Home | History | Annotate | Download | only in minijail
      1 /* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
      2  * Use of this source code is governed by a BSD-style license that can be
      3  * found in the LICENSE file.
      4  */
      5 
      6 #define _BSD_SOURCE
      7 #define _GNU_SOURCE
      8 
      9 #include <asm/unistd.h>
     10 #include <ctype.h>
     11 #include <errno.h>
     12 #include <fcntl.h>
     13 #include <grp.h>
     14 #include <inttypes.h>
     15 #include <limits.h>
     16 #include <linux/capability.h>
     17 #include <pwd.h>
     18 #include <sched.h>
     19 #include <signal.h>
     20 #include <stdarg.h>
     21 #include <stdbool.h>
     22 #include <stddef.h>
     23 #include <stdio.h>
     24 #include <stdlib.h>
     25 #include <string.h>
     26 #include <syscall.h>
     27 #include <sys/capability.h>
     28 #include <sys/mount.h>
     29 #include <sys/param.h>
     30 #include <sys/prctl.h>
     31 #include <sys/stat.h>
     32 #include <sys/types.h>
     33 #include <sys/user.h>
     34 #include <sys/utsname.h>
     35 #include <sys/wait.h>
     36 #include <unistd.h>
     37 
     38 #include "libminijail.h"
     39 #include "libminijail-private.h"
     40 
     41 #include "signal_handler.h"
     42 #include "syscall_filter.h"
     43 #include "util.h"
     44 
     45 #ifdef HAVE_SECUREBITS_H
     46 #include <linux/securebits.h>
     47 #else
     48 #define SECURE_ALL_BITS         0x15
     49 #define SECURE_ALL_LOCKS        (SECURE_ALL_BITS << 1)
     50 #endif
     51 
     52 /* Until these are reliably available in linux/prctl.h */
     53 #ifndef PR_SET_SECCOMP
     54 # define PR_SET_SECCOMP 22
     55 #endif
     56 
     57 #ifndef PR_ALT_SYSCALL
     58 # define PR_ALT_SYSCALL 0x43724f53
     59 #endif
     60 
     61 /* For seccomp_filter using BPF. */
     62 #ifndef PR_SET_NO_NEW_PRIVS
     63 # define PR_SET_NO_NEW_PRIVS 38
     64 #endif
     65 #ifndef SECCOMP_MODE_FILTER
     66 # define SECCOMP_MODE_FILTER 2 /* uses user-supplied filter. */
     67 #endif
     68 
     69 #ifdef USE_SECCOMP_SOFTFAIL
     70 # define SECCOMP_SOFTFAIL 1
     71 #else
     72 # define SECCOMP_SOFTFAIL 0
     73 #endif
     74 
     75 #define MAX_CGROUPS 10 /* 10 different controllers supported by Linux. */
     76 
     77 struct mountpoint {
     78 	char *src;
     79 	char *dest;
     80 	char *type;
     81 	unsigned long flags;
     82 	struct mountpoint *next;
     83 };
     84 
     85 struct minijail {
     86 	/*
     87 	 * WARNING: if you add a flag here you need to make sure it's
     88 	 * accounted for in minijail_pre{enter|exec}() below.
     89 	 */
     90 	struct {
     91 		int uid:1;
     92 		int gid:1;
     93 		int usergroups:1;
     94 		int suppl_gids:1;
     95 		int caps:1;
     96 		int vfs:1;
     97 		int enter_vfs:1;
     98 		int pids:1;
     99 		int ipc:1;
    100 		int net:1;
    101 		int enter_net:1;
    102 		int userns:1;
    103 		int seccomp:1;
    104 		int remount_proc_ro:1;
    105 		int no_new_privs:1;
    106 		int seccomp_filter:1;
    107 		int log_seccomp_filter:1;
    108 		int chroot:1;
    109 		int pivot_root:1;
    110 		int mount_tmp:1;
    111 		int do_init:1;
    112 		int pid_file:1;
    113 		int cgroups:1;
    114 		int alt_syscall:1;
    115 		int reset_signal_mask:1;
    116 	} flags;
    117 	uid_t uid;
    118 	gid_t gid;
    119 	gid_t usergid;
    120 	char *user;
    121 	size_t suppl_gid_count;
    122 	gid_t *suppl_gid_list;
    123 	uint64_t caps;
    124 	pid_t initpid;
    125 	int mountns_fd;
    126 	int netns_fd;
    127 	char *chrootdir;
    128 	char *pid_file_path;
    129 	char *uidmap;
    130 	char *gidmap;
    131 	size_t filter_len;
    132 	struct sock_fprog *filter_prog;
    133 	char *alt_syscall_table;
    134 	struct mountpoint *mounts_head;
    135 	struct mountpoint *mounts_tail;
    136 	size_t mounts_count;
    137 	char *cgroups[MAX_CGROUPS];
    138 	size_t cgroup_count;
    139 };
    140 
    141 /*
    142  * Strip out flags meant for the parent.
    143  * We keep things that are not inherited across execve(2) (e.g. capabilities),
    144  * or are easier to set after execve(2) (e.g. seccomp filters).
    145  */
    146 void minijail_preenter(struct minijail *j)
    147 {
    148 	j->flags.vfs = 0;
    149 	j->flags.enter_vfs = 0;
    150 	j->flags.remount_proc_ro = 0;
    151 	j->flags.pids = 0;
    152 	j->flags.do_init = 0;
    153 	j->flags.pid_file = 0;
    154 	j->flags.cgroups = 0;
    155 }
    156 
    157 /*
    158  * Strip out flags meant for the child.
    159  * We keep things that are inherited across execve(2).
    160  */
    161 void minijail_preexec(struct minijail *j)
    162 {
    163 	int vfs = j->flags.vfs;
    164 	int enter_vfs = j->flags.enter_vfs;
    165 	int remount_proc_ro = j->flags.remount_proc_ro;
    166 	int userns = j->flags.userns;
    167 	if (j->user)
    168 		free(j->user);
    169 	j->user = NULL;
    170 	if (j->suppl_gid_list)
    171 		free(j->suppl_gid_list);
    172 	j->suppl_gid_list = NULL;
    173 	memset(&j->flags, 0, sizeof(j->flags));
    174 	/* Now restore anything we meant to keep. */
    175 	j->flags.vfs = vfs;
    176 	j->flags.enter_vfs = enter_vfs;
    177 	j->flags.remount_proc_ro = remount_proc_ro;
    178 	j->flags.userns = userns;
    179 	/* Note, |pids| will already have been used before this call. */
    180 }
    181 
    182 /* Returns true if the kernel version is less than 3.8. */
    183 int seccomp_kernel_support_not_required()
    184 {
    185 	int major, minor;
    186 	struct utsname uts;
    187 	return (uname(&uts) != -1 &&
    188 			sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
    189 			((major < 3) || ((major == 3) && (minor < 8))));
    190 }
    191 
    192 /* Allow seccomp soft-fail on Android devices with kernel version < 3.8. */
    193 int can_softfail()
    194 {
    195 #if SECCOMP_SOFTFAIL
    196 	if (is_android()) {
    197 		if (seccomp_kernel_support_not_required())
    198 			return 1;
    199 		else
    200 			return 0;
    201 	} else {
    202 		return 1;
    203 	}
    204 #endif
    205 	return 0;
    206 }
    207 
    208 /* Minijail API. */
    209 
    210 struct minijail API *minijail_new(void)
    211 {
    212 	return calloc(1, sizeof(struct minijail));
    213 }
    214 
    215 void API minijail_change_uid(struct minijail *j, uid_t uid)
    216 {
    217 	if (uid == 0)
    218 		die("useless change to uid 0");
    219 	j->uid = uid;
    220 	j->flags.uid = 1;
    221 }
    222 
    223 void API minijail_change_gid(struct minijail *j, gid_t gid)
    224 {
    225 	if (gid == 0)
    226 		die("useless change to gid 0");
    227 	j->gid = gid;
    228 	j->flags.gid = 1;
    229 }
    230 
    231 void API minijail_set_supplementary_gids(struct minijail *j, size_t size,
    232 					 const gid_t *list)
    233 {
    234 	size_t i;
    235 
    236 	if (j->flags.usergroups)
    237 		die("cannot inherit *and* set supplementary groups");
    238 
    239 	if (size == 0) {
    240 		/* Clear supplementary groups. */
    241 		j->suppl_gid_list = NULL;
    242 		j->suppl_gid_count = 0;
    243 		j->flags.suppl_gids = 1;
    244 		return;
    245 	}
    246 
    247 	/* Copy the gid_t array. */
    248 	j->suppl_gid_list = calloc(size, sizeof(gid_t));
    249 	if (!j->suppl_gid_list) {
    250 		die("failed to allocate internal supplementary group array");
    251 	}
    252 	for (i = 0; i < size; i++) {
    253 		j->suppl_gid_list[i] = list[i];
    254 	}
    255 	j->suppl_gid_count = size;
    256 	j->flags.suppl_gids = 1;
    257 }
    258 
    259 int API minijail_change_user(struct minijail *j, const char *user)
    260 {
    261 	char *buf = NULL;
    262 	struct passwd pw;
    263 	struct passwd *ppw = NULL;
    264 	ssize_t sz = sysconf(_SC_GETPW_R_SIZE_MAX);
    265 	if (sz == -1)
    266 		sz = 65536;	/* your guess is as good as mine... */
    267 
    268 	/*
    269 	 * sysconf(_SC_GETPW_R_SIZE_MAX), under glibc, is documented to return
    270 	 * the maximum needed size of the buffer, so we don't have to search.
