Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jcsample.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README file.
      7  *
      8  * This file contains downsampling routines.
      9  *
     10  * Downsampling input data is counted in "row groups".  A row group
     11  * is defined to be max_v_samp_factor pixel rows of each component,
     12  * from which the downsampler produces v_samp_factor sample rows.
     13  * A single row group is processed in each call to the downsampler module.
     14  *
     15  * The downsampler is responsible for edge-expansion of its output data
     16  * to fill an integral number of DCT blocks horizontally.  The source buffer
     17  * may be modified if it is helpful for this purpose (the source buffer is
     18  * allocated wide enough to correspond to the desired output width).
     19  * The caller (the prep controller) is responsible for vertical padding.
     20  *
     21  * The downsampler may request "context rows" by setting need_context_rows
     22  * during startup.  In this case, the input arrays will contain at least
     23  * one row group's worth of pixels above and below the passed-in data;
     24  * the caller will create dummy rows at image top and bottom by replicating
     25  * the first or last real pixel row.
     26  *
     27  * An excellent reference for image resampling is
     28  *   Digital Image Warping, George Wolberg, 1990.
     29  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
     30  *
     31  * The downsampling algorithm used here is a simple average of the source
     32  * pixels covered by the output pixel.  The hi-falutin sampling literature
     33  * refers to this as a "box filter".  In general the characteristics of a box
     34  * filter are not very good, but for the specific cases we normally use (1:1
     35  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
     36  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
     37  * advised to improve this code.
     38  *
     39  * A simple input-smoothing capability is provided.  This is mainly intended
     40  * for cleaning up color-dithered GIF input files (if you find it inadequate,
     41  * we suggest using an external filtering program such as pnmconvol).  When
     42  * enabled, each input pixel P is replaced by a weighted sum of itself and its
     43  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
     44  * where SF = (smoothing_factor / 1024).
     45  * Currently, smoothing is only supported for 2h2v sampling factors.
     46  */
     47 
     48 #define JPEG_INTERNALS
     49 #include "jinclude.h"
     50 #include "jpeglib.h"
     51 
     52 
     53 /* Pointer to routine to downsample a single component */
     54 typedef JMETHOD(void, downsample1_ptr,
     55                 (j_compress_ptr cinfo, jpeg_component_info * compptr,
     56                  JSAMPARRAY input_data, JSAMPARRAY output_data));
     57 
     58 /* Private subobject */
     59 
     60 typedef struct {
     61   struct jpeg_downsampler pub;	/* public fields */
     62 
     63   /* Downsampling method pointers, one per component */
     64   downsample1_ptr methods[MAX_COMPONENTS];
     65 
     66   /* Height of an output row group for each component. */
     67   int rowgroup_height[MAX_COMPONENTS];
     68 
     69   /* These arrays save pixel expansion factors so that int_downsample need not
     70    * recompute them each time.  They are unused for other downsampling methods.
     71    */
     72   UINT8 h_expand[MAX_COMPONENTS];
     73   UINT8 v_expand[MAX_COMPONENTS];
     74 } my_downsampler;
     75 
     76 typedef my_downsampler * my_downsample_ptr;
     77 
     78 
     79 /*
     80  * Initialize for a downsampling pass.
     81  */
     82 
     83 METHODDEF(void)
     84 start_pass_downsample (j_compress_ptr cinfo)
     85 {
     86   /* no work for now */
     87 }
     88 
     89 
     90 /*
     91  * Expand a component horizontally from width input_cols to width output_cols,
     92  * by duplicating the rightmost samples.
     93  */
     94 
     95 LOCAL(void)
     96 expand_right_edge (JSAMPARRAY image_data, int num_rows,
     97                    JDIMENSION input_cols, JDIMENSION output_cols)
     98 {
     99   register JSAMPROW ptr;
    100   register JSAMPLE pixval;
    101   register int count;
    102   int row;
    103   int numcols = (int) (output_cols - input_cols);
    104 
    105   if (numcols > 0) {
    106     for (row = 0; row < num_rows; row++) {
    107       ptr = image_data[row] + input_cols;
    108       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
    109       for (count = numcols; count > 0; count--)
    110         *ptr++ = pixval;
    111     }
    112   }
    113 }
    114 
    115 
    116 /*
    117  * Do downsampling for a whole row group (all components).
    118  *
    119  * In this version we simply downsample each component independently.
