Home | History | Annotate | Download | only in libtiff
      1 /* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1991-1997 Sam Leffler
      5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
      6  *
      7  * Permission to use, copy, modify, distribute, and sell this software and
      8  * its documentation for any purpose is hereby granted without fee, provided
      9  * that (i) the above copyright notices and this permission notice appear in
     10  * all copies of the software and related documentation, and (ii) the names of
     11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
     12  * publicity relating to the software without the specific, prior written
     13  * permission of Sam Leffler and Silicon Graphics.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
     16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
     17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
     18  *
     19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
     20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
     21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
     22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
     23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
     24  * OF THIS SOFTWARE.
     25  */
     26 
     27 /*
     28  * TIFF Library
     29  *
     30  * Read and return a packed RGBA image.
     31  */
     32 #include "tiffiop.h"
     33 #include <stdio.h>
     34 
     35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
     36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
     37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
     38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
     39 static int PickContigCase(TIFFRGBAImage*);
     40 static int PickSeparateCase(TIFFRGBAImage*);
     41 
     42 static int BuildMapUaToAa(TIFFRGBAImage* img);
     43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
     44 
     45 static const char photoTag[] = "PhotometricInterpretation";
     46 
     47 /*
     48  * Helper constants used in Orientation tag handling
     49  */
     50 #define FLIP_VERTICALLY 0x01
     51 #define FLIP_HORIZONTALLY 0x02
     52 
     53 /*
     54  * Color conversion constants. We will define display types here.
     55  */
     56 
     57 static const TIFFDisplay display_sRGB = {
     58     {			/* XYZ -> luminance matrix */
     59         {  3.2410F, -1.5374F, -0.4986F },
     60         {  -0.9692F, 1.8760F, 0.0416F },
     61         {  0.0556F, -0.2040F, 1.0570F }
     62     },
     63     100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
     64     255, 255, 255,		/* Pixel values for ref. white */
     65     1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
     66     2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
     67 };
     68 
     69 /*
     70  * Check the image to see if TIFFReadRGBAImage can deal with it.
     71  * 1/0 is returned according to whether or not the image can
     72  * be handled.  If 0 is returned, emsg contains the reason
     73  * why it is being rejected.
     74  */
     75 int
     76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
     77 {
     78     TIFFDirectory* td = &tif->tif_dir;
     79     uint16 photometric;
     80     int colorchannels;
     81 
     82     if (!tif->tif_decodestatus) {
     83         sprintf(emsg, "Sorry, requested compression method is not configured");
     84         return (0);
     85     }
     86     switch (td->td_bitspersample) {
     87         case 1:
     88         case 2:
     89         case 4:
     90         case 8:
     91         case 16:
     92             break;
     93         default:
     94             sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
     95                 td->td_bitspersample);
     96             return (0);
     97     }
     98     colorchannels = td->td_samplesperpixel - td->td_extrasamples;
     99     if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
    100         switch (colorchannels) {
    101             case 1:
    102                 photometric = PHOTOMETRIC_MINISBLACK;
    103                 break;
    104             case 3:
    105                 photometric = PHOTOMETRIC_RGB;
    106                 break;
    107             default:
    108                 sprintf(emsg, "Missing needed %s tag", photoTag);
    109                 return (0);
    110         }
    111     }
    112     switch (photometric) {
    113         case PHOTOMETRIC_MINISWHITE:
    114         case PHOTOMETRIC_MINISBLACK:
    115         case PHOTOMETRIC_PALETTE:
    116             if (td->td_planarconfig == PLANARCONFIG_CONTIG
    117                 && td->td_samplesperpixel != 1
    118                 && td->td_bitspersample < 8 ) {
    119                 sprintf(emsg,
    120                     "Sorry, can not handle contiguous data with %s=%d, "
    121                     "and %s=%d and Bits/Sample=%d",
    122                     photoTag, photometric,
    123                     "Samples/pixel", td->td_samplesperpixel,
    124                     td->td_bitspersample);
    125                 return (0);
    126             }
    127             /*
    128              * We should likely validate that any extra samples are either
    129              * to be ignored, or are alpha, and if alpha we should try to use
    130              * them.  But for now we won't bother with this.
    131             */
    132             break;
    133         case PHOTOMETRIC_YCBCR:
    134             /*
    135              * TODO: if at all meaningful and useful, make more complete
    136              * support check here, or better still, refactor to let supporting
    137              * code decide whether there is support and what meaningfull
    138              * error to return
    139              */
    140             break;
    141         case PHOTOMETRIC_RGB:
    142             if (colorchannels < 3) {
    143                 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
    144                     "Color channels", colorchannels);
    145                 return (0);
    146             }
    147             break;
    148         case PHOTOMETRIC_SEPARATED:
    149             {
    150                 uint16 inkset;
    151                 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
    152                 if (inkset != INKSET_CMYK) {
    153                     sprintf(emsg,
    154                         "Sorry, can not handle separated image with %s=%d",
    155                         "InkSet", inkset);
    156                     return 0;
    157                 }
    158                 if (td->td_samplesperpixel < 4) {
    159                     sprintf(emsg,
    160                         "Sorry, can not handle separated image with %s=%d",
    161                         "Samples/pixel", td->td_samplesperpixel);
    162                     return 0;
    163                 }
    164                 break;
    165             }
    166         case PHOTOMETRIC_LOGL:
    167             if (td->td_compression != COMPRESSION_SGILOG) {
    168                 sprintf(emsg, "Sorry, LogL data must have %s=%d",
    169                     "Compression", COMPRESSION_SGILOG);
    170                 return (0);
    171             }
    172             break;
    173         case PHOTOMETRIC_LOGLUV:
    174             if (td->td_compression != COMPRESSION_SGILOG &&
    175                 td->td_compression != COMPRESSION_SGILOG24) {
    176                 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
    177                     "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
    178                 return (0);
    179             }
    180             if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
    181                 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
    182                     "Planarconfiguration", td->td_planarconfig);
    183                 return (0);
    184             }
    185             break;
    186         case PHOTOMETRIC_CIELAB:
    187             break;
    188         default:
    189             sprintf(emsg, "Sorry, can not handle image with %s=%d",
    190                 photoTag, photometric);
    191             return (0);
    192     }
    193     return (1);
    194 }
    195 
    196 void
    197 TIFFRGBAImageEnd(TIFFRGBAImage* img)
    198 {
    199     if (img->Map)
    200         _TIFFfree(img->Map), img->Map = NULL;
    201     if (img->BWmap)
    202         _TIFFfree(img->BWmap), img->BWmap = NULL;
    203     if (img->PALmap)
    204         _TIFFfree(img->PALmap), img->PALmap = NULL;
    205     if (img->ycbcr)
    206         _TIFFfree(img->ycbcr), img->ycbcr = NULL;
    207     if (img->cielab)
    208         _TIFFfree(img->cielab), img->cielab = NULL;
    209     if (img->UaToAa)
    210         _TIFFfree(img->UaToAa), img->UaToAa = NULL;
    211     if (img->Bitdepth16To8)
    212         _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL;
    213 
    214     if( img->redcmap ) {
    215         _TIFFfree( img->redcmap );
    216         _TIFFfree( img->greencmap );
    217         _TIFFfree( img->bluecmap );
    218                 img->redcmap = img->greencmap = img->bluecmap = NULL;
    219     }
    220 }
    221 
    222 static int
    223 isCCITTCompression(TIFF* tif)
    224 {
    225     uint16 compress;
    226     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
    227     return (compress == COMPRESSION_CCITTFAX3 ||
    228         compress == COMPRESSION_CCITTFAX4 ||
    229         compress == COMPRESSION_CCITTRLE ||
    230         compress == COMPRESSION_CCITTRLEW);
    231 }
    232 
    233 int
    234 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
    235 {
    236     uint16* sampleinfo;
    237     uint16 extrasamples;
    238     uint16 planarconfig;
    239     uint16 compress;
    240     int colorchannels;
    241     uint16 *red_orig, *green_orig, *blue_orig;
    242     int n_color;
    243 
    244     /* Initialize to normal values */
    245     img->row_offset = 0;
    246     img->col_offset = 0;
    247     img->redcmap = NULL;
    248     img->greencmap = NULL;
    249     img->bluecmap = NULL;
    250     img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
    251 
    252     img->tif = tif;
    253     img->stoponerr = stop;
    254     TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
    255     switch (img->bitspersample) {
    256         case 1:
    257         case 2:
    258         case 4:
    259         case 8:
    260         case 16:
    261             break;
    262         default:
    263             sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
    264                 img->bitspersample);
    265             goto fail_return;
    266     }
    267     img->alpha = 0;
    268     TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
    269     TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
    270         &extrasamples, &sampleinfo);
    271     if (extrasamples >= 1)
    272     {
    273         switch (sampleinfo[0]) {
    274             case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
    275                 if (img->samplesperpixel > 3)  /* correct info about alpha channel */
    276                     img->alpha = EXTRASAMPLE_ASSOCALPHA;
    277                 break;
    278             case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
    279             case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
    280                 img->alpha = sampleinfo[0];
    281                 break;
    282         }
    283     }
    284 
    285 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
    286     if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
    287         img->photometric = PHOTOMETRIC_MINISWHITE;
    288 
    289     if( extrasamples == 0
    290         && img->samplesperpixel == 4
    291         && img->photometric == PHOTOMETRIC_RGB )
    292     {
    293         img->alpha = EXTRASAMPLE_ASSOCALPHA;
    294         extrasamples = 1;
    295     }
    296 #endif
    297 
    298     colorchannels = img->samplesperpixel - extrasamples;
    299     TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
    300     TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
    301     if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
    302         switch (colorchannels) {
    303             case 1:
    304                 if (isCCITTCompression(tif))
    305                     img->photometric = PHOTOMETRIC_MINISWHITE;
    306                 else
    307                     img->photometric = PHOTOMETRIC_MINISBLACK;
    308                 break;
    309             case 3:
    310                 img->photometric = PHOTOMETRIC_RGB;
    311                 break;
    312             default:
    313                 sprintf(emsg, "Missing needed %s tag", photoTag);
    314                                 goto fail_return;
    315         }
    316     }
    317     switch (img->photometric) {
    318         case PHOTOMETRIC_PALETTE:
    319             if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
    320                 &red_orig, &green_orig, &blue_orig)) {
    321                 sprintf(emsg, "Missing required \"Colormap\" tag");
    322                                 goto fail_return;
    323             }
    324 
    325             /* copy the colormaps so we can modify them */
    326             n_color = (1L << img->bitspersample);
    327             img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    328             img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    329             img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    330             if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
    331                 sprintf(emsg, "Out of memory for colormap copy");
    332                                 goto fail_return;
    333             }
    334 
    335             _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
    336             _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
    337             _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
    338 
    339             /* fall thru... */
    340         case PHOTOMETRIC_MINISWHITE:
    341         case PHOTOMETRIC_MINISBLACK:
    342             if (planarconfig == PLANARCONFIG_CONTIG
    343                 && img->samplesperpixel != 1
    344                 && img->bitspersample < 8 ) {
    345                 sprintf(emsg,
    346                     "Sorry, can not handle contiguous data with %s=%d, "
    347                     "and %s=%d and Bits/Sample=%d",
    348                     photoTag, img->photometric,
    349                     "Samples/pixel", img->samplesperpixel,
    350                     img->bitspersample);
    351                                 goto fail_return;
    352             }
    353             break;
    354         case PHOTOMETRIC_YCBCR:
    355             /* It would probably be nice to have a reality check here. */
    356             if (planarconfig == PLANARCONFIG_CONTIG)
    357                 /* can rely on libjpeg to convert to RGB */
    358                 /* XXX should restore current state on exit */
    359                 switch (compress) {
    360                     case COMPRESSION_JPEG:
    361                         /*
    362                          * TODO: when complete tests verify complete desubsampling
    363                          * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
    364                          * favor of tif_getimage.c native handling
    365                          */
    366                         TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
    367                         img->photometric = PHOTOMETRIC_RGB;
    368                         break;
    369                     default:
    370                         /* do nothing */;
    371                         break;
    372                 }
    373             /*
    374              * TODO: if at all meaningful and useful, make more complete
    375              * support check here, or better still, refactor to let supporting
    376              * code decide whether there is support and what meaningfull
    377              * error to return
    378              */
    379             break;
    380         case PHOTOMETRIC_RGB:
