Home | History | Annotate | Download | only in libjpeg
      1 /*
      2  * jquant1.c
      3  *
      4  * Copyright (C) 1991-1996, Thomas G. Lane.
      5  * Modified 2011 by Guido Vollbeding.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains 1-pass color quantization (color mapping) routines.
     10  * These routines provide mapping to a fixed color map using equally spaced
     11  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
     12  */
     13 
     14 #define JPEG_INTERNALS
     15 #include "jinclude.h"
     16 #include "jpeglib.h"
     17 
     18 #ifdef QUANT_1PASS_SUPPORTED
     19 
     20 
     21 /*
     22  * The main purpose of 1-pass quantization is to provide a fast, if not very
     23  * high quality, colormapped output capability.  A 2-pass quantizer usually
     24  * gives better visual quality; however, for quantized grayscale output this
     25  * quantizer is perfectly adequate.  Dithering is highly recommended with this
     26  * quantizer, though you can turn it off if you really want to.
     27  *
     28  * In 1-pass quantization the colormap must be chosen in advance of seeing the
     29  * image.  We use a map consisting of all combinations of Ncolors[i] color
     30  * values for the i'th component.  The Ncolors[] values are chosen so that
     31  * their product, the total number of colors, is no more than that requested.
     32  * (In most cases, the product will be somewhat less.)
     33  *
     34  * Since the colormap is orthogonal, the representative value for each color
     35  * component can be determined without considering the other components;
     36  * then these indexes can be combined into a colormap index by a standard
     37  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
     38  * can be precalculated and stored in the lookup table colorindex[].
     39  * colorindex[i][j] maps pixel value j in component i to the nearest
     40  * representative value (grid plane) for that component; this index is
     41  * multiplied by the array stride for component i, so that the
     42  * index of the colormap entry closest to a given pixel value is just
     43  *    sum( colorindex[component-number][pixel-component-value] )
     44  * Aside from being fast, this scheme allows for variable spacing between
     45  * representative values with no additional lookup cost.
     46  *
     47  * If gamma correction has been applied in color conversion, it might be wise
     48  * to adjust the color grid spacing so that the representative colors are
     49  * equidistant in linear space.  At this writing, gamma correction is not
     50  * implemented by jdcolor, so nothing is done here.
     51  */
     52 
     53 
     54 /* Declarations for ordered dithering.
     55  *
     56  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
     57  * dithering is described in many references, for instance Dale Schumacher's
     58  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
     59  * In place of Schumacher's comparisons against a "threshold" value, we add a
     60  * "dither" value to the input pixel and then round the result to the nearest
     61  * output value.  The dither value is equivalent to (0.5 - threshold) times
     62  * the distance between output values.  For ordered dithering, we assume that
     63  * the output colors are equally spaced; if not, results will probably be
     64  * worse, since the dither may be too much or too little at a given point.
     65  *
     66  * The normal calculation would be to form pixel value + dither, range-limit
     67  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
     68  * We can skip the separate range-limiting step by extending the colorindex
     69  * table in both directions.
     70  */
     71 
     72 #define ODITHER_SIZE  16	/* dimension of dither matrix */
     73 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
     74 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
     75 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
     76 
     77 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
     78 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
     79 
     80 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
     81   /* Bayer's order-4 dither array.  Generated by the code given in
     82    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
     83    * The values in this array must range from 0 to ODITHER_CELLS-1.
     84    */
     85   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
     86   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
     87   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
     88   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
     89   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
     90   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
     91   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
     92   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
     93   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
     94   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
     95   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
     96   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
     97   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
     98   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
     99   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
    100   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
    101 };
    102 
    103 
    104 /* Declarations for Floyd-Steinberg dithering.
    105  *
    106  * Errors are accumulated into the array fserrors[], at a resolution of
    107  * 1/16th of a pixel count.  The error at a given pixel is propagated
    108  * to its not-yet-processed neighbors using the standard F-S fractions,
    109  *		...	(here)	7/16
    110  *		3/16	5/16	1/16
    111  * We work left-to-right on even rows, right-to-left on odd rows.
    112  *
    113  * We can get away with a single array (holding one row's worth of errors)
    114  * by using it to store the current row's errors at pixel columns not yet
    115  * processed, but the next row's errors at columns already processed.  We
    116  * need only a few extra variables to hold the errors immediately around the
    117  * current column.  (If we are lucky, those variables are in registers, but
    118  * even if not, they're probably cheaper to access than array elements are.)