    120  */
    121 
    122 METHODDEF(void)
    123 sep_downsample (j_compress_ptr cinfo,
    124                 JSAMPIMAGE input_buf, JDIMENSION in_row_index,
    125                 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
    126 {
    127   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    128   int ci;
    129   jpeg_component_info * compptr;
    130   JSAMPARRAY in_ptr, out_ptr;
    131 
    132   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    133        ci++, compptr++) {
    134     in_ptr = input_buf[ci] + in_row_index;
    135     out_ptr = output_buf[ci] +
    136               (out_row_group_index * downsample->rowgroup_height[ci]);
    137     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
    138   }
    139 }
    140 
    141 
    142 /*
    143  * Downsample pixel values of a single component.
    144  * One row group is processed per call.
    145  * This version handles arbitrary integral sampling ratios, without smoothing.
    146  * Note that this version is not actually used for customary sampling ratios.
    147  */
    148 
    149 METHODDEF(void)
    150 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    151                 JSAMPARRAY input_data, JSAMPARRAY output_data)
    152 {
    153   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    154   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
    155   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
    156   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
    157   JSAMPROW inptr, outptr;
    158   INT32 outvalue;
    159 
    160   h_expand = downsample->h_expand[compptr->component_index];
    161   v_expand = downsample->v_expand[compptr->component_index];
    162   numpix = h_expand * v_expand;
    163   numpix2 = numpix/2;
    164 
    165   /* Expand input data enough to let all the output samples be generated
    166    * by the standard loop.  Special-casing padded output would be more
    167    * efficient.
    168    */
    169   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    170                     cinfo->image_width, output_cols * h_expand);
    171 
    172   inrow = outrow = 0;
    173   while (inrow < cinfo->max_v_samp_factor) {
    174     outptr = output_data[outrow];
    175     for (outcol = 0, outcol_h = 0; outcol < output_cols;
    176          outcol++, outcol_h += h_expand) {
    177       outvalue = 0;
    178       for (v = 0; v < v_expand; v++) {
    179         inptr = input_data[inrow+v] + outcol_h;
    180         for (h = 0; h < h_expand; h++) {
    181           outvalue += (INT32) GETJSAMPLE(*inptr++);
    182         }
    183       }
    184       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    185     }
    186     inrow += v_expand;
    187     outrow++;
    188   }
    189 }
    190 
    191 
    192 /*
    193  * Downsample pixel values of a single component.
    194  * This version handles the special case of a full-size component,
    195  * without smoothing.
    196  */
    197 
    198 METHODDEF(void)
    199 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    200                      JSAMPARRAY input_data, JSAMPARRAY output_data)
    201 {
    202   /* Copy the data */
    203   jcopy_sample_rows(input_data, 0, output_data, 0,
    204                     cinfo->max_v_samp_factor, cinfo->image_width);
    205   /* Edge-expand */
    206   expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
    207                     compptr->width_in_blocks * compptr->DCT_h_scaled_size);
    208 }
    209 
    210 
    211 /*
    212  * Downsample pixel values of a single component.
    213  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
    214  * without smoothing.
    215  *
    216  * A note about the "bias" calculations: when rounding fractional values to
    217  * integer, we do not want to always round 0.5 up to the next integer.
    218  * If we did that, we'd introduce a noticeable bias towards larger values.
    219  * Instead, this code is arranged so that 0.5 will be rounded up or down at
    220  * alternate pixel locations (a simple ordered dither pattern).
    221  */
    222 
    223 METHODDEF(void)
    224 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    225                  JSAMPARRAY input_data, JSAMPARRAY output_data)
    226 {
    227   int inrow;
    228   JDIMENSION outcol;
    229   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
    230   register JSAMPROW inptr, outptr;
    231   register int bias;
    232 
    233   /* Expand input data enough to let all the output samples be generated
    234    * by the standard loop.  Special-casing padded output would be more
    235    * efficient.
    236    */
    237   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    238                     cinfo->image_width, output_cols * 2);
    239 
    240   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
    241     outptr = output_data[inrow];
    242     inptr = input_data[inrow];
    243     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
    244     for (outcol = 0; outcol < output_cols; outcol++) {
    245       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
    246                               + bias) >> 1);
    247       bias ^= 1;		/* 0=>1, 1=>0 */
    248       inptr += 2;
    249     }
    250   }
    251 }
    252 
    253 
    254 /*
    255  * Downsample pixel values of a single component.
    256  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    257  * without smoothing.
    258  */
    259 
    260 METHODDEF(void)
    261 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    262                  JSAMPARRAY input_data, JSAMPARRAY output_data)
    263 {
    264   int inrow, outrow;
    265   JDIMENSION outcol;
    266   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
    267   register JSAMPROW inptr0, inptr1, outptr;
    268   register int bias;
    269 
    270   /* Expand input data enough to let all the output samples be generated
    271    * by the standard loop.  Special-casing padded output would be more
    272    * efficient.