    381             if (colorchannels < 3) {
    382                 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
    383                     "Color channels", colorchannels);
    384                                 goto fail_return;
    385             }
    386             break;
    387         case PHOTOMETRIC_SEPARATED:
    388             {
    389                 uint16 inkset;
    390                 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
    391                 if (inkset != INKSET_CMYK) {
    392                     sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
    393                         "InkSet", inkset);
    394                                         goto fail_return;
    395                 }
    396                 if (img->samplesperpixel < 4) {
    397                     sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
    398                         "Samples/pixel", img->samplesperpixel);
    399                                         goto fail_return;
    400                 }
    401             }
    402             break;
    403         case PHOTOMETRIC_LOGL:
    404             if (compress != COMPRESSION_SGILOG) {
    405                 sprintf(emsg, "Sorry, LogL data must have %s=%d",
    406                     "Compression", COMPRESSION_SGILOG);
    407                                 goto fail_return;
    408             }
    409             TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
    410             img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
    411             img->bitspersample = 8;
    412             break;
    413         case PHOTOMETRIC_LOGLUV:
    414             if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
    415                 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
    416                     "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
    417                                 goto fail_return;
    418             }
    419             if (planarconfig != PLANARCONFIG_CONTIG) {
    420                 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
    421                     "Planarconfiguration", planarconfig);
    422                 return (0);
    423             }
    424             TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
    425             img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
    426             img->bitspersample = 8;
    427             break;
    428         case PHOTOMETRIC_CIELAB:
    429             break;
    430         default:
    431             sprintf(emsg, "Sorry, can not handle image with %s=%d",
    432                 photoTag, img->photometric);
    433                         goto fail_return;
    434     }
    435     img->Map = NULL;
    436     img->BWmap = NULL;
    437     img->PALmap = NULL;
    438     img->ycbcr = NULL;
    439     img->cielab = NULL;
    440     img->UaToAa = NULL;
    441     img->Bitdepth16To8 = NULL;
    442     TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
    443     TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
    444     TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
    445     img->isContig =
    446         !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
    447     if (img->isContig) {
    448         if (!PickContigCase(img)) {
    449             sprintf(emsg, "Sorry, can not handle image");
    450             goto fail_return;
    451         }
    452     } else {
    453         if (!PickSeparateCase(img)) {
    454             sprintf(emsg, "Sorry, can not handle image");
    455             goto fail_return;
    456         }
    457     }
    458     return 1;
    459 
    460   fail_return:
    461         _TIFFfree( img->redcmap );
    462         _TIFFfree( img->greencmap );
    463         _TIFFfree( img->bluecmap );
    464         img->redcmap = img->greencmap = img->bluecmap = NULL;
    465         return 0;
    466 }
    467 
    468 int
    469 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    470 {
    471     if (img->get == NULL) {
    472         TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
    473         return (0);
    474     }
    475     if (img->put.any == NULL) {
    476         TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
    477         "No \"put\" routine setupl; probably can not handle image format");
    478         return (0);
    479     }
    480     return (*img->get)(img, raster, w, h);
    481 }
    482 
    483 /*
    484  * Read the specified image into an ABGR-format rastertaking in account
    485  * specified orientation.
    486  */
    487 int
    488 TIFFReadRGBAImageOriented(TIFF* tif,
    489               uint32 rwidth, uint32 rheight, uint32* raster,
    490               int orientation, int stop)
    491 {
    492     char emsg[1024] = "";
    493     TIFFRGBAImage img;
    494     int ok;
    495 
    496     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
    497         img.req_orientation = orientation;
    498         /* XXX verify rwidth and rheight against width and height */
    499         ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
    500             rwidth, img.height);
    501         TIFFRGBAImageEnd(&img);
    502     } else {
    503         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
    504         ok = 0;
    505     }
    506     return (ok);
    507 }
    508 
    509 /*
    510  * Read the specified image into an ABGR-format raster. Use bottom left
    511  * origin for raster by default.
    512  */
    513 int
    514 TIFFReadRGBAImage(TIFF* tif,
    515           uint32 rwidth, uint32 rheight, uint32* raster, int stop)
    516 {
    517     return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
    518                      ORIENTATION_BOTLEFT, stop);
    519 }
    520 
    521 static int
    522 setorientation(TIFFRGBAImage* img)
    523 {
    524     switch (img->orientation) {
    525         case ORIENTATION_TOPLEFT:
    526         case ORIENTATION_LEFTTOP:
    527             if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    528                 img->req_orientation == ORIENTATION_RIGHTTOP)
    529                 return FLIP_HORIZONTALLY;
    530             else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    531                 img->req_orientation == ORIENTATION_RIGHTBOT)
    532                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    533             else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    534                 img->req_orientation == ORIENTATION_LEFTBOT)
    535                 return FLIP_VERTICALLY;
    536             else
    537                 return 0;
    538         case ORIENTATION_TOPRIGHT:
    539         case ORIENTATION_RIGHTTOP:
    540             if (img->req_orientation == ORIENTATION_TOPLEFT ||
    541                 img->req_orientation == ORIENTATION_LEFTTOP)
    542                 return FLIP_HORIZONTALLY;
    543             else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    544                 img->req_orientation == ORIENTATION_RIGHTBOT)
    545                 return FLIP_VERTICALLY;
    546             else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    547                 img->req_orientation == ORIENTATION_LEFTBOT)
    548                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    549             else
    550                 return 0;
    551         case ORIENTATION_BOTRIGHT:
    552         case ORIENTATION_RIGHTBOT:
    553             if (img->req_orientation == ORIENTATION_TOPLEFT ||
    554                 img->req_orientation == ORIENTATION_LEFTTOP)
    555                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    556             else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    557                 img->req_orientation == ORIENTATION_RIGHTTOP)
    558                 return FLIP_VERTICALLY;
    559             else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    560                 img->req_orientation == ORIENTATION_LEFTBOT)
    561                 return FLIP_HORIZONTALLY;
    562             else
    563                 return 0;
    564         case ORIENTATION_BOTLEFT:
    565         case ORIENTATION_LEFTBOT:
    566             if (img->req_orientation == ORIENTATION_TOPLEFT ||
    567                 img->req_orientation == ORIENTATION_LEFTTOP)
    568                 return FLIP_VERTICALLY;
    569             else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    570                 img->req_orientation == ORIENTATION_RIGHTTOP)
    571                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    572             else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    573                 img->req_orientation == ORIENTATION_RIGHTBOT)
    574                 return FLIP_HORIZONTALLY;
    575             else
    576                 return 0;
    577         default:	/* NOTREACHED */
    578             return 0;
    579     }
    580 }
    581 
    582 /*
    583  * Get an tile-organized image that has
    584  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
    585  * or
    586  *	SamplesPerPixel == 1
    587  */
    588 static int
    589 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    590 {
    591     TIFF* tif = img->tif;
    592     tileContigRoutine put = img->put.contig;
    593     uint32 col, row, y, rowstoread;
    594     tmsize_t pos;
    595     uint32 tw, th;
    596     unsigned char* buf;
    597     int32 fromskew, toskew;
    598     uint32 nrow;
    599     int ret = 1, flip;
    600 
    601     buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif));
    602     if (buf == 0) {
    603         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
    604         return (0);
    605     }
    606     _TIFFmemset(buf, 0, TIFFTileSize(tif));
    607     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    608     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    609 
    610     flip = setorientation(img);
    611     if (flip & FLIP_VERTICALLY) {
    612         y = h - 1;
    613         toskew = -(int32)(tw + w);
    614     }
    615     else {
    616         y = 0;
    617         toskew = -(int32)(tw - w);
    618     }
    619 
    620     for (row = 0; row < h; row += nrow)
    621     {
    622         rowstoread = th - (row + img->row_offset) % th;
    623         nrow = (row + rowstoread > h ? h - row : rowstoread);
    624     for (col = 0; col < w; col += tw)
    625         {
    626         if (TIFFReadTile(tif, buf, col+img->col_offset,
    627                  row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr)
    628             {
    629                 ret = 0;
    630                 break;
    631             }
    632 
    633         pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
    634 
    635             if (col + tw > w)
    636             {
    637                 /*
    638                  * Tile is clipped horizontally.  Calculate
    639                  * visible portion and skewing factors.
    640                  */
    641                 uint32 npix = w - col;
    642                 fromskew = tw - npix;
    643                 (*put)(img, raster+y*w+col, col, y,
    644                        npix, nrow, fromskew, toskew + fromskew, buf + pos);
    645             }
    646             else
    647             {
    648                 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos);
    649             }
    650         }
    651 
    652         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
    653     }
    654     _TIFFfree(buf);
    655 
    656     if (flip & FLIP_HORIZONTALLY) {
    657         uint32 line;
    658 
    659         for (line = 0; line < h; line++) {
    660             uint32 *left = raster + (line * w);
    661             uint32 *right = left + w - 1;
    662 
    663             while ( left < right ) {
    664                 uint32 temp = *left;
    665                 *left = *right;
    666                 *right = temp;
    667                 left++, right--;
    668             }
    669         }
    670     }
    671 
    672     return (ret);
    673 }
    674 
    675 /*
    676  * Get an tile-organized image that has
    677  *	 SamplesPerPixel > 1
    678  *	 PlanarConfiguration separated
    679  * We assume that all such images are RGB.
    680  */
    681 static int
    682 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    683 {
    684     TIFF* tif = img->tif;
    685     tileSeparateRoutine put = img->put.separate;
    686     uint32 col, row, y, rowstoread;
    687     tmsize_t pos;
    688     uint32 tw, th;
    689     unsigned char* buf;
    690     unsigned char* p0;
    691     unsigned char* p1;
    692     unsigned char* p2;
    693     unsigned char* pa;
    694     tmsize_t tilesize;
    695     tmsize_t bufsize;
    696     int32 fromskew, toskew;
    697     int alpha = img->alpha;
    698     uint32 nrow;
    699     int ret = 1, flip;
    700         int colorchannels;
    701 
    702     tilesize = TIFFTileSize(tif);
    703     bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
    704     if (bufsize == 0) {
    705         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
    706         return (0);
    707     }
    708     buf = (unsigned char*) _TIFFmalloc(bufsize);
    709     if (buf == 0) {
    710         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
    711         return (0);
    712     }
    713     _TIFFmemset(buf, 0, bufsize);
    714     p0 = buf;
    715     p1 = p0 + tilesize;
    716     p2 = p1 + tilesize;
    717     pa = (alpha?(p2+tilesize):NULL);
    718     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    719     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    720 
    721     flip = setorientation(img);
    722     if (flip & FLIP_VERTICALLY) {
    723         y = h - 1;
    724         toskew = -(int32)(tw + w);
    725     }
    726     else {
    727         y = 0;
    728         toskew = -(int32)(tw - w);
    729     }
    730 
    731         switch( img->photometric )
    732         {
    733           case PHOTOMETRIC_MINISWHITE:
    734           case PHOTOMETRIC_MINISBLACK:
    735           case PHOTOMETRIC_PALETTE:
    736             colorchannels = 1;
    737             p2 = p1 = p0;
    738             break;
    739 
    740           default:
    741             colorchannels = 3;
    742             break;
    743         }
    744 
    745     for (row = 0; row < h; row += nrow)
    746     {
    747         rowstoread = th - (row + img->row_offset) % th;
    748         nrow = (row + rowstoread > h ? h - row : rowstoread);
    749         for (col = 0; col < w; col += tw)
    750         {
    751             if (TIFFReadTile(tif, p0, col+img->col_offset,
    752                 row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
    753             {
    754                 ret = 0;
    755                 break;
    756             }
    757             if (colorchannels > 1
    758                             && TIFFReadTile(tif, p1, col+img->col_offset,
    759                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
    760                             && img->stoponerr)
    761             {
    762                 ret = 0;
    763                 break;
    764             }
    765             if (colorchannels > 1
    766                             && TIFFReadTile(tif, p2, col+img->col_offset,
    767                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
    768                             && img->stoponerr)
    769             {
    770                 ret = 0;
    771                 break;
    772             }
    773             if (alpha
    774                             && TIFFReadTile(tif,pa,col+img->col_offset,
    775                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
    776                             && img->stoponerr)
    777                         {
    778                             ret = 0;
    779                             break;
    780             }
    781 
    782             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
    783 
    784             if (col + tw > w)
    785             {
    786                 /*
    787                  * Tile is clipped horizontally.  Calculate
    788                  * visible portion and skewing factors.
