Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jccoefct.c
      3  *
      4  * Copyright (C) 1994-1997, Thomas G. Lane.
      5  * Modified 2003-2011 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains the coefficient buffer controller for compression.
     10  * This controller is the top level of the JPEG compressor proper.
     11  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
     12  */
     13 
     14 #define JPEG_INTERNALS
     15 #include "jinclude.h"
     16 #include "jpeglib.h"
     17 
     18 
     19 /* We use a full-image coefficient buffer when doing Huffman optimization,
     20  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
     21  * step is run during the first pass, and subsequent passes need only read
     22  * the buffered coefficients.
     23  */
     24 #ifdef ENTROPY_OPT_SUPPORTED
     25 #define FULL_COEF_BUFFER_SUPPORTED
     26 #else
     27 #ifdef C_MULTISCAN_FILES_SUPPORTED
     28 #define FULL_COEF_BUFFER_SUPPORTED
     29 #endif
     30 #endif
     31 
     32 
     33 /* Private buffer controller object */
     34 
     35 typedef struct {
     36   struct jpeg_c_coef_controller pub; /* public fields */
     37 
     38   JDIMENSION iMCU_row_num;	/* iMCU row # within image */
     39   JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
     40   int MCU_vert_offset;		/* counts MCU rows within iMCU row */
     41   int MCU_rows_per_iMCU_row;	/* number of such rows needed */
     42 
     43   /* For single-pass compression, it's sufficient to buffer just one MCU
     44    * (although this may prove a bit slow in practice).  We allocate a
     45    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
     46    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
     47    * it's not really very big; this is to keep the module interfaces unchanged
     48    * when a large coefficient buffer is necessary.)
     49    * In multi-pass modes, this array points to the current MCU's blocks
     50    * within the virtual arrays.
     51    */
     52   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
     53 
     54   /* In multi-pass modes, we need a virtual block array for each component. */
     55   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
     56 } my_coef_controller;
     57 
     58 typedef my_coef_controller * my_coef_ptr;
     59 
     60 
     61 /* Forward declarations */
     62 METHODDEF(boolean) compress_data
     63     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     64 #ifdef FULL_COEF_BUFFER_SUPPORTED
     65 METHODDEF(boolean) compress_first_pass
     66     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     67 METHODDEF(boolean) compress_output
     68     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
     69 #endif
     70 
     71 
     72 LOCAL(void)
     73 start_iMCU_row (j_compress_ptr cinfo)
     74 /* Reset within-iMCU-row counters for a new row */
     75 {
     76   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     77 
     78   /* In an interleaved scan, an MCU row is the same as an iMCU row.
     79    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
     80    * But at the bottom of the image, process only what's left.
     81    */
     82   if (cinfo->comps_in_scan > 1) {
     83     coef->MCU_rows_per_iMCU_row = 1;
     84   } else {
     85     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
     86       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
     87     else
     88       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
     89   }
     90 
     91   coef->mcu_ctr = 0;
     92   coef->MCU_vert_offset = 0;
     93 }
     94 
     95 
     96 /*
     97  * Initialize for a processing pass.
     98  */
     99 
    100 METHODDEF(void)
    101 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
    102 {
    103   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    104 
    105   coef->iMCU_row_num = 0;
    106   start_iMCU_row(cinfo);
    107 
    108   switch (pass_mode) {
    109   case JBUF_PASS_THRU:
    110     if (coef->whole_image[0] != NULL)
    111       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    112     coef->pub.compress_data = compress_data;
    113     break;
    114 #ifdef FULL_COEF_BUFFER_SUPPORTED
    115   case JBUF_SAVE_AND_PASS:
    116     if (coef->whole_image[0] == NULL)
    117       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    118     coef->pub.compress_data = compress_first_pass;
    119     break;
    120   case JBUF_CRANK_DEST:
    121     if (coef->whole_image[0] == NULL)
    122       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    123     coef->pub.compress_data = compress_output;
    124     break;
    125 #endif
    126   default:
    127     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    128     break;
    129   }
    130 }
    131 
    132 
    133 /*
    134  * Process some data in the single-pass case.
