Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jfdctint.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * Modification developed 2003-2009 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a slow-but-accurate integer implementation of the
     10  * forward DCT (Discrete Cosine Transform).
     11  *
     12  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     13  * on each column.  Direct algorithms are also available, but they are
     14  * much more complex and seem not to be any faster when reduced to code.
     15  *
     16  * This implementation is based on an algorithm described in
     17  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
     18  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
     19  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
     20  * The primary algorithm described there uses 11 multiplies and 29 adds.
     21  * We use their alternate method with 12 multiplies and 32 adds.
     22  * The advantage of this method is that no data path contains more than one
     23  * multiplication; this allows a very simple and accurate implementation in
     24  * scaled fixed-point arithmetic, with a minimal number of shifts.
     25  *
     26  * We also provide FDCT routines with various input sample block sizes for
     27  * direct resolution reduction or enlargement and for direct resolving the
     28  * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
     29  * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
     30  *
     31  * For N<8 we fill the remaining block coefficients with zero.
     32  * For N>8 we apply a partial N-point FDCT on the input samples, computing
     33  * just the lower 8 frequency coefficients and discarding the rest.
     34  *
     35  * We must scale the output coefficients of the N-point FDCT appropriately
     36  * to the standard 8-point FDCT level by 8/N per 1-D pass.  This scaling
     37  * is folded into the constant multipliers (pass 2) and/or final/initial
     38  * shifting.
     39  *
     40  * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
     41  * since there would be too many additional constants to pre-calculate.
     42  */
     43 
     44 #define JPEG_INTERNALS
     45 #include "jinclude.h"
     46 #include "jpeglib.h"
     47 #include "jdct.h"		/* Private declarations for DCT subsystem */
     48 
     49 #ifdef DCT_ISLOW_SUPPORTED
     50 
     51 
     52 /*
     53  * This module is specialized to the case DCTSIZE = 8.
     54  */
     55 
     56 #if DCTSIZE != 8
     57   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
     58 #endif
     59 
     60 
     61 /*
     62  * The poop on this scaling stuff is as follows:
     63  *
     64  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
     65  * larger than the true DCT outputs.  The final outputs are therefore
     66  * a factor of N larger than desired; since N=8 this can be cured by
     67  * a simple right shift at the end of the algorithm.  The advantage of
     68  * this arrangement is that we save two multiplications per 1-D DCT,
     69  * because the y0 and y4 outputs need not be divided by sqrt(N).
     70  * In the IJG code, this factor of 8 is removed by the quantization step
     71  * (in jcdctmgr.c), NOT in this module.
     72  *
     73  * We have to do addition and subtraction of the integer inputs, which
     74  * is no problem, and multiplication by fractional constants, which is
     75  * a problem to do in integer arithmetic.  We multiply all the constants
     76  * by CONST_SCALE and convert them to integer constants (thus retaining
     77  * CONST_BITS bits of precision in the constants).  After doing a
     78  * multiplication we have to divide the product by CONST_SCALE, with proper
     79  * rounding, to produce the correct output.  This division can be done
     80  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
     81  * as long as possible so that partial sums can be added together with
     82  * full fractional precision.
     83  *
     84  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
     85  * they are represented to better-than-integral precision.  These outputs
     86  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
     87  * with the recommended scaling.  (For 12-bit sample data, the intermediate
     88  * array is INT32 anyway.)
     89  *
     90  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
     91  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
     92  * shows that the values given below are the most effective.
     93  */
     94 
     95 #if BITS_IN_JSAMPLE == 8
     96 #define CONST_BITS  13
     97 #define PASS1_BITS  2
     98 #else
     99 #define CONST_BITS  13
    100 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
    101 #endif
    102 
    103 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
    104  * causing a lot of useless floating-point operations at run time.
    105  * To get around this we use the following pre-calculated constants.
    106  * If you change CONST_BITS you may want to add appropriate values.
    107  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
    108  */
    109 
    110 #if CONST_BITS == 13
    111 #define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
    112 #define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
    113 #define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
    114 #define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
    115 #define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
    116 #define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
    117 #define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
    118 #define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
    119 #define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
    120 #define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
    121 #define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
    122 #define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
    123 #else
    124 #define FIX_0_298631336  FIX(0.298631336)
    125 #define FIX_0_390180644  FIX(0.390180644)
    126 #define FIX_0_541196100  FIX(0.541196100)
    127 #define FIX_0_765366865  FIX(0.765366865)
    128 #define FIX_0_899976223  FIX(0.899976223)
    129 #define FIX_1_175875602  FIX(1.175875602)
    130 #define FIX_1_501321110  FIX(1.501321110)
    131 #define FIX_1_847759065  FIX(1.847759065)
    132 #define FIX_1_961570560  FIX(1.961570560)
    133 #define FIX_2_053119869  FIX(2.053119869)
    134 #define FIX_2_562915447  FIX(2.562915447)
    135 #define FIX_3_072711026  FIX(3.072711026)
    136 #endif
    137 
    138 
    139 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
    140  * For 8-bit samples with the recommended scaling, all the variable
    141  * and constant values involved are no more than 16 bits wide, so a
    142  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
    143  * For 12-bit samples, a full 32-bit multiplication will be needed.
    144  */
    145 
    146 #if BITS_IN_JSAMPLE == 8
    147 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    148 #else
    149 #define MULTIPLY(var,const)  ((var) * (const))
    150 #endif
    151 
    152 
    153 /*
    154  * Perform the forward DCT on one block of samples.
    155  */
    156 
    157 GLOBAL(void)
    158 jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    159 {
    160   INT32 tmp0, tmp1, tmp2, tmp3;
    161   INT32 tmp10, tmp11, tmp12, tmp13;
    162   INT32 z1;
    163   DCTELEM *dataptr;
    164   JSAMPROW elemptr;
    165   int ctr;
    166   SHIFT_TEMPS
    167 
    168   /* Pass 1: process rows. */
    169   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    170   /* furthermore, we scale the results by 2**PASS1_BITS. */
    171 
    172   dataptr = data;
    173   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    174     elemptr = sample_data[ctr] + start_col;
    175 
    176     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    177      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    178      */
    179 
    180     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
    181     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
    182     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
    183     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
    184 
    185     tmp10 = tmp0 + tmp3;
    186     tmp12 = tmp0 - tmp3;
    187     tmp11 = tmp1 + tmp2;
    188     tmp13 = tmp1 - tmp2;
    189 
    190     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
    191     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
    192     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
    193     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
    194 
    195     /* Apply unsigned->signed conversion */
    196     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
    197     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
    198 
    199     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    200     /* Add fudge factor here for final descale. */
    201     z1 += ONE << (CONST_BITS-PASS1_BITS-1);
    202     dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
    203                                        CONST_BITS-PASS1_BITS);
    204     dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
    205                                        CONST_BITS-PASS1_BITS);
    206 
    207     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    208      * cK represents sqrt(2) * cos(K*pi/16).
    209      * i0..i3 in the paper are tmp0..tmp3 here.
    210      */
    211 
    212     tmp10 = tmp0 + tmp3;
    213     tmp11 = tmp1 + tmp2;
    214     tmp12 = tmp0 + tmp2;
    215     tmp13 = tmp1 + tmp3;
    216     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
    217     /* Add fudge factor here for final descale. */
    218     z1 += ONE << (CONST_BITS-PASS1_BITS-1);
    219 
    220     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
    221     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
    222     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
    223     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
    224     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
    225     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
    226     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
    227     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
    228 
    229     tmp12 += z1;
    230     tmp13 += z1;
    231 
    232     dataptr[1] = (DCTELEM)
    233       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
    234     dataptr[3] = (DCTELEM)
    235       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
    236     dataptr[5] = (DCTELEM)
    237       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
    238     dataptr[7] = (DCTELEM)
    239       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
    240 
    241     dataptr += DCTSIZE;		/* advance pointer to next row */
    242   }
    243 
    244   /* Pass 2: process columns.
    245    * We remove the PASS1_BITS scaling, but leave the results scaled up
    246    * by an overall factor of 8.
    247    */
    248 
    249   dataptr = data;
    250   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    251     /* Even part per LL&M figure 1 --- note that published figure is faulty;
    252      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
    253      */
    254 
    255     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    256     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    257     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    258     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    259 
    260     /* Add fudge factor here for final descale. */
    261     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
    262     tmp12 = tmp0 - tmp3;
    263     tmp11 = tmp1 + tmp2;
    264     tmp13 = tmp1 - tmp2;
    265 
    266     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    267     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    268     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    269     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    270 
    271     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
    272     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
    273 
    274     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    275     /* Add fudge factor here for final descale. */
    276     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
    277     dataptr[DCTSIZE*2] = (DCTELEM)
    278       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
    279     dataptr[DCTSIZE*6] = (DCTELEM)
    280       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
    281 
    282     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
    283      * cK represents sqrt(2) * cos(K*pi/16).
    284      * i0..i3 in the paper are tmp0..tmp3 here.
    285      */
    286 
    287     tmp10 = tmp0 + tmp3;
    288     tmp11 = tmp1 + tmp2;
    289     tmp12 = tmp0 + tmp2;
    290     tmp13 = tmp1 + tmp3;
    291     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
    292     /* Add fudge factor here for final descale. */
    293     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
    294 
    295     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
    296     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
    297     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
    298     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
    299     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
    300     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
    301     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
    302     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
    303 
    304     tmp12 += z1;
    305     tmp13 += z1;
    306 
    307     dataptr[DCTSIZE*1] = (DCTELEM)
    308       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
    309     dataptr[DCTSIZE*3] = (DCTELEM)
    310       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
    311     dataptr[DCTSIZE*5] = (DCTELEM)
    312       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
    313     dataptr[DCTSIZE*7] = (DCTELEM)
    314       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
    315 
    316     dataptr++;			/* advance pointer to next column */
    317   }
    318 }
    319 
    320 #ifdef DCT_SCALING_SUPPORTED
    321 
    322 
    323 /*
    324  * Perform the forward DCT on a 7x7 sample block.
    325  */
    326 
    327 GLOBAL(void)
    328 jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    329 {
    330   INT32 tmp0, tmp1, tmp2, tmp3;
    331   INT32 tmp10, tmp11, tmp12;
    332   INT32 z1, z2, z3;
    333   DCTELEM *dataptr;
    334   JSAMPROW elemptr;
    335   int ctr;
    336   SHIFT_TEMPS
    337 
    338   /* Pre-zero output coefficient block. */
    339   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    340 
    341   /* Pass 1: process rows. */
    342   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    343   /* furthermore, we scale the results by 2**PASS1_BITS. */
    344   /* cK represents sqrt(2) * cos(K*pi/14). */
    345 
    346   dataptr = data;
    347   for (ctr = 0; ctr < 7; ctr++) {
    348     elemptr = sample_data[ctr] + start_col;
    349 
    350     /* Even part */
    351 
    352     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
    353     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
    354     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
    355     tmp3 = GETJSAMPLE(elemptr[3]);
    356 
    357     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
    358     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
    359     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
    360 
    361     z1 = tmp0 + tmp2;
    362     /* Apply unsigned->signed conversion */
    363     dataptr[0] = (DCTELEM)
    364       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
    365     tmp3 += tmp3;
    366     z1 -= tmp3;
    367     z1 -= tmp3;
    368     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */
    369     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */
    370     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */
    371     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
    372     z1 -= z2;
    373     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */
    374     dataptr[4] = (DCTELEM)
    375       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
    376               CONST_BITS-PASS1_BITS);
    377     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
    378 
    379     /* Odd part */
    380 
    381     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */
    382     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */
    383     tmp0 = tmp1 - tmp2;
    384     tmp1 += tmp2;
    385     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
    386     tmp1 += tmp2;
    387     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */
    388     tmp0 += tmp3;
    389     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */
    390 
    391     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
    392     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
    393     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
    394 
    395     dataptr += DCTSIZE;		/* advance pointer to next row */
    396   }
    397 
    398   /* Pass 2: process columns.
    399    * We remove the PASS1_BITS scaling, but leave the results scaled up
    400    * by an overall factor of 8.
    401    * We must also scale the output by (8/7)**2 = 64/49, which we fold
    402    * into the constant multipliers:
    403    * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
    404    */
    405 
    406   dataptr = data;
    407   for (ctr = 0; ctr < 7; ctr++) {
    408     /* Even part */
    409 
    410     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
    411     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
    412     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
    413     tmp3 = dataptr[DCTSIZE*3];
    414 
    415     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
    416     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
    417     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
    418 
    419     z1 = tmp0 + tmp2;
    420     dataptr[DCTSIZE*0] = (DCTELEM)
    421       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
    422               CONST_BITS+PASS1_BITS);
    423     tmp3 += tmp3;
    424     z1 -= tmp3;
    425     z1 -= tmp3;
    426     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */
    427     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */
    428     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */
    429     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
    430     z1 -= z2;
    431     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */
    432     dataptr[DCTSIZE*4] = (DCTELEM)
    433       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
    434               CONST_BITS+PASS1_BITS);
    435     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
    436 
    437     /* Odd part */
    438 
    439     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */
    440     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */
    441     tmp0 = tmp1 - tmp2;
    442     tmp1 += tmp2;
    443     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
    444     tmp1 += tmp2;
    445     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */
    446     tmp0 += tmp3;
    447     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */
    448 
    449     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
    450     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
    451     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
    452 
    453     dataptr++;			/* advance pointer to next column */
    454   }
    455 }
    456 
    457 
    458 /*
    459  * Perform the forward DCT on a 6x6 sample block.
    460  */
    461 
    462 GLOBAL(void)
    463 jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    464 {
    465   INT32 tmp0, tmp1, tmp2;
    466   INT32 tmp10, tmp11, tmp12;
    467   DCTELEM *dataptr;
    468   JSAMPROW elemptr;
    469   int ctr;
    470   SHIFT_TEMPS
    471 
    472   /* Pre-zero output coefficient block. */
    473   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    474 
    475   /* Pass 1: process rows. */
    476   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    477   /* furthermore, we scale the results by 2**PASS1_BITS. */
    478   /* cK represents sqrt(2) * cos(K*pi/12). */
    479 
    480   dataptr = data;
    481   for (ctr = 0; ctr < 6; ctr++) {
    482     elemptr = sample_data[ctr] + start_col;
    483 
    484     /* Even part */
    485 
    486     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
    487     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
    488     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
    489 
    490     tmp10 = tmp0 + tmp2;
    491     tmp12 = tmp0 - tmp2;
    492 
    493     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
    494     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
    495     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
    496 
    497     /* Apply unsigned->signed conversion */
    498     dataptr[0] = (DCTELEM)
    499       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
    500     dataptr[2] = (DCTELEM)
    501       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
    502               CONST_BITS-PASS1_BITS);
    503     dataptr[4] = (DCTELEM)
    504       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
    505               CONST_BITS-PASS1_BITS);
    506 
    507     /* Odd part */
    508 
    509     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
    510                     CONST_BITS-PASS1_BITS);
    511 
    512     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
    513     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
    514     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
    515 
    516     dataptr += DCTSIZE;		/* advance pointer to next row */
    517   }
    518 
    519   /* Pass 2: process columns.
    520    * We remove the PASS1_BITS scaling, but leave the results scaled up
    521    * by an overall factor of 8.
    522    * We must also scale the output by (8/6)**2 = 16/9, which we fold
    523    * into the constant multipliers:
    524    * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
    525    */
    526 
    527   dataptr = data;
    528   for (ctr = 0; ctr < 6; ctr++) {
    529     /* Even part */
    530 
    531     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
    532     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
    533     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
    534 
    535     tmp10 = tmp0 + tmp2;
    536     tmp12 = tmp0 - tmp2;
    537 
    538     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
    539     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
    540     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
    541 
    542     dataptr[DCTSIZE*0] = (DCTELEM)
    543       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
    544               CONST_BITS+PASS1_BITS);
    545     dataptr[DCTSIZE*2] = (DCTELEM)
    546       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
    547               CONST_BITS+PASS1_BITS);
    548     dataptr[DCTSIZE*4] = (DCTELEM)
    549       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
    550               CONST_BITS+PASS1_BITS);
    551 
    552     /* Odd part */
    553 
    554     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
    555 
    556     dataptr[DCTSIZE*1] = (DCTELEM)
    557       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
    558               CONST_BITS+PASS1_BITS);
    559     dataptr[DCTSIZE*3] = (DCTELEM)
    560       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
    561               CONST_BITS+PASS1_BITS);
    562     dataptr[DCTSIZE*5] = (DCTELEM)
    563       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
    564               CONST_BITS+PASS1_BITS);
    565 
    566     dataptr++;			/* advance pointer to next column */
    567   }
    568 }
    569 
    570 
    571 /*
    572  * Perform the forward DCT on a 5x5 sample block.
