Home | History | Annotate | Download | only in ADT
      1 //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/ADT/SCCIterator.h"
     11 #include "llvm/ADT/GraphTraits.h"
     12 #include "gtest/gtest.h"
     13 #include <limits.h>
     14 
     15 using namespace llvm;
     16 
     17 namespace llvm {
     18 
     19 /// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
     20 template <unsigned N>
     21 class Graph {
     22 private:
     23   // Disable copying.
     24   Graph(const Graph&);
     25   Graph& operator=(const Graph&);
     26 
     27   static void ValidateIndex(unsigned Idx) {
     28     assert(Idx < N && "Invalid node index!");
     29   }
     30 public:
     31 
     32   /// NodeSubset - A subset of the graph's nodes.
     33   class NodeSubset {
     34     typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
     35     BitVector Elements;
     36     NodeSubset(BitVector e) : Elements(e) {}
     37   public:
     38     /// NodeSubset - Default constructor, creates an empty subset.
     39     NodeSubset() : Elements(0) {
     40       assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
     41     }
     42 
     43     /// Comparison operators.
     44     bool operator==(const NodeSubset &other) const {
     45       return other.Elements == this->Elements;
     46     }
     47     bool operator!=(const NodeSubset &other) const {
     48       return !(*this == other);
     49     }
     50 
     51     /// AddNode - Add the node with the given index to the subset.
     52     void AddNode(unsigned Idx) {
     53       ValidateIndex(Idx);
     54       Elements |= 1U << Idx;
     55     }
     56 
     57     /// DeleteNode - Remove the node with the given index from the subset.
     58     void DeleteNode(unsigned Idx) {
     59       ValidateIndex(Idx);
     60       Elements &= ~(1U << Idx);
     61     }
     62 
     63     /// count - Return true if the node with the given index is in the subset.
     64     bool count(unsigned Idx) {
     65       ValidateIndex(Idx);
     66       return (Elements & (1U << Idx)) != 0;
     67     }
     68 
     69     /// isEmpty - Return true if this is the empty set.
     70     bool isEmpty() const {
     71       return Elements == 0;
     72     }
     73 
     74     /// isSubsetOf - Return true if this set is a subset of the given one.
     75     bool isSubsetOf(const NodeSubset &other) const {
     76       return (this->Elements | other.Elements) == other.Elements;
     77     }
     78 
     79     /// Complement - Return the complement of this subset.
     80     NodeSubset Complement() const {
     81       return ~(unsigned)this->Elements & ((1U << N) - 1);
     82     }
     83 
     84     /// Join - Return the union of this subset and the given one.
     85     NodeSubset Join(const NodeSubset &other) const {
     86       return this->Elements | other.Elements;
     87     }
     88 
     89     /// Meet - Return the intersection of this subset and the given one.
     90     NodeSubset Meet(const NodeSubset &other) const {
     91       return this->Elements & other.Elements;
     92     }
     93   };
     94 
     95   /// NodeType - Node index and set of children of the node.
     96   typedef std::pair<unsigned, NodeSubset> NodeType;
     97 
     98 private:
     99   /// Nodes - The list of nodes for this graph.
    100   NodeType Nodes[N];
    101 public:
    102 
    103   /// Graph - Default constructor.  Creates an empty graph.
    104   Graph() {
    105     // Let each node know which node it is.  This allows us to find the start of
    106     // the Nodes array given a pointer to any element of it.
    107     for (unsigned i = 0; i != N; ++i)
    108       Nodes[i].first = i;
    109   }
    110 
    111   /// AddEdge - Add an edge from the node with index FromIdx to the node with
    112   /// index ToIdx.
    113   void AddEdge(unsigned FromIdx, unsigned ToIdx) {
    114     ValidateIndex(FromIdx);
    115     Nodes[FromIdx].second.AddNode(ToIdx);
    116   }
    117 
    118   /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
    119   /// the node with index ToIdx.
    120   void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
    121     ValidateIndex(FromIdx);
    122     Nodes[FromIdx].second.DeleteNode(ToIdx);
    123   }
    124 
    125   /// AccessNode - Get a pointer to the node with the given index.