    135  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    136  * per call, ie, v_samp_factor block rows for each component in the image.
    137  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    138  *
    139  * NB: input_buf contains a plane for each component in image,
    140  * which we index according to the component's SOF position.
    141  */
    142 
    143 METHODDEF(boolean)
    144 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    145 {
    146   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    147   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    148   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
    149   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    150   int blkn, bi, ci, yindex, yoffset, blockcnt;
    151   JDIMENSION ypos, xpos;
    152   jpeg_component_info *compptr;
    153   forward_DCT_ptr forward_DCT;
    154 
    155   /* Loop to write as much as one whole iMCU row */
    156   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    157        yoffset++) {
    158     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
    159          MCU_col_num++) {
    160       /* Determine where data comes from in input_buf and do the DCT thing.
    161        * Each call on forward_DCT processes a horizontal row of DCT blocks
    162        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
    163        * sequentially.  Dummy blocks at the right or bottom edge are filled in
    164        * specially.  The data in them does not matter for image reconstruction,
    165        * so we fill them with values that will encode to the smallest amount of
    166        * data, viz: all zeroes in the AC entries, DC entries equal to previous
    167        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
    168        */
    169       blkn = 0;
    170       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    171         compptr = cinfo->cur_comp_info[ci];
    172         forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
    173         blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    174                                                 : compptr->last_col_width;
    175         xpos = MCU_col_num * compptr->MCU_sample_width;
    176         ypos = yoffset * compptr->DCT_v_scaled_size;
    177         /* ypos == (yoffset+yindex) * DCTSIZE */
    178         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    179           if (coef->iMCU_row_num < last_iMCU_row ||
    180               yoffset+yindex < compptr->last_row_height) {
    181             (*forward_DCT) (cinfo, compptr,
    182                             input_buf[compptr->component_index],
    183                             coef->MCU_buffer[blkn],
    184                             ypos, xpos, (JDIMENSION) blockcnt);
    185             if (blockcnt < compptr->MCU_width) {
    186               /* Create some dummy blocks at the right edge of the image. */
    187               FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],
    188                        (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
    189               for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
    190                 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
    191               }
    192             }
    193           } else {
    194             /* Create a row of dummy blocks at the bottom of the image. */
    195             FMEMZERO((void FAR *) coef->MCU_buffer[blkn],
    196                      compptr->MCU_width * SIZEOF(JBLOCK));
    197             for (bi = 0; bi < compptr->MCU_width; bi++) {
    198               coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
    199             }
    200           }
    201           blkn += compptr->MCU_width;
    202           ypos += compptr->DCT_v_scaled_size;
    203         }
    204       }
    205       /* Try to write the MCU.  In event of a suspension failure, we will
    206        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
    207        */
    208       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    209         /* Suspension forced; update state counters and exit */
    210         coef->MCU_vert_offset = yoffset;
    211         coef->mcu_ctr = MCU_col_num;
    212         return FALSE;
    213       }
    214     }
    215     /* Completed an MCU row, but perhaps not an iMCU row */
    216     coef->mcu_ctr = 0;
    217   }
    218   /* Completed the iMCU row, advance counters for next one */
    219   coef->iMCU_row_num++;
    220   start_iMCU_row(cinfo);
    221   return TRUE;
    222 }
    223 
    224 
    225 #ifdef FULL_COEF_BUFFER_SUPPORTED
    226 
    227 /*
    228  * Process some data in the first pass of a multi-pass case.
    229  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    230  * per call, ie, v_samp_factor block rows for each component in the image.
    231  * This amount of data is read from the source buffer, DCT'd and quantized,
    232  * and saved into the virtual arrays.  We also generate suitable dummy blocks
    233  * as needed at the right and lower edges.  (The dummy blocks are constructed
    234  * in the virtual arrays, which have been padded appropriately.)  This makes
    235  * it possible for subsequent passes not to worry about real vs. dummy blocks.
