Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jmemmgr.c
      3  *
      4  * Copyright (C) 1991-1997, Thomas G. Lane.
      5  * Modified 2011-2012 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains the JPEG system-independent memory management
     10  * routines.  This code is usable across a wide variety of machines; most
     11  * of the system dependencies have been isolated in a separate file.
     12  * The major functions provided here are:
     13  *   * pool-based allocation and freeing of memory;
     14  *   * policy decisions about how to divide available memory among the
     15  *     virtual arrays;
     16  *   * control logic for swapping virtual arrays between main memory and
     17  *     backing storage.
     18  * The separate system-dependent file provides the actual backing-storage
     19  * access code, and it contains the policy decision about how much total
     20  * main memory to use.
     21  * This file is system-dependent in the sense that some of its functions
     22  * are unnecessary in some systems.  For example, if there is enough virtual
     23  * memory so that backing storage will never be used, much of the virtual
     24  * array control logic could be removed.  (Of course, if you have that much
     25  * memory then you shouldn't care about a little bit of unused code...)
     26  */
     27 
     28 #define JPEG_INTERNALS
     29 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
     30 #include "jinclude.h"
     31 #include "jpeglib.h"
     32 #include "jmemsys.h"		/* import the system-dependent declarations */
     33 
     34 #ifndef NO_GETENV
     35 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
     36 extern char * getenv JPP((const char * name));
     37 #endif
     38 #endif
     39 
     40 
     41 /*
     42  * Some important notes:
     43  *   The allocation routines provided here must never return NULL.
     44  *   They should exit to error_exit if unsuccessful.
     45  *
     46  *   It's not a good idea to try to merge the sarray and barray routines,
     47  *   even though they are textually almost the same, because samples are
     48  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     49  *   in machines where byte pointers have a different representation from
     50  *   word pointers, the resulting machine code could not be the same.
     51  */
     52 
     53 
     54 /*
     55  * Many machines require storage alignment: longs must start on 4-byte
     56  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     57  * always returns pointers that are multiples of the worst-case alignment
     58  * requirement, and we had better do so too.
     59  * There isn't any really portable way to determine the worst-case alignment
     60  * requirement.  This module assumes that the alignment requirement is
     61  * multiples of sizeof(ALIGN_TYPE).
     62  * By default, we define ALIGN_TYPE as double.  This is necessary on some
     63  * workstations (where doubles really do need 8-byte alignment) and will work
     64  * fine on nearly everything.  If your machine has lesser alignment needs,
     65  * you can save a few bytes by making ALIGN_TYPE smaller.
     66  * The only place I know of where this will NOT work is certain Macintosh
     67  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     68  * Doing 10-byte alignment is counterproductive because longwords won't be
     69  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
     70  * such a compiler.
     71  */
     72 
     73 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
     74 #define ALIGN_TYPE  double
     75 #endif
     76 
     77 
     78 /*
     79  * We allocate objects from "pools", where each pool is gotten with a single
     80  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     81  * overhead within a pool, except for alignment padding.  Each pool has a
     82  * header with a link to the next pool of the same class.
     83  * Small and large pool headers are identical except that the latter's
     84  * link pointer must be FAR on 80x86 machines.
     85  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
     86  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
     87  * of the alignment requirement of ALIGN_TYPE.
     88  */
     89 
     90 typedef union small_pool_struct * small_pool_ptr;
     91 
     92 typedef union small_pool_struct {
     93   struct {
     94     small_pool_ptr next;	/* next in list of pools */
     95     size_t bytes_used;		/* how many bytes already used within pool */
     96     size_t bytes_left;		/* bytes still available in this pool */
     97   } hdr;
     98   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
     99 } small_pool_hdr;
    100 
    101 typedef union large_pool_struct FAR * large_pool_ptr;
    102 
    103 typedef union large_pool_struct {
    104   struct {
    105     large_pool_ptr next;	/* next in list of pools */
    106     size_t bytes_used;		/* how many bytes already used within pool */
    107     size_t bytes_left;		/* bytes still available in this pool */
    108   } hdr;
    109   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    110 } large_pool_hdr;
    111 
    112 
    113 /*
    114  * Here is the full definition of a memory manager object.
    115  */
    116 
    117 typedef struct {
    118   struct jpeg_memory_mgr pub;	/* public fields */
    119 
    120   /* Each pool identifier (lifetime class) names a linked list of pools. */
    121   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    122   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    123 
    124   /* Since we only have one lifetime class of virtual arrays, only one
    125    * linked list is necessary (for each datatype).  Note that the virtual
    126    * array control blocks being linked together are actually stored somewhere
    127    * in the small-pool list.