    271 	 */
    272 	buf = malloc(sz);
    273 	if (!buf)
    274 		return -ENOMEM;
    275 	getpwnam_r(user, &pw, buf, sz, &ppw);
    276 	/*
    277 	 * We're safe to free the buffer here. The strings inside |pw| point
    278 	 * inside |buf|, but we don't use any of them; this leaves the pointers
    279 	 * dangling but it's safe. |ppw| points at |pw| if getpwnam_r(3) succeeded.
    280 	 */
    281 	free(buf);
    282 	/* getpwnam_r(3) does *not* set errno when |ppw| is NULL. */
    283 	if (!ppw)
    284 		return -1;
    285 	minijail_change_uid(j, ppw->pw_uid);
    286 	j->user = strdup(user);
    287 	if (!j->user)
    288 		return -ENOMEM;
    289 	j->usergid = ppw->pw_gid;
    290 	return 0;
    291 }
    292 
    293 int API minijail_change_group(struct minijail *j, const char *group)
    294 {
    295 	char *buf = NULL;
    296 	struct group gr;
    297 	struct group *pgr = NULL;
    298 	ssize_t sz = sysconf(_SC_GETGR_R_SIZE_MAX);
    299 	if (sz == -1)
    300 		sz = 65536;	/* and mine is as good as yours, really */
    301 
    302 	/*
    303 	 * sysconf(_SC_GETGR_R_SIZE_MAX), under glibc, is documented to return
    304 	 * the maximum needed size of the buffer, so we don't have to search.
    305 	 */
    306 	buf = malloc(sz);
    307 	if (!buf)
    308 		return -ENOMEM;
    309 	getgrnam_r(group, &gr, buf, sz, &pgr);
    310 	/*
    311 	 * We're safe to free the buffer here. The strings inside gr point
    312 	 * inside buf, but we don't use any of them; this leaves the pointers
    313 	 * dangling but it's safe. pgr points at gr if getgrnam_r succeeded.
    314 	 */
    315 	free(buf);
    316 	/* getgrnam_r(3) does *not* set errno when |pgr| is NULL. */
    317 	if (!pgr)
    318 		return -1;
    319 	minijail_change_gid(j, pgr->gr_gid);
    320 	return 0;
    321 }
    322 
    323 void API minijail_use_seccomp(struct minijail *j)
    324 {
    325 	j->flags.seccomp = 1;
    326 }
    327 
    328 void API minijail_no_new_privs(struct minijail *j)
    329 {
    330 	j->flags.no_new_privs = 1;
    331 }
    332 
    333 void API minijail_use_seccomp_filter(struct minijail *j)
    334 {
    335 	j->flags.seccomp_filter = 1;
    336 }
    337 
    338 void API minijail_log_seccomp_filter_failures(struct minijail *j)
    339 {
    340 	j->flags.log_seccomp_filter = 1;
    341 }
    342 
    343 void API minijail_use_caps(struct minijail *j, uint64_t capmask)
    344 {
    345 	j->caps = capmask;
    346 	j->flags.caps = 1;
    347 }
    348 
    349 void API minijail_reset_signal_mask(struct minijail* j) {
    350 	j->flags.reset_signal_mask = 1;
    351 }
    352 
    353 void API minijail_namespace_vfs(struct minijail *j)
    354 {
    355 	j->flags.vfs = 1;
    356 }
    357 
    358 void API minijail_namespace_enter_vfs(struct minijail *j, const char *ns_path)
    359 {
    360 	int ns_fd = open(ns_path, O_RDONLY);
    361 	if (ns_fd < 0) {
    362 		pdie("failed to open namespace '%s'", ns_path);
    363 	}
    364 	j->mountns_fd = ns_fd;
    365 	j->flags.enter_vfs = 1;
    366 }
    367 
    368 void API minijail_namespace_pids(struct minijail *j)
    369 {
    370 	j->flags.vfs = 1;
    371 	j->flags.remount_proc_ro = 1;
    372 	j->flags.pids = 1;
    373 	j->flags.do_init = 1;
    374 }
    375 
    376 void API minijail_namespace_ipc(struct minijail *j)
    377 {
    378 	j->flags.ipc = 1;
    379 }
    380 
    381 void API minijail_namespace_net(struct minijail *j)
    382 {
    383 	j->flags.net = 1;
    384 }
    385 
    386 void API minijail_namespace_enter_net(struct minijail *j, const char *ns_path)
    387 {
    388 	int ns_fd = open(ns_path, O_RDONLY);
    389 	if (ns_fd < 0) {
    390 		pdie("failed to open namespace '%s'", ns_path);
    391 	}
    392 	j->netns_fd = ns_fd;
    393 	j->flags.enter_net = 1;
    394 }
    395 
    396 void API minijail_remount_proc_readonly(struct minijail *j)
    397 {
    398 	j->flags.vfs = 1;
    399 	j->flags.remount_proc_ro = 1;
    400 }
    401 
    402 void API minijail_namespace_user(struct minijail *j)
    403 {
    404 	j->flags.userns = 1;
    405 }
    406 
    407 int API minijail_uidmap(struct minijail *j, const char *uidmap)
    408 {
    409 	j->uidmap = strdup(uidmap);
    410 	if (!j->uidmap)
    411 		return -ENOMEM;
    412 	char *ch;
    413 	for (ch = j->uidmap; *ch; ch++) {
    414 		if (*ch == ',')
    415 			*ch = '\n';
    416 	}
    417 	return 0;
    418 }
    419 
    420 int API minijail_gidmap(struct minijail *j, const char *gidmap)
    421 {
    422 	j->gidmap = strdup(gidmap);
    423 	if (!j->gidmap)
    424 		return -ENOMEM;
    425 	char *ch;
    426 	for (ch = j->gidmap; *ch; ch++) {
    427 		if (*ch == ',')
    428 			*ch = '\n';
    429 	}
    430 	return 0;
    431 }
    432 
    433 void API minijail_inherit_usergroups(struct minijail *j)
    434 {
    435 	j->flags.usergroups = 1;
    436 }
    437 
    438 void API minijail_run_as_init(struct minijail *j)
    439 {
    440 	/*
    441 	 * Since the jailed program will become 'init' in the new PID namespace,
    442 	 * Minijail does not need to fork an 'init' process.
    443 	 */
    444 	j->flags.do_init = 0;
    445 }
    446 
    447 int API minijail_enter_chroot(struct minijail *j, const char *dir)
    448 {
    449 	if (j->chrootdir)
    450 		return -EINVAL;
    451 	j->chrootdir = strdup(dir);
    452 	if (!j->chrootdir)
    453 		return -ENOMEM;
    454 	j->flags.chroot = 1;
    455 	return 0;
    456 }
    457 
    458 int API minijail_enter_pivot_root(struct minijail *j, const char *dir)
    459 {
    460 	if (j->chrootdir)
    461 		return -EINVAL;
    462 	j->chrootdir = strdup(dir);
    463 	if (!j->chrootdir)
    464 		return -ENOMEM;
    465 	j->flags.pivot_root = 1;
    466 	return 0;
    467 }
    468 
    469 static char *append_external_path(const char *external_path,
    470 				  const char *path_inside_chroot)
    471 {
    472 	char *path;
    473 	size_t pathlen;
    474 
    475 	/* One extra char for '/' and one for '\0', hence + 2. */
    476 	pathlen = strlen(path_inside_chroot) + strlen(external_path) + 2;
    477 	path = malloc(pathlen);
    478 	snprintf(path, pathlen, "%s/%s", external_path, path_inside_chroot);
    479 
    480 	return path;
    481 }
    482 
    483 char API *minijail_get_original_path(struct minijail *j,
    484 				     const char *path_inside_chroot)
    485 {
    486 	struct mountpoint *b;
    487 
    488 	b = j->mounts_head;
    489 	while (b) {
    490 		/*
    491 		 * If |path_inside_chroot| is the exact destination of a
    492 		 * mount, then the original path is exactly the source of
    493 		 * the mount.
    494 		 *  for example: "-b /some/path/exe,/chroot/path/exe"
    495 		 *    mount source = /some/path/exe, mount dest =
    496 		 *    /chroot/path/exe Then when getting the original path of
    497 		 *    "/chroot/path/exe", the source of that mount,
    498 		 *    "/some/path/exe" is what should be returned.
    499 		 */
    500 		if (!strcmp(b->dest, path_inside_chroot))
    501 			return strdup(b->src);
    502 
    503 		/*
    504 		 * If |path_inside_chroot| is within the destination path of a
    505 		 * mount, take the suffix of the chroot path relative to the
    506 		 * mount destination path, and append it to the mount source
    507 		 * path.