    573  */
    574 
    575 GLOBAL(void)
    576 jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    577 {
    578   INT32 tmp0, tmp1, tmp2;
    579   INT32 tmp10, tmp11;
    580   DCTELEM *dataptr;
    581   JSAMPROW elemptr;
    582   int ctr;
    583   SHIFT_TEMPS
    584 
    585   /* Pre-zero output coefficient block. */
    586   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    587 
    588   /* Pass 1: process rows. */
    589   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    590   /* furthermore, we scale the results by 2**PASS1_BITS. */
    591   /* We scale the results further by 2 as part of output adaption */
    592   /* scaling for different DCT size. */
    593   /* cK represents sqrt(2) * cos(K*pi/10). */
    594 
    595   dataptr = data;
    596   for (ctr = 0; ctr < 5; ctr++) {
    597     elemptr = sample_data[ctr] + start_col;
    598 
    599     /* Even part */
    600 
    601     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
    602     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
    603     tmp2 = GETJSAMPLE(elemptr[2]);
    604 
    605     tmp10 = tmp0 + tmp1;
    606     tmp11 = tmp0 - tmp1;
    607 
    608     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
    609     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
    610 
    611     /* Apply unsigned->signed conversion */
    612     dataptr[0] = (DCTELEM)
    613       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
    614     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */
    615     tmp10 -= tmp2 << 2;
    616     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */
    617     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
    618     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
    619 
    620     /* Odd part */
    621 
    622     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */
    623 
    624     dataptr[1] = (DCTELEM)
    625       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
    626               CONST_BITS-PASS1_BITS-1);
    627     dataptr[3] = (DCTELEM)
    628       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
    629               CONST_BITS-PASS1_BITS-1);
    630 
    631     dataptr += DCTSIZE;		/* advance pointer to next row */
    632   }
    633 
    634   /* Pass 2: process columns.
    635    * We remove the PASS1_BITS scaling, but leave the results scaled up
    636    * by an overall factor of 8.
    637    * We must also scale the output by (8/5)**2 = 64/25, which we partially
    638    * fold into the constant multipliers (other part was done in pass 1):
    639    * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
    640    */
    641 
    642   dataptr = data;
    643   for (ctr = 0; ctr < 5; ctr++) {
    644     /* Even part */
    645 
    646     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
    647     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
    648     tmp2 = dataptr[DCTSIZE*2];
    649 
    650     tmp10 = tmp0 + tmp1;
    651     tmp11 = tmp0 - tmp1;
    652 
    653     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
    654     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
    655 
    656     dataptr[DCTSIZE*0] = (DCTELEM)
    657       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */
    658               CONST_BITS+PASS1_BITS);
    659     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */
    660     tmp10 -= tmp2 << 2;
    661     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */
    662     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
    663     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
    664 
    665     /* Odd part */
    666 
    667     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */
    668 
    669     dataptr[DCTSIZE*1] = (DCTELEM)
    670       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
    671               CONST_BITS+PASS1_BITS);
    672     dataptr[DCTSIZE*3] = (DCTELEM)
    673       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
    674               CONST_BITS+PASS1_BITS);
    675 
    676     dataptr++;			/* advance pointer to next column */
    677   }
    678 }
    679 
    680 
    681 /*
    682  * Perform the forward DCT on a 4x4 sample block.
    683  */
    684 
    685 GLOBAL(void)
    686 jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    687 {
    688   INT32 tmp0, tmp1;
    689   INT32 tmp10, tmp11;
    690   DCTELEM *dataptr;
    691   JSAMPROW elemptr;
    692   int ctr;
    693   SHIFT_TEMPS
    694 
    695   /* Pre-zero output coefficient block. */
    696   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    697 
    698   /* Pass 1: process rows. */
    699   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    700   /* furthermore, we scale the results by 2**PASS1_BITS. */
    701   /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
    702   /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
    703 
    704   dataptr = data;
    705   for (ctr = 0; ctr < 4; ctr++) {
    706     elemptr = sample_data[ctr] + start_col;
    707 
    708     /* Even part */
    709 
    710     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
    711     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
    712 
    713     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
    714     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
    715 
    716     /* Apply unsigned->signed conversion */
    717     dataptr[0] = (DCTELEM)
    718       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
    719     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
    720 
    721     /* Odd part */
    722 
    723     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
    724     /* Add fudge factor here for final descale. */
    725     tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
    726 
    727     dataptr[1] = (DCTELEM)
    728       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
    729                   CONST_BITS-PASS1_BITS-2);
    730     dataptr[3] = (DCTELEM)
    731       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
    732                   CONST_BITS-PASS1_BITS-2);
    733 
    734     dataptr += DCTSIZE;		/* advance pointer to next row */
    735   }
    736 
    737   /* Pass 2: process columns.
    738    * We remove the PASS1_BITS scaling, but leave the results scaled up
    739    * by an overall factor of 8.
    740    */
    741 
    742   dataptr = data;
    743   for (ctr = 0; ctr < 4; ctr++) {
    744     /* Even part */
    745 
    746     /* Add fudge factor here for final descale. */
    747     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
    748     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
    749 
    750     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
    751     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
    752 
    753     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
    754     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
    755 
    756     /* Odd part */
    757 
    758     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
    759     /* Add fudge factor here for final descale. */
    760     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
    761 
    762     dataptr[DCTSIZE*1] = (DCTELEM)
    763       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
    764                   CONST_BITS+PASS1_BITS);
    765     dataptr[DCTSIZE*3] = (DCTELEM)
    766       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
    767                   CONST_BITS+PASS1_BITS);
    768 
    769     dataptr++;			/* advance pointer to next column */
    770   }
    771 }
    772 
    773 
    774 /*
    775  * Perform the forward DCT on a 3x3 sample block.
    776  */
    777 
    778 GLOBAL(void)
    779 jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    780 {
    781   INT32 tmp0, tmp1, tmp2;
    782   DCTELEM *dataptr;
    783   JSAMPROW elemptr;
    784   int ctr;
    785   SHIFT_TEMPS
    786 
    787   /* Pre-zero output coefficient block. */
    788   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    789 
    790   /* Pass 1: process rows. */
    791   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    792   /* furthermore, we scale the results by 2**PASS1_BITS. */
    793   /* We scale the results further by 2**2 as part of output adaption */
    794   /* scaling for different DCT size. */
    795   /* cK represents sqrt(2) * cos(K*pi/6). */
    796 
    797   dataptr = data;
    798   for (ctr = 0; ctr < 3; ctr++) {
    799     elemptr = sample_data[ctr] + start_col;
    800 
    801     /* Even part */
    802 
    803     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
    804     tmp1 = GETJSAMPLE(elemptr[1]);
    805 
    806     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
    807 
    808     /* Apply unsigned->signed conversion */
    809     dataptr[0] = (DCTELEM)
    810       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
    811     dataptr[2] = (DCTELEM)
    812       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
    813               CONST_BITS-PASS1_BITS-2);
    814 
    815     /* Odd part */
    816 
    817     dataptr[1] = (DCTELEM)
    818       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */
    819               CONST_BITS-PASS1_BITS-2);
    820 
    821     dataptr += DCTSIZE;		/* advance pointer to next row */
    822   }
    823 
    824   /* Pass 2: process columns.
    825    * We remove the PASS1_BITS scaling, but leave the results scaled up
    826    * by an overall factor of 8.
    827    * We must also scale the output by (8/3)**2 = 64/9, which we partially
    828    * fold into the constant multipliers (other part was done in pass 1):
    829    * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
    830    */
    831 
    832   dataptr = data;
    833   for (ctr = 0; ctr < 3; ctr++) {
    834     /* Even part */
    835 
    836     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
    837     tmp1 = dataptr[DCTSIZE*1];
    838 
    839     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
    840 
    841     dataptr[DCTSIZE*0] = (DCTELEM)
    842       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */
    843               CONST_BITS+PASS1_BITS);
    844     dataptr[DCTSIZE*2] = (DCTELEM)
    845       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
    846               CONST_BITS+PASS1_BITS);
    847 
    848     /* Odd part */
    849 
    850     dataptr[DCTSIZE*1] = (DCTELEM)
    851       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */
    852               CONST_BITS+PASS1_BITS);
    853 
    854     dataptr++;			/* advance pointer to next column */
    855   }
    856 }
    857 
    858 
    859 /*
    860  * Perform the forward DCT on a 2x2 sample block.
    861  */
    862 
    863 GLOBAL(void)
    864 jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    865 {
    866   INT32 tmp0, tmp1, tmp2, tmp3;
    867   JSAMPROW elemptr;
    868 
    869   /* Pre-zero output coefficient block. */
    870   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    871 
    872   /* Pass 1: process rows. */
    873   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
    874 
    875   /* Row 0 */
    876   elemptr = sample_data[0] + start_col;
    877 
    878   tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
    879   tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
    880 
    881   /* Row 1 */
    882   elemptr = sample_data[1] + start_col;
    883 
    884   tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
    885   tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
    886 
    887   /* Pass 2: process columns.
    888    * We leave the results scaled up by an overall factor of 8.
    889    * We must also scale the output by (8/2)**2 = 2**4.
    890    */
    891 
    892   /* Column 0 */
    893   /* Apply unsigned->signed conversion */
    894   data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4);
    895   data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4);
    896 
    897   /* Column 1 */
    898   data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4);
    899   data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4);
    900 }
    901 
    902 
    903 /*
    904  * Perform the forward DCT on a 1x1 sample block.
    905  */
    906 
    907 GLOBAL(void)
    908 jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    909 {
    910   /* Pre-zero output coefficient block. */
    911   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
    912 
    913   /* We leave the result scaled up by an overall factor of 8. */
    914   /* We must also scale the output by (8/1)**2 = 2**6. */
    915   /* Apply unsigned->signed conversion */
    916   data[0] = (DCTELEM)
    917     ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6);
    918 }
    919 
    920 
    921 /*
    922  * Perform the forward DCT on a 9x9 sample block.
    923  */
    924 
    925 GLOBAL(void)
    926 jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
    927 {
    928   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
    929   INT32 tmp10, tmp11, tmp12, tmp13;
    930   INT32 z1, z2;
    931   DCTELEM workspace[8];
    932   DCTELEM *dataptr;
    933   DCTELEM *wsptr;
    934   JSAMPROW elemptr;
    935   int ctr;
    936   SHIFT_TEMPS
    937 
    938   /* Pass 1: process rows. */
    939   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
    940   /* we scale the results further by 2 as part of output adaption */
    941   /* scaling for different DCT size. */
    942   /* cK represents sqrt(2) * cos(K*pi/18). */
    943 
    944   dataptr = data;
    945   ctr = 0;
    946   for (;;) {
    947     elemptr = sample_data[ctr] + start_col;
    948 
    949     /* Even part */
    950 
    951     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
    952     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
    953     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
    954     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
    955     tmp4 = GETJSAMPLE(elemptr[4]);
    956 
    957     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
    958     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
    959     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
    960     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
    961 
    962     z1 = tmp0 + tmp2 + tmp3;
    963     z2 = tmp1 + tmp4;
    964     /* Apply unsigned->signed conversion */
    965     dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
    966     dataptr[6] = (DCTELEM)
    967       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)),  /* c6 */
    968               CONST_BITS-1);
    969     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049));        /* c2 */
    970     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
    971     dataptr[2] = (DCTELEM)
    972       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441))    /* c4 */
    973               + z1 + z2, CONST_BITS-1);
    974     dataptr[4] = (DCTELEM)
    975       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608))    /* c8 */
    976               + z1 - z2, CONST_BITS-1);
    977 
    978     /* Odd part */
    979 
    980     dataptr[3] = (DCTELEM)
    981       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
    982               CONST_BITS-1);
    983 
    984     tmp11 = MULTIPLY(tmp11, FIX(1.224744871));        /* c3 */
    985     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
    986     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
    987 
    988     dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
    989 
    990     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
    991 
    992     dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
    993     dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
    994 
    995     ctr++;
    996 
    997     if (ctr != DCTSIZE) {
    998       if (ctr == 9)
    999         break;			/* Done. */
   1000       dataptr += DCTSIZE;	/* advance pointer to next row */
   1001     } else
   1002       dataptr = workspace;	/* switch pointer to extended workspace */
   1003   }
   1004 
   1005   /* Pass 2: process columns.
   1006    * We leave the results scaled up by an overall factor of 8.
   1007    * We must also scale the output by (8/9)**2 = 64/81, which we partially
   1008    * fold into the constant multipliers and final/initial shifting:
   1009    * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
   1010    */
   1011 
   1012   dataptr = data;
   1013   wsptr = workspace;
   1014   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1015     /* Even part */
   1016 
   1017     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
   1018     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
   1019     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
   1020     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
   1021     tmp4 = dataptr[DCTSIZE*4];
   1022 
   1023     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
   1024     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
   1025     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
   1026     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
   1027 
   1028     z1 = tmp0 + tmp2 + tmp3;
   1029     z2 = tmp1 + tmp4;
   1030     dataptr[DCTSIZE*0] = (DCTELEM)
   1031       DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)),       /* 128/81 */
   1032               CONST_BITS+2);
   1033     dataptr[DCTSIZE*6] = (DCTELEM)
   1034       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)),  /* c6 */
   1035               CONST_BITS+2);
   1036     z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287));        /* c2 */
   1037     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
   1038     dataptr[DCTSIZE*2] = (DCTELEM)
   1039       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190))    /* c4 */
   1040               + z1 + z2, CONST_BITS+2);
   1041     dataptr[DCTSIZE*4] = (DCTELEM)
   1042       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096))    /* c8 */
   1043               + z1 - z2, CONST_BITS+2);
   1044 
   1045     /* Odd part */
   1046 
   1047     dataptr[DCTSIZE*3] = (DCTELEM)
   1048       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
   1049               CONST_BITS+2);
   1050 
   1051     tmp11 = MULTIPLY(tmp11, FIX(1.935399303));        /* c3 */
   1052     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
   1053     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
   1054 
   1055     dataptr[DCTSIZE*1] = (DCTELEM)
   1056       DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
   1057 
   1058     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
   1059 
   1060     dataptr[DCTSIZE*5] = (DCTELEM)
   1061       DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
   1062     dataptr[DCTSIZE*7] = (DCTELEM)
   1063       DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
   1064 
   1065     dataptr++;			/* advance pointer to next column */
   1066     wsptr++;			/* advance pointer to next column */
   1067   }
   1068 }
   1069 
   1070 
   1071 /*
   1072  * Perform the forward DCT on a 10x10 sample block.