    128    */
    129   jvirt_sarray_ptr virt_sarray_list;
    130   jvirt_barray_ptr virt_barray_list;
    131 
    132   /* This counts total space obtained from jpeg_get_small/large */
    133   long total_space_allocated;
    134 
    135   /* alloc_sarray and alloc_barray set this value for use by virtual
    136    * array routines.
    137    */
    138   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
    139 } my_memory_mgr;
    140 
    141 typedef my_memory_mgr * my_mem_ptr;
    142 
    143 
    144 /*
    145  * The control blocks for virtual arrays.
    146  * Note that these blocks are allocated in the "small" pool area.
    147  * System-dependent info for the associated backing store (if any) is hidden
    148  * inside the backing_store_info struct.
    149  */
    150 
    151 struct jvirt_sarray_control {
    152   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
    153   JDIMENSION rows_in_array;	/* total virtual array height */
    154   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
    155   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
    156   JDIMENSION rows_in_mem;	/* height of memory buffer */
    157   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    158   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    159   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    160   boolean pre_zero;		/* pre-zero mode requested? */
    161   boolean dirty;		/* do current buffer contents need written? */
    162   boolean b_s_open;		/* is backing-store data valid? */
    163   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
    164   backing_store_info b_s_info;	/* System-dependent control info */
    165 };
    166 
    167 struct jvirt_barray_control {
    168   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
    169   JDIMENSION rows_in_array;	/* total virtual array height */
    170   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
    171   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
    172   JDIMENSION rows_in_mem;	/* height of memory buffer */
    173   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    174   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    175   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    176   boolean pre_zero;		/* pre-zero mode requested? */
    177   boolean dirty;		/* do current buffer contents need written? */
    178   boolean b_s_open;		/* is backing-store data valid? */
    179   jvirt_barray_ptr next;	/* link to next virtual barray control block */
    180   backing_store_info b_s_info;	/* System-dependent control info */
    181 };
    182 
    183 
    184 #ifdef MEM_STATS		/* optional extra stuff for statistics */
    185 
    186 LOCAL(void)
    187 print_mem_stats (j_common_ptr cinfo, int pool_id)
    188 {
    189   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    190   small_pool_ptr shdr_ptr;
    191   large_pool_ptr lhdr_ptr;
    192 
    193   /* Since this is only a debugging stub, we can cheat a little by using
    194    * fprintf directly rather than going through the trace message code.
    195    * This is helpful because message parm array can't handle longs.
    196    */
    197   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    198           pool_id, mem->total_space_allocated);
    199 
    200   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    201        lhdr_ptr = lhdr_ptr->hdr.next) {
    202     fprintf(stderr, "  Large chunk used %ld\n",
    203             (long) lhdr_ptr->hdr.bytes_used);
    204   }
    205 
    206   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    207        shdr_ptr = shdr_ptr->hdr.next) {
    208     fprintf(stderr, "  Small chunk used %ld free %ld\n",
    209             (long) shdr_ptr->hdr.bytes_used,
    210             (long) shdr_ptr->hdr.bytes_left);
    211   }
    212 }
    213 
    214 #endif /* MEM_STATS */
    215 
    216 
    217 LOCAL(noreturn_t)
    218 out_of_memory (j_common_ptr cinfo, int which)
    219 /* Report an out-of-memory error and stop execution */
    220 /* If we compiled MEM_STATS support, report alloc requests before dying */
    221 {
    222 #ifdef MEM_STATS
    223   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
    224 #endif
    225   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    226 }
    227 
    228 
    229 /*
    230  * Allocation of "small" objects.
    231  *
    232  * For these, we use pooled storage.  When a new pool must be created,
    233  * we try to get enough space for the current request plus a "slop" factor,
    234  * where the slop will be the amount of leftover space in the new pool.
    235  * The speed vs. space tradeoff is largely determined by the slop values.
    236  * A different slop value is provided for each pool class (lifetime),
    237  * and we also distinguish the first pool of a class from later ones.
    238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    239  * machines, but may be too small if longs are 64 bits or more.