    789                  */
    790                 uint32 npix = w - col;
    791                 fromskew = tw - npix;
    792                 (*put)(img, raster+y*w+col, col, y,
    793                     npix, nrow, fromskew, toskew + fromskew,
    794                     p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
    795             } else {
    796                 (*put)(img, raster+y*w+col, col, y,
    797                     tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
    798             }
    799         }
    800 
    801         y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
    802     }
    803 
    804     if (flip & FLIP_HORIZONTALLY) {
    805         uint32 line;
    806 
    807         for (line = 0; line < h; line++) {
    808             uint32 *left = raster + (line * w);
    809             uint32 *right = left + w - 1;
    810 
    811             while ( left < right ) {
    812                 uint32 temp = *left;
    813                 *left = *right;
    814                 *right = temp;
    815                 left++, right--;
    816             }
    817         }
    818     }
    819 
    820     _TIFFfree(buf);
    821     return (ret);
    822 }
    823 
    824 /*
    825  * Get a strip-organized image that has
    826  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
    827  * or
    828  *	SamplesPerPixel == 1
    829  */
    830 static int
    831 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    832 {
    833     TIFF* tif = img->tif;
    834     tileContigRoutine put = img->put.contig;
    835     uint32 row, y, nrow, nrowsub, rowstoread;
    836     tmsize_t pos;
    837     unsigned char* buf;
    838     uint32 rowsperstrip;
    839     uint16 subsamplinghor,subsamplingver;
    840     uint32 imagewidth = img->width;
    841     tmsize_t scanline;
    842     int32 fromskew, toskew;
    843     int ret = 1, flip;
    844 
    845     buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif));
    846     if (buf == 0) {
    847         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
    848         return (0);
    849     }
    850     _TIFFmemset(buf, 0, TIFFStripSize(tif));
    851 
    852     flip = setorientation(img);
    853     if (flip & FLIP_VERTICALLY) {
    854         y = h - 1;
    855         toskew = -(int32)(w + w);
    856     } else {
    857         y = 0;
    858         toskew = -(int32)(w - w);
    859     }
    860 
    861     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    862     TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
    863     scanline = TIFFScanlineSize(tif);
    864     fromskew = (w < imagewidth ? imagewidth - w : 0);
    865     for (row = 0; row < h; row += nrow)
    866     {
    867         rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
    868         nrow = (row + rowstoread > h ? h - row : rowstoread);
    869         nrowsub = nrow;
    870         if ((nrowsub%subsamplingver)!=0)
    871             nrowsub+=subsamplingver-nrowsub%subsamplingver;
    872         if (TIFFReadEncodedStrip(tif,
    873             TIFFComputeStrip(tif,row+img->row_offset, 0),
    874             buf,
    875             ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
    876             && img->stoponerr)
    877         {
    878             ret = 0;
    879             break;
    880         }
    881 
    882         pos = ((row + img->row_offset) % rowsperstrip) * scanline;
    883         (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
    884         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
    885     }
    886 
    887     if (flip & FLIP_HORIZONTALLY) {
    888         uint32 line;
    889 
    890         for (line = 0; line < h; line++) {
    891             uint32 *left = raster + (line * w);
    892             uint32 *right = left + w - 1;
    893 
    894             while ( left < right ) {
    895                 uint32 temp = *left;
    896                 *left = *right;
    897                 *right = temp;
    898                 left++, right--;
    899             }
    900         }
    901     }
    902 
    903     _TIFFfree(buf);
    904     return (ret);
    905 }
    906 
    907 /*
    908  * Get a strip-organized image with
    909  *	 SamplesPerPixel > 1
    910  *	 PlanarConfiguration separated
    911  * We assume that all such images are RGB.
    912  */
    913 static int
    914 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    915 {
    916     TIFF* tif = img->tif;
    917     tileSeparateRoutine put = img->put.separate;
    918     unsigned char *buf;
    919     unsigned char *p0, *p1, *p2, *pa;
    920     uint32 row, y, nrow, rowstoread;
    921     tmsize_t pos;
    922     tmsize_t scanline;
    923     uint32 rowsperstrip, offset_row;
    924     uint32 imagewidth = img->width;
    925     tmsize_t stripsize;
    926     tmsize_t bufsize;
    927     int32 fromskew, toskew;
    928     int alpha = img->alpha;
    929     int ret = 1, flip, colorchannels;
    930 
    931     stripsize = TIFFStripSize(tif);
    932     bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
    933     if (bufsize == 0) {
    934         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
    935         return (0);
    936     }
    937     p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
    938     if (buf == 0) {
    939         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
    940         return (0);
    941     }
    942     _TIFFmemset(buf, 0, bufsize);
    943     p1 = p0 + stripsize;
    944     p2 = p1 + stripsize;
    945     pa = (alpha?(p2+stripsize):NULL);
    946 
    947     flip = setorientation(img);
    948     if (flip & FLIP_VERTICALLY) {
    949         y = h - 1;
    950         toskew = -(int32)(w + w);
    951     }
    952     else {
    953         y = 0;
    954         toskew = -(int32)(w - w);
    955     }
    956 
    957         switch( img->photometric )
    958         {
    959           case PHOTOMETRIC_MINISWHITE:
    960           case PHOTOMETRIC_MINISBLACK:
    961           case PHOTOMETRIC_PALETTE:
    962             colorchannels = 1;
    963             p2 = p1 = p0;
    964             break;
    965 
    966           default:
    967             colorchannels = 3;
    968             break;
    969         }
    970 
    971     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    972     scanline = TIFFScanlineSize(tif);
    973     fromskew = (w < imagewidth ? imagewidth - w : 0);
    974     for (row = 0; row < h; row += nrow)
    975     {
    976         rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
    977         nrow = (row + rowstoread > h ? h - row : rowstoread);
    978         offset_row = row + img->row_offset;
    979         if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
    980             p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
    981             && img->stoponerr)
    982         {
    983             ret = 0;
    984             break;
    985         }
    986         if (colorchannels > 1
    987                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
    988                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
    989             && img->stoponerr)
    990         {
    991             ret = 0;
    992             break;
    993         }
    994         if (colorchannels > 1
    995                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
    996                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
    997             && img->stoponerr)
    998         {
    999             ret = 0;
   1000             break;
   1001         }
   1002         if (alpha)
   1003         {
   1004             if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
   1005                 pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
   1006                 && img->stoponerr)
   1007             {
   1008                 ret = 0;
   1009                 break;
   1010             }
   1011         }
   1012 
   1013         pos = ((row + img->row_offset) % rowsperstrip) * scanline;
   1014         (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
   1015             p2 + pos, (alpha?(pa+pos):NULL));
   1016         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
   1017     }
   1018 
   1019     if (flip & FLIP_HORIZONTALLY) {
   1020         uint32 line;
   1021 
   1022         for (line = 0; line < h; line++) {
   1023             uint32 *left = raster + (line * w);
   1024             uint32 *right = left + w - 1;
   1025 
   1026             while ( left < right ) {
   1027                 uint32 temp = *left;
   1028                 *left = *right;
   1029                 *right = temp;
   1030                 left++, right--;
   1031             }
   1032         }
   1033     }
   1034 
   1035     _TIFFfree(buf);
   1036     return (ret);
   1037 }
   1038 
   1039 /*
   1040  * The following routines move decoded data returned
   1041  * from the TIFF library into rasters filled with packed
   1042  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
   1043  *
   1044  * The routines have been created according to the most
   1045  * important cases and optimized.  PickContigCase and
   1046  * PickSeparateCase analyze the parameters and select
   1047  * the appropriate "get" and "put" routine to use.