    508 		 */
    509 		if (!strncmp(b->dest, path_inside_chroot, strlen(b->dest))) {
    510 			const char *relative_path =
    511 				path_inside_chroot + strlen(b->dest);
    512 			return append_external_path(b->src, relative_path);
    513 		}
    514 		b = b->next;
    515 	}
    516 
    517 	/* If there is a chroot path, append |path_inside_chroot| to that. */
    518 	if (j->chrootdir)
    519 		return append_external_path(j->chrootdir, path_inside_chroot);
    520 
    521 	/* No chroot, so the path outside is the same as it is inside. */
    522 	return strdup(path_inside_chroot);
    523 }
    524 
    525 void API minijail_mount_tmp(struct minijail *j)
    526 {
    527 	j->flags.mount_tmp = 1;
    528 }
    529 
    530 int API minijail_write_pid_file(struct minijail *j, const char *path)
    531 {
    532 	j->pid_file_path = strdup(path);
    533 	if (!j->pid_file_path)
    534 		return -ENOMEM;
    535 	j->flags.pid_file = 1;
    536 	return 0;
    537 }
    538 
    539 int API minijail_add_to_cgroup(struct minijail *j, const char *path)
    540 {
    541 	if (j->cgroup_count >= MAX_CGROUPS)
    542 		return -ENOMEM;
    543 	j->cgroups[j->cgroup_count] = strdup(path);
    544 	if (!j->cgroups[j->cgroup_count])
    545 		return -ENOMEM;
    546 	j->cgroup_count++;
    547 	j->flags.cgroups = 1;
    548 	return 0;
    549 }
    550 
    551 int API minijail_mount(struct minijail *j, const char *src, const char *dest,
    552 		       const char *type, unsigned long flags)
    553 {
    554 	struct mountpoint *m;
    555 
    556 	if (*dest != '/')
    557 		return -EINVAL;
    558 	m = calloc(1, sizeof(*m));
    559 	if (!m)
    560 		return -ENOMEM;
    561 	m->dest = strdup(dest);
    562 	if (!m->dest)
    563 		goto error;
    564 	m->src = strdup(src);
    565 	if (!m->src)
    566 		goto error;
    567 	m->type = strdup(type);
    568 	if (!m->type)
    569 		goto error;
    570 	m->flags = flags;
    571 
    572 	info("mount %s -> %s type '%s'", src, dest, type);
    573 
    574 	/*
    575 	 * Force vfs namespacing so the mounts don't leak out into the
    576 	 * containing vfs namespace.
    577 	 */
    578 	minijail_namespace_vfs(j);
    579 
    580 	if (j->mounts_tail)
    581 		j->mounts_tail->next = m;
    582 	else
    583 		j->mounts_head = m;
    584 	j->mounts_tail = m;
    585 	j->mounts_count++;
    586 
    587 	return 0;
    588 
    589 error:
    590 	free(m->src);
    591 	free(m->dest);
    592 	free(m);
    593 	return -ENOMEM;
    594 }
    595 
    596 int API minijail_bind(struct minijail *j, const char *src, const char *dest,
    597 		      int writeable)
    598 {
    599 	unsigned long flags = MS_BIND;
    600 
    601 	if (!writeable)
    602 		flags |= MS_RDONLY;
    603 
    604 	return minijail_mount(j, src, dest, "", flags);
    605 }
    606 
    607 void API minijail_parse_seccomp_filters(struct minijail *j, const char *path)
    608 {
    609 	if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL)) {
    610 		if ((errno == EINVAL) && can_softfail()) {
    611 			warn("not loading seccomp filter,"
    612 			     " seccomp not supported");
    613 			j->flags.seccomp_filter = 0;
    614 			j->flags.log_seccomp_filter = 0;
    615 			j->filter_len = 0;
    616 			j->filter_prog = NULL;
    617 			j->flags.no_new_privs = 0;
    618 		}
    619 	}
    620 	FILE *file = fopen(path, "r");
    621 	if (!file) {
    622 		pdie("failed to open seccomp filter file '%s'", path);
    623 	}
    624 
    625 	struct sock_fprog *fprog = malloc(sizeof(struct sock_fprog));
    626 	if (compile_filter(file, fprog, j->flags.log_seccomp_filter)) {
    627 		die("failed to compile seccomp filter BPF program in '%s'",
    628 		    path);
    629 	}
    630 
    631 	j->filter_len = fprog->len;
    632 	j->filter_prog = fprog;
    633 
    634 	fclose(file);
    635 }
    636 
    637 int API minijail_use_alt_syscall(struct minijail *j, const char *table)
    638 {
    639 	j->alt_syscall_table = strdup(table);
    640 	if (!j->alt_syscall_table)
    641 		return -ENOMEM;
    642 	j->flags.alt_syscall = 1;
    643 	return 0;
    644 }
    645 
    646 struct marshal_state {
    647 	size_t available;
    648 	size_t total;
    649 	char *buf;
    650 };
    651 
    652 void marshal_state_init(struct marshal_state *state,
    653 			char *buf, size_t available)
    654 {
    655 	state->available = available;
    656 	state->buf = buf;
    657 	state->total = 0;
    658 }
    659 
    660 void marshal_append(struct marshal_state *state,
    661 		    void *src, size_t length)
    662 {
    663 	size_t copy_len = MIN(state->available, length);
    664 
    665 	/* Up to |available| will be written. */
    666 	if (copy_len) {
    667 		memcpy(state->buf, src, copy_len);
    668 		state->buf += copy_len;
    669 		state->available -= copy_len;
    670 	}
    671 	/* |total| will contain the expected length. */
    672 	state->total += length;
    673 }
    674 
    675 void minijail_marshal_helper(struct marshal_state *state,
    676 			     const struct minijail *j)
    677 {
    678 	struct mountpoint *m = NULL;
    679 	size_t i;
    680 
    681 	marshal_append(state, (char *)j, sizeof(*j));
    682 	if (j->user)
    683 		marshal_append(state, j->user, strlen(j->user) + 1);
    684 	if (j->suppl_gid_list) {
    685 		marshal_append(state, j->suppl_gid_list,
    686 			       j->suppl_gid_count * sizeof(gid_t));
    687 	}
    688 	if (j->chrootdir)
    689 		marshal_append(state, j->chrootdir, strlen(j->chrootdir) + 1);
    690 	if (j->alt_syscall_table) {
    691 		marshal_append(state, j->alt_syscall_table,
    692 			       strlen(j->alt_syscall_table) + 1);
    693 	}
    694 	if (j->flags.seccomp_filter && j->filter_prog) {
    695 		struct sock_fprog *fp = j->filter_prog;
    696 		marshal_append(state, (char *)fp->filter,
    697 				fp->len * sizeof(struct sock_filter));
    698 	}
    699 	for (m = j->mounts_head; m; m = m->next) {
    700 		marshal_append(state, m->src, strlen(m->src) + 1);
    701 		marshal_append(state, m->dest, strlen(m->dest) + 1);
    702 		marshal_append(state, m->type, strlen(m->type) + 1);
    703 		marshal_append(state, (char *)&m->flags, sizeof(m->flags));
    704 	}
    705 	for (i = 0; i < j->cgroup_count; ++i)
    706 		marshal_append(state, j->cgroups[i], strlen(j->cgroups[i]) + 1);
    707 }
    708 
    709 size_t API minijail_size(const struct minijail *j)
    710 {
    711 	struct marshal_state state;
    712 	marshal_state_init(&state, NULL, 0);
    713 	minijail_marshal_helper(&state, j);
    714 	return state.total;
    715 }
    716 
    717 int minijail_marshal(const struct minijail *j, char *buf, size_t available)
    718 {
    719 	struct marshal_state state;
    720 	marshal_state_init(&state, buf, available);
    721 	minijail_marshal_helper(&state, j);
    722 	return (state.total > available);
    723 }
    724 
    725 /*
    726  * consumebytes: consumes @length bytes from a buffer @buf of length @buflength
    727  * @length    Number of bytes to consume
    728  * @buf       Buffer to consume from
    729  * @buflength Size of @buf
    730  *
    731  * Returns a pointer to the base of the bytes, or NULL for errors.
    732  */
    733 void *consumebytes(size_t length, char **buf, size_t *buflength)
    734 {
    735 	char *p = *buf;
    736 	if (length > *buflength)
    737 		return NULL;
    738 	*buf += length;
    739 	*buflength -= length;
    740 	return p;
    741 }
    742 
    743 /*
    744  * consumestr: consumes a C string from a buffer @buf of length @length
    745  * @buf    Buffer to consume
    746  * @length Length of buffer
    747  *
    748  * Returns a pointer to the base of the string, or NULL for errors.