   1073  */
   1074 
   1075 GLOBAL(void)
   1076 jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1077 {
   1078   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
   1079   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
   1080   DCTELEM workspace[8*2];
   1081   DCTELEM *dataptr;
   1082   DCTELEM *wsptr;
   1083   JSAMPROW elemptr;
   1084   int ctr;
   1085   SHIFT_TEMPS
   1086 
   1087   /* Pass 1: process rows. */
   1088   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   1089   /* we scale the results further by 2 as part of output adaption */
   1090   /* scaling for different DCT size. */
   1091   /* cK represents sqrt(2) * cos(K*pi/20). */
   1092 
   1093   dataptr = data;
   1094   ctr = 0;
   1095   for (;;) {
   1096     elemptr = sample_data[ctr] + start_col;
   1097 
   1098     /* Even part */
   1099 
   1100     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
   1101     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
   1102     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
   1103     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
   1104     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
   1105 
   1106     tmp10 = tmp0 + tmp4;
   1107     tmp13 = tmp0 - tmp4;
   1108     tmp11 = tmp1 + tmp3;
   1109     tmp14 = tmp1 - tmp3;
   1110 
   1111     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
   1112     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
   1113     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
   1114     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
   1115     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
   1116 
   1117     /* Apply unsigned->signed conversion */
   1118     dataptr[0] = (DCTELEM)
   1119       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
   1120     tmp12 += tmp12;
   1121     dataptr[4] = (DCTELEM)
   1122       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
   1123               MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */
   1124               CONST_BITS-1);
   1125     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */
   1126     dataptr[2] = (DCTELEM)
   1127       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */
   1128               CONST_BITS-1);
   1129     dataptr[6] = (DCTELEM)
   1130       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */
   1131               CONST_BITS-1);
   1132 
   1133     /* Odd part */
   1134 
   1135     tmp10 = tmp0 + tmp4;
   1136     tmp11 = tmp1 - tmp3;
   1137     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
   1138     tmp2 <<= CONST_BITS;
   1139     dataptr[1] = (DCTELEM)
   1140       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */
   1141               MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */
   1142               MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */
   1143               MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */
   1144               CONST_BITS-1);
   1145     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */
   1146             MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */
   1147     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */
   1148             (tmp11 << (CONST_BITS - 1)) - tmp2;
   1149     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
   1150     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
   1151 
   1152     ctr++;
   1153 
   1154     if (ctr != DCTSIZE) {
   1155       if (ctr == 10)
   1156         break;			/* Done. */
   1157       dataptr += DCTSIZE;	/* advance pointer to next row */
   1158     } else
   1159       dataptr = workspace;	/* switch pointer to extended workspace */
   1160   }
   1161 
   1162   /* Pass 2: process columns.
   1163    * We leave the results scaled up by an overall factor of 8.
   1164    * We must also scale the output by (8/10)**2 = 16/25, which we partially
   1165    * fold into the constant multipliers and final/initial shifting:
   1166    * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
   1167    */
   1168 
   1169   dataptr = data;
   1170   wsptr = workspace;
   1171   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1172     /* Even part */
   1173 
   1174     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
   1175     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
   1176     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
   1177     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
   1178     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
   1179 
   1180     tmp10 = tmp0 + tmp4;
   1181     tmp13 = tmp0 - tmp4;
   1182     tmp11 = tmp1 + tmp3;
   1183     tmp14 = tmp1 - tmp3;
   1184 
   1185     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
   1186     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
   1187     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
   1188     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
   1189     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
   1190 
   1191     dataptr[DCTSIZE*0] = (DCTELEM)
   1192       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
   1193               CONST_BITS+2);
   1194     tmp12 += tmp12;
   1195     dataptr[DCTSIZE*4] = (DCTELEM)
   1196       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
   1197               MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */
   1198               CONST_BITS+2);
   1199     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */
   1200     dataptr[DCTSIZE*2] = (DCTELEM)
   1201       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */
   1202               CONST_BITS+2);
   1203     dataptr[DCTSIZE*6] = (DCTELEM)
   1204       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */
   1205               CONST_BITS+2);
   1206 
   1207     /* Odd part */
   1208 
   1209     tmp10 = tmp0 + tmp4;
   1210     tmp11 = tmp1 - tmp3;
   1211     dataptr[DCTSIZE*5] = (DCTELEM)
   1212       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */
   1213               CONST_BITS+2);
   1214     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */
   1215     dataptr[DCTSIZE*1] = (DCTELEM)
   1216       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */
   1217               MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */
   1218               MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */
   1219               MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */
   1220               CONST_BITS+2);
   1221     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */
   1222             MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */
   1223     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */
   1224             MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */
   1225     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
   1226     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
   1227 
   1228     dataptr++;			/* advance pointer to next column */
   1229     wsptr++;			/* advance pointer to next column */
   1230   }
   1231 }
   1232 
   1233 
   1234 /*
   1235  * Perform the forward DCT on an 11x11 sample block.
   1236  */
   1237 
   1238 GLOBAL(void)
   1239 jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1240 {
   1241   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
   1242   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
   1243   INT32 z1, z2, z3;
   1244   DCTELEM workspace[8*3];
   1245   DCTELEM *dataptr;
   1246   DCTELEM *wsptr;
   1247   JSAMPROW elemptr;
   1248   int ctr;
   1249   SHIFT_TEMPS
   1250 
   1251   /* Pass 1: process rows. */
   1252   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   1253   /* we scale the results further by 2 as part of output adaption */
   1254   /* scaling for different DCT size. */
   1255   /* cK represents sqrt(2) * cos(K*pi/22). */
   1256 
   1257   dataptr = data;
   1258   ctr = 0;
   1259   for (;;) {
   1260     elemptr = sample_data[ctr] + start_col;
   1261 
   1262     /* Even part */
   1263 
   1264     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
   1265     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
   1266     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
   1267     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
   1268     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
   1269     tmp5 = GETJSAMPLE(elemptr[5]);
   1270 
   1271     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
   1272     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
   1273     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
   1274     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
   1275     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
   1276 
   1277     /* Apply unsigned->signed conversion */
   1278     dataptr[0] = (DCTELEM)
   1279       ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
   1280     tmp5 += tmp5;
   1281     tmp0 -= tmp5;
   1282     tmp1 -= tmp5;
   1283     tmp2 -= tmp5;
   1284     tmp3 -= tmp5;
   1285     tmp4 -= tmp5;
   1286     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) +       /* c2 */
   1287          MULTIPLY(tmp2 + tmp4, FIX(0.201263574));        /* c10 */
   1288     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931));        /* c6 */
   1289     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156));        /* c4 */
   1290     dataptr[2] = (DCTELEM)
   1291       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
   1292               - MULTIPLY(tmp4, FIX(1.390975730)),        /* c4+c10 */
   1293               CONST_BITS-1);
   1294     dataptr[4] = (DCTELEM)
   1295       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
   1296               - MULTIPLY(tmp2, FIX(1.356927976))         /* c2 */
   1297               + MULTIPLY(tmp4, FIX(0.587485545)),        /* c8 */
   1298               CONST_BITS-1);
   1299     dataptr[6] = (DCTELEM)
   1300       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
   1301               - MULTIPLY(tmp2, FIX(0.788749120)),        /* c8+c10 */
   1302               CONST_BITS-1);
   1303 
   1304     /* Odd part */
   1305 
   1306     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905));    /* c3 */
   1307     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298));    /* c5 */
   1308     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576));    /* c7 */
   1309     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
   1310            + MULTIPLY(tmp14, FIX(0.398430003));          /* c9 */
   1311     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576));  /* -c7 */
   1312     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907));  /* -c1 */
   1313     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
   1314             - MULTIPLY(tmp14, FIX(1.068791298));         /* c5 */
   1315     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003));   /* c9 */
   1316     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
   1317             + MULTIPLY(tmp14, FIX(1.399818907));         /* c1 */
   1318     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
   1319             - MULTIPLY(tmp14, FIX(1.286413905));         /* c3 */
   1320 
   1321     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
   1322     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
   1323     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
   1324     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
   1325 
   1326     ctr++;
   1327 
   1328     if (ctr != DCTSIZE) {
   1329       if (ctr == 11)
   1330         break;			/* Done. */
   1331       dataptr += DCTSIZE;	/* advance pointer to next row */
   1332     } else
   1333       dataptr = workspace;	/* switch pointer to extended workspace */
   1334   }
   1335 
   1336   /* Pass 2: process columns.
   1337    * We leave the results scaled up by an overall factor of 8.
   1338    * We must also scale the output by (8/11)**2 = 64/121, which we partially
   1339    * fold into the constant multipliers and final/initial shifting:
   1340    * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
   1341    */
   1342 
   1343   dataptr = data;
   1344   wsptr = workspace;
   1345   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1346     /* Even part */
   1347 
   1348     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
   1349     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
   1350     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
   1351     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
   1352     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
   1353     tmp5 = dataptr[DCTSIZE*5];
   1354 
   1355     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
   1356     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
   1357     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
   1358     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
   1359     tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
   1360 
   1361     dataptr[DCTSIZE*0] = (DCTELEM)
   1362       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
   1363                        FIX(1.057851240)),                /* 128/121 */
   1364               CONST_BITS+2);
   1365     tmp5 += tmp5;
   1366     tmp0 -= tmp5;
   1367     tmp1 -= tmp5;
   1368     tmp2 -= tmp5;
   1369     tmp3 -= tmp5;
   1370     tmp4 -= tmp5;
   1371     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) +       /* c2 */
   1372          MULTIPLY(tmp2 + tmp4, FIX(0.212906922));        /* c10 */
   1373     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713));        /* c6 */
   1374     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479));        /* c4 */
   1375     dataptr[DCTSIZE*2] = (DCTELEM)
   1376       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
   1377               - MULTIPLY(tmp4, FIX(1.471445400)),        /* c4+c10 */
   1378               CONST_BITS+2);
   1379     dataptr[DCTSIZE*4] = (DCTELEM)
   1380       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
   1381               - MULTIPLY(tmp2, FIX(1.435427942))         /* c2 */
   1382               + MULTIPLY(tmp4, FIX(0.621472312)),        /* c8 */
   1383               CONST_BITS+2);
   1384     dataptr[DCTSIZE*6] = (DCTELEM)
   1385       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
   1386               - MULTIPLY(tmp2, FIX(0.834379234)),        /* c8+c10 */
   1387               CONST_BITS+2);
   1388 
   1389     /* Odd part */
   1390 
   1391     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544));    /* c3 */
   1392     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199));    /* c5 */
   1393     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568));    /* c7 */
   1394     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
   1395            + MULTIPLY(tmp14, FIX(0.421479672));          /* c9 */
   1396     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568));  /* -c7 */
   1397     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167));  /* -c1 */
   1398     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
   1399             - MULTIPLY(tmp14, FIX(1.130622199));         /* c5 */
   1400     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672));   /* c9 */
   1401     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
   1402             + MULTIPLY(tmp14, FIX(1.480800167));         /* c1 */
   1403     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
   1404             - MULTIPLY(tmp14, FIX(1.360834544));         /* c3 */
   1405 
   1406     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
   1407     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
   1408     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
   1409     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
   1410 
   1411     dataptr++;			/* advance pointer to next column */
   1412     wsptr++;			/* advance pointer to next column */
   1413   }
   1414 }
   1415 
   1416 
   1417 /*
   1418  * Perform the forward DCT on a 12x12 sample block.
   1419  */
   1420 
   1421 GLOBAL(void)
   1422 jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1423 {
   1424   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
   1425   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
   1426   DCTELEM workspace[8*4];
   1427   DCTELEM *dataptr;
   1428   DCTELEM *wsptr;
   1429   JSAMPROW elemptr;
   1430   int ctr;
   1431   SHIFT_TEMPS
   1432 
   1433   /* Pass 1: process rows. */
   1434   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
   1435   /* cK represents sqrt(2) * cos(K*pi/24). */
   1436 
   1437   dataptr = data;
   1438   ctr = 0;
   1439   for (;;) {
   1440     elemptr = sample_data[ctr] + start_col;
   1441 
   1442     /* Even part */
   1443 
   1444     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
   1445     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
   1446     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
   1447     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
   1448     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
   1449     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
   1450 
   1451     tmp10 = tmp0 + tmp5;
   1452     tmp13 = tmp0 - tmp5;
   1453     tmp11 = tmp1 + tmp4;
   1454     tmp14 = tmp1 - tmp4;
   1455     tmp12 = tmp2 + tmp3;
   1456     tmp15 = tmp2 - tmp3;
   1457 
   1458     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
   1459     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
   1460     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
   1461     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
   1462     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
   1463     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
   1464 
   1465     /* Apply unsigned->signed conversion */
   1466     dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
   1467     dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
   1468     dataptr[4] = (DCTELEM)
   1469       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
   1470               CONST_BITS);
   1471     dataptr[2] = (DCTELEM)
   1472       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
   1473               CONST_BITS);
   1474 
   1475     /* Odd part */
   1476 
   1477     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */
   1478     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */
   1479     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */
   1480     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */
   1481     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */
   1482     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
   1483             + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */
   1484     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
   1485     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
   1486             + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */
   1487     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
   1488             - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */
   1489     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
   1490             - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */
   1491 
   1492     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
   1493     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
   1494     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
   1495     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
   1496 
   1497     ctr++;
   1498 
   1499     if (ctr != DCTSIZE) {
   1500       if (ctr == 12)
   1501         break;			/* Done. */
   1502       dataptr += DCTSIZE;	/* advance pointer to next row */
   1503     } else
   1504       dataptr = workspace;	/* switch pointer to extended workspace */
   1505   }
   1506 
   1507   /* Pass 2: process columns.
   1508    * We leave the results scaled up by an overall factor of 8.
   1509    * We must also scale the output by (8/12)**2 = 4/9, which we partially
   1510    * fold into the constant multipliers and final shifting:
   1511    * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
   1512    */
   1513 
   1514   dataptr = data;
   1515   wsptr = workspace;
   1516   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1517     /* Even part */
   1518 
   1519     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
   1520     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
   1521     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
   1522     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
   1523     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
   1524     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
   1525 
   1526     tmp10 = tmp0 + tmp5;
   1527     tmp13 = tmp0 - tmp5;
   1528     tmp11 = tmp1 + tmp4;
   1529     tmp14 = tmp1 - tmp4;
   1530     tmp12 = tmp2 + tmp3;
   1531     tmp15 = tmp2 - tmp3;
   1532 
   1533     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
   1534     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
   1535     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
   1536     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
   1537     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
   1538     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
   1539 
   1540     dataptr[DCTSIZE*0] = (DCTELEM)
   1541       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
   1542               CONST_BITS+1);
   1543     dataptr[DCTSIZE*6] = (DCTELEM)
   1544       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
   1545               CONST_BITS+1);
   1546     dataptr[DCTSIZE*4] = (DCTELEM)
   1547       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */
   1548               CONST_BITS+1);
   1549     dataptr[DCTSIZE*2] = (DCTELEM)
   1550       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */
   1551               MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */
   1552               CONST_BITS+1);
   1553 
   1554     /* Odd part */
   1555 
   1556     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */
   1557     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */
   1558     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */
   1559     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */
   1560     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */
   1561     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
   1562             + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */
   1563     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
   1564     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
   1565             + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */
   1566     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
   1567             - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */
   1568     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
   1569             - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
   1570 
   1571     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
   1572     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
   1573     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
   1574     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
   1575 
   1576     dataptr++;			/* advance pointer to next column */
   1577     wsptr++;			/* advance pointer to next column */
   1578   }
   1579 }
   1580 
   1581 
   1582 /*
   1583  * Perform the forward DCT on a 13x13 sample block.
