1 <?xml version="1.0"?> 2 <!-- 3 Stump-based 20x20 frontal eye detector. 4 Created by Shameem Hameed (http://umich.edu/~shameem) 5 6 //////////////////////////////////////////////////////////////////////////////////////// 7 8 IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 9 10 By downloading, copying, installing or using the software you agree to this license. 11 If you do not agree to this license, do not download, install, 12 copy or use the software. 13 14 15 Intel License Agreement 16 For Open Source Computer Vision Library 17 18 Copyright (C) 2000, Intel Corporation, all rights reserved. 19 Third party copyrights are property of their respective owners. 20 21 Redistribution and use in source and binary forms, with or without modification, 22 are permitted provided that the following conditions are met: 23 24 * Redistribution's of source code must retain the above copyright notice, 25 this list of conditions and the following disclaimer. 26 27 * Redistribution's in binary form must reproduce the above copyright notice, 28 this list of conditions and the following disclaimer in the documentation 29 and/or other materials provided with the distribution. 30 31 * The name of Intel Corporation may not be used to endorse or promote products 32 derived from this software without specific prior written permission. 33 34 This software is provided by the copyright holders and contributors "as is" and 35 any express or implied warranties, including, but not limited to, the implied 36 warranties of merchantability and fitness for a particular purpose are disclaimed. 37 In no event shall the Intel Corporation or contributors be liable for any direct, 38 indirect, incidental, special, exemplary, or consequential damages 39 (including, but not limited to, procurement of substitute goods or services; 40 loss of use, data, or profits; or business interruption) however caused 41 and on any theory of liability, whether in contract, strict liability, 42 or tort (including negligence or otherwise) arising in any way out of 43 the use of this software, even if advised of the possibility of such damage. 44 --> 45 <opencv_storage> 46 <haarcascade_frontaleye type_id="opencv-haar-classifier"> 47 <size> 48 20 20</size> 49 <stages> 50 <_> 51 <!-- stage 0 --> 52 <trees> 53 <_> 54 <!-- tree 0 --> 55 <_> 56 <!-- root node --> 57 <feature> 58 <rects> 59 <_> 60 0 8 20 12 -1.</_> 61 <_> 62 0 14 20 6 2.</_></rects> 63 <tilted>0</tilted></feature> 64 <threshold>0.1296395957469940</threshold> 65 <left_val>-0.7730420827865601</left_val> 66 <right_val>0.6835014820098877</right_val></_></_> 67 <_> 68 <!-- tree 1 --> 69 <_> 70 <!-- root node --> 71 <feature> 72 <rects> 73 <_> 74 9 1 4 15 -1.</_> 75 <_> 76 9 6 4 5 3.</_></rects> 77 <tilted>0</tilted></feature> 78 <threshold>-0.0463268086314201</threshold> 79 <left_val>0.5735275149345398</left_val> 80 <right_val>-0.4909768998622894</right_val></_></_> 81 <_> 82 <!-- tree 2 --> 83 <_> 84 <!-- root node --> 85 <feature> 86 <rects> 87 <_> 88 6 10 9 2 -1.</_> 89 <_> 90 9 10 3 2 3.</_></rects> 91 <tilted>0</tilted></feature> 92 <threshold>-0.0161730907857418</threshold> 93 <left_val>0.6025434136390686</left_val> 94 <right_val>-0.3161070942878723</right_val></_></_> 95 <_> 96 <!-- tree 3 --> 97 <_> 98 <!-- root node --> 99 <feature> 100 <rects> 101 <_> 102 7 0 10 9 -1.</_> 103 <_> 104 7 3 10 3 3.</_></rects> 105 <tilted>0</tilted></feature> 106 <threshold>-0.0458288416266441</threshold> 107 <left_val>0.6417754888534546</left_val> 108 <right_val>-0.1554504036903381</right_val></_></_> 109 <_> 110 <!-- tree 4 --> 111 <_> 112 <!-- root node --> 113 <feature> 114 <rects> 115 <_> 116 12 2 2 18 -1.</_> 117 <_> 118 12 8 2 6 3.</_></rects> 119 <tilted>0</tilted></feature> 120 <threshold>-0.0537596195936203</threshold> 121 <left_val>0.5421931743621826</left_val> 122 <right_val>-0.2048082947731018</right_val></_></_> 123 <_> 124 <!-- tree 5 --> 125 <_> 126 <!-- root node --> 127 <feature> 128 <rects> 129 <_> 130 8 6 8 6 -1.</_> 131 <_> 132 8 9 8 3 2.</_></rects> 133 <tilted>0</tilted></feature> 134 <threshold>0.0341711901128292</threshold> 135 <left_val>-0.2338819056749344</left_val> 136 <right_val>0.4841090142726898</right_val></_></_></trees> 137 <stage_threshold>-1.4562760591506958</stage_threshold> 138 <parent>-1</parent> 139 <next>-1</next></_> 140 <_> 141 <!-- stage 1 --> 142 <trees> 143 <_> 144 <!-- tree 0 --> 145 <_> 146 <!-- root node --> 147 <feature> 148 <rects> 149 <_> 150 2 0 17 18 -1.</_> 151 <_> 152 2 6 17 6 3.</_></rects> 153 <tilted>0</tilted></feature> 154 <threshold>-0.2172762006521225</threshold> 155 <left_val>0.7109889984130859</left_val> 156 <right_val>-0.5936073064804077</right_val></_></_> 157 <_> 158 <!-- tree 1 --> 159 <_> 160 <!-- root node --> 161 <feature> 162 <rects> 163 <_> 164 10 10 1 8 -1.</_> 165 <_> 166 10 14 1 4 2.</_></rects> 167 <tilted>0</tilted></feature> 168 <threshold>0.0120719699189067</threshold> 169 <left_val>-0.2824048101902008</left_val> 170 <right_val>0.5901355147361755</right_val></_></_> 171 <_> 172 <!-- tree 2 --> 173 <_> 174 <!-- root node --> 175 <feature> 176 <rects> 177 <_> 178 7 10 9 2 -1.</_> 179 <_> 180 10 10 3 2 3.</_></rects> 181 <tilted>0</tilted></feature> 182 <threshold>-0.0178541392087936</threshold> 183 <left_val>0.5313752293586731</left_val> 184 <right_val>-0.2275896072387695</right_val></_></_> 185 <_> 186 <!-- tree 3 --> 187 <_> 188 <!-- root node --> 189 <feature> 190 <rects> 191 <_> 192 5 1 6 6 -1.</_> 193 <_> 194 5 3 6 2 3.</_></rects> 195 <tilted>0</tilted></feature> 196 <threshold>0.0223336108028889</threshold> 197 <left_val>-0.1755609959363937</left_val> 198 <right_val>0.6335613727569580</right_val></_></_> 199 <_> 200 <!-- tree 4 --> 201 <_> 202 <!-- root node --> 203 <feature> 204 <rects> 205 <_> 206 3 1 15 9 -1.</_> 207 <_> 208 3 4 15 3 3.</_></rects> 209 <tilted>0</tilted></feature> 210 <threshold>-0.0914200171828270</threshold> 211 <left_val>0.6156309247016907</left_val> 212 <right_val>-0.1689953058958054</right_val></_></_> 213 <_> 214 <!-- tree 5 --> 215 <_> 216 <!-- root node --> 217 <feature> 218 <rects> 219 <_> 220 6 3 9 6 -1.</_> 221 <_> 222 6 5 9 2 3.</_></rects> 223 <tilted>0</tilted></feature> 224 <threshold>0.0289736501872540</threshold> 225 <left_val>-0.1225007995963097</left_val> 226 <right_val>0.7440117001533508</right_val></_></_> 227 <_> 228 <!-- tree 6 --> 229 <_> 230 <!-- root node --> 231 <feature> 232 <rects> 233 <_> 234 8 17 6 3 -1.</_> 235 <_> 236 10 17 2 3 3.</_></rects> 237 <tilted>0</tilted></feature> 238 <threshold>7.8203463926911354e-003</threshold> 239 <left_val>0.1697437018156052</left_val> 240 <right_val>-0.6544165015220642</right_val></_></_> 241 <_> 242 <!-- tree 7 --> 243 <_> 244 <!-- root node --> 245 <feature> 246 <rects> 247 <_> 248 9 10 9 1 -1.</_> 249 <_> 250 12 10 3 1 3.</_></rects> 251 <tilted>0</tilted></feature> 252 <threshold>0.0203404892235994</threshold> 253 <left_val>-0.1255664974451065</left_val> 254 <right_val>0.8271045088768005</right_val></_></_> 255 <_> 256 <!-- tree 8 --> 257 <_> 258 <!-- root node --> 259 <feature> 260 <rects> 261 <_> 262 1 7 6 11 -1.</_> 263 <_> 264 3 7 2 11 3.</_></rects> 265 <tilted>0</tilted></feature> 266 <threshold>-0.0119261499494314</threshold> 267 <left_val>0.3860568106174469</left_val> 268 <right_val>-0.2099234014749527</right_val></_></_> 269 <_> 270 <!-- tree 9 --> 271 <_> 272 <!-- root node --> 273 <feature> 274 <rects> 275 <_> 276 9 18 3 1 -1.</_> 277 <_> 278 10 18 1 1 3.</_></rects> 279 <tilted>0</tilted></feature> 280 <threshold>-9.7281101625412703e-004</threshold> 281 <left_val>-0.6376119256019592</left_val> 282 <right_val>0.1295239031314850</right_val></_></_> 283 <_> 284 <!-- tree 10 --> 285 <_> 286 <!-- root node --> 287 <feature> 288 <rects> 289 <_> 290 16 16 1 2 -1.</_> 291 <_> 292 16 17 1 1 2.</_></rects> 293 <tilted>0</tilted></feature> 294 <threshold>1.8322050891583785e-005</threshold> 295 <left_val>-0.3463147878646851</left_val> 296 <right_val>0.2292426973581314</right_val></_></_> 297 <_> 298 <!-- tree 11 --> 299 <_> 300 <!-- root node --> 301 <feature> 302 <rects> 303 <_> 304 9 17 6 3 -1.</_> 305 <_> 306 11 17 2 3 3.</_></rects> 307 <tilted>0</tilted></feature> 308 <threshold>-8.0854417756199837e-003</threshold> 309 <left_val>-0.6366580128669739</left_val> 310 <right_val>0.1307865977287293</right_val></_></_></trees> 311 <stage_threshold>-1.2550230026245117</stage_threshold> 312 <parent>0</parent> 313 <next>-1</next></_> 314 <_> 315 <!-- stage 2 --> 316 <trees> 317 <_> 318 <!-- tree 0 --> 319 <_> 320 <!-- root node --> 321 <feature> 322 <rects> 323 <_> 324 8 0 5 18 -1.</_> 325 <_> 326 8 6 5 6 3.</_></rects> 327 <tilted>0</tilted></feature> 328 <threshold>-0.1181226968765259</threshold> 329 <left_val>0.6784452199935913</left_val> 330 <right_val>-0.5004578232765198</right_val></_></_> 331 <_> 332 <!-- tree 1 --> 333 <_> 334 <!-- root node --> 335 <feature> 336 <rects> 337 <_> 338 6 7 9 7 -1.</_> 339 <_> 340 9 7 3 7 3.</_></rects> 341 <tilted>0</tilted></feature> 342 <threshold>-0.0343327596783638</threshold> 343 <left_val>0.6718636155128479</left_val> 344 <right_val>-0.3574487864971161</right_val></_></_> 345 <_> 346 <!-- tree 2 --> 347 <_> 348 <!-- root node --> 349 <feature> 350 <rects> 351 <_> 352 14 6 6 10 -1.</_> 353 <_> 354 16 6 2 10 3.</_></rects> 355 <tilted>0</tilted></feature> 356 <threshold>-0.0215307995676994</threshold> 357 <left_val>0.7222070097923279</left_val> 358 <right_val>-0.1819241940975189</right_val></_></_> 359 <_> 360 <!-- tree 3 --> 361 <_> 362 <!-- root node --> 363 <feature> 364 <rects> 365 <_> 366 9 8 9 5 -1.</_> 367 <_> 368 12 8 3 5 3.</_></rects> 369 <tilted>0</tilted></feature> 370 <threshold>-0.0219099707901478</threshold> 371 <left_val>0.6652938723564148</left_val> 372 <right_val>-0.2751022875308991</right_val></_></_> 373 <_> 374 <!-- tree 4 --> 375 <_> 376 <!-- root node --> 377 <feature> 378 <rects> 379 <_> 380 3 7 9 6 -1.</_> 381 <_> 382 6 7 3 6 3.</_></rects> 383 <tilted>0</tilted></feature> 384 <threshold>-0.0287135392427444</threshold> 385 <left_val>0.6995570063591003</left_val> 386 <right_val>-0.1961558014154434</right_val></_></_> 387 <_> 388 <!-- tree 5 --> 389 <_> 390 <!-- root node --> 391 <feature> 392 <rects> 393 <_> 394 1 7 6 6 -1.</_> 395 <_> 396 3 7 2 6 3.</_></rects> 397 <tilted>0</tilted></feature> 398 <threshold>-0.0114674801006913</threshold> 399 <left_val>0.5926734805107117</left_val> 400 <right_val>-0.2209735065698624</right_val></_></_> 401 <_> 402 <!-- tree 6 --> 403 <_> 404 <!-- root node --> 405 <feature> 406 <rects> 407 <_> 408 16 0 4 18 -1.</_> 409 <_> 410 16 6 4 6 3.</_></rects> 411 <tilted>0</tilted></feature> 412 <threshold>-0.0226111691445112</threshold> 413 <left_val>0.3448306918144226</left_val> 414 <right_val>-0.3837955892086029</right_val></_></_> 415 <_> 416 <!-- tree 7 --> 417 <_> 418 <!-- root node --> 419 <feature> 420 <rects> 421 <_> 422 0 17 3 3 -1.</_> 423 <_> 424 0 18 3 1 3.</_></rects> 425 <tilted>0</tilted></feature> 426 <threshold>-1.9308089977130294e-003</threshold> 427 <left_val>-0.7944571971893311</left_val> 428 <right_val>0.1562865972518921</right_val></_></_> 429 <_> 430 <!-- tree 8 --> 431 <_> 432 <!-- root node --> 433 <feature> 434 <rects> 435 <_> 436 16 0 2 1 -1.</_> 437 <_> 438 17 0 1 1 2.</_></rects> 439 <tilted>0</tilted></feature> 440 <threshold>5.6419910833938047e-005</threshold> 441 <left_val>-0.3089601099491119</left_val> 442 <right_val>0.3543108999729157</right_val></_></_></trees> 443 <stage_threshold>-1.3728189468383789</stage_threshold> 444 <parent>1</parent> 445 <next>-1</next></_> 446 <_> 447 <!-- stage 3 --> 448 <trees> 449 <_> 450 <!-- tree 0 --> 451 <_> 452 <!-- root node --> 453 <feature> 454 <rects> 455 <_> 456 0 8 20 12 -1.</_> 457 <_> 458 0 14 20 6 2.</_></rects> 459 <tilted>0</tilted></feature> 460 <threshold>0.1988652050495148</threshold> 461 <left_val>-0.5286070108413696</left_val> 462 <right_val>0.3553672134876251</right_val></_></_> 463 <_> 464 <!-- tree 1 --> 465 <_> 466 <!-- root node --> 467 <feature> 468 <rects> 469 <_> 470 6 6 9 8 -1.</_> 471 <_> 472 9 6 3 8 3.</_></rects> 473 <tilted>0</tilted></feature> 474 <threshold>-0.0360089391469955</threshold> 475 <left_val>0.4210968911647797</left_val> 476 <right_val>-0.3934898078441620</right_val></_></_> 477 <_> 478 <!-- tree 2 --> 479 <_> 480 <!-- root node --> 481 <feature> 482 <rects> 483 <_> 484 5 3 12 9 -1.</_> 485 <_> 486 5 6 12 3 3.</_></rects> 487 <tilted>0</tilted></feature> 488 <threshold>-0.0775698497891426</threshold> 489 <left_val>0.4799154102802277</left_val> 490 <right_val>-0.2512216866016388</right_val></_></_> 491 <_> 492 <!-- tree 3 --> 493 <_> 494 <!-- root node --> 495 <feature> 496 <rects> 497 <_> 498 4 16 1 2 -1.</_> 499 <_> 500 4 17 1 1 2.</_></rects> 501 <tilted>0</tilted></feature> 502 <threshold>8.2630853285081685e-005</threshold> 503 <left_val>-0.3847548961639404</left_val> 504 <right_val>0.3184922039508820</right_val></_></_> 505 <_> 506 <!-- tree 4 --> 507 <_> 508 <!-- root node --> 509 <feature> 510 <rects> 511 <_> 512 18 10 2 1 -1.</_> 513 <_> 514 19 10 1 1 2.</_></rects> 515 <tilted>0</tilted></feature> 516 <threshold>3.2773229759186506e-004</threshold> 517 <left_val>-0.2642731964588165</left_val> 518 <right_val>0.3254724144935608</right_val></_></_> 519 <_> 520 <!-- tree 5 --> 521 <_> 522 <!-- root node --> 523 <feature> 524 <rects> 525 <_> 526 9 8 6 5 -1.</_> 527 <_> 528 11 8 2 5 3.</_></rects> 529 <tilted>0</tilted></feature> 530 <threshold>-0.0185748506337404</threshold> 531 <left_val>0.4673658907413483</left_val> 532 <right_val>-0.1506727039813995</right_val></_></_> 533 <_> 534 <!-- tree 6 --> 535 <_> 536 <!-- root node --> 537 <feature> 538 <rects> 539 <_> 540 0 0 2 1 -1.</_> 541 <_> 542 1 0 1 1 2.</_></rects> 543 <tilted>0</tilted></feature> 544 <threshold>-7.0008762122597545e-005</threshold> 545 <left_val>0.2931315004825592</left_val> 546 <right_val>-0.2536509931087494</right_val></_></_> 547 <_> 548 <!-- tree 7 --> 549 <_> 550 <!-- root node --> 551 <feature> 552 <rects> 553 <_> 554 6 8 6 6 -1.</_> 555 <_> 556 8 8 2 6 3.</_></rects> 557 <tilted>0</tilted></feature> 558 <threshold>-0.0185521300882101</threshold> 559 <left_val>0.4627366065979004</left_val> 560 <right_val>-0.1314805001020432</right_val></_></_> 561 <_> 562 <!-- tree 8 --> 563 <_> 564 <!-- root node --> 565 <feature> 566 <rects> 567 <_> 568 11 7 6 7 -1.</_> 569 <_> 570 13 7 2 7 3.</_></rects> 571 <tilted>0</tilted></feature> 572 <threshold>-0.0130304200574756</threshold> 573 <left_val>0.4162721931934357</left_val> 574 <right_val>-0.1775148957967758</right_val></_></_> 575 <_> 576 <!-- tree 9 --> 577 <_> 578 <!-- root node --> 579 <feature> 580 <rects> 581 <_> 582 19 14 1 2 -1.</_> 583 <_> 584 19 15 1 1 2.</_></rects> 585 <tilted>0</tilted></feature> 586 <threshold>6.5694141085259616e-005</threshold> 587 <left_val>-0.2803510129451752</left_val> 588 <right_val>0.2668074071407318</right_val></_></_> 589 <_> 590 <!-- tree 10 --> 591 <_> 592 <!-- root node --> 593 <feature> 594 <rects> 595 <_> 596 6 17 1 2 -1.</_> 597 <_> 598 6 18 1 1 2.</_></rects> 599 <tilted>0</tilted></feature> 600 <threshold>1.7005260451696813e-004</threshold> 601 <left_val>-0.2702724933624268</left_val> 602 <right_val>0.2398165017366409</right_val></_></_> 603 <_> 604 <!-- tree 11 --> 605 <_> 606 <!-- root node --> 607 <feature> 608 <rects> 609 <_> 610 14 7 2 7 -1.</_> 611 <_> 612 15 7 1 7 2.</_></rects> 613 <tilted>0</tilted></feature> 614 <threshold>-3.3129199873656034e-003</threshold> 615 <left_val>0.4441143870353699</left_val> 616 <right_val>-0.1442888975143433</right_val></_></_> 617 <_> 618 <!-- tree 12 --> 619 <_> 620 <!-- root node --> 621 <feature> 622 <rects> 623 <_> 624 6 8 2 4 -1.</_> 625 <_> 626 7 8 1 4 2.