    236  *
    237  * We must also emit the data to the entropy encoder.  This is conveniently
    238  * done by calling compress_output() after we've loaded the current strip
    239  * of the virtual arrays.
    240  *
    241  * NB: input_buf contains a plane for each component in image.  All
    242  * components are DCT'd and loaded into the virtual arrays in this pass.
    243  * However, it may be that only a subset of the components are emitted to
    244  * the entropy encoder during this first pass; be careful about looking
    245  * at the scan-dependent variables (MCU dimensions, etc).
    246  */
    247 
    248 METHODDEF(boolean)
    249 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    250 {
    251   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    252   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    253   JDIMENSION blocks_across, MCUs_across, MCUindex;
    254   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
    255   JCOEF lastDC;
    256   jpeg_component_info *compptr;
    257   JBLOCKARRAY buffer;
    258   JBLOCKROW thisblockrow, lastblockrow;
    259   forward_DCT_ptr forward_DCT;
    260 
    261   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    262        ci++, compptr++) {
    263     /* Align the virtual buffer for this component. */
    264     buffer = (*cinfo->mem->access_virt_barray)
    265       ((j_common_ptr) cinfo, coef->whole_image[ci],
    266        coef->iMCU_row_num * compptr->v_samp_factor,
    267        (JDIMENSION) compptr->v_samp_factor, TRUE);
    268     /* Count non-dummy DCT block rows in this iMCU row. */
    269     if (coef->iMCU_row_num < last_iMCU_row)
    270       block_rows = compptr->v_samp_factor;
    271     else {
    272       /* NB: can't use last_row_height here, since may not be set! */
    273       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    274       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    275     }
    276     blocks_across = compptr->width_in_blocks;
    277     h_samp_factor = compptr->h_samp_factor;
    278     /* Count number of dummy blocks to be added at the right margin. */
    279     ndummy = (int) (blocks_across % h_samp_factor);
    280     if (ndummy > 0)
    281       ndummy = h_samp_factor - ndummy;
    282     forward_DCT = cinfo->fdct->forward_DCT[ci];
    283     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
    284      * on forward_DCT processes a complete horizontal row of DCT blocks.
    285      */
    286     for (block_row = 0; block_row < block_rows; block_row++) {
    287       thisblockrow = buffer[block_row];
    288       (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
    289                       (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
    290                       (JDIMENSION) 0, blocks_across);
    291       if (ndummy > 0) {
    292         /* Create dummy blocks at the right edge of the image. */
    293         thisblockrow += blocks_across; /* => first dummy block */
    294         FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
    295         lastDC = thisblockrow[-1][0];
    296         for (bi = 0; bi < ndummy; bi++) {
    297           thisblockrow[bi][0] = lastDC;
    298         }
    299       }
    300     }
    301     /* If at end of image, create dummy block rows as needed.
    302      * The tricky part here is that within each MCU, we want the DC values
    303      * of the dummy blocks to match the last real block's DC value.
    304      * This squeezes a few more bytes out of the resulting file...
    305      */
    306     if (coef->iMCU_row_num == last_iMCU_row) {
    307       blocks_across += ndummy;	/* include lower right corner */
    308       MCUs_across = blocks_across / h_samp_factor;
    309       for (block_row = block_rows; block_row < compptr->v_samp_factor;
    310            block_row++) {
    311         thisblockrow = buffer[block_row];
    312         lastblockrow = buffer[block_row-1];
    313         FMEMZERO((void FAR *) thisblockrow,
    314                  (size_t) (blocks_across * SIZEOF(JBLOCK)));
    315         for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
    316           lastDC = lastblockrow[h_samp_factor-1][0];
    317           for (bi = 0; bi < h_samp_factor; bi++) {
    318             thisblockrow[bi][0] = lastDC;
    319           }
    320           thisblockrow += h_samp_factor; /* advance to next MCU in row */
    321           lastblockrow += h_samp_factor;
    322         }
    323       }
    324     }
    325   }
    326   /* NB: compress_output will increment iMCU_row_num if successful.