   1048  */
   1049 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
   1050 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
   1051 #define	REPEAT2(op)	op; op
   1052 #define	CASE8(x,op)			\
   1053     switch (x) {			\
   1054     case 7: op; case 6: op; case 5: op;	\
   1055     case 4: op; case 3: op; case 2: op;	\
   1056     case 1: op;				\
   1057     }
   1058 #define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }
   1059 #define	NOP
   1060 
   1061 #define	UNROLL8(w, op1, op2) {		\
   1062     uint32 _x;				\
   1063     for (_x = w; _x >= 8; _x -= 8) {	\
   1064     op1;				\
   1065     REPEAT8(op2);			\
   1066     }					\
   1067     if (_x > 0) {			\
   1068     op1;				\
   1069     CASE8(_x,op2);			\
   1070     }					\
   1071 }
   1072 #define	UNROLL4(w, op1, op2) {		\
   1073     uint32 _x;				\
   1074     for (_x = w; _x >= 4; _x -= 4) {	\
   1075     op1;				\
   1076     REPEAT4(op2);			\
   1077     }					\
   1078     if (_x > 0) {			\
   1079     op1;				\
   1080     CASE4(_x,op2);			\
   1081     }					\
   1082 }
   1083 #define	UNROLL2(w, op1, op2) {		\
   1084     uint32 _x;				\
   1085     for (_x = w; _x >= 2; _x -= 2) {	\
   1086     op1;				\
   1087     REPEAT2(op2);			\
   1088     }					\
   1089     if (_x) {				\
   1090     op1;				\
   1091     op2;				\
   1092     }					\
   1093 }
   1094 
   1095 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
   1096 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
   1097 
   1098 #define A1 (((uint32)0xffL)<<24)
   1099 #define	PACK(r,g,b)	\
   1100     ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
   1101 #define	PACK4(r,g,b,a)	\
   1102     ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
   1103 #define W2B(v) (((v)>>8)&0xff)
   1104 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
   1105 #define	PACKW(r,g,b)	\
   1106     ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
   1107 #define	PACKW4(r,g,b,a)	\
   1108     ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
   1109 
   1110 #define	DECLAREContigPutFunc(name) \
   1111 static void name(\
   1112     TIFFRGBAImage* img, \
   1113     uint32* cp, \
   1114     uint32 x, uint32 y, \
   1115     uint32 w, uint32 h, \
   1116     int32 fromskew, int32 toskew, \
   1117     unsigned char* pp \
   1118 )
   1119 
   1120 /*
   1121  * 8-bit palette => colormap/RGB
   1122  */
   1123 DECLAREContigPutFunc(put8bitcmaptile)
   1124 {
   1125     uint32** PALmap = img->PALmap;
   1126     int samplesperpixel = img->samplesperpixel;
   1127 
   1128     (void) y;
   1129     while (h-- > 0) {
   1130     for (x = w; x-- > 0;)
   1131         {
   1132         *cp++ = PALmap[*pp][0];
   1133             pp += samplesperpixel;
   1134         }
   1135     cp += toskew;
   1136     pp += fromskew;
   1137     }
   1138 }
   1139 
   1140 /*
   1141  * 4-bit palette => colormap/RGB
   1142  */
   1143 DECLAREContigPutFunc(put4bitcmaptile)
   1144 {
   1145     uint32** PALmap = img->PALmap;
   1146 
   1147     (void) x; (void) y;
   1148     fromskew /= 2;
   1149     while (h-- > 0) {
   1150     uint32* bw;
   1151     UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1152     cp += toskew;
   1153     pp += fromskew;
   1154     }
   1155 }
   1156 
   1157 /*
   1158  * 2-bit palette => colormap/RGB
   1159  */
   1160 DECLAREContigPutFunc(put2bitcmaptile)
   1161 {
   1162     uint32** PALmap = img->PALmap;
   1163 
   1164     (void) x; (void) y;
   1165     fromskew /= 4;
   1166     while (h-- > 0) {
   1167     uint32* bw;
   1168     UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1169     cp += toskew;
   1170     pp += fromskew;
   1171     }
   1172 }
   1173 
   1174 /*
   1175  * 1-bit palette => colormap/RGB
   1176  */
   1177 DECLAREContigPutFunc(put1bitcmaptile)
   1178 {
   1179     uint32** PALmap = img->PALmap;
   1180 
   1181     (void) x; (void) y;
   1182     fromskew /= 8;
   1183     while (h-- > 0) {
   1184     uint32* bw;
   1185     UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1186     cp += toskew;
   1187     pp += fromskew;
   1188     }
   1189 }
   1190 
   1191 /*
   1192  * 8-bit greyscale => colormap/RGB
   1193  */
   1194 DECLAREContigPutFunc(putgreytile)
   1195 {
   1196     int samplesperpixel = img->samplesperpixel;
   1197     uint32** BWmap = img->BWmap;
   1198 
   1199     (void) y;
   1200     while (h-- > 0) {
   1201     for (x = w; x-- > 0;)
   1202         {
   1203         *cp++ = BWmap[*pp][0];
   1204             pp += samplesperpixel;
   1205         }
   1206     cp += toskew;
   1207     pp += fromskew;
   1208     }
   1209 }
   1210 
   1211 /*
   1212  * 8-bit greyscale with associated alpha => colormap/RGBA
   1213  */
   1214 DECLAREContigPutFunc(putagreytile)
   1215 {
   1216     int samplesperpixel = img->samplesperpixel;
   1217     uint32** BWmap = img->BWmap;
   1218 
   1219     (void) y;
   1220     while (h-- > 0) {
   1221     for (x = w; x-- > 0;)
   1222         {
   1223             *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1);
   1224             pp += samplesperpixel;
   1225         }
   1226     cp += toskew;
   1227     pp += fromskew;
   1228     }
   1229 }
   1230 
   1231 /*
   1232  * 16-bit greyscale => colormap/RGB
   1233  */
   1234 DECLAREContigPutFunc(put16bitbwtile)
   1235 {
   1236     int samplesperpixel = img->samplesperpixel;
   1237     uint32** BWmap = img->BWmap;
   1238 
   1239     (void) y;
   1240     while (h-- > 0) {
   1241         uint16 *wp = (uint16 *) pp;
   1242 
   1243     for (x = w; x-- > 0;)
   1244         {
   1245             /* use high order byte of 16bit value */
   1246 
   1247         *cp++ = BWmap[*wp >> 8][0];
   1248             pp += 2 * samplesperpixel;
   1249             wp += samplesperpixel;
   1250         }
   1251     cp += toskew;
   1252     pp += fromskew;
   1253     }
   1254 }
   1255 
   1256 /*
   1257  * 1-bit bilevel => colormap/RGB
   1258  */
   1259 DECLAREContigPutFunc(put1bitbwtile)
   1260 {
   1261     uint32** BWmap = img->BWmap;
   1262 
   1263     (void) x; (void) y;
   1264     fromskew /= 8;
   1265     while (h-- > 0) {
   1266     uint32* bw;
   1267     UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1268     cp += toskew;
   1269     pp += fromskew;
   1270     }
   1271 }
   1272 
   1273 /*
   1274  * 2-bit greyscale => colormap/RGB
   1275  */
   1276 DECLAREContigPutFunc(put2bitbwtile)
   1277 {
   1278     uint32** BWmap = img->BWmap;
   1279 
   1280     (void) x; (void) y;
   1281     fromskew /= 4;
   1282     while (h-- > 0) {
   1283     uint32* bw;
   1284     UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1285     cp += toskew;
   1286     pp += fromskew;
   1287     }
   1288 }
   1289 
   1290 /*
   1291  * 4-bit greyscale => colormap/RGB
   1292  */
   1293 DECLAREContigPutFunc(put4bitbwtile)
   1294 {
   1295     uint32** BWmap = img->BWmap;
   1296 
   1297     (void) x; (void) y;
   1298     fromskew /= 2;
   1299     while (h-- > 0) {
   1300     uint32* bw;
   1301     UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1302     cp += toskew;
   1303     pp += fromskew;
   1304     }
   1305 }
   1306 
   1307 /*
   1308  * 8-bit packed samples, no Map => RGB
   1309  */
   1310 DECLAREContigPutFunc(putRGBcontig8bittile)
   1311 {
   1312     int samplesperpixel = img->samplesperpixel;
   1313 
   1314     (void) x; (void) y;
   1315     fromskew *= samplesperpixel;
   1316     while (h-- > 0) {
   1317     UNROLL8(w, NOP,
   1318         *cp++ = PACK(pp[0], pp[1], pp[2]);
   1319         pp += samplesperpixel);
   1320     cp += toskew;
   1321     pp += fromskew;
   1322     }
   1323 }
   1324 
   1325 /*
   1326  * 8-bit packed samples => RGBA w/ associated alpha
   1327  * (known to have Map == NULL)
   1328  */
   1329 DECLAREContigPutFunc(putRGBAAcontig8bittile)
   1330 {
   1331     int samplesperpixel = img->samplesperpixel;
   1332 
   1333     (void) x; (void) y;
   1334     fromskew *= samplesperpixel;
   1335     while (h-- > 0) {
   1336     UNROLL8(w, NOP,
   1337         *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
   1338         pp += samplesperpixel);
   1339     cp += toskew;
   1340     pp += fromskew;
   1341     }
   1342 }
   1343 
   1344 /*
   1345  * 8-bit packed samples => RGBA w/ unassociated alpha
   1346  * (known to have Map == NULL)
   1347  */
   1348 DECLAREContigPutFunc(putRGBUAcontig8bittile)
   1349 {
   1350     int samplesperpixel = img->samplesperpixel;
   1351     (void) y;
   1352     fromskew *= samplesperpixel;
   1353     while (h-- > 0) {
   1354         uint32 r, g, b, a;
   1355         uint8* m;
   1356         for (x = w; x-- > 0;) {
   1357             a = pp[3];
   1358             m = img->UaToAa+(a<<8);
   1359             r = m[pp[0]];
   1360             g = m[pp[1]];
   1361             b = m[pp[2]];
   1362             *cp++ = PACK4(r,g,b,a);
   1363             pp += samplesperpixel;
   1364         }
   1365         cp += toskew;
   1366         pp += fromskew;
   1367     }
   1368 }
   1369 
   1370 /*
   1371  * 16-bit packed samples => RGB
   1372  */
   1373 DECLAREContigPutFunc(putRGBcontig16bittile)
   1374 {
   1375     int samplesperpixel = img->samplesperpixel;
   1376     uint16 *wp = (uint16 *)pp;
   1377     (void) y;
   1378     fromskew *= samplesperpixel;
   1379     while (h-- > 0) {
   1380         for (x = w; x-- > 0;) {
   1381             *cp++ = PACK(img->Bitdepth16To8[wp[0]],
   1382                 img->Bitdepth16To8[wp[1]],
   1383                 img->Bitdepth16To8[wp[2]]);
   1384             wp += samplesperpixel;
   1385         }
   1386         cp += toskew;
   1387         wp += fromskew;
   1388     }
   1389 }
   1390 
   1391 /*
   1392  * 16-bit packed samples => RGBA w/ associated alpha
   1393  * (known to have Map == NULL)
   1394  */
   1395 DECLAREContigPutFunc(putRGBAAcontig16bittile)
   1396 {
   1397     int samplesperpixel = img->samplesperpixel;
   1398     uint16 *wp = (uint16 *)pp;
   1399     (void) y;
   1400     fromskew *= samplesperpixel;
   1401     while (h-- > 0) {
   1402         for (x = w; x-- > 0;) {
   1403             *cp++ = PACK4(img->Bitdepth16To8[wp[0]],
   1404                 img->Bitdepth16To8[wp[1]],
   1405                 img->Bitdepth16To8[wp[2]],
   1406                 img->Bitdepth16To8[wp[3]]);
   1407             wp += samplesperpixel;
   1408         }
   1409         cp += toskew;
   1410         wp += fromskew;
   1411     }
   1412 }
   1413 
   1414 /*
   1415  * 16-bit packed samples => RGBA w/ unassociated alpha
   1416  * (known to have Map == NULL)
   1417  */
   1418 DECLAREContigPutFunc(putRGBUAcontig16bittile)
   1419 {
   1420     int samplesperpixel = img->samplesperpixel;
   1421     uint16 *wp = (uint16 *)pp;
   1422     (void) y;
   1423     fromskew *= samplesperpixel;
   1424     while (h-- > 0) {
   1425         uint32 r,g,b,a;
   1426         uint8* m;
   1427         for (x = w; x-- > 0;) {
   1428             a = img->Bitdepth16To8[wp[3]];
   1429             m = img->UaToAa+(a<<8);
   1430             r = m[img->Bitdepth16To8[wp[0]]];
   1431             g = m[img->Bitdepth16To8[wp[1]]];
   1432             b = m[img->Bitdepth16To8[wp[2]]];
   1433             *cp++ = PACK4(r,g,b,a);
   1434             wp += samplesperpixel;
   1435         }
   1436         cp += toskew;
   1437         wp += fromskew;
   1438     }
   1439 }
   1440 
   1441 /*
   1442  * 8-bit packed CMYK samples w/o Map => RGB
   1443  *
   1444  * NB: The conversion of CMYK->RGB is *very* crude.
   1445  */
   1446 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
   1447 {
   1448     int samplesperpixel = img->samplesperpixel;
   1449     uint16 r, g, b, k;
   1450 
   1451     (void) x; (void) y;
   1452     fromskew *= samplesperpixel;
   1453     while (h-- > 0) {
   1454     UNROLL8(w, NOP,
   1455         k = 255 - pp[3];
   1456         r = (k*(255-pp[0]))/255;
   1457         g = (k*(255-pp[1]))/255;
   1458         b = (k*(255-pp[2]))/255;
   1459         *cp++ = PACK(r, g, b);
   1460         pp += samplesperpixel);
   1461     cp += toskew;
   1462     pp += fromskew;
   1463     }
   1464 }
   1465 
   1466 /*
   1467  * 8-bit packed CMYK samples w/Map => RGB
   1468  *
   1469  * NB: The conversion of CMYK->RGB is *very* crude.
