Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenMapTable.cpp - Instruction Mapping Table Generator ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // CodeGenMapTable provides functionality for the TabelGen to create
     10 // relation mapping between instructions. Relation models are defined using
     11 // InstrMapping as a base class. This file implements the functionality which
     12 // parses these definitions and generates relation maps using the information
     13 // specified there. These maps are emitted as tables in the XXXGenInstrInfo.inc
     14 // file along with the functions to query them.
     15 //
     16 // A relationship model to relate non-predicate instructions with their
     17 // predicated true/false forms can be defined as follows:
     18 //
     19 // def getPredOpcode : InstrMapping {
     20 //  let FilterClass = "PredRel";
     21 //  let RowFields = ["BaseOpcode"];
     22 //  let ColFields = ["PredSense"];
     23 //  let KeyCol = ["none"];
     24 //  let ValueCols = [["true"], ["false"]]; }
     25 //
     26 // CodeGenMapTable parses this map and generates a table in XXXGenInstrInfo.inc
     27 // file that contains the instructions modeling this relationship. This table
     28 // is defined in the function
     29 // "int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)"
     30 // that can be used to retrieve the predicated form of the instruction by
     31 // passing its opcode value and the predicate sense (true/false) of the desired
     32 // instruction as arguments.
     33 //
     34 // Short description of the algorithm:
     35 //
     36 // 1) Iterate through all the records that derive from "InstrMapping" class.
     37 // 2) For each record, filter out instructions based on the FilterClass value.
     38 // 3) Iterate through this set of instructions and insert them into
     39 // RowInstrMap map based on their RowFields values. RowInstrMap is keyed by the
     40 // vector of RowFields values and contains vectors of Records (instructions) as
     41 // values. RowFields is a list of fields that are required to have the same
     42 // values for all the instructions appearing in the same row of the relation
     43 // table. All the instructions in a given row of the relation table have some
     44 // sort of relationship with the key instruction defined by the corresponding
     45 // relationship model.
     46 //
     47 // Ex: RowInstrMap(RowVal1, RowVal2, ...) -> [Instr1, Instr2, Instr3, ... ]
     48 // Here Instr1, Instr2, Instr3 have same values (RowVal1, RowVal2) for
     49 // RowFields. These groups of instructions are later matched against ValueCols
     50 // to determine the column they belong to, if any.
     51 //
     52 // While building the RowInstrMap map, collect all the key instructions in
     53 // KeyInstrVec. These are the instructions having the same values as KeyCol
     54 // for all the fields listed in ColFields.
     55 //
     56 // For Example:
     57 //
     58 // Relate non-predicate instructions with their predicated true/false forms.
     59 //
     60 // def getPredOpcode : InstrMapping {
     61 //  let FilterClass = "PredRel";
     62 //  let RowFields = ["BaseOpcode"];
     63 //  let ColFields = ["PredSense"];
     64 //  let KeyCol = ["none"];
     65 //  let ValueCols = [["true"], ["false"]]; }
     66 //
     67 // Here, only instructions that have "none" as PredSense will be selected as key
     68 // instructions.
     69 //
     70 // 4) For each key instruction, get the group of instructions that share the
     71 // same key-value as the key instruction from RowInstrMap. Iterate over the list
     72 // of columns in ValueCols (it is defined as a list<list<string> >. Therefore,
     73 // it can specify multi-column relationships). For each column, find the
     74 // instruction from the group that matches all the values for the column.
     75 // Multiple matches are not allowed.
     76 //
     77 //===----------------------------------------------------------------------===//
     78 
     79 #include "CodeGenTarget.h"
     80 #include "llvm/Support/Format.h"
     81 #include "llvm/TableGen/Error.h"
     82 using namespace llvm;
     83 typedef std::map<std::string, std::vector<Record*> > InstrRelMapTy;
     84 
     85 typedef std::map<std::vector<Init*>, std::vector<Record*> > RowInstrMapTy;
     86 
     87 namespace {
     88 
     89 //===----------------------------------------------------------------------===//
     90 // This class is used to represent InstrMapping class defined in Target.td file.
     91 class InstrMap {
     92 private:
     93   std::string Name;
     94   std::string FilterClass;
     95   ListInit *RowFields;
     96   ListInit *ColFields;
     97   ListInit *KeyCol;
     98   std::vector<ListInit*> ValueCols;
     99 
    100 public:
    101   InstrMap(Record* MapRec) {
    102     Name = MapRec->getName();
    103 
    104     // FilterClass - It's used to reduce the search space only to the
    105     // instructions that define the kind of relationship modeled by
    106     // this InstrMapping object/record.