    240  */
    241 
    242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    243 {
    244         1600,			/* first PERMANENT pool */
    245         16000			/* first IMAGE pool */
    246 };
    247 
    248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    249 {
    250         0,			/* additional PERMANENT pools */
    251         5000			/* additional IMAGE pools */
    252 };
    253 
    254 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
    255 
    256 
    257 METHODDEF(void *)
    258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    259 /* Allocate a "small" object */
    260 {
    261   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    262   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    263   char * data_ptr;
    264   size_t odd_bytes, min_request, slop;
    265 
    266   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    267   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
    268     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
    269 
    270   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    271   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    272   if (odd_bytes > 0)
    273     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    274 
    275   /* See if space is available in any existing pool */
    276   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    277     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    278   prev_hdr_ptr = NULL;
    279   hdr_ptr = mem->small_list[pool_id];
    280   while (hdr_ptr != NULL) {
    281     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
    282       break;			/* found pool with enough space */
    283     prev_hdr_ptr = hdr_ptr;
    284     hdr_ptr = hdr_ptr->hdr.next;
    285   }
    286 
    287   /* Time to make a new pool? */
    288   if (hdr_ptr == NULL) {
    289     /* min_request is what we need now, slop is what will be leftover */
    290     min_request = sizeofobject + SIZEOF(small_pool_hdr);
    291     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    292       slop = first_pool_slop[pool_id];
    293     else
    294       slop = extra_pool_slop[pool_id];
    295     /* Don't ask for more than MAX_ALLOC_CHUNK */
    296     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    297       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    298     /* Try to get space, if fail reduce slop and try again */
    299     for (;;) {
    300       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    301       if (hdr_ptr != NULL)
    302         break;
    303       slop /= 2;
    304       if (slop < MIN_SLOP)	/* give up when it gets real small */
    305         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    306     }
    307     mem->total_space_allocated += min_request + slop;
    308     /* Success, initialize the new pool header and add to end of list */
    309     hdr_ptr->hdr.next = NULL;
    310     hdr_ptr->hdr.bytes_used = 0;
    311     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    312     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    313       mem->small_list[pool_id] = hdr_ptr;
    314     else
    315       prev_hdr_ptr->hdr.next = hdr_ptr;
    316   }
    317 
    318   /* OK, allocate the object from the current pool */
    319   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
    320   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
    321   hdr_ptr->hdr.bytes_used += sizeofobject;
    322   hdr_ptr->hdr.bytes_left -= sizeofobject;
    323 
    324   return (void *) data_ptr;
    325 }
    326 
    327 
    328 /*
    329  * Allocation of "large" objects.
    330  *
    331  * The external semantics of these are the same as "small" objects,
    332  * except that FAR pointers are used on 80x86.  However the pool
    333  * management heuristics are quite different.  We assume that each
    334  * request is large enough that it may as well be passed directly to
    335  * jpeg_get_large; the pool management just links everything together
    336  * so that we can free it all on demand.
    337  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    338  * structures.  The routines that create these structures (see below)
    339  * deliberately bunch rows together to ensure a large request size.
    340  */
    341 
    342 METHODDEF(void FAR *)
    343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    344 /* Allocate a "large" object */
    345 {
    346   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    347   large_pool_ptr hdr_ptr;
    348   size_t odd_bytes;
    349 
    350   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    351   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
    352     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
    353 
    354   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    355   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    356   if (odd_bytes > 0)
    357     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    358 
    359   /* Always make a new pool */
    360   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    361     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    362 
    363   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    364                                             SIZEOF(large_pool_hdr));
    365   if (hdr_ptr == NULL)
    366     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
    367   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
    368 
    369   /* Success, initialize the new pool header and add to list */
    370   hdr_ptr->hdr.next = mem->large_list[pool_id];
    371   /* We maintain space counts in each pool header for statistical purposes,
    372    * even though they are not needed for allocation.
    373    */
    374   hdr_ptr->hdr.bytes_used = sizeofobject;
    375   hdr_ptr->hdr.bytes_left = 0;
    376   mem->large_list[pool_id] = hdr_ptr;
    377 
    378   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
    379 }
    380 
    381 
    382 /*
    383  * Creation of 2-D sample arrays.
    384  * The pointers are in near heap, the samples themselves in FAR heap.
    385  *
    386  * To minimize allocation overhead and to allow I/O of large contiguous
    387  * blocks, we allocate the sample rows in groups of as many rows as possible
    388  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    389  * NB: the virtual array control routines, later in this file, know about
    390  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    391  * object so that it can be saved away if this sarray is the workspace for
    392  * a virtual array.
    393  */
    394 
    395 METHODDEF(JSAMPARRAY)
    396 alloc_sarray (j_common_ptr cinfo, int pool_id,
    397               JDIMENSION samplesperrow, JDIMENSION numrows)
    398 /* Allocate a 2-D sample array */
    399 {
    400   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    401   JSAMPARRAY result;
    402   JSAMPROW workspace;
    403   JDIMENSION rowsperchunk, currow, i;
    404   long ltemp;
    405 
    406   /* Calculate max # of rows allowed in one allocation chunk */
    407   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    408           ((long) samplesperrow * SIZEOF(JSAMPLE));
    409   if (ltemp <= 0)
    410     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    411   if (ltemp < (long) numrows)
    412     rowsperchunk = (JDIMENSION) ltemp;
    413   else
    414     rowsperchunk = numrows;
    415   mem->last_rowsperchunk = rowsperchunk;
    416 
    417   /* Get space for row pointers (small object) */
    418   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    419                                     (size_t) (numrows * SIZEOF(JSAMPROW)));
    420 
    421   /* Get the rows themselves (large objects) */
    422   currow = 0;
    423   while (currow < numrows) {
    424     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    425     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    426         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    427                   * SIZEOF(JSAMPLE)));
    428     for (i = rowsperchunk; i > 0; i--) {
    429       result[currow++] = workspace;
    430       workspace += samplesperrow;
    431     }
    432   }
    433 
    434   return result;
    435 }
    436 
    437 
    438 /*
    439  * Creation of 2-D coefficient-block arrays.