   1470  */
   1471 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
   1472 {
   1473     int samplesperpixel = img->samplesperpixel;
   1474     TIFFRGBValue* Map = img->Map;
   1475     uint16 r, g, b, k;
   1476 
   1477     (void) y;
   1478     fromskew *= samplesperpixel;
   1479     while (h-- > 0) {
   1480     for (x = w; x-- > 0;) {
   1481         k = 255 - pp[3];
   1482         r = (k*(255-pp[0]))/255;
   1483         g = (k*(255-pp[1]))/255;
   1484         b = (k*(255-pp[2]))/255;
   1485         *cp++ = PACK(Map[r], Map[g], Map[b]);
   1486         pp += samplesperpixel;
   1487     }
   1488     pp += fromskew;
   1489     cp += toskew;
   1490     }
   1491 }
   1492 
   1493 #define	DECLARESepPutFunc(name) \
   1494 static void name(\
   1495     TIFFRGBAImage* img,\
   1496     uint32* cp,\
   1497     uint32 x, uint32 y, \
   1498     uint32 w, uint32 h,\
   1499     int32 fromskew, int32 toskew,\
   1500     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
   1501 )
   1502 
   1503 /*
   1504  * 8-bit unpacked samples => RGB
   1505  */
   1506 DECLARESepPutFunc(putRGBseparate8bittile)
   1507 {
   1508     (void) img; (void) x; (void) y; (void) a;
   1509     while (h-- > 0) {
   1510     UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
   1511     SKEW(r, g, b, fromskew);
   1512     cp += toskew;
   1513     }
   1514 }
   1515 
   1516 /*
   1517  * 8-bit unpacked samples => RGBA w/ associated alpha
   1518  */
   1519 DECLARESepPutFunc(putRGBAAseparate8bittile)
   1520 {
   1521     (void) img; (void) x; (void) y;
   1522     while (h-- > 0) {
   1523         UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
   1524         SKEW4(r, g, b, a, fromskew);
   1525         cp += toskew;
   1526     }
   1527 }
   1528 
   1529 /*
   1530  * 8-bit unpacked CMYK samples => RGBA
   1531  */
   1532 DECLARESepPutFunc(putCMYKseparate8bittile)
   1533 {
   1534     (void) img; (void) y;
   1535     while (h-- > 0) {
   1536         uint32 rv, gv, bv, kv;
   1537         for (x = w; x-- > 0;) {
   1538             kv = 255 - *a++;
   1539             rv = (kv*(255-*r++))/255;
   1540             gv = (kv*(255-*g++))/255;
   1541             bv = (kv*(255-*b++))/255;
   1542             *cp++ = PACK4(rv,gv,bv,255);
   1543         }
   1544         SKEW4(r, g, b, a, fromskew);
   1545         cp += toskew;
   1546     }
   1547 }
   1548 
   1549 /*
   1550  * 8-bit unpacked samples => RGBA w/ unassociated alpha
   1551  */
   1552 DECLARESepPutFunc(putRGBUAseparate8bittile)
   1553 {
   1554     (void) img; (void) y;
   1555     while (h-- > 0) {
   1556         uint32 rv, gv, bv, av;
   1557         uint8* m;
   1558         for (x = w; x-- > 0;) {
   1559             av = *a++;
   1560             m = img->UaToAa+(av<<8);
   1561             rv = m[*r++];
   1562             gv = m[*g++];
   1563             bv = m[*b++];
   1564             *cp++ = PACK4(rv,gv,bv,av);
   1565         }
   1566         SKEW4(r, g, b, a, fromskew);
   1567         cp += toskew;
   1568     }
   1569 }
   1570 
   1571 /*
   1572  * 16-bit unpacked samples => RGB
   1573  */
   1574 DECLARESepPutFunc(putRGBseparate16bittile)
   1575 {
   1576     uint16 *wr = (uint16*) r;
   1577     uint16 *wg = (uint16*) g;
   1578     uint16 *wb = (uint16*) b;
   1579     (void) img; (void) y; (void) a;
   1580     while (h-- > 0) {
   1581         for (x = 0; x < w; x++)
   1582             *cp++ = PACK(img->Bitdepth16To8[*wr++],
   1583                 img->Bitdepth16To8[*wg++],
   1584                 img->Bitdepth16To8[*wb++]);
   1585         SKEW(wr, wg, wb, fromskew);
   1586         cp += toskew;
   1587     }
   1588 }
   1589 
   1590 /*
   1591  * 16-bit unpacked samples => RGBA w/ associated alpha
   1592  */
   1593 DECLARESepPutFunc(putRGBAAseparate16bittile)
   1594 {
   1595     uint16 *wr = (uint16*) r;
   1596     uint16 *wg = (uint16*) g;
   1597     uint16 *wb = (uint16*) b;
   1598     uint16 *wa = (uint16*) a;
   1599     (void) img; (void) y;
   1600     while (h-- > 0) {
   1601         for (x = 0; x < w; x++)
   1602             *cp++ = PACK4(img->Bitdepth16To8[*wr++],
   1603                 img->Bitdepth16To8[*wg++],
   1604                 img->Bitdepth16To8[*wb++],
   1605                 img->Bitdepth16To8[*wa++]);
   1606         SKEW4(wr, wg, wb, wa, fromskew);
   1607         cp += toskew;
   1608     }
   1609 }
   1610 
   1611 /*
   1612  * 16-bit unpacked samples => RGBA w/ unassociated alpha
   1613  */
   1614 DECLARESepPutFunc(putRGBUAseparate16bittile)
   1615 {
   1616     uint16 *wr = (uint16*) r;
   1617     uint16 *wg = (uint16*) g;
   1618     uint16 *wb = (uint16*) b;
   1619     uint16 *wa = (uint16*) a;
   1620     (void) img; (void) y;
   1621     while (h-- > 0) {
   1622         uint32 r,g,b,a;
   1623         uint8* m;
   1624         for (x = w; x-- > 0;) {
   1625             a = img->Bitdepth16To8[*wa++];
   1626             m = img->UaToAa+(a<<8);
   1627             r = m[img->Bitdepth16To8[*wr++]];
   1628             g = m[img->Bitdepth16To8[*wg++]];
   1629             b = m[img->Bitdepth16To8[*wb++]];
   1630             *cp++ = PACK4(r,g,b,a);
   1631         }
   1632         SKEW4(wr, wg, wb, wa, fromskew);
   1633         cp += toskew;
   1634     }
   1635 }
   1636 
   1637 /*
   1638  * 8-bit packed CIE L*a*b 1976 samples => RGB
   1639  */
   1640 DECLAREContigPutFunc(putcontig8bitCIELab)
   1641 {
   1642     float X, Y, Z;
   1643     uint32 r, g, b;
   1644     (void) y;
   1645     fromskew *= 3;
   1646     while (h-- > 0) {
   1647         for (x = w; x-- > 0;) {
   1648             TIFFCIELabToXYZ(img->cielab,
   1649                     (unsigned char)pp[0],
   1650                     (signed char)pp[1],
   1651                     (signed char)pp[2],
   1652                     &X, &Y, &Z);
   1653             TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
   1654             *cp++ = PACK(r, g, b);
   1655             pp += 3;
   1656         }
   1657         cp += toskew;
   1658         pp += fromskew;
   1659     }
   1660 }
   1661 
   1662 /*
   1663  * YCbCr -> RGB conversion and packing routines.
   1664  */
   1665 
   1666 #define	YCbCrtoRGB(dst, Y) {						\
   1667     uint32 r, g, b;							\
   1668     TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
   1669     dst = PACK(r, g, b);						\
   1670 }
   1671 
   1672 /*
   1673  * 8-bit packed YCbCr samples => RGB
   1674  * This function is generic for different sampling sizes,
   1675  * and can handle blocks sizes that aren't multiples of the
   1676  * sampling size.  However, it is substantially less optimized
   1677  * than the specific sampling cases.  It is used as a fallback
   1678  * for difficult blocks.
   1679  */
   1680 #ifdef notdef
   1681 static void putcontig8bitYCbCrGenericTile(
   1682     TIFFRGBAImage* img,
   1683     uint32* cp,
   1684     uint32 x, uint32 y,
   1685     uint32 w, uint32 h,
   1686     int32 fromskew, int32 toskew,
   1687     unsigned char* pp,
   1688     int h_group,
   1689     int v_group )
   1690 
   1691 {
   1692     uint32* cp1 = cp+w+toskew;
   1693     uint32* cp2 = cp1+w+toskew;
   1694     uint32* cp3 = cp2+w+toskew;
   1695     int32 incr = 3*w+4*toskew;
   1696     int32   Cb, Cr;
   1697     int     group_size = v_group * h_group + 2;
   1698 
   1699     (void) y;
   1700     fromskew = (fromskew * group_size) / h_group;
   1701 
   1702     for( yy = 0; yy < h; yy++ )
   1703     {
   1704         unsigned char *pp_line;
   1705         int     y_line_group = yy / v_group;
   1706         int     y_remainder = yy - y_line_group * v_group;
   1707 
   1708         pp_line = pp + v_line_group *
   1709 
   1710 
   1711         for( xx = 0; xx < w; xx++ )
   1712         {
   1713             Cb = pp
   1714         }
   1715     }
   1716     for (; h >= 4; h -= 4) {
   1717     x = w>>2;
   1718     do {
   1719         Cb = pp[16];
   1720         Cr = pp[17];
   1721 
   1722         YCbCrtoRGB(cp [0], pp[ 0]);
   1723         YCbCrtoRGB(cp [1], pp[ 1]);
   1724         YCbCrtoRGB(cp [2], pp[ 2]);
   1725         YCbCrtoRGB(cp [3], pp[ 3]);
   1726         YCbCrtoRGB(cp1[0], pp[ 4]);
   1727         YCbCrtoRGB(cp1[1], pp[ 5]);
   1728         YCbCrtoRGB(cp1[2], pp[ 6]);
   1729         YCbCrtoRGB(cp1[3], pp[ 7]);
   1730         YCbCrtoRGB(cp2[0], pp[ 8]);
   1731         YCbCrtoRGB(cp2[1], pp[ 9]);
   1732         YCbCrtoRGB(cp2[2], pp[10]);
   1733         YCbCrtoRGB(cp2[3], pp[11]);
   1734         YCbCrtoRGB(cp3[0], pp[12]);
   1735         YCbCrtoRGB(cp3[1], pp[13]);
   1736         YCbCrtoRGB(cp3[2], pp[14]);
   1737         YCbCrtoRGB(cp3[3], pp[15]);
   1738 
   1739         cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
   1740         pp += 18;
   1741     } while (--x);
   1742     cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
   1743     pp += fromskew;
   1744     }
   1745 }
   1746 #endif
   1747 
   1748 /*
   1749  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
   1750  */
   1751 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
   1752 {
   1753     uint32* cp1 = cp+w+toskew;
   1754     uint32* cp2 = cp1+w+toskew;
   1755     uint32* cp3 = cp2+w+toskew;
   1756     int32 incr = 3*w+4*toskew;
   1757 
   1758     (void) y;
   1759     /* adjust fromskew */
   1760     fromskew = (fromskew * 18) / 4;
   1761     if ((h & 3) == 0 && (w & 3) == 0) {
   1762         for (; h >= 4; h -= 4) {
   1763             x = w>>2;
   1764             do {
   1765                 int32 Cb = pp[16];
   1766                 int32 Cr = pp[17];
   1767 
   1768                 YCbCrtoRGB(cp [0], pp[ 0]);
   1769                 YCbCrtoRGB(cp [1], pp[ 1]);
   1770                 YCbCrtoRGB(cp [2], pp[ 2]);
   1771                 YCbCrtoRGB(cp [3], pp[ 3]);
   1772                 YCbCrtoRGB(cp1[0], pp[ 4]);
   1773                 YCbCrtoRGB(cp1[1], pp[ 5]);
   1774                 YCbCrtoRGB(cp1[2], pp[ 6]);
   1775                 YCbCrtoRGB(cp1[3], pp[ 7]);
   1776                 YCbCrtoRGB(cp2[0], pp[ 8]);
   1777                 YCbCrtoRGB(cp2[1], pp[ 9]);
   1778                 YCbCrtoRGB(cp2[2], pp[10]);
   1779                 YCbCrtoRGB(cp2[3], pp[11]);
   1780                 YCbCrtoRGB(cp3[0], pp[12]);
   1781                 YCbCrtoRGB(cp3[1], pp[13]);
   1782                 YCbCrtoRGB(cp3[2], pp[14]);
   1783                 YCbCrtoRGB(cp3[3], pp[15]);
   1784 
   1785                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
   1786                 pp += 18;
   1787             } while (--x);
   1788             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
   1789             pp += fromskew;
   1790         }
   1791     } else {
   1792         while (h > 0) {
   1793             for (x = w; x > 0;) {
   1794                 int32 Cb = pp[16];
   1795                 int32 Cr = pp[17];
   1796                 switch (x) {
   1797                 default:
   1798                     switch (h) {
   1799                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
   1800                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
   1801                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
   1802                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
   1803                     }                                    /* FALLTHROUGH */
   1804                 case 3:
   1805                     switch (h) {
   1806                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
   1807                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
   1808                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
   1809                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
   1810                     }                                    /* FALLTHROUGH */
   1811                 case 2:
   1812                     switch (h) {
   1813                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
   1814                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
   1815                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
   1816                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
   1817                     }                                    /* FALLTHROUGH */
   1818                 case 1:
   1819                     switch (h) {
   1820                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
   1821                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
   1822                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
   1823                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
   1824                     }                                    /* FALLTHROUGH */
   1825                 }