</_></rects> 627 <tilted>0</tilted></feature> 628 <threshold>1.7583490116521716e-003</threshold> 629 <left_val>-0.1612619012594223</left_val> 630 <right_val>0.4294076859951019</right_val></_></_> 631 <_> 632 <!-- tree 13 --> 633 <_> 634 <!-- root node --> 635 <feature> 636 <rects> 637 <_> 638 5 8 12 6 -1.</_> 639 <_> 640 5 10 12 2 3.</_></rects> 641 <tilted>0</tilted></feature> 642 <threshold>-0.0251947492361069</threshold> 643 <left_val>0.4068729877471924</left_val> 644 <right_val>-0.1820258051156998</right_val></_></_> 645 <_> 646 <!-- tree 14 --> 647 <_> 648 <!-- root node --> 649 <feature> 650 <rects> 651 <_> 652 2 17 1 3 -1.</_> 653 <_> 654 2 18 1 1 3.</_></rects> 655 <tilted>0</tilted></feature> 656 <threshold>1.4031709870323539e-003</threshold> 657 <left_val>0.0847597867250443</left_val> 658 <right_val>-0.8001856803894043</right_val></_></_> 659 <_> 660 <!-- tree 15 --> 661 <_> 662 <!-- root node --> 663 <feature> 664 <rects> 665 <_> 666 6 7 3 6 -1.</_> 667 <_> 668 7 7 1 6 3.</_></rects> 669 <tilted>0</tilted></feature> 670 <threshold>-7.3991729877889156e-003</threshold> 671 <left_val>0.5576609969139099</left_val> 672 <right_val>-0.1184315979480743</right_val></_></_></trees> 673 <stage_threshold>-1.2879480123519897</stage_threshold> 674 <parent>2</parent> 675 <next>-1</next></_> 676 <_> 677 <!-- stage 4 --> 678 <trees> 679 <_> 680 <!-- tree 0 --> 681 <_> 682 <!-- root node --> 683 <feature> 684 <rects> 685 <_> 686 6 7 9 12 -1.</_> 687 <_> 688 9 7 3 12 3.</_></rects> 689 <tilted>0</tilted></feature> 690 <threshold>-0.0299430806189775</threshold> 691 <left_val>0.3581081032752991</left_val> 692 <right_val>-0.3848763108253479</right_val></_></_> 693 <_> 694 <!-- tree 1 --> 695 <_> 696 <!-- root node --> 697 <feature> 698 <rects> 699 <_> 700 6 2 11 12 -1.</_> 701 <_> 702 6 6 11 4 3.</_></rects> 703 <tilted>0</tilted></feature> 704 <threshold>-0.1256738007068634</threshold> 705 <left_val>0.3931693136692047</left_val> 706 <right_val>-0.3001225888729096</right_val></_></_> 707 <_> 708 <!-- tree 2 --> 709 <_> 710 <!-- root node --> 711 <feature> 712 <rects> 713 <_> 714 1 12 5 8 -1.</_> 715 <_> 716 1 16 5 4 2.</_></rects> 717 <tilted>0</tilted></feature> 718 <threshold>5.3635272197425365e-003</threshold> 719 <left_val>-0.4390861988067627</left_val> 720 <right_val>0.1925701051950455</right_val></_></_> 721 <_> 722 <!-- tree 3 --> 723 <_> 724 <!-- root node --> 725 <feature> 726 <rects> 727 <_> 728 14 7 6 7 -1.</_> 729 <_> 730 16 7 2 7 3.</_></rects> 731 <tilted>0</tilted></feature> 732 <threshold>-8.0971820279955864e-003</threshold> 733 <left_val>0.3990666866302490</left_val> 734 <right_val>-0.2340787053108215</right_val></_></_> 735 <_> 736 <!-- tree 4 --> 737 <_> 738 <!-- root node --> 739 <feature> 740 <rects> 741 <_> 742 10 8 6 6 -1.</_> 743 <_> 744 12 8 2 6 3.</_></rects> 745 <tilted>0</tilted></feature> 746 <threshold>-0.0165979098528624</threshold> 747 <left_val>0.4209528863430023</left_val> 748 <right_val>-0.2267484068870544</right_val></_></_> 749 <_> 750 <!-- tree 5 --> 751 <_> 752 <!-- root node --> 753 <feature> 754 <rects> 755 <_> 756 16 18 4 2 -1.</_> 757 <_> 758 16 19 4 1 2.</_></rects> 759 <tilted>0</tilted></feature> 760 <threshold>-2.0199299324303865e-003</threshold> 761 <left_val>-0.7415673136711121</left_val> 762 <right_val>0.1260118931531906</right_val></_></_> 763 <_> 764 <!-- tree 6 --> 765 <_> 766 <!-- root node --> 767 <feature> 768 <rects> 769 <_> 770 18 17 2 3 -1.</_> 771 <_> 772 18 18 2 1 3.</_></rects> 773 <tilted>0</tilted></feature> 774 <threshold>-1.5202340437099338e-003</threshold> 775 <left_val>-0.7615460157394409</left_val> 776 <right_val>0.0863736122846603</right_val></_></_> 777 <_> 778 <!-- tree 7 --> 779 <_> 780 <!-- root node --> 781 <feature> 782 <rects> 783 <_> 784 9 7 3 7 -1.</_> 785 <_> 786 10 7 1 7 3.</_></rects> 787 <tilted>0</tilted></feature> 788 <threshold>-4.9663940444588661e-003</threshold> 789 <left_val>0.4218223989009857</left_val> 790 <right_val>-0.1790491938591003</right_val></_></_> 791 <_> 792 <!-- tree 8 --> 793 <_> 794 <!-- root node --> 795 <feature> 796 <rects> 797 <_> 798 5 6 6 8 -1.</_> 799 <_> 800 7 6 2 8 3.</_></rects> 801 <tilted>0</tilted></feature> 802 <threshold>-0.0192076005041599</threshold> 803 <left_val>0.4689489901065826</left_val> 804 <right_val>-0.1437875032424927</right_val></_></_> 805 <_> 806 <!-- tree 9 --> 807 <_> 808 <!-- root node --> 809 <feature> 810 <rects> 811 <_> 812 2 6 6 11 -1.</_> 813 <_> 814 4 6 2 11 3.</_></rects> 815 <tilted>0</tilted></feature> 816 <threshold>-0.0122226802632213</threshold> 817 <left_val>0.3284207880496979</left_val> 818 <right_val>-0.2180214971303940</right_val></_></_> 819 <_> 820 <!-- tree 10 --> 821 <_> 822 <!-- root node --> 823 <feature> 824 <rects> 825 <_> 826 8 10 12 8 -1.</_> 827 <_> 828 8 14 12 4 2.</_></rects> 829 <tilted>0</tilted></feature> 830 <threshold>0.0575486682355404</threshold> 831 <left_val>-0.3676880896091461</left_val> 832 <right_val>0.2435711026191711</right_val></_></_> 833 <_> 834 <!-- tree 11 --> 835 <_> 836 <!-- root node --> 837 <feature> 838 <rects> 839 <_> 840 7 17 6 3 -1.</_> 841 <_> 842 9 17 2 3 3.</_></rects> 843 <tilted>0</tilted></feature> 844 <threshold>-9.5794079825282097e-003</threshold> 845 <left_val>-0.7224506735801697</left_val> 846 <right_val>0.0636645630002022</right_val></_></_> 847 <_> 848 <!-- tree 12 --> 849 <_> 850 <!-- root node --> 851 <feature> 852 <rects> 853 <_> 854 10 9 3 3 -1.</_> 855 <_> 856 11 9 1 3 3.</_></rects> 857 <tilted>0</tilted></feature> 858 <threshold>-2.9545740690082312e-003</threshold> 859 <left_val>0.3584643900394440</left_val> 860 <right_val>-0.1669632941484451</right_val></_></_> 861 <_> 862 <!-- tree 13 --> 863 <_> 864 <!-- root node --> 865 <feature> 866 <rects> 867 <_> 868 8 8 3 6 -1.</_> 869 <_> 870 9 8 1 6 3.</_></rects> 871 <tilted>0</tilted></feature> 872 <threshold>-4.2017991654574871e-003</threshold> 873 <left_val>0.3909480869770050</left_val> 874 <right_val>-0.1204179003834724</right_val></_></_> 875 <_> 876 <!-- tree 14 --> 877 <_> 878 <!-- root node --> 879 <feature> 880 <rects> 881 <_> 882 7 0 6 5 -1.</_> 883 <_> 884 9 0 2 5 3.</_></rects> 885 <tilted>0</tilted></feature> 886 <threshold>-0.0136249903589487</threshold> 887 <left_val>-0.5876771807670593</left_val> 888 <right_val>0.0884047299623489</right_val></_></_> 889 <_> 890 <!-- tree 15 --> 891 <_> 892 <!-- root node --> 893 <feature> 894 <rects> 895 <_> 896 6 17 1 3 -1.</_> 897 <_> 898 6 18 1 1 3.</_></rects> 899 <tilted>0</tilted></feature> 900 <threshold>6.2853112467564642e-005</threshold> 901 <left_val>-0.2634845972061157</left_val> 902 <right_val>0.2141927927732468</right_val></_></_> 903 <_> 904 <!-- tree 16 --> 905 <_> 906 <!-- root node --> 907 <feature> 908 <rects> 909 <_> 910 0 18 4 2 -1.</_> 911 <_> 912 0 19 4 1 2.</_></rects> 913 <tilted>0</tilted></feature> 914 <threshold>-2.6782939676195383e-003</threshold> 915 <left_val>-0.7839016914367676</left_val> 916 <right_val>0.0805269628763199</right_val></_></_> 917 <_> 918 <!-- tree 17 --> 919 <_> 920 <!-- root node --> 921 <feature> 922 <rects> 923 <_> 924 4 1 11 9 -1.</_> 925 <_> 926 4 4 11 3 3.</_></rects> 927 <tilted>0</tilted></feature> 928 <threshold>-0.0705971792340279</threshold> 929 <left_val>0.4146926105022430</left_val> 930 <right_val>-0.1398995965719223</right_val></_></_> 931 <_> 932 <!-- tree 18 --> 933 <_> 934 <!-- root node --> 935 <feature> 936 <rects> 937 <_> 938 3 1 14 9 -1.</_> 939 <_> 940 3 4 14 3 3.</_></rects> 941 <tilted>0</tilted></feature> 942 <threshold>0.0920936465263367</threshold> 943 <left_val>-0.1305518001317978</left_val> 944 <right_val>0.5043578147888184</right_val></_></_> 945 <_> 946 <!-- tree 19 --> 947 <_> 948 <!-- root node --> 949 <feature> 950 <rects> 951 <_> 952 0 9 6 4 -1.</_> 953 <_> 954 2 9 2 4 3.</_></rects> 955 <tilted>0</tilted></feature> 956 <threshold>-8.8004386052489281e-003</threshold> 957 <left_val>0.3660975098609924</left_val> 958 <right_val>-0.1403664946556091</right_val></_></_> 959 <_> 960 <!-- tree 20 --> 961 <_> 962 <!-- root node --> 963 <feature> 964 <rects> 965 <_> 966 18 13 1 2 -1.</_> 967 <_> 968 18 14 1 1 2.</_></rects> 969 <tilted>0</tilted></feature> 970 <threshold>7.5080977694597095e-005</threshold> 971 <left_val>-0.2970443964004517</left_val> 972 <right_val>0.2070294022560120</right_val></_></_> 973 <_> 974 <!-- tree 21 --> 975 <_> 976 <!-- root node --> 977 <feature> 978 <rects> 979 <_> 980 13 5 3 11 -1.</_> 981 <_> 982 14 5 1 11 3.</_></rects> 983 <tilted>0</tilted></feature> 984 <threshold>-2.9870450962334871e-003</threshold> 985 <left_val>0.3561570048332214</left_val> 986 <right_val>-0.1544596999883652</right_val></_></_> 987 <_> 988 <!-- tree 22 --> 989 <_> 990 <!-- root node --> 991 <feature> 992 <rects> 993 <_> 994 0 18 8 2 -1.</_> 995 <_> 996 0 18 4 1 2.</_> 997 <_> 998 4 19 4 1 2.</_></rects> 999 <tilted>0</tilted></feature> 1000 <threshold>-2.6441509835422039e-003</threshold> 1001 <left_val>-0.5435351729393005</left_val> 1002 <right_val>0.1029511019587517</right_val></_></_></trees> 1003 <stage_threshold>-1.2179850339889526</stage_threshold> 1004 <parent>3</parent> 1005 <next>-1</next></_> 1006 <_> 1007 <!-- stage 5 --> 1008 <trees> 1009 <_> 1010 <!-- tree 0 --> 1011 <_> 1012 <!-- root node --> 1013 <feature> 1014 <rects> 1015 <_> 1016 5 8 12 5 -1.</_> 1017 <_> 1018 9 8 4 5 3.</_></rects> 1019 <tilted>0</tilted></feature> 1020 <threshold>-0.0478624701499939</threshold> 1021 <left_val>0.4152823984622955</left_val> 1022 <right_val>-0.3418582081794739</right_val></_></_> 1023 <_> 1024 <!-- tree 1 --> 1025 <_> 1026 <!-- root node --> 1027 <feature> 1028 <rects> 1029 <_> 1030 4 7 11 10 -1.</_> 1031 <_> 1032 4 12 11 5 2.</_></rects> 1033 <tilted>0</tilted></feature> 1034 <threshold>0.0873505324125290</threshold> 1035 <left_val>-0.3874978125095367</left_val> 1036 <right_val>0.2420420050621033</right_val></_></_> 1037 <_> 1038 <!-- tree 2 --> 1039 <_> 1040 <!-- root node --> 1041 <feature> 1042 <rects> 1043 <_> 1044 14 9 6 4 -1.</_> 1045 <_> 1046 16 9 2 4 3.</_></rects> 1047 <tilted>0</tilted></feature> 1048 <threshold>-0.0168494991958141</threshold> 1049 <left_val>0.5308247804641724</left_val> 1050 <right_val>-0.1728291064500809</right_val></_></_> 1051 <_> 1052 <!-- tree 3 --> 1053 <_> 1054 <!-- root node --> 1055 <feature> 1056 <rects> 1057 <_> 1058 0 7 6 8 -1.</_> 1059 <_> 1060 3 7 3 8 2.</_></rects> 1061 <tilted>0</tilted></feature> 1062 <threshold>-0.0288700293749571</threshold> 1063 <left_val>0.3584350943565369</left_val> 1064 <right_val>-0.2240259051322937</right_val></_></_> 1065 <_> 1066 <!-- tree 4 --> 1067 <_> 1068 <!-- root node --> 1069 <feature> 1070 <rects> 1071 <_> 1072 0 16 3 3 -1.</_> 1073 <_> 1074 0 17 3 1 3.</_></rects> 1075 <tilted>0</tilted></feature> 1076 <threshold>2.5679389946162701e-003</threshold> 1077 <left_val>0.1499049961566925</left_val> 1078 <right_val>-0.6560940742492676</right_val></_></_> 1079 <_> 1080 <!-- tree 5 --> 1081 <_> 1082 <!-- root node --> 1083 <feature> 1084 <rects> 1085 <_> 1086 7 11 12 1 -1.</_> 1087 <_> 1088 11 11 4 1 3.</_></rects> 1089 <tilted>0</tilted></feature> 1090 <threshold>-0.0241166595369577</threshold> 1091 <left_val>0.5588967800140381</left_val> 1092 <right_val>-0.1481028050184250</right_val></_></_> 1093 <_> 1094 <!-- tree 6 --> 1095 <_> 1096 <!-- root node --> 1097 <feature> 1098 <rects> 1099 <_> 1100 4 8 9 4 -1.</_> 1101 <_> 1102 7 8 3 4 3.</_></rects> 1103 <tilted>0</tilted></feature> 1104 <threshold>-0.0328266583383083</threshold> 1105 <left_val>0.4646868109703064</left_val> 1106 <right_val>-0.1078552976250649</right_val></_></_> 1107 <_> 1108 <!-- tree 7 --> 1109 <_> 1110 <!-- root node --> 1111 <feature> 1112 <rects> 1113 <_> 1114 5 16 6 4 -1.</_> 1115 <_> 1116 7 16 2 4 3.</_></rects> 1117 <tilted>0</tilted></feature> 1118 <threshold>-0.0152330603450537</threshold> 1119 <left_val>-0.7395442724227905</left_val> 1120 <right_val>0.0562368817627430</right_val></_></_> 1121 <_> 1122 <!-- tree 8 --> 1123 <_> 1124 <!-- root node --> 1125 <feature> 1126 <rects> 1127 <_> 1128 18 17 1 3 -1.</_> 1129 <_> 1130 18 18 1 1 3.</_></rects> 1131 <tilted>0</tilted></feature> 1132 <threshold>-3.0209511169232428e-004</threshold> 1133 <left_val>-0.4554882049560547</left_val> 1134 <right_val>0.0970698371529579</right_val></_></_> 1135 <_> 1136 <!-- tree 9 --> 1137 <_> 1138 <!-- root node --> 1139 <feature> 1140 <rects> 1141 <_> 1142 18 17 1 3 -1.</_> 1143 <_> 1144 18 18 1 1 3.</_></rects> 1145 <tilted>0</tilted></feature> 1146 <threshold>7.5365108205005527e-004</threshold> 1147 <left_val>0.0951472967863083</left_val> 1148 <right_val>-0.5489501953125000</right_val></_></_> 1149 <_> 1150 <!-- tree 10 --> 1151 <_> 1152 <!-- root node --> 1153 <feature> 1154 <rects> 1155 <_> 1156 4 9 4 10 -1.</_> 1157 <_> 1158 4 9 2 5 2.</_> 1159 <_> 1160 6 14 2 5 2.</_></rects> 1161 <tilted>0</tilted></feature> 1162 <threshold>-0.0106389503926039</threshold> 1163 <left_val>0.4091297090053558</left_val> 1164 <right_val>-0.1230840981006622</right_val></_></_> 1165 <_> 1166 <!-- tree 11 --> 1167 <_> 1168 <!-- root node --> 1169 <feature> 1170 <rects> 1171 <_> 1172 4 8 6 4 -1.</_> 1173 <_> 1174 6 8 2 4 3.</_></rects> 1175 <tilted>0</tilted></feature> 1176 <threshold>-7.5217830017209053e-003</threshold> 1177 <left_val>0.4028914868831635</left_val> 1178 <right_val>-0.1604878008365631</right_val></_></_> 1179 <_> 1180 <!-- tree 12 --> 1181 <_> 1182 <!-- root node --> 1183 <feature> 1184 <rects> 1185 <_> 1186 10 2 2 18 -1.</_> 1187 <_> 1188 10 8 2 6 3.</_></rects> 1189 <tilted>0</tilted></feature> 1190 <threshold>-0.1067709997296333</threshold> 1191 <left_val>0.6175932288169861</left_val> 1192 <right_val>-0.0730911865830421</right_val></_></_> 1193 <_> 1194 <!-- tree 13 --> 1195 <_> 1196 <!-- root node --> 1197 <feature> 1198 <rects> 1199 <_> 1200 0 5 8 6 -1.</_> 1201 <_> 1202 0 5 4 3 2.</_> 1203 <_> 1204 4 8 4 3 2.</_></rects> 1205 <tilted>0</tilted></feature> 1206 <threshold>0.0162569191306829</threshold> 1207 <left_val>-0.1310368031263351</left_val> 1208 <right_val>0.3745365142822266</right_val></_></_> 1209 <_> 1210 <!-- tree 14 --> 1211 <_> 1212 <!-- root node --> 1213 <feature> 1214 <rects> 1215 <_> 1216 6 0 6 5 -1.</_> 1217 <_> 1218 8 0 2 5 3.</_></rects> 1219 <tilted>0</tilted></feature> 1220 <threshold>-0.0206793602555990</threshold> 1221 <left_val>-0.7140290737152100</left_val> 1222 <right_val>0.0523900091648102</right_val></_></_> 1223 <_> 1224 <!-- tree 15 --> 1225 <_> 1226 <!-- root node --> 1227 <feature> 1228 <rects> 1229 <_> 1230 18 0 2 14 -1.</_> 1231 <_> 1232 18 7 2 7 2.</_></rects> 1233 <tilted>0</tilted></feature> 1234 <threshold>0.0170523691922426</threshold> 1235 <left_val>0.1282286047935486</left_val> 1236 <right_val>-0.3108068108558655</right_val></_></_> 1237 <_> 1238 <!-- tree 16 --> 1239 <_> 1240 <!-- root node --> 1241 <feature> 1242 <rects> 1243 <_> 1244 8 18 4 2 -1.</_> 1245 <_> 1246 10 18 2 2 2.</_></rects> 1247 <tilted>0</tilted></feature> 1248 <threshold>-5.7122060097754002e-003</threshold> 1249 <left_val>-0.6055650711059570</left_val> 1250 <right_val>0.0818847566843033</right_val></_></_> 1251 <_> 1252 <!-- tree 17 --> 1253 <_> 1254 <!-- root node --> 1255 <feature> 1256 <rects> 1257 <_> 1258 1 17 6 3 -1.</_> 1259 <_> 1260 1 18 6 1 3.</_></rects> 1261 <tilted>0</tilted></feature> 1262 <threshold>2.0851430235779844e-005</threshold> 1263 <left_val>-0.2681298851966858</left_val> 1264 <right_val>0.1445384025573731</right_val></_></_> 1265 <_> 1266 <!-- tree 18 --> 1267 <_> 1268 <!-- root node --> 1269 <feature> 1270 <rects> 1271 <_> 1272 11 8 3 5 -1.</_> 1273 <_> 1274 12 8 1 5 3.</_></rects> 1275 <tilted>0</tilted></feature> 1276 <threshold>7.9284431412816048e-003</threshold> 1277 <left_val>-0.0787953510880470</left_val> 1278 <right_val>0.5676258206367493</right_val></_></_> 1279 <_> 1280 <!-- tree 19 --> 1281 <_> 1282 <!