    440  * This is essentially the same as the code for sample arrays, above.
    441  */
    442 
    443 METHODDEF(JBLOCKARRAY)
    444 alloc_barray (j_common_ptr cinfo, int pool_id,
    445               JDIMENSION blocksperrow, JDIMENSION numrows)
    446 /* Allocate a 2-D coefficient-block array */
    447 {
    448   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    449   JBLOCKARRAY result;
    450   JBLOCKROW workspace;
    451   JDIMENSION rowsperchunk, currow, i;
    452   long ltemp;
    453 
    454   /* Calculate max # of rows allowed in one allocation chunk */
    455   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    456           ((long) blocksperrow * SIZEOF(JBLOCK));
    457   if (ltemp <= 0)
    458     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    459   if (ltemp < (long) numrows)
    460     rowsperchunk = (JDIMENSION) ltemp;
    461   else
    462     rowsperchunk = numrows;
    463   mem->last_rowsperchunk = rowsperchunk;
    464 
    465   /* Get space for row pointers (small object) */
    466   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    467                                      (size_t) (numrows * SIZEOF(JBLOCKROW)));
    468 
    469   /* Get the rows themselves (large objects) */
    470   currow = 0;
    471   while (currow < numrows) {
    472     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    473     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    474         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    475                   * SIZEOF(JBLOCK)));
    476     for (i = rowsperchunk; i > 0; i--) {
    477       result[currow++] = workspace;
    478       workspace += blocksperrow;
    479     }
    480   }
    481 
    482   return result;
    483 }
    484 
    485 
    486 /*
    487  * About virtual array management:
    488  *
    489  * The above "normal" array routines are only used to allocate strip buffers
    490  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    491  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    492  * time, but the memory manager must save the whole array for repeated
    493  * accesses.  The intended implementation is that there is a strip buffer in
    494  * memory (as high as is possible given the desired memory limit), plus a
    495  * backing file that holds the rest of the array.
    496  *
    497  * The request_virt_array routines are told the total size of the image and
    498  * the maximum number of rows that will be accessed at once.  The in-memory
    499  * buffer must be at least as large as the maxaccess value.
    500  *
    501  * The request routines create control blocks but not the in-memory buffers.
    502  * That is postponed until realize_virt_arrays is called.  At that time the
    503  * total amount of space needed is known (approximately, anyway), so free
    504  * memory can be divided up fairly.
    505  *
    506  * The access_virt_array routines are responsible for making a specific strip
    507  * area accessible (after reading or writing the backing file, if necessary).
    508  * Note that the access routines are told whether the caller intends to modify
    509  * the accessed strip; during a read-only pass this saves having to rewrite
    510  * data to disk.  The access routines are also responsible for pre-zeroing
    511  * any newly accessed rows, if pre-zeroing was requested.
    512  *
    513  * In current usage, the access requests are usually for nonoverlapping
    514  * strips; that is, successive access start_row numbers differ by exactly
    515  * num_rows = maxaccess.  This means we can get good performance with simple
    516  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    517  * of the access height; then there will never be accesses across bufferload
    518  * boundaries.  The code will still work with overlapping access requests,
    519  * but it doesn't handle bufferload overlaps very efficiently.
