Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jfdctfst.c
      3  *
      4  * Copyright (C) 1994-1996, Thomas G. Lane.
      5  * Modified 2003-2009 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a fast, not so accurate integer implementation of the
     10  * forward DCT (Discrete Cosine Transform).
     11  *
     12  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     13  * on each column.  Direct algorithms are also available, but they are
     14  * much more complex and seem not to be any faster when reduced to code.
     15  *
     16  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     17  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     18  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     19  * JPEG textbook (see REFERENCES section in file README).  The following code
     20  * is based directly on figure 4-8 in P&M.
     21  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     22  * possible to arrange the computation so that many of the multiplies are
     23  * simple scalings of the final outputs.  These multiplies can then be
     24  * folded into the multiplications or divisions by the JPEG quantization
     25  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     26  * to be done in the DCT itself.
     27  * The primary disadvantage of this method is that with fixed-point math,
     28  * accuracy is lost due to imprecise representation of the scaled
     29  * quantization values.  The smaller the quantization table entry, the less
     30  * precise the scaled value, so this implementation does worse with high-
     31  * quality-setting files than with low-quality ones.
     32  */
     33 
     34 #define JPEG_INTERNALS
     35 #include "jinclude.h"
     36 #include "jpeglib.h"
     37 #include "jdct.h"		/* Private declarations for DCT subsystem */
     38 
     39 #ifdef DCT_IFAST_SUPPORTED
     40 
     41 
     42 /*
     43  * This module is specialized to the case DCTSIZE = 8.
     44  */
     45 
     46 #if DCTSIZE != 8
     47   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     48 #endif
     49 
     50 
     51 /* Scaling decisions are generally the same as in the LL&M algorithm;
     52  * see jfdctint.c for more details.  However, we choose to descale
     53  * (right shift) multiplication products as soon as they are formed,
     54  * rather than carrying additional fractional bits into subsequent additions.
     55  * This compromises accuracy slightly, but it lets us save a few shifts.
     56  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
     57  * everywhere except in the multiplications proper; this saves a good deal
     58  * of work on 16-bit-int machines.
     59  *
     60  * Again to save a few shifts, the intermediate results between pass 1 and
     61  * pass 2 are not upscaled, but are represented only to integral precision.
     62  *
     63  * A final compromise is to represent the multiplicative constants to only
     64  * 8 fractional bits, rather than 13.  This saves some shifting work on some
     65  * machines, and may also reduce the cost of multiplication (since there
     66  * are fewer one-bits in the constants).
     67  */
     68 
     69 #define CONST_BITS  8
     70 
     71 
     72 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     73  * causing a lot of useless floating-point operations at run time.
     74  * To get around this we use the following pre-calculated constants.
     75  * If you change CONST_BITS you may want to add appropriate values.
     76  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     77  */
     78 
     79 #if CONST_BITS == 8
     80 #define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
     81 #define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
     82 #define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
     83 #define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
     84 #else
     85 #define FIX_0_382683433  FIX(0.382683433)
     86 #define FIX_0_541196100  FIX(0.541196100)
     87 #define FIX_0_707106781  FIX(0.707106781)
     88 #define FIX_1_306562965  FIX(1.306562965)
     89 #endif
     90 
     91 
     92 /* We can gain a little more speed, with a further compromise in accuracy,
     93  * by omitting the addition in a descaling shift.  This yields an incorrectly
     94  * rounded result half the time...
     95  */
     96 
     97 #ifndef USE_ACCURATE_ROUNDING
     98 #undef DESCALE
     99 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
    100 #endif
    101 
    102 
    103 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
    104  * descale to yield a DCTELEM result.
    105  */
    106 
    107 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
    108 
    109 
    110 /*
    111  * Perform the forward DCT on one block of samples.
    112  */
    113 
    114 GLOBAL(void)
    115 jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    116 {
    117   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
    118   DCTELEM tmp10, tmp11, tmp12, tmp13;
    119   DCTELEM z1, z2, z3, z4, z5, z11, z13;
    120   DCTELEM *dataptr;
    121   JSAMPROW elemptr;
    122   int ctr;
    123   SHIFT_TEMPS
    124 
    125   /* Pass 1: process rows. */
    126 
    127   dataptr = data;
    128   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    129     elemptr = sample_data[ctr] + start_col;
    130 
    131     /* Load data into workspace */
    132     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
    133     tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
    134     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
    135     tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
    136     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
    137     tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
    138     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
    139     tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
    140 
    141     /* Even part */
    142 
    143     tmp10 = tmp0 + tmp3;	/* phase 2 */
    144     tmp13 = tmp0 - tmp3;
    145     tmp11 = tmp1 + tmp2;
    146     tmp12 = tmp1 - tmp2;
    147 
    148     /* Apply unsigned->signed conversion */
    149     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
    150     dataptr[4] = tmp10 - tmp11;
    151 
    152     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    153     dataptr[2] = tmp13 + z1;	/* phase 5 */
    154     dataptr[6] = tmp13 - z1;
    155 
    156     /* Odd part */
    157 
    158     tmp10 = tmp4 + tmp5;	/* phase 2 */
    159     tmp11 = tmp5 + tmp6;
    160     tmp12 = tmp6 + tmp7;
    161 
    162     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    163     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    164     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    165     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    166     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    167 
    168     z11 = tmp7 + z3;		/* phase 5 */
    169     z13 = tmp7 - z3;
    170 
    171     dataptr[5] = z13 + z2;	/* phase 6 */
    172     dataptr[3] = z13 - z2;
    173     dataptr[1] = z11 + z4;
    174     dataptr[7] = z11 - z4;
    175 
    176     dataptr += DCTSIZE;		/* advance pointer to next row */
    177   }
    178 
    179   /* Pass 2: process columns. */
    180 
    181   dataptr = data;
    182   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    183     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    184     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    185     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    186     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    187     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    188     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    189     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    190     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    191 
    192     /* Even part */
    193 
    194     tmp10 = tmp0 + tmp3;	/* phase 2 */
    195     tmp13 = tmp0 - tmp3;
    196     tmp11 = tmp1 + tmp2;
    197     tmp12 = tmp1 - tmp2;
    198 
    199     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    200     dataptr[DCTSIZE*4] = tmp10 - tmp11;
    201 
    202     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    203     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    204     dataptr[DCTSIZE*6] = tmp13 - z1;
    205 
    206     /* Odd part */
    207 
    208     tmp10 = tmp4 + tmp5;	/* phase 2 */
    209     tmp11 = tmp5 + tmp6;
    210     tmp12 = tmp6 + tmp7;
    211 
    212     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    213     z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    214     z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    215     z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    216     z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
    217 
    218     z11 = tmp7 + z3;		/* phase 5 */
    219     z13 = tmp7 - z3;
    220 
    221     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    222     dataptr[DCTSIZE*3] = z13 - z2;
    223     dataptr[DCTSIZE*1] = z11 + z4;
    224     dataptr[DCTSIZE*7] = z11 - z4;
    225 
    226     dataptr++;			/* advance pointer to next column */
    227   }
    228 }
    229 
    230 #endif /* DCT_IFAST_SUPPORTED */
    231