    119  *
    120  * The fserrors[] array is indexed [component#][position].
    121  * We provide (#columns + 2) entries per component; the extra entry at each
    122  * end saves us from special-casing the first and last pixels.
    123  *
    124  * Note: on a wide image, we might not have enough room in a PC's near data
    125  * segment to hold the error array; so it is allocated with alloc_large.
    126  */
    127 
    128 #if BITS_IN_JSAMPLE == 8
    129 typedef INT16 FSERROR;		/* 16 bits should be enough */
    130 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
    131 #else
    132 typedef INT32 FSERROR;		/* may need more than 16 bits */
    133 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
    134 #endif
    135 
    136 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
    137 
    138 
    139 /* Private subobject */
    140 
    141 #define MAX_Q_COMPS 4		/* max components I can handle */
    142 
    143 typedef struct {
    144   struct jpeg_color_quantizer pub; /* public fields */
    145 
    146   /* Initially allocated colormap is saved here */
    147   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
    148   int sv_actual;		/* number of entries in use */
    149 
    150   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
    151   /* colorindex[i][j] = index of color closest to pixel value j in component i,
    152    * premultiplied as described above.  Since colormap indexes must fit into
    153    * JSAMPLEs, the entries of this array will too.
    154    */
    155   boolean is_padded;		/* is the colorindex padded for odither? */
    156 
    157   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
    158 
    159   /* Variables for ordered dithering */
    160   int row_index;		/* cur row's vertical index in dither matrix */
    161   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
    162 
    163   /* Variables for Floyd-Steinberg dithering */
    164   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
    165   boolean on_odd_row;		/* flag to remember which row we are on */
    166 } my_cquantizer;
    167 
    168 typedef my_cquantizer * my_cquantize_ptr;
    169 
    170 
    171 /*
    172  * Policy-making subroutines for create_colormap and create_colorindex.
    173  * These routines determine the colormap to be used.  The rest of the module
    174  * only assumes that the colormap is orthogonal.
    175  *
    176  *  * select_ncolors decides how to divvy up the available colors
    177  *    among the components.
    178  *  * output_value defines the set of representative values for a component.
    179  *  * largest_input_value defines the mapping from input values to
    180  *    representative values for a component.
    181  * Note that the latter two routines may impose different policies for
    182  * different components, though this is not currently done.
    183  */
    184 
    185 
    186 LOCAL(int)
    187 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
    188 /* Determine allocation of desired colors to components, */
    189 /* and fill in Ncolors[] array to indicate choice. */
    190 /* Return value is total number of colors (product of Ncolors[] values). */
    191 {
    192   int nc = cinfo->out_color_components; /* number of color components */
    193   int max_colors = cinfo->desired_number_of_colors;
    194   int total_colors, iroot, i, j;
    195   boolean changed;
    196   long temp;
    197   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
    198 
    199   /* We can allocate at least the nc'th root of max_colors per component. */
    200   /* Compute floor(nc'th root of max_colors). */
    201   iroot = 1;
    202   do {
    203     iroot++;
    204     temp = iroot;		/* set temp = iroot ** nc */
    205     for (i = 1; i < nc; i++)
    206       temp *= iroot;
    207   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
    208   iroot--;			/* now iroot = floor(root) */
    209 
    210   /* Must have at least 2 color values per component */
    211   if (iroot < 2)
    212     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
    213 
    214   /* Initialize to iroot color values for each component */
    215   total_colors = 1;
    216   for (i = 0; i < nc; i++) {
    217     Ncolors[i] = iroot;
    218     total_colors *= iroot;
    219   }
    220   /* We may be able to increment the count for one or more components without
    221    * exceeding max_colors, though we know not all can be incremented.
    222    * Sometimes, the first component can be incremented more than once!
    223    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
    224    * In RGB colorspace, try to increment G first, then R, then B.
    225    */
    226   do {
    227     changed = FALSE;
    228     for (i = 0; i < nc; i++) {
    229       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
    230       /* calculate new total_colors if Ncolors[j] is incremented */
    231       temp = total_colors / Ncolors[j];
    232       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
    233       if (temp > (long) max_colors)
    234         break;			/* won't fit, done with this pass */
    235       Ncolors[j]++;		/* OK, apply the increment */
    236       total_colors = (int) temp;
    237       changed = TRUE;
    238     }
    239   } while (changed);
    240 
    241   return total_colors;
    242 }
    243 
    244 
    245 LOCAL(int)
    246 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    247 /* Return j'th output value, where j will range from 0 to maxj */
    248 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
    249 {
    250   /* We always provide values 0 and MAXJSAMPLE for each component;
    251    * any additional values are equally spaced between these limits.