    273    */
    274   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    275                     cinfo->image_width, output_cols * 2);
    276 
    277   inrow = outrow = 0;
    278   while (inrow < cinfo->max_v_samp_factor) {
    279     outptr = output_data[outrow];
    280     inptr0 = input_data[inrow];
    281     inptr1 = input_data[inrow+1];
    282     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
    283     for (outcol = 0; outcol < output_cols; outcol++) {
    284       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    285                               GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
    286                               + bias) >> 2);
    287       bias ^= 3;		/* 1=>2, 2=>1 */
    288       inptr0 += 2; inptr1 += 2;
    289     }
    290     inrow += 2;
    291     outrow++;
    292   }
    293 }
    294 
    295 
    296 #ifdef INPUT_SMOOTHING_SUPPORTED
    297 
    298 /*
    299  * Downsample pixel values of a single component.
    300  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    301  * with smoothing.  One row of context is required.
    302  */
    303 
    304 METHODDEF(void)
    305 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
    306                         JSAMPARRAY input_data, JSAMPARRAY output_data)
    307 {
    308   int inrow, outrow;
    309   JDIMENSION colctr;
    310   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
    311   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
    312   INT32 membersum, neighsum, memberscale, neighscale;
    313 
    314   /* Expand input data enough to let all the output samples be generated
    315    * by the standard loop.  Special-casing padded output would be more
    316    * efficient.
    317    */
    318   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    319                     cinfo->image_width, output_cols * 2);
    320 
    321   /* We don't bother to form the individual "smoothed" input pixel values;
    322    * we can directly compute the output which is the average of the four
    323    * smoothed values.  Each of the four member pixels contributes a fraction
    324    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
    325    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
    326    * output.  The four corner-adjacent neighbor pixels contribute a fraction
    327    * SF to just one smoothed pixel, or SF/4 to the final output; while the
    328    * eight edge-adjacent neighbors contribute SF to each of two smoothed
    329    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
    330    * factors are scaled by 2^16 = 65536.
    331    * Also recall that SF = smoothing_factor / 1024.
    332    */
    333 
    334   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
    335   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
    336 
    337   inrow = outrow = 0;
    338   while (inrow < cinfo->max_v_samp_factor) {
    339     outptr = output_data[outrow];
    340     inptr0 = input_data[inrow];
    341     inptr1 = input_data[inrow+1];
    342     above_ptr = input_data[inrow-1];
    343     below_ptr = input_data[inrow+2];
    344 
    345     /* Special case for first column: pretend column -1 is same as column 0 */
    346     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    347                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    348     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    349                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    350                GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
    351                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    352     neighsum += neighsum;
    353     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
    354                 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    355     membersum = membersum * memberscale + neighsum * neighscale;
    356     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    357     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    358 
    359     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    360       /* sum of pixels directly mapped to this output element */
    361       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    362                   GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    363       /* sum of edge-neighbor pixels */
    364       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    365                  GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    366                  GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
    367                  GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
    368       /* The edge-neighbors count twice as much as corner-neighbors */
    369       neighsum += neighsum;
    370       /* Add in the corner-neighbors */
    371       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
    372                   GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
    373       /* form final output scaled up by 2^16 */
    374       membersum = membersum * memberscale + neighsum * neighscale;
    375       /* round, descale and output it */
    376       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    377       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    378     }
    379 
    380     /* Special case for last column */
    381     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    382                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    383     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    384                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    385                GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
    386                GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    387     neighsum += neighsum;
    388     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
    389                 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    390     membersum = membersum * memberscale + neighsum * neighscale;
    391     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    392 
    393     inrow += 2;
    394     outrow++;
    395   }
    396 }
    397 
    398 
    399 /*
    400  * Downsample pixel values of a single component.
    401  * This version handles the special case of a full-size component,
    402  * with smoothing.  One row of context is required.
    403  */
    404 
    405 METHODDEF(void)
    406 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    407                             JSAMPARRAY input_data, JSAMPARRAY output_data)
    408 {
    409   int inrow;
    410   JDIMENSION colctr;
    411   JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
    412   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
    413   INT32 membersum, neighsum, memberscale, neighscale;
    414   int colsum, lastcolsum, nextcolsum;
    415 
    416   /* Expand input data enough to let all the output samples be generated
    417    * by the standard loop.  Special-casing padded output would be more
    418    * efficient.