   1826                 if (x < 4) {
   1827                     cp += x; cp1 += x; cp2 += x; cp3 += x;
   1828                     x = 0;
   1829                 }
   1830                 else {
   1831                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
   1832                     x -= 4;
   1833                 }
   1834                 pp += 18;
   1835             }
   1836             if (h <= 4)
   1837                 break;
   1838             h -= 4;
   1839             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
   1840             pp += fromskew;
   1841         }
   1842     }
   1843 }
   1844 
   1845 /*
   1846  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
   1847  */
   1848 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
   1849 {
   1850     uint32* cp1 = cp+w+toskew;
   1851     int32 incr = 2*toskew+w;
   1852 
   1853     (void) y;
   1854     fromskew = (fromskew * 10) / 4;
   1855     if ((h & 3) == 0 && (w & 1) == 0) {
   1856         for (; h >= 2; h -= 2) {
   1857             x = w>>2;
   1858             do {
   1859                 int32 Cb = pp[8];
   1860                 int32 Cr = pp[9];
   1861 
   1862                 YCbCrtoRGB(cp [0], pp[0]);
   1863                 YCbCrtoRGB(cp [1], pp[1]);
   1864                 YCbCrtoRGB(cp [2], pp[2]);
   1865                 YCbCrtoRGB(cp [3], pp[3]);
   1866                 YCbCrtoRGB(cp1[0], pp[4]);
   1867                 YCbCrtoRGB(cp1[1], pp[5]);
   1868                 YCbCrtoRGB(cp1[2], pp[6]);
   1869                 YCbCrtoRGB(cp1[3], pp[7]);
   1870 
   1871                 cp += 4, cp1 += 4;
   1872                 pp += 10;
   1873             } while (--x);
   1874             cp += incr, cp1 += incr;
   1875             pp += fromskew;
   1876         }
   1877     } else {
   1878         while (h > 0) {
   1879             for (x = w; x > 0;) {
   1880                 int32 Cb = pp[8];
   1881                 int32 Cr = pp[9];
   1882                 switch (x) {
   1883                 default:
   1884                     switch (h) {
   1885                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
   1886                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
   1887                     }                                    /* FALLTHROUGH */
   1888                 case 3:
   1889                     switch (h) {
   1890                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
   1891                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
   1892                     }                                    /* FALLTHROUGH */
   1893                 case 2:
   1894                     switch (h) {
   1895                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
   1896                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
   1897                     }                                    /* FALLTHROUGH */
   1898                 case 1:
   1899                     switch (h) {
   1900                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
   1901                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
   1902                     }                                    /* FALLTHROUGH */
   1903                 }
   1904                 if (x < 4) {
   1905                     cp += x; cp1 += x;
   1906                     x = 0;
   1907                 }
   1908                 else {
   1909                     cp += 4; cp1 += 4;
   1910                     x -= 4;
   1911                 }
   1912                 pp += 10;
   1913             }
   1914             if (h <= 2)
   1915                 break;
   1916             h -= 2;
   1917             cp += incr, cp1 += incr;
   1918             pp += fromskew;
   1919         }
   1920     }
   1921 }
   1922 
   1923 /*
   1924  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
   1925  */
   1926 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
   1927 {
   1928     (void) y;
   1929     /* XXX adjust fromskew */
   1930     do {
   1931     x = w>>2;
   1932     do {
   1933         int32 Cb = pp[4];
   1934         int32 Cr = pp[5];
   1935 
   1936         YCbCrtoRGB(cp [0], pp[0]);
   1937         YCbCrtoRGB(cp [1], pp[1]);
   1938         YCbCrtoRGB(cp [2], pp[2]);
   1939         YCbCrtoRGB(cp [3], pp[3]);
   1940 
   1941         cp += 4;
   1942         pp += 6;
   1943     } while (--x);
   1944 
   1945         if( (w&3) != 0 )
   1946         {
   1947         int32 Cb = pp[4];
   1948         int32 Cr = pp[5];
   1949 
   1950             switch( (w&3) ) {
   1951               case 3: YCbCrtoRGB(cp [2], pp[2]);
   1952               case 2: YCbCrtoRGB(cp [1], pp[1]);
   1953               case 1: YCbCrtoRGB(cp [0], pp[0]);
   1954               case 0: break;
   1955             }
   1956 
   1957             cp += (w&3);
   1958             pp += 6;
   1959         }
   1960 
   1961     cp += toskew;
   1962     pp += fromskew;
   1963     } while (--h);
   1964 
   1965 }
   1966 
   1967 /*
   1968  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
   1969  */
   1970 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
   1971 {
   1972     uint32* cp2;
   1973     int32 incr = 2*toskew+w;
   1974     (void) y;
   1975     fromskew = (fromskew / 2) * 6;
   1976     cp2 = cp+w+toskew;
   1977     while (h>=2) {
   1978         x = w;
   1979         while (x>=2) {
   1980             uint32 Cb = pp[4];
   1981             uint32 Cr = pp[5];
   1982             YCbCrtoRGB(cp[0], pp[0]);
   1983             YCbCrtoRGB(cp[1], pp[1]);
   1984             YCbCrtoRGB(cp2[0], pp[2]);
   1985             YCbCrtoRGB(cp2[1], pp[3]);
   1986             cp += 2;
   1987             cp2 += 2;
   1988             pp += 6;
   1989             x -= 2;
   1990         }
   1991         if (x==1) {
   1992             uint32 Cb = pp[4];
   1993             uint32 Cr = pp[5];
   1994             YCbCrtoRGB(cp[0], pp[0]);
   1995             YCbCrtoRGB(cp2[0], pp[2]);
   1996             cp ++ ;
   1997             cp2 ++ ;
   1998             pp += 6;
   1999         }
   2000         cp += incr;
   2001         cp2 += incr;
   2002         pp += fromskew;
   2003         h-=2;
   2004     }
   2005     if (h==1) {
   2006         x = w;
   2007         while (x>=2) {
   2008             uint32 Cb = pp[4];
   2009             uint32 Cr = pp[5];
   2010             YCbCrtoRGB(cp[0], pp[0]);
   2011             YCbCrtoRGB(cp[1], pp[1]);
   2012             cp += 2;
   2013             cp2 += 2;
   2014             pp += 6;
   2015             x -= 2;
   2016         }
   2017         if (x==1) {
   2018             uint32 Cb = pp[4];
   2019             uint32 Cr = pp[5];
   2020             YCbCrtoRGB(cp[0], pp[0]);
   2021         }
   2022     }
   2023 }
   2024 
   2025 /*
   2026  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
   2027  */
   2028 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
   2029 {
   2030     (void) y;
   2031     fromskew = (fromskew * 4) / 2;
   2032     do {
   2033         x = w>>1;
   2034         do {
   2035             int32 Cb = pp[2];
   2036             int32 Cr = pp[3];
   2037 
   2038             YCbCrtoRGB(cp[0], pp[0]);
   2039             YCbCrtoRGB(cp[1], pp[1]);
   2040 
   2041             cp += 2;
   2042             pp += 4;
   2043         } while (--x);
   2044 
   2045         if( (w&1) != 0 )
   2046         {
   2047             int32 Cb = pp[2];
   2048             int32 Cr = pp[3];
   2049 
   2050             YCbCrtoRGB(cp[0], pp[0]);
   2051 
   2052             cp += 1;
   2053             pp += 4;
   2054         }
   2055 
   2056         cp += toskew;
   2057         pp += fromskew;
   2058     } while (--h);
   2059 }
   2060 
   2061 /*
   2062  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
   2063  */
   2064 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
   2065 {
   2066     uint32* cp2;
   2067     int32 incr = 2*toskew+w;
   2068     (void) y;
   2069     fromskew = (fromskew / 2) * 4;
   2070     cp2 = cp+w+toskew;
   2071     while (h>=2) {
   2072         x = w;
   2073         do {
   2074             uint32 Cb = pp[2];
   2075             uint32 Cr = pp[3];
   2076             YCbCrtoRGB(cp[0], pp[0]);
   2077             YCbCrtoRGB(cp2[0], pp[1]);
   2078             cp ++;
   2079             cp2 ++;
   2080             pp += 4;
   2081         } while (--x);
   2082         cp += incr;
   2083         cp2 += incr;
   2084         pp += fromskew;
   2085         h-=2;
   2086     }
   2087     if (h==1) {
   2088         x = w;
   2089         do {
   2090             uint32 Cb = pp[2];
   2091             uint32 Cr = pp[3];
   2092             YCbCrtoRGB(cp[0], pp[0]);
   2093             cp ++;
   2094             pp += 4;
   2095         } while (--x);
   2096     }
   2097 }
   2098 
   2099 /*
   2100  * 8-bit packed YCbCr samples w/ no subsampling => RGB
   2101  */
   2102 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
   2103 {
   2104     (void) y;
   2105     fromskew *= 3;
   2106     do {
   2107         x = w; /* was x = w>>1; patched 2000/09/25 warmerda (at) home.com */
   2108         do {
   2109             int32 Cb = pp[1];
   2110             int32 Cr = pp[2];
   2111 
   2112             YCbCrtoRGB(*cp++, pp[0]);
   2113 
   2114             pp += 3;
   2115         } while (--x);
   2116         cp += toskew;
   2117         pp += fromskew;
   2118     } while (--h);
   2119 }
   2120 
   2121 /*
   2122  * 8-bit packed YCbCr samples w/ no subsampling => RGB
   2123  */
   2124 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
   2125 {
   2126     (void) y;
   2127     (void) a;
   2128     /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
   2129     while (h-- > 0) {
   2130         x = w;
   2131         do {
   2132             uint32 dr, dg, db;
   2133             TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
   2134             *cp++ = PACK(dr,dg,db);
   2135         } while (--x);
   2136         SKEW(r, g, b, fromskew);
   2137         cp += toskew;
   2138     }
   2139 }
   2140 #undef YCbCrtoRGB
   2141 
   2142 static int
   2143 initYCbCrConversion(TIFFRGBAImage* img)
   2144 {
   2145     static const char module[] = "initYCbCrConversion";
   2146 
   2147     float *luma, *refBlackWhite;
   2148 
   2149     if (img->ycbcr == NULL) {
   2150         img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
   2151             TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
   2152             + 4*256*sizeof (TIFFRGBValue)
   2153             + 2*256*sizeof (int)
   2154             + 3*256*sizeof (int32)
   2155             );
   2156         if (img->ycbcr == NULL) {
   2157             TIFFErrorExt(img->tif->tif_clientdata, module,
   2158                 "No space for YCbCr->RGB conversion state");
   2159             return (0);
   2160         }
   2161     }
   2162 
   2163     TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
   2164     TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
   2165         &refBlackWhite);
   2166     if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
   2167         return(0);
   2168     return (1);
   2169 }
   2170 
   2171 static tileContigRoutine
   2172 initCIELabConversion(TIFFRGBAImage* img)
   2173 {
   2174     static const char module[] = "initCIELabConversion";
   2175 
   2176     float   *whitePoint;
   2177     float   refWhite[3];
   2178 
   2179     if (!img->cielab) {
   2180         img->cielab = (TIFFCIELabToRGB *)
   2181             _TIFFmalloc(sizeof(TIFFCIELabToRGB));
   2182         if (!img->cielab) {
   2183             TIFFErrorExt(img->tif->tif_clientdata, module,
   2184                 "No space for CIE L*a*b*->RGB conversion state.");
   2185             return NULL;
   2186         }
   2187     }
   2188 
   2189     TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
   2190     refWhite[1] = 100.0F;
   2191     refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
   2192     refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
   2193               / whitePoint[1] * refWhite[1];
   2194     if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
   2195         TIFFErrorExt(img->tif->tif_clientdata, module,
   2196             "Failed to initialize CIE L*a*b*->RGB conversion state.");
   2197         _TIFFfree(img->cielab);
   2198         return NULL;
   2199     }
   2200 
   2201     return putcontig8bitCIELab;
   2202 }
   2203 
   2204 /*
   2205  * Greyscale images with less than 8 bits/sample are handled
   2206  * with a table to avoid lots of shifts and masks.  The table
   2207  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
   2208  * pixel values simply by indexing into the table with one
   2209  * number.