-- root node --> 1283 <feature> 1284 <rects> 1285 <_> 1286 11 8 3 4 -1.</_> 1287 <_> 1288 12 8 1 4 3.</_></rects> 1289 <tilted>0</tilted></feature> 1290 <threshold>-2.5217379443347454e-003</threshold> 1291 <left_val>0.3706862926483154</left_val> 1292 <right_val>-0.1362057030200958</right_val></_></_> 1293 <_> 1294 <!-- tree 20 --> 1295 <_> 1296 <!-- root node --> 1297 <feature> 1298 <rects> 1299 <_> 1300 11 0 6 5 -1.</_> 1301 <_> 1302 13 0 2 5 3.</_></rects> 1303 <tilted>0</tilted></feature> 1304 <threshold>-0.0224261991679668</threshold> 1305 <left_val>-0.6870499849319458</left_val> 1306 <right_val>0.0510628595948219</right_val></_></_> 1307 <_> 1308 <!-- tree 21 --> 1309 <_> 1310 <!-- root node --> 1311 <feature> 1312 <rects> 1313 <_> 1314 1 7 6 7 -1.</_> 1315 <_> 1316 3 7 2 7 3.</_></rects> 1317 <tilted>0</tilted></feature> 1318 <threshold>-7.6451441273093224e-003</threshold> 1319 <left_val>0.2349222004413605</left_val> 1320 <right_val>-0.1790595948696137</right_val></_></_> 1321 <_> 1322 <!-- tree 22 --> 1323 <_> 1324 <!-- root node --> 1325 <feature> 1326 <rects> 1327 <_> 1328 0 13 1 3 -1.</_> 1329 <_> 1330 0 14 1 1 3.</_></rects> 1331 <tilted>0</tilted></feature> 1332 <threshold>-1.1175329564139247e-003</threshold> 1333 <left_val>-0.5986905097961426</left_val> 1334 <right_val>0.0743244364857674</right_val></_></_> 1335 <_> 1336 <!-- tree 23 --> 1337 <_> 1338 <!-- root node --> 1339 <feature> 1340 <rects> 1341 <_> 1342 3 2 9 6 -1.</_> 1343 <_> 1344 3 4 9 2 3.</_></rects> 1345 <tilted>0</tilted></feature> 1346 <threshold>0.0192127898335457</threshold> 1347 <left_val>-0.1570255011320114</left_val> 1348 <right_val>0.2973746955394745</right_val></_></_> 1349 <_> 1350 <!-- tree 24 --> 1351 <_> 1352 <!-- root node --> 1353 <feature> 1354 <rects> 1355 <_> 1356 8 6 9 2 -1.</_> 1357 <_> 1358 8 7 9 1 2.</_></rects> 1359 <tilted>0</tilted></feature> 1360 <threshold>5.6293429806828499e-003</threshold> 1361 <left_val>-0.0997690185904503</left_val> 1362 <right_val>0.4213027060031891</right_val></_></_> 1363 <_> 1364 <!-- tree 25 --> 1365 <_> 1366 <!-- root node --> 1367 <feature> 1368 <rects> 1369 <_> 1370 0 14 3 6 -1.</_> 1371 <_> 1372 0 16 3 2 3.</_></rects> 1373 <tilted>0</tilted></feature> 1374 <threshold>-9.5671862363815308e-003</threshold> 1375 <left_val>-0.6085879802703857</left_val> 1376 <right_val>0.0735062584280968</right_val></_></_> 1377 <_> 1378 <!-- tree 26 --> 1379 <_> 1380 <!-- root node --> 1381 <feature> 1382 <rects> 1383 <_> 1384 1 11 6 4 -1.</_> 1385 <_> 1386 3 11 2 4 3.</_></rects> 1387 <tilted>0</tilted></feature> 1388 <threshold>0.0112179601565003</threshold> 1389 <left_val>-0.1032081022858620</left_val> 1390 <right_val>0.4190984964370728</right_val></_></_></trees> 1391 <stage_threshold>-1.2905240058898926</stage_threshold> 1392 <parent>4</parent> 1393 <next>-1</next></_> 1394 <_> 1395 <!-- stage 6 --> 1396 <trees> 1397 <_> 1398 <!-- tree 0 --> 1399 <_> 1400 <!-- root node --> 1401 <feature> 1402 <rects> 1403 <_> 1404 6 9 9 3 -1.</_> 1405 <_> 1406 9 9 3 3 3.</_></rects> 1407 <tilted>0</tilted></feature> 1408 <threshold>-0.0174864400178194</threshold> 1409 <left_val>0.3130728006362915</left_val> 1410 <right_val>-0.3368118107318878</right_val></_></_> 1411 <_> 1412 <!-- tree 1 --> 1413 <_> 1414 <!-- root node --> 1415 <feature> 1416 <rects> 1417 <_> 1418 6 0 9 6 -1.</_> 1419 <_> 1420 6 2 9 2 3.</_></rects> 1421 <tilted>0</tilted></feature> 1422 <threshold>0.0307146497070789</threshold> 1423 <left_val>-0.1876619011163712</left_val> 1424 <right_val>0.5378080010414124</right_val></_></_> 1425 <_> 1426 <!-- tree 2 --> 1427 <_> 1428 <!-- root node --> 1429 <feature> 1430 <rects> 1431 <_> 1432 8 5 6 6 -1.</_> 1433 <_> 1434 8 7 6 2 3.</_></rects> 1435 <tilted>0</tilted></feature> 1436 <threshold>-0.0221887193620205</threshold> 1437 <left_val>0.3663788139820099</left_val> 1438 <right_val>-0.1612481027841568</right_val></_></_> 1439 <_> 1440 <!-- tree 3 --> 1441 <_> 1442 <!-- root node --> 1443 <feature> 1444 <rects> 1445 <_> 1446 1 12 2 1 -1.</_> 1447 <_> 1448 2 12 1 1 2.</_></rects> 1449 <tilted>0</tilted></feature> 1450 <threshold>-5.0700771680567414e-005</threshold> 1451 <left_val>0.2124571055173874</left_val> 1452 <right_val>-0.2844462096691132</right_val></_></_> 1453 <_> 1454 <!-- tree 4 --> 1455 <_> 1456 <!-- root node --> 1457 <feature> 1458 <rects> 1459 <_> 1460 10 10 6 2 -1.</_> 1461 <_> 1462 12 10 2 2 3.</_></rects> 1463 <tilted>0</tilted></feature> 1464 <threshold>-7.0170420221984386e-003</threshold> 1465 <left_val>0.3954311013221741</left_val> 1466 <right_val>-0.1317359060049057</right_val></_></_> 1467 <_> 1468 <!-- tree 5 --> 1469 <_> 1470 <!-- root node --> 1471 <feature> 1472 <rects> 1473 <_> 1474 13 8 6 6 -1.</_> 1475 <_> 1476 15 8 2 6 3.</_></rects> 1477 <tilted>0</tilted></feature> 1478 <threshold>-6.8563609384000301e-003</threshold> 1479 <left_val>0.3037385940551758</left_val> 1480 <right_val>-0.2065781950950623</right_val></_></_> 1481 <_> 1482 <!-- tree 6 --> 1483 <_> 1484 <!-- root node --> 1485 <feature> 1486 <rects> 1487 <_> 1488 6 16 6 4 -1.</_> 1489 <_> 1490 8 16 2 4 3.</_></rects> 1491 <tilted>0</tilted></feature> 1492 <threshold>-0.0141292596235871</threshold> 1493 <left_val>-0.7650300860404968</left_val> 1494 <right_val>0.0982131883502007</right_val></_></_> 1495 <_> 1496 <!-- tree 7 --> 1497 <_> 1498 <!-- root node --> 1499 <feature> 1500 <rects> 1501 <_> 1502 8 0 9 9 -1.</_> 1503 <_> 1504 8 3 9 3 3.</_></rects> 1505 <tilted>0</tilted></feature> 1506 <threshold>-0.0479154810309410</threshold> 1507 <left_val>0.4830738902091980</left_val> 1508 <right_val>-0.1300680935382843</right_val></_></_> 1509 <_> 1510 <!-- tree 8 --> 1511 <_> 1512 <!-- root node --> 1513 <feature> 1514 <rects> 1515 <_> 1516 18 17 1 3 -1.</_> 1517 <_> 1518 18 18 1 1 3.</_></rects> 1519 <tilted>0</tilted></feature> 1520 <threshold>4.7032979637151584e-005</threshold> 1521 <left_val>-0.2521657049655914</left_val> 1522 <right_val>0.2438668012619019</right_val></_></_> 1523 <_> 1524 <!-- tree 9 --> 1525 <_> 1526 <!-- root node --> 1527 <feature> 1528 <rects> 1529 <_> 1530 18 17 1 3 -1.</_> 1531 <_> 1532 18 18 1 1 3.</_></rects> 1533 <tilted>0</tilted></feature> 1534 <threshold>1.0221180273219943e-003</threshold> 1535 <left_val>0.0688576027750969</left_val> 1536 <right_val>-0.6586114168167114</right_val></_></_> 1537 <_> 1538 <!-- tree 10 --> 1539 <_> 1540 <!-- root node --> 1541 <feature> 1542 <rects> 1543 <_> 1544 7 10 3 3 -1.</_> 1545 <_> 1546 8 10 1 3 3.</_></rects> 1547 <tilted>0</tilted></feature> 1548 <threshold>-2.6056109927594662e-003</threshold> 1549 <left_val>0.4294202923774719</left_val> 1550 <right_val>-0.1302246004343033</right_val></_></_> 1551 <_> 1552 <!-- tree 11 --> 1553 <_> 1554 <!-- root node --> 1555 <feature> 1556 <rects> 1557 <_> 1558 9 14 2 2 -1.</_> 1559 <_> 1560 9 14 1 1 2.</_> 1561 <_> 1562 10 15 1 1 2.</_></rects> 1563 <tilted>0</tilted></feature> 1564 <threshold>5.4505340813193470e-005</threshold> 1565 <left_val>-0.1928862035274506</left_val> 1566 <right_val>0.2895849943161011</right_val></_></_> 1567 <_> 1568 <!-- tree 12 --> 1569 <_> 1570 <!-- root node --> 1571 <feature> 1572 <rects> 1573 <_> 1574 9 14 2 2 -1.</_> 1575 <_> 1576 9 14 1 1 2.</_> 1577 <_> 1578 10 15 1 1 2.</_></rects> 1579 <tilted>0</tilted></feature> 1580 <threshold>-6.6721157054416835e-005</threshold> 1581 <left_val>0.3029071092605591</left_val> 1582 <right_val>-0.1985436975955963</right_val></_></_> 1583 <_> 1584 <!-- tree 13 --> 1585 <_> 1586 <!-- root node --> 1587 <feature> 1588 <rects> 1589 <_> 1590 0 8 19 12 -1.</_> 1591 <_> 1592 0 14 19 6 2.</_></rects> 1593 <tilted>0</tilted></feature> 1594 <threshold>0.2628143131732941</threshold> 1595 <left_val>-0.2329394072294235</left_val> 1596 <right_val>0.2369246035814285</right_val></_></_> 1597 <_> 1598 <!-- tree 14 --> 1599 <_> 1600 <!-- root node --> 1601 <feature> 1602 <rects> 1603 <_> 1604 7 6 9 14 -1.</_> 1605 <_> 1606 10 6 3 14 3.</_></rects> 1607 <tilted>0</tilted></feature> 1608 <threshold>-0.0235696695744991</threshold> 1609 <left_val>0.1940104067325592</left_val> 1610 <right_val>-0.2848461866378784</right_val></_></_> 1611 <_> 1612 <!-- tree 15 --> 1613 <_> 1614 <!-- root node --> 1615 <feature> 1616 <rects> 1617 <_> 1618 13 8 3 4 -1.</_> 1619 <_> 1620 14 8 1 4 3.</_></rects> 1621 <tilted>0</tilted></feature> 1622 <threshold>-3.9120172150433064e-003</threshold> 1623 <left_val>0.5537897944450378</left_val> 1624 <right_val>-0.0956656783819199</right_val></_></_> 1625 <_> 1626 <!-- tree 16 --> 1627 <_> 1628 <!-- root node --> 1629 <feature> 1630 <rects> 1631 <_> 1632 4 17 1 3 -1.</_> 1633 <_> 1634 4 18 1 1 3.</_></rects> 1635 <tilted>0</tilted></feature> 1636 <threshold>5.0788799853762612e-005</threshold> 1637 <left_val>-0.2391265928745270</left_val> 1638 <right_val>0.2179948985576630</right_val></_></_> 1639 <_> 1640 <!-- tree 17 --> 1641 <_> 1642 <!-- root node --> 1643 <feature> 1644 <rects> 1645 <_> 1646 4 9 6 3 -1.</_> 1647 <_> 1648 6 9 2 3 3.</_></rects> 1649 <tilted>0</tilted></feature> 1650 <threshold>-7.8732017427682877e-003</threshold> 1651 <left_val>0.4069742858409882</left_val> 1652 <right_val>-0.1276804059743881</right_val></_></_> 1653 <_> 1654 <!-- tree 18 --> 1655 <_> 1656 <!-- root node --> 1657 <feature> 1658 <rects> 1659 <_> 1660 2 18 5 2 -1.</_> 1661 <_> 1662 2 19 5 1 2.</_></rects> 1663 <tilted>0</tilted></feature> 1664 <threshold>-1.6778609715402126e-003</threshold> 1665 <left_val>-0.5774465799331665</left_val> 1666 <right_val>0.0973247885704041</right_val></_></_> 1667 <_> 1668 <!-- tree 19 --> 1669 <_> 1670 <!-- root node --> 1671 <feature> 1672 <rects> 1673 <_> 1674 7 8 2 2 -1.</_> 1675 <_> 1676 7 8 1 1 2.</_> 1677 <_> 1678 8 9 1 1 2.</_></rects> 1679 <tilted>0</tilted></feature> 1680 <threshold>-2.6832430739887059e-004</threshold> 1681 <left_val>0.2902188003063202</left_val> 1682 <right_val>-0.1683126986026764</right_val></_></_> 1683 <_> 1684 <!-- tree 20 --> 1685 <_> 1686 <!-- root node --> 1687 <feature> 1688 <rects> 1689 <_> 1690 7 8 2 2 -1.</_> 1691 <_> 1692 7 8 1 1 2.</_> 1693 <_> 1694 8 9 1 1 2.</_></rects> 1695 <tilted>0</tilted></feature> 1696 <threshold>7.8687182394787669e-005</threshold> 1697 <left_val>-0.1955157071352005</left_val> 1698 <right_val>0.2772096991539002</right_val></_></_> 1699 <_> 1700 <!-- tree 21 --> 1701 <_> 1702 <!-- root node --> 1703 <feature> 1704 <rects> 1705 <_> 1706 5 10 13 2 -1.</_> 1707 <_> 1708 5 11 13 1 2.</_></rects> 1709 <tilted>0</tilted></feature> 1710 <threshold>0.0129535002633929</threshold> 1711 <left_val>-0.0968383178114891</left_val> 1712 <right_val>0.4032387137413025</right_val></_></_> 1713 <_> 1714 <!-- tree 22 --> 1715 <_> 1716 <!-- root node --> 1717 <feature> 1718 <rects> 1719 <_> 1720 10 8 1 9 -1.</_> 1721 <_> 1722 10 11 1 3 3.</_></rects> 1723 <tilted>0</tilted></feature> 1724 <threshold>-0.0130439596250653</threshold> 1725 <left_val>0.4719856977462769</left_val> 1726 <right_val>-0.0892875492572784</right_val></_></_> 1727 <_> 1728 <!-- tree 23 --> 1729 <_> 1730 <!-- root node --> 1731 <feature> 1732 <rects> 1733 <_> 1734 15 8 2 12 -1.</_> 1735 <_> 1736 15 8 1 6 2.</_> 1737 <_> 1738 16 14 1 6 2.</_></rects> 1739 <tilted>0</tilted></feature> 1740 <threshold>3.0261781066656113e-003</threshold> 1741 <left_val>-0.1362338066101074</left_val> 1742 <right_val>0.3068627119064331</right_val></_></_> 1743 <_> 1744 <!-- tree 24 --> 1745 <_> 1746 <!-- root node --> 1747 <feature> 1748 <rects> 1749 <_> 1750 4 0 3 5 -1.</_> 1751 <_> 1752 5 0 1 5 3.</_></rects> 1753 <tilted>0</tilted></feature> 1754 <threshold>-6.0438038781285286e-003</threshold> 1755 <left_val>-0.7795410156250000</left_val> 1756 <right_val>0.0573163107037544</right_val></_></_> 1757 <_> 1758 <!-- tree 25 --> 1759 <_> 1760 <!-- root node --> 1761 <feature> 1762 <rects> 1763 <_> 1764 12 6 3 7 -1.</_> 1765 <_> 1766 13 6 1 7 3.</_></rects> 1767 <tilted>0</tilted></feature> 1768 <threshold>-2.2507249377667904e-003</threshold> 1769 <left_val>0.3087705969810486</left_val> 1770 <right_val>-0.1500630974769592</right_val></_></_> 1771 <_> 1772 <!-- tree 26 --> 1773 <_> 1774 <!-- root node --> 1775 <feature> 1776 <rects> 1777 <_> 1778 7 16 6 4 -1.</_> 1779 <_> 1780 9 16 2 4 3.</_></rects> 1781 <tilted>0</tilted></feature> 1782 <threshold>0.0158268101513386</threshold> 1783 <left_val>0.0645518898963928</left_val> 1784 <right_val>-0.7245556712150574</right_val></_></_> 1785 <_> 1786 <!-- tree 27 --> 1787 <_> 1788 <!-- root node --> 1789 <feature> 1790 <rects> 1791 <_> 1792 9 16 2 1 -1.</_> 1793 <_> 1794 10 16 1 1 2.</_></rects> 1795 <tilted>0</tilted></feature> 1796 <threshold>6.5864507632795721e-005</threshold> 1797 <left_val>-0.1759884059429169</left_val> 1798 <right_val>0.2321038991212845</right_val></_></_></trees> 1799 <stage_threshold>-1.1600480079650879</stage_threshold> 1800 <parent>5</parent> 1801 <next>-1</next></_> 1802 <_> 1803 <!-- stage 7 --> 1804 <trees> 1805 <_> 1806 <!-- tree 0 --> 1807 <_> 1808 <!-- root node --> 1809 <feature> 1810 <rects> 1811 <_> 1812 6 10 9 2 -1.</_> 1813 <_> 1814 9 10 3 2 3.</_></rects> 1815 <tilted>0</tilted></feature> 1816 <threshold>-0.0278548691421747</threshold> 1817 <left_val>0.4551844894886017</left_val> 1818 <right_val>-0.1809991002082825</right_val></_></_> 1819 <_> 1820 <!-- tree 1 --> 1821 <_> 1822 <!-- root node --> 1823 <feature> 1824 <rects> 1825 <_> 1826 0 6 15 14 -1.</_> 1827 <_> 1828 0 13 15 7 2.</_></rects> 1829 <tilted>0</tilted></feature> 1830 <threshold>0.1289504021406174</threshold> 1831 <left_val>-0.5256553292274475</left_val> 1832 <right_val>0.1618890017271042</right_val></_></_> 1833 <_> 1834 <!-- tree 2 --> 1835 <_> 1836 <!-- root node --> 1837 <feature> 1838 <rects> 1839 <_> 1840 9 1 5 6 -1.</_> 1841 <_> 1842 9 3 5 2 3.</_></rects> 1843 <tilted>0</tilted></feature> 1844 <threshold>0.0244031809270382</threshold> 1845 <left_val>-0.1497496068477631</left_val> 1846 <right_val>0.4235737919807434</right_val></_></_> 1847 <_> 1848 <!-- tree 3 --> 1849 <_> 1850 <!-- root node --> 1851 <feature> 1852 <rects> 1853 <_> 1854 3 9 3 4 -1.</_> 1855 <_> 1856 4 9 1 4 3.</_></rects> 1857 <tilted>0</tilted></feature> 1858 <threshold>-2.4458570405840874e-003</threshold> 1859 <left_val>0.3294866979122162</left_val> 1860 <right_val>-0.1744769066572189</right_val></_></_> 1861 <_> 1862 <!-- tree 4 --> 1863 <_> 1864 <!-- root node --> 1865 <feature> 1866 <rects> 1867 <_> 1868 5 7 3 6 -1.</_> 1869 <_> 1870 6 7 1 6 3.</_></rects> 1871 <tilted>0</tilted></feature> 1872 <threshold>-3.5336529836058617e-003</threshold> 1873 <left_val>0.4742664098739624</left_val> 1874 <right_val>-0.0736183598637581</right_val></_></_> 1875 <_> 1876 <!-- tree 5 --> 1877 <_> 1878 <!-- root node --> 1879 <feature> 1880 <rects> 1881 <_> 1882 17 16 1 2 -1.</_> 1883 <_> 1884 17 17 1 1 2.</_></rects> 1885 <tilted>0</tilted></feature> 1886 <threshold>5.1358150813030079e-005</threshold> 1887 <left_val>-0.3042193055152893</left_val> 1888 <right_val>0.1563327014446259</right_val></_></_> 1889 <_> 1890 <!-- tree 6 --> 1891 <_> 1892 <!-- root node --> 1893 <feature> 1894 <rects> 1895 <_> 1896 9 8 6 12 -1.</_> 1897 <_> 1898 11 8 2 12 3.</_></rects> 1899 <tilted>0</tilted></feature> 1900 <threshold>-0.0162256807088852</threshold> 1901 <left_val>0.2300218045711517</left_val> 1902 <right_val>-0.2035982012748718</right_val></_></_> 1903 <_> 1904 <!-- tree 7 --> 1905 <_> 1906 <!-- root node --> 1907 <feature> 1908 <rects> 1909 <_> 1910 6 10 6 1 -1.</_> 1911 <_> 1912 8 10 2 1 3.</_></rects> 1913 <tilted>0</tilted></feature> 1914 <threshold>-4.6007009223103523e-003</threshold> 1915 <left_val>0.4045926928520203</left_val> 1916 <right_val>-0.1348544061183929</right_val></_></_> 1917 <_> 1918 <!-- tree 8 --> 1919 <_> 1920 <!-- root node --> 1921 <feature> 1922 <rects> 1923 <_> 1924 7 17 9 3 -1.