    749  */
    750 char *consumestr(char **buf, size_t *buflength)
    751 {
    752 	size_t len = strnlen(*buf, *buflength);
    753 	if (len == *buflength)
    754 		/* There's no null-terminator. */
    755 		return NULL;
    756 	return consumebytes(len + 1, buf, buflength);
    757 }
    758 
    759 int minijail_unmarshal(struct minijail *j, char *serialized, size_t length)
    760 {
    761 	size_t i;
    762 	size_t count;
    763 	int ret = -EINVAL;
    764 
    765 	if (length < sizeof(*j))
    766 		goto out;
    767 	memcpy((void *)j, serialized, sizeof(*j));
    768 	serialized += sizeof(*j);
    769 	length -= sizeof(*j);
    770 
    771 	/* Potentially stale pointers not used as signals. */
    772 	j->mounts_head = NULL;
    773 	j->mounts_tail = NULL;
    774 	j->filter_prog = NULL;
    775 
    776 	if (j->user) {		/* stale pointer */
    777 		char *user = consumestr(&serialized, &length);
    778 		if (!user)
    779 			goto clear_pointers;
    780 		j->user = strdup(user);
    781 		if (!j->user)
    782 			goto clear_pointers;
    783 	}
    784 
    785 	if (j->suppl_gid_list) {	/* stale pointer */
    786 		if (j->suppl_gid_count > NGROUPS_MAX) {
    787 			goto bad_gid_list;
    788 		}
    789 		size_t gid_list_size = j->suppl_gid_count * sizeof(gid_t);
    790 		void *gid_list_bytes =
    791 		    consumebytes(gid_list_size, &serialized, &length);
    792 		if (!gid_list_bytes)
    793 			goto bad_gid_list;
    794 
    795 		j->suppl_gid_list = calloc(j->suppl_gid_count, sizeof(gid_t));
    796 		if (!j->suppl_gid_list)
    797 			goto bad_gid_list;
    798 
    799 		memcpy(j->suppl_gid_list, gid_list_bytes, gid_list_size);
    800 	}
    801 
    802 	if (j->chrootdir) {	/* stale pointer */
    803 		char *chrootdir = consumestr(&serialized, &length);
    804 		if (!chrootdir)
    805 			goto bad_chrootdir;
    806 		j->chrootdir = strdup(chrootdir);
    807 		if (!j->chrootdir)
    808 			goto bad_chrootdir;
    809 	}
    810 
    811 	if (j->alt_syscall_table) {	/* stale pointer */
    812 		char *alt_syscall_table = consumestr(&serialized, &length);
    813 		if (!alt_syscall_table)
    814 			goto bad_syscall_table;
    815 		j->alt_syscall_table = strdup(alt_syscall_table);
    816 		if (!j->alt_syscall_table)
    817 			goto bad_syscall_table;
    818 	}
    819 
    820 	if (j->flags.seccomp_filter && j->filter_len > 0) {
    821 		size_t ninstrs = j->filter_len;
    822 		if (ninstrs > (SIZE_MAX / sizeof(struct sock_filter)) ||
    823 		    ninstrs > USHRT_MAX)
    824 			goto bad_filters;
    825 
    826 		size_t program_len = ninstrs * sizeof(struct sock_filter);
    827 		void *program = consumebytes(program_len, &serialized, &length);
    828 		if (!program)
    829 			goto bad_filters;
    830 
    831 		j->filter_prog = malloc(sizeof(struct sock_fprog));
    832 		if (!j->filter_prog)
    833 			goto bad_filters;
    834 
    835 		j->filter_prog->len = ninstrs;
    836 		j->filter_prog->filter = malloc(program_len);
    837 		if (!j->filter_prog->filter)
    838 			goto bad_filter_prog_instrs;
    839 
    840 		memcpy(j->filter_prog->filter, program, program_len);
    841 	}
    842 
    843 	count = j->mounts_count;
    844 	j->mounts_count = 0;
    845 	for (i = 0; i < count; ++i) {
    846 		unsigned long *flags;
    847 		const char *dest;
    848 		const char *type;
    849 		const char *src = consumestr(&serialized, &length);
    850 		if (!src)
    851 			goto bad_mounts;
    852 		dest = consumestr(&serialized, &length);
    853 		if (!dest)
    854 			goto bad_mounts;
    855 		type = consumestr(&serialized, &length);
    856 		if (!type)
    857 			goto bad_mounts;
    858 		flags = consumebytes(sizeof(*flags), &serialized, &length);
    859 		if (!flags)
    860 			goto bad_mounts;
    861 		if (minijail_mount(j, src, dest, type, *flags))
    862 			goto bad_mounts;
    863 	}
    864 
    865 	count = j->cgroup_count;
    866 	j->cgroup_count = 0;
    867 	for (i = 0; i < count; ++i) {
    868 		char *cgroup = consumestr(&serialized, &length);
    869 		if (!cgroup)
    870 			goto bad_cgroups;
    871 		j->cgroups[i] = strdup(cgroup);
    872 		if (!j->cgroups[i])
    873 			goto bad_cgroups;
    874 		++j->cgroup_count;
    875 	}
    876 
    877 	return 0;
    878 
    879 bad_cgroups:
    880 	while (j->mounts_head) {
    881 		struct mountpoint *m = j->mounts_head;
    882 		j->mounts_head = j->mounts_head->next;
    883 		free(m->type);
    884 		free(m->dest);
    885 		free(m->src);
    886 		free(m);
    887 	}
    888 	for (i = 0; i < j->cgroup_count; ++i)
    889 		free(j->cgroups[i]);
    890 bad_mounts:
    891 	if (j->flags.seccomp_filter && j->filter_len > 0) {
    892 		free(j->filter_prog->filter);
    893 		free(j->filter_prog);
    894 	}
    895 bad_filter_prog_instrs:
    896 	if (j->filter_prog)
    897 		free(j->filter_prog);
    898 bad_filters:
    899 	if (j->alt_syscall_table)
    900 		free(j->alt_syscall_table);
    901 bad_syscall_table:
    902 	if (j->chrootdir)
    903 		free(j->chrootdir);
    904 bad_chrootdir:
    905 	if (j->suppl_gid_list)
    906 		free(j->suppl_gid_list);
    907 bad_gid_list:
    908 	if (j->user)
    909 		free(j->user);
    910 clear_pointers:
    911 	j->user = NULL;
    912 	j->suppl_gid_list = NULL;
    913 	j->chrootdir = NULL;
    914 	j->alt_syscall_table = NULL;
    915 	j->cgroup_count = 0;
    916 out:
    917 	return ret;
    918 }
    919 
    920 static void write_ugid_mappings(const struct minijail *j)
    921 {
    922 	int fd, ret, len;
    923 	size_t sz;
    924 	char fname[32];
    925 
    926 	sz = sizeof(fname);
    927 	if (j->uidmap) {
    928 		ret = snprintf(fname, sz, "/proc/%d/uid_map", j->initpid);
    929 		if (ret < 0 || (size_t)ret >= sz)
    930 			die("failed to write file name of uid_map");
    931 		fd = open(fname, O_WRONLY);
    932 		if (fd < 0)
    933 			pdie("failed to open '%s'", fname);
    934 		len = strlen(j->uidmap);
    935 		if (write(fd, j->uidmap, len) < len)
    936 			die("failed to set uid_map");
    937 		close(fd);
    938 	}
    939 	if (j->gidmap) {
    940 		ret = snprintf(fname, sz, "/proc/%d/gid_map", j->initpid);
    941 		if (ret < 0 || (size_t)ret >= sz)
    942 			die("failed to write file name of gid_map");
    943 		fd = open(fname, O_WRONLY);
    944 		if (fd < 0)
    945 			pdie("failed to open '%s'", fname);
    946 		len = strlen(j->gidmap);
    947 		if (write(fd, j->gidmap, len) < len)
    948 			die("failed to set gid_map");
    949 		close(fd);
    950 	}
    951 }
    952 
    953 static void parent_setup_complete(int *pipe_fds)
    954 {
    955 	close(pipe_fds[0]);
    956 	close(pipe_fds[1]);
    957 }
    958 
    959 /*
    960  * wait_for_parent_setup: Called by the child process to wait for any
    961  * further parent-side setup to complete before continuing.
    962  */
    963 static void wait_for_parent_setup(int *pipe_fds)
    964 {
    965 	char buf;
    966 
    967 	close(pipe_fds[1]);
    968 
    969 	/* Wait for parent to complete setup and close the pipe. */
    970 	if (read(pipe_fds[0], &buf, 1) != 0)
    971 		die("failed to sync with parent");
    972 	close(pipe_fds[0]);
    973 }
    974 
    975 static void enter_user_namespace(const struct minijail *j)
    976 {
    977 	if (j->uidmap && setresuid(0, 0, 0))
    978 		pdie("setresuid");
    979 	if (j->gidmap && setresgid(0, 0, 0))
    980 		pdie("setresgid");
    981 }
    982 
    983 /*
    984  * mount_one: Applies mounts from @m for @j, recursing as needed.
    985  * @j Minijail these mounts are for
    986  * @m Head of list of mounts
    987  *
    988  * Returns 0 for success.
    989  */
    990 static int mount_one(const struct minijail *j, struct mountpoint *m)
    991 {
    992 	int ret;
    993 	char *dest;
    994 	int remount_ro = 0;
    995 
    996 	/* |dest| has a leading "/". */
    997 	if (asprintf(&dest, "%s%s", j->chrootdir, m->dest) < 0)
    998 		return -ENOMEM;
    999 
   1000 	/*
   1001 	 * R/O bind mounts have to be remounted since 'bind' and 'ro'
   1002 	 * can't both be specified in the original bind mount.
   1003 	 * Remount R/O after the initial mount.
   1004 	 */
   1005 	if ((m->flags & MS_BIND) && (m->flags & MS_RDONLY)) {
   1006 		remount_ro = 1;
   1007 		m->flags &= ~MS_RDONLY;
   1008 	}
   1009 
   1010 	ret = mount(m->src, dest, m->type, m->flags, NULL);
   1011 	if (ret)
   1012 		pdie("mount: %s -> %s", m->src, dest);
   1013 
   1014 	if (remount_ro) {
   1015 		m->flags |= MS_RDONLY;
   1016 		ret = mount(m->src, dest, NULL,
   1017 			    m->flags | MS_REMOUNT, NULL);
   1018 		if (ret)
   1019 			pdie("bind ro: %s -> %s", m->src, dest);
   1020 	}
   1021 
   1022 	free(dest);
   1023 	if (m->next)
   1024 		return mount_one(j, m->next);
   1025 	return ret;
   1026 }
   1027 
   1028 int enter_chroot(const struct minijail *j)
   1029 {
   1030 	int ret;
   1031 
   1032 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
   1033 		return ret;
   1034 
   1035 	if (chroot(j->chrootdir))
   1036 		return -errno;
   1037 
   1038 	if (chdir("/"))
   1039 		return -errno;
   1040 
   1041 	return 0;
   1042 }
   1043 
   1044 int enter_pivot_root(const struct minijail *j)
   1045 {
   1046 	int ret, oldroot, newroot;
   1047 
   1048 	if (j->mounts_head && (ret = mount_one(j, j->mounts_head)))
   1049 		return ret;
   1050 
   1051 	/*
   1052 	 * Keep the fd for both old and new root.
   1053 	 * It will be used in fchdir later.
   1054 	 */
   1055 	oldroot = open("/", O_DIRECTORY | O_RDONLY);
   1056 	if (oldroot < 0)
   1057 		pdie("failed to open / for fchdir");
   1058 	newroot = open(j->chrootdir, O_DIRECTORY | O_RDONLY);
   1059 	if (newroot < 0)
   1060 		pdie("failed to open %s for fchdir", j->chrootdir);
   1061 
   1062 	/*
   1063 	 * To ensure chrootdir is the root of a file system,
   1064 	 * do a self bind mount.