   1584  */
   1585 
   1586 GLOBAL(void)
   1587 jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1588 {
   1589   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
   1590   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
   1591   INT32 z1, z2;
   1592   DCTELEM workspace[8*5];
   1593   DCTELEM *dataptr;
   1594   DCTELEM *wsptr;
   1595   JSAMPROW elemptr;
   1596   int ctr;
   1597   SHIFT_TEMPS
   1598 
   1599   /* Pass 1: process rows. */
   1600   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
   1601   /* cK represents sqrt(2) * cos(K*pi/26). */
   1602 
   1603   dataptr = data;
   1604   ctr = 0;
   1605   for (;;) {
   1606     elemptr = sample_data[ctr] + start_col;
   1607 
   1608     /* Even part */
   1609 
   1610     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
   1611     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
   1612     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
   1613     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
   1614     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
   1615     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
   1616     tmp6 = GETJSAMPLE(elemptr[6]);
   1617 
   1618     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
   1619     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
   1620     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
   1621     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
   1622     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
   1623     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
   1624 
   1625     /* Apply unsigned->signed conversion */
   1626     dataptr[0] = (DCTELEM)
   1627       (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
   1628     tmp6 += tmp6;
   1629     tmp0 -= tmp6;
   1630     tmp1 -= tmp6;
   1631     tmp2 -= tmp6;
   1632     tmp3 -= tmp6;
   1633     tmp4 -= tmp6;
   1634     tmp5 -= tmp6;
   1635     dataptr[2] = (DCTELEM)
   1636       DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) +   /* c2 */
   1637               MULTIPLY(tmp1, FIX(1.058554052)) +   /* c6 */
   1638               MULTIPLY(tmp2, FIX(0.501487041)) -   /* c10 */
   1639               MULTIPLY(tmp3, FIX(0.170464608)) -   /* c12 */
   1640               MULTIPLY(tmp4, FIX(0.803364869)) -   /* c8 */
   1641               MULTIPLY(tmp5, FIX(1.252223920)),    /* c4 */
   1642               CONST_BITS);
   1643     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
   1644          MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
   1645          MULTIPLY(tmp1 - tmp5, FIX(0.316450131));  /* (c8-c12)/2 */
   1646     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
   1647          MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
   1648          MULTIPLY(tmp1 + tmp5, FIX(0.486914739));  /* (c8+c12)/2 */
   1649 
   1650     dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
   1651     dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
   1652 
   1653     /* Odd part */
   1654 
   1655     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651));   /* c3 */
   1656     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945));   /* c5 */
   1657     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) +  /* c7 */
   1658            MULTIPLY(tmp14 + tmp15, FIX(0.338443458));   /* c11 */
   1659     tmp0 = tmp1 + tmp2 + tmp3 -
   1660            MULTIPLY(tmp10, FIX(2.020082300)) +          /* c3+c5+c7-c1 */
   1661            MULTIPLY(tmp14, FIX(0.318774355));           /* c9-c11 */
   1662     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) -  /* c7 */
   1663            MULTIPLY(tmp11 + tmp12, FIX(0.338443458));   /* c11 */
   1664     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
   1665     tmp1 += tmp4 + tmp5 +
   1666             MULTIPLY(tmp11, FIX(0.837223564)) -         /* c5+c9+c11-c3 */
   1667             MULTIPLY(tmp14, FIX(2.341699410));          /* c1+c7 */
   1668     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
   1669     tmp2 += tmp4 + tmp6 -
   1670             MULTIPLY(tmp12, FIX(1.572116027)) +         /* c1+c5-c9-c11 */
   1671             MULTIPLY(tmp15, FIX(2.260109708));          /* c3+c7 */
   1672     tmp3 += tmp5 + tmp6 +
   1673             MULTIPLY(tmp13, FIX(2.205608352)) -         /* c3+c5+c9-c7 */
   1674             MULTIPLY(tmp15, FIX(1.742345811));          /* c1+c11 */
   1675 
   1676     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
   1677     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
   1678     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
   1679     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
   1680 
   1681     ctr++;
   1682 
   1683     if (ctr != DCTSIZE) {
   1684       if (ctr == 13)
   1685         break;			/* Done. */
   1686       dataptr += DCTSIZE;	/* advance pointer to next row */
   1687     } else
   1688       dataptr = workspace;	/* switch pointer to extended workspace */
   1689   }
   1690 
   1691   /* Pass 2: process columns.
   1692    * We leave the results scaled up by an overall factor of 8.
   1693    * We must also scale the output by (8/13)**2 = 64/169, which we partially
   1694    * fold into the constant multipliers and final shifting:
   1695    * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
   1696    */
   1697 
   1698   dataptr = data;
   1699   wsptr = workspace;
   1700   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1701     /* Even part */
   1702 
   1703     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
   1704     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
   1705     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
   1706     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
   1707     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
   1708     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
   1709     tmp6 = dataptr[DCTSIZE*6];
   1710 
   1711     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
   1712     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
   1713     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
   1714     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
   1715     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
   1716     tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
   1717 
   1718     dataptr[DCTSIZE*0] = (DCTELEM)
   1719       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
   1720                        FIX(0.757396450)),          /* 128/169 */
   1721               CONST_BITS+1);
   1722     tmp6 += tmp6;
   1723     tmp0 -= tmp6;
   1724     tmp1 -= tmp6;
   1725     tmp2 -= tmp6;
   1726     tmp3 -= tmp6;
   1727     tmp4 -= tmp6;
   1728     tmp5 -= tmp6;
   1729     dataptr[DCTSIZE*2] = (DCTELEM)
   1730       DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) +   /* c2 */
   1731               MULTIPLY(tmp1, FIX(0.801745081)) +   /* c6 */
   1732               MULTIPLY(tmp2, FIX(0.379824504)) -   /* c10 */
   1733               MULTIPLY(tmp3, FIX(0.129109289)) -   /* c12 */
   1734               MULTIPLY(tmp4, FIX(0.608465700)) -   /* c8 */
   1735               MULTIPLY(tmp5, FIX(0.948429952)),    /* c4 */
   1736               CONST_BITS+1);
   1737     z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
   1738          MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
   1739          MULTIPLY(tmp1 - tmp5, FIX(0.239678205));  /* (c8-c12)/2 */
   1740     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
   1741          MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
   1742          MULTIPLY(tmp1 + tmp5, FIX(0.368787494));  /* (c8+c12)/2 */
   1743 
   1744     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
   1745     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
   1746 
   1747     /* Odd part */
   1748 
   1749     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908));   /* c3 */
   1750     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751));   /* c5 */
   1751     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) +  /* c7 */
   1752            MULTIPLY(tmp14 + tmp15, FIX(0.256335874));   /* c11 */
   1753     tmp0 = tmp1 + tmp2 + tmp3 -
   1754            MULTIPLY(tmp10, FIX(1.530003162)) +          /* c3+c5+c7-c1 */
   1755            MULTIPLY(tmp14, FIX(0.241438564));           /* c9-c11 */
   1756     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) -  /* c7 */
   1757            MULTIPLY(tmp11 + tmp12, FIX(0.256335874));   /* c11 */
   1758     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
   1759     tmp1 += tmp4 + tmp5 +
   1760             MULTIPLY(tmp11, FIX(0.634110155)) -         /* c5+c9+c11-c3 */
   1761             MULTIPLY(tmp14, FIX(1.773594819));          /* c1+c7 */
   1762     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
   1763     tmp2 += tmp4 + tmp6 -
   1764             MULTIPLY(tmp12, FIX(1.190715098)) +         /* c1+c5-c9-c11 */
   1765             MULTIPLY(tmp15, FIX(1.711799069));          /* c3+c7 */
   1766     tmp3 += tmp5 + tmp6 +
   1767             MULTIPLY(tmp13, FIX(1.670519935)) -         /* c3+c5+c9-c7 */
   1768             MULTIPLY(tmp15, FIX(1.319646532));          /* c1+c11 */
   1769 
   1770     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
   1771     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
   1772     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
   1773     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
   1774 
   1775     dataptr++;			/* advance pointer to next column */
   1776     wsptr++;			/* advance pointer to next column */
   1777   }
   1778 }
   1779 
   1780 
   1781 /*
   1782  * Perform the forward DCT on a 14x14 sample block.
   1783  */
   1784 
   1785 GLOBAL(void)
   1786 jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1787 {
   1788   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
   1789   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
   1790   DCTELEM workspace[8*6];
   1791   DCTELEM *dataptr;
   1792   DCTELEM *wsptr;
   1793   JSAMPROW elemptr;
   1794   int ctr;
   1795   SHIFT_TEMPS
   1796 
   1797   /* Pass 1: process rows. */
   1798   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
   1799   /* cK represents sqrt(2) * cos(K*pi/28). */
   1800 
   1801   dataptr = data;
   1802   ctr = 0;
   1803   for (;;) {
   1804     elemptr = sample_data[ctr] + start_col;
   1805 
   1806     /* Even part */
   1807 
   1808     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
   1809     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
   1810     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
   1811     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
   1812     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
   1813     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
   1814     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
   1815 
   1816     tmp10 = tmp0 + tmp6;
   1817     tmp14 = tmp0 - tmp6;
   1818     tmp11 = tmp1 + tmp5;
   1819     tmp15 = tmp1 - tmp5;
   1820     tmp12 = tmp2 + tmp4;
   1821     tmp16 = tmp2 - tmp4;
   1822 
   1823     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
   1824     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
   1825     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
   1826     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
   1827     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
   1828     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
   1829     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
   1830 
   1831     /* Apply unsigned->signed conversion */
   1832     dataptr[0] = (DCTELEM)
   1833       (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
   1834     tmp13 += tmp13;
   1835     dataptr[4] = (DCTELEM)
   1836       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
   1837               MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
   1838               MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */
   1839               CONST_BITS);
   1840 
   1841     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */
   1842 
   1843     dataptr[2] = (DCTELEM)
   1844       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */
   1845               + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */
   1846               CONST_BITS);
   1847     dataptr[6] = (DCTELEM)
   1848       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */
   1849               - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */
   1850               CONST_BITS);
   1851 
   1852     /* Odd part */
   1853 
   1854     tmp10 = tmp1 + tmp2;
   1855     tmp11 = tmp5 - tmp4;
   1856     dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
   1857     tmp3 <<= CONST_BITS;
   1858     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */
   1859     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */
   1860     tmp10 += tmp11 - tmp3;
   1861     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */
   1862             MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */
   1863     dataptr[5] = (DCTELEM)
   1864       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
   1865               + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */
   1866               CONST_BITS);
   1867     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */
   1868             MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */
   1869     dataptr[3] = (DCTELEM)
   1870       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
   1871               - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */
   1872               CONST_BITS);
   1873     dataptr[1] = (DCTELEM)
   1874       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
   1875               MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */
   1876               CONST_BITS);
   1877 
   1878     ctr++;
   1879 
   1880     if (ctr != DCTSIZE) {
   1881       if (ctr == 14)
   1882         break;			/* Done. */
   1883       dataptr += DCTSIZE;	/* advance pointer to next row */
   1884     } else
   1885       dataptr = workspace;	/* switch pointer to extended workspace */
   1886   }
   1887 
   1888   /* Pass 2: process columns.
   1889    * We leave the results scaled up by an overall factor of 8.
   1890    * We must also scale the output by (8/14)**2 = 16/49, which we partially
   1891    * fold into the constant multipliers and final shifting:
   1892    * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
   1893    */
   1894 
   1895   dataptr = data;
   1896   wsptr = workspace;
   1897   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   1898     /* Even part */
   1899 
   1900     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
   1901     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
   1902     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
   1903     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
   1904     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
   1905     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
   1906     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
   1907 
   1908     tmp10 = tmp0 + tmp6;
   1909     tmp14 = tmp0 - tmp6;
   1910     tmp11 = tmp1 + tmp5;
   1911     tmp15 = tmp1 - tmp5;
   1912     tmp12 = tmp2 + tmp4;
   1913     tmp16 = tmp2 - tmp4;
   1914 
   1915     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
   1916     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
   1917     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
   1918     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
   1919     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
   1920     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
   1921     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
   1922 
   1923     dataptr[DCTSIZE*0] = (DCTELEM)
   1924       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
   1925                        FIX(0.653061224)),                 /* 32/49 */
   1926               CONST_BITS+1);
   1927     tmp13 += tmp13;
   1928     dataptr[DCTSIZE*4] = (DCTELEM)
   1929       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
   1930               MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
   1931               MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */
   1932               CONST_BITS+1);
   1933 
   1934     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */
   1935 
   1936     dataptr[DCTSIZE*2] = (DCTELEM)
   1937       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */
   1938               + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */
   1939               CONST_BITS+1);
   1940     dataptr[DCTSIZE*6] = (DCTELEM)
   1941       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */
   1942               - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */
   1943               CONST_BITS+1);
   1944 
   1945     /* Odd part */
   1946 
   1947     tmp10 = tmp1 + tmp2;
   1948     tmp11 = tmp5 - tmp4;
   1949     dataptr[DCTSIZE*7] = (DCTELEM)
   1950       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
   1951                        FIX(0.653061224)),                 /* 32/49 */
   1952               CONST_BITS+1);
   1953     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */
   1954     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */
   1955     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */
   1956     tmp10 += tmp11 - tmp3;
   1957     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */
   1958             MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */
   1959     dataptr[DCTSIZE*5] = (DCTELEM)
   1960       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
   1961               + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */
   1962               CONST_BITS+1);
   1963     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */
   1964             MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */
   1965     dataptr[DCTSIZE*3] = (DCTELEM)
   1966       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
   1967               - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */
   1968               CONST_BITS+1);
   1969     dataptr[DCTSIZE*1] = (DCTELEM)
   1970       DESCALE(tmp11 + tmp12 + tmp3
   1971               - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */
   1972               - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */
   1973               CONST_BITS+1);
   1974 
   1975     dataptr++;			/* advance pointer to next column */
   1976     wsptr++;			/* advance pointer to next column */
   1977   }
   1978 }
   1979 
   1980 
   1981 /*
   1982  * Perform the forward DCT on a 15x15 sample block.
   1983  */
   1984 
   1985 GLOBAL(void)
   1986 jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   1987 {
   1988   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   1989   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
   1990   INT32 z1, z2, z3;
   1991   DCTELEM workspace[8*7];
   1992   DCTELEM *dataptr;
   1993   DCTELEM *wsptr;
   1994   JSAMPROW elemptr;
   1995   int ctr;
   1996   SHIFT_TEMPS
   1997 
   1998   /* Pass 1: process rows. */
   1999   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
   2000   /* cK represents sqrt(2) * cos(K*pi/30). */
   2001 
   2002   dataptr = data;
   2003   ctr = 0;
   2004   for (;;) {
   2005     elemptr = sample_data[ctr] + start_col;
   2006 
   2007     /* Even part */
   2008 
   2009     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
   2010     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
   2011     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
   2012     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
   2013     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
   2014     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
   2015     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
   2016     tmp7 = GETJSAMPLE(elemptr[7]);
   2017 
   2018     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
   2019     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
   2020     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
   2021     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
   2022     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
   2023     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
   2024     tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
   2025 
   2026     z1 = tmp0 + tmp4 + tmp5;
   2027     z2 = tmp1 + tmp3 + tmp6;
   2028     z3 = tmp2 + tmp7;
   2029     /* Apply unsigned->signed conversion */
   2030     dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
   2031     z3 += z3;
   2032     dataptr[6] = (DCTELEM)
   2033       DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
   2034               MULTIPLY(z2 - z3, FIX(0.437016024)),  /* c12 */
   2035               CONST_BITS);
   2036     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
   2037     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) -  /* c2+c14 */
   2038          MULTIPLY(tmp6 - tmp2, FIX(2.238241955));   /* c4+c8 */
   2039     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) -  /* c8-c14 */
   2040          MULTIPLY(tmp0 - tmp2, FIX(0.091361227));   /* c2-c4 */
   2041     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) +  /* c2 */
   2042          MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) +  /* c8 */
   2043          MULTIPLY(tmp1 - tmp4, FIX(0.790569415));   /* (c6+c12)/2 */
   2044 
   2045     dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
   2046     dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
   2047 
   2048     /* Odd part */
   2049 
   2050     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
   2051                     FIX(1.224744871));                         /* c5 */
   2052     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
   2053            MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876));  /* c9 */
   2054     tmp12 = MULTIPLY(tmp12, FIX(1.224744871));                 /* c5 */
   2055     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) +         /* c1 */
   2056            MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) +         /* c3 */
   2057            MULTIPLY(tmp13 + tmp15, FIX(0.575212477));          /* c11 */
   2058     tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) -                 /* c7-c11 */
   2059            MULTIPLY(tmp14, FIX(0.513743148)) +                 /* c3-c9 */
   2060            MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12;   /* c1+c13 */
   2061     tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) -               /* -(c1-c7) */
   2062            MULTIPLY(tmp11, FIX(2.176250899)) -                 /* c3+c9 */
   2063            MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12;   /* c11+c13 */
   2064 
   2065     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
   2066     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
   2067     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
   2068     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
   2069 
   2070     ctr++;
   2071 
   2072     if (ctr != DCTSIZE) {
   2073       if (ctr == 15)
   2074         break;			/* Done. */
   2075       dataptr += DCTSIZE;	/* advance pointer to next row */
   2076     } else
   2077       dataptr = workspace;	/* switch pointer to extended workspace */
   2078   }
   2079 
   2080   /* Pass 2: process columns.
   2081    * We leave the results scaled up by an overall factor of 8.