    252    * (Forcing the upper and lower values to the limits ensures that
    253    * dithering can't produce a color outside the selected gamut.)
    254    */
    255   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
    256 }
    257 
    258 
    259 LOCAL(int)
    260 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
    261 /* Return largest input value that should map to j'th output value */
    262 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
    263 {
    264   /* Breakpoints are halfway between values returned by output_value */
    265   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
    266 }
    267 
    268 
    269 /*
    270  * Create the colormap.
    271  */
    272 
    273 LOCAL(void)
    274 create_colormap (j_decompress_ptr cinfo)
    275 {
    276   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    277   JSAMPARRAY colormap;		/* Created colormap */
    278   int total_colors;		/* Number of distinct output colors */
    279   int i,j,k, nci, blksize, blkdist, ptr, val;
    280 
    281   /* Select number of colors for each component */
    282   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
    283 
    284   /* Report selected color counts */
    285   if (cinfo->out_color_components == 3)
    286     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
    287              total_colors, cquantize->Ncolors[0],
    288              cquantize->Ncolors[1], cquantize->Ncolors[2]);
    289   else
    290     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
    291 
    292   /* Allocate and fill in the colormap. */
    293   /* The colors are ordered in the map in standard row-major order, */
    294   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
    295 
    296   colormap = (*cinfo->mem->alloc_sarray)
    297     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    298      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
    299 
    300   /* blksize is number of adjacent repeated entries for a component */
    301   /* blkdist is distance between groups of identical entries for a component */
    302   blkdist = total_colors;
    303 
    304   for (i = 0; i < cinfo->out_color_components; i++) {
    305     /* fill in colormap entries for i'th color component */
    306     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    307     blksize = blkdist / nci;
    308     for (j = 0; j < nci; j++) {
    309       /* Compute j'th output value (out of nci) for component */
    310       val = output_value(cinfo, i, j, nci-1);
    311       /* Fill in all colormap entries that have this value of this component */
    312       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
    313         /* fill in blksize entries beginning at ptr */
    314         for (k = 0; k < blksize; k++)
    315           colormap[i][ptr+k] = (JSAMPLE) val;
    316       }
    317     }
    318     blkdist = blksize;		/* blksize of this color is blkdist of next */
    319   }
    320 
    321   /* Save the colormap in private storage,
    322    * where it will survive color quantization mode changes.
    323    */
    324   cquantize->sv_colormap = colormap;
    325   cquantize->sv_actual = total_colors;
    326 }
    327 
    328 
    329 /*
    330  * Create the color index table.
    331  */
    332 
    333 LOCAL(void)
    334 create_colorindex (j_decompress_ptr cinfo)
    335 {
    336   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    337   JSAMPROW indexptr;
    338   int i,j,k, nci, blksize, val, pad;
    339 
    340   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
    341    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
    342    * This is not necessary in the other dithering modes.  However, we
    343    * flag whether it was done in case user changes dithering mode.
    344    */
    345   if (cinfo->dither_mode == JDITHER_ORDERED) {
    346     pad = MAXJSAMPLE*2;
    347     cquantize->is_padded = TRUE;
    348   } else {
    349     pad = 0;
    350     cquantize->is_padded = FALSE;
    351   }
    352 
    353   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
    354     ((j_common_ptr) cinfo, JPOOL_IMAGE,
    355      (JDIMENSION) (MAXJSAMPLE+1 + pad),
    356      (JDIMENSION) cinfo->out_color_components);
    357 
    358   /* blksize is number of adjacent repeated entries for a component */
    359   blksize = cquantize->sv_actual;
    360 
    361   for (i = 0; i < cinfo->out_color_components; i++) {
    362     /* fill in colorindex entries for i'th color component */
    363     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    364     blksize = blksize / nci;
    365 
    366     /* adjust colorindex pointers to provide padding at negative indexes. */
    367     if (pad)
    368       cquantize->colorindex[i] += MAXJSAMPLE;
    369 
    370     /* in loop, val = index of current output value, */
    371     /* and k = largest j that maps to current val */
    372     indexptr = cquantize->colorindex[i];
    373     val = 0;
    374     k = largest_input_value(cinfo, i, 0, nci-1);
    375     for (j = 0; j <= MAXJSAMPLE; j++) {
    376       while (j > k)		/* advance val if past boundary */
    377         k = largest_input_value(cinfo, i, ++val, nci-1);
    378       /* premultiply so that no multiplication needed in main processing */
    379       indexptr[j] = (JSAMPLE) (val * blksize);
    380     }
    381     /* Pad at both ends if necessary */
    382     if (pad)
    383       for (j = 1; j <= MAXJSAMPLE; j++) {
    384         indexptr[-j] = indexptr[0];
    385         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
    386       }
    387   }
    388 }
    389 
    390 
    391 /*
    392  * Create an ordered-dither array for a component having ncolors
    393  * distinct output values.