    107     const RecordVal *Filter = MapRec->getValue("FilterClass");
    108     FilterClass = Filter->getValue()->getAsUnquotedString();
    109 
    110     // List of fields/attributes that need to be same across all the
    111     // instructions in a row of the relation table.
    112     RowFields = MapRec->getValueAsListInit("RowFields");
    113 
    114     // List of fields/attributes that are constant across all the instruction
    115     // in a column of the relation table. Ex: ColFields = 'predSense'
    116     ColFields = MapRec->getValueAsListInit("ColFields");
    117 
    118     // Values for the fields/attributes listed in 'ColFields'.
    119     // Ex: KeyCol = 'noPred' -- key instruction is non-predicated
    120     KeyCol = MapRec->getValueAsListInit("KeyCol");
    121 
    122     // List of values for the fields/attributes listed in 'ColFields', one for
    123     // each column in the relation table.
    124     //
    125     // Ex: ValueCols = [['true'],['false']] -- it results two columns in the
    126     // table. First column requires all the instructions to have predSense
    127     // set to 'true' and second column requires it to be 'false'.
    128     ListInit *ColValList = MapRec->getValueAsListInit("ValueCols");
    129 
    130     // Each instruction map must specify at least one column for it to be valid.
    131     if (ColValList->empty())
    132       PrintFatalError(MapRec->getLoc(), "InstrMapping record `" +
    133         MapRec->getName() + "' has empty " + "`ValueCols' field!");
    134 
    135     for (Init *I : ColValList->getValues()) {
    136       ListInit *ColI = dyn_cast<ListInit>(I);
    137 
    138       // Make sure that all the sub-lists in 'ValueCols' have same number of
    139       // elements as the fields in 'ColFields'.
    140       if (ColI->size() != ColFields->size())
    141         PrintFatalError(MapRec->getLoc(), "Record `" + MapRec->getName() +
    142           "', field `ValueCols' entries don't match with " +
    143           " the entries in 'ColFields'!");
    144       ValueCols.push_back(ColI);
    145     }
    146   }
    147 
    148   std::string getName() const {
    149     return Name;
    150   }
    151 
    152   std::string getFilterClass() {
    153     return FilterClass;
    154   }
    155 
    156   ListInit *getRowFields() const {
    157     return RowFields;
    158   }
    159 
    160   ListInit *getColFields() const {
    161     return ColFields;
    162   }
    163 
    164   ListInit *getKeyCol() const {
    165     return KeyCol;
    166   }
    167 
    168   const std::vector<ListInit*> &getValueCols() const {
    169     return ValueCols;
    170   }
    171 };
    172 } // End anonymous namespace.
    173 
    174 
    175 //===----------------------------------------------------------------------===//
    176 // class MapTableEmitter : It builds the instruction relation maps using
    177 // the information provided in InstrMapping records. It outputs these
    178 // relationship maps as tables into XXXGenInstrInfo.inc file along with the
    179 // functions to query them.
    180 
    181 namespace {
    182 class MapTableEmitter {
    183 private:
    184 //  std::string TargetName;
    185   const CodeGenTarget &Target;
    186   // InstrMapDesc - InstrMapping record to be processed.
    187   InstrMap InstrMapDesc;
    188 
    189   // InstrDefs - list of instructions filtered using FilterClass defined
    190   // in InstrMapDesc.
    191   std::vector<Record*> InstrDefs;
    192 
    193   // RowInstrMap - maps RowFields values to the instructions. It's keyed by the
    194   // values of the row fields and contains vector of records as values.
    195   RowInstrMapTy RowInstrMap;
    196 
    197   // KeyInstrVec - list of key instructions.
    198   std::vector<Record*> KeyInstrVec;
    199   DenseMap<Record*, std::vector<Record*> > MapTable;
    200 
    201 public:
    202   MapTableEmitter(CodeGenTarget &Target, RecordKeeper &Records, Record *IMRec):
    203                   Target(Target), InstrMapDesc(IMRec) {
    204     const std::string FilterClass = InstrMapDesc.getFilterClass();
    205     InstrDefs = Records.getAllDerivedDefinitions(FilterClass);
    206   }
    207 
    208   void buildRowInstrMap();
    209 
    210   // Returns true if an instruction is a key instruction, i.e., its ColFields
    211   // have same values as KeyCol.