   1065 	 */
   1066 	if (mount(j->chrootdir, j->chrootdir, "bind", MS_BIND | MS_REC, ""))
   1067 		pdie("failed to bind mount '%s'", j->chrootdir);
   1068 	if (chdir(j->chrootdir))
   1069 		return -errno;
   1070 	if (syscall(SYS_pivot_root, ".", "."))
   1071 		pdie("pivot_root");
   1072 
   1073 	/*
   1074 	 * Now the old root is mounted on top of the new root. Use fchdir to
   1075 	 * change to the old root and unmount it.
   1076 	 */
   1077 	if (fchdir(oldroot))
   1078 		pdie("failed to fchdir to old /");
   1079 	/* The old root might be busy, so use lazy unmount. */
   1080 	if (umount2(".", MNT_DETACH))
   1081 		pdie("umount(/)");
   1082 	/* Change back to the new root. */
   1083 	if (fchdir(newroot))
   1084 		return -errno;
   1085 	if (chroot("/"))
   1086 		return -errno;
   1087 	/* Set correct CWD for getcwd(3). */
   1088 	if (chdir("/"))
   1089 		return -errno;
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 int mount_tmp(void)
   1095 {
   1096 	return mount("none", "/tmp", "tmpfs", 0, "size=64M,mode=777");
   1097 }
   1098 
   1099 int remount_proc_readonly(const struct minijail *j)
   1100 {
   1101 	const char *kProcPath = "/proc";
   1102 	const unsigned int kSafeFlags = MS_NODEV | MS_NOEXEC | MS_NOSUID;
   1103 	/*
   1104 	 * Right now, we're holding a reference to our parent's old mount of
   1105 	 * /proc in our namespace, which means using MS_REMOUNT here would
   1106 	 * mutate our parent's mount as well, even though we're in a VFS
   1107 	 * namespace (!). Instead, remove their mount from our namespace
   1108 	 * and make our own. However, if we are in a new user namespace, /proc
   1109 	 * is not seen as mounted, so don't return error if umount() fails.
   1110 	 */
   1111 	if (umount2(kProcPath, MNT_DETACH) && !j->flags.userns)
   1112 		return -errno;
   1113 	if (mount("", kProcPath, "proc", kSafeFlags | MS_RDONLY, ""))
   1114 		return -errno;
   1115 	return 0;
   1116 }
   1117 
   1118 static void write_pid_to_path(pid_t pid, const char *path)
   1119 {
   1120 	FILE *fp = fopen(path, "w");
   1121 
   1122 	if (!fp)
   1123 		pdie("failed to open '%s'", path);
   1124 	if (fprintf(fp, "%d\n", (int)pid) < 0)
   1125 		pdie("fprintf(%s)", path);
   1126 	if (fclose(fp))
   1127 		pdie("fclose(%s)", path);
   1128 }
   1129 
   1130 static void write_pid_file(const struct minijail *j)
   1131 {
   1132 	write_pid_to_path(j->initpid, j->pid_file_path);
   1133 }
   1134 
   1135 static void add_to_cgroups(const struct minijail *j)
   1136 {
   1137 	size_t i;
   1138 
   1139 	for (i = 0; i < j->cgroup_count; ++i)
   1140 		write_pid_to_path(j->initpid, j->cgroups[i]);
   1141 }
   1142 
   1143 void drop_ugid(const struct minijail *j)
   1144 {
   1145 	if (j->flags.usergroups && j->flags.suppl_gids) {
   1146 		die("tried to inherit *and* set supplementary groups;"
   1147 		    " can only do one");
   1148 	}
   1149 
   1150 	if (j->flags.usergroups) {
   1151 		if (initgroups(j->user, j->usergid))
   1152 			pdie("initgroups");
   1153 	} else if (j->flags.suppl_gids) {
   1154 		if (setgroups(j->suppl_gid_count, j->suppl_gid_list)) {
   1155 			pdie("setgroups");
   1156 		}
   1157 	} else {
   1158 		/*
   1159 		 * Only attempt to clear supplementary groups if we are changing
   1160 		 * users.
   1161 		 */
   1162 		if ((j->uid || j->gid) && setgroups(0, NULL))
   1163 			pdie("setgroups");
   1164 	}
   1165 
   1166 	if (j->flags.gid && setresgid(j->gid, j->gid, j->gid))
   1167 		pdie("setresgid");
   1168 
   1169 	if (j->flags.uid && setresuid(j->uid, j->uid, j->uid))
   1170 		pdie("setresuid");
   1171 }
   1172 
   1173 /*
   1174  * We specifically do not use cap_valid() as that only tells us the last
   1175  * valid cap we were *compiled* against (i.e. what the version of kernel
   1176  * headers says). If we run on a different kernel version, then it's not
   1177  * uncommon for that to be less (if an older kernel) or more (if a newer
   1178  * kernel).
   1179  * Normally, we suck up the answer via /proc. On Android, not all processes are
   1180  * guaranteed to be able to access '/proc/sys/kernel/cap_last_cap' so we
   1181  * programmatically find the value by calling prctl(PR_CAPBSET_READ).
   1182  */
   1183 static unsigned int get_last_valid_cap()
   1184 {
   1185 	unsigned int last_valid_cap = 0;
   1186 	if (is_android()) {
   1187 		for (; prctl(PR_CAPBSET_READ, last_valid_cap, 0, 0, 0) >= 0;
   1188 		     ++last_valid_cap);
   1189 
   1190 		/* |last_valid_cap| will be the first failing value. */
   1191 		if (last_valid_cap > 0) {
   1192 			last_valid_cap--;
   1193 		}
   1194 	} else {
   1195 		const char cap_file[] = "/proc/sys/kernel/cap_last_cap";
   1196 		FILE *fp = fopen(cap_file, "re");
   1197 		if (fscanf(fp, "%u", &last_valid_cap) != 1)
   1198 			pdie("fscanf(%s)", cap_file);
   1199 		fclose(fp);
   1200 	}
   1201 	return last_valid_cap;
   1202 }
   1203 
   1204 void drop_caps(const struct minijail *j, unsigned int last_valid_cap)
   1205 {
   1206 	cap_t caps = cap_get_proc();
   1207 	cap_value_t flag[1];
   1208 	const uint64_t one = 1;
   1209 	unsigned int i;
   1210 	if (!caps)
   1211 		die("can't get process caps");
   1212 	if (cap_clear_flag(caps, CAP_INHERITABLE))
   1213 		die("can't clear inheritable caps");
   1214 	if (cap_clear_flag(caps, CAP_EFFECTIVE))
   1215 		die("can't clear effective caps");
   1216 	if (cap_clear_flag(caps, CAP_PERMITTED))
   1217 		die("can't clear permitted caps");
   1218 	for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
   1219 		/* Keep CAP_SETPCAP for dropping bounding set bits. */
   1220 		if (i != CAP_SETPCAP && !(j->caps & (one << i)))
   1221 			continue;
   1222 		flag[0] = i;
   1223 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_SET))
   1224 			die("can't add effective cap");
   1225 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_SET))
   1226 			die("can't add permitted cap");
   1227 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_SET))
   1228 			die("can't add inheritable cap");
   1229 	}
   1230 	if (cap_set_proc(caps))
   1231 		die("can't apply initial cleaned capset");
   1232 
   1233 	/*
   1234 	 * Instead of dropping bounding set first, do it here in case
   1235 	 * the caller had a more permissive bounding set which could
   1236 	 * have been used above to raise a capability that wasn't already
   1237 	 * present. This requires CAP_SETPCAP, so we raised/kept it above.
   1238 	 */
   1239 	for (i = 0; i < sizeof(j->caps) * 8 && i <= last_valid_cap; ++i) {
   1240 		if (j->caps & (one << i))
   1241 			continue;
   1242 		if (prctl(PR_CAPBSET_DROP, i))
   1243 			pdie("prctl(PR_CAPBSET_DROP)");
   1244 	}
   1245 
   1246 	/* If CAP_SETPCAP wasn't specifically requested, now we remove it. */
   1247 	if ((j->caps & (one << CAP_SETPCAP)) == 0) {
   1248 		flag[0] = CAP_SETPCAP;
   1249 		if (cap_set_flag(caps, CAP_EFFECTIVE, 1, flag, CAP_CLEAR))
   1250 			die("can't clear effective cap");
   1251 		if (cap_set_flag(caps, CAP_PERMITTED, 1, flag, CAP_CLEAR))
   1252 			die("can't clear permitted cap");
   1253 		if (cap_set_flag(caps, CAP_INHERITABLE, 1, flag, CAP_CLEAR))
   1254 			die("can't clear inheritable cap");
   1255 	}
   1256 
   1257 	if (cap_set_proc(caps))
   1258 		die("can't apply final cleaned capset");
   1259 
   1260 	cap_free(caps);
   1261 }
   1262 
   1263 void set_seccomp_filter(const struct minijail *j)
   1264 {
   1265 	/*
   1266 	 * Set no_new_privs. See </kernel/seccomp.c> and </kernel/sys.c>
   1267 	 * in the kernel source tree for an explanation of the parameters.
   1268 	 */
   1269 	if (j->flags.no_new_privs) {
   1270 		if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))
   1271 			pdie("prctl(PR_SET_NO_NEW_PRIVS)");
   1272 	}
   1273 
   1274 	/*
   1275 	 * Code running with ASan
   1276 	 * (https://github.com/google/sanitizers/wiki/AddressSanitizer)
   1277 	 * will make system calls not included in the syscall filter policy,
   1278 	 * which will likely crash the program. Skip setting seccomp filter in
   1279 	 * that case.