    126   NodeType *AccessNode(unsigned Idx) const {
    127     ValidateIndex(Idx);
    128     // The constant cast is needed when working with GraphTraits, which insists
    129     // on taking a constant Graph.
    130     return const_cast<NodeType *>(&Nodes[Idx]);
    131   }
    132 
    133   /// NodesReachableFrom - Return the set of all nodes reachable from the given
    134   /// node.
    135   NodeSubset NodesReachableFrom(unsigned Idx) const {
    136     // This algorithm doesn't scale, but that doesn't matter given the small
    137     // size of our graphs.
    138     NodeSubset Reachable;
    139 
    140     // The initial node is reachable.
    141     Reachable.AddNode(Idx);
    142     do {
    143       NodeSubset Previous(Reachable);
    144 
    145       // Add in all nodes which are children of a reachable node.
    146       for (unsigned i = 0; i != N; ++i)
    147         if (Previous.count(i))
    148           Reachable = Reachable.Join(Nodes[i].second);
    149 
    150       // If nothing changed then we have found all reachable nodes.
    151       if (Reachable == Previous)
    152         return Reachable;
    153 
    154       // Rinse and repeat.
    155     } while (1);
    156   }
    157 
    158   /// ChildIterator - Visit all children of a node.
    159   class ChildIterator {
    160     friend class Graph;
    161 
    162     /// FirstNode - Pointer to first node in the graph's Nodes array.
    163     NodeType *FirstNode;
    164     /// Children - Set of nodes which are children of this one and that haven't
    165     /// yet been visited.
    166     NodeSubset Children;
    167 
    168     ChildIterator(); // Disable default constructor.
    169   protected:
    170     ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
    171 
    172   public:
    173     /// ChildIterator - Copy constructor.
    174     ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
    175       Children(other.Children) {}
    176 
    177     /// Comparison operators.
    178     bool operator==(const ChildIterator &other) const {
    179       return other.FirstNode == this->FirstNode &&
    180         other.Children == this->Children;
    181     }
    182     bool operator!=(const ChildIterator &other) const {
    183       return !(*this == other);
    184     }
    185 
    186     /// Prefix increment operator.
    187     ChildIterator& operator++() {
    188       // Find the next unvisited child node.
    189       for (unsigned i = 0; i != N; ++i)
    190         if (Children.count(i)) {
    191           // Remove that child - it has been visited.  This is the increment!
    192           Children.DeleteNode(i);
    193           return *this;
    194         }
    195       assert(false && "Incrementing end iterator!");
    196       return *this; // Avoid compiler warnings.
    197     }
    198 
    199     /// Postfix increment operator.
    200     ChildIterator operator++(int) {
    201       ChildIterator Result(*this);
    202       ++(*this);
    203       return Result;
    204     }
    205 
    206     /// Dereference operator.
    207     NodeType *operator*() {
    208       // Find the next unvisited child node.
    209       for (unsigned i = 0; i != N; ++i)
    210         if (Children.count(i))
    211           // Return a pointer to it.
    212           return FirstNode + i;
    213       assert(false && "Dereferencing end iterator!");
    214       return nullptr; // Avoid compiler warning.
    215     }
    216   };
    217 
    218   /// child_begin - Return an iterator pointing to the first child of the given
    219   /// node.
    220   static ChildIterator child_begin(NodeType *Parent) {
    221     return ChildIterator(Parent - Parent->first, Parent->second);
    222   }
    223 
    224   /// child_end - Return the end iterator for children of the given node.
    225   static ChildIterator child_end(NodeType *Parent) {
    226     return ChildIterator(Parent - Parent->first, NodeSubset());
    227   }
    228 };
    229 
    230 template <unsigned N>
    231 struct GraphTraits<Graph<N> > {
    232   typedef typename Graph<N>::NodeType NodeType;
    233   typedef typename Graph<N>::ChildIterator ChildIteratorType;
    234 
    235  static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
    236  static inline ChildIteratorType child_begin(NodeType *Node) {
    237    return Graph<N>::child_begin(Node);
    238  }
    239  static inline ChildIteratorType child_end(NodeType *Node) {
    240    return Graph<N>::child_end(Node);
    241  }
    242 };
    243 
    244 TEST(SCCIteratorTest, AllSmallGraphs) {
    245   // Test SCC computation against every graph with NUM_NODES nodes or less.