   2210  */
   2211 static int
   2212 makebwmap(TIFFRGBAImage* img)
   2213 {
   2214     TIFFRGBValue* Map = img->Map;
   2215     int bitspersample = img->bitspersample;
   2216     int nsamples = 8 / bitspersample;
   2217     int i;
   2218     uint32* p;
   2219 
   2220     if( nsamples == 0 )
   2221         nsamples = 1;
   2222 
   2223     img->BWmap = (uint32**) _TIFFmalloc(
   2224     256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
   2225     if (img->BWmap == NULL) {
   2226         TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
   2227         return (0);
   2228     }
   2229     p = (uint32*)(img->BWmap + 256);
   2230     for (i = 0; i < 256; i++) {
   2231     TIFFRGBValue c;
   2232     img->BWmap[i] = p;
   2233     switch (bitspersample) {
   2234 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
   2235     case 1:
   2236         GREY(i>>7);
   2237         GREY((i>>6)&1);
   2238         GREY((i>>5)&1);
   2239         GREY((i>>4)&1);
   2240         GREY((i>>3)&1);
   2241         GREY((i>>2)&1);
   2242         GREY((i>>1)&1);
   2243         GREY(i&1);
   2244         break;
   2245     case 2:
   2246         GREY(i>>6);
   2247         GREY((i>>4)&3);
   2248         GREY((i>>2)&3);
   2249         GREY(i&3);
   2250         break;
   2251     case 4:
   2252         GREY(i>>4);
   2253         GREY(i&0xf);
   2254         break;
   2255     case 8:
   2256         case 16:
   2257         GREY(i);
   2258         break;
   2259     }
   2260 #undef	GREY
   2261     }
   2262     return (1);
   2263 }
   2264 
   2265 /*
   2266  * Construct a mapping table to convert from the range
   2267  * of the data samples to [0,255] --for display.  This
   2268  * process also handles inverting B&W images when needed.
   2269  */
   2270 static int
   2271 setupMap(TIFFRGBAImage* img)
   2272 {
   2273     int32 x, range;
   2274 
   2275     range = (int32)((1L<<img->bitspersample)-1);
   2276 
   2277     /* treat 16 bit the same as eight bit */
   2278     if( img->bitspersample == 16 )
   2279         range = (int32) 255;
   2280 
   2281     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
   2282     if (img->Map == NULL) {
   2283         TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
   2284             "No space for photometric conversion table");
   2285         return (0);
   2286     }
   2287     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
   2288     for (x = 0; x <= range; x++)
   2289         img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
   2290     } else {
   2291     for (x = 0; x <= range; x++)
   2292         img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
   2293     }
   2294     if (img->bitspersample <= 16 &&
   2295     (img->photometric == PHOTOMETRIC_MINISBLACK ||
   2296      img->photometric == PHOTOMETRIC_MINISWHITE)) {
   2297     /*
   2298      * Use photometric mapping table to construct
   2299      * unpacking tables for samples <= 8 bits.
   2300      */
   2301     if (!makebwmap(img))
   2302         return (0);
   2303     /* no longer need Map, free it */
   2304     _TIFFfree(img->Map), img->Map = NULL;
   2305     }
   2306     return (1);
   2307 }
   2308 
   2309 static int
   2310 checkcmap(TIFFRGBAImage* img)
   2311 {
   2312     uint16* r = img->redcmap;
   2313     uint16* g = img->greencmap;
   2314     uint16* b = img->bluecmap;
   2315     long n = 1L<<img->bitspersample;
   2316 
   2317     while (n-- > 0)
   2318     if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
   2319         return (16);
   2320     return (8);
   2321 }
   2322 
   2323 static void
   2324 cvtcmap(TIFFRGBAImage* img)
   2325 {
   2326     uint16* r = img->redcmap;
   2327     uint16* g = img->greencmap;
   2328     uint16* b = img->bluecmap;
   2329     long i;
   2330 
   2331     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
   2332 #define	CVT(x)		((uint16)((x)>>8))
   2333     r[i] = CVT(r[i]);
   2334     g[i] = CVT(g[i]);
   2335     b[i] = CVT(b[i]);
   2336 #undef	CVT
   2337     }
   2338 }
   2339 
   2340 /*
   2341  * Palette images with <= 8 bits/sample are handled
   2342  * with a table to avoid lots of shifts and masks.  The table
   2343  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
   2344  * pixel values simply by indexing into the table with one
   2345  * number.
   2346  */
   2347 static int
   2348 makecmap(TIFFRGBAImage* img)
   2349 {
   2350     int bitspersample = img->bitspersample;
   2351     int nsamples = 8 / bitspersample;
   2352     uint16* r = img->redcmap;
   2353     uint16* g = img->greencmap;
   2354     uint16* b = img->bluecmap;
   2355     uint32 *p;
   2356     int i;
   2357 
   2358     img->PALmap = (uint32**) _TIFFmalloc(
   2359     256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
   2360     if (img->PALmap == NULL) {
   2361         TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
   2362         return (0);
   2363     }
   2364     p = (uint32*)(img->PALmap + 256);
   2365     for (i = 0; i < 256; i++) {
   2366     TIFFRGBValue c;
   2367     img->PALmap[i] = p;
   2368 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
   2369     switch (bitspersample) {
   2370     case 1:
   2371         CMAP(i>>7);
   2372         CMAP((i>>6)&1);
   2373         CMAP((i>>5)&1);
   2374         CMAP((i>>4)&1);
   2375         CMAP((i>>3)&1);
   2376         CMAP((i>>2)&1);
   2377         CMAP((i>>1)&1);
   2378         CMAP(i&1);
   2379         break;
   2380     case 2:
   2381         CMAP(i>>6);
   2382         CMAP((i>>4)&3);
   2383         CMAP((i>>2)&3);
   2384         CMAP(i&3);
   2385         break;
   2386     case 4:
   2387         CMAP(i>>4);
   2388         CMAP(i&0xf);
   2389         break;
   2390     case 8:
   2391         CMAP(i);
   2392         break;
   2393     }
   2394 #undef CMAP
   2395     }
   2396     return (1);
   2397 }
   2398 
   2399 /*
   2400  * Construct any mapping table used
   2401  * by the associated put routine.
   2402  */
   2403 static int
   2404 buildMap(TIFFRGBAImage* img)
   2405 {
   2406     switch (img->photometric) {
   2407     case PHOTOMETRIC_RGB:
   2408     case PHOTOMETRIC_YCBCR:
   2409     case PHOTOMETRIC_SEPARATED:
   2410     if (img->bitspersample == 8)
   2411         break;
   2412     /* fall thru... */
   2413     case PHOTOMETRIC_MINISBLACK:
   2414     case PHOTOMETRIC_MINISWHITE:
   2415     if (!setupMap(img))
   2416         return (0);
   2417     break;
   2418     case PHOTOMETRIC_PALETTE:
   2419     /*
   2420      * Convert 16-bit colormap to 8-bit (unless it looks
   2421      * like an old-style 8-bit colormap).
   2422      */
   2423     if (checkcmap(img) == 16)
   2424         cvtcmap(img);
   2425     else
   2426         TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
   2427     /*
   2428      * Use mapping table and colormap to construct
   2429      * unpacking tables for samples < 8 bits.
   2430      */
   2431     if (img->bitspersample <= 8 && !makecmap(img))
   2432         return (0);
   2433     break;
   2434     }
   2435     return (1);
   2436 }
   2437 
   2438 /*
   2439  * Select the appropriate conversion routine for packed data.
   2440  */
   2441 static int
   2442 PickContigCase(TIFFRGBAImage* img)
   2443 {
   2444     img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
   2445     img->put.contig = NULL;
   2446     switch (img->photometric) {
   2447         case PHOTOMETRIC_RGB:
   2448             switch (img->bitspersample) {
   2449                 case 8:
   2450                     if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2451                         img->put.contig = putRGBAAcontig8bittile;
   2452                     else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2453                     {
   2454                         if (BuildMapUaToAa(img))
   2455                             img->put.contig = putRGBUAcontig8bittile;
   2456                     }
   2457                     else
   2458                         img->put.contig = putRGBcontig8bittile;
   2459                     break;
   2460                 case 16:
   2461                     if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2462                     {
   2463                         if (BuildMapBitdepth16To8(img))
   2464                             img->put.contig = putRGBAAcontig16bittile;
   2465                     }
   2466                     else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2467                     {
   2468                         if (BuildMapBitdepth16To8(img) &&
   2469                             BuildMapUaToAa(img))
   2470                             img->put.contig = putRGBUAcontig16bittile;
   2471                     }
   2472                     else
   2473                     {
   2474                         if (BuildMapBitdepth16To8(img))
   2475                             img->put.contig = putRGBcontig16bittile;
   2476                     }
   2477                     break;
   2478             }
   2479             break;
   2480         case PHOTOMETRIC_SEPARATED:
   2481             if (buildMap(img)) {
   2482                 if (img->bitspersample == 8) {
   2483                     if (!img->Map)
   2484                         img->put.contig = putRGBcontig8bitCMYKtile;
   2485                     else
   2486                         img->put.contig = putRGBcontig8bitCMYKMaptile;
   2487                 }
   2488             }
   2489             break;
   2490         case PHOTOMETRIC_PALETTE:
   2491             if (buildMap(img)) {
   2492                 switch (img->bitspersample) {
   2493                     case 8:
   2494                         img->put.contig = put8bitcmaptile;
   2495                         break;
   2496                     case 4:
   2497                         img->put.contig = put4bitcmaptile;
   2498                         break;
   2499                     case 2:
   2500                         img->put.contig = put2bitcmaptile;
   2501                         break;
   2502                     case 1:
   2503                         img->put.contig = put1bitcmaptile;
   2504                         break;
   2505                 }
   2506             }
   2507             break;
   2508         case PHOTOMETRIC_MINISWHITE:
   2509         case PHOTOMETRIC_MINISBLACK:
   2510             if (buildMap(img)) {
   2511                 switch (img->bitspersample) {
   2512                     case 16:
   2513                         img->put.contig = put16bitbwtile;
   2514                         break;
   2515                     case 8:
   2516                         if (img->alpha && img->samplesperpixel == 2)
   2517                             img->put.contig = putagreytile;
   2518                         else
   2519                             img->put.contig = putgreytile;
   2520                         break;
   2521                     case 4:
   2522                         img->put.contig = put4bitbwtile;
   2523                         break;
   2524                     case 2:
   2525                         img->put.contig = put2bitbwtile;
   2526                         break;
   2527                     case 1:
   2528                         img->put.contig = put1bitbwtile;
   2529                         break;
   2530                 }
   2531             }
   2532             break;
   2533         case PHOTOMETRIC_YCBCR:
   2534             if ((img->bitspersample==8) && (img->samplesperpixel==3))
   2535             {
   2536                 if (initYCbCrConversion(img)!=0)
   2537                 {
   2538                     /*
   2539                      * The 6.0 spec says that subsampling must be
   2540                      * one of 1, 2, or 4, and that vertical subsampling
   2541                      * must always be <= horizontal subsampling; so
   2542                      * there are only a few possibilities and we just
   2543                      * enumerate the cases.