</_> 1925 <_> 1926 10 17 3 3 3.</_></rects> 1927 <tilted>0</tilted></feature> 1928 <threshold>-0.0219289995729923</threshold> 1929 <left_val>-0.6872448921203613</left_val> 1930 <right_val>0.0806842669844627</right_val></_></_> 1931 <_> 1932 <!-- tree 9 --> 1933 <_> 1934 <!-- root node --> 1935 <feature> 1936 <rects> 1937 <_> 1938 14 18 6 2 -1.</_> 1939 <_> 1940 14 19 6 1 2.</_></rects> 1941 <tilted>0</tilted></feature> 1942 <threshold>-2.8971210122108459e-003</threshold> 1943 <left_val>-0.6961960792541504</left_val> 1944 <right_val>0.0485452190041542</right_val></_></_> 1945 <_> 1946 <!-- tree 10 --> 1947 <_> 1948 <!-- root node --> 1949 <feature> 1950 <rects> 1951 <_> 1952 9 5 3 14 -1.</_> 1953 <_> 1954 10 5 1 14 3.</_></rects> 1955 <tilted>0</tilted></feature> 1956 <threshold>-4.4074649922549725e-003</threshold> 1957 <left_val>0.2516626119613648</left_val> 1958 <right_val>-0.1623664945363998</right_val></_></_> 1959 <_> 1960 <!-- tree 11 --> 1961 <_> 1962 <!-- root node --> 1963 <feature> 1964 <rects> 1965 <_> 1966 8 16 9 4 -1.</_> 1967 <_> 1968 11 16 3 4 3.</_></rects> 1969 <tilted>0</tilted></feature> 1970 <threshold>0.0284371692687273</threshold> 1971 <left_val>0.0603942610323429</left_val> 1972 <right_val>-0.6674445867538452</right_val></_></_> 1973 <_> 1974 <!-- tree 12 --> 1975 <_> 1976 <!-- root node --> 1977 <feature> 1978 <rects> 1979 <_> 1980 0 0 4 14 -1.</_> 1981 <_> 1982 0 7 4 7 2.</_></rects> 1983 <tilted>0</tilted></feature> 1984 <threshold>0.0832128822803497</threshold> 1985 <left_val>0.0643579214811325</left_val> 1986 <right_val>-0.5362604260444641</right_val></_></_> 1987 <_> 1988 <!-- tree 13 --> 1989 <_> 1990 <!-- root node --> 1991 <feature> 1992 <rects> 1993 <_> 1994 8 1 6 3 -1.</_> 1995 <_> 1996 10 1 2 3 3.</_></rects> 1997 <tilted>0</tilted></feature> 1998 <threshold>-0.0124193299561739</threshold> 1999 <left_val>-0.7081686258316040</left_val> 2000 <right_val>0.0575266107916832</right_val></_></_> 2001 <_> 2002 <!-- tree 14 --> 2003 <_> 2004 <!-- root node --> 2005 <feature> 2006 <rects> 2007 <_> 2008 6 8 3 4 -1.</_> 2009 <_> 2010 7 8 1 4 3.</_></rects> 2011 <tilted>0</tilted></feature> 2012 <threshold>-4.6992599964141846e-003</threshold> 2013 <left_val>0.5125433206558228</left_val> 2014 <right_val>-0.0873508006334305</right_val></_></_> 2015 <_> 2016 <!-- tree 15 --> 2017 <_> 2018 <!-- root node --> 2019 <feature> 2020 <rects> 2021 <_> 2022 4 8 3 4 -1.</_> 2023 <_> 2024 5 8 1 4 3.</_></rects> 2025 <tilted>0</tilted></feature> 2026 <threshold>-7.8025809489190578e-004</threshold> 2027 <left_val>0.2668766081333160</left_val> 2028 <right_val>-0.1796150952577591</right_val></_></_> 2029 <_> 2030 <!-- tree 16 --> 2031 <_> 2032 <!-- root node --> 2033 <feature> 2034 <rects> 2035 <_> 2036 5 1 6 5 -1.</_> 2037 <_> 2038 7 1 2 5 3.</_></rects> 2039 <tilted>0</tilted></feature> 2040 <threshold>-0.0197243392467499</threshold> 2041 <left_val>-0.6756373047828674</left_val> 2042 <right_val>0.0729419067502022</right_val></_></_> 2043 <_> 2044 <!-- tree 17 --> 2045 <_> 2046 <!-- root node --> 2047 <feature> 2048 <rects> 2049 <_> 2050 1 18 1 2 -1.</_> 2051 <_> 2052 1 19 1 1 2.</_></rects> 2053 <tilted>0</tilted></feature> 2054 <threshold>1.0269250487908721e-003</threshold> 2055 <left_val>0.0539193190634251</left_val> 2056 <right_val>-0.5554018020629883</right_val></_></_> 2057 <_> 2058 <!-- tree 18 --> 2059 <_> 2060 <!-- root node --> 2061 <feature> 2062 <rects> 2063 <_> 2064 7 0 6 6 -1.</_> 2065 <_> 2066 7 2 6 2 3.</_></rects> 2067 <tilted>0</tilted></feature> 2068 <threshold>-0.0259571895003319</threshold> 2069 <left_val>0.5636252760887146</left_val> 2070 <right_val>-0.0718983933329582</right_val></_></_> 2071 <_> 2072 <!-- tree 19 --> 2073 <_> 2074 <!-- root node --> 2075 <feature> 2076 <rects> 2077 <_> 2078 0 18 4 2 -1.</_> 2079 <_> 2080 0 19 4 1 2.</_></rects> 2081 <tilted>0</tilted></feature> 2082 <threshold>-1.2552699772641063e-003</threshold> 2083 <left_val>-0.5034663081169128</left_val> 2084 <right_val>0.0896914526820183</right_val></_></_> 2085 <_> 2086 <!-- tree 20 --> 2087 <_> 2088 <!-- root node --> 2089 <feature> 2090 <rects> 2091 <_> 2092 12 3 8 12 -1.</_> 2093 <_> 2094 12 7 8 4 3.</_></rects> 2095 <tilted>0</tilted></feature> 2096 <threshold>-0.0499705784022808</threshold> 2097 <left_val>0.1768511980772018</left_val> 2098 <right_val>-0.2230195999145508</right_val></_></_> 2099 <_> 2100 <!-- tree 21 --> 2101 <_> 2102 <!-- root node --> 2103 <feature> 2104 <rects> 2105 <_> 2106 12 9 3 4 -1.</_> 2107 <_> 2108 13 9 1 4 3.</_></rects> 2109 <tilted>0</tilted></feature> 2110 <threshold>-2.9899610672146082e-003</threshold> 2111 <left_val>0.3912242054939270</left_val> 2112 <right_val>-0.1014975011348724</right_val></_></_> 2113 <_> 2114 <!-- tree 22 --> 2115 <_> 2116 <!-- root node --> 2117 <feature> 2118 <rects> 2119 <_> 2120 12 8 3 5 -1.</_> 2121 <_> 2122 13 8 1 5 3.</_></rects> 2123 <tilted>0</tilted></feature> 2124 <threshold>4.8546842299401760e-003</threshold> 2125 <left_val>-0.1177017986774445</left_val> 2126 <right_val>0.4219093918800354</right_val></_></_> 2127 <_> 2128 <!-- tree 23 --> 2129 <_> 2130 <!-- root node --> 2131 <feature> 2132 <rects> 2133 <_> 2134 16 0 2 1 -1.</_> 2135 <_> 2136 17 0 1 1 2.</_></rects> 2137 <tilted>0</tilted></feature> 2138 <threshold>1.0448860120959580e-004</threshold> 2139 <left_val>-0.1733397990465164</left_val> 2140 <right_val>0.2234444022178650</right_val></_></_> 2141 <_> 2142 <!-- tree 24 --> 2143 <_> 2144 <!-- root node --> 2145 <feature> 2146 <rects> 2147 <_> 2148 5 17 1 3 -1.</_> 2149 <_> 2150 5 18 1 1 3.</_></rects> 2151 <tilted>0</tilted></feature> 2152 <threshold>5.9689260524464771e-005</threshold> 2153 <left_val>-0.2340963035821915</left_val> 2154 <right_val>0.1655824035406113</right_val></_></_> 2155 <_> 2156 <!-- tree 25 --> 2157 <_> 2158 <!-- root node --> 2159 <feature> 2160 <rects> 2161 <_> 2162 10 2 3 6 -1.</_> 2163 <_> 2164 10 4 3 2 3.</_></rects> 2165 <tilted>0</tilted></feature> 2166 <threshold>-0.0134239196777344</threshold> 2167 <left_val>0.4302381873130798</left_val> 2168 <right_val>-0.0997236520051956</right_val></_></_> 2169 <_> 2170 <!-- tree 26 --> 2171 <_> 2172 <!-- root node --> 2173 <feature> 2174 <rects> 2175 <_> 2176 4 17 2 3 -1.</_> 2177 <_> 2178 4 18 2 1 3.</_></rects> 2179 <tilted>0</tilted></feature> 2180 <threshold>2.2581999655812979e-003</threshold> 2181 <left_val>0.0727209895849228</left_val> 2182 <right_val>-0.5750101804733276</right_val></_></_> 2183 <_> 2184 <!-- tree 27 --> 2185 <_> 2186 <!-- root node --> 2187 <feature> 2188 <rects> 2189 <_> 2190 12 7 1 9 -1.</_> 2191 <_> 2192 12 10 1 3 3.</_></rects> 2193 <tilted>0</tilted></feature> 2194 <threshold>-0.0125462803989649</threshold> 2195 <left_val>0.3618457913398743</left_val> 2196 <right_val>-0.1145701035857201</right_val></_></_> 2197 <_> 2198 <!-- tree 28 --> 2199 <_> 2200 <!-- root node --> 2201 <feature> 2202 <rects> 2203 <_> 2204 7 6 3 9 -1.</_> 2205 <_> 2206 8 6 1 9 3.</_></rects> 2207 <tilted>0</tilted></feature> 2208 <threshold>-2.8705769218504429e-003</threshold> 2209 <left_val>0.2821053862571716</left_val> 2210 <right_val>-0.1236755028367043</right_val></_></_> 2211 <_> 2212 <!-- tree 29 --> 2213 <_> 2214 <!-- root node --> 2215 <feature> 2216 <rects> 2217 <_> 2218 17 13 3 6 -1.</_> 2219 <_> 2220 17 15 3 2 3.</_></rects> 2221 <tilted>0</tilted></feature> 2222 <threshold>0.0197856407612562</threshold> 2223 <left_val>0.0478767491877079</left_val> 2224 <right_val>-0.8066623806953430</right_val></_></_> 2225 <_> 2226 <!-- tree 30 --> 2227 <_> 2228 <!-- root node --> 2229 <feature> 2230 <rects> 2231 <_> 2232 7 7 3 8 -1.</_> 2233 <_> 2234 8 7 1 8 3.</_></rects> 2235 <tilted>0</tilted></feature> 2236 <threshold>4.7588930465281010e-003</threshold> 2237 <left_val>-0.1092538982629776</left_val> 2238 <right_val>0.3374697864055634</right_val></_></_> 2239 <_> 2240 <!-- tree 31 --> 2241 <_> 2242 <!-- root node --> 2243 <feature> 2244 <rects> 2245 <_> 2246 5 0 3 5 -1.</_> 2247 <_> 2248 6 0 1 5 3.</_></rects> 2249 <tilted>0</tilted></feature> 2250 <threshold>-6.9974269717931747e-003</threshold> 2251 <left_val>-0.8029593825340271</left_val> 2252 <right_val>0.0457067005336285</right_val></_></_> 2253 <_> 2254 <!-- tree 32 --> 2255 <_> 2256 <!-- root node --> 2257 <feature> 2258 <rects> 2259 <_> 2260 4 6 9 8 -1.</_> 2261 <_> 2262 7 6 3 8 3.</_></rects> 2263 <tilted>0</tilted></feature> 2264 <threshold>-0.0130334803834558</threshold> 2265 <left_val>0.1868043988943100</left_val> 2266 <right_val>-0.1768891066312790</right_val></_></_> 2267 <_> 2268 <!-- tree 33 --> 2269 <_> 2270 <!-- root node --> 2271 <feature> 2272 <rects> 2273 <_> 2274 2 9 3 3 -1.</_> 2275 <_> 2276 3 9 1 3 3.</_></rects> 2277 <tilted>0</tilted></feature> 2278 <threshold>-1.3742579612880945e-003</threshold> 2279 <left_val>0.2772547900676727</left_val> 2280 <right_val>-0.1280900985002518</right_val></_></_> 2281 <_> 2282 <!-- tree 34 --> 2283 <_> 2284 <!-- root node --> 2285 <feature> 2286 <rects> 2287 <_> 2288 16 18 4 2 -1.</_> 2289 <_> 2290 16 19 4 1 2.</_></rects> 2291 <tilted>0</tilted></feature> 2292 <threshold>2.7657810132950544e-003</threshold> 2293 <left_val>0.0907589420676231</left_val> 2294 <right_val>-0.4259473979473114</right_val></_></_> 2295 <_> 2296 <!-- tree 35 --> 2297 <_> 2298 <!-- root node --> 2299 <feature> 2300 <rects> 2301 <_> 2302 17 10 3 10 -1.</_> 2303 <_> 2304 17 15 3 5 2.</_></rects> 2305 <tilted>0</tilted></feature> 2306 <threshold>2.8941841446794569e-004</threshold> 2307 <left_val>-0.3881632983684540</left_val> 2308 <right_val>0.0892677977681160</right_val></_></_></trees> 2309 <stage_threshold>-1.2257250547409058</stage_threshold> 2310 <parent>6</parent> 2311 <next>-1</next></_> 2312 <_> 2313 <!-- stage 8 --> 2314 <trees> 2315 <_> 2316 <!-- tree 0 --> 2317 <_> 2318 <!-- root node --> 2319 <feature> 2320 <rects> 2321 <_> 2322 8 9 6 4 -1.</_> 2323 <_> 2324 10 9 2 4 3.</_></rects> 2325 <tilted>0</tilted></feature> 2326 <threshold>-0.0144692296162248</threshold> 2327 <left_val>0.3750782907009125</left_val> 2328 <right_val>-0.2492828965187073</right_val></_></_> 2329 <_> 2330 <!-- tree 1 --> 2331 <_> 2332 <!-- root node --> 2333 <feature> 2334 <rects> 2335 <_> 2336 5 2 10 12 -1.</_> 2337 <_> 2338 5 6 10 4 3.</_></rects> 2339 <tilted>0</tilted></feature> 2340 <threshold>-0.1331762969493866</threshold> 2341 <left_val>0.3016637861728668</left_val> 2342 <right_val>-0.2241407036781311</right_val></_></_> 2343 <_> 2344 <!-- tree 2 --> 2345 <_> 2346 <!-- root node --> 2347 <feature> 2348 <rects> 2349 <_> 2350 6 9 6 3 -1.</_> 2351 <_> 2352 8 9 2 3 3.</_></rects> 2353 <tilted>0</tilted></feature> 2354 <threshold>-0.0101321600377560</threshold> 2355 <left_val>0.3698559105396271</left_val> 2356 <right_val>-0.1785001009702683</right_val></_></_> 2357 <_> 2358 <!-- tree 3 --> 2359 <_> 2360 <!-- root node --> 2361 <feature> 2362 <rects> 2363 <_> 2364 11 7 3 7 -1.</_> 2365 <_> 2366 12 7 1 7 3.</_></rects> 2367 <tilted>0</tilted></feature> 2368 <threshold>-7.8511182218790054e-003</threshold> 2369 <left_val>0.4608676135540009</left_val> 2370 <right_val>-0.1293139010667801</right_val></_></_> 2371 <_> 2372 <!-- tree 4 --> 2373 <_> 2374 <!-- root node --> 2375 <feature> 2376 <rects> 2377 <_> 2378 12 8 6 4 -1.</_> 2379 <_> 2380 14 8 2 4 3.</_></rects> 2381 <tilted>0</tilted></feature> 2382 <threshold>-0.0142958397045732</threshold> 2383 <left_val>0.4484142959117889</left_val> 2384 <right_val>-0.1022624000906944</right_val></_></_> 2385 <_> 2386 <!-- tree 5 --> 2387 <_> 2388 <!-- root node --> 2389 <feature> 2390 <rects> 2391 <_> 2392 14 8 6 5 -1.</_> 2393 <_> 2394 16 8 2 5 3.</_></rects> 2395 <tilted>0</tilted></feature> 2396 <threshold>-5.9606940485537052e-003</threshold> 2397 <left_val>0.2792798876762390</left_val> 2398 <right_val>-0.1532382965087891</right_val></_></_> 2399 <_> 2400 <!-- tree 6 --> 2401 <_> 2402 <!-- root node --> 2403 <feature> 2404 <rects> 2405 <_> 2406 12 12 2 4 -1.</_> 2407 <_> 2408 12 14 2 2 2.</_></rects> 2409 <tilted>0</tilted></feature> 2410 <threshold>0.0109327696263790</threshold> 2411 <left_val>-0.1514174044132233</left_val> 2412 <right_val>0.3988964855670929</right_val></_></_> 2413 <_> 2414 <!-- tree 7 --> 2415 <_> 2416 <!-- root node --> 2417 <feature> 2418 <rects> 2419 <_> 2420 3 15 1 2 -1.</_> 2421 <_> 2422 3 16 1 1 2.</_></rects> 2423 <tilted>0</tilted></feature> 2424 <threshold>5.0430990086169913e-005</threshold> 2425 <left_val>-0.2268157005310059</left_val> 2426 <right_val>0.2164438962936401</right_val></_></_> 2427 <_> 2428 <!-- tree 8 --> 2429 <_> 2430 <!-- root node --> 2431 <feature> 2432 <rects> 2433 <_> 2434 12 7 3 4 -1.</_> 2435 <_> 2436 13 7 1 4 3.</_></rects> 2437 <tilted>0</tilted></feature> 2438 <threshold>-5.8431681245565414e-003</threshold> 2439 <left_val>0.4542014896869659</left_val> 2440 <right_val>-0.1258715987205505</right_val></_></_> 2441 <_> 2442 <!-- tree 9 --> 2443 <_> 2444 <!-- root node --> 2445 <feature> 2446 <rects> 2447 <_> 2448 10 0 6 6 -1.</_> 2449 <_> 2450 12 0 2 6 3.</_></rects> 2451 <tilted>0</tilted></feature> 2452 <threshold>-0.0223462097346783</threshold> 2453 <left_val>-0.6269019246101379</left_val> 2454 <right_val>0.0824031233787537</right_val></_></_> 2455 <_> 2456 <!-- tree 10 --> 2457 <_> 2458 <!-- root node --> 2459 <feature> 2460 <rects> 2461 <_> 2462 10 6 3 8 -1.</_> 2463 <_> 2464 11 6 1 8 3.</_></rects> 2465 <tilted>0</tilted></feature> 2466 <threshold>-4.8836669884622097e-003</threshold> 2467 <left_val>0.2635925114154816</left_val> 2468 <right_val>-0.1468663066625595</right_val></_></_> 2469 <_> 2470 <!-- tree 11 --> 2471 <_> 2472 <!-- root node --> 2473 <feature> 2474 <rects> 2475 <_> 2476 16 17 1 2 -1.</_> 2477 <_> 2478 16 18 1 1 2.</_></rects> 2479 <tilted>0</tilted></feature> 2480 <threshold>7.5506002758629620e-005</threshold> 2481 <left_val>-0.2450702041387558</left_val> 2482 <right_val>0.1667888015508652</right_val></_></_> 2483 <_> 2484 <!-- tree 12 --> 2485 <_> 2486 <!-- root node --> 2487 <feature> 2488 <rects> 2489 <_> 2490 16 16 1 3 -1.</_> 2491 <_> 2492 16 17 1 1 3.</_></rects> 2493 <tilted>0</tilted></feature> 2494 <threshold>-4.9026997294276953e-004</threshold> 2495 <left_val>-0.4264996051788330</left_val> 2496 <right_val>0.0899735614657402</right_val></_></_> 2497 <_> 2498 <!-- tree 13 --> 2499 <_> 2500 <!-- root node --> 2501 <feature> 2502 <rects> 2503 <_> 2504 11 11 1 2 -1.</_> 2505 <_> 2506 11 12 1 1 2.</_></rects> 2507 <tilted>0</tilted></feature> 2508 <threshold>1.4861579984426498e-003</threshold> 2509 <left_val>-0.1204025000333786</left_val> 2510 <right_val>0.3009765148162842</right_val></_></_> 2511 <_> 2512 <!-- tree 14 --> 2513 <_> 2514 <!-- root node --> 2515 <feature> 2516 <rects> 2517 <_> 2518 3 7 6 9 -1.</_> 2519 <_> 2520 5 7 2 9 3.</_></rects> 2521 <tilted>0</tilted></feature> 2522 <threshold>-0.0119883399456739</threshold> 2523 <left_val>0.2785247862339020</left_val> 2524 <right_val>-0.1224434003233910</right_val></_></_> 2525 <_> 2526 <!-- tree 15 --> 2527 <_> 2528 <!-- root node --> 2529 <feature> 2530 <rects> 2531 <_> 2532 4 18 9 1 -1.</_> 2533 <_> 2534 7 18 3 1 3.</_></rects> 2535 <tilted>0</tilted></feature> 2536 <threshold>0.0105022396892309</threshold> 2537 <left_val>0.0404527597129345</left_val> 2538 <right_val>-0.7405040860176086</right_val></_></_> 2539 <_> 2540 <!-- tree 16 --> 2541 <_> 2542 <!-- root node --> 2543 <feature> 2544 <rects> 2545 <_> 2546 0 11 4 9 -1.</_> 2547 <_> 2548 0 14 4 3 3.</_></rects> 2549 <tilted>0</tilted></feature> 2550 <threshold>-0.0309630092233419</threshold> 2551 <left_val>-0.6284269094467163</left_val> 2552 <right_val>0.0480137616395950</right_val></_></_> 2553 <_> 2554 <!-- tree 17 --> 2555 <_> 2556 <!-- root node --> 2557 <feature> 2558 <rects> 2559 <_> 2560 9 17 6 3 -1.</_> 2561 <_> 2562 11 17 2 3 3.