    419    */
    420   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    421                     cinfo->image_width, output_cols);
    422 
    423   /* Each of the eight neighbor pixels contributes a fraction SF to the
    424    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
    425    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
    426    * Also recall that SF = smoothing_factor / 1024.
    427    */
    428 
    429   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
    430   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
    431 
    432   for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
    433     outptr = output_data[inrow];
    434     inptr = input_data[inrow];
    435     above_ptr = input_data[inrow-1];
    436     below_ptr = input_data[inrow+1];
    437 
    438     /* Special case for first column */
    439     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
    440              GETJSAMPLE(*inptr);
    441     membersum = GETJSAMPLE(*inptr++);
    442     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    443                  GETJSAMPLE(*inptr);
    444     neighsum = colsum + (colsum - membersum) + nextcolsum;
    445     membersum = membersum * memberscale + neighsum * neighscale;
    446     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    447     lastcolsum = colsum; colsum = nextcolsum;
    448 
    449     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    450       membersum = GETJSAMPLE(*inptr++);
    451       above_ptr++; below_ptr++;
    452       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    453                    GETJSAMPLE(*inptr);
    454       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
    455       membersum = membersum * memberscale + neighsum * neighscale;
    456       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    457       lastcolsum = colsum; colsum = nextcolsum;
    458     }
    459 
    460     /* Special case for last column */
    461     membersum = GETJSAMPLE(*inptr);
    462     neighsum = lastcolsum + (colsum - membersum) + colsum;
    463     membersum = membersum * memberscale + neighsum * neighscale;
    464     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    465 
    466   }
    467 }
    468 
    469 #endif /* INPUT_SMOOTHING_SUPPORTED */
    470 
    471 
    472 /*
    473  * Module initialization routine for downsampling.
    474  * Note that we must select a routine for each component.
    475  */
    476 
    477 GLOBAL(void)
    478 jinit_downsampler (j_compress_ptr cinfo)
    479 {
    480   my_downsample_ptr downsample;
    481   int ci;
    482   jpeg_component_info * compptr;
    483   boolean smoothok = TRUE;
    484   int h_in_group, v_in_group, h_out_group, v_out_group;
    485 
    486   downsample = (my_downsample_ptr)
    487     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    488                                 SIZEOF(my_downsampler));
    489   cinfo->downsample = (struct jpeg_downsampler *) downsample;
    490   downsample->pub.start_pass = start_pass_downsample;
    491   downsample->pub.downsample = sep_downsample;
    492   downsample->pub.need_context_rows = FALSE;
    493 
    494   if (cinfo->CCIR601_sampling)
    495     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
    496 
    497   /* Verify we can handle the sampling factors, and set up method pointers */
    498   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    499        ci++, compptr++) {
    500     /* Compute size of an "output group" for DCT scaling.  This many samples
    501      * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
    502      */
    503     h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
    504                   cinfo->min_DCT_h_scaled_size;
    505     v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
    506                   cinfo->min_DCT_v_scaled_size;
    507     h_in_group = cinfo->max_h_samp_factor;
    508     v_in_group = cinfo->max_v_samp_factor;
    509     downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
    510     if (h_in_group == h_out_group && v_in_group == v_out_group) {
    511 #ifdef INPUT_SMOOTHING_SUPPORTED
    512       if (cinfo->smoothing_factor) {
    513         downsample->methods[ci] = fullsize_smooth_downsample;
    514         downsample->pub.need_context_rows = TRUE;
    515       } else
    516 #endif
    517         downsample->methods[ci] = fullsize_downsample;
    518     } else if (h_in_group == h_out_group * 2 &&
    519                v_in_group == v_out_group) {
    520       smoothok = FALSE;
    521       downsample->methods[ci] = h2v1_downsample;
    522     } else if (h_in_group == h_out_group * 2 &&
    523                v_in_group == v_out_group * 2) {
    524 #ifdef INPUT_SMOOTHING_SUPPORTED
    525       if (cinfo->smoothing_factor) {
    526         downsample->methods[ci] = h2v2_smooth_downsample;
    527         downsample->pub.need_context_rows = TRUE;
    528       } else
    529 #endif
    530         downsample->methods[ci] = h2v2_downsample;
    531     } else if ((h_in_group % h_out_group) == 0 &&
    532                (v_in_group % v_out_group) == 0) {
    533       smoothok = FALSE;
    534       downsample->methods[ci] = int_downsample;
    535       downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
    536       downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
    537     } else
    538       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    539   }
    540 
    541 #ifdef INPUT_SMOOTHING_SUPPORTED
    542   if (cinfo->smoothing_factor && !smoothok)
    543     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
    544 #endif
    545 }
    546