    394  */
    395 
    396 LOCAL(ODITHER_MATRIX_PTR)
    397 make_odither_array (j_decompress_ptr cinfo, int ncolors)
    398 {
    399   ODITHER_MATRIX_PTR odither;
    400   int j,k;
    401   INT32 num,den;
    402 
    403   odither = (ODITHER_MATRIX_PTR)
    404     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    405                                 SIZEOF(ODITHER_MATRIX));
    406   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
    407    * Hence the dither value for the matrix cell with fill order f
    408    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
    409    * On 16-bit-int machine, be careful to avoid overflow.
    410    */
    411   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
    412   for (j = 0; j < ODITHER_SIZE; j++) {
    413     for (k = 0; k < ODITHER_SIZE; k++) {
    414       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
    415             * MAXJSAMPLE;
    416       /* Ensure round towards zero despite C's lack of consistency
    417        * about rounding negative values in integer division...
    418        */
    419       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
    420     }
    421   }
    422   return odither;
    423 }
    424 
    425 
    426 /*
    427  * Create the ordered-dither tables.
    428  * Components having the same number of representative colors may
    429  * share a dither table.
    430  */
    431 
    432 LOCAL(void)
    433 create_odither_tables (j_decompress_ptr cinfo)
    434 {
    435   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    436   ODITHER_MATRIX_PTR odither;
    437   int i, j, nci;
    438 
    439   for (i = 0; i < cinfo->out_color_components; i++) {
    440     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
    441     odither = NULL;		/* search for matching prior component */
    442     for (j = 0; j < i; j++) {
    443       if (nci == cquantize->Ncolors[j]) {
    444         odither = cquantize->odither[j];
    445         break;
    446       }
    447     }
    448     if (odither == NULL)	/* need a new table? */
    449       odither = make_odither_array(cinfo, nci);
    450     cquantize->odither[i] = odither;
    451   }
    452 }
    453 
    454 
    455 /*
    456  * Map some rows of pixels to the output colormapped representation.
    457  */
    458 
    459 METHODDEF(void)
    460 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    461                 JSAMPARRAY output_buf, int num_rows)
    462 /* General case, no dithering */
    463 {
    464   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    465   JSAMPARRAY colorindex = cquantize->colorindex;
    466   register int pixcode, ci;
    467   register JSAMPROW ptrin, ptrout;
    468   int row;
    469   JDIMENSION col;
    470   JDIMENSION width = cinfo->output_width;
    471   register int nc = cinfo->out_color_components;
    472 
    473   for (row = 0; row < num_rows; row++) {
    474     ptrin = input_buf[row];
    475     ptrout = output_buf[row];
    476     for (col = width; col > 0; col--) {
    477       pixcode = 0;
    478       for (ci = 0; ci < nc; ci++) {
    479         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
    480       }
    481       *ptrout++ = (JSAMPLE) pixcode;
    482     }
    483   }
    484 }
    485 
    486 
    487 METHODDEF(void)
    488 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    489                  JSAMPARRAY output_buf, int num_rows)
    490 /* Fast path for out_color_components==3, no dithering */
    491 {
    492   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    493   register int pixcode;
    494   register JSAMPROW ptrin, ptrout;
    495   JSAMPROW colorindex0 = cquantize->colorindex[0];
    496   JSAMPROW colorindex1 = cquantize->colorindex[1];
    497   JSAMPROW colorindex2 = cquantize->colorindex[2];
    498   int row;
    499   JDIMENSION col;
    500   JDIMENSION width = cinfo->output_width;
    501 
    502   for (row = 0; row < num_rows; row++) {
    503     ptrin = input_buf[row];
    504     ptrout = output_buf[row];
    505     for (col = width; col > 0; col--) {
    506       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
    507       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
    508       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
    509       *ptrout++ = (JSAMPLE) pixcode;
    510     }
    511   }
    512 }
    513 
    514 
    515 METHODDEF(void)
    516 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    517                      JSAMPARRAY output_buf, int num_rows)
    518 /* General case, with ordered dithering */
    519 {
    520   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    521   register JSAMPROW input_ptr;
    522   register JSAMPROW output_ptr;
    523   JSAMPROW colorindex_ci;
    524   int * dither;			/* points to active row of dither matrix */