</_></rects> 2563 <tilted>0</tilted></feature> 2564 <threshold>0.0114145204424858</threshold> 2565 <left_val>0.0394052118062973</left_val> 2566 <right_val>-0.7167412042617798</right_val></_></_> 2567 <_> 2568 <!-- tree 18 --> 2569 <_> 2570 <!-- root node --> 2571 <feature> 2572 <rects> 2573 <_> 2574 7 8 6 12 -1.</_> 2575 <_> 2576 9 8 2 12 3.</_></rects> 2577 <tilted>0</tilted></feature> 2578 <threshold>-0.0123370001092553</threshold> 2579 <left_val>0.1994132995605469</left_val> 2580 <right_val>-0.1927430033683777</right_val></_></_> 2581 <_> 2582 <!-- tree 19 --> 2583 <_> 2584 <!-- root node --> 2585 <feature> 2586 <rects> 2587 <_> 2588 6 8 3 4 -1.</_> 2589 <_> 2590 7 8 1 4 3.</_></rects> 2591 <tilted>0</tilted></feature> 2592 <threshold>-5.9942267835140228e-003</threshold> 2593 <left_val>0.5131816267967224</left_val> 2594 <right_val>-0.0616580583155155</right_val></_></_> 2595 <_> 2596 <!-- tree 20 --> 2597 <_> 2598 <!-- root node --> 2599 <feature> 2600 <rects> 2601 <_> 2602 3 17 1 3 -1.</_> 2603 <_> 2604 3 18 1 1 3.</_></rects> 2605 <tilted>0</tilted></feature> 2606 <threshold>-1.1923230485990644e-003</threshold> 2607 <left_val>-0.7260529994964600</left_val> 2608 <right_val>0.0506527200341225</right_val></_></_> 2609 <_> 2610 <!-- tree 21 --> 2611 <_> 2612 <!-- root node --> 2613 <feature> 2614 <rects> 2615 <_> 2616 11 9 6 4 -1.</_> 2617 <_> 2618 13 9 2 4 3.</_></rects> 2619 <tilted>0</tilted></feature> 2620 <threshold>-7.4582789093255997e-003</threshold> 2621 <left_val>0.2960307896137238</left_val> 2622 <right_val>-0.1175478994846344</right_val></_></_> 2623 <_> 2624 <!-- tree 22 --> 2625 <_> 2626 <!-- root node --> 2627 <feature> 2628 <rects> 2629 <_> 2630 6 1 3 2 -1.</_> 2631 <_> 2632 7 1 1 2 3.</_></rects> 2633 <tilted>0</tilted></feature> 2634 <threshold>2.7877509128302336e-003</threshold> 2635 <left_val>0.0450687110424042</left_val> 2636 <right_val>-0.6953541040420532</right_val></_></_> 2637 <_> 2638 <!-- tree 23 --> 2639 <_> 2640 <!-- root node --> 2641 <feature> 2642 <rects> 2643 <_> 2644 1 0 2 1 -1.</_> 2645 <_> 2646 2 0 1 1 2.</_></rects> 2647 <tilted>0</tilted></feature> 2648 <threshold>-2.2503209766000509e-004</threshold> 2649 <left_val>0.2004725039005280</left_val> 2650 <right_val>-0.1577524989843369</right_val></_></_> 2651 <_> 2652 <!-- tree 24 --> 2653 <_> 2654 <!-- root node --> 2655 <feature> 2656 <rects> 2657 <_> 2658 1 0 2 14 -1.</_> 2659 <_> 2660 1 0 1 7 2.</_> 2661 <_> 2662 2 7 1 7 2.</_></rects> 2663 <tilted>0</tilted></feature> 2664 <threshold>-5.0367889925837517e-003</threshold> 2665 <left_val>0.2929981946945190</left_val> 2666 <right_val>-0.1170049980282784</right_val></_></_> 2667 <_> 2668 <!-- tree 25 --> 2669 <_> 2670 <!-- root node --> 2671 <feature> 2672 <rects> 2673 <_> 2674 5 5 11 8 -1.</_> 2675 <_> 2676 5 9 11 4 2.</_></rects> 2677 <tilted>0</tilted></feature> 2678 <threshold>0.0747421607375145</threshold> 2679 <left_val>-0.1139231994748116</left_val> 2680 <right_val>0.3025662004947662</right_val></_></_> 2681 <_> 2682 <!-- tree 26 --> 2683 <_> 2684 <!-- root node --> 2685 <feature> 2686 <rects> 2687 <_> 2688 9 3 5 6 -1.</_> 2689 <_> 2690 9 5 5 2 3.</_></rects> 2691 <tilted>0</tilted></feature> 2692 <threshold>0.0202555190771818</threshold> 2693 <left_val>-0.1051589027047157</left_val> 2694 <right_val>0.4067046046257019</right_val></_></_> 2695 <_> 2696 <!-- tree 27 --> 2697 <_> 2698 <!-- root node --> 2699 <feature> 2700 <rects> 2701 <_> 2702 7 9 5 10 -1.</_> 2703 <_> 2704 7 14 5 5 2.</_></rects> 2705 <tilted>0</tilted></feature> 2706 <threshold>0.0442145094275475</threshold> 2707 <left_val>-0.2763164043426514</left_val> 2708 <right_val>0.1236386969685555</right_val></_></_> 2709 <_> 2710 <!-- tree 28 --> 2711 <_> 2712 <!-- root node --> 2713 <feature> 2714 <rects> 2715 <_> 2716 15 10 2 2 -1.</_> 2717 <_> 2718 16 10 1 2 2.</_></rects> 2719 <tilted>0</tilted></feature> 2720 <threshold>-8.7259558495134115e-004</threshold> 2721 <left_val>0.2435503005981445</left_val> 2722 <right_val>-0.1330094933509827</right_val></_></_> 2723 <_> 2724 <!-- tree 29 --> 2725 <_> 2726 <!-- root node --> 2727 <feature> 2728 <rects> 2729 <_> 2730 0 18 8 2 -1.</_> 2731 <_> 2732 0 19 8 1 2.</_></rects> 2733 <tilted>0</tilted></feature> 2734 <threshold>-2.4453739169985056e-003</threshold> 2735 <left_val>-0.5386617183685303</left_val> 2736 <right_val>0.0625106468796730</right_val></_></_> 2737 <_> 2738 <!-- tree 30 --> 2739 <_> 2740 <!-- root node --> 2741 <feature> 2742 <rects> 2743 <_> 2744 7 17 1 3 -1.</_> 2745 <_> 2746 7 18 1 1 3.</_></rects> 2747 <tilted>0</tilted></feature> 2748 <threshold>8.2725353422574699e-005</threshold> 2749 <left_val>-0.2077220976352692</left_val> 2750 <right_val>0.1627043932676315</right_val></_></_> 2751 <_> 2752 <!-- tree 31 --> 2753 <_> 2754 <!-- root node --> 2755 <feature> 2756 <rects> 2757 <_> 2758 7 2 11 6 -1.</_> 2759 <_> 2760 7 4 11 2 3.</_></rects> 2761 <tilted>0</tilted></feature> 2762 <threshold>-0.0366271100938320</threshold> 2763 <left_val>0.3656840920448303</left_val> 2764 <right_val>-0.0903302803635597</right_val></_></_> 2765 <_> 2766 <!-- tree 32 --> 2767 <_> 2768 <!-- root node --> 2769 <feature> 2770 <rects> 2771 <_> 2772 8 3 9 3 -1.</_> 2773 <_> 2774 8 4 9 1 3.</_></rects> 2775 <tilted>0</tilted></feature> 2776 <threshold>3.0996399000287056e-003</threshold> 2777 <left_val>-0.1318302005529404</left_val> 2778 <right_val>0.2535429894924164</right_val></_></_> 2779 <_> 2780 <!-- tree 33 --> 2781 <_> 2782 <!-- root node --> 2783 <feature> 2784 <rects> 2785 <_> 2786 0 9 2 2 -1.</_> 2787 <_> 2788 0 10 2 1 2.</_></rects> 2789 <tilted>0</tilted></feature> 2790 <threshold>-2.4709280114620924e-003</threshold> 2791 <left_val>-0.5685349702835083</left_val> 2792 <right_val>0.0535054318606853</right_val></_></_> 2793 <_> 2794 <!-- tree 34 --> 2795 <_> 2796 <!-- root node --> 2797 <feature> 2798 <rects> 2799 <_> 2800 0 5 3 6 -1.</_> 2801 <_> 2802 0 7 3 2 3.</_></rects> 2803 <tilted>0</tilted></feature> 2804 <threshold>-0.0141146704554558</threshold> 2805 <left_val>-0.4859901070594788</left_val> 2806 <right_val>0.0584852509200573</right_val></_></_> 2807 <_> 2808 <!-- tree 35 --> 2809 <_> 2810 <!-- root node --> 2811 <feature> 2812 <rects> 2813 <_> 2814 6 7 2 2 -1.</_> 2815 <_> 2816 6 7 1 1 2.</_> 2817 <_> 2818 7 8 1 1 2.</_></rects> 2819 <tilted>0</tilted></feature> 2820 <threshold>8.4537261864170432e-004</threshold> 2821 <left_val>-0.0800936371088028</left_val> 2822 <right_val>0.4026564955711365</right_val></_></_> 2823 <_> 2824 <!-- tree 36 --> 2825 <_> 2826 <!-- root node --> 2827 <feature> 2828 <rects> 2829 <_> 2830 7 6 3 6 -1.</_> 2831 <_> 2832 8 6 1 6 3.</_></rects> 2833 <tilted>0</tilted></feature> 2834 <threshold>-7.1098632179200649e-003</threshold> 2835 <left_val>0.4470323920249939</left_val> 2836 <right_val>-0.0629474371671677</right_val></_></_> 2837 <_> 2838 <!-- tree 37 --> 2839 <_> 2840 <!-- root node --> 2841 <feature> 2842 <rects> 2843 <_> 2844 12 1 6 4 -1.</_> 2845 <_> 2846 14 1 2 4 3.</_></rects> 2847 <tilted>0</tilted></feature> 2848 <threshold>-0.0191259607672691</threshold> 2849 <left_val>-0.6642286777496338</left_val> 2850 <right_val>0.0498227700591087</right_val></_></_> 2851 <_> 2852 <!-- tree 38 --> 2853 <_> 2854 <!-- root node --> 2855 <feature> 2856 <rects> 2857 <_> 2858 9 11 6 8 -1.</_> 2859 <_> 2860 11 11 2 8 3.</_></rects> 2861 <tilted>0</tilted></feature> 2862 <threshold>-5.0773010589182377e-003</threshold> 2863 <left_val>0.1737940013408661</left_val> 2864 <right_val>-0.1685059964656830</right_val></_></_> 2865 <_> 2866 <!-- tree 39 --> 2867 <_> 2868 <!-- root node --> 2869 <feature> 2870 <rects> 2871 <_> 2872 17 15 3 3 -1.</_> 2873 <_> 2874 17 16 3 1 3.</_></rects> 2875 <tilted>0</tilted></feature> 2876 <threshold>-2.9198289848864079e-003</threshold> 2877 <left_val>-0.6011028289794922</left_val> 2878 <right_val>0.0574279390275478</right_val></_></_> 2879 <_> 2880 <!-- tree 40 --> 2881 <_> 2882 <!-- root node --> 2883 <feature> 2884 <rects> 2885 <_> 2886 6 6 3 9 -1.</_> 2887 <_> 2888 6 9 3 3 3.</_></rects> 2889 <tilted>0</tilted></feature> 2890 <threshold>-0.0249021500349045</threshold> 2891 <left_val>0.2339798063039780</left_val> 2892 <right_val>-0.1181845963001251</right_val></_></_> 2893 <_> 2894 <!-- tree 41 --> 2895 <_> 2896 <!-- root node --> 2897 <feature> 2898 <rects> 2899 <_> 2900 0 5 8 6 -1.</_> 2901 <_> 2902 0 5 4 3 2.</_> 2903 <_> 2904 4 8 4 3 2.</_></rects> 2905 <tilted>0</tilted></feature> 2906 <threshold>0.0201477799564600</threshold> 2907 <left_val>-0.0894598215818405</left_val> 2908 <right_val>0.3602440059185028</right_val></_></_> 2909 <_> 2910 <!-- tree 42 --> 2911 <_> 2912 <!-- root node --> 2913 <feature> 2914 <rects> 2915 <_> 2916 0 6 1 3 -1.</_> 2917 <_> 2918 0 7 1 1 3.</_></rects> 2919 <tilted>0</tilted></feature> 2920 <threshold>1.7597640398889780e-003</threshold> 2921 <left_val>0.0494584403932095</left_val> 2922 <right_val>-0.6310262084007263</right_val></_></_> 2923 <_> 2924 <!-- tree 43 --> 2925 <_> 2926 <!-- root node --> 2927 <feature> 2928 <rects> 2929 <_> 2930 17 0 2 6 -1.</_> 2931 <_> 2932 18 0 1 6 2.</_></rects> 2933 <tilted>0</tilted></feature> 2934 <threshold>1.3812039978802204e-003</threshold> 2935 <left_val>-0.1521805971860886</left_val> 2936 <right_val>0.1897173970937729</right_val></_></_> 2937 <_> 2938 <!-- tree 44 --> 2939 <_> 2940 <!-- root node --> 2941 <feature> 2942 <rects> 2943 <_> 2944 10 17 6 3 -1.</_> 2945 <_> 2946 12 17 2 3 3.</_></rects> 2947 <tilted>0</tilted></feature> 2948 <threshold>-0.0109045403078198</threshold> 2949 <left_val>-0.5809738039970398</left_val> 2950 <right_val>0.0448627285659313</right_val></_></_> 2951 <_> 2952 <!-- tree 45 --> 2953 <_> 2954 <!-- root node --> 2955 <feature> 2956 <rects> 2957 <_> 2958 13 15 2 2 -1.</_> 2959 <_> 2960 13 15 1 1 2.</_> 2961 <_> 2962 14 16 1 1 2.</_></rects> 2963 <tilted>0</tilted></feature> 2964 <threshold>7.5157178798690438e-005</threshold> 2965 <left_val>-0.1377734988927841</left_val> 2966 <right_val>0.1954316049814224</right_val></_></_> 2967 <_> 2968 <!-- tree 46 --> 2969 <_> 2970 <!-- root node --> 2971 <feature> 2972 <rects> 2973 <_> 2974 4 0 12 3 -1.</_> 2975 <_> 2976 4 1 12 1 3.</_></rects> 2977 <tilted>0</tilted></feature> 2978 <threshold>3.8649770431220531e-003</threshold> 2979 <left_val>-0.1030222997069359</left_val> 2980 <right_val>0.2537496984004974</right_val></_></_></trees> 2981 <stage_threshold>-1.2863140106201172</stage_threshold> 2982 <parent>7</parent> 2983 <next>-1</next></_> 2984 <_> 2985 <!-- stage 9 --> 2986 <trees> 2987 <_> 2988 <!-- tree 0 --> 2989 <_> 2990 <!-- root node --> 2991 <feature> 2992 <rects> 2993 <_> 2994 5 3 10 9 -1.</_> 2995 <_> 2996 5 6 10 3 3.</_></rects> 2997 <tilted>0</tilted></feature> 2998 <threshold>-0.1021588966250420</threshold> 2999 <left_val>0.4168125987052918</left_val> 3000 <right_val>-0.1665562987327576</right_val></_></_> 3001 <_> 3002 <!-- tree 1 --> 3003 <_> 3004 <!-- root node --> 3005 <feature> 3006 <rects> 3007 <_> 3008 7 7 9 7 -1.</_> 3009 <_> 3010 10 7 3 7 3.</_></rects> 3011 <tilted>0</tilted></feature> 3012 <threshold>-0.0519398190081120</threshold> 3013 <left_val>0.3302395045757294</left_val> 3014 <right_val>-0.2071571052074432</right_val></_></_> 3015 <_> 3016 <!-- tree 2 --> 3017 <_> 3018 <!-- root node --> 3019 <feature> 3020 <rects> 3021 <_> 3022 5 8 9 6 -1.</_> 3023 <_> 3024 8 8 3 6 3.</_></rects> 3025 <tilted>0</tilted></feature> 3026 <threshold>-0.0427177809178829</threshold> 3027 <left_val>0.2609373033046722</left_val> 3028 <right_val>-0.1601389050483704</right_val></_></_> 3029 <_> 3030 <!-- tree 3 --> 3031 <_> 3032 <!-- root node --> 3033 <feature> 3034 <rects> 3035 <_> 3036 0 16 6 2 -1.</_> 3037 <_> 3038 0 17 6 1 2.</_></rects> 3039 <tilted>0</tilted></feature> 3040 <threshold>4.3890418601222336e-004</threshold> 3041 <left_val>-0.3475053012371063</left_val> 3042 <right_val>0.1391891986131668</right_val></_></_> 3043 <_> 3044 <!-- tree 4 --> 3045 <_> 3046 <!-- root node --> 3047 <feature> 3048 <rects> 3049 <_> 3050 12 6 7 14 -1.</_> 3051 <_> 3052 12 13 7 7 2.</_></rects> 3053 <tilted>0</tilted></feature> 3054 <threshold>0.0242643896490335</threshold> 3055 <left_val>-0.4255205988883972</left_val> 3056 <right_val>0.1357838064432144</right_val></_></_> 3057 <_> 3058 <!-- tree 5 --> 3059 <_> 3060 <!-- root node --> 3061 <feature> 3062 <rects> 3063 <_> 3064 13 7 6 8 -1.</_> 3065 <_> 3066 15 7 2 8 3.</_></rects> 3067 <tilted>0</tilted></feature> 3068 <threshold>-0.0238205995410681</threshold> 3069 <left_val>0.3174980878829956</left_val> 3070 <right_val>-0.1665204018354416</right_val></_></_> 3071 <_> 3072 <!-- tree 6 --> 3073 <_> 3074 <!-- root node --> 3075 <feature> 3076 <rects> 3077 <_> 3078 2 10 6 3 -1.</_> 3079 <_> 3080 4 10 2 3 3.</_></rects> 3081 <tilted>0</tilted></feature> 3082 <threshold>-7.0518180727958679e-003</threshold> 3083 <left_val>0.3094717860221863</left_val> 3084 <right_val>-0.1333830058574677</right_val></_></_> 3085 <_> 3086 <!-- tree 7 --> 3087 <_> 3088 <!-- root node --> 3089 <feature> 3090 <rects> 3091 <_> 3092 18 17 1 3 -1.</_> 3093 <_> 3094 18 18 1 1 3.</_></rects> 3095 <tilted>0</tilted></feature> 3096 <threshold>-6.8517157342284918e-004</threshold> 3097 <left_val>-0.6008226275444031</left_val> 3098 <right_val>0.0877470001578331</right_val></_></_> 3099 <_> 3100 <!-- tree 8 --> 3101 <_> 3102 <!-- root node --> 3103 <feature> 3104 <rects> 3105 <_> 3106 7 1 6 2 -1.</_> 3107 <_> 3108 7 2 6 1 2.</_></rects> 3109 <tilted>0</tilted></feature> 3110 <threshold>5.3705149330198765e-003</threshold> 3111 <left_val>-0.1231144964694977</left_val> 3112 <right_val>0.3833355009555817</right_val></_></_> 3113 <_> 3114 <!-- tree 9 --> 3115 <_> 3116 <!-- root node --> 3117 <feature> 3118 <rects> 3119 <_> 3120 6 0 6 4 -1.</_> 3121 <_> 3122 6 2 6 2 2.</_></rects> 3123 <tilted>0</tilted></feature> 3124 <threshold>-0.0134035395458341</threshold> 3125 <left_val>0.3387736976146698</left_val> 3126 <right_val>-0.1014048978686333</right_val></_></_> 3127 <_> 3128 <!-- tree 10 --> 3129 <_> 3130 <!-- root node --> 3131 <feature> 3132 <rects> 3133 <_> 3134 8 18 6 2 -1.</_> 3135 <_> 3136 10 18 2 2 3.</_></rects> 3137 <tilted>0</tilted></feature> 3138 <threshold>-6.6856360062956810e-003</threshold> 3139 <left_val>-0.6119359731674194</left_val> 3140 <right_val>0.0477402210235596</right_val></_></_> 3141 <_> 3142 <!-- tree 11 --> 3143 <_> 3144 <!-- root node --> 3145 <feature> 3146 <rects> 3147 <_> 3148 7 6 5 2 -1.</_> 3149 <_> 3150 7 7 5 1 2.</_></rects> 3151 <tilted>0</tilted></feature> 3152 <threshold>-4.2887418530881405e-003</threshold> 3153 <left_val>0.2527579069137573</left_val> 3154 <right_val>-0.1443451046943665</right_val></_></_> 3155 <_> 3156 <!-- tree 12 --> 3157 <_> 3158 <!-- root node --> 3159 <feature> 3160 <rects> 3161 <_> 3162 6 7 3 6 -1.</_> 3163 <_> 3164 7 7 1 6 3.</_></rects> 3165 <tilted>0</tilted></feature> 3166 <threshold>-0.0108767496421933</threshold> 3167 <left_val>0.5477573275566101</left_val> 3168 <right_val>-0.0594554804265499</right_val></_></_> 3169 <_> 3170 <!-- tree 13 --> 3171 <_> 3172 <!-- root node --> 3173 <feature> 3174 <rects> 3175 <_> 3176 18 18 2 2 -1.</_> 3177 <_> 3178 18 18 1 1 2.</_> 3179 <_> 3180 19 19 1 1 2.</_></rects> 3181 <tilted>0</tilted></feature> 3182 <threshold>3.7882640026509762e-004</threshold> 3183 <left_val>0.0834103003144264</left_val> 3184 <right_val>-0.4422636926174164</right_val></_></_> 3185 <_> 3186 <!-- tree 14 --> 3187 <_> 3188 <!-- root node --> 3189 <feature> 3190 <rects> 3191 <_> 3192 16 8 3 7 -1.</_> 3193 <_> 3194 17 8 1 7 3.</_></rects> 3195 <tilted>0</tilted></feature> 3196 <threshold>-2.4550149682909250e-003</threshold> 3197 <left_val>0.2333099991083145</left_val> 3198 <right_val>-0.1396448016166687</right_val></_></_> 3199 <_> 3200 <!-- tree 15 --> 3201 <_> 3202 <!