Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jidctflt.c
      3  *
      4  * Copyright (C) 1994-1998, Thomas G. Lane.
      5  * Modified 2010 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains a floating-point implementation of the
     10  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     11  * must also perform dequantization of the input coefficients.
     12  *
     13  * This implementation should be more accurate than either of the integer
     14  * IDCT implementations.  However, it may not give the same results on all
     15  * machines because of differences in roundoff behavior.  Speed will depend
     16  * on the hardware's floating point capacity.
     17  *
     18  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     19  * on each row (or vice versa, but it's more convenient to emit a row at
     20  * a time).  Direct algorithms are also available, but they are much more
     21  * complex and seem not to be any faster when reduced to code.
     22  *
     23  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     24  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     25  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     26  * JPEG textbook (see REFERENCES section in file README).  The following code
     27  * is based directly on figure 4-8 in P&M.
     28  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     29  * possible to arrange the computation so that many of the multiplies are
     30  * simple scalings of the final outputs.  These multiplies can then be
     31  * folded into the multiplications or divisions by the JPEG quantization
     32  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     33  * to be done in the DCT itself.
     34  * The primary disadvantage of this method is that with a fixed-point
     35  * implementation, accuracy is lost due to imprecise representation of the
     36  * scaled quantization values.  However, that problem does not arise if
     37  * we use floating point arithmetic.
     38  */
     39 
     40 #define JPEG_INTERNALS
     41 #include "jinclude.h"
     42 #include "jpeglib.h"
     43 #include "jdct.h"		/* Private declarations for DCT subsystem */
     44 
     45 #ifdef DCT_FLOAT_SUPPORTED
     46 
     47 
     48 /*
     49  * This module is specialized to the case DCTSIZE = 8.
     50  */
     51 
     52 #if DCTSIZE != 8
     53   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     54 #endif
     55 
     56 
     57 /* Dequantize a coefficient by multiplying it by the multiplier-table
     58  * entry; produce a float result.
     59  */
     60 
     61 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
     62 
     63 
     64 /*
     65  * Perform dequantization and inverse DCT on one block of coefficients.
     66  */
     67 
     68 GLOBAL(void)
     69 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
     70                  JCOEFPTR coef_block,
     71                  JSAMPARRAY output_buf, JDIMENSION output_col)
     72 {
     73   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     74   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     75   FAST_FLOAT z5, z10, z11, z12, z13;
     76   JCOEFPTR inptr;
     77   FLOAT_MULT_TYPE * quantptr;
     78   FAST_FLOAT * wsptr;
     79   JSAMPROW outptr;
     80   JSAMPLE *range_limit = cinfo->sample_range_limit;
     81   int ctr;
     82   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
     83 
     84   /* Pass 1: process columns from input, store into work array. */
     85 
     86   inptr = coef_block;
     87   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
     88   wsptr = workspace;
     89   for (ctr = DCTSIZE; ctr > 0; ctr--) {
     90     /* Due to quantization, we will usually find that many of the input
     91      * coefficients are zero, especially the AC terms.  We can exploit this
     92      * by short-circuiting the IDCT calculation for any column in which all
     93      * the AC terms are zero.  In that case each output is equal to the
     94      * DC coefficient (with scale factor as needed).
     95      * With typical images and quantization tables, half or more of the
     96      * column DCT calculations can be simplified this way.