    525   int row_index, col_index;	/* current indexes into dither matrix */
    526   int nc = cinfo->out_color_components;
    527   int ci;
    528   int row;
    529   JDIMENSION col;
    530   JDIMENSION width = cinfo->output_width;
    531 
    532   for (row = 0; row < num_rows; row++) {
    533     /* Initialize output values to 0 so can process components separately */
    534     FMEMZERO((void FAR *) output_buf[row],
    535              (size_t) (width * SIZEOF(JSAMPLE)));
    536     row_index = cquantize->row_index;
    537     for (ci = 0; ci < nc; ci++) {
    538       input_ptr = input_buf[row] + ci;
    539       output_ptr = output_buf[row];
    540       colorindex_ci = cquantize->colorindex[ci];
    541       dither = cquantize->odither[ci][row_index];
    542       col_index = 0;
    543 
    544       for (col = width; col > 0; col--) {
    545         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
    546          * select output value, accumulate into output code for this pixel.
    547          * Range-limiting need not be done explicitly, as we have extended
    548          * the colorindex table to produce the right answers for out-of-range
    549          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
    550          * required amount of padding.
    551          */
    552         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
    553         input_ptr += nc;
    554         output_ptr++;
    555         col_index = (col_index + 1) & ODITHER_MASK;
    556       }
    557     }
    558     /* Advance row index for next row */
    559     row_index = (row_index + 1) & ODITHER_MASK;
    560     cquantize->row_index = row_index;
    561   }
    562 }
    563 
    564 
    565 METHODDEF(void)
    566 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    567                       JSAMPARRAY output_buf, int num_rows)
    568 /* Fast path for out_color_components==3, with ordered dithering */
    569 {
    570   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    571   register int pixcode;
    572   register JSAMPROW input_ptr;
    573   register JSAMPROW output_ptr;
    574   JSAMPROW colorindex0 = cquantize->colorindex[0];
    575   JSAMPROW colorindex1 = cquantize->colorindex[1];
    576   JSAMPROW colorindex2 = cquantize->colorindex[2];
    577   int * dither0;		/* points to active row of dither matrix */
    578   int * dither1;
    579   int * dither2;
    580   int row_index, col_index;	/* current indexes into dither matrix */
    581   int row;
    582   JDIMENSION col;
    583   JDIMENSION width = cinfo->output_width;
    584 
    585   for (row = 0; row < num_rows; row++) {
    586     row_index = cquantize->row_index;
    587     input_ptr = input_buf[row];
    588     output_ptr = output_buf[row];
    589     dither0 = cquantize->odither[0][row_index];
    590     dither1 = cquantize->odither[1][row_index];
    591     dither2 = cquantize->odither[2][row_index];
    592     col_index = 0;
    593 
    594     for (col = width; col > 0; col--) {
    595       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
    596                                         dither0[col_index]]);
    597       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
    598                                         dither1[col_index]]);
    599       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
    600                                         dither2[col_index]]);
    601       *output_ptr++ = (JSAMPLE) pixcode;
    602       col_index = (col_index + 1) & ODITHER_MASK;
    603     }
    604     row_index = (row_index + 1) & ODITHER_MASK;
    605     cquantize->row_index = row_index;
    606   }
    607 }
    608 
    609 
    610 METHODDEF(void)
    611 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
    612                     JSAMPARRAY output_buf, int num_rows)
    613 /* General case, with Floyd-Steinberg dithering */
    614 {
    615   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    616   register LOCFSERROR cur;	/* current error or pixel value */
    617   LOCFSERROR belowerr;		/* error for pixel below cur */
    618   LOCFSERROR bpreverr;		/* error for below/prev col */
    619   LOCFSERROR bnexterr;		/* error for below/next col */
    620   LOCFSERROR delta;
    621   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
    622   register JSAMPROW input_ptr;
    623   register JSAMPROW output_ptr;
    624   JSAMPROW colorindex_ci;
    625   JSAMPROW colormap_ci;
    626   int pixcode;
    627   int nc = cinfo->out_color_components;
    628   int dir;			/* 1 for left-to-right, -1 for right-to-left */
    629   int dirnc;			/* dir * nc */
    630   int ci;
    631   int row;
    632   JDIMENSION col;
    633   JDIMENSION width = cinfo->output_width;
    634   JSAMPLE *range_limit = cinfo->sample_range_limit;
    635   SHIFT_TEMPS
    636 