    520  */
    521 
    522 
    523 METHODDEF(jvirt_sarray_ptr)
    524 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    525                      JDIMENSION samplesperrow, JDIMENSION numrows,
    526                      JDIMENSION maxaccess)
    527 /* Request a virtual 2-D sample array */
    528 {
    529   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    530   jvirt_sarray_ptr result;
    531 
    532   /* Only IMAGE-lifetime virtual arrays are currently supported */
    533   if (pool_id != JPOOL_IMAGE)
    534     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    535 
    536   /* get control block */
    537   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    538                                           SIZEOF(struct jvirt_sarray_control));
    539 
    540   result->mem_buffer = NULL;	/* marks array not yet realized */
    541   result->rows_in_array = numrows;
    542   result->samplesperrow = samplesperrow;
    543   result->maxaccess = maxaccess;
    544   result->pre_zero = pre_zero;
    545   result->b_s_open = FALSE;	/* no associated backing-store object */
    546   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    547   mem->virt_sarray_list = result;
    548 
    549   return result;
    550 }
    551 
    552 
    553 METHODDEF(jvirt_barray_ptr)
    554 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    555                      JDIMENSION blocksperrow, JDIMENSION numrows,
    556                      JDIMENSION maxaccess)
    557 /* Request a virtual 2-D coefficient-block array */
    558 {
    559   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    560   jvirt_barray_ptr result;
    561 
    562   /* Only IMAGE-lifetime virtual arrays are currently supported */
    563   if (pool_id != JPOOL_IMAGE)
    564     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    565 
    566   /* get control block */
    567   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    568                                           SIZEOF(struct jvirt_barray_control));
    569 
    570   result->mem_buffer = NULL;	/* marks array not yet realized */
    571   result->rows_in_array = numrows;
    572   result->blocksperrow = blocksperrow;
    573   result->maxaccess = maxaccess;
    574   result->pre_zero = pre_zero;
    575   result->b_s_open = FALSE;	/* no associated backing-store object */
    576   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    577   mem->virt_barray_list = result;
    578 
    579   return result;
    580 }
    581 
    582 
    583 METHODDEF(void)
    584 realize_virt_arrays (j_common_ptr cinfo)
    585 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    586 {
    587   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    588   long space_per_minheight, maximum_space, avail_mem;
    589   long minheights, max_minheights;
    590   jvirt_sarray_ptr sptr;
    591   jvirt_barray_ptr bptr;
    592 
    593   /* Compute the minimum space needed (maxaccess rows in each buffer)
    594    * and the maximum space needed (full image height in each buffer).
    595    * These may be of use to the system-dependent jpeg_mem_available routine.
    596    */
    597   space_per_minheight = 0;
    598   maximum_space = 0;
    599   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    600     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    601       space_per_minheight += (long) sptr->maxaccess *
    602                              (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    603       maximum_space += (long) sptr->rows_in_array *
    604                        (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    605     }
    606   }
    607   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    608     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    609       space_per_minheight += (long) bptr->maxaccess *
    610                              (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    611       maximum_space += (long) bptr->rows_in_array *
    612                        (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    613     }
    614   }
    615 
    616   if (space_per_minheight <= 0)
    617     return;			/* no unrealized arrays, no work */
    618 
    619   /* Determine amount of memory to actually use; this is system-dependent. */
    620   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    621                                  mem->total_space_allocated);
    622 
    623   /* If the maximum space needed is available, make all the buffers full
    624    * height; otherwise parcel it out with the same number of minheights
    625    * in each buffer.
    626    */
    627   if (avail_mem >= maximum_space)
    628     max_minheights = 1000000000L;
    629   else {
    630     max_minheights = avail_mem / space_per_minheight;
    631     /* If there doesn't seem to be enough space, try to get the minimum
    632      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    633      */
    634     if (max_minheights <= 0)
    635       max_minheights = 1;
    636   }
    637 
    638   /* Allocate the in-memory buffers and initialize backing store as needed. */
    639 
    640   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    641     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    642       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    643       if (minheights <= max_minheights) {
    644         /* This buffer fits in memory */
    645         sptr->rows_in_mem = sptr->rows_in_array;
    646       } else {
    647         /* It doesn't fit in memory, create backing store. */
    648         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    649         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    650                                 (long) sptr->rows_in_array *
    651                                 (long) sptr->samplesperrow *
    652                                 (long) SIZEOF(JSAMPLE));
    653         sptr->b_s_open = TRUE;
    654       }
    655       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    656                                       sptr->samplesperrow, sptr->rows_in_mem);
    657       sptr->rowsperchunk = mem->last_rowsperchunk;
    658       sptr->cur_start_row = 0;
    659       sptr->first_undef_row = 0;
    660       sptr->dirty = FALSE;
    661     }
    662   }
    663 
    664   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    665     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    666       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    667       if (minheights <= max_minheights) {
    668         /* This buffer fits in memory */
    669         bptr->rows_in_mem = bptr->rows_in_array;
    670       } else {