   2082    * We must also scale the output by (8/15)**2 = 64/225, which we partially
   2083    * fold into the constant multipliers and final shifting:
   2084    * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
   2085    */
   2086 
   2087   dataptr = data;
   2088   wsptr = workspace;
   2089   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2090     /* Even part */
   2091 
   2092     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
   2093     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
   2094     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
   2095     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
   2096     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
   2097     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
   2098     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
   2099     tmp7 = dataptr[DCTSIZE*7];
   2100 
   2101     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
   2102     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
   2103     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
   2104     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
   2105     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
   2106     tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
   2107     tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
   2108 
   2109     z1 = tmp0 + tmp4 + tmp5;
   2110     z2 = tmp1 + tmp3 + tmp6;
   2111     z3 = tmp2 + tmp7;
   2112     dataptr[DCTSIZE*0] = (DCTELEM)
   2113       DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
   2114               CONST_BITS+2);
   2115     z3 += z3;
   2116     dataptr[DCTSIZE*6] = (DCTELEM)
   2117       DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
   2118               MULTIPLY(z2 - z3, FIX(0.497227121)),  /* c12 */
   2119               CONST_BITS+2);
   2120     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
   2121     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) -  /* c2+c14 */
   2122          MULTIPLY(tmp6 - tmp2, FIX(2.546621957));   /* c4+c8 */
   2123     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) -  /* c8-c14 */
   2124          MULTIPLY(tmp0 - tmp2, FIX(0.103948774));   /* c2-c4 */
   2125     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) +  /* c2 */
   2126          MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) +  /* c8 */
   2127          MULTIPLY(tmp1 - tmp4, FIX(0.899492312));   /* (c6+c12)/2 */
   2128 
   2129     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
   2130     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
   2131 
   2132     /* Odd part */
   2133 
   2134     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
   2135                     FIX(1.393487498));                         /* c5 */
   2136     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
   2137            MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187));  /* c9 */
   2138     tmp12 = MULTIPLY(tmp12, FIX(1.393487498));                 /* c5 */
   2139     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) +         /* c1 */
   2140            MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) +         /* c3 */
   2141            MULTIPLY(tmp13 + tmp15, FIX(0.654463974));          /* c11 */
   2142     tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) -                 /* c7-c11 */
   2143            MULTIPLY(tmp14, FIX(0.584525538)) +                 /* c3-c9 */
   2144            MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12;   /* c1+c13 */
   2145     tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) -               /* -(c1-c7) */
   2146            MULTIPLY(tmp11, FIX(2.476089912)) -                 /* c3+c9 */
   2147            MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12;   /* c11+c13 */
   2148 
   2149     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
   2150     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
   2151     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
   2152     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
   2153 
   2154     dataptr++;			/* advance pointer to next column */
   2155     wsptr++;			/* advance pointer to next column */
   2156   }
   2157 }
   2158 
   2159 
   2160 /*
   2161  * Perform the forward DCT on a 16x16 sample block.
   2162  */
   2163 
   2164 GLOBAL(void)
   2165 jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2166 {
   2167   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   2168   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
   2169   DCTELEM workspace[DCTSIZE2];
   2170   DCTELEM *dataptr;
   2171   DCTELEM *wsptr;
   2172   JSAMPROW elemptr;
   2173   int ctr;
   2174   SHIFT_TEMPS
   2175 
   2176   /* Pass 1: process rows. */
   2177   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   2178   /* furthermore, we scale the results by 2**PASS1_BITS. */
   2179   /* cK represents sqrt(2) * cos(K*pi/32). */
   2180 
   2181   dataptr = data;
   2182   ctr = 0;
   2183   for (;;) {
   2184     elemptr = sample_data[ctr] + start_col;
   2185 
   2186     /* Even part */
   2187 
   2188     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
   2189     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
   2190     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
   2191     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
   2192     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
   2193     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
   2194     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
   2195     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
   2196 
   2197     tmp10 = tmp0 + tmp7;
   2198     tmp14 = tmp0 - tmp7;
   2199     tmp11 = tmp1 + tmp6;
   2200     tmp15 = tmp1 - tmp6;
   2201     tmp12 = tmp2 + tmp5;
   2202     tmp16 = tmp2 - tmp5;
   2203     tmp13 = tmp3 + tmp4;
   2204     tmp17 = tmp3 - tmp4;
   2205 
   2206     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
   2207     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
   2208     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
   2209     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
   2210     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
   2211     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
   2212     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
   2213     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
   2214 
   2215     /* Apply unsigned->signed conversion */
   2216     dataptr[0] = (DCTELEM)
   2217       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
   2218     dataptr[4] = (DCTELEM)
   2219       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
   2220               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
   2221               CONST_BITS-PASS1_BITS);
   2222 
   2223     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
   2224             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
   2225 
   2226     dataptr[2] = (DCTELEM)
   2227       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
   2228               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
   2229               CONST_BITS-PASS1_BITS);
   2230     dataptr[6] = (DCTELEM)
   2231       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
   2232               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
   2233               CONST_BITS-PASS1_BITS);
   2234 
   2235     /* Odd part */
   2236 
   2237     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
   2238             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
   2239     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
   2240             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
   2241     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
   2242             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
   2243     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
   2244             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
   2245     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
   2246             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
   2247     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
   2248             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
   2249     tmp10 = tmp11 + tmp12 + tmp13 -
   2250             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
   2251             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
   2252     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
   2253              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
   2254     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
   2255              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
   2256     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
   2257              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
   2258 
   2259     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
   2260     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
   2261     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
   2262     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
   2263 
   2264     ctr++;
   2265 
   2266     if (ctr != DCTSIZE) {
   2267       if (ctr == DCTSIZE * 2)
   2268         break;			/* Done. */
   2269       dataptr += DCTSIZE;	/* advance pointer to next row */
   2270     } else
   2271       dataptr = workspace;	/* switch pointer to extended workspace */
   2272   }
   2273 
   2274   /* Pass 2: process columns.
   2275    * We remove the PASS1_BITS scaling, but leave the results scaled up
   2276    * by an overall factor of 8.
   2277    * We must also scale the output by (8/16)**2 = 1/2**2.
   2278    */
   2279 
   2280   dataptr = data;
   2281   wsptr = workspace;
   2282   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2283     /* Even part */
   2284 
   2285     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
   2286     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
   2287     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
   2288     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
   2289     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
   2290     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
   2291     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
   2292     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
   2293 
   2294     tmp10 = tmp0 + tmp7;
   2295     tmp14 = tmp0 - tmp7;
   2296     tmp11 = tmp1 + tmp6;
   2297     tmp15 = tmp1 - tmp6;
   2298     tmp12 = tmp2 + tmp5;
   2299     tmp16 = tmp2 - tmp5;
   2300     tmp13 = tmp3 + tmp4;
   2301     tmp17 = tmp3 - tmp4;
   2302 
   2303     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
   2304     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
   2305     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
   2306     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
   2307     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
   2308     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
   2309     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
   2310     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
   2311 
   2312     dataptr[DCTSIZE*0] = (DCTELEM)
   2313       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
   2314     dataptr[DCTSIZE*4] = (DCTELEM)
   2315       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
   2316               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
   2317               CONST_BITS+PASS1_BITS+2);
   2318 
   2319     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
   2320             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
   2321 
   2322     dataptr[DCTSIZE*2] = (DCTELEM)
   2323       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
   2324               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+10 */
   2325               CONST_BITS+PASS1_BITS+2);
   2326     dataptr[DCTSIZE*6] = (DCTELEM)
   2327       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
   2328               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
   2329               CONST_BITS+PASS1_BITS+2);
   2330 
   2331     /* Odd part */
   2332 
   2333     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
   2334             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
   2335     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
   2336             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
   2337     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
   2338             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
   2339     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
   2340             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
   2341     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
   2342             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
   2343     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
   2344             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
   2345     tmp10 = tmp11 + tmp12 + tmp13 -
   2346             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
   2347             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
   2348     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
   2349              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
   2350     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
   2351              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
   2352     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
   2353              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
   2354 
   2355     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
   2356     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
   2357     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
   2358     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
   2359 
   2360     dataptr++;			/* advance pointer to next column */
   2361     wsptr++;			/* advance pointer to next column */
   2362   }
   2363 }
   2364 
   2365 
   2366 /*
   2367  * Perform the forward DCT on a 16x8 sample block.
   2368  *
   2369  * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
   2370  */
   2371 
   2372 GLOBAL(void)
   2373 jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2374 {
   2375   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   2376   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
   2377   INT32 z1;
   2378   DCTELEM *dataptr;
   2379   JSAMPROW elemptr;
   2380   int ctr;
   2381   SHIFT_TEMPS
   2382 
   2383   /* Pass 1: process rows. */
   2384   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   2385   /* furthermore, we scale the results by 2**PASS1_BITS. */
   2386   /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
   2387 
   2388   dataptr = data;
   2389   ctr = 0;
   2390   for (ctr = 0; ctr < DCTSIZE; ctr++) {
   2391     elemptr = sample_data[ctr] + start_col;
   2392 
   2393     /* Even part */
   2394 
   2395     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
   2396     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
   2397     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
   2398     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
   2399     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
   2400     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
   2401     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
   2402     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
   2403 
   2404     tmp10 = tmp0 + tmp7;
   2405     tmp14 = tmp0 - tmp7;
   2406     tmp11 = tmp1 + tmp6;
   2407     tmp15 = tmp1 - tmp6;
   2408     tmp12 = tmp2 + tmp5;
   2409     tmp16 = tmp2 - tmp5;
   2410     tmp13 = tmp3 + tmp4;
   2411     tmp17 = tmp3 - tmp4;
   2412 
   2413     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
   2414     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
   2415     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
   2416     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
   2417     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
   2418     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
   2419     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
   2420     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
   2421 
   2422     /* Apply unsigned->signed conversion */
   2423     dataptr[0] = (DCTELEM)
   2424       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
   2425     dataptr[4] = (DCTELEM)
   2426       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
   2427               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
   2428               CONST_BITS-PASS1_BITS);
   2429 
   2430     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
   2431             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
   2432 
   2433     dataptr[2] = (DCTELEM)
   2434       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
   2435               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
   2436               CONST_BITS-PASS1_BITS);
   2437     dataptr[6] = (DCTELEM)
   2438       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
   2439               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
   2440               CONST_BITS-PASS1_BITS);
   2441 
   2442     /* Odd part */
   2443 
   2444     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
   2445             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
   2446     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
   2447             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
   2448     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
   2449             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
   2450     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
   2451             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
   2452     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
   2453             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
   2454     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
   2455             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
   2456     tmp10 = tmp11 + tmp12 + tmp13 -
   2457             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
   2458             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
   2459     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
   2460              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
   2461     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
   2462              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
   2463     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
   2464              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
   2465 
   2466     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
   2467     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
   2468     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
   2469     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
   2470 
   2471     dataptr += DCTSIZE;		/* advance pointer to next row */
   2472   }
   2473 
   2474   /* Pass 2: process columns.
   2475    * We remove the PASS1_BITS scaling, but leave the results scaled up
   2476    * by an overall factor of 8.
   2477    * We must also scale the output by 8/16 = 1/2.
   2478    */
   2479 
   2480   dataptr = data;
   2481   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2482     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   2483      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   2484      */
   2485 
   2486     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
   2487     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
   2488     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
   2489     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
   2490 
   2491     tmp10 = tmp0 + tmp3;
   2492     tmp12 = tmp0 - tmp3;
   2493     tmp11 = tmp1 + tmp2;
   2494     tmp13 = tmp1 - tmp2;
   2495 
   2496     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
   2497     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
   2498     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
   2499     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
   2500 
   2501     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
   2502     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
   2503 
   2504     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   2505     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
   2506                                            CONST_BITS+PASS1_BITS+1);
   2507     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
   2508                                            CONST_BITS+PASS1_BITS+1);
   2509 
   2510     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   2511      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
   2512      * i0..i3 in the paper are tmp0..tmp3 here.
   2513      */
   2514 
   2515     tmp10 = tmp0 + tmp3;
   2516     tmp11 = tmp1 + tmp2;
   2517     tmp12 = tmp0 + tmp2;
   2518     tmp13 = tmp1 + tmp3;
   2519     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
   2520 
   2521     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
   2522     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
   2523     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
   2524     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
   2525     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
   2526     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
   2527     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
   2528     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
   2529 
   2530     tmp12 += z1;
   2531     tmp13 += z1;
   2532 
   2533     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
   2534                                            CONST_BITS+PASS1_BITS+1);
   2535     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
   2536                                            CONST_BITS+PASS1_BITS+1);
   2537     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
   2538                                            CONST_BITS+PASS1_BITS+1);
   2539     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
   2540                                            CONST_BITS+PASS1_BITS+1);
   2541 
   2542     dataptr++;			/* advance pointer to next column */
   2543   }
   2544 }
   2545 
   2546 
   2547 /*
   2548  * Perform the forward DCT on a 14x7 sample block.
   2549  *
   2550  * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
   2551  */
   2552 
   2553 GLOBAL(void)
   2554 jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2555 {
   2556   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
   2557   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
   2558   INT32 z1, z2, z3;
   2559   DCTELEM *dataptr;
   2560   JSAMPROW elemptr;
   2561   int ctr;
   2562   SHIFT_TEMPS
   2563 
   2564   /* Zero bottom row of output coefficient block. */
   2565   MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
   2566 
   2567   /* Pass 1: process rows. */
   2568   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   2569   /* furthermore, we scale the results by 2**PASS1_BITS. */
   2570   /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
   2571 
   2572   dataptr = data;
   2573   for (ctr = 0; ctr < 7; ctr++) {
   2574     elemptr = sample_data[ctr] + start_col;
   2575 
   2576     /* Even part */
   2577 
   2578     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
   2579     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
   2580     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
   2581     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
   2582     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
   2583     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
   2584     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
   2585 
   2586     tmp10 = tmp0 + tmp6;
   2587     tmp14 = tmp0 - tmp6;
   2588     tmp11 = tmp1 + tmp5;
   2589     tmp15 = tmp1 - tmp5;
   2590     tmp12 = tmp2 + tmp4;
   2591     tmp16 = tmp2 - tmp4;
   2592 
   2593     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
   2594     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
   2595     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
   2596     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
   2597     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
   2598     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
   2599     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
   2600 
   2601     /* Apply unsigned->signed conversion */
   2602     dataptr[0] = (DCTELEM)
   2603       ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
   2604     tmp13 += tmp13;
   2605     dataptr[4] = (DCTELEM)
   2606       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
   2607               MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
   2608               MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */
   2609               CONST_BITS-PASS1_BITS);
   2610 
   2611     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */
   2612 
   2613     dataptr[2] = (DCTELEM)
   2614       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */
   2615               + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */
   2616               CONST_BITS-PASS1_BITS);
   2617     dataptr[6] = (DCTELEM)
   2618       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */
   2619               - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */
   2620               CONST_BITS-PASS1_BITS);
   2621 
   2622     /* Odd part */
   2623 
   2624     tmp10 = tmp1 + tmp2;
   2625     tmp11 = tmp5 - tmp4;
   2626     dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
   2627     tmp3 <<= CONST_BITS;
   2628     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */
   2629     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */
   2630     tmp10 += tmp11 - tmp3;
   2631     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */
   2632             MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */
   2633     dataptr[5] = (DCTELEM)
   2634       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
   2635               + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */
   2636               CONST_BITS-PASS1_BITS);
   2637     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */
   2638             MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */
   2639     dataptr[3] = (DCTELEM)
   2640       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
   2641               - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */
   2642               CONST_BITS-PASS1_BITS);
   2643     dataptr[1] = (DCTELEM)
   2644       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
   2645               MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */
   2646               CONST_BITS-PASS1_BITS);
   2647 
   2648     dataptr += DCTSIZE;		/* advance pointer to next row */
   2649   }
   2650 
   2651   /* Pass 2: process columns.
   2652    * We remove the PASS1_BITS scaling, but leave the results scaled up
   2653    * by an overall factor of 8.