-- root node --> 3203 <feature> 3204 <rects> 3205 <_> 3206 0 16 2 3 -1.</_> 3207 <_> 3208 0 17 2 1 3.</_></rects> 3209 <tilted>0</tilted></feature> 3210 <threshold>1.2721839593723416e-003</threshold> 3211 <left_val>0.0604802891612053</left_val> 3212 <right_val>-0.4945608973503113</right_val></_></_> 3213 <_> 3214 <!-- tree 16 --> 3215 <_> 3216 <!-- root node --> 3217 <feature> 3218 <rects> 3219 <_> 3220 5 19 6 1 -1.</_> 3221 <_> 3222 7 19 2 1 3.</_></rects> 3223 <tilted>0</tilted></feature> 3224 <threshold>-4.8933159559965134e-003</threshold> 3225 <left_val>-0.6683326959609985</left_val> 3226 <right_val>0.0462184995412827</right_val></_></_> 3227 <_> 3228 <!-- tree 17 --> 3229 <_> 3230 <!-- root node --> 3231 <feature> 3232 <rects> 3233 <_> 3234 9 5 6 6 -1.</_> 3235 <_> 3236 9 7 6 2 3.</_></rects> 3237 <tilted>0</tilted></feature> 3238 <threshold>0.0264499895274639</threshold> 3239 <left_val>-0.0732353627681732</left_val> 3240 <right_val>0.4442596137523651</right_val></_></_> 3241 <_> 3242 <!-- tree 18 --> 3243 <_> 3244 <!-- root node --> 3245 <feature> 3246 <rects> 3247 <_> 3248 0 10 2 4 -1.</_> 3249 <_> 3250 0 12 2 2 2.</_></rects> 3251 <tilted>0</tilted></feature> 3252 <threshold>-3.3706070389598608e-003</threshold> 3253 <left_val>-0.4246433973312378</left_val> 3254 <right_val>0.0686765611171722</right_val></_></_> 3255 <_> 3256 <!-- tree 19 --> 3257 <_> 3258 <!-- root node --> 3259 <feature> 3260 <rects> 3261 <_> 3262 0 9 4 3 -1.</_> 3263 <_> 3264 2 9 2 3 2.</_></rects> 3265 <tilted>0</tilted></feature> 3266 <threshold>-2.9559480026364326e-003</threshold> 3267 <left_val>0.1621803939342499</left_val> 3268 <right_val>-0.1822299957275391</right_val></_></_> 3269 <_> 3270 <!-- tree 20 --> 3271 <_> 3272 <!-- root node --> 3273 <feature> 3274 <rects> 3275 <_> 3276 1 10 6 9 -1.</_> 3277 <_> 3278 3 10 2 9 3.</_></rects> 3279 <tilted>0</tilted></feature> 3280 <threshold>0.0306199099868536</threshold> 3281 <left_val>-0.0586433410644531</left_val> 3282 <right_val>0.5326362848281860</right_val></_></_> 3283 <_> 3284 <!-- tree 21 --> 3285 <_> 3286 <!-- root node --> 3287 <feature> 3288 <rects> 3289 <_> 3290 9 0 6 2 -1.</_> 3291 <_> 3292 11 0 2 2 3.</_></rects> 3293 <tilted>0</tilted></feature> 3294 <threshold>-9.5765907317399979e-003</threshold> 3295 <left_val>-0.6056268215179443</left_val> 3296 <right_val>0.0533459894359112</right_val></_></_> 3297 <_> 3298 <!-- tree 22 --> 3299 <_> 3300 <!-- root node --> 3301 <feature> 3302 <rects> 3303 <_> 3304 14 1 2 1 -1.</_> 3305 <_> 3306 15 1 1 1 2.</_></rects> 3307 <tilted>0</tilted></feature> 3308 <threshold>6.6372493165545166e-005</threshold> 3309 <left_val>-0.1668083965778351</left_val> 3310 <right_val>0.1928416043519974</right_val></_></_> 3311 <_> 3312 <!-- tree 23 --> 3313 <_> 3314 <!-- root node --> 3315 <feature> 3316 <rects> 3317 <_> 3318 0 8 1 4 -1.</_> 3319 <_> 3320 0 10 1 2 2.</_></rects> 3321 <tilted>0</tilted></feature> 3322 <threshold>5.0975950434803963e-003</threshold> 3323 <left_val>0.0441195107996464</left_val> 3324 <right_val>-0.5745884180068970</right_val></_></_> 3325 <_> 3326 <!-- tree 24 --> 3327 <_> 3328 <!-- root node --> 3329 <feature> 3330 <rects> 3331 <_> 3332 15 6 2 2 -1.</_> 3333 <_> 3334 15 6 1 1 2.</_> 3335 <_> 3336 16 7 1 1 2.</_></rects> 3337 <tilted>0</tilted></feature> 3338 <threshold>3.7112718564458191e-004</threshold> 3339 <left_val>-0.1108639985322952</left_val> 3340 <right_val>0.2310539036989212</right_val></_></_> 3341 <_> 3342 <!-- tree 25 --> 3343 <_> 3344 <!-- root node --> 3345 <feature> 3346 <rects> 3347 <_> 3348 7 5 3 6 -1.</_> 3349 <_> 3350 8 5 1 6 3.</_></rects> 3351 <tilted>0</tilted></feature> 3352 <threshold>-8.6607588455080986e-003</threshold> 3353 <left_val>0.4045628905296326</left_val> 3354 <right_val>-0.0624460913240910</right_val></_></_> 3355 <_> 3356 <!-- tree 26 --> 3357 <_> 3358 <!-- root node --> 3359 <feature> 3360 <rects> 3361 <_> 3362 19 17 1 3 -1.</_> 3363 <_> 3364 19 18 1 1 3.</_></rects> 3365 <tilted>0</tilted></feature> 3366 <threshold>8.7489158613607287e-004</threshold> 3367 <left_val>0.0648751482367516</left_val> 3368 <right_val>-0.4487104117870331</right_val></_></_> 3369 <_> 3370 <!-- tree 27 --> 3371 <_> 3372 <!-- root node --> 3373 <feature> 3374 <rects> 3375 <_> 3376 7 10 3 1 -1.</_> 3377 <_> 3378 8 10 1 1 3.</_></rects> 3379 <tilted>0</tilted></feature> 3380 <threshold>1.1120870476588607e-003</threshold> 3381 <left_val>-0.0938614606857300</left_val> 3382 <right_val>0.3045391142368317</right_val></_></_> 3383 <_> 3384 <!-- tree 28 --> 3385 <_> 3386 <!-- root node --> 3387 <feature> 3388 <rects> 3389 <_> 3390 12 1 6 6 -1.</_> 3391 <_> 3392 14 1 2 6 3.</_></rects> 3393 <tilted>0</tilted></feature> 3394 <threshold>-0.0238378196954727</threshold> 3395 <left_val>-0.5888742804527283</left_val> 3396 <right_val>0.0466594211757183</right_val></_></_> 3397 <_> 3398 <!-- tree 29 --> 3399 <_> 3400 <!-- root node --> 3401 <feature> 3402 <rects> 3403 <_> 3404 15 5 2 1 -1.</_> 3405 <_> 3406 16 5 1 1 2.</_></rects> 3407 <tilted>0</tilted></feature> 3408 <threshold>2.2272899514064193e-004</threshold> 3409 <left_val>-0.1489859968423843</left_val> 3410 <right_val>0.1770195066928864</right_val></_></_> 3411 <_> 3412 <!-- tree 30 --> 3413 <_> 3414 <!-- root node --> 3415 <feature> 3416 <rects> 3417 <_> 3418 8 2 7 4 -1.</_> 3419 <_> 3420 8 4 7 2 2.</_></rects> 3421 <tilted>0</tilted></feature> 3422 <threshold>0.0244674701243639</threshold> 3423 <left_val>-0.0557896010577679</left_val> 3424 <right_val>0.4920830130577087</right_val></_></_> 3425 <_> 3426 <!-- tree 31 --> 3427 <_> 3428 <!-- root node --> 3429 <feature> 3430 <rects> 3431 <_> 3432 4 0 14 15 -1.</_> 3433 <_> 3434 4 5 14 5 3.</_></rects> 3435 <tilted>0</tilted></feature> 3436 <threshold>-0.1423932015895844</threshold> 3437 <left_val>0.1519200056791306</left_val> 3438 <right_val>-0.1877889931201935</right_val></_></_> 3439 <_> 3440 <!-- tree 32 --> 3441 <_> 3442 <!-- root node --> 3443 <feature> 3444 <rects> 3445 <_> 3446 7 8 6 6 -1.</_> 3447 <_> 3448 9 8 2 6 3.</_></rects> 3449 <tilted>0</tilted></feature> 3450 <threshold>-0.0201231203973293</threshold> 3451 <left_val>0.2178010046482086</left_val> 3452 <right_val>-0.1208190023899078</right_val></_></_> 3453 <_> 3454 <!-- tree 33 --> 3455 <_> 3456 <!-- root node --> 3457 <feature> 3458 <rects> 3459 <_> 3460 11 17 1 3 -1.</_> 3461 <_> 3462 11 18 1 1 3.</_></rects> 3463 <tilted>0</tilted></feature> 3464 <threshold>1.1513679783092812e-004</threshold> 3465 <left_val>-0.1685658991336823</left_val> 3466 <right_val>0.1645192950963974</right_val></_></_> 3467 <_> 3468 <!-- tree 34 --> 3469 <_> 3470 <!-- root node --> 3471 <feature> 3472 <rects> 3473 <_> 3474 12 16 2 4 -1.</_> 3475 <_> 3476 12 16 1 2 2.</_> 3477 <_> 3478 13 18 1 2 2.</_></rects> 3479 <tilted>0</tilted></feature> 3480 <threshold>-2.7556740678846836e-003</threshold> 3481 <left_val>-0.6944203972816467</left_val> 3482 <right_val>0.0394494682550430</right_val></_></_> 3483 <_> 3484 <!-- tree 35 --> 3485 <_> 3486 <!-- root node --> 3487 <feature> 3488 <rects> 3489 <_> 3490 10 13 2 1 -1.</_> 3491 <_> 3492 11 13 1 1 2.</_></rects> 3493 <tilted>0</tilted></feature> 3494 <threshold>-7.5843912782147527e-005</threshold> 3495 <left_val>0.1894136965274811</left_val> 3496 <right_val>-0.1518384069204330</right_val></_></_> 3497 <_> 3498 <!-- tree 36 --> 3499 <_> 3500 <!-- root node --> 3501 <feature> 3502 <rects> 3503 <_> 3504 11 8 3 3 -1.</_> 3505 <_> 3506 12 8 1 3 3.</_></rects> 3507 <tilted>0</tilted></feature> 3508 <threshold>-7.0697711780667305e-003</threshold> 3509 <left_val>0.4706459939479828</left_val> 3510 <right_val>-0.0579276196658611</right_val></_></_> 3511 <_> 3512 <!-- tree 37 --> 3513 <_> 3514 <!-- root node --> 3515 <feature> 3516 <rects> 3517 <_> 3518 2 0 6 8 -1.</_> 3519 <_> 3520 4 0 2 8 3.</_></rects> 3521 <tilted>0</tilted></feature> 3522 <threshold>-0.0373931787908077</threshold> 3523 <left_val>-0.7589244842529297</left_val> 3524 <right_val>0.0341160483658314</right_val></_></_> 3525 <_> 3526 <!-- tree 38 --> 3527 <_> 3528 <!-- root node --> 3529 <feature> 3530 <rects> 3531 <_> 3532 3 5 6 6 -1.</_> 3533 <_> 3534 3 5 3 3 2.</_> 3535 <_> 3536 6 8 3 3 2.</_></rects> 3537 <tilted>0</tilted></feature> 3538 <threshold>-0.0159956105053425</threshold> 3539 <left_val>0.3067046999931335</left_val> 3540 <right_val>-0.0875255763530731</right_val></_></_> 3541 <_> 3542 <!-- tree 39 --> 3543 <_> 3544 <!-- root node --> 3545 <feature> 3546 <rects> 3547 <_> 3548 10 8 3 3 -1.</_> 3549 <_> 3550 11 8 1 3 3.</_></rects> 3551 <tilted>0</tilted></feature> 3552 <threshold>-3.1183990649878979e-003</threshold> 3553 <left_val>0.2619537115097046</left_val> 3554 <right_val>-0.0912148877978325</right_val></_></_> 3555 <_> 3556 <!-- tree 40 --> 3557 <_> 3558 <!-- root node --> 3559 <feature> 3560 <rects> 3561 <_> 3562 5 17 4 2 -1.</_> 3563 <_> 3564 5 18 4 1 2.</_></rects> 3565 <tilted>0</tilted></feature> 3566 <threshold>1.0651360498741269e-003</threshold> 3567 <left_val>-0.1742756068706513</left_val> 3568 <right_val>0.1527764052152634</right_val></_></_> 3569 <_> 3570 <!-- tree 41 --> 3571 <_> 3572 <!-- root node --> 3573 <feature> 3574 <rects> 3575 <_> 3576 8 16 5 2 -1.</_> 3577 <_> 3578 8 17 5 1 2.</_></rects> 3579 <tilted>0</tilted></feature> 3580 <threshold>-1.6029420075938106e-003</threshold> 3581 <left_val>0.3561263084411621</left_val> 3582 <right_val>-0.0766299962997437</right_val></_></_> 3583 <_> 3584 <!-- tree 42 --> 3585 <_> 3586 <!-- root node --> 3587 <feature> 3588 <rects> 3589 <_> 3590 0 4 3 3 -1.</_> 3591 <_> 3592 0 5 3 1 3.</_></rects> 3593 <tilted>0</tilted></feature> 3594 <threshold>4.3619908392429352e-003</threshold> 3595 <left_val>0.0493569709360600</left_val> 3596 <right_val>-0.5922877192497253</right_val></_></_> 3597 <_> 3598 <!-- tree 43 --> 3599 <_> 3600 <!-- root node --> 3601 <feature> 3602 <rects> 3603 <_> 3604 6 3 6 2 -1.</_> 3605 <_> 3606 8 3 2 2 3.</_></rects> 3607 <tilted>0</tilted></feature> 3608 <threshold>-0.0107799097895622</threshold> 3609 <left_val>-0.6392217874526978</left_val> 3610 <right_val>0.0332045406103134</right_val></_></_> 3611 <_> 3612 <!-- tree 44 --> 3613 <_> 3614 <!-- root node --> 3615 <feature> 3616 <rects> 3617 <_> 3618 4 4 9 3 -1.</_> 3619 <_> 3620 7 4 3 3 3.</_></rects> 3621 <tilted>0</tilted></feature> 3622 <threshold>-4.3590869754552841e-003</threshold> 3623 <left_val>0.1610738933086395</left_val> 3624 <right_val>-0.1522132009267807</right_val></_></_> 3625 <_> 3626 <!-- tree 45 --> 3627 <_> 3628 <!-- root node --> 3629 <feature> 3630 <rects> 3631 <_> 3632 0 13 1 4 -1.</_> 3633 <_> 3634 0 15 1 2 2.</_></rects> 3635 <tilted>0</tilted></feature> 3636 <threshold>7.4596069753170013e-003</threshold> 3637 <left_val>0.0331729613244534</left_val> 3638 <right_val>-0.7500774264335632</right_val></_></_> 3639 <_> 3640 <!-- tree 46 --> 3641 <_> 3642 <!-- root node --> 3643 <feature> 3644 <rects> 3645 <_> 3646 0 17 8 3 -1.</_> 3647 <_> 3648 0 18 8 1 3.</_></rects> 3649 <tilted>0</tilted></feature> 3650 <threshold>8.1385448575019836e-003</threshold> 3651 <left_val>0.0263252798467875</left_val> 3652 <right_val>-0.7173116207122803</right_val></_></_> 3653 <_> 3654 <!-- tree 47 --> 3655 <_> 3656 <!-- root node --> 3657 <feature> 3658 <rects> 3659 <_> 3660 6 1 11 6 -1.</_> 3661 <_> 3662 6 3 11 2 3.</_></rects> 3663 <tilted>0</tilted></feature> 3664 <threshold>-0.0333384908735752</threshold> 3665 <left_val>0.3353661000728607</left_val> 3666 <right_val>-0.0708035901188850</right_val></_></_></trees> 3667 <stage_threshold>-1.1189440488815308</stage_threshold> 3668 <parent>8</parent> 3669 <next>-1</next></_> 3670 <_> 3671 <!-- stage 10 --> 3672 <trees> 3673 <_> 3674 <!-- tree 0 --> 3675 <_> 3676 <!-- root node --> 3677 <feature> 3678 <rects> 3679 <_> 3680 4 10 6 2 -1.</_> 3681 <_> 3682 6 10 2 2 3.</_></rects> 3683 <tilted>0</tilted></feature> 3684 <threshold>0.0195539798587561</threshold> 3685 <left_val>-0.1043972000479698</left_val> 3686 <right_val>0.5312895178794861</right_val></_></_> 3687 <_> 3688 <!-- tree 1 --> 3689 <_> 3690 <!-- root node --> 3691 <feature> 3692 <rects> 3693 <_> 3694 10 8 1 12 -1.</_> 3695 <_> 3696 10 14 1 6 2.</_></rects> 3697 <tilted>0</tilted></feature> 3698 <threshold>0.0221229195594788</threshold> 3699 <left_val>-0.2474727034568787</left_val> 3700 <right_val>0.2084725052118301</right_val></_></_> 3701 <_> 3702 <!-- tree 2 --> 3703 <_> 3704 <!-- root node --> 3705 <feature> 3706 <rects> 3707 <_> 3708 5 8 3 4 -1.</_> 3709 <_> 3710 6 8 1 4 3.</_></rects> 3711 <tilted>0</tilted></feature> 3712 <threshold>-4.1829389519989491e-003</threshold> 3713 <left_val>0.3828943967819214</left_val> 3714 <right_val>-0.1471157968044281</right_val></_></_> 3715 <_> 3716 <!-- tree 3 --> 3717 <_> 3718 <!-- root node --> 3719 <feature> 3720 <rects> 3721 <_> 3722 0 17 1 3 -1.</_> 3723 <_> 3724 0 18 1 1 3.</_></rects> 3725 <tilted>0</tilted></feature> 3726 <threshold>-8.6381728760898113e-004</threshold> 3727 <left_val>-0.6263288855552673</left_val> 3728 <right_val>0.1199325993657112</right_val></_></_> 3729 <_> 3730 <!-- tree 4 --> 3731 <_> 3732 <!-- root node --> 3733 <feature> 3734 <rects> 3735 <_> 3736 0 17 1 3 -1.</_> 3737 <_> 3738 0 18 1 1 3.</_></rects> 3739 <tilted>0</tilted></feature> 3740 <threshold>7.9958612332120538e-004</threshold> 3741 <left_val>0.0925734713673592</left_val> 3742 <right_val>-0.5516883134841919</right_val></_></_> 3743 <_> 3744 <!-- tree 5 --> 3745 <_> 3746 <!-- root node --> 3747 <feature> 3748 <rects> 3749 <_> 3750 13 8 3 4 -1.</_> 3751 <_> 3752 14 8 1 4 3.</_></rects> 3753 <tilted>0</tilted></feature> 3754 <threshold>9.1527570039033890e-003</threshold> 3755 <left_val>-0.0729298070073128</left_val> 3756 <right_val>0.5551251173019409</right_val></_></_> 3757 <_> 3758 <!-- tree 6 --> 3759 <_> 3760 <!-- root node --> 3761 <feature> 3762 <rects> 3763 <_> 3764 1 5 5 4 -1.</_> 3765 <_> 3766 1 7 5 2 2.</_></rects> 3767 <tilted>0</tilted></feature> 3768 <threshold>-3.9388681761920452e-003</threshold> 3769 <left_val>0.2019603997468948</left_val> 3770 <right_val>-0.2091203927993774</right_val></_></_> 3771 <_> 3772 <!-- tree 7 --> 3773 <_> 3774 <!-- root node --> 3775 <feature> 3776 <rects> 3777 <_> 3778 18 14 1 2 -1.</_> 3779 <_> 3780 18 15 1 1 2.</_></rects> 3781 <tilted>0</tilted></feature> 3782 <threshold>1.4613410166930407e-004</threshold> 3783 <left_val>-0.2786181867122650</left_val> 3784 <right_val>0.1381741017103195</right_val></_></_> 3785 <_> 3786 <!-- tree 8 --> 3787 <_> 3788 <!-- root node --> 3789 <feature> 3790 <rects> 3791 <_> 3792 13 8 2 4 -1.</_> 3793 <_> 3794 14 8 1 4 2.</_></rects> 3795 <tilted>0</tilted></feature> 3796 <threshold>-3.1691689509898424e-003</threshold> 3797 <left_val>0.3668589890003204</left_val> 3798 <right_val>-0.0763082429766655</right_val></_></_> 3799 <_> 3800 <!-- tree 9 --> 3801 <_> 3802 <!-- root node --> 3803 <feature> 3804 <rects> 3805 <_> 3806 10 6 6 8 -1.</_> 3807 <_> 3808 12 6 2 8 3.</_></rects> 3809 <tilted>0</tilted></feature> 3810 <threshold>-0.0221893899142742</threshold> 3811 <left_val>0.3909659981727600</left_val> 3812 <right_val>-0.1097154021263123</right_val></_></_> 3813 <_> 3814 <!-- tree 10 --> 3815 <_> 3816 <!-- root node --> 3817 <feature> 3818 <rects> 3819 <_> 3820 8 6 6 10 -1.</_> 3821 <_> 3822 10 6 2 10 3.</_></rects> 3823 <tilted>0</tilted></feature> 3824 <threshold>-7.4523608200252056e-003</threshold> 3825 <left_val>0.1283859014511108</left_val> 3826 <right_val>-0.2415986955165863</right_val></_></_> 3827 <_> 3828 <!-- tree 11 --> 3829 <_> 3830 <!-- root node --> 3831 <feature> 3832 <rects> 3833 <_> 3834 17 16 1 3 -1.</_> 3835 <_> 3836 17 17 1 1 3.</_></rects> 3837 <tilted>0</tilted></feature> 3838 <threshold>7.7997002517804503e-004</threshold> 3839 <left_val>0.0719780698418617</left_val> 3840 <right_val>-0.4397650063037872</right_val></_></_> 3841 <_> 3842 <!