    637   for (row = 0; row < num_rows; row++) {
    638     /* Initialize output values to 0 so can process components separately */
    639     FMEMZERO((void FAR *) output_buf[row],
    640              (size_t) (width * SIZEOF(JSAMPLE)));
    641     for (ci = 0; ci < nc; ci++) {
    642       input_ptr = input_buf[row] + ci;
    643       output_ptr = output_buf[row];
    644       if (cquantize->on_odd_row) {
    645         /* work right to left in this row */
    646         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
    647         output_ptr += width-1;
    648         dir = -1;
    649         dirnc = -nc;
    650         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
    651       } else {
    652         /* work left to right in this row */
    653         dir = 1;
    654         dirnc = nc;
    655         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
    656       }
    657       colorindex_ci = cquantize->colorindex[ci];
    658       colormap_ci = cquantize->sv_colormap[ci];
    659       /* Preset error values: no error propagated to first pixel from left */
    660       cur = 0;
    661       /* and no error propagated to row below yet */
    662       belowerr = bpreverr = 0;
    663 
    664       for (col = width; col > 0; col--) {
    665         /* cur holds the error propagated from the previous pixel on the
    666          * current line.  Add the error propagated from the previous line
    667          * to form the complete error correction term for this pixel, and
    668          * round the error term (which is expressed * 16) to an integer.
    669          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
    670          * for either sign of the error value.
    671          * Note: errorptr points to *previous* column's array entry.
    672          */
    673         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
    674         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
    675          * The maximum error is +- MAXJSAMPLE; this sets the required size
    676          * of the range_limit array.
    677          */
    678         cur += GETJSAMPLE(*input_ptr);
    679         cur = GETJSAMPLE(range_limit[cur]);
    680         /* Select output value, accumulate into output code for this pixel */
    681         pixcode = GETJSAMPLE(colorindex_ci[cur]);
    682         *output_ptr += (JSAMPLE) pixcode;
    683         /* Compute actual representation error at this pixel */
    684         /* Note: we can do this even though we don't have the final */
    685         /* pixel code, because the colormap is orthogonal. */
    686         cur -= GETJSAMPLE(colormap_ci[pixcode]);
    687         /* Compute error fractions to be propagated to adjacent pixels.
    688          * Add these into the running sums, and simultaneously shift the
    689          * next-line error sums left by 1 column.
    690          */
    691         bnexterr = cur;
    692         delta = cur * 2;
    693         cur += delta;		/* form error * 3 */
    694         errorptr[0] = (FSERROR) (bpreverr + cur);
    695         cur += delta;		/* form error * 5 */
    696         bpreverr = belowerr + cur;
    697         belowerr = bnexterr;
    698         cur += delta;		/* form error * 7 */
    699         /* At this point cur contains the 7/16 error value to be propagated
    700          * to the next pixel on the current line, and all the errors for the
    701          * next line have been shifted over. We are therefore ready to move on.
    702          */
    703         input_ptr += dirnc;	/* advance input ptr to next column */
    704         output_ptr += dir;	/* advance output ptr to next column */
    705         errorptr += dir;	/* advance errorptr to current column */
    706       }
    707       /* Post-loop cleanup: we must unload the final error value into the
    708        * final fserrors[] entry.  Note we need not unload belowerr because
    709        * it is for the dummy column before or after the actual array.
    710        */
    711       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
    712     }
    713     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
    714   }
    715 }
    716 
    717 
    718 /*
    719  * Allocate workspace for Floyd-Steinberg errors.
    720  */
    721 
    722 LOCAL(void)
    723 alloc_fs_workspace (j_decompress_ptr cinfo)
    724 {
    725   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    726   size_t arraysize;
    727   int i;
    728 
    729   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
    730   for (i = 0; i < cinfo->out_color_components; i++) {
    731     cquantize->fserrors[i] = (FSERRPTR)
    732       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
    733   }
    734 }
    735 
    736 
    737 /*
    738  * Initialize for one-pass color quantization.