   2654    * We must also scale the output by (8/14)*(8/7) = 32/49, which we
   2655    * partially fold into the constant multipliers and final shifting:
   2656    * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
   2657    */
   2658 
   2659   dataptr = data;
   2660   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2661     /* Even part */
   2662 
   2663     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
   2664     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
   2665     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
   2666     tmp3 = dataptr[DCTSIZE*3];
   2667 
   2668     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
   2669     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
   2670     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
   2671 
   2672     z1 = tmp0 + tmp2;
   2673     dataptr[DCTSIZE*0] = (DCTELEM)
   2674       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
   2675               CONST_BITS+PASS1_BITS+1);
   2676     tmp3 += tmp3;
   2677     z1 -= tmp3;
   2678     z1 -= tmp3;
   2679     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */
   2680     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */
   2681     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */
   2682     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
   2683     z1 -= z2;
   2684     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */
   2685     dataptr[DCTSIZE*4] = (DCTELEM)
   2686       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
   2687               CONST_BITS+PASS1_BITS+1);
   2688     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
   2689 
   2690     /* Odd part */
   2691 
   2692     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */
   2693     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */
   2694     tmp0 = tmp1 - tmp2;
   2695     tmp1 += tmp2;
   2696     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
   2697     tmp1 += tmp2;
   2698     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */
   2699     tmp0 += tmp3;
   2700     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */
   2701 
   2702     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
   2703     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
   2704     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
   2705 
   2706     dataptr++;			/* advance pointer to next column */
   2707   }
   2708 }
   2709 
   2710 
   2711 /*
   2712  * Perform the forward DCT on a 12x6 sample block.
   2713  *
   2714  * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
   2715  */
   2716 
   2717 GLOBAL(void)
   2718 jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2719 {
   2720   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
   2721   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
   2722   DCTELEM *dataptr;
   2723   JSAMPROW elemptr;
   2724   int ctr;
   2725   SHIFT_TEMPS
   2726 
   2727   /* Zero 2 bottom rows of output coefficient block. */
   2728   MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
   2729 
   2730   /* Pass 1: process rows. */
   2731   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   2732   /* furthermore, we scale the results by 2**PASS1_BITS. */
   2733   /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
   2734 
   2735   dataptr = data;
   2736   for (ctr = 0; ctr < 6; ctr++) {
   2737     elemptr = sample_data[ctr] + start_col;
   2738 
   2739     /* Even part */
   2740 
   2741     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
   2742     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
   2743     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
   2744     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
   2745     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
   2746     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
   2747 
   2748     tmp10 = tmp0 + tmp5;
   2749     tmp13 = tmp0 - tmp5;
   2750     tmp11 = tmp1 + tmp4;
   2751     tmp14 = tmp1 - tmp4;
   2752     tmp12 = tmp2 + tmp3;
   2753     tmp15 = tmp2 - tmp3;
   2754 
   2755     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
   2756     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
   2757     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
   2758     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
   2759     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
   2760     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
   2761 
   2762     /* Apply unsigned->signed conversion */
   2763     dataptr[0] = (DCTELEM)
   2764       ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
   2765     dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
   2766     dataptr[4] = (DCTELEM)
   2767       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
   2768               CONST_BITS-PASS1_BITS);
   2769     dataptr[2] = (DCTELEM)
   2770       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
   2771               CONST_BITS-PASS1_BITS);
   2772 
   2773     /* Odd part */
   2774 
   2775     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */
   2776     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */
   2777     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */
   2778     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */
   2779     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */
   2780     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
   2781             + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */
   2782     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
   2783     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
   2784             + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */
   2785     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
   2786             - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */
   2787     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
   2788             - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */
   2789 
   2790     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
   2791     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
   2792     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
   2793     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
   2794 
   2795     dataptr += DCTSIZE;		/* advance pointer to next row */
   2796   }
   2797 
   2798   /* Pass 2: process columns.
   2799    * We remove the PASS1_BITS scaling, but leave the results scaled up
   2800    * by an overall factor of 8.
   2801    * We must also scale the output by (8/12)*(8/6) = 8/9, which we
   2802    * partially fold into the constant multipliers and final shifting:
   2803    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
   2804    */
   2805 
   2806   dataptr = data;
   2807   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2808     /* Even part */
   2809 
   2810     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
   2811     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
   2812     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
   2813 
   2814     tmp10 = tmp0 + tmp2;
   2815     tmp12 = tmp0 - tmp2;
   2816 
   2817     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
   2818     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
   2819     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
   2820 
   2821     dataptr[DCTSIZE*0] = (DCTELEM)
   2822       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
   2823               CONST_BITS+PASS1_BITS+1);
   2824     dataptr[DCTSIZE*2] = (DCTELEM)
   2825       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
   2826               CONST_BITS+PASS1_BITS+1);
   2827     dataptr[DCTSIZE*4] = (DCTELEM)
   2828       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
   2829               CONST_BITS+PASS1_BITS+1);
   2830 
   2831     /* Odd part */
   2832 
   2833     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
   2834 
   2835     dataptr[DCTSIZE*1] = (DCTELEM)
   2836       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
   2837               CONST_BITS+PASS1_BITS+1);
   2838     dataptr[DCTSIZE*3] = (DCTELEM)
   2839       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
   2840               CONST_BITS+PASS1_BITS+1);
   2841     dataptr[DCTSIZE*5] = (DCTELEM)
   2842       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
   2843               CONST_BITS+PASS1_BITS+1);
   2844 
   2845     dataptr++;			/* advance pointer to next column */
   2846   }
   2847 }
   2848 
   2849 
   2850 /*
   2851  * Perform the forward DCT on a 10x5 sample block.
   2852  *
   2853  * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
   2854  */
   2855 
   2856 GLOBAL(void)
   2857 jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2858 {
   2859   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
   2860   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
   2861   DCTELEM *dataptr;
   2862   JSAMPROW elemptr;
   2863   int ctr;
   2864   SHIFT_TEMPS
   2865 
   2866   /* Zero 3 bottom rows of output coefficient block. */
   2867   MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
   2868 
   2869   /* Pass 1: process rows. */
   2870   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   2871   /* furthermore, we scale the results by 2**PASS1_BITS. */
   2872   /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
   2873 
   2874   dataptr = data;
   2875   for (ctr = 0; ctr < 5; ctr++) {
   2876     elemptr = sample_data[ctr] + start_col;
   2877 
   2878     /* Even part */
   2879 
   2880     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
   2881     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
   2882     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
   2883     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
   2884     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
   2885 
   2886     tmp10 = tmp0 + tmp4;
   2887     tmp13 = tmp0 - tmp4;
   2888     tmp11 = tmp1 + tmp3;
   2889     tmp14 = tmp1 - tmp3;
   2890 
   2891     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
   2892     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
   2893     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
   2894     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
   2895     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
   2896 
   2897     /* Apply unsigned->signed conversion */
   2898     dataptr[0] = (DCTELEM)
   2899       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
   2900     tmp12 += tmp12;
   2901     dataptr[4] = (DCTELEM)
   2902       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
   2903               MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */
   2904               CONST_BITS-PASS1_BITS);
   2905     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */
   2906     dataptr[2] = (DCTELEM)
   2907       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */
   2908               CONST_BITS-PASS1_BITS);
   2909     dataptr[6] = (DCTELEM)
   2910       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */
   2911               CONST_BITS-PASS1_BITS);
   2912 
   2913     /* Odd part */
   2914 
   2915     tmp10 = tmp0 + tmp4;
   2916     tmp11 = tmp1 - tmp3;
   2917     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
   2918     tmp2 <<= CONST_BITS;
   2919     dataptr[1] = (DCTELEM)
   2920       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */
   2921               MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */
   2922               MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */
   2923               MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */
   2924               CONST_BITS-PASS1_BITS);
   2925     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */
   2926             MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */
   2927     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */
   2928             (tmp11 << (CONST_BITS - 1)) - tmp2;
   2929     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
   2930     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
   2931 
   2932     dataptr += DCTSIZE;		/* advance pointer to next row */
   2933   }
   2934 
   2935   /* Pass 2: process columns.
   2936    * We remove the PASS1_BITS scaling, but leave the results scaled up
   2937    * by an overall factor of 8.
   2938    * We must also scale the output by (8/10)*(8/5) = 32/25, which we
   2939    * fold into the constant multipliers:
   2940    * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
   2941    */
   2942 
   2943   dataptr = data;
   2944   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   2945     /* Even part */
   2946 
   2947     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
   2948     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
   2949     tmp2 = dataptr[DCTSIZE*2];
   2950 
   2951     tmp10 = tmp0 + tmp1;
   2952     tmp11 = tmp0 - tmp1;
   2953 
   2954     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
   2955     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
   2956 
   2957     dataptr[DCTSIZE*0] = (DCTELEM)
   2958       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */
   2959               CONST_BITS+PASS1_BITS);
   2960     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */
   2961     tmp10 -= tmp2 << 2;
   2962     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */
   2963     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
   2964     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
   2965 
   2966     /* Odd part */
   2967 
   2968     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */
   2969 
   2970     dataptr[DCTSIZE*1] = (DCTELEM)
   2971       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
   2972               CONST_BITS+PASS1_BITS);
   2973     dataptr[DCTSIZE*3] = (DCTELEM)
   2974       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
   2975               CONST_BITS+PASS1_BITS);
   2976 
   2977     dataptr++;			/* advance pointer to next column */
   2978   }
   2979 }
   2980 
   2981 
   2982 /*
   2983  * Perform the forward DCT on an 8x4 sample block.
   2984  *
   2985  * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
   2986  */
   2987 
   2988 GLOBAL(void)
   2989 jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   2990 {
   2991   INT32 tmp0, tmp1, tmp2, tmp3;
   2992   INT32 tmp10, tmp11, tmp12, tmp13;
   2993   INT32 z1;
   2994   DCTELEM *dataptr;
   2995   JSAMPROW elemptr;
   2996   int ctr;
   2997   SHIFT_TEMPS
   2998 
   2999   /* Zero 4 bottom rows of output coefficient block. */
   3000   MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
   3001 
   3002   /* Pass 1: process rows. */
   3003   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3004   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3005   /* We must also scale the output by 8/4 = 2, which we add here. */
   3006 
   3007   dataptr = data;
   3008   for (ctr = 0; ctr < 4; ctr++) {
   3009     elemptr = sample_data[ctr] + start_col;
   3010 
   3011     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   3012      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   3013      */
   3014 
   3015     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
   3016     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
   3017     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
   3018     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
   3019 
   3020     tmp10 = tmp0 + tmp3;
   3021     tmp12 = tmp0 - tmp3;
   3022     tmp11 = tmp1 + tmp2;
   3023     tmp13 = tmp1 - tmp2;
   3024 
   3025     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
   3026     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
   3027     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
   3028     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
   3029 
   3030     /* Apply unsigned->signed conversion */
   3031     dataptr[0] = (DCTELEM)
   3032       ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
   3033     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
   3034 
   3035     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   3036     /* Add fudge factor here for final descale. */
   3037     z1 += ONE << (CONST_BITS-PASS1_BITS-2);
   3038     dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
   3039                                        CONST_BITS-PASS1_BITS-1);
   3040     dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
   3041                                        CONST_BITS-PASS1_BITS-1);
   3042 
   3043     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   3044      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
   3045      * i0..i3 in the paper are tmp0..tmp3 here.
   3046      */
   3047 
   3048     tmp10 = tmp0 + tmp3;
   3049     tmp11 = tmp1 + tmp2;
   3050     tmp12 = tmp0 + tmp2;
   3051     tmp13 = tmp1 + tmp3;
   3052     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
   3053     /* Add fudge factor here for final descale. */
   3054     z1 += ONE << (CONST_BITS-PASS1_BITS-2);
   3055 
   3056     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
   3057     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
   3058     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
   3059     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
   3060     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
   3061     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
   3062     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
   3063     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
   3064 
   3065     tmp12 += z1;
   3066     tmp13 += z1;
   3067 
   3068     dataptr[1] = (DCTELEM)
   3069       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
   3070     dataptr[3] = (DCTELEM)
   3071       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
   3072     dataptr[5] = (DCTELEM)
   3073       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
   3074     dataptr[7] = (DCTELEM)
   3075       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
   3076 
   3077     dataptr += DCTSIZE;		/* advance pointer to next row */
   3078   }
   3079 
   3080   /* Pass 2: process columns.
   3081    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3082    * by an overall factor of 8.
   3083    * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
   3084    */
   3085 
   3086   dataptr = data;
   3087   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   3088     /* Even part */
   3089 
   3090     /* Add fudge factor here for final descale. */
   3091     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
   3092     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
   3093 
   3094     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
   3095     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
   3096 
   3097     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
   3098     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
   3099 
   3100     /* Odd part */
   3101 
   3102     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);   /* c6 */
   3103     /* Add fudge factor here for final descale. */
   3104     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
   3105 
   3106     dataptr[DCTSIZE*1] = (DCTELEM)
   3107       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
   3108                   CONST_BITS+PASS1_BITS);
   3109     dataptr[DCTSIZE*3] = (DCTELEM)
   3110       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
   3111                   CONST_BITS+PASS1_BITS);
   3112 
   3113     dataptr++;			/* advance pointer to next column */
   3114   }
   3115 }
   3116 
   3117 
   3118 /*
   3119  * Perform the forward DCT on a 6x3 sample block.
   3120  *
   3121  * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
   3122  */
   3123 
   3124 GLOBAL(void)
   3125 jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3126 {
   3127   INT32 tmp0, tmp1, tmp2;
   3128   INT32 tmp10, tmp11, tmp12;
   3129   DCTELEM *dataptr;
   3130   JSAMPROW elemptr;
   3131   int ctr;
   3132   SHIFT_TEMPS
   3133 
   3134   /* Pre-zero output coefficient block. */
   3135   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3136 
   3137   /* Pass 1: process rows. */
   3138   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3139   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3140   /* We scale the results further by 2 as part of output adaption */
   3141   /* scaling for different DCT size. */
   3142   /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
   3143 
   3144   dataptr = data;
   3145   for (ctr = 0; ctr < 3; ctr++) {
   3146     elemptr = sample_data[ctr] + start_col;
   3147 
   3148     /* Even part */
   3149 
   3150     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
   3151     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
   3152     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
   3153 
   3154     tmp10 = tmp0 + tmp2;
   3155     tmp12 = tmp0 - tmp2;
   3156 
   3157     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
   3158     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
   3159     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
   3160 
   3161     /* Apply unsigned->signed conversion */
   3162     dataptr[0] = (DCTELEM)
   3163       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
   3164     dataptr[2] = (DCTELEM)
   3165       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
   3166               CONST_BITS-PASS1_BITS-1);
   3167     dataptr[4] = (DCTELEM)
   3168       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
   3169               CONST_BITS-PASS1_BITS-1);
   3170 
   3171     /* Odd part */
   3172 
   3173     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
   3174                     CONST_BITS-PASS1_BITS-1);
   3175 
   3176     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
   3177     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
   3178     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
   3179 
   3180     dataptr += DCTSIZE;		/* advance pointer to next row */
   3181   }
   3182 
   3183   /* Pass 2: process columns.
   3184    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3185    * by an overall factor of 8.
   3186    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
   3187    * fold into the constant multipliers (other part was done in pass 1):
   3188    * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
   3189    */
   3190 
   3191   dataptr = data;
   3192   for (ctr = 0; ctr < 6; ctr++) {
   3193     /* Even part */
   3194 
   3195     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
   3196     tmp1 = dataptr[DCTSIZE*1];
   3197 
   3198     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
   3199 
   3200     dataptr[DCTSIZE*0] = (DCTELEM)
   3201       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */
   3202               CONST_BITS+PASS1_BITS);
   3203     dataptr[DCTSIZE*2] = (DCTELEM)
   3204       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
   3205               CONST_BITS+PASS1_BITS);
   3206 
   3207     /* Odd part */
   3208 
   3209     dataptr[DCTSIZE*1] = (DCTELEM)
   3210       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */
   3211               CONST_BITS+PASS1_BITS);
   3212 
   3213     dataptr++;			/* advance pointer to next column */
   3214   }
   3215 }
   3216 
   3217 
   3218 /*
   3219  * Perform the forward DCT on a 4x2 sample block.