-- tree 12 --> 3843 <_> 3844 <!-- root node --> 3845 <feature> 3846 <rects> 3847 <_> 3848 1 7 2 10 -1.</_> 3849 <_> 3850 2 7 1 10 2.</_></rects> 3851 <tilted>0</tilted></feature> 3852 <threshold>-4.6783639118075371e-003</threshold> 3853 <left_val>0.2156984955072403</left_val> 3854 <right_val>-0.1420592069625855</right_val></_></_> 3855 <_> 3856 <!-- tree 13 --> 3857 <_> 3858 <!-- root node --> 3859 <feature> 3860 <rects> 3861 <_> 3862 5 9 6 3 -1.</_> 3863 <_> 3864 7 9 2 3 3.</_></rects> 3865 <tilted>0</tilted></feature> 3866 <threshold>-0.0151886399835348</threshold> 3867 <left_val>0.3645878136157990</left_val> 3868 <right_val>-0.0826759263873100</right_val></_></_> 3869 <_> 3870 <!-- tree 14 --> 3871 <_> 3872 <!-- root node --> 3873 <feature> 3874 <rects> 3875 <_> 3876 0 8 5 12 -1.</_> 3877 <_> 3878 0 14 5 6 2.</_></rects> 3879 <tilted>0</tilted></feature> 3880 <threshold>5.0619798712432384e-003</threshold> 3881 <left_val>-0.3438040912151337</left_val> 3882 <right_val>0.0920682325959206</right_val></_></_> 3883 <_> 3884 <!-- tree 15 --> 3885 <_> 3886 <!-- root node --> 3887 <feature> 3888 <rects> 3889 <_> 3890 0 11 1 3 -1.</_> 3891 <_> 3892 0 12 1 1 3.</_></rects> 3893 <tilted>0</tilted></feature> 3894 <threshold>-1.7351920250803232e-003</threshold> 3895 <left_val>-0.6172549724578857</left_val> 3896 <right_val>0.0492144785821438</right_val></_></_> 3897 <_> 3898 <!-- tree 16 --> 3899 <_> 3900 <!-- root node --> 3901 <feature> 3902 <rects> 3903 <_> 3904 6 16 6 4 -1.</_> 3905 <_> 3906 8 16 2 4 3.</_></rects> 3907 <tilted>0</tilted></feature> 3908 <threshold>-0.0124234501272440</threshold> 3909 <left_val>-0.5855895280838013</left_val> 3910 <right_val>0.0461126007139683</right_val></_></_> 3911 <_> 3912 <!-- tree 17 --> 3913 <_> 3914 <!-- root node --> 3915 <feature> 3916 <rects> 3917 <_> 3918 0 6 2 6 -1.</_> 3919 <_> 3920 0 8 2 2 3.</_></rects> 3921 <tilted>0</tilted></feature> 3922 <threshold>-0.0130314296111465</threshold> 3923 <left_val>-0.5971078872680664</left_val> 3924 <right_val>0.0406724587082863</right_val></_></_> 3925 <_> 3926 <!-- tree 18 --> 3927 <_> 3928 <!-- root node --> 3929 <feature> 3930 <rects> 3931 <_> 3932 11 18 2 1 -1.</_> 3933 <_> 3934 12 18 1 1 2.</_></rects> 3935 <tilted>0</tilted></feature> 3936 <threshold>-1.2369629694148898e-003</threshold> 3937 <left_val>-0.6833416819572449</left_val> 3938 <right_val>0.0331561788916588</right_val></_></_> 3939 <_> 3940 <!-- tree 19 --> 3941 <_> 3942 <!-- root node --> 3943 <feature> 3944 <rects> 3945 <_> 3946 5 1 9 2 -1.</_> 3947 <_> 3948 5 2 9 1 2.</_></rects> 3949 <tilted>0</tilted></feature> 3950 <threshold>6.1022108420729637e-003</threshold> 3951 <left_val>-0.0947292372584343</left_val> 3952 <right_val>0.3010224103927612</right_val></_></_> 3953 <_> 3954 <!-- tree 20 --> 3955 <_> 3956 <!-- root node --> 3957 <feature> 3958 <rects> 3959 <_> 3960 0 0 1 2 -1.</_> 3961 <_> 3962 0 1 1 1 2.</_></rects> 3963 <tilted>0</tilted></feature> 3964 <threshold>6.6952849738299847e-004</threshold> 3965 <left_val>0.0818168669939041</left_val> 3966 <right_val>-0.3519603013992310</right_val></_></_> 3967 <_> 3968 <!-- tree 21 --> 3969 <_> 3970 <!-- root node --> 3971 <feature> 3972 <rects> 3973 <_> 3974 15 9 3 3 -1.</_> 3975 <_> 3976 16 9 1 3 3.</_></rects> 3977 <tilted>0</tilted></feature> 3978 <threshold>-1.7970580374822021e-003</threshold> 3979 <left_val>0.2371897995471954</left_val> 3980 <right_val>-0.1176870986819267</right_val></_></_> 3981 <_> 3982 <!-- tree 22 --> 3983 <_> 3984 <!-- root node --> 3985 <feature> 3986 <rects> 3987 <_> 3988 18 16 1 3 -1.</_> 3989 <_> 3990 18 17 1 1 3.</_></rects> 3991 <tilted>0</tilted></feature> 3992 <threshold>-7.1074528386816382e-004</threshold> 3993 <left_val>-0.4476378858089447</left_val> 3994 <right_val>0.0576824806630611</right_val></_></_> 3995 <_> 3996 <!-- tree 23 --> 3997 <_> 3998 <!-- root node --> 3999 <feature> 4000 <rects> 4001 <_> 4002 11 10 6 1 -1.</_> 4003 <_> 4004 13 10 2 1 3.</_></rects> 4005 <tilted>0</tilted></feature> 4006 <threshold>-5.9126471169292927e-003</threshold> 4007 <left_val>0.4342541098594666</left_val> 4008 <right_val>-0.0668685734272003</right_val></_></_> 4009 <_> 4010 <!-- tree 24 --> 4011 <_> 4012 <!-- root node --> 4013 <feature> 4014 <rects> 4015 <_> 4016 1 3 4 4 -1.</_> 4017 <_> 4018 3 3 2 4 2.</_></rects> 4019 <tilted>0</tilted></feature> 4020 <threshold>-3.3132149837911129e-003</threshold> 4021 <left_val>0.1815001070499420</left_val> 4022 <right_val>-0.1418032050132752</right_val></_></_> 4023 <_> 4024 <!-- tree 25 --> 4025 <_> 4026 <!-- root node --> 4027 <feature> 4028 <rects> 4029 <_> 4030 11 2 1 18 -1.</_> 4031 <_> 4032 11 8 1 6 3.</_></rects> 4033 <tilted>0</tilted></feature> 4034 <threshold>-0.0608146600425243</threshold> 4035 <left_val>0.4722171127796173</left_val> 4036 <right_val>-0.0614106394350529</right_val></_></_> 4037 <_> 4038 <!-- tree 26 --> 4039 <_> 4040 <!-- root node --> 4041 <feature> 4042 <rects> 4043 <_> 4044 9 1 5 12 -1.</_> 4045 <_> 4046 9 5 5 4 3.</_></rects> 4047 <tilted>0</tilted></feature> 4048 <threshold>-0.0967141836881638</threshold> 4049 <left_val>0.2768316864967346</left_val> 4050 <right_val>-0.0944900363683701</right_val></_></_> 4051 <_> 4052 <!-- tree 27 --> 4053 <_> 4054 <!-- root node --> 4055 <feature> 4056 <rects> 4057 <_> 4058 12 0 8 1 -1.</_> 4059 <_> 4060 16 0 4 1 2.</_></rects> 4061 <tilted>0</tilted></feature> 4062 <threshold>3.9073550142347813e-003</threshold> 4063 <left_val>-0.1227853000164032</left_val> 4064 <right_val>0.2105740010738373</right_val></_></_> 4065 <_> 4066 <!-- tree 28 --> 4067 <_> 4068 <!-- root node --> 4069 <feature> 4070 <rects> 4071 <_> 4072 8 6 3 10 -1.</_> 4073 <_> 4074 9 6 1 10 3.</_></rects> 4075 <tilted>0</tilted></feature> 4076 <threshold>-9.0431869029998779e-003</threshold> 4077 <left_val>0.3564156889915466</left_val> 4078 <right_val>-0.0778062269091606</right_val></_></_> 4079 <_> 4080 <!-- tree 29 --> 4081 <_> 4082 <!-- root node --> 4083 <feature> 4084 <rects> 4085 <_> 4086 19 2 1 6 -1.</_> 4087 <_> 4088 19 4 1 2 3.</_></rects> 4089 <tilted>0</tilted></feature> 4090 <threshold>-4.8800031654536724e-003</threshold> 4091 <left_val>-0.4103479087352753</left_val> 4092 <right_val>0.0696943774819374</right_val></_></_> 4093 <_> 4094 <!-- tree 30 --> 4095 <_> 4096 <!-- root node --> 4097 <feature> 4098 <rects> 4099 <_> 4100 18 6 2 2 -1.</_> 4101 <_> 4102 18 7 2 1 2.</_></rects> 4103 <tilted>0</tilted></feature> 4104 <threshold>-4.3547428213059902e-003</threshold> 4105 <left_val>-0.7301788926124573</left_val> 4106 <right_val>0.0366551503539085</right_val></_></_> 4107 <_> 4108 <!-- tree 31 --> 4109 <_> 4110 <!-- root node --> 4111 <feature> 4112 <rects> 4113 <_> 4114 7 7 3 4 -1.</_> 4115 <_> 4116 8 7 1 4 3.</_></rects> 4117 <tilted>0</tilted></feature> 4118 <threshold>-9.6500627696514130e-003</threshold> 4119 <left_val>0.5518112778663635</left_val> 4120 <right_val>-0.0531680807471275</right_val></_></_> 4121 <_> 4122 <!-- tree 32 --> 4123 <_> 4124 <!-- root node --> 4125 <feature> 4126 <rects> 4127 <_> 4128 5 0 6 5 -1.</_> 4129 <_> 4130 7 0 2 5 3.</_></rects> 4131 <tilted>0</tilted></feature> 4132 <threshold>-0.0173973105847836</threshold> 4133 <left_val>-0.5708423256874085</left_val> 4134 <right_val>0.0502140894532204</right_val></_></_> 4135 <_> 4136 <!-- tree 33 --> 4137 <_> 4138 <!-- root node --> 4139 <feature> 4140 <rects> 4141 <_> 4142 0 3 7 3 -1.</_> 4143 <_> 4144 0 4 7 1 3.</_></rects> 4145 <tilted>0</tilted></feature> 4146 <threshold>-6.8304329179227352e-003</threshold> 4147 <left_val>-0.4618028104305267</left_val> 4148 <right_val>0.0502026900649071</right_val></_></_> 4149 <_> 4150 <!-- tree 34 --> 4151 <_> 4152 <!-- root node --> 4153 <feature> 4154 <rects> 4155 <_> 4156 1 6 2 1 -1.</_> 4157 <_> 4158 2 6 1 1 2.</_></rects> 4159 <tilted>0</tilted></feature> 4160 <threshold>3.3255619928240776e-004</threshold> 4161 <left_val>-0.0953627303242683</left_val> 4162 <right_val>0.2598375976085663</right_val></_></_> 4163 <_> 4164 <!-- tree 35 --> 4165 <_> 4166 <!-- root node --> 4167 <feature> 4168 <rects> 4169 <_> 4170 4 8 2 10 -1.</_> 4171 <_> 4172 4 8 1 5 2.</_> 4173 <_> 4174 5 13 1 5 2.</_></rects> 4175 <tilted>0</tilted></feature> 4176 <threshold>-2.3100529797375202e-003</threshold> 4177 <left_val>0.2287247031927109</left_val> 4178 <right_val>-0.1053353026509285</right_val></_></_> 4179 <_> 4180 <!-- tree 36 --> 4181 <_> 4182 <!-- root node --> 4183 <feature> 4184 <rects> 4185 <_> 4186 2 18 18 2 -1.</_> 4187 <_> 4188 2 18 9 1 2.</_> 4189 <_> 4190 11 19 9 1 2.</_></rects> 4191 <tilted>0</tilted></feature> 4192 <threshold>-7.5426651164889336e-003</threshold> 4193 <left_val>-0.5699051022529602</left_val> 4194 <right_val>0.0488634593784809</right_val></_></_> 4195 <_> 4196 <!-- tree 37 --> 4197 <_> 4198 <!-- root node --> 4199 <feature> 4200 <rects> 4201 <_> 4202 2 7 4 4 -1.</_> 4203 <_> 4204 2 7 2 2 2.</_> 4205 <_> 4206 4 9 2 2 2.</_></rects> 4207 <tilted>0</tilted></feature> 4208 <threshold>-5.2723060362040997e-003</threshold> 4209 <left_val>0.3514518141746521</left_val> 4210 <right_val>-0.0823901072144508</right_val></_></_> 4211 <_> 4212 <!-- tree 38 --> 4213 <_> 4214 <!-- root node --> 4215 <feature> 4216 <rects> 4217 <_> 4218 17 3 3 4 -1.</_> 4219 <_> 4220 18 3 1 4 3.</_></rects> 4221 <tilted>0</tilted></feature> 4222 <threshold>-4.8578968271613121e-003</threshold> 4223 <left_val>-0.6041762232780457</left_val> 4224 <right_val>0.0445394404232502</right_val></_></_> 4225 <_> 4226 <!-- tree 39 --> 4227 <_> 4228 <!-- root node --> 4229 <feature> 4230 <rects> 4231 <_> 4232 16 9 2 8 -1.</_> 4233 <_> 4234 16 9 1 4 2.</_> 4235 <_> 4236 17 13 1 4 2.</_></rects> 4237 <tilted>0</tilted></feature> 4238 <threshold>1.5867310576140881e-003</threshold> 4239 <left_val>-0.1034090965986252</left_val> 4240 <right_val>0.2328201979398727</right_val></_></_> 4241 <_> 4242 <!-- tree 40 --> 4243 <_> 4244 <!-- root node --> 4245 <feature> 4246 <rects> 4247 <_> 4248 15 7 1 6 -1.</_> 4249 <_> 4250 15 9 1 2 3.</_></rects> 4251 <tilted>0</tilted></feature> 4252 <threshold>-4.7427811659872532e-003</threshold> 4253 <left_val>0.2849028110504150</left_val> 4254 <right_val>-0.0980904996395111</right_val></_></_> 4255 <_> 4256 <!-- tree 41 --> 4257 <_> 4258 <!-- root node --> 4259 <feature> 4260 <rects> 4261 <_> 4262 14 2 2 2 -1.</_> 4263 <_> 4264 14 3 2 1 2.</_></rects> 4265 <tilted>0</tilted></feature> 4266 <threshold>-1.3515240279957652e-003</threshold> 4267 <left_val>0.2309643030166626</left_val> 4268 <right_val>-0.1136184036731720</right_val></_></_> 4269 <_> 4270 <!-- tree 42 --> 4271 <_> 4272 <!-- root node --> 4273 <feature> 4274 <rects> 4275 <_> 4276 17 0 2 3 -1.</_> 4277 <_> 4278 17 1 2 1 3.</_></rects> 4279 <tilted>0</tilted></feature> 4280 <threshold>2.2526069078594446e-003</threshold> 4281 <left_val>0.0644783228635788</left_val> 4282 <right_val>-0.4220589101314545</right_val></_></_> 4283 <_> 4284 <!-- tree 43 --> 4285 <_> 4286 <!-- root node --> 4287 <feature> 4288 <rects> 4289 <_> 4290 16 18 2 2 -1.</_> 4291 <_> 4292 16 18 1 1 2.</_> 4293 <_> 4294 17 19 1 1 2.</_></rects> 4295 <tilted>0</tilted></feature> 4296 <threshold>-3.8038659840822220e-004</threshold> 4297 <left_val>-0.3807620108127594</left_val> 4298 <right_val>0.0600432902574539</right_val></_></_> 4299 <_> 4300 <!-- tree 44 --> 4301 <_> 4302 <!-- root node --> 4303 <feature> 4304 <rects> 4305 <_> 4306 10 4 4 3 -1.</_> 4307 <_> 4308 10 5 4 1 3.</_></rects> 4309 <tilted>0</tilted></feature> 4310 <threshold>4.9043921753764153e-003</threshold> 4311 <left_val>-0.0761049985885620</left_val> 4312 <right_val>0.3323217034339905</right_val></_></_> 4313 <_> 4314 <!-- tree 45 --> 4315 <_> 4316 <!-- root node --> 4317 <feature> 4318 <rects> 4319 <_> 4320 0 2 8 6 -1.</_> 4321 <_> 4322 4 2 4 6 2.</_></rects> 4323 <tilted>0</tilted></feature> 4324 <threshold>-9.0969670563936234e-003</threshold> 4325 <left_val>0.1428779065608978</left_val> 4326 <right_val>-0.1688780039548874</right_val></_></_> 4327 <_> 4328 <!-- tree 46 --> 4329 <_> 4330 <!-- root node --> 4331 <feature> 4332 <rects> 4333 <_> 4334 7 14 6 6 -1.</_> 4335 <_> 4336 7 16 6 2 3.</_></rects> 4337 <tilted>0</tilted></feature> 4338 <threshold>-6.9317929446697235e-003</threshold> 4339 <left_val>0.2725540995597839</left_val> 4340 <right_val>-0.0928795635700226</right_val></_></_> 4341 <_> 4342 <!-- tree 47 --> 4343 <_> 4344 <!-- root node --> 4345 <feature> 4346 <rects> 4347 <_> 4348 11 15 2 2 -1.</_> 4349 <_> 4350 11 16 2 1 2.</_></rects> 4351 <tilted>0</tilted></feature> 4352 <threshold>1.1471060570329428e-003</threshold> 4353 <left_val>-0.1527305990457535</left_val> 4354 <right_val>0.1970240026712418</right_val></_></_> 4355 <_> 4356 <!-- tree 48 --> 4357 <_> 4358 <!-- root node --> 4359 <feature> 4360 <rects> 4361 <_> 4362 7 1 9 4 -1.</_> 4363 <_> 4364 10 1 3 4 3.</_></rects> 4365 <tilted>0</tilted></feature> 4366 <threshold>-0.0376628898084164</threshold> 4367 <left_val>-0.5932043790817261</left_val> 4368 <right_val>0.0407386012375355</right_val></_></_> 4369 <_> 4370 <!-- tree 49 --> 4371 <_> 4372 <!-- root node --> 4373 <feature> 4374 <rects> 4375 <_> 4376 9 7 3 7 -1.</_> 4377 <_> 4378 10 7 1 7 3.</_></rects> 4379 <tilted>0</tilted></feature> 4380 <threshold>-6.8165571428835392e-003</threshold> 4381 <left_val>0.2549408972263336</left_val> 4382 <right_val>-0.0940819606184959</right_val></_></_> 4383 <_> 4384 <!-- tree 50 --> 4385 <_> 4386 <!-- root node --> 4387 <feature> 4388 <rects> 4389 <_> 4390 6 17 2 2 -1.</_> 4391 <_> 4392 6 17 1 1 2.</_> 4393 <_> 4394 7 18 1 1 2.</_></rects> 4395 <tilted>0</tilted></feature> 4396 <threshold>6.6205562325194478e-004</threshold> 4397 <left_val>0.0467957183718681</left_val> 4398 <right_val>-0.4845437109470367</right_val></_></_> 4399 <_> 4400 <!-- tree 51 --> 4401 <_> 4402 <!-- root node --> 4403 <feature> 4404 <rects> 4405 <_> 4406 4 6 3 9 -1.</_> 4407 <_> 4408 5 6 1 9 3.</_></rects> 4409 <tilted>0</tilted></feature> 4410 <threshold>-4.2202551849186420e-003</threshold> 4411 <left_val>0.2468214929103851</left_val> 4412 <right_val>-0.0946739763021469</right_val></_></_> 4413 <_> 4414 <!-- tree 52 --> 4415 <_> 4416 <!-- root node --> 4417 <feature> 4418 <rects> 4419 <_> 4420 0 10 19 10 -1.</_> 4421 <_> 4422 0 15 19 5 2.</_></rects> 4423 <tilted>0</tilted></feature> 4424 <threshold>-0.0689865127205849</threshold> 4425 <left_val>-0.6651480197906494</left_val> 4426 <right_val>0.0359263904392719</right_val></_></_> 4427 <_> 4428 <!-- tree 53 --> 4429 <_> 4430 <!-- root node --> 4431 <feature> 4432 <rects> 4433 <_> 4434 5 17 6 1 -1.</_> 4435 <_> 4436 7 17 2 1 3.</_></rects> 4437 <tilted>0</tilted></feature> 4438 <threshold>6.1707608401775360e-003</threshold> 4439 <left_val>0.0258333198726177</left_val> 4440 <right_val>-0.7268627285957336</right_val></_></_> 4441 <_> 4442 <!-- tree 54 --> 4443 <_> 4444 <!-- root node --> 4445 <feature> 4446 <rects> 4447 <_> 4448 0 12 6 3 -1.</_> 4449 <_> 4450 3 12 3 3 2.</_></rects> 4451 <tilted>0</tilted></feature> 4452 <threshold>0.0105362497270107</threshold> 4453 <left_val>-0.0818289965391159</left_val> 4454 <right_val>0.2976079881191254</right_val></_></_></trees> 4455 <stage_threshold>-1.1418989896774292</stage_threshold> 4456 <parent>9</parent> 4457 <next>-1</next></_> 4458 <_> 4459 <!-- stage 11 --> 4460 <trees> 4461 <_> 4462 <!-- tree 0 --> 4463 <_> 4464 <!-- root node --> 4465 <feature> 4466 <rects> 4467 <_> 4468 2 5 18 5 -1.</_> 4469 <_> 4470 8 5 6 5 3.</_></rects> 4471 <tilted>0</tilted></feature> 4472 <threshold>-0.0627587288618088</threshold> 4473 <left_val>0.2789908051490784</left_val> 4474 <right_val>-0.2965610921382904</right_val></_></_> 4475 <_> 4476 <!-- tree 1 --> 4477 <_> 4478 <!-- root node --> 4479 <feature> 4480 <rects> 4481 <_> 4482 1 15 6 4 -1.</_> 4483 <_> 4484 1 17 6 2 2.