*> ProcessedPreds;
    759       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    760         if (Blocks.count(PN->getIncomingBlock(i))) {
    761           if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second)
    762             PN->setIncomingBlock(i, codeReplacer);
    763           else {
    764             // There were multiple entries in the PHI for this block, now there
    765             // is only one, so remove the duplicated entries.
    766             PN->removeIncomingValue(i, false);
    767             --i; --e;
    768           }
    769         }
    770     }
    771 
    772   //cerr << "NEW FUNCTION: " << *newFunction;
    773   //  verifyFunction(*newFunction);
    774 
    775   //  cerr << "OLD FUNCTION: " << *oldFunction;
    776   //  verifyFunction(*oldFunction);
    777 
    778   DEBUG(if (verifyFunction(*newFunction))
    779         report_fatal_error("verifyFunction failed!"));
    780   return newFunction;
    781 }
    782