    671         /* It doesn't fit in memory, create backing store. */
    672         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    673         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    674                                 (long) bptr->rows_in_array *
    675                                 (long) bptr->blocksperrow *
    676                                 (long) SIZEOF(JBLOCK));
    677         bptr->b_s_open = TRUE;
    678       }
    679       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    680                                       bptr->blocksperrow, bptr->rows_in_mem);
    681       bptr->rowsperchunk = mem->last_rowsperchunk;
    682       bptr->cur_start_row = 0;
    683       bptr->first_undef_row = 0;
    684       bptr->dirty = FALSE;
    685     }
    686   }
    687 }
    688 
    689 
    690 LOCAL(void)
    691 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    692 /* Do backing store read or write of a virtual sample array */
    693 {
    694   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    695 
    696   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
    697   file_offset = ptr->cur_start_row * bytesperrow;
    698   /* Loop to read or write each allocation chunk in mem_buffer */
    699   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    700     /* One chunk, but check for short chunk at end of buffer */
    701     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    702     /* Transfer no more than is currently defined */
    703     thisrow = (long) ptr->cur_start_row + i;
    704     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    705     /* Transfer no more than fits in file */
    706     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    707     if (rows <= 0)		/* this chunk might be past end of file! */
    708       break;
    709     byte_count = rows * bytesperrow;
    710     if (writing)
    711       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    712                                             (void FAR *) ptr->mem_buffer[i],
    713                                             file_offset, byte_count);
    714     else
    715       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    716                                            (void FAR *) ptr->mem_buffer[i],
    717                                            file_offset, byte_count);
    718     file_offset += byte_count;
    719   }
    720 }
    721 
    722 
    723 LOCAL(void)
    724 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    725 /* Do backing store read or write of a virtual coefficient-block array */
    726 {
    727   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    728 
    729   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
    730   file_offset = ptr->cur_start_row * bytesperrow;
    731   /* Loop to read or write each allocation chunk in mem_buffer */
    732   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    733     /* One chunk, but check for short chunk at end of buffer */
    734     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    735     /* Transfer no more than is currently defined */
    736     thisrow = (long) ptr->cur_start_row + i;
    737     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    738     /* Transfer no more than fits in file */
    739     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    740     if (rows <= 0)		/* this chunk might be past end of file! */
    741       break;
    742     byte_count = rows * bytesperrow;
    743     if (writing)
    744       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    745                                             (void FAR *) ptr->mem_buffer[i],
    746                                             file_offset, byte_count);
    747     else
    748       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    749                                            (void FAR *) ptr->mem_buffer[i],
    750                                            file_offset, byte_count);
    751     file_offset += byte_count;
    752   }
    753 }
    754 
    755 
    756 METHODDEF(JSAMPARRAY)
    757 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    758                     JDIMENSION start_row, JDIMENSION num_rows,
    759                     boolean writable)
    760 /* Access the part of a virtual sample array starting at start_row */
    761 /* and extending for num_rows rows.  writable is true if  */
    762 /* caller intends to modify the accessed area. */
    763 {
    764   JDIMENSION end_row = start_row + num_rows;
    765   JDIMENSION undef_row;
    766 
    767   /* debugging check */
    768   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    769       ptr->mem_buffer == NULL)
    770     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    771 
    772   /* Make the desired part of the virtual array accessible */
    773   if (start_row < ptr->cur_start_row ||
    774       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    775     if (! ptr->b_s_open)
    776       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    777     /* Flush old buffer contents if necessary */
    778     if (ptr->dirty) {
    779       do_sarray_io(cinfo, ptr, TRUE);
    780       ptr->dirty = FALSE;
    781     }
    782     /* Decide what part of virtual array to access.
    783      * Algorithm: if target address > current window, assume forward scan,
    784      * load starting at target address.  If target address < current window,
    785      * assume backward scan, load so that target area is top of window.
    786      * Note that when switching from forward write to forward read, will have
    787      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    788      */
    789     if (start_row > ptr->cur_start_row) {
    790       ptr->cur_start_row = start_row;
    791     } else {
    792       /* use long arithmetic here to avoid overflow & unsigned problems */
    793       long ltemp;
    794 
    795       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    796       if (ltemp < 0)
    797         ltemp = 0;		/* don't fall off front end of file */
    798       ptr->cur_start_row = (JDIMENSION) ltemp;
    799     }
    800     /* Read in the selected part of the array.
    801      * During the initial write pass, we will do no actual read
    802      * because the selected part is all undefined.
    803      */
    804     do_sarray_io(cinfo, ptr, FALSE);
    805   }
    806   /* Ensure the accessed part of the array is defined; prezero if needed.
    807    * To improve locality of access, we only prezero the part of the array
    808    * that the caller is about to access, not the entire in-memory array.