     97      */
     98 
     99     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    100         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    101         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    102         inptr[DCTSIZE*7] == 0) {
    103       /* AC terms all zero */
    104       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    105 
    106       wsptr[DCTSIZE*0] = dcval;
    107       wsptr[DCTSIZE*1] = dcval;
    108       wsptr[DCTSIZE*2] = dcval;
    109       wsptr[DCTSIZE*3] = dcval;
    110       wsptr[DCTSIZE*4] = dcval;
    111       wsptr[DCTSIZE*5] = dcval;
    112       wsptr[DCTSIZE*6] = dcval;
    113       wsptr[DCTSIZE*7] = dcval;
    114 
    115       inptr++;			/* advance pointers to next column */
    116       quantptr++;
    117       wsptr++;
    118       continue;
    119     }
    120 
    121     /* Even part */
    122 
    123     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    124     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    125     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    126     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    127 
    128     tmp10 = tmp0 + tmp2;	/* phase 3 */
    129     tmp11 = tmp0 - tmp2;
    130 
    131     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    132     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
    133 
    134     tmp0 = tmp10 + tmp13;	/* phase 2 */
    135     tmp3 = tmp10 - tmp13;
    136     tmp1 = tmp11 + tmp12;
    137     tmp2 = tmp11 - tmp12;
    138 
    139     /* Odd part */
    140 
    141     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    142     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    143     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    144     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    145 
    146     z13 = tmp6 + tmp5;		/* phase 6 */
    147     z10 = tmp6 - tmp5;
    148     z11 = tmp4 + tmp7;
    149     z12 = tmp4 - tmp7;
    150 
    151     tmp7 = z11 + z13;		/* phase 5 */
    152     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
    153 
    154     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    155     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    156     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    157 
    158     tmp6 = tmp12 - tmp7;	/* phase 2 */
    159     tmp5 = tmp11 - tmp6;
    160     tmp4 = tmp10 - tmp5;
    161 
    162     wsptr[DCTSIZE*0] = tmp0 + tmp7;
    163     wsptr[DCTSIZE*7] = tmp0 - tmp7;
    164     wsptr[DCTSIZE*1] = tmp1 + tmp6;
    165     wsptr[DCTSIZE*6] = tmp1 - tmp6;
    166     wsptr[DCTSIZE*2] = tmp2 + tmp5;
    167     wsptr[DCTSIZE*5] = tmp2 - tmp5;
    168     wsptr[DCTSIZE*3] = tmp3 + tmp4;
    169     wsptr[DCTSIZE*4] = tmp3 - tmp4;
    170 
    171     inptr++;			/* advance pointers to next column */
    172     quantptr++;
    173     wsptr++;
    174   }
    175 
    176   /* Pass 2: process rows from work array, store into output array. */
    177 
    178   wsptr = workspace;
    179   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    180     outptr = output_buf[ctr] + output_col;
    181     /* Rows of zeroes can be exploited in the same way as we did with columns.
    182      * However, the column calculation has created many nonzero AC terms, so
    183      * the simplification applies less often (typically 5% to 10% of the time).
    184      * And testing floats for zero is relatively expensive, so we don't bother.
    185      */
    186 
    187     /* Even part */
    188 
    189     /* Apply signed->unsigned and prepare float->int conversion */
    190     z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
    191     tmp10 = z5 + wsptr[4];
    192     tmp11 = z5 - wsptr[4];
    193 
    194     tmp13 = wsptr[2] + wsptr[6];
    195     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
    196 
    197     tmp0 = tmp10 + tmp13;
    198     tmp3 = tmp10 - tmp13;
    199     tmp1 = tmp11 + tmp12;
    200     tmp2 = tmp11 - tmp12;
    201 
    202     /* Odd part */
    203 
    204     z13 = wsptr[5] + wsptr[3];
    205     z10 = wsptr[5] - wsptr[3];
    206     z11 = wsptr[1] + wsptr[7];
    207     z12 = wsptr[1] - wsptr[7];
    208 
    209     tmp7 = z11 + z13;
    210     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
    211 
    212     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    213     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    214     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    215 
    216     tmp6 = tmp12 - tmp7;
    217     tmp5 = tmp11 - tmp6;
    218     tmp4 = tmp10 - tmp5;
    219 
    220     /* Final output stage: float->int conversion and range-limit */
    221 
    222     outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
    223     outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
    224     outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
    225     outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
    226     outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
    227     outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
    228     outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
    229     outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
    230 
    231     wsptr += DCTSIZE;		/* advance pointer to next row */
    232   }
    233 }
    234 
    235 #endif /* DCT_FLOAT_SUPPORTED */
    236