Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jfdctflt.c
      3  *
      4  * Copyright (C) 1994-1996, Thomas G. Lane.
      5  * Modified 2003-2009 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a floating-point implementation of the
     10  * forward DCT (Discrete Cosine Transform).
     11  *
     12  * This implementation should be more accurate than either of the integer
     13  * DCT implementations.  However, it may not give the same results on all
     14  * machines because of differences in roundoff behavior.  Speed will depend
     15  * on the hardware's floating point capacity.
     16  *
     17  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     18  * on each column.  Direct algorithms are also available, but they are
     19  * much more complex and seem not to be any faster when reduced to code.
     20  *
     21  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     22  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     23  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     24  * JPEG textbook (see REFERENCES section in file README).  The following code
     25  * is based directly on figure 4-8 in P&M.
     26  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     27  * possible to arrange the computation so that many of the multiplies are
     28  * simple scalings of the final outputs.  These multiplies can then be
     29  * folded into the multiplications or divisions by the JPEG quantization
     30  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     31  * to be done in the DCT itself.
     32  * The primary disadvantage of this method is that with a fixed-point
     33  * implementation, accuracy is lost due to imprecise representation of the
     34  * scaled quantization values.  However, that problem does not arise if
     35  * we use floating point arithmetic.
     36  */
     37 
     38 #define JPEG_INTERNALS
     39 #include "jinclude.h"
     40 #include "jpeglib.h"
     41 #include "jdct.h"		/* Private declarations for DCT subsystem */
     42 
     43 #ifdef DCT_FLOAT_SUPPORTED
     44 
     45 
     46 /*
     47  * This module is specialized to the case DCTSIZE = 8.
     48  */
     49 
     50 #if DCTSIZE != 8
     51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     52 #endif
     53 
     54 
     55 /*
     56  * Perform the forward DCT on one block of samples.
     57  */
     58 
     59 GLOBAL(void)
     60 jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
     61 {
     62   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     63   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     64   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
     65   FAST_FLOAT *dataptr;
     66   JSAMPROW elemptr;
     67   int ctr;
     68 
     69   /* Pass 1: process rows. */
     70 
     71   dataptr = data;
     72   for (ctr = 0; ctr < DCTSIZE; ctr++) {
     73     elemptr = sample_data[ctr] + start_col;
     74 
     75     /* Load data into workspace */
     76     tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
     77     tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
     78     tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
     79     tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
     80     tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
     81     tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
     82     tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
     83     tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
     84 
     85     /* Even part */
     86 
     87     tmp10 = tmp0 + tmp3;	/* phase 2 */
     88     tmp13 = tmp0 - tmp3;
     89     tmp11 = tmp1 + tmp2;
     90     tmp12 = tmp1 - tmp2;
     91 
     92     /* Apply unsigned->signed conversion */
     93     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
     94     dataptr[4] = tmp10 - tmp11;
     95 
     96     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
     97     dataptr[2] = tmp13 + z1;	/* phase 5 */
     98     dataptr[6] = tmp13 - z1;
     99 
    100     /* Odd part */
    101 
    102     tmp10 = tmp4 + tmp5;	/* phase 2 */
    103     tmp11 = tmp5 + tmp6;
    104     tmp12 = tmp6 + tmp7;
    105 
    106     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    107     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    108     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    109     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    110     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
    111 
    112     z11 = tmp7 + z3;		/* phase 5 */
    113     z13 = tmp7 - z3;
    114 
    115     dataptr[5] = z13 + z2;	/* phase 6 */
    116     dataptr[3] = z13 - z2;
    117     dataptr[1] = z11 + z4;
    118     dataptr[7] = z11 - z4;
    119 
    120     dataptr += DCTSIZE;		/* advance pointer to next row */
    121   }
    122 
    123   /* Pass 2: process columns. */
    124 
    125   dataptr = data;
    126   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    127     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    128     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    129     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    130     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    131     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    132     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    133     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    134     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    135 
    136     /* Even part */
    137 
    138     tmp10 = tmp0 + tmp3;	/* phase 2 */
    139     tmp13 = tmp0 - tmp3;
    140     tmp11 = tmp1 + tmp2;
    141     tmp12 = tmp1 - tmp2;
    142 
    143     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    144     dataptr[DCTSIZE*4] = tmp10 - tmp11;
    145 
    146     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    147     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    148     dataptr[DCTSIZE*6] = tmp13 - z1;
    149 
    150     /* Odd part */
    151 
    152     tmp10 = tmp4 + tmp5;	/* phase 2 */
    153     tmp11 = tmp5 + tmp6;
    154     tmp12 = tmp6 + tmp7;
    155 
    156     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    157     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    158     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    159     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    160     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
    161 
    162     z11 = tmp7 + z3;		/* phase 5 */
    163     z13 = tmp7 - z3;
    164 
    165     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    166     dataptr[DCTSIZE*3] = z13 - z2;
    167     dataptr[DCTSIZE*1] = z11 + z4;
    168     dataptr[DCTSIZE*7] = z11 - z4;
    169 
    170     dataptr++;			/* advance pointer to next column */
    171   }
    172 }
    173 
    174 #endif /* DCT_FLOAT_SUPPORTED */
    175