   2544                      * Joris: added support for the [1,2] case, nonetheless, to accomodate
   2545                      * some OJPEG files
   2546                      */
   2547                     uint16 SubsamplingHor;
   2548                     uint16 SubsamplingVer;
   2549                     TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
   2550                     switch ((SubsamplingHor<<4)|SubsamplingVer) {
   2551                         case 0x44:
   2552                             img->put.contig = putcontig8bitYCbCr44tile;
   2553                             break;
   2554                         case 0x42:
   2555                             img->put.contig = putcontig8bitYCbCr42tile;
   2556                             break;
   2557                         case 0x41:
   2558                             img->put.contig = putcontig8bitYCbCr41tile;
   2559                             break;
   2560                         case 0x22:
   2561                             img->put.contig = putcontig8bitYCbCr22tile;
   2562                             break;
   2563                         case 0x21:
   2564                             img->put.contig = putcontig8bitYCbCr21tile;
   2565                             break;
   2566                         case 0x12:
   2567                             img->put.contig = putcontig8bitYCbCr12tile;
   2568                             break;
   2569                         case 0x11:
   2570                             img->put.contig = putcontig8bitYCbCr11tile;
   2571                             break;
   2572                     }
   2573                 }
   2574             }
   2575             break;
   2576         case PHOTOMETRIC_CIELAB:
   2577             if (buildMap(img)) {
   2578                 if (img->bitspersample == 8)
   2579                     img->put.contig = initCIELabConversion(img);
   2580                 break;
   2581             }
   2582     }
   2583     return ((img->get!=NULL) && (img->put.contig!=NULL));
   2584 }
   2585 
   2586 /*
   2587  * Select the appropriate conversion routine for unpacked data.
   2588  *
   2589  * NB: we assume that unpacked single channel data is directed
   2590  *	 to the "packed routines.
   2591  */
   2592 static int
   2593 PickSeparateCase(TIFFRGBAImage* img)
   2594 {
   2595     img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
   2596     img->put.separate = NULL;
   2597     switch (img->photometric) {
   2598     case PHOTOMETRIC_MINISWHITE:
   2599     case PHOTOMETRIC_MINISBLACK:
   2600         /* greyscale images processed pretty much as RGB by gtTileSeparate */
   2601     case PHOTOMETRIC_RGB:
   2602         switch (img->bitspersample) {
   2603         case 8:
   2604             if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2605                 img->put.separate = putRGBAAseparate8bittile;
   2606             else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2607             {
   2608                 if (BuildMapUaToAa(img))
   2609                     img->put.separate = putRGBUAseparate8bittile;
   2610             }
   2611             else
   2612                 img->put.separate = putRGBseparate8bittile;
   2613             break;
   2614         case 16:
   2615             if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2616             {
   2617                 if (BuildMapBitdepth16To8(img))
   2618                     img->put.separate = putRGBAAseparate16bittile;
   2619             }
   2620             else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2621             {
   2622                 if (BuildMapBitdepth16To8(img) &&
   2623                     BuildMapUaToAa(img))
   2624                     img->put.separate = putRGBUAseparate16bittile;
   2625             }
   2626             else
   2627             {
   2628                 if (BuildMapBitdepth16To8(img))
   2629                     img->put.separate = putRGBseparate16bittile;
   2630             }
   2631             break;
   2632         }
   2633         break;
   2634     case PHOTOMETRIC_SEPARATED:
   2635         if (img->bitspersample == 8 && img->samplesperpixel == 4)
   2636         {
   2637             img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
   2638             img->put.separate = putCMYKseparate8bittile;
   2639         }
   2640         break;
   2641     case PHOTOMETRIC_YCBCR:
   2642         if ((img->bitspersample==8) && (img->samplesperpixel==3))
   2643         {
   2644             if (initYCbCrConversion(img)!=0)
   2645             {
   2646                 uint16 hs, vs;
   2647                 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
   2648                 switch ((hs<<4)|vs) {
   2649                 case 0x11:
   2650                     img->put.separate = putseparate8bitYCbCr11tile;
   2651                     break;
   2652                     /* TODO: add other cases here */
   2653                 }
   2654             }
   2655         }
   2656         break;
   2657     }
   2658     return ((img->get!=NULL) && (img->put.separate!=NULL));
   2659 }
   2660 
   2661 static int
   2662 BuildMapUaToAa(TIFFRGBAImage* img)
   2663 {
   2664     static const char module[]="BuildMapUaToAa";
   2665     uint8* m;
   2666     uint16 na,nv;
   2667     assert(img->UaToAa==NULL);
   2668     img->UaToAa=_TIFFmalloc(65536);
   2669     if (img->UaToAa==NULL)
   2670     {
   2671         TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
   2672         return(0);
   2673     }
   2674     m=img->UaToAa;
   2675     for (na=0; na<256; na++)
   2676     {
   2677         for (nv=0; nv<256; nv++)
   2678             *m++=(nv*na+127)/255;
   2679     }
   2680     return(1);
   2681 }
   2682 
   2683 static int
   2684 BuildMapBitdepth16To8(TIFFRGBAImage* img)
   2685 {
   2686     static const char module[]="BuildMapBitdepth16To8";
   2687     uint8* m;
   2688     uint32 n;
   2689     assert(img->Bitdepth16To8==NULL);
   2690     img->Bitdepth16To8=_TIFFmalloc(65536);
   2691     if (img->Bitdepth16To8==NULL)
   2692     {
   2693         TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
   2694         return(0);
   2695     }
   2696     m=img->Bitdepth16To8;
   2697     for (n=0; n<65536; n++)
   2698         *m++=(n+128)/257;
   2699     return(1);
   2700 }
   2701 
   2702 
   2703 /*
   2704  * Read a whole strip off data from the file, and convert to RGBA form.
   2705  * If this is the last strip, then it will only contain the portion of
   2706  * the strip that is actually within the image space.  The result is
   2707  * organized in bottom to top form.
   2708  */
   2709 
   2710 
   2711 int
   2712 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
   2713 
   2714 {
   2715     char 	emsg[1024] = "";
   2716     TIFFRGBAImage img;
   2717     int 	ok;
   2718     uint32	rowsperstrip, rows_to_read;
   2719 
   2720     if( TIFFIsTiled( tif ) )
   2721     {
   2722         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2723                   "Can't use TIFFReadRGBAStrip() with tiled file.");
   2724     return (0);
   2725     }
   2726 
   2727     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
   2728     if( (row % rowsperstrip) != 0 )
   2729     {
   2730         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2731                 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
   2732         return (0);
   2733     }
   2734 
   2735     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
   2736 
   2737         img.row_offset = row;
   2738         img.col_offset = 0;
   2739 
   2740         if( row + rowsperstrip > img.height )
   2741             rows_to_read = img.height - row;
   2742         else
   2743             rows_to_read = rowsperstrip;
   2744 
   2745     ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
   2746 
   2747     TIFFRGBAImageEnd(&img);
   2748     } else {
   2749         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
   2750         ok = 0;
   2751     }
   2752 
   2753     return (ok);
   2754 }
   2755 
   2756 /*
   2757  * Read a whole tile off data from the file, and convert to RGBA form.
   2758  * The returned RGBA data is organized from bottom to top of tile,
   2759  * and may include zeroed areas if the tile extends off the image.
   2760  */
   2761 
   2762 int
   2763 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
   2764 
   2765 {
   2766     char 	emsg[1024] = "";
   2767     TIFFRGBAImage img;
   2768     int 	ok;
   2769     uint32	tile_xsize, tile_ysize;
   2770     uint32	read_xsize, read_ysize;
   2771     uint32	i_row;
   2772 
   2773     /*
   2774      * Verify that our request is legal - on a tile file, and on a
   2775      * tile boundary.
   2776      */
   2777 
   2778     if( !TIFFIsTiled( tif ) )
   2779     {
   2780         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2781                   "Can't use TIFFReadRGBATile() with stripped file.");
   2782         return (0);
   2783     }
   2784 
   2785     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
   2786     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
   2787     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
   2788     {
   2789         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2790                   "Row/col passed to TIFFReadRGBATile() must be top"
   2791                   "left corner of a tile.");
   2792     return (0);
   2793     }
   2794 
   2795     /*
   2796      * Setup the RGBA reader.
   2797      */
   2798 
   2799     if (!TIFFRGBAImageOK(tif, emsg)
   2800     || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
   2801         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
   2802         return( 0 );
   2803     }
   2804 
   2805     /*
   2806      * The TIFFRGBAImageGet() function doesn't allow us to get off the
   2807      * edge of the image, even to fill an otherwise valid tile.  So we
   2808      * figure out how much we can read, and fix up the tile buffer to
   2809      * a full tile configuration afterwards.
   2810      */
   2811 
   2812     if( row + tile_ysize > img.height )
   2813         read_ysize = img.height - row;
   2814     else
   2815         read_ysize = tile_ysize;
   2816 
   2817     if( col + tile_xsize > img.width )
   2818         read_xsize = img.width - col;
   2819     else
   2820         read_xsize = tile_xsize;
   2821 
   2822     /*
   2823      * Read the chunk of imagery.
   2824      */
   2825 
   2826     img.row_offset = row;
   2827     img.col_offset = col;
   2828 
   2829     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
   2830 
   2831     TIFFRGBAImageEnd(&img);
   2832 
   2833     /*
   2834      * If our read was incomplete we will need to fix up the tile by
   2835      * shifting the data around as if a full tile of data is being returned.
   2836      *
   2837      * This is all the more complicated because the image is organized in
   2838      * bottom to top format.
   2839      */
   2840 
   2841     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
   2842         return( ok );
   2843 
   2844     for( i_row = 0; i_row < read_ysize; i_row++ ) {
   2845         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
   2846                  raster + (read_ysize - i_row - 1) * read_xsize,
   2847                  read_xsize * sizeof(uint32) );
   2848         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
   2849                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
   2850     }
   2851 
   2852     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
   2853         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
   2854                      0, sizeof(uint32) * tile_xsize );
   2855     }
   2856 
   2857     return (ok);
   2858 }
   2859 
   2860 /* vim: set ts=8 sts=8 sw=8 noet: */
   2861 /*
   2862  * Local Variables:
   2863  * mode: c
   2864  * c-basic-offset: 8
   2865  * fill-column: 78
   2866  * End:
   2867  */
   2868