   3220  *
   3221  * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
   3222  */
   3223 
   3224 GLOBAL(void)
   3225 jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3226 {
   3227   INT32 tmp0, tmp1;
   3228   INT32 tmp10, tmp11;
   3229   DCTELEM *dataptr;
   3230   JSAMPROW elemptr;
   3231   int ctr;
   3232   SHIFT_TEMPS
   3233 
   3234   /* Pre-zero output coefficient block. */
   3235   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3236 
   3237   /* Pass 1: process rows. */
   3238   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3239   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3240   /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
   3241   /* 4-point FDCT kernel, */
   3242   /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
   3243 
   3244   dataptr = data;
   3245   for (ctr = 0; ctr < 2; ctr++) {
   3246     elemptr = sample_data[ctr] + start_col;
   3247 
   3248     /* Even part */
   3249 
   3250     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
   3251     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
   3252 
   3253     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
   3254     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
   3255 
   3256     /* Apply unsigned->signed conversion */
   3257     dataptr[0] = (DCTELEM)
   3258       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3));
   3259     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3));
   3260 
   3261     /* Odd part */
   3262 
   3263     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
   3264     /* Add fudge factor here for final descale. */
   3265     tmp0 += ONE << (CONST_BITS-PASS1_BITS-4);
   3266 
   3267     dataptr[1] = (DCTELEM)
   3268       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
   3269                   CONST_BITS-PASS1_BITS-3);
   3270     dataptr[3] = (DCTELEM)
   3271       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
   3272                   CONST_BITS-PASS1_BITS-3);
   3273 
   3274     dataptr += DCTSIZE;		/* advance pointer to next row */
   3275   }
   3276 
   3277   /* Pass 2: process columns.
   3278    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3279    * by an overall factor of 8.
   3280    */
   3281 
   3282   dataptr = data;
   3283   for (ctr = 0; ctr < 4; ctr++) {
   3284     /* Even part */
   3285 
   3286     /* Add fudge factor here for final descale. */
   3287     tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1));
   3288     tmp1 = dataptr[DCTSIZE*1];
   3289 
   3290     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
   3291 
   3292     /* Odd part */
   3293 
   3294     dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
   3295 
   3296     dataptr++;			/* advance pointer to next column */
   3297   }
   3298 }
   3299 
   3300 
   3301 /*
   3302  * Perform the forward DCT on a 2x1 sample block.
   3303  *
   3304  * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
   3305  */
   3306 
   3307 GLOBAL(void)
   3308 jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3309 {
   3310   INT32 tmp0, tmp1;
   3311   JSAMPROW elemptr;
   3312 
   3313   /* Pre-zero output coefficient block. */
   3314   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3315 
   3316   elemptr = sample_data[0] + start_col;
   3317 
   3318   tmp0 = GETJSAMPLE(elemptr[0]);
   3319   tmp1 = GETJSAMPLE(elemptr[1]);
   3320 
   3321   /* We leave the results scaled up by an overall factor of 8.
   3322    * We must also scale the output by (8/2)*(8/1) = 2**5.
   3323    */
   3324 
   3325   /* Even part */
   3326   /* Apply unsigned->signed conversion */
   3327   data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
   3328 
   3329   /* Odd part */
   3330   data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
   3331 }
   3332 
   3333 
   3334 /*
   3335  * Perform the forward DCT on an 8x16 sample block.
   3336  *
   3337  * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
   3338  */
   3339 
   3340 GLOBAL(void)
   3341 jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3342 {
   3343   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
   3344   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
   3345   INT32 z1;
   3346   DCTELEM workspace[DCTSIZE2];
   3347   DCTELEM *dataptr;
   3348   DCTELEM *wsptr;
   3349   JSAMPROW elemptr;
   3350   int ctr;
   3351   SHIFT_TEMPS
   3352 
   3353   /* Pass 1: process rows. */
   3354   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3355   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3356 
   3357   dataptr = data;
   3358   ctr = 0;
   3359   for (;;) {
   3360     elemptr = sample_data[ctr] + start_col;
   3361 
   3362     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   3363      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   3364      */
   3365 
   3366     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
   3367     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
   3368     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
   3369     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
   3370 
   3371     tmp10 = tmp0 + tmp3;
   3372     tmp12 = tmp0 - tmp3;
   3373     tmp11 = tmp1 + tmp2;
   3374     tmp13 = tmp1 - tmp2;
   3375 
   3376     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
   3377     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
   3378     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
   3379     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
   3380 
   3381     /* Apply unsigned->signed conversion */
   3382     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
   3383     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
   3384 
   3385     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   3386     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
   3387                                    CONST_BITS-PASS1_BITS);
   3388     dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
   3389                                    CONST_BITS-PASS1_BITS);
   3390 
   3391     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   3392      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
   3393      * i0..i3 in the paper are tmp0..tmp3 here.
   3394      */
   3395 
   3396     tmp10 = tmp0 + tmp3;
   3397     tmp11 = tmp1 + tmp2;
   3398     tmp12 = tmp0 + tmp2;
   3399     tmp13 = tmp1 + tmp3;
   3400     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
   3401 
   3402     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
   3403     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
   3404     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
   3405     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
   3406     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
   3407     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
   3408     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
   3409     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
   3410 
   3411     tmp12 += z1;
   3412     tmp13 += z1;
   3413 
   3414     dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
   3415     dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
   3416     dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
   3417     dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
   3418 
   3419     ctr++;
   3420 
   3421     if (ctr != DCTSIZE) {
   3422       if (ctr == DCTSIZE * 2)
   3423         break;			/* Done. */
   3424       dataptr += DCTSIZE;	/* advance pointer to next row */
   3425     } else
   3426       dataptr = workspace;	/* switch pointer to extended workspace */
   3427   }
   3428 
   3429   /* Pass 2: process columns.
   3430    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3431    * by an overall factor of 8.
   3432    * We must also scale the output by 8/16 = 1/2.
   3433    * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
   3434    */
   3435 
   3436   dataptr = data;
   3437   wsptr = workspace;
   3438   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
   3439     /* Even part */
   3440 
   3441     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
   3442     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
   3443     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
   3444     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
   3445     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
   3446     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
   3447     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
   3448     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
   3449 
   3450     tmp10 = tmp0 + tmp7;
   3451     tmp14 = tmp0 - tmp7;
   3452     tmp11 = tmp1 + tmp6;
   3453     tmp15 = tmp1 - tmp6;
   3454     tmp12 = tmp2 + tmp5;
   3455     tmp16 = tmp2 - tmp5;
   3456     tmp13 = tmp3 + tmp4;
   3457     tmp17 = tmp3 - tmp4;
   3458 
   3459     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
   3460     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
   3461     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
   3462     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
   3463     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
   3464     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
   3465     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
   3466     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
   3467 
   3468     dataptr[DCTSIZE*0] = (DCTELEM)
   3469       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
   3470     dataptr[DCTSIZE*4] = (DCTELEM)
   3471       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
   3472               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
   3473               CONST_BITS+PASS1_BITS+1);
   3474 
   3475     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
   3476             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
   3477 
   3478     dataptr[DCTSIZE*2] = (DCTELEM)
   3479       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
   3480               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
   3481               CONST_BITS+PASS1_BITS+1);
   3482     dataptr[DCTSIZE*6] = (DCTELEM)
   3483       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
   3484               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
   3485               CONST_BITS+PASS1_BITS+1);
   3486 
   3487     /* Odd part */
   3488 
   3489     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
   3490             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
   3491     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
   3492             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
   3493     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
   3494             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
   3495     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
   3496             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
   3497     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
   3498             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
   3499     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
   3500             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
   3501     tmp10 = tmp11 + tmp12 + tmp13 -
   3502             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
   3503             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
   3504     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
   3505              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
   3506     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
   3507              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
   3508     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
   3509              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
   3510 
   3511     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
   3512     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
   3513     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
   3514     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
   3515 
   3516     dataptr++;			/* advance pointer to next column */
   3517     wsptr++;			/* advance pointer to next column */
   3518   }
   3519 }
   3520 
   3521 
   3522 /*
   3523  * Perform the forward DCT on a 7x14 sample block.
   3524  *
   3525  * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
   3526  */
   3527 
   3528 GLOBAL(void)
   3529 jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3530 {
   3531   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
   3532   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
   3533   INT32 z1, z2, z3;
   3534   DCTELEM workspace[8*6];
   3535   DCTELEM *dataptr;
   3536   DCTELEM *wsptr;
   3537   JSAMPROW elemptr;
   3538   int ctr;
   3539   SHIFT_TEMPS
   3540 
   3541   /* Pre-zero output coefficient block. */
   3542   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3543 
   3544   /* Pass 1: process rows. */
   3545   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3546   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3547   /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
   3548 
   3549   dataptr = data;
   3550   ctr = 0;
   3551   for (;;) {
   3552     elemptr = sample_data[ctr] + start_col;
   3553 
   3554     /* Even part */
   3555 
   3556     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
   3557     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
   3558     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
   3559     tmp3 = GETJSAMPLE(elemptr[3]);
   3560 
   3561     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
   3562     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
   3563     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
   3564 
   3565     z1 = tmp0 + tmp2;
   3566     /* Apply unsigned->signed conversion */
   3567     dataptr[0] = (DCTELEM)
   3568       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
   3569     tmp3 += tmp3;
   3570     z1 -= tmp3;
   3571     z1 -= tmp3;
   3572     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */
   3573     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */
   3574     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */
   3575     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
   3576     z1 -= z2;
   3577     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */
   3578     dataptr[4] = (DCTELEM)
   3579       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
   3580               CONST_BITS-PASS1_BITS);
   3581     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
   3582 
   3583     /* Odd part */
   3584 
   3585     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */
   3586     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */
   3587     tmp0 = tmp1 - tmp2;
   3588     tmp1 += tmp2;
   3589     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
   3590     tmp1 += tmp2;
   3591     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */
   3592     tmp0 += tmp3;
   3593     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */
   3594 
   3595     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
   3596     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
   3597     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
   3598 
   3599     ctr++;
   3600 
   3601     if (ctr != DCTSIZE) {
   3602       if (ctr == 14)
   3603         break;			/* Done. */
   3604       dataptr += DCTSIZE;	/* advance pointer to next row */
   3605     } else
   3606       dataptr = workspace;	/* switch pointer to extended workspace */
   3607   }
   3608 
   3609   /* Pass 2: process columns.
   3610    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3611    * by an overall factor of 8.
   3612    * We must also scale the output by (8/7)*(8/14) = 32/49, which we
   3613    * fold into the constant multipliers:
   3614    * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
   3615    */
   3616 
   3617   dataptr = data;
   3618   wsptr = workspace;
   3619   for (ctr = 0; ctr < 7; ctr++) {
   3620     /* Even part */
   3621 
   3622     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
   3623     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
   3624     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
   3625     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
   3626     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
   3627     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
   3628     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
   3629 
   3630     tmp10 = tmp0 + tmp6;
   3631     tmp14 = tmp0 - tmp6;
   3632     tmp11 = tmp1 + tmp5;
   3633     tmp15 = tmp1 - tmp5;
   3634     tmp12 = tmp2 + tmp4;
   3635     tmp16 = tmp2 - tmp4;
   3636 
   3637     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
   3638     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
   3639     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
   3640     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
   3641     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
   3642     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
   3643     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
   3644 
   3645     dataptr[DCTSIZE*0] = (DCTELEM)
   3646       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
   3647                        FIX(0.653061224)),                 /* 32/49 */
   3648               CONST_BITS+PASS1_BITS);
   3649     tmp13 += tmp13;
   3650     dataptr[DCTSIZE*4] = (DCTELEM)
   3651       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
   3652               MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
   3653               MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */
   3654               CONST_BITS+PASS1_BITS);
   3655 
   3656     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */
   3657 
   3658     dataptr[DCTSIZE*2] = (DCTELEM)
   3659       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */
   3660               + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */
   3661               CONST_BITS+PASS1_BITS);
   3662     dataptr[DCTSIZE*6] = (DCTELEM)
   3663       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */
   3664               - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */
   3665               CONST_BITS+PASS1_BITS);
   3666 
   3667     /* Odd part */
   3668 
   3669     tmp10 = tmp1 + tmp2;
   3670     tmp11 = tmp5 - tmp4;
   3671     dataptr[DCTSIZE*7] = (DCTELEM)
   3672       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
   3673                        FIX(0.653061224)),                 /* 32/49 */
   3674               CONST_BITS+PASS1_BITS);
   3675     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */
   3676     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */
   3677     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */
   3678     tmp10 += tmp11 - tmp3;
   3679     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */
   3680             MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */
   3681     dataptr[DCTSIZE*5] = (DCTELEM)
   3682       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
   3683               + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */
   3684               CONST_BITS+PASS1_BITS);
   3685     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */
   3686             MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */
   3687     dataptr[DCTSIZE*3] = (DCTELEM)
   3688       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
   3689               - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */
   3690               CONST_BITS+PASS1_BITS);
   3691     dataptr[DCTSIZE*1] = (DCTELEM)
   3692       DESCALE(tmp11 + tmp12 + tmp3
   3693               - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */
   3694               - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */
   3695               CONST_BITS+PASS1_BITS);
   3696 
   3697     dataptr++;			/* advance pointer to next column */
   3698     wsptr++;			/* advance pointer to next column */
   3699   }
   3700 }
   3701 
   3702 
   3703 /*
   3704  * Perform the forward DCT on a 6x12 sample block.
   3705  *
   3706  * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
   3707  */
   3708 
   3709 GLOBAL(void)
   3710 jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3711 {
   3712   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
   3713   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
   3714   DCTELEM workspace[8*4];
   3715   DCTELEM *dataptr;
   3716   DCTELEM *wsptr;
   3717   JSAMPROW elemptr;
   3718   int ctr;
   3719   SHIFT_TEMPS
   3720 
   3721   /* Pre-zero output coefficient block. */
   3722   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3723 
   3724   /* Pass 1: process rows. */
   3725   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3726   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3727   /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
   3728 
   3729   dataptr = data;
   3730   ctr = 0;
   3731   for (;;) {
   3732     elemptr = sample_data[ctr] + start_col;
   3733 
   3734     /* Even part */
   3735 
   3736     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
   3737     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
   3738     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
   3739 
   3740     tmp10 = tmp0 + tmp2;
   3741     tmp12 = tmp0 - tmp2;
   3742 
   3743     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
   3744     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
   3745     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
   3746 
   3747     /* Apply unsigned->signed conversion */
   3748     dataptr[0] = (DCTELEM)
   3749       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
   3750     dataptr[2] = (DCTELEM)
   3751       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
   3752               CONST_BITS-PASS1_BITS);
   3753     dataptr[4] = (DCTELEM)
   3754       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
   3755               CONST_BITS-PASS1_BITS);
   3756 
   3757     /* Odd part */
   3758 
   3759     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
   3760                     CONST_BITS-PASS1_BITS);
   3761 
   3762     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
   3763     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
   3764     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
   3765 
   3766     ctr++;
   3767 
   3768     if (ctr != DCTSIZE) {
   3769       if (ctr == 12)
   3770         break;			/* Done. */
   3771       dataptr += DCTSIZE;	/* advance pointer to next row */
   3772     } else
   3773       dataptr = workspace;	/* switch pointer to extended workspace */
   3774   }
   3775 
   3776   /* Pass 2: process columns.
   3777    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3778    * by an overall factor of 8.