    739  */
    740 
    741 METHODDEF(void)
    742 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
    743 {
    744   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
    745   size_t arraysize;
    746   int i;
    747 
    748   /* Install my colormap. */
    749   cinfo->colormap = cquantize->sv_colormap;
    750   cinfo->actual_number_of_colors = cquantize->sv_actual;
    751 
    752   /* Initialize for desired dithering mode. */
    753   switch (cinfo->dither_mode) {
    754   case JDITHER_NONE:
    755     if (cinfo->out_color_components == 3)
    756       cquantize->pub.color_quantize = color_quantize3;
    757     else
    758       cquantize->pub.color_quantize = color_quantize;
    759     break;
    760   case JDITHER_ORDERED:
    761     if (cinfo->out_color_components == 3)
    762       cquantize->pub.color_quantize = quantize3_ord_dither;
    763     else
    764       cquantize->pub.color_quantize = quantize_ord_dither;
    765     cquantize->row_index = 0;	/* initialize state for ordered dither */
    766     /* If user changed to ordered dither from another mode,
    767      * we must recreate the color index table with padding.
    768      * This will cost extra space, but probably isn't very likely.
    769      */
    770     if (! cquantize->is_padded)
    771       create_colorindex(cinfo);
    772     /* Create ordered-dither tables if we didn't already. */
    773     if (cquantize->odither[0] == NULL)
    774       create_odither_tables(cinfo);
    775     break;
    776   case JDITHER_FS:
    777     cquantize->pub.color_quantize = quantize_fs_dither;
    778     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
    779     /* Allocate Floyd-Steinberg workspace if didn't already. */
    780     if (cquantize->fserrors[0] == NULL)
    781       alloc_fs_workspace(cinfo);
    782     /* Initialize the propagated errors to zero. */
    783     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
    784     for (i = 0; i < cinfo->out_color_components; i++)
    785       FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
    786     break;
    787   default:
    788     ERREXIT(cinfo, JERR_NOT_COMPILED);
    789     break;
    790   }
    791 }
    792 
    793 
    794 /*
    795  * Finish up at the end of the pass.
    796  */
    797 
    798 METHODDEF(void)
    799 finish_pass_1_quant (j_decompress_ptr cinfo)
    800 {
    801   /* no work in 1-pass case */
    802 }
    803 
    804 
    805 /*
    806  * Switch to a new external colormap between output passes.
    807  * Shouldn't get to this module!
    808  */
    809 
    810 METHODDEF(void)
    811 new_color_map_1_quant (j_decompress_ptr cinfo)
    812 {
    813   ERREXIT(cinfo, JERR_MODE_CHANGE);
    814 }
    815 
    816 
    817 /*
    818  * Module initialization routine for 1-pass color quantization.
    819  */
    820 
    821 GLOBAL(void)
    822 jinit_1pass_quantizer (j_decompress_ptr cinfo)
    823 {
    824   my_cquantize_ptr cquantize;
    825 
    826   cquantize = (my_cquantize_ptr)
    827     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    828                                 SIZEOF(my_cquantizer));
    829   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
    830   cquantize->pub.start_pass = start_pass_1_quant;
    831   cquantize->pub.finish_pass = finish_pass_1_quant;
    832   cquantize->pub.new_color_map = new_color_map_1_quant;
    833   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
    834   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
    835 
    836   /* Make sure my internal arrays won't overflow */
    837   if (cinfo->out_color_components > MAX_Q_COMPS)
    838     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
    839   /* Make sure colormap indexes can be represented by JSAMPLEs */
    840   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
    841     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
    842 
    843   /* Create the colormap and color index table. */
    844   create_colormap(cinfo);
    845   create_colorindex(cinfo);
    846 
    847   /* Allocate Floyd-Steinberg workspace now if requested.
    848    * We do this now since it is FAR storage and may affect the memory
    849    * manager's space calculations.  If the user changes to FS dither
    850    * mode in a later pass, we will allocate the space then, and will
    851    * possibly overrun the max_memory_to_use setting.
    852    */
    853   if (cinfo->dither_mode == JDITHER_FS)
    854     alloc_fs_workspace(cinfo);
    855 }
    856 
    857 #endif /* QUANT_1PASS_SUPPORTED */
    858