    327    * A suspension return will result in redoing all the work above next time.
    328    */
    329 
    330   /* Emit data to the entropy encoder, sharing code with subsequent passes */
    331   return compress_output(cinfo, input_buf);
    332 }
    333 
    334 
    335 /*
    336  * Process some data in subsequent passes of a multi-pass case.
    337  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
    338  * per call, ie, v_samp_factor block rows for each component in the scan.
    339  * The data is obtained from the virtual arrays and fed to the entropy coder.
    340  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
    341  *
    342  * NB: input_buf is ignored; it is likely to be a NULL pointer.
    343  */
    344 
    345 METHODDEF(boolean)
    346 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
    347 {
    348   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    349   JDIMENSION MCU_col_num;	/* index of current MCU within row */
    350   int blkn, ci, xindex, yindex, yoffset;
    351   JDIMENSION start_col;
    352   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    353   JBLOCKROW buffer_ptr;
    354   jpeg_component_info *compptr;
    355 
    356   /* Align the virtual buffers for the components used in this scan.
    357    * NB: during first pass, this is safe only because the buffers will
    358    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
    359    */
    360   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    361     compptr = cinfo->cur_comp_info[ci];
    362     buffer[ci] = (*cinfo->mem->access_virt_barray)
    363       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    364        coef->iMCU_row_num * compptr->v_samp_factor,
    365        (JDIMENSION) compptr->v_samp_factor, FALSE);
    366   }
    367 
    368   /* Loop to process one whole iMCU row */
    369   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    370        yoffset++) {
    371     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
    372          MCU_col_num++) {
    373       /* Construct list of pointers to DCT blocks belonging to this MCU */
    374       blkn = 0;			/* index of current DCT block within MCU */
    375       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    376         compptr = cinfo->cur_comp_info[ci];
    377         start_col = MCU_col_num * compptr->MCU_width;
    378         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    379           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    380           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    381             coef->MCU_buffer[blkn++] = buffer_ptr++;
    382           }
    383         }
    384       }
    385       /* Try to write the MCU. */
    386       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
    387         /* Suspension forced; update state counters and exit */
    388         coef->MCU_vert_offset = yoffset;
    389         coef->mcu_ctr = MCU_col_num;
    390         return FALSE;
    391       }
    392     }
    393     /* Completed an MCU row, but perhaps not an iMCU row */
    394     coef->mcu_ctr = 0;
    395   }
    396   /* Completed the iMCU row, advance counters for next one */
    397   coef->iMCU_row_num++;
    398   start_iMCU_row(cinfo);
    399   return TRUE;
    400 }
    401 
    402 #endif /* FULL_COEF_BUFFER_SUPPORTED */
    403 
    404 
    405 /*
    406  * Initialize coefficient buffer controller.
    407  */
    408 
    409 GLOBAL(void)
    410 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
    411 {
    412   my_coef_ptr coef;
    413 
    414   coef = (my_coef_ptr)
    415     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    416                                 SIZEOF(my_coef_controller));
    417   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
    418   coef->pub.start_pass = start_pass_coef;
    419 
    420   /* Create the coefficient buffer. */
    421   if (need_full_buffer) {
    422 #ifdef FULL_COEF_BUFFER_SUPPORTED
    423     /* Allocate a full-image virtual array for each component, */
    424     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    425     int ci;
    426     jpeg_component_info *compptr;
    427 
    428     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    429          ci++, compptr++) {
    430       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    431         ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
    432          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    433                                 (long) compptr->h_samp_factor),
    434          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    435                                 (long) compptr->v_samp_factor),
    436          (JDIMENSION) compptr->v_samp_factor);
    437     }
    438 #else
    439     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    440 #endif
    441   } else {
    442     /* We only need a single-MCU buffer. */
    443     JBLOCKROW buffer;
    444     int i;
    445 
    446     buffer = (JBLOCKROW)
    447       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    448                                   C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    449     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
    450       coef->MCU_buffer[i] = buffer + i;
    451     }
    452     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
    453   }
    454 }
    455