    809    */
    810   if (ptr->first_undef_row < end_row) {
    811     if (ptr->first_undef_row < start_row) {
    812       if (writable)		/* writer skipped over a section of array */
    813         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    814       undef_row = start_row;	/* but reader is allowed to read ahead */
    815     } else {
    816       undef_row = ptr->first_undef_row;
    817     }
    818     if (writable)
    819       ptr->first_undef_row = end_row;
    820     if (ptr->pre_zero) {
    821       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
    822       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    823       end_row -= ptr->cur_start_row;
    824       while (undef_row < end_row) {
    825         FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    826         undef_row++;
    827       }
    828     } else {
    829       if (! writable)		/* reader looking at undefined data */
    830         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    831     }
    832   }
    833   /* Flag the buffer dirty if caller will write in it */
    834   if (writable)
    835     ptr->dirty = TRUE;
    836   /* Return address of proper part of the buffer */
    837   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    838 }
    839 
    840 
    841 METHODDEF(JBLOCKARRAY)
    842 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    843                     JDIMENSION start_row, JDIMENSION num_rows,
    844                     boolean writable)
    845 /* Access the part of a virtual block array starting at start_row */
    846 /* and extending for num_rows rows.  writable is true if  */
    847 /* caller intends to modify the accessed area. */
    848 {
    849   JDIMENSION end_row = start_row + num_rows;
    850   JDIMENSION undef_row;
    851 
    852   /* debugging check */
    853   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    854       ptr->mem_buffer == NULL)
    855     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    856 
    857   /* Make the desired part of the virtual array accessible */
    858   if (start_row < ptr->cur_start_row ||
    859       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    860     if (! ptr->b_s_open)
    861       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    862     /* Flush old buffer contents if necessary */
    863     if (ptr->dirty) {
    864       do_barray_io(cinfo, ptr, TRUE);
    865       ptr->dirty = FALSE;
    866     }
    867     /* Decide what part of virtual array to access.
    868      * Algorithm: if target address > current window, assume forward scan,
    869      * load starting at target address.  If target address < current window,
    870      * assume backward scan, load so that target area is top of window.
    871      * Note that when switching from forward write to forward read, will have
    872      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    873      */
    874     if (start_row > ptr->cur_start_row) {
    875       ptr->cur_start_row = start_row;
    876     } else {
    877       /* use long arithmetic here to avoid overflow & unsigned problems */
    878       long ltemp;
    879 
    880       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    881       if (ltemp < 0)
    882         ltemp = 0;		/* don't fall off front end of file */
    883       ptr->cur_start_row = (JDIMENSION) ltemp;
    884     }
    885     /* Read in the selected part of the array.
    886      * During the initial write pass, we will do no actual read
    887      * because the selected part is all undefined.
    888      */
    889     do_barray_io(cinfo, ptr, FALSE);
    890   }
    891   /* Ensure the accessed part of the array is defined; prezero if needed.
    892    * To improve locality of access, we only prezero the part of the array
    893    * that the caller is about to access, not the entire in-memory array.
    894    */
    895   if (ptr->first_undef_row < end_row) {
    896     if (ptr->first_undef_row < start_row) {
    897       if (writable)		/* writer skipped over a section of array */
    898         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    899       undef_row = start_row;	/* but reader is allowed to read ahead */
    900     } else {
    901       undef_row = ptr->first_undef_row;
    902     }
    903     if (writable)
    904       ptr->first_undef_row = end_row;
    905     if (ptr->pre_zero) {
    906       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
    907       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    908       end_row -= ptr->cur_start_row;
    909       while (undef_row < end_row) {
    910         FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    911         undef_row++;
    912       }
    913     } else {
    914       if (! writable)		/* reader looking at undefined data */
    915         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    916     }
    917   }
    918   /* Flag the buffer dirty if caller will write in it */
    919   if (writable)
    920     ptr->dirty = TRUE;
    921   /* Return address of proper part of the buffer */
    922   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    923 }
    924 
    925 
    926 /*
    927  * Release all objects belonging to a specified pool.
    928  */
    929 
    930 METHODDEF(void)
    931 free_pool (j_common_ptr cinfo, int pool_id)
    932 {
    933   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    934   small_pool_ptr shdr_ptr;
    935   large_pool_ptr lhdr_ptr;
    936   size_t space_freed;
    937 
    938   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    939     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    940 
    941 #ifdef MEM_STATS
    942   if (cinfo->err->trace_level > 1)
    943     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    944 #endif
    945 
    946   /* If freeing IMAGE pool, close any virtual arrays first */
    947   if (pool_id == JPOOL_IMAGE) {
    948     jvirt_sarray_ptr sptr;
    949     jvirt_barray_ptr bptr;
    950 
    951     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    952       if (sptr->b_s_open) {	/* there may be no backing store */
    953         sptr->b_s_open = FALSE;	/* prevent recursive close if error */
    954         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    955       }
    956     }
    957     mem->virt_sarray_list = NULL;
    958     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    959       if (bptr->b_s_open) {	/* there may be no backing store */
    960         bptr->b_s_open = FALSE;	/* prevent recursive close if error */
    961         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    962       }
    963     }
    964     mem->virt_barray_list = NULL;
    965   }
    966 
    967   /* Release large objects */
    968   lhdr_ptr = mem->large_list[pool_id];
    969   mem->large_list[pool_id] = NULL;
    970 
    971   while (lhdr_ptr != NULL) {
    972     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
    973     space_freed = lhdr_ptr->hdr.bytes_used +
    974                   lhdr_ptr->hdr.bytes_left +
    975                   SIZEOF(large_pool_hdr);
    976     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
    977     mem->total_space_allocated -= space_freed;
    978     lhdr_ptr = next_lhdr_ptr;
    979   }
    980 
    981   /* Release small objects */
    982   shdr_ptr = mem->small_list[pool_id];
    983   mem->small_list[pool_id] = NULL;
    984 
    985   while (shdr_ptr != NULL) {
    986     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
    987     space_freed = shdr_ptr->hdr.bytes_used +
    988                   shdr_ptr->hdr.bytes_left +
    989                   SIZEOF(small_pool_hdr);
    990     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
    991     mem->total_space_allocated -= space_freed;
    992     shdr_ptr = next_shdr_ptr;
    993   }
    994 }
    995 
    996 
    997 /*
    998  * Close up shop entirely.