   1280 	 * 'running_with_asan()' has no inputs and is completely defined at
   1281 	 * build time, so this cannot be used by an attacker to skip setting
   1282 	 * seccomp filter.
   1283 	 */
   1284 	if (j->flags.seccomp_filter && running_with_asan()) {
   1285 		warn("running with ASan, not setting seccomp filter");
   1286 		return;
   1287 	}
   1288 
   1289 	/*
   1290 	 * If we're logging seccomp filter failures,
   1291 	 * install the SIGSYS handler first.
   1292 	 */
   1293 	if (j->flags.seccomp_filter && j->flags.log_seccomp_filter) {
   1294 		if (install_sigsys_handler())
   1295 			pdie("install SIGSYS handler");
   1296 		warn("logging seccomp filter failures");
   1297 	}
   1298 
   1299 	/*
   1300 	 * Install the syscall filter.
   1301 	 */
   1302 	if (j->flags.seccomp_filter) {
   1303 		if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,
   1304 			  j->filter_prog)) {
   1305 			if ((errno == EINVAL) && can_softfail()) {
   1306 				warn("seccomp not supported");
   1307 				return;
   1308 			}
   1309 			pdie("prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER)");
   1310 		}
   1311 	}
   1312 }
   1313 
   1314 void API minijail_enter(const struct minijail *j)
   1315 {
   1316 	/*
   1317 	 * If we're dropping caps, get the last valid cap from /proc now,
   1318 	 * since /proc can be unmounted before drop_caps() is called.
   1319 	 */
   1320 	unsigned int last_valid_cap = 0;
   1321 	if (j->flags.caps)
   1322 		last_valid_cap = get_last_valid_cap();
   1323 
   1324 	if (j->flags.pids)
   1325 		die("tried to enter a pid-namespaced jail;"
   1326 		    " try minijail_run()?");
   1327 
   1328 	if (j->flags.usergroups && !j->user)
   1329 		die("usergroup inheritance without username");
   1330 
   1331 	/*
   1332 	 * We can't recover from failures if we've dropped privileges partially,
   1333 	 * so we don't even try. If any of our operations fail, we abort() the
   1334 	 * entire process.
   1335 	 */
   1336 	if (j->flags.enter_vfs && setns(j->mountns_fd, CLONE_NEWNS))
   1337 		pdie("setns(CLONE_NEWNS)");
   1338 
   1339 	if (j->flags.vfs) {
   1340 		if (unshare(CLONE_NEWNS))
   1341 			pdie("unshare(vfs)");
   1342 		/*
   1343 		 * Remount all filesystems as private. If they are shared
   1344 		 * new bind mounts will creep out of our namespace.
   1345 		 * https://www.kernel.org/doc/Documentation/filesystems/sharedsubtree.txt
   1346 		 */
   1347 		if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL))
   1348 			pdie("mount(/, private)");
   1349 	}
   1350 
   1351 	if (j->flags.ipc && unshare(CLONE_NEWIPC)) {
   1352 		pdie("unshare(ipc)");
   1353 	}
   1354 
   1355 	if (j->flags.enter_net) {
   1356 		if (setns(j->netns_fd, CLONE_NEWNET))
   1357 			pdie("setns(CLONE_NEWNET)");
   1358 	} else if (j->flags.net && unshare(CLONE_NEWNET)) {
   1359 		pdie("unshare(net)");
   1360 	}
   1361 
   1362 	if (j->flags.chroot && enter_chroot(j))
   1363 		pdie("chroot");
   1364 
   1365 	if (j->flags.pivot_root && enter_pivot_root(j))
   1366 		pdie("pivot_root");
   1367 
   1368 	if (j->flags.mount_tmp && mount_tmp())
   1369 		pdie("mount_tmp");
   1370 
   1371 	if (j->flags.remount_proc_ro && remount_proc_readonly(j))
   1372 		pdie("remount");
   1373 
   1374 	if (j->flags.caps) {
   1375 		/*
   1376 		 * POSIX capabilities are a bit tricky. If we drop our
   1377 		 * capability to change uids, our attempt to use setuid()
   1378 		 * below will fail. Hang on to root caps across setuid(), then
   1379 		 * lock securebits.
   1380 		 */
   1381 		if (prctl(PR_SET_KEEPCAPS, 1))
   1382 			pdie("prctl(PR_SET_KEEPCAPS)");
   1383 		if (prctl
   1384 		    (PR_SET_SECUREBITS, SECURE_ALL_BITS | SECURE_ALL_LOCKS))
   1385 			pdie("prctl(PR_SET_SECUREBITS)");
   1386 	}
   1387 
   1388 	/*
   1389 	 * If we're setting no_new_privs, we can drop privileges
   1390 	 * before setting seccomp filter. This way filter policies
   1391 	 * don't need to allow privilege-dropping syscalls.
   1392 	 */
   1393 	if (j->flags.no_new_privs) {
   1394 		drop_ugid(j);
   1395 		if (j->flags.caps)
   1396 			drop_caps(j, last_valid_cap);
   1397 
   1398 		set_seccomp_filter(j);
   1399 	} else {
   1400 		/*
   1401 		 * If we're not setting no_new_privs,
   1402 		 * we need to set seccomp filter *before* dropping privileges.
   1403 		 * WARNING: this means that filter policies *must* allow
   1404 		 * setgroups()/setresgid()/setresuid() for dropping root and
   1405 		 * capget()/capset()/prctl() for dropping caps.
   1406 		 */
   1407 		set_seccomp_filter(j);
   1408 
   1409 		drop_ugid(j);
   1410 		if (j->flags.caps)
   1411 			drop_caps(j, last_valid_cap);
   1412 	}
   1413 
   1414 	/*
   1415 	 * Select the specified alternate syscall table.  The table must not
   1416 	 * block prctl(2) if we're using seccomp as well.
   1417 	 */
   1418 	if (j->flags.alt_syscall) {
   1419 		if (prctl(PR_ALT_SYSCALL, 1, j->alt_syscall_table))
   1420 			pdie("prctl(PR_ALT_SYSCALL)");
   1421 	}
   1422 
   1423 	/*
   1424 	 * seccomp has to come last since it cuts off all the other
   1425 	 * privilege-dropping syscalls :)
   1426 	 */
   1427 	if (j->flags.seccomp && prctl(PR_SET_SECCOMP, 1)) {
   1428 		if ((errno == EINVAL) && can_softfail()) {
   1429 			warn("seccomp not supported");
   1430 			return;
   1431 		}
   1432 		pdie("prctl(PR_SET_SECCOMP)");
   1433 	}
   1434 }
   1435 
   1436 /* TODO(wad) will visibility affect this variable? */
   1437 static int init_exitstatus = 0;
   1438 
   1439 void init_term(int __attribute__ ((unused)) sig)
   1440 {
   1441 	_exit(init_exitstatus);
   1442 }
   1443 
   1444 int init(pid_t rootpid)
   1445 {
   1446 	pid_t pid;
   1447 	int status;
   1448 	/* so that we exit with the right status */
   1449 	signal(SIGTERM, init_term);
   1450 	/* TODO(wad) self jail with seccomp_filters here. */
   1451 	while ((pid = wait(&status)) > 0) {
   1452 		/*
   1453 		 * This loop will only end when either there are no processes
   1454 		 * left inside our pid namespace or we get a signal.