    212   bool isKeyColInstr(Record* CurInstr);
    213 
    214   // Find column instruction corresponding to a key instruction based on the
    215   // constraints for that column.
    216   Record *getInstrForColumn(Record *KeyInstr, ListInit *CurValueCol);
    217 
    218   // Find column instructions for each key instruction based
    219   // on ValueCols and store them into MapTable.
    220   void buildMapTable();
    221 
    222   void emitBinSearch(raw_ostream &OS, unsigned TableSize);
    223   void emitTablesWithFunc(raw_ostream &OS);
    224   unsigned emitBinSearchTable(raw_ostream &OS);
    225 
    226   // Lookup functions to query binary search tables.
    227   void emitMapFuncBody(raw_ostream &OS, unsigned TableSize);
    228 
    229 };
    230 } // End anonymous namespace.
    231 
    232 
    233 //===----------------------------------------------------------------------===//
    234 // Process all the instructions that model this relation (alreday present in
    235 // InstrDefs) and insert them into RowInstrMap which is keyed by the values of
    236 // the fields listed as RowFields. It stores vectors of records as values.
    237 // All the related instructions have the same values for the RowFields thus are
    238 // part of the same key-value pair.
    239 //===----------------------------------------------------------------------===//
    240 
    241 void MapTableEmitter::buildRowInstrMap() {
    242   for (Record *CurInstr : InstrDefs) {
    243     std::vector<Init*> KeyValue;
    244     ListInit *RowFields = InstrMapDesc.getRowFields();
    245     for (Init *RowField : RowFields->getValues()) {
    246       Init *CurInstrVal = CurInstr->getValue(RowField)->getValue();
    247       KeyValue.push_back(CurInstrVal);
    248     }
    249 
    250     // Collect key instructions into KeyInstrVec. Later, these instructions are
    251     // processed to assign column position to the instructions sharing
    252     // their KeyValue in RowInstrMap.
    253     if (isKeyColInstr(CurInstr))
    254       KeyInstrVec.push_back(CurInstr);
    255 
    256     RowInstrMap[KeyValue].push_back(CurInstr);
    257   }
    258 }
    259 
    260 //===----------------------------------------------------------------------===//
    261 // Return true if an instruction is a KeyCol instruction.
    262 //===----------------------------------------------------------------------===//
    263 
    264 bool MapTableEmitter::isKeyColInstr(Record* CurInstr) {
    265   ListInit *ColFields = InstrMapDesc.getColFields();
    266   ListInit *KeyCol = InstrMapDesc.getKeyCol();
    267 
    268   // Check if the instruction is a KeyCol instruction.
    269   bool MatchFound = true;
    270   for (unsigned j = 0, endCF = ColFields->size();
    271       (j < endCF) && MatchFound; j++) {
    272     RecordVal *ColFieldName = CurInstr->getValue(ColFields->getElement(j));
    273     std::string CurInstrVal = ColFieldName->getValue()->getAsUnquotedString();
    274     std::string KeyColValue = KeyCol->getElement(j)->getAsUnquotedString();
    275     MatchFound = (CurInstrVal == KeyColValue);
    276   }
    277   return MatchFound;
    278 }
    279 
    280 //===----------------------------------------------------------------------===//
    281 // Build a map to link key instructions with the column instructions arranged
    282 // according to their column positions.
    283 //===----------------------------------------------------------------------===//
    284 
    285 void MapTableEmitter::buildMapTable() {
    286   // Find column instructions for a given key based on the ColField
    287   // constraints.
    288   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    289   unsigned NumOfCols = ValueCols.size();
    290   for (Record *CurKeyInstr : KeyInstrVec) {
    291     std::vector<Record*> ColInstrVec(NumOfCols);
    292 
    293     // Find the column instruction based on the constraints for the column.
    294     for (unsigned ColIdx = 0; ColIdx < NumOfCols; ColIdx++) {
    295       ListInit *CurValueCol = ValueCols[ColIdx];
    296       Record *ColInstr = getInstrForColumn(CurKeyInstr, CurValueCol);
    297       ColInstrVec[ColIdx] = ColInstr;
    298     }
    299     MapTable[CurKeyInstr] = ColInstrVec;
    300   }
    301 }
    302 
    303 //===----------------------------------------------------------------------===//
    304 // Find column instruction based on the constraints for that column.
    305 //===----------------------------------------------------------------------===//
    306 
    307 Record *MapTableEmitter::getInstrForColumn(Record *KeyInstr,
    308                                            ListInit *CurValueCol) {
    309   ListInit *RowFields = InstrMapDesc.getRowFields();
    310   std::vector<Init*> KeyValue;
    311 
    312   // Construct KeyValue using KeyInstr's values for RowFields.