   3779    * We must also scale the output by (8/6)*(8/12) = 8/9, which we
   3780    * fold into the constant multipliers:
   3781    * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
   3782    */
   3783 
   3784   dataptr = data;
   3785   wsptr = workspace;
   3786   for (ctr = 0; ctr < 6; ctr++) {
   3787     /* Even part */
   3788 
   3789     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
   3790     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
   3791     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
   3792     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
   3793     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
   3794     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
   3795 
   3796     tmp10 = tmp0 + tmp5;
   3797     tmp13 = tmp0 - tmp5;
   3798     tmp11 = tmp1 + tmp4;
   3799     tmp14 = tmp1 - tmp4;
   3800     tmp12 = tmp2 + tmp3;
   3801     tmp15 = tmp2 - tmp3;
   3802 
   3803     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
   3804     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
   3805     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
   3806     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
   3807     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
   3808     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
   3809 
   3810     dataptr[DCTSIZE*0] = (DCTELEM)
   3811       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
   3812               CONST_BITS+PASS1_BITS);
   3813     dataptr[DCTSIZE*6] = (DCTELEM)
   3814       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
   3815               CONST_BITS+PASS1_BITS);
   3816     dataptr[DCTSIZE*4] = (DCTELEM)
   3817       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */
   3818               CONST_BITS+PASS1_BITS);
   3819     dataptr[DCTSIZE*2] = (DCTELEM)
   3820       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */
   3821               MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */
   3822               CONST_BITS+PASS1_BITS);
   3823 
   3824     /* Odd part */
   3825 
   3826     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */
   3827     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */
   3828     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */
   3829     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */
   3830     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */
   3831     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
   3832             + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */
   3833     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
   3834     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
   3835             + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */
   3836     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
   3837             - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */
   3838     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
   3839             - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
   3840 
   3841     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
   3842     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
   3843     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
   3844     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
   3845 
   3846     dataptr++;			/* advance pointer to next column */
   3847     wsptr++;			/* advance pointer to next column */
   3848   }
   3849 }
   3850 
   3851 
   3852 /*
   3853  * Perform the forward DCT on a 5x10 sample block.
   3854  *
   3855  * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
   3856  */
   3857 
   3858 GLOBAL(void)
   3859 jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   3860 {
   3861   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
   3862   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
   3863   DCTELEM workspace[8*2];
   3864   DCTELEM *dataptr;
   3865   DCTELEM *wsptr;
   3866   JSAMPROW elemptr;
   3867   int ctr;
   3868   SHIFT_TEMPS
   3869 
   3870   /* Pre-zero output coefficient block. */
   3871   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   3872 
   3873   /* Pass 1: process rows. */
   3874   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   3875   /* furthermore, we scale the results by 2**PASS1_BITS. */
   3876   /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
   3877 
   3878   dataptr = data;
   3879   ctr = 0;
   3880   for (;;) {
   3881     elemptr = sample_data[ctr] + start_col;
   3882 
   3883     /* Even part */
   3884 
   3885     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
   3886     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
   3887     tmp2 = GETJSAMPLE(elemptr[2]);
   3888 
   3889     tmp10 = tmp0 + tmp1;
   3890     tmp11 = tmp0 - tmp1;
   3891 
   3892     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
   3893     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
   3894 
   3895     /* Apply unsigned->signed conversion */
   3896     dataptr[0] = (DCTELEM)
   3897       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
   3898     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */
   3899     tmp10 -= tmp2 << 2;
   3900     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */
   3901     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
   3902     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
   3903 
   3904     /* Odd part */
   3905 
   3906     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */
   3907 
   3908     dataptr[1] = (DCTELEM)
   3909       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
   3910               CONST_BITS-PASS1_BITS);
   3911     dataptr[3] = (DCTELEM)
   3912       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
   3913               CONST_BITS-PASS1_BITS);
   3914 
   3915     ctr++;
   3916 
   3917     if (ctr != DCTSIZE) {
   3918       if (ctr == 10)
   3919         break;			/* Done. */
   3920       dataptr += DCTSIZE;	/* advance pointer to next row */
   3921     } else
   3922       dataptr = workspace;	/* switch pointer to extended workspace */
   3923   }
   3924 
   3925   /* Pass 2: process columns.
   3926    * We remove the PASS1_BITS scaling, but leave the results scaled up
   3927    * by an overall factor of 8.
   3928    * We must also scale the output by (8/5)*(8/10) = 32/25, which we
   3929    * fold into the constant multipliers:
   3930    * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
   3931    */
   3932 
   3933   dataptr = data;
   3934   wsptr = workspace;
   3935   for (ctr = 0; ctr < 5; ctr++) {
   3936     /* Even part */
   3937 
   3938     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
   3939     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
   3940     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
   3941     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
   3942     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
   3943 
   3944     tmp10 = tmp0 + tmp4;
   3945     tmp13 = tmp0 - tmp4;
   3946     tmp11 = tmp1 + tmp3;
   3947     tmp14 = tmp1 - tmp3;
   3948 
   3949     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
   3950     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
   3951     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
   3952     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
   3953     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
   3954 
   3955     dataptr[DCTSIZE*0] = (DCTELEM)
   3956       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
   3957               CONST_BITS+PASS1_BITS);
   3958     tmp12 += tmp12;
   3959     dataptr[DCTSIZE*4] = (DCTELEM)
   3960       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
   3961               MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */
   3962               CONST_BITS+PASS1_BITS);
   3963     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */
   3964     dataptr[DCTSIZE*2] = (DCTELEM)
   3965       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */
   3966               CONST_BITS+PASS1_BITS);
   3967     dataptr[DCTSIZE*6] = (DCTELEM)
   3968       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */
   3969               CONST_BITS+PASS1_BITS);
   3970 
   3971     /* Odd part */
   3972 
   3973     tmp10 = tmp0 + tmp4;
   3974     tmp11 = tmp1 - tmp3;
   3975     dataptr[DCTSIZE*5] = (DCTELEM)
   3976       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */
   3977               CONST_BITS+PASS1_BITS);
   3978     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */
   3979     dataptr[DCTSIZE*1] = (DCTELEM)
   3980       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */
   3981               MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */
   3982               MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */
   3983               MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */
   3984               CONST_BITS+PASS1_BITS);
   3985     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */
   3986             MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */
   3987     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */
   3988             MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */
   3989     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
   3990     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
   3991 
   3992     dataptr++;			/* advance pointer to next column */
   3993     wsptr++;			/* advance pointer to next column */
   3994   }
   3995 }
   3996 
   3997 
   3998 /*
   3999  * Perform the forward DCT on a 4x8 sample block.
   4000  *
   4001  * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
   4002  */
   4003 
   4004 GLOBAL(void)
   4005 jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   4006 {
   4007   INT32 tmp0, tmp1, tmp2, tmp3;
   4008   INT32 tmp10, tmp11, tmp12, tmp13;
   4009   INT32 z1;
   4010   DCTELEM *dataptr;
   4011   JSAMPROW elemptr;
   4012   int ctr;
   4013   SHIFT_TEMPS
   4014 
   4015   /* Pre-zero output coefficient block. */
   4016   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   4017 
   4018   /* Pass 1: process rows. */
   4019   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   4020   /* furthermore, we scale the results by 2**PASS1_BITS. */
   4021   /* We must also scale the output by 8/4 = 2, which we add here. */
   4022   /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
   4023 
   4024   dataptr = data;
   4025   for (ctr = 0; ctr < DCTSIZE; ctr++) {
   4026     elemptr = sample_data[ctr] + start_col;
   4027 
   4028     /* Even part */
   4029 
   4030     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
   4031     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
   4032 
   4033     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
   4034     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
   4035 
   4036     /* Apply unsigned->signed conversion */
   4037     dataptr[0] = (DCTELEM)
   4038       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
   4039     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
   4040 
   4041     /* Odd part */
   4042 
   4043     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
   4044     /* Add fudge factor here for final descale. */
   4045     tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
   4046 
   4047     dataptr[1] = (DCTELEM)
   4048       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
   4049                   CONST_BITS-PASS1_BITS-1);
   4050     dataptr[3] = (DCTELEM)
   4051       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
   4052                   CONST_BITS-PASS1_BITS-1);
   4053 
   4054     dataptr += DCTSIZE;		/* advance pointer to next row */
   4055   }
   4056 
   4057   /* Pass 2: process columns.
   4058    * We remove the PASS1_BITS scaling, but leave the results scaled up
   4059    * by an overall factor of 8.
   4060    */
   4061 
   4062   dataptr = data;
   4063   for (ctr = 0; ctr < 4; ctr++) {
   4064     /* Even part per LL&M figure 1 --- note that published figure is faulty;
   4065      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
   4066      */
   4067 
   4068     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
   4069     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
   4070     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
   4071     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
   4072 
   4073     /* Add fudge factor here for final descale. */
   4074     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
   4075     tmp12 = tmp0 - tmp3;
   4076     tmp11 = tmp1 + tmp2;
   4077     tmp13 = tmp1 - tmp2;
   4078 
   4079     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
   4080     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
   4081     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
   4082     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
   4083 
   4084     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
   4085     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
   4086 
   4087     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
   4088     /* Add fudge factor here for final descale. */
   4089     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
   4090     dataptr[DCTSIZE*2] = (DCTELEM)
   4091       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
   4092     dataptr[DCTSIZE*6] = (DCTELEM)
   4093       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
   4094 
   4095     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
   4096      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
   4097      * i0..i3 in the paper are tmp0..tmp3 here.
   4098      */
   4099 
   4100     tmp10 = tmp0 + tmp3;
   4101     tmp11 = tmp1 + tmp2;
   4102     tmp12 = tmp0 + tmp2;
   4103     tmp13 = tmp1 + tmp3;
   4104     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
   4105     /* Add fudge factor here for final descale. */
   4106     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
   4107 
   4108     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
   4109     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
   4110     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
   4111     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
   4112     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
   4113     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
   4114     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
   4115     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
   4116 
   4117     tmp12 += z1;
   4118     tmp13 += z1;
   4119 
   4120     dataptr[DCTSIZE*1] = (DCTELEM)
   4121       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
   4122     dataptr[DCTSIZE*3] = (DCTELEM)
   4123       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
   4124     dataptr[DCTSIZE*5] = (DCTELEM)
   4125       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
   4126     dataptr[DCTSIZE*7] = (DCTELEM)
   4127       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
   4128 
   4129     dataptr++;			/* advance pointer to next column */
   4130   }
   4131 }
   4132 
   4133 
   4134 /*
   4135  * Perform the forward DCT on a 3x6 sample block.
   4136  *
   4137  * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
   4138  */
   4139 
   4140 GLOBAL(void)
   4141 jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   4142 {
   4143   INT32 tmp0, tmp1, tmp2;
   4144   INT32 tmp10, tmp11, tmp12;
   4145   DCTELEM *dataptr;
   4146   JSAMPROW elemptr;
   4147   int ctr;
   4148   SHIFT_TEMPS
   4149 
   4150   /* Pre-zero output coefficient block. */
   4151   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   4152 
   4153   /* Pass 1: process rows. */
   4154   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
   4155   /* furthermore, we scale the results by 2**PASS1_BITS. */
   4156   /* We scale the results further by 2 as part of output adaption */
   4157   /* scaling for different DCT size. */
   4158   /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
   4159 
   4160   dataptr = data;
   4161   for (ctr = 0; ctr < 6; ctr++) {
   4162     elemptr = sample_data[ctr] + start_col;
   4163 
   4164     /* Even part */
   4165 
   4166     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
   4167     tmp1 = GETJSAMPLE(elemptr[1]);
   4168 
   4169     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
   4170 
   4171     /* Apply unsigned->signed conversion */
   4172     dataptr[0] = (DCTELEM)
   4173       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
   4174     dataptr[2] = (DCTELEM)
   4175       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
   4176               CONST_BITS-PASS1_BITS-1);
   4177 
   4178     /* Odd part */
   4179 
   4180     dataptr[1] = (DCTELEM)
   4181       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */
   4182               CONST_BITS-PASS1_BITS-1);
   4183 
   4184     dataptr += DCTSIZE;		/* advance pointer to next row */
   4185   }
   4186 
   4187   /* Pass 2: process columns.
   4188    * We remove the PASS1_BITS scaling, but leave the results scaled up
   4189    * by an overall factor of 8.
   4190    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
   4191    * fold into the constant multipliers (other part was done in pass 1):
   4192    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
   4193    */
   4194 
   4195   dataptr = data;
   4196   for (ctr = 0; ctr < 3; ctr++) {
   4197     /* Even part */
   4198 
   4199     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
   4200     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
   4201     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
   4202 
   4203     tmp10 = tmp0 + tmp2;
   4204     tmp12 = tmp0 - tmp2;
   4205 
   4206     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
   4207     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
   4208     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
   4209 
   4210     dataptr[DCTSIZE*0] = (DCTELEM)
   4211       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
   4212               CONST_BITS+PASS1_BITS);
   4213     dataptr[DCTSIZE*2] = (DCTELEM)
   4214       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
   4215               CONST_BITS+PASS1_BITS);
   4216     dataptr[DCTSIZE*4] = (DCTELEM)
   4217       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
   4218               CONST_BITS+PASS1_BITS);
   4219 
   4220     /* Odd part */
   4221 
   4222     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
   4223 
   4224     dataptr[DCTSIZE*1] = (DCTELEM)
   4225       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
   4226               CONST_BITS+PASS1_BITS);
   4227     dataptr[DCTSIZE*3] = (DCTELEM)
   4228       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
   4229               CONST_BITS+PASS1_BITS);
   4230     dataptr[DCTSIZE*5] = (DCTELEM)
   4231       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
   4232               CONST_BITS+PASS1_BITS);
   4233 
   4234     dataptr++;			/* advance pointer to next column */
   4235   }
   4236 }
   4237 
   4238 
   4239 /*
   4240  * Perform the forward DCT on a 2x4 sample block.
   4241  *
   4242  * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
   4243  */
   4244 
   4245 GLOBAL(void)
   4246 jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   4247 {
   4248   INT32 tmp0, tmp1;
   4249   INT32 tmp10, tmp11;
   4250   DCTELEM *dataptr;
   4251   JSAMPROW elemptr;
   4252   int ctr;
   4253   SHIFT_TEMPS
   4254 
   4255   /* Pre-zero output coefficient block. */
   4256   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   4257 
   4258   /* Pass 1: process rows. */
   4259   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
   4260   /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
   4261 
   4262   dataptr = data;
   4263   for (ctr = 0; ctr < 4; ctr++) {
   4264     elemptr = sample_data[ctr] + start_col;
   4265 
   4266     /* Even part */
   4267 
   4268     tmp0 = GETJSAMPLE(elemptr[0]);
   4269     tmp1 = GETJSAMPLE(elemptr[1]);
   4270 
   4271     /* Apply unsigned->signed conversion */
   4272     dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3);
   4273 
   4274     /* Odd part */
   4275 
   4276     dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3);
   4277 
   4278     dataptr += DCTSIZE;		/* advance pointer to next row */
   4279   }
   4280 
   4281   /* Pass 2: process columns.
   4282    * We leave the results scaled up by an overall factor of 8.
   4283    * 4-point FDCT kernel,
   4284    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
   4285    */
   4286 
   4287   dataptr = data;
   4288   for (ctr = 0; ctr < 2; ctr++) {
   4289     /* Even part */
   4290 
   4291     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
   4292     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
   4293 
   4294     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
   4295     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
   4296 
   4297     dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1);
   4298     dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1);
   4299 
   4300     /* Odd part */
   4301 
   4302     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
   4303     /* Add fudge factor here for final descale. */
   4304     tmp0 += ONE << (CONST_BITS-1);
   4305 
   4306     dataptr[DCTSIZE*1] = (DCTELEM)
   4307       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
   4308                   CONST_BITS);
   4309     dataptr[DCTSIZE*3] = (DCTELEM)
   4310       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
   4311                   CONST_BITS);
   4312 
   4313     dataptr++;			/* advance pointer to next column */
   4314   }
   4315 }
   4316 
   4317 
   4318 /*
   4319  * Perform the forward DCT on a 1x2 sample block.
   4320  *
   4321  * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
   4322  */
   4323 
   4324 GLOBAL(void)
   4325 jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
   4326 {
   4327   INT32 tmp0, tmp1;
   4328 
   4329   /* Pre-zero output coefficient block. */
   4330   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
   4331 
   4332   tmp0 = GETJSAMPLE(sample_data[0][start_col]);
   4333   tmp1 = GETJSAMPLE(sample_data[1][start_col]);
   4334 
   4335   /* We leave the results scaled up by an overall factor of 8.
   4336    * We must also scale the output by (8/1)*(8/2) = 2**5.
   4337    */
   4338 
   4339   /* Even part */
   4340   /* Apply unsigned->signed conversion */
   4341   data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
   4342 
   4343   /* Odd part */
   4344   data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
   4345 }
   4346 
   4347 #endif /* DCT_SCALING_SUPPORTED */
   4348 #endif /* DCT_ISLOW_SUPPORTED */
   4349