    246   // Since SCC considers every node to have an implicit self-edge, we only
    247   // create graphs for which every node has a self-edge.
    248 #define NUM_NODES 4
    249 #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
    250   typedef Graph<NUM_NODES> GT;
    251 
    252   /// Enumerate all graphs using NUM_GRAPHS bits.
    253   static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
    254   for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
    255        ++GraphDescriptor) {
    256     GT G;
    257 
    258     // Add edges as specified by the descriptor.
    259     unsigned DescriptorCopy = GraphDescriptor;
    260     for (unsigned i = 0; i != NUM_NODES; ++i)
    261       for (unsigned j = 0; j != NUM_NODES; ++j) {
    262         // Always add a self-edge.
    263         if (i == j) {
    264           G.AddEdge(i, j);
    265           continue;
    266         }
    267         if (DescriptorCopy & 1)
    268           G.AddEdge(i, j);
    269         DescriptorCopy >>= 1;
    270       }
    271 
    272     // Test the SCC logic on this graph.
    273 
    274     /// NodesInSomeSCC - Those nodes which are in some SCC.
    275     GT::NodeSubset NodesInSomeSCC;
    276 
    277     for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
    278       const std::vector<GT::NodeType *> &SCC = *I;
    279 
    280       // Get the nodes in this SCC as a NodeSubset rather than a vector.
    281       GT::NodeSubset NodesInThisSCC;
    282       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
    283         NodesInThisSCC.AddNode(SCC[i]->first);
    284 
    285       // There should be at least one node in every SCC.
    286       EXPECT_FALSE(NodesInThisSCC.isEmpty());
    287 
    288       // Check that every node in the SCC is reachable from every other node in
    289       // the SCC.
    290       for (unsigned i = 0; i != NUM_NODES; ++i)
    291         if (NodesInThisSCC.count(i))
    292           EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
    293 
    294       // OK, now that we now that every node in the SCC is reachable from every
    295       // other, this means that the set of nodes reachable from any node in the
    296       // SCC is the same as the set of nodes reachable from every node in the
    297       // SCC.  Check that for every node N not in the SCC but reachable from the
    298       // SCC, no element of the SCC is reachable from N.
    299       for (unsigned i = 0; i != NUM_NODES; ++i)
    300         if (NodesInThisSCC.count(i)) {
    301           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
    302           GT::NodeSubset ReachableButNotInSCC =
    303             NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
    304 
    305           for (unsigned j = 0; j != NUM_NODES; ++j)
    306             if (ReachableButNotInSCC.count(j))
    307               EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
    308 
    309           // The result must be the same for all other nodes in this SCC, so
    310           // there is no point in checking them.
    311           break;
    312         }
    313 
    314       // This is indeed a SCC: a maximal set of nodes for which each node is
    315       // reachable from every other.
    316 
    317       // Check that we didn't already see this SCC.
    318       EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
    319 
    320       NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
    321 
    322       // Check a property that is specific to the LLVM SCC iterator and
    323       // guaranteed by it: if a node in SCC S1 has an edge to a node in
    324       // SCC S2, then S1 is visited *after* S2.  This means that the set
    325       // of nodes reachable from this SCC must be contained either in the
    326       // union of this SCC and all previously visited SCC's.
    327 
    328       for (unsigned i = 0; i != NUM_NODES; ++i)
    329         if (NodesInThisSCC.count(i)) {
    330           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
    331           EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
    332           // The result must be the same for all other nodes in this SCC, so
    333           // there is no point in checking them.
    334           break;
    335         }
    336     }
    337 
    338     // Finally, check that the nodes in some SCC are exactly those that are
    339     // reachable from the initial node.
    340     EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
    341   }
    342 }
    343 
    344 }
    345