    313   for (Init *RowField : RowFields->getValues()) {
    314     Init *KeyInstrVal = KeyInstr->getValue(RowField)->getValue();
    315     KeyValue.push_back(KeyInstrVal);
    316   }
    317 
    318   // Get all the instructions that share the same KeyValue as the KeyInstr
    319   // in RowInstrMap. We search through these instructions to find a match
    320   // for the current column, i.e., the instruction which has the same values
    321   // as CurValueCol for all the fields in ColFields.
    322   const std::vector<Record*> &RelatedInstrVec = RowInstrMap[KeyValue];
    323 
    324   ListInit *ColFields = InstrMapDesc.getColFields();
    325   Record *MatchInstr = nullptr;
    326 
    327   for (unsigned i = 0, e = RelatedInstrVec.size(); i < e; i++) {
    328     bool MatchFound = true;
    329     Record *CurInstr = RelatedInstrVec[i];
    330     for (unsigned j = 0, endCF = ColFields->size();
    331         (j < endCF) && MatchFound; j++) {
    332       Init *ColFieldJ = ColFields->getElement(j);
    333       Init *CurInstrInit = CurInstr->getValue(ColFieldJ)->getValue();
    334       std::string CurInstrVal = CurInstrInit->getAsUnquotedString();
    335       Init *ColFieldJVallue = CurValueCol->getElement(j);
    336       MatchFound = (CurInstrVal == ColFieldJVallue->getAsUnquotedString());
    337     }
    338 
    339     if (MatchFound) {
    340       if (MatchInstr) // Already had a match
    341         // Error if multiple matches are found for a column.
    342         PrintFatalError("Multiple matches found for `" + KeyInstr->getName() +
    343               "', for the relation `" + InstrMapDesc.getName());
    344       MatchInstr = CurInstr;
    345     }
    346   }
    347   return MatchInstr;
    348 }
    349 
    350 //===----------------------------------------------------------------------===//
    351 // Emit one table per relation. Only instructions with a valid relation of a
    352 // given type are included in the table sorted by their enum values (opcodes).
    353 // Binary search is used for locating instructions in the table.
    354 //===----------------------------------------------------------------------===//
    355 
    356 unsigned MapTableEmitter::emitBinSearchTable(raw_ostream &OS) {
    357 
    358   const std::vector<const CodeGenInstruction*> &NumberedInstructions =
    359                                             Target.getInstructionsByEnumValue();
    360   std::string TargetName = Target.getName();
    361   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    362   unsigned NumCol = ValueCols.size();
    363   unsigned TotalNumInstr = NumberedInstructions.size();
    364   unsigned TableSize = 0;
    365 
    366   OS << "static const uint16_t "<<InstrMapDesc.getName();
    367   // Number of columns in the table are NumCol+1 because key instructions are
    368   // emitted as first column.
    369   OS << "Table[]["<< NumCol+1 << "] = {\n";
    370   for (unsigned i = 0; i < TotalNumInstr; i++) {
    371     Record *CurInstr = NumberedInstructions[i]->TheDef;
    372     std::vector<Record*> ColInstrs = MapTable[CurInstr];
    373     std::string OutStr("");
    374     unsigned RelExists = 0;
    375     if (!ColInstrs.empty()) {
    376       for (unsigned j = 0; j < NumCol; j++) {
    377         if (ColInstrs[j] != nullptr) {
    378           RelExists = 1;
    379           OutStr += ", ";
    380           OutStr += TargetName;
    381           OutStr += "::";
    382           OutStr += ColInstrs[j]->getName();
    383         } else { OutStr += ", (uint16_t)-1U";}
    384       }
    385 
    386       if (RelExists) {
    387         OS << "  { " << TargetName << "::" << CurInstr->getName();
    388         OS << OutStr <<" },\n";
    389         TableSize++;
    390       }
    391     }
    392   }
    393   if (!TableSize) {
    394     OS << "  { " << TargetName << "::" << "INSTRUCTION_LIST_END, ";
    395     OS << TargetName << "::" << "INSTRUCTION_LIST_END }";
    396   }
    397   OS << "}; // End of " << InstrMapDesc.getName() << "Table\n\n";
    398   return TableSize;
    399 }
    400 
    401 //===----------------------------------------------------------------------===//
    402 // Emit binary search algorithm as part of the functions used to query
    403 // relation tables.