   1455 		 */
   1456 		if (pid == rootpid)
   1457 			init_exitstatus = status;
   1458 	}
   1459 	if (!WIFEXITED(init_exitstatus))
   1460 		_exit(MINIJAIL_ERR_INIT);
   1461 	_exit(WEXITSTATUS(init_exitstatus));
   1462 }
   1463 
   1464 int API minijail_from_fd(int fd, struct minijail *j)
   1465 {
   1466 	size_t sz = 0;
   1467 	size_t bytes = read(fd, &sz, sizeof(sz));
   1468 	char *buf;
   1469 	int r;
   1470 	if (sizeof(sz) != bytes)
   1471 		return -EINVAL;
   1472 	if (sz > USHRT_MAX)	/* arbitrary sanity check */
   1473 		return -E2BIG;
   1474 	buf = malloc(sz);
   1475 	if (!buf)
   1476 		return -ENOMEM;
   1477 	bytes = read(fd, buf, sz);
   1478 	if (bytes != sz) {
   1479 		free(buf);
   1480 		return -EINVAL;
   1481 	}
   1482 	r = minijail_unmarshal(j, buf, sz);
   1483 	free(buf);
   1484 	return r;
   1485 }
   1486 
   1487 int API minijail_to_fd(struct minijail *j, int fd)
   1488 {
   1489 	char *buf;
   1490 	size_t sz = minijail_size(j);
   1491 	ssize_t written;
   1492 	int r;
   1493 
   1494 	if (!sz)
   1495 		return -EINVAL;
   1496 	buf = malloc(sz);
   1497 	r = minijail_marshal(j, buf, sz);
   1498 	if (r) {
   1499 		free(buf);
   1500 		return r;
   1501 	}
   1502 	/* Sends [size][minijail]. */
   1503 	written = write(fd, &sz, sizeof(sz));
   1504 	if (written != sizeof(sz)) {
   1505 		free(buf);
   1506 		return -EFAULT;
   1507 	}
   1508 	written = write(fd, buf, sz);
   1509 	if (written < 0 || (size_t) written != sz) {
   1510 		free(buf);
   1511 		return -EFAULT;
   1512 	}
   1513 	free(buf);
   1514 	return 0;
   1515 }
   1516 
   1517 int setup_preload(void)
   1518 {
   1519 #if defined(__ANDROID__)
   1520 	/* Don't use LDPRELOAD on Brillo. */
   1521 	return 0;
   1522 #else
   1523 	char *oldenv = getenv(kLdPreloadEnvVar) ? : "";
   1524 	char *newenv = malloc(strlen(oldenv) + 2 + strlen(PRELOADPATH));
   1525 	if (!newenv)
   1526 		return -ENOMEM;
   1527 
   1528 	/* Only insert a separating space if we have something to separate... */
   1529 	sprintf(newenv, "%s%s%s", oldenv, strlen(oldenv) ? " " : "",
   1530 		PRELOADPATH);
   1531 
   1532 	/* setenv() makes a copy of the string we give it. */
   1533 	setenv(kLdPreloadEnvVar, newenv, 1);
   1534 	free(newenv);
   1535 	return 0;
   1536 #endif
   1537 }
   1538 
   1539 int setup_pipe(int fds[2])
   1540 {
   1541 	int r = pipe(fds);
   1542 	char fd_buf[11];
   1543 	if (r)
   1544 		return r;
   1545 	r = snprintf(fd_buf, sizeof(fd_buf), "%d", fds[0]);
   1546 	if (r <= 0)
   1547 		return -EINVAL;
   1548 	setenv(kFdEnvVar, fd_buf, 1);
   1549 	return 0;
   1550 }
   1551 
   1552 int setup_pipe_end(int fds[2], size_t index)
   1553 {
   1554 	if (index > 1)
   1555 		return -1;
   1556 
   1557 	close(fds[1 - index]);
   1558 	return fds[index];
   1559 }
   1560 
   1561 int setup_and_dupe_pipe_end(int fds[2], size_t index, int fd)
   1562 {
   1563 	if (index > 1)
   1564 		return -1;
   1565 
   1566 	close(fds[1 - index]);
   1567 	/* dup2(2) the corresponding end of the pipe into |fd|. */
   1568 	return dup2(fds[index], fd);
   1569 }
   1570 
   1571 int minijail_run_internal(struct minijail *j, const char *filename,
   1572 			  char *const argv[], pid_t *pchild_pid,
   1573 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
   1574 			  int use_preload);
   1575 
   1576 int API minijail_run(struct minijail *j, const char *filename,
   1577 		     char *const argv[])
   1578 {
   1579 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
   1580 				     true);
   1581 }
   1582 
   1583 int API minijail_run_pid(struct minijail *j, const char *filename,
   1584 			 char *const argv[], pid_t *pchild_pid)
   1585 {
   1586 	return minijail_run_internal(j, filename, argv, pchild_pid,
   1587 				     NULL, NULL, NULL, true);
   1588 }
   1589 
   1590 int API minijail_run_pipe(struct minijail *j, const char *filename,
   1591 			  char *const argv[], int *pstdin_fd)
   1592 {
   1593 	return minijail_run_internal(j, filename, argv, NULL, pstdin_fd,
   1594 				     NULL, NULL, true);
   1595 }
   1596 
   1597 int API minijail_run_pid_pipes(struct minijail *j, const char *filename,
   1598 			       char *const argv[], pid_t *pchild_pid,
   1599 			       int *pstdin_fd, int *pstdout_fd, int *pstderr_fd)
   1600 {
   1601 	return minijail_run_internal(j, filename, argv, pchild_pid,
   1602 				     pstdin_fd, pstdout_fd, pstderr_fd, true);
   1603 }
   1604 
   1605 int API minijail_run_no_preload(struct minijail *j, const char *filename,
   1606 				char *const argv[])
   1607 {
   1608 	return minijail_run_internal(j, filename, argv, NULL, NULL, NULL, NULL,
   1609 				     false);
   1610 }
   1611 
   1612 int API minijail_run_pid_pipes_no_preload(struct minijail *j,
   1613 					  const char *filename,
   1614 					  char *const argv[],
   1615 					  pid_t *pchild_pid,
   1616 					  int *pstdin_fd, int *pstdout_fd,
   1617 					  int *pstderr_fd) {
   1618 	return minijail_run_internal(j, filename, argv, pchild_pid,
   1619 				     pstdin_fd, pstdout_fd, pstderr_fd, false);
   1620 }
   1621 
   1622 int minijail_run_internal(struct minijail *j, const char *filename,
   1623 			  char *const argv[], pid_t *pchild_pid,
   1624 			  int *pstdin_fd, int *pstdout_fd, int *pstderr_fd,
   1625 			  int use_preload)
   1626 {
   1627 	char *oldenv, *oldenv_copy = NULL;
   1628 	pid_t child_pid;
   1629 	int pipe_fds[2];
   1630 	int stdin_fds[2];
   1631 	int stdout_fds[2];
   1632 	int stderr_fds[2];
   1633 	int child_sync_pipe_fds[2];
   1634 	int sync_child = 0;
   1635 	int ret;
   1636 	/* We need to remember this across the minijail_preexec() call. */
   1637 	int pid_namespace = j->flags.pids;
   1638 	int do_init = j->flags.do_init;
   1639 
   1640 	if (use_preload) {
   1641 		oldenv = getenv(kLdPreloadEnvVar);
   1642 		if (oldenv) {
   1643 			oldenv_copy = strdup(oldenv);
   1644 			if (!oldenv_copy)
   1645 				return -ENOMEM;
   1646 		}
   1647 
   1648 		if (setup_preload())
   1649 			return -EFAULT;
   1650 	}
   1651 
   1652 	if (!use_preload) {
   1653 		if (j->flags.caps)
   1654 			die("capabilities are not supported without "
   1655 			    "LD_PRELOAD");
   1656 	}
   1657 
   1658 	/*
   1659 	 * Make the process group ID of this process equal to its PID, so that
   1660 	 * both the Minijail process and the jailed process can be killed
   1661 	 * together.
   1662 	 * Don't fail on EPERM, since setpgid(0, 0) can only EPERM when
   1663 	 * the process is already a process group leader.
   1664 	 */
   1665 	if (setpgid(0 /* use calling PID */, 0 /* make PGID = PID */)) {
   1666 		if (errno != EPERM) {
   1667 			pdie("setpgid(0, 0)");
   1668 		}
   1669 	}
   1670 
   1671 	if (use_preload) {
   1672 		/*
   1673 		 * Before we fork(2) and execve(2) the child process, we need
   1674 		 * to open a pipe(2) to send the minijail configuration over.
   1675 		 */
   1676 		if (setup_pipe(pipe_fds))
   1677 			return -EFAULT;
   1678 	}
   1679 
   1680 	/*
   1681 	 * If we want to write to the child process' standard input,
   1682 	 * create the pipe(2) now.
   1683 	 */
   1684 	if (pstdin_fd) {
   1685 		if (pipe(stdin_fds))
   1686 			return -EFAULT;
   1687 	}
   1688 
   1689 	/*
   1690 	 * If we want to read from the child process' standard output,
   1691 	 * create the pipe(2) now.
   1692 	 */
   1693 	if (pstdout_fd) {
   1694 		if (pipe(stdout_fds))
   1695 			return -EFAULT;
   1696 	}
   1697 
   1698 	/*
   1699 	 * If we want to read from the child process' standard error,
   1700 	 * create the pipe(2) now.
   1701 	 */
   1702 	if (pstderr_fd) {
   1703 		if (pipe(stderr_fds))
   1704 			return -EFAULT;
   1705 	}
   1706 
   1707 	/*
   1708 	 * If we want to set up a new uid/gid mapping in the user namespace,
   1709 	 * or if we need to add the child process to cgroups, create the pipe(2)
   1710 	 * to sync between parent and child.
   1711 	 */
   1712 	if (j->flags.userns || j->flags.cgroups) {
   1713 		sync_child = 1;
   1714 		if (pipe(child_sync_pipe_fds))
   1715 			return -EFAULT;
   1716 	}
   1717 
   1718 	/*
   1719 	 * Use sys_clone() if and only if we're creating a pid namespace.
   1720 	 *
   1721 	 * tl;dr: WARNING: do not mix pid namespaces and multithreading.
   1722 	 *
   1723 	 * In multithreaded programs, there are a bunch of locks inside libc,
   1724 	 * some of which may be held by other threads at the time that we call
   1725 	 * minijail_run_pid(). If we call fork(), glibc does its level best to
   1726 	 * ensure that we hold all of these locks before it calls clone()
   1727 	 * internally and drop them after clone() returns, but when we call
   1728 	 * sys_clone(2) directly, all that gets bypassed and we end up with a
   1729 	 * child address space where some of libc's important locks are held by
   1730 	 * other threads (which did not get cloned, and hence will never release
   1731 	 * those locks). This is okay so long as we call exec() immediately
   1732 	 * after, but a bunch of seemingly-innocent libc functions like setenv()
   1733 	 * take locks.
   1734 	 *
   1735 	 * Hence, only call sys_clone() if we need to, in order to get at pid
   1736 	 * namespacing. If we follow this path, the child's address space might
   1737 	 * have broken locks; you may only call functions that do not acquire
   1738 	 * any locks.
   1739 	 *
   1740 	 * Unfortunately, fork() acquires every lock it can get its hands on, as
   1741 	 * previously detailed, so this function is highly likely to deadlock
   1742 	 * later on (see "deadlock here") if we're multithreaded.
   1743 	 *
   1744 	 * We might hack around this by having the clone()d child (init of the
   1745 	 * pid namespace) return directly, rather than leaving the clone()d
   1746 	 * process hanging around to be init for the new namespace (and having
   1747 	 * its fork()ed child return in turn), but that process would be crippled
   1748 	 * with its libc locks potentially broken. We might try fork()ing in the
   1749 	 * parent before we clone() to ensure that we own all the locks, but
   1750 	 * then we have to have the forked child hanging around consuming
   1751 	 * resources (and possibly having file descriptors / shared memory
   1752 	 * regions / etc attached). We'd need to keep the child around to avoid
   1753 	 * having its children get reparented to init.
