Home | History | Annotate | Download | only in Imath
      1 ///////////////////////////////////////////////////////////////////////////
      2 //
      3 // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
      4 // Digital Ltd. LLC
      5 //
      6 // All rights reserved.
      7 //
      8 // Redistribution and use in source and binary forms, with or without
      9 // modification, are permitted provided that the following conditions are
     10 // met:
     11 // *       Redistributions of source code must retain the above copyright
     12 // notice, this list of conditions and the following disclaimer.
     13 // *       Redistributions in binary form must reproduce the above
     14 // copyright notice, this list of conditions and the following disclaimer
     15 // in the documentation and/or other materials provided with the
     16 // distribution.
     17 // *       Neither the name of Industrial Light & Magic nor the names of
     18 // its contributors may be used to endorse or promote products derived
     19 // from this software without specific prior written permission.
     20 //
     21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32 //
     33 ///////////////////////////////////////////////////////////////////////////
     34 
     35 
     36 
     37 #ifndef INCLUDED_IMATHROOTS_H
     38 #define INCLUDED_IMATHROOTS_H
     39 
     40 //---------------------------------------------------------------------
     41 //
     42 //	Functions to solve linear, quadratic or cubic equations
     43 //
     44 //---------------------------------------------------------------------
     45 
     46 #include <ImathMath.h>
     47 #include <complex>
     48 
     49 namespace Imath {
     50 
     51 //--------------------------------------------------------------------------
     52 // Find the real solutions of a linear, quadratic or cubic equation:
     53 //
     54 //   	function				   equation solved
     55 //
     56 //   solveLinear (a, b, x)		                      a * x + b == 0
     57 //   solveQuadratic (a, b, c, x)	            a * x*x + b * x + c == 0
     58 //   solveNormalizedCubic (r, s, t, x)	    x*x*x + r * x*x + s * x + t == 0
     59 //   solveCubic (a, b, c, d, x)		a * x*x*x + b * x*x + c * x + d == 0
     60 //
     61 // Return value:
     62 //
     63 //	 3	three real solutions, stored in x[0], x[1] and x[2]
     64 //	 2	two real solutions, stored in x[0] and x[1]
     65 //	 1	one real solution, stored in x[1]
     66 //	 0	no real solutions
     67 //	-1	all real numbers are solutions
     68 //
     69 // Notes:
     70 //
     71 //    * It is possible that an equation has real solutions, but that the
     72 //	solutions (or some intermediate result) are not representable.
     73 //	In this case, either some of the solutions returned are invalid
     74 //	(nan or infinity), or, if floating-point exceptions have been
     75 //	enabled with Iex::mathExcOn(), an Iex::MathExc exception is
     76 //	thrown.
     77 //
     78 //    * Cubic equations are solved using Cardano's Formula; even though
     79 //	only real solutions are produced, some intermediate results are
     80 //	complex (std::complex<T>).
     81 //
     82 //--------------------------------------------------------------------------
     83 
     84 template <class T> int	solveLinear (T a, T b, T &x);
     85 template <class T> int	solveQuadratic (T a, T b, T c, T x[2]);
     86 template <class T> int	solveNormalizedCubic (T r, T s, T t, T x[3]);
     87 template <class T> int	solveCubic (T a, T b, T c, T d, T x[3]);
     88 
     89 
     90 //---------------
     91 // Implementation
     92 //---------------
     93 
     94 template <class T>
     95 int
     96 solveLinear (T a, T b, T &x)
     97 {
     98     if (a != 0)
     99     {
    100     x = -b / a;
    101     return 1;
    102     }
    103     else if (b != 0)
    104     {
    105     return 0;
    106     }
    107     else
    108     {
    109     return -1;
    110     }
    111 }
    112 
    113 
    114 template <class T>
    115 int
    116 solveQuadratic (T a, T b, T c, T x[2])
    117 {
    118     if (a == 0)
    119     {
    120     return solveLinear (b, c, x[0]);
    121     }
    122     else
    123     {
    124     T D = b * b - 4 * a * c;
    125 
    126     if (D > 0)
    127     {
    128         T s = Math<T>::sqrt (D);
    129         T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);
    130 
    131         x[0] = q / a;
    132         x[1] = c / q;
    133         return 2;
    134     }
    135     if (D == 0)
    136     {
    137         x[0] = -b / (2 * a);
    138         return 1;
    139     }
    140     else
    141     {
    142         return 0;
    143     }
    144     }
    145 }
    146 
    147 
    148 template <class T>
    149 int
    150 solveNormalizedCubic (T r, T s, T t, T x[3])
    151 {
    152     T p  = (3 * s - r * r) / 3;
    153     T q  = 2 * r * r * r / 27 - r * s / 3 + t;
    154     T p3 = p / 3;
    155     T q2 = q / 2;
    156     T D  = p3 * p3 * p3 + q2 * q2;
    157 
    158     if (D == 0 && p3 == 0)
    159     {
    160     x[0] = -r / 3;
    161     x[1] = -r / 3;
    162     x[2] = -r / 3;
    163     return 1;
    164     }
    165 
    166     std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
    167                   T (1) / T (3));
    168 
    169     std::complex<T> v = -p / (T (3) * u);
    170 
    171     const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
    172                                 // for long double
    173     std::complex<T> y0 (u + v);
    174 
    175     std::complex<T> y1 (-(u + v) / T (2) +
    176              (u - v) / T (2) * std::complex<T> (0, sqrt3));
    177 
    178     std::complex<T> y2 (-(u + v) / T (2) -
    179              (u - v) / T (2) * std::complex<T> (0, sqrt3));
    180 
    181     if (D > 0)
    182     {
    183     x[0] = y0.real() - r / 3;
    184     return 1;
    185     }
    186     else if (D == 0)
    187     {
    188     x[0] = y0.real() - r / 3;
    189     x[1] = y1.real() - r / 3;
    190     return 2;
    191     }
    192     else
    193     {
    194     x[0] = y0.real() - r / 3;
    195     x[1] = y1.real() - r / 3;
    196     x[2] = y2.real() - r / 3;
    197     return 3;
    198     }
    199 }
    200 
    201 
    202 template <class T>
    203 int
    204 solveCubic (T a, T b, T c, T d, T x[3])
    205 {
    206     if (a == 0)
    207     {
    208     return solveQuadratic (b, c, d, x);
    209     }
    210     else
    211     {
    212     return solveNormalizedCubic (b / a, c / a, d / a, x);
    213     }
    214 }
    215 
    216 
    217 } // namespace Imath
    218 
    219 #endif
    220