    404 //===----------------------------------------------------------------------===//
    405 
    406 void MapTableEmitter::emitBinSearch(raw_ostream &OS, unsigned TableSize) {
    407   OS << "  unsigned mid;\n";
    408   OS << "  unsigned start = 0;\n";
    409   OS << "  unsigned end = " << TableSize << ";\n";
    410   OS << "  while (start < end) {\n";
    411   OS << "    mid = start + (end - start)/2;\n";
    412   OS << "    if (Opcode == " << InstrMapDesc.getName() << "Table[mid][0]) {\n";
    413   OS << "      break;\n";
    414   OS << "    }\n";
    415   OS << "    if (Opcode < " << InstrMapDesc.getName() << "Table[mid][0])\n";
    416   OS << "      end = mid;\n";
    417   OS << "    else\n";
    418   OS << "      start = mid + 1;\n";
    419   OS << "  }\n";
    420   OS << "  if (start == end)\n";
    421   OS << "    return -1; // Instruction doesn't exist in this table.\n\n";
    422 }
    423 
    424 //===----------------------------------------------------------------------===//
    425 // Emit functions to query relation tables.
    426 //===----------------------------------------------------------------------===//
    427 
    428 void MapTableEmitter::emitMapFuncBody(raw_ostream &OS,
    429                                            unsigned TableSize) {
    430 
    431   ListInit *ColFields = InstrMapDesc.getColFields();
    432   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    433 
    434   // Emit binary search algorithm to locate instructions in the
    435   // relation table. If found, return opcode value from the appropriate column
    436   // of the table.
    437   emitBinSearch(OS, TableSize);
    438 
    439   if (ValueCols.size() > 1) {
    440     for (unsigned i = 0, e = ValueCols.size(); i < e; i++) {
    441       ListInit *ColumnI = ValueCols[i];
    442       for (unsigned j = 0, ColSize = ColumnI->size(); j < ColSize; ++j) {
    443         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
    444         OS << "  if (in" << ColName;
    445         OS << " == ";
    446         OS << ColName << "_" << ColumnI->getElement(j)->getAsUnquotedString();
    447         if (j < ColumnI->size() - 1) OS << " && ";
    448         else OS << ")\n";
    449       }
    450       OS << "    return " << InstrMapDesc.getName();
    451       OS << "Table[mid]["<<i+1<<"];\n";
    452     }
    453     OS << "  return -1;";
    454   }
    455   else
    456     OS << "  return " << InstrMapDesc.getName() << "Table[mid][1];\n";
    457 
    458   OS <<"}\n\n";
    459 }
    460 
    461 //===----------------------------------------------------------------------===//
    462 // Emit relation tables and the functions to query them.
    463 //===----------------------------------------------------------------------===//
    464 
    465 void MapTableEmitter::emitTablesWithFunc(raw_ostream &OS) {
    466 
    467   // Emit function name and the input parameters : mostly opcode value of the
    468   // current instruction. However, if a table has multiple columns (more than 2
    469   // since first column is used for the key instructions), then we also need
    470   // to pass another input to indicate the column to be selected.
    471 
    472   ListInit *ColFields = InstrMapDesc.getColFields();
    473   const std::vector<ListInit*> &ValueCols = InstrMapDesc.getValueCols();
    474   OS << "// "<< InstrMapDesc.getName() << "\nLLVM_READONLY\n";
    475   OS << "int "<< InstrMapDesc.getName() << "(uint16_t Opcode";
    476   if (ValueCols.size() > 1) {
    477     for (Init *CF : ColFields->getValues()) {
    478       std::string ColName = CF->getAsUnquotedString();
    479       OS << ", enum " << ColName << " in" << ColName << ") {\n";
    480     }
    481   } else { OS << ") {\n"; }
    482 
    483   // Emit map table.
    484   unsigned TableSize = emitBinSearchTable(OS);
    485 
    486   // Emit rest of the function body.
    487   emitMapFuncBody(OS, TableSize);
    488 }
    489 
    490 //===----------------------------------------------------------------------===//
    491 // Emit enums for the column fields across all the instruction maps.
    492 //===----------------------------------------------------------------------===//
    493 
    494 static void emitEnums(raw_ostream &OS, RecordKeeper &Records) {
    495 
    496   std::vector<Record*> InstrMapVec;
    497   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
    498   std::map<std::string, std::vector<Init*> > ColFieldValueMap;
    499 
    500   // Iterate over all InstrMapping records and create a map between column
    501   // fields and their possible values across all records.