    999  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1000  */
   1001 
   1002 METHODDEF(void)
   1003 self_destruct (j_common_ptr cinfo)
   1004 {
   1005   int pool;
   1006 
   1007   /* Close all backing store, release all memory.
   1008    * Releasing pools in reverse order might help avoid fragmentation
   1009    * with some (brain-damaged) malloc libraries.
   1010    */
   1011   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1012     free_pool(cinfo, pool);
   1013   }
   1014 
   1015   /* Release the memory manager control block too. */
   1016   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
   1017   cinfo->mem = NULL;		/* ensures I will be called only once */
   1018 
   1019   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
   1020 }
   1021 
   1022 
   1023 /*
   1024  * Memory manager initialization.
   1025  * When this is called, only the error manager pointer is valid in cinfo!
   1026  */
   1027 
   1028 GLOBAL(void)
   1029 jinit_memory_mgr (j_common_ptr cinfo)
   1030 {
   1031   my_mem_ptr mem;
   1032   long max_to_use;
   1033   int pool;
   1034   size_t test_mac;
   1035 
   1036   cinfo->mem = NULL;		/* for safety if init fails */
   1037 
   1038   /* Check for configuration errors.
   1039    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1040    * doesn't reflect any real hardware alignment requirement.
   1041    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1042    * in common if and only if X is a power of 2, ie has only one one-bit.
   1043    * Some compilers may give an "unreachable code" warning here; ignore it.
   1044    */
   1045   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
   1046     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1047   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1048    * a multiple of SIZEOF(ALIGN_TYPE).
   1049    * Again, an "unreachable code" warning may be ignored here.
   1050    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1051    */
   1052   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1053   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1054       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
   1055     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1056 
   1057   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1058 
   1059   /* Attempt to allocate memory manager's control block */
   1060   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
   1061 
   1062   if (mem == NULL) {
   1063     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
   1064     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1065   }
   1066 
   1067   /* OK, fill in the method pointers */
   1068   mem->pub.alloc_small = alloc_small;
   1069   mem->pub.alloc_large = alloc_large;
   1070   mem->pub.alloc_sarray = alloc_sarray;
   1071   mem->pub.alloc_barray = alloc_barray;
   1072   mem->pub.request_virt_sarray = request_virt_sarray;
   1073   mem->pub.request_virt_barray = request_virt_barray;
   1074   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1075   mem->pub.access_virt_sarray = access_virt_sarray;
   1076   mem->pub.access_virt_barray = access_virt_barray;
   1077   mem->pub.free_pool = free_pool;
   1078   mem->pub.self_destruct = self_destruct;
   1079 
   1080   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1081   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1082 
   1083   /* Initialize working state */
   1084   mem->pub.max_memory_to_use = max_to_use;
   1085 
   1086   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1087     mem->small_list[pool] = NULL;
   1088     mem->large_list[pool] = NULL;
   1089   }
   1090   mem->virt_sarray_list = NULL;
   1091   mem->virt_barray_list = NULL;
   1092 
   1093   mem->total_space_allocated = SIZEOF(my_memory_mgr);
   1094 
   1095   /* Declare ourselves open for business */
   1096   cinfo->mem = & mem->pub;
   1097 
   1098   /* Check for an environment variable JPEGMEM; if found, override the
   1099    * default max_memory setting from jpeg_mem_init.  Note that the
   1100    * surrounding application may again override this value.
   1101    * If your system doesn't support getenv(), define NO_GETENV to disable
   1102    * this feature.
   1103    */
   1104 #ifndef NO_GETENV
   1105   { char * memenv;
   1106 
   1107     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1108       char ch = 'x';
   1109 
   1110       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1111         if (ch == 'm' || ch == 'M')
   1112           max_to_use *= 1000L;
   1113         mem->pub.max_memory_to_use = max_to_use * 1000L;
   1114       }
   1115     }
   1116   }
   1117 #endif
   1118 
   1119 }
   1120