   1754 	 *
   1755 	 * TODO(ellyjones): figure out if the "forked child hanging around"
   1756 	 * problem is fixable or not. It would be nice if we worked in this
   1757 	 * case.
   1758 	 */
   1759 	if (pid_namespace) {
   1760 		int clone_flags = CLONE_NEWPID | SIGCHLD;
   1761 		if (j->flags.userns)
   1762 			clone_flags |= CLONE_NEWUSER;
   1763 		child_pid = syscall(SYS_clone, clone_flags, NULL);
   1764 	} else {
   1765 		child_pid = fork();
   1766 	}
   1767 
   1768 	if (child_pid < 0) {
   1769 		if (use_preload) {
   1770 			free(oldenv_copy);
   1771 		}
   1772 		die("failed to fork child");
   1773 	}
   1774 
   1775 	if (child_pid) {
   1776 		if (use_preload) {
   1777 			/* Restore parent's LD_PRELOAD. */
   1778 			if (oldenv_copy) {
   1779 				setenv(kLdPreloadEnvVar, oldenv_copy, 1);
   1780 				free(oldenv_copy);
   1781 			} else {
   1782 				unsetenv(kLdPreloadEnvVar);
   1783 			}
   1784 			unsetenv(kFdEnvVar);
   1785 		}
   1786 
   1787 		j->initpid = child_pid;
   1788 
   1789 		if (j->flags.pid_file)
   1790 			write_pid_file(j);
   1791 
   1792 		if (j->flags.cgroups)
   1793 			add_to_cgroups(j);
   1794 
   1795 		if (j->flags.userns)
   1796 			write_ugid_mappings(j);
   1797 
   1798 		if (sync_child)
   1799 			parent_setup_complete(child_sync_pipe_fds);
   1800 
   1801 		if (use_preload) {
   1802 			/* Send marshalled minijail. */
   1803 			close(pipe_fds[0]);	/* read endpoint */
   1804 			ret = minijail_to_fd(j, pipe_fds[1]);
   1805 			close(pipe_fds[1]);	/* write endpoint */
   1806 			if (ret) {
   1807 				kill(j->initpid, SIGKILL);
   1808 				die("failed to send marshalled minijail");
   1809 			}
   1810 		}
   1811 
   1812 		if (pchild_pid)
   1813 			*pchild_pid = child_pid;
   1814 
   1815 		/*
   1816 		 * If we want to write to the child process' standard input,
   1817 		 * set up the write end of the pipe.
   1818 		 */
   1819 		if (pstdin_fd)
   1820 			*pstdin_fd = setup_pipe_end(stdin_fds,
   1821 						    1 /* write end */);
   1822 
   1823 		/*
   1824 		 * If we want to read from the child process' standard output,
   1825 		 * set up the read end of the pipe.
   1826 		 */
   1827 		if (pstdout_fd)
   1828 			*pstdout_fd = setup_pipe_end(stdout_fds,
   1829 						     0 /* read end */);
   1830 
   1831 		/*
   1832 		 * If we want to read from the child process' standard error,
   1833 		 * set up the read end of the pipe.
   1834 		 */
   1835 		if (pstderr_fd)
   1836 			*pstderr_fd = setup_pipe_end(stderr_fds,
   1837 						     0 /* read end */);
   1838 
   1839 		return 0;
   1840 	}
   1841 	free(oldenv_copy);
   1842 
   1843 	if (j->flags.reset_signal_mask) {
   1844 		sigset_t signal_mask;
   1845 		if (sigemptyset(&signal_mask) != 0)
   1846 			pdie("sigemptyset failed");
   1847 		if (sigprocmask(SIG_SETMASK, &signal_mask, NULL) != 0)
   1848 			pdie("sigprocmask failed");
   1849 	}
   1850 
   1851 	if (sync_child)
   1852 		wait_for_parent_setup(child_sync_pipe_fds);
   1853 
   1854 	if (j->flags.userns)
   1855 		enter_user_namespace(j);
   1856 
   1857 	/*
   1858 	 * If we want to write to the jailed process' standard input,
   1859 	 * set up the read end of the pipe.
   1860 	 */
   1861 	if (pstdin_fd) {
   1862 		if (setup_and_dupe_pipe_end(stdin_fds, 0 /* read end */,
   1863 					    STDIN_FILENO) < 0)
   1864 			die("failed to set up stdin pipe");
   1865 	}
   1866 
   1867 	/*
   1868 	 * If we want to read from the jailed process' standard output,
   1869 	 * set up the write end of the pipe.
   1870 	 */
   1871 	if (pstdout_fd) {
   1872 		if (setup_and_dupe_pipe_end(stdout_fds, 1 /* write end */,
   1873 					    STDOUT_FILENO) < 0)
   1874 			die("failed to set up stdout pipe");
   1875 	}
   1876 
   1877 	/*
   1878 	 * If we want to read from the jailed process' standard error,
   1879 	 * set up the write end of the pipe.
   1880 	 */
   1881 	if (pstderr_fd) {
   1882 		if (setup_and_dupe_pipe_end(stderr_fds, 1 /* write end */,
   1883 					    STDERR_FILENO) < 0)
   1884 			die("failed to set up stderr pipe");
   1885 	}
   1886 
   1887 	/* If running an init program, let it decide when/how to mount /proc. */
   1888 	if (pid_namespace && !do_init)
   1889 		j->flags.remount_proc_ro = 0;
   1890 
   1891 	if (use_preload) {
   1892 		/* Strip out flags that cannot be inherited across execve(2). */
   1893 		minijail_preexec(j);
   1894 	} else {
   1895 		j->flags.pids = 0;
   1896 	}
   1897 	/* Jail this process, then execve() the target. */
   1898 	minijail_enter(j);
   1899 
   1900 	if (pid_namespace && do_init) {
   1901 		/*
   1902 		 * pid namespace: this process will become init inside the new
   1903 		 * namespace. We don't want all programs we might exec to have
   1904 		 * to know how to be init. Normally (do_init == 1) we fork off
   1905 		 * a child to actually run the program. If |do_init == 0|, we
   1906 		 * let the program keep pid 1 and be init.
   1907 		 *
   1908 		 * If we're multithreaded, we'll probably deadlock here. See
   1909 		 * WARNING above.
   1910 		 */
   1911 		child_pid = fork();
   1912 		if (child_pid < 0)
   1913 			_exit(child_pid);
   1914 		else if (child_pid > 0)
   1915 			init(child_pid);	/* never returns */
   1916 	}
   1917 
   1918 	/*
   1919 	 * If we aren't pid-namespaced, or the jailed program asked to be init:
   1920 	 *   calling process
   1921 	 *   -> execve()-ing process
   1922 	 * If we are:
   1923 	 *   calling process
   1924 	 *   -> init()-ing process
   1925 	 *      -> execve()-ing process
   1926 	 */
   1927 	_exit(execve(filename, argv, environ));
   1928 }
   1929 
   1930 int API minijail_kill(struct minijail *j)
   1931 {
   1932 	int st;
   1933 	if (kill(j->initpid, SIGTERM))
   1934 		return -errno;
   1935 	if (waitpid(j->initpid, &st, 0) < 0)
   1936 		return -errno;
   1937 	return st;
   1938 }
   1939 
   1940 int API minijail_wait(struct minijail *j)
   1941 {
   1942 	int st;
   1943 	if (waitpid(j->initpid, &st, 0) < 0)
   1944 		return -errno;
   1945 
   1946 	if (!WIFEXITED(st)) {
   1947 		int error_status = st;
   1948 		if (WIFSIGNALED(st)) {
   1949 			int signum = WTERMSIG(st);
   1950 			warn("child process %d received signal %d",
   1951 			     j->initpid, signum);
   1952 			/*
   1953 			 * We return MINIJAIL_ERR_JAIL if the process received
   1954 			 * SIGSYS, which happens when a syscall is blocked by
   1955 			 * seccomp filters.
   1956 			 * If not, we do what bash(1) does:
   1957 			 * $? = 128 + signum
   1958 			 */
   1959 			if (signum == SIGSYS) {
   1960 				error_status = MINIJAIL_ERR_JAIL;
   1961 			} else {
   1962 				error_status = 128 + signum;
   1963 			}
   1964 		}
   1965 		return error_status;
   1966 	}
   1967 
   1968 	int exit_status = WEXITSTATUS(st);
   1969 	if (exit_status != 0)
   1970 		info("child process %d exited with status %d",
   1971 		     j->initpid, exit_status);
   1972 
   1973 	return exit_status;
   1974 }
   1975 
   1976 void API minijail_destroy(struct minijail *j)
   1977 {
   1978 	size_t i;
   1979 
   1980 	if (j->flags.seccomp_filter && j->filter_prog) {
   1981 		free(j->filter_prog->filter);
   1982 		free(j->filter_prog);
   1983 	}
   1984 	while (j->mounts_head) {
   1985 		struct mountpoint *m = j->mounts_head;
   1986 		j->mounts_head = j->mounts_head->next;
   1987 		free(m->type);
   1988 		free(m->dest);
   1989 		free(m->src);
   1990 		free(m);
   1991 	}
   1992 	j->mounts_tail = NULL;
   1993 	if (j->user)
   1994 		free(j->user);
   1995 	if (j->suppl_gid_list)
   1996 		free(j->suppl_gid_list);
   1997 	if (j->chrootdir)
   1998 		free(j->chrootdir);
   1999 	if (j->alt_syscall_table)
   2000 		free(j->alt_syscall_table);
   2001 	for (i = 0; i < j->cgroup_count; ++i)
   2002 		free(j->cgroups[i]);
   2003 	free(j);
   2004 }
   2005