    502   for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
    503     Record *CurMap = InstrMapVec[i];
    504     ListInit *ColFields;
    505     ColFields = CurMap->getValueAsListInit("ColFields");
    506     ListInit *List = CurMap->getValueAsListInit("ValueCols");
    507     std::vector<ListInit*> ValueCols;
    508     unsigned ListSize = List->size();
    509 
    510     for (unsigned j = 0; j < ListSize; j++) {
    511       ListInit *ListJ = dyn_cast<ListInit>(List->getElement(j));
    512 
    513       if (ListJ->size() != ColFields->size())
    514         PrintFatalError("Record `" + CurMap->getName() + "', field "
    515           "`ValueCols' entries don't match with the entries in 'ColFields' !");
    516       ValueCols.push_back(ListJ);
    517     }
    518 
    519     for (unsigned j = 0, endCF = ColFields->size(); j < endCF; j++) {
    520       for (unsigned k = 0; k < ListSize; k++){
    521         std::string ColName = ColFields->getElement(j)->getAsUnquotedString();
    522         ColFieldValueMap[ColName].push_back((ValueCols[k])->getElement(j));
    523       }
    524     }
    525   }
    526 
    527   for (std::map<std::string, std::vector<Init*> >::iterator
    528        II = ColFieldValueMap.begin(), IE = ColFieldValueMap.end();
    529        II != IE; II++) {
    530     std::vector<Init*> FieldValues = (*II).second;
    531 
    532     // Delete duplicate entries from ColFieldValueMap
    533     for (unsigned i = 0; i < FieldValues.size() - 1; i++) {
    534       Init *CurVal = FieldValues[i];
    535       for (unsigned j = i+1; j < FieldValues.size(); j++) {
    536         if (CurVal == FieldValues[j]) {
    537           FieldValues.erase(FieldValues.begin()+j);
    538         }
    539       }
    540     }
    541 
    542     // Emit enumerated values for the column fields.
    543     OS << "enum " << (*II).first << " {\n";
    544     for (unsigned i = 0, endFV = FieldValues.size(); i < endFV; i++) {
    545       OS << "\t" << (*II).first << "_" << FieldValues[i]->getAsUnquotedString();
    546       if (i != endFV - 1)
    547         OS << ",\n";
    548       else
    549         OS << "\n};\n\n";
    550     }
    551   }
    552 }
    553 
    554 namespace llvm {
    555 //===----------------------------------------------------------------------===//
    556 // Parse 'InstrMapping' records and use the information to form relationship
    557 // between instructions. These relations are emitted as a tables along with the
    558 // functions to query them.
    559 //===----------------------------------------------------------------------===//
    560 void EmitMapTable(RecordKeeper &Records, raw_ostream &OS) {
    561   CodeGenTarget Target(Records);
    562   std::string TargetName = Target.getName();
    563   std::vector<Record*> InstrMapVec;
    564   InstrMapVec = Records.getAllDerivedDefinitions("InstrMapping");
    565 
    566   if (InstrMapVec.empty())
    567     return;
    568 
    569   OS << "#ifdef GET_INSTRMAP_INFO\n";
    570   OS << "#undef GET_INSTRMAP_INFO\n";
    571   OS << "namespace llvm {\n\n";
    572   OS << "namespace " << TargetName << " {\n\n";
    573 
    574   // Emit coulumn field names and their values as enums.
    575   emitEnums(OS, Records);
    576 
    577   // Iterate over all instruction mapping records and construct relationship
    578   // maps based on the information specified there.
    579   //
    580   for (unsigned i = 0, e = InstrMapVec.size(); i < e; i++) {
    581     MapTableEmitter IMap(Target, Records, InstrMapVec[i]);
    582 
    583     // Build RowInstrMap to group instructions based on their values for
    584     // RowFields. In the process, also collect key instructions into
    585     // KeyInstrVec.
    586     IMap.buildRowInstrMap();
    587 
    588     // Build MapTable to map key instructions with the corresponding column
    589     // instructions.
    590     IMap.buildMapTable();
    591 
    592     // Emit map tables and the functions to query them.
    593     IMap.emitTablesWithFunc(OS);
    594   }
    595   OS << "} // End " << TargetName << " namespace\n";
    596   OS << "} // End llvm namespace\n";
    597   OS << "#endif // GET_INSTRMAP_INFO\n\n";
    598 }
    599 
    600 } // End llvm namespace
    601