</_></rects> 4485 <tilted>0</tilted></feature> 4486 <threshold>3.4516479354351759e-003</threshold> 4487 <left_val>-0.3463588058948517</left_val> 4488 <right_val>0.2090384066104889</right_val></_></_> 4489 <_> 4490 <!-- tree 2 --> 4491 <_> 4492 <!-- root node --> 4493 <feature> 4494 <rects> 4495 <_> 4496 14 10 6 6 -1.</_> 4497 <_> 4498 16 10 2 6 3.</_></rects> 4499 <tilted>0</tilted></feature> 4500 <threshold>-7.8699486330151558e-003</threshold> 4501 <left_val>0.2414488941431046</left_val> 4502 <right_val>-0.1920557022094727</right_val></_></_> 4503 <_> 4504 <!-- tree 3 --> 4505 <_> 4506 <!-- root node --> 4507 <feature> 4508 <rects> 4509 <_> 4510 0 14 4 3 -1.</_> 4511 <_> 4512 0 15 4 1 3.</_></rects> 4513 <tilted>0</tilted></feature> 4514 <threshold>-3.4624869003891945e-003</threshold> 4515 <left_val>-0.5915178060531616</left_val> 4516 <right_val>0.1248644962906838</right_val></_></_> 4517 <_> 4518 <!-- tree 4 --> 4519 <_> 4520 <!-- root node --> 4521 <feature> 4522 <rects> 4523 <_> 4524 1 7 6 11 -1.</_> 4525 <_> 4526 3 7 2 11 3.</_></rects> 4527 <tilted>0</tilted></feature> 4528 <threshold>-9.4818761572241783e-003</threshold> 4529 <left_val>0.1839154064655304</left_val> 4530 <right_val>-0.2485826015472412</right_val></_></_> 4531 <_> 4532 <!-- tree 5 --> 4533 <_> 4534 <!-- root node --> 4535 <feature> 4536 <rects> 4537 <_> 4538 13 17 7 2 -1.</_> 4539 <_> 4540 13 18 7 1 2.</_></rects> 4541 <tilted>0</tilted></feature> 4542 <threshold>2.3226840130519122e-004</threshold> 4543 <left_val>-0.3304725885391235</left_val> 4544 <right_val>0.1099926009774208</right_val></_></_> 4545 <_> 4546 <!-- tree 6 --> 4547 <_> 4548 <!-- root node --> 4549 <feature> 4550 <rects> 4551 <_> 4552 0 14 2 3 -1.</_> 4553 <_> 4554 0 15 2 1 3.</_></rects> 4555 <tilted>0</tilted></feature> 4556 <threshold>1.8101120367646217e-003</threshold> 4557 <left_val>0.0987440124154091</left_val> 4558 <right_val>-0.4963478147983551</right_val></_></_> 4559 <_> 4560 <!-- tree 7 --> 4561 <_> 4562 <!-- root node --> 4563 <feature> 4564 <rects> 4565 <_> 4566 0 0 6 2 -1.</_> 4567 <_> 4568 3 0 3 2 2.</_></rects> 4569 <tilted>0</tilted></feature> 4570 <threshold>-5.4422430694103241e-003</threshold> 4571 <left_val>0.2934441864490509</left_val> 4572 <right_val>-0.1309475004673004</right_val></_></_> 4573 <_> 4574 <!-- tree 8 --> 4575 <_> 4576 <!-- root node --> 4577 <feature> 4578 <rects> 4579 <_> 4580 0 1 6 3 -1.</_> 4581 <_> 4582 3 1 3 3 2.</_></rects> 4583 <tilted>0</tilted></feature> 4584 <threshold>7.4148122221231461e-003</threshold> 4585 <left_val>-0.1476269960403442</left_val> 4586 <right_val>0.3327716886997223</right_val></_></_> 4587 <_> 4588 <!-- tree 9 --> 4589 <_> 4590 <!-- root node --> 4591 <feature> 4592 <rects> 4593 <_> 4594 0 8 2 6 -1.</_> 4595 <_> 4596 0 10 2 2 3.</_></rects> 4597 <tilted>0</tilted></feature> 4598 <threshold>-0.0155651401728392</threshold> 4599 <left_val>-0.6840490102767944</left_val> 4600 <right_val>0.0998726934194565</right_val></_></_> 4601 <_> 4602 <!-- tree 10 --> 4603 <_> 4604 <!-- root node --> 4605 <feature> 4606 <rects> 4607 <_> 4608 1 2 6 14 -1.</_> 4609 <_> 4610 1 2 3 7 2.</_> 4611 <_> 4612 4 9 3 7 2.</_></rects> 4613 <tilted>0</tilted></feature> 4614 <threshold>0.0287205204367638</threshold> 4615 <left_val>-0.1483328044414520</left_val> 4616 <right_val>0.3090257942676544</right_val></_></_> 4617 <_> 4618 <!-- tree 11 --> 4619 <_> 4620 <!-- root node --> 4621 <feature> 4622 <rects> 4623 <_> 4624 17 5 2 2 -1.</_> 4625 <_> 4626 17 5 1 1 2.</_> 4627 <_> 4628 18 6 1 1 2.</_></rects> 4629 <tilted>0</tilted></feature> 4630 <threshold>9.6687392215244472e-005</threshold> 4631 <left_val>-0.1743104010820389</left_val> 4632 <right_val>0.2140295952558518</right_val></_></_> 4633 <_> 4634 <!-- tree 12 --> 4635 <_> 4636 <!-- root node --> 4637 <feature> 4638 <rects> 4639 <_> 4640 11 10 9 4 -1.</_> 4641 <_> 4642 14 10 3 4 3.</_></rects> 4643 <tilted>0</tilted></feature> 4644 <threshold>0.0523710586130619</threshold> 4645 <left_val>-0.0701568573713303</left_val> 4646 <right_val>0.4922299087047577</right_val></_></_> 4647 <_> 4648 <!-- tree 13 --> 4649 <_> 4650 <!-- root node --> 4651 <feature> 4652 <rects> 4653 <_> 4654 2 9 12 4 -1.</_> 4655 <_> 4656 6 9 4 4 3.</_></rects> 4657 <tilted>0</tilted></feature> 4658 <threshold>-0.0864856913685799</threshold> 4659 <left_val>0.5075724720954895</left_val> 4660 <right_val>-0.0752942115068436</right_val></_></_> 4661 <_> 4662 <!-- tree 14 --> 4663 <_> 4664 <!-- root node --> 4665 <feature> 4666 <rects> 4667 <_> 4668 7 10 12 2 -1.</_> 4669 <_> 4670 11 10 4 2 3.</_></rects> 4671 <tilted>0</tilted></feature> 4672 <threshold>-0.0421698689460754</threshold> 4673 <left_val>0.4568096101284027</left_val> 4674 <right_val>-0.0902199000120163</right_val></_></_> 4675 <_> 4676 <!-- tree 15 --> 4677 <_> 4678 <!-- root node --> 4679 <feature> 4680 <rects> 4681 <_> 4682 2 13 1 2 -1.</_> 4683 <_> 4684 2 14 1 1 2.</_></rects> 4685 <tilted>0</tilted></feature> 4686 <threshold>4.5369830331765115e-005</threshold> 4687 <left_val>-0.2653827965259552</left_val> 4688 <right_val>0.1618953943252564</right_val></_></_> 4689 <_> 4690 <!-- tree 16 --> 4691 <_> 4692 <!-- root node --> 4693 <feature> 4694 <rects> 4695 <_> 4696 16 7 4 3 -1.</_> 4697 <_> 4698 16 8 4 1 3.</_></rects> 4699 <tilted>0</tilted></feature> 4700 <threshold>5.2918000146746635e-003</threshold> 4701 <left_val>0.0748901516199112</left_val> 4702 <right_val>-0.5405467152595520</right_val></_></_> 4703 <_> 4704 <!-- tree 17 --> 4705 <_> 4706 <!-- root node --> 4707 <feature> 4708 <rects> 4709 <_> 4710 19 16 1 3 -1.</_> 4711 <_> 4712 19 17 1 1 3.</_></rects> 4713 <tilted>0</tilted></feature> 4714 <threshold>-7.5511651812121272e-004</threshold> 4715 <left_val>-0.4926199018955231</left_val> 4716 <right_val>0.0587239488959312</right_val></_></_> 4717 <_> 4718 <!-- tree 18 --> 4719 <_> 4720 <!-- root node --> 4721 <feature> 4722 <rects> 4723 <_> 4724 18 11 1 2 -1.</_> 4725 <_> 4726 18 12 1 1 2.</_></rects> 4727 <tilted>0</tilted></feature> 4728 <threshold>7.5108138844370842e-005</threshold> 4729 <left_val>-0.2143210023641586</left_val> 4730 <right_val>0.1407776027917862</right_val></_></_> 4731 <_> 4732 <!-- tree 19 --> 4733 <_> 4734 <!-- root node --> 4735 <feature> 4736 <rects> 4737 <_> 4738 12 7 8 2 -1.</_> 4739 <_> 4740 12 7 4 1 2.</_> 4741 <_> 4742 16 8 4 1 2.</_></rects> 4743 <tilted>0</tilted></feature> 4744 <threshold>4.9981209449470043e-003</threshold> 4745 <left_val>-0.0905473381280899</left_val> 4746 <right_val>0.3571606874465942</right_val></_></_> 4747 <_> 4748 <!-- tree 20 --> 4749 <_> 4750 <!-- root node --> 4751 <feature> 4752 <rects> 4753 <_> 4754 14 9 2 4 -1.</_> 4755 <_> 4756 15 9 1 4 2.</_></rects> 4757 <tilted>0</tilted></feature> 4758 <threshold>-1.4929979806765914e-003</threshold> 4759 <left_val>0.2562345862388611</left_val> 4760 <right_val>-0.1422906965017319</right_val></_></_> 4761 <_> 4762 <!-- tree 21 --> 4763 <_> 4764 <!-- root node --> 4765 <feature> 4766 <rects> 4767 <_> 4768 14 2 6 4 -1.</_> 4769 <_> 4770 14 2 3 2 2.</_> 4771 <_> 4772 17 4 3 2 2.</_></rects> 4773 <tilted>0</tilted></feature> 4774 <threshold>2.7239411137998104e-003</threshold> 4775 <left_val>-0.1564925014972687</left_val> 4776 <right_val>0.2108871042728424</right_val></_></_> 4777 <_> 4778 <!-- tree 22 --> 4779 <_> 4780 <!-- root node --> 4781 <feature> 4782 <rects> 4783 <_> 4784 14 0 6 1 -1.</_> 4785 <_> 4786 17 0 3 1 2.</_></rects> 4787 <tilted>0</tilted></feature> 4788 <threshold>2.2218320518732071e-003</threshold> 4789 <left_val>-0.1507298946380615</left_val> 4790 <right_val>0.2680186927318573</right_val></_></_> 4791 <_> 4792 <!-- tree 23 --> 4793 <_> 4794 <!-- root node --> 4795 <feature> 4796 <rects> 4797 <_> 4798 3 12 2 1 -1.</_> 4799 <_> 4800 4 12 1 1 2.</_></rects> 4801 <tilted>0</tilted></feature> 4802 <threshold>-7.3993072146549821e-004</threshold> 4803 <left_val>0.2954699099063873</left_val> 4804 <right_val>-0.1069239005446434</right_val></_></_> 4805 <_> 4806 <!-- tree 24 --> 4807 <_> 4808 <!-- root node --> 4809 <feature> 4810 <rects> 4811 <_> 4812 17 2 3 1 -1.</_> 4813 <_> 4814 18 2 1 1 3.</_></rects> 4815 <tilted>0</tilted></feature> 4816 <threshold>2.0113459322601557e-003</threshold> 4817 <left_val>0.0506143495440483</left_val> 4818 <right_val>-0.7168337106704712</right_val></_></_> 4819 <_> 4820 <!-- tree 25 --> 4821 <_> 4822 <!-- root node --> 4823 <feature> 4824 <rects> 4825 <_> 4826 1 16 18 2 -1.</_> 4827 <_> 4828 7 16 6 2 3.</_></rects> 4829 <tilted>0</tilted></feature> 4830 <threshold>0.0114528704434633</threshold> 4831 <left_val>-0.1271906942129135</left_val> 4832 <right_val>0.2415277957916260</right_val></_></_> 4833 <_> 4834 <!-- tree 26 --> 4835 <_> 4836 <!-- root node --> 4837 <feature> 4838 <rects> 4839 <_> 4840 2 19 8 1 -1.</_> 4841 <_> 4842 6 19 4 1 2.</_></rects> 4843 <tilted>0</tilted></feature> 4844 <threshold>-1.0782170575112104e-003</threshold> 4845 <left_val>0.2481300979852676</left_val> 4846 <right_val>-0.1346119940280914</right_val></_></_> 4847 <_> 4848 <!-- tree 27 --> 4849 <_> 4850 <!-- root node --> 4851 <feature> 4852 <rects> 4853 <_> 4854 1 17 4 3 -1.</_> 4855 <_> 4856 1 18 4 1 3.</_></rects> 4857 <tilted>0</tilted></feature> 4858 <threshold>3.3417691010981798e-003</threshold> 4859 <left_val>0.0535783097147942</left_val> 4860 <right_val>-0.5227416753768921</right_val></_></_> 4861 <_> 4862 <!-- tree 28 --> 4863 <_> 4864 <!-- root node --> 4865 <feature> 4866 <rects> 4867 <_> 4868 19 13 1 2 -1.</_> 4869 <_> 4870 19 14 1 1 2.</_></rects> 4871 <tilted>0</tilted></feature> 4872 <threshold>6.9398651248775423e-005</threshold> 4873 <left_val>-0.2169874012470245</left_val> 4874 <right_val>0.1281217932701111</right_val></_></_> 4875 <_> 4876 <!-- tree 29 --> 4877 <_> 4878 <!-- root node --> 4879 <feature> 4880 <rects> 4881 <_> 4882 9 16 10 4 -1.</_> 4883 <_> 4884 9 16 5 2 2.</_> 4885 <_> 4886 14 18 5 2 2.</_></rects> 4887 <tilted>0</tilted></feature> 4888 <threshold>-4.0982551872730255e-003</threshold> 4889 <left_val>0.2440188974142075</left_val> 4890 <right_val>-0.1157058998942375</right_val></_></_> 4891 <_> 4892 <!-- tree 30 --> 4893 <_> 4894 <!-- root node --> 4895 <feature> 4896 <rects> 4897 <_> 4898 12 9 2 4 -1.</_> 4899 <_> 4900 12 9 1 2 2.</_> 4901 <_> 4902 13 11 1 2 2.</_></rects> 4903 <tilted>0</tilted></feature> 4904 <threshold>-1.6289720078930259e-003</threshold> 4905 <left_val>0.2826147079467773</left_val> 4906 <right_val>-0.1065946966409683</right_val></_></_> 4907 <_> 4908 <!-- tree 31 --> 4909 <_> 4910 <!-- root node --> 4911 <feature> 4912 <rects> 4913 <_> 4914 19 11 1 9 -1.</_> 4915 <_> 4916 19 14 1 3 3.</_></rects> 4917 <tilted>0</tilted></feature> 4918 <threshold>0.0139848599210382</threshold> 4919 <left_val>0.0427158996462822</left_val> 4920 <right_val>-0.7364631295204163</right_val></_></_></trees> 4921 <stage_threshold>-1.1255199909210205</stage_threshold> 4922 <parent>10</parent> 4923 <next>-1</next></_> 4924 <_> 4925 <!-- stage 12 --> 4926 <trees> 4927 <_> 4928 <!-- tree 0 --> 4929 <_> 4930 <!-- root node --> 4931 <feature> 4932 <rects> 4933 <_> 4934 6 6 14 14 -1.</_> 4935 <_> 4936 6 13 14 7 2.</_></rects> 4937 <tilted>0</tilted></feature> 4938 <threshold>0.1641651988029480</threshold> 4939 <left_val>-0.4896030128002167</left_val> 4940 <right_val>0.1760770976543427</right_val></_></_> 4941 <_> 4942 <!-- tree 1 --> 4943 <_> 4944 <!-- root node --> 4945 <feature> 4946 <rects> 4947 <_> 4948 2 17 4 2 -1.</_> 4949 <_> 4950 2 18 4 1 2.</_></rects> 4951 <tilted>0</tilted></feature> 4952 <threshold>8.3413062384352088e-004</threshold> 4953 <left_val>-0.2822043001651764</left_val> 4954 <right_val>0.2419957965612412</right_val></_></_> 4955 <_> 4956 <!-- tree 2 --> 4957 <_> 4958 <!-- root node --> 4959 <feature> 4960 <rects> 4961 <_> 4962 0 2 1 3 -1.</_> 4963 <_> 4964 0 3 1 1 3.</_></rects> 4965 <tilted>0</tilted></feature> 4966 <threshold>-1.7193210078403354e-003</threshold> 4967 <left_val>-0.7148588895797730</left_val> 4968 <right_val>0.0861622169613838</right_val></_></_> 4969 <_> 4970 <!-- tree 3 --> 4971 <_> 4972 <!-- root node --> 4973 <feature> 4974 <rects> 4975 <_> 4976 0 12 1 3 -1.</_> 4977 <_> 4978 0 13 1 1 3.</_></rects> 4979 <tilted>0</tilted></feature> 4980 <threshold>-1.5654950402677059e-003</threshold> 4981 <left_val>-0.7297238111495972</left_val> 4982 <right_val>0.0940706729888916</right_val></_></_> 4983 <_> 4984 <!-- tree 4 --> 4985 <_> 4986 <!-- root node --> 4987 <feature> 4988 <rects> 4989 <_> 4990 15 15 4 4 -1.</_> 4991 <_> 4992 15 17 4 2 2.</_></rects> 4993 <tilted>0</tilted></feature> 4994 <threshold>1.9124479731544852e-003</threshold> 4995 <left_val>-0.3118715882301331</left_val> 4996 <right_val>0.1814339011907578</right_val></_></_> 4997 <_> 4998 <!-- tree 5 --> 4999 <_> 5000 <!-- root node --> 5001 <feature> 5002 <rects> 5003 <_> 5004 2 5 18 7 -1.</_> 5005 <_> 5006 8 5 6 7 3.</_></rects> 5007 <tilted>0</tilted></feature> 5008 <threshold>-0.1351236999034882</threshold> 5009 <left_val>0.2957729995250702</left_val> 5010 <right_val>-0.2217925041913986</right_val></_></_> 5011 <_> 5012 <!-- tree 6 --> 5013 <_> 5014 <!-- root node --> 5015 <feature> 5016 <rects> 5017 <_> 5018 1 16 5 3 -1.</_> 5019 <_> 5020 1 17 5 1 3.</_></rects> 5021 <tilted>0</tilted></feature> 5022 <threshold>-4.0300549007952213e-003</threshold> 5023 <left_val>-0.6659513711929321</left_val> 5024 <right_val>0.0854310169816017</right_val></_></_> 5025 <_> 5026 <!-- tree 7 --> 5027 <_> 5028 <!-- root node --> 5029 <feature> 5030 <rects> 5031 <_> 5032 0 4 2 3 -1.</_> 5033 <_> 5034 0 5 2 1 3.</_></rects> 5035 <tilted>0</tilted></feature> 5036 <threshold>-2.8640460222959518e-003</threshold> 5037 <left_val>-0.6208636164665222</left_val> 5038 <right_val>0.0531060211360455</right_val></_></_> 5039 <_> 5040 <!-- tree 8 --> 5041 <_> 5042 <!-- root node --> 5043 <feature> 5044 <rects> 5045 <_> 5046 0 6 2 6 -1.</_> 5047 <_> 5048 1 6 1 6 2.</_></rects> 5049 <tilted>0</tilted></feature> 5050 <threshold>-1.4065420255064964e-003</threshold> 5051 <left_val>0.2234628945589066</left_val> 5052 <right_val>-0.2021100968122482</right_val></_></_> 5053 <_> 5054 <!-- tree 9 --> 5055 <_> 5056 <!-- root node --> 5057 <feature> 5058 <rects> 5059 <_> 5060 16 14 4 3 -1.</_> 5061 <_> 5062 16 15 4 1 3.</_></rects> 5063 <tilted>0</tilted></feature> 5064 <threshold>-3.5820449702441692e-003</threshold> 5065 <left_val>-0.5403040051460266</left_val> 5066 <right_val>0.0682136192917824</right_val></_></_> 5067 <_> 5068 <!-- tree 10 --> 5069 <_> 5070 <!-- root node --> 5071 <feature> 5072 <rects> 5073 <_> 5074 0 0 10 6 -1.</_> 5075 <_> 5076 0 0 5 3 2.</_> 5077 <_> 5078 5 3 5 3 2.</_></rects> 5079 <tilted>0</tilted></feature> 5080 <threshold>0.0415444709360600</threshold> 5081 <left_val>-0.0652158409357071</left_val> 5082 <right_val>0.6210923194885254</right_val></_></_> 5083 <_> 5084 <!-- tree 11 --> 5085 <_> 5086 <!-- root node --> 5087 <feature> 5088 <rects> 5089 <_> 5090 2 2 3 6 -1.</_> 5091 <_> 5092 3 2 1 6 3.</_></rects> 5093 <tilted>0</tilted></feature> 5094 <threshold>-9.1709550470113754e-003</threshold> 5095 <left_val>-0.7555329799652100</left_val> 5096 <right_val>0.0526404492557049</right_val></_></_> 5097 <_> 5098 <!-- tree 12 --> 5099 <_> 5100 <!-- root node --> 5101 <feature> 5102 <rects> 5103 <_> 5104 2 0 3 10 -1.</_> 5105 <_> 5106 3 0 1 10 3.</_></rects> 5107 <tilted>0</tilted></feature> 5108 <threshold>6.1552738770842552e-003</threshold> 5109 <left_val>0.0909394025802612</left_val> 5110 <right_val>-0.4424613118171692</right_val></_></_> 5111 <_> 5112 <!-- tree 13 --> 5113 <_> 5114 <!-- root node --> 5115 <feature> 5116 <rects> 5117 <_> 5118 5 5 2 2 -1.</_> 5119 <_> 5120 5 6 2 1 2.</_></rects> 5121 <tilted>0</tilted></feature> 5122 <threshold>-1.0043520014733076e-003</threshold> 5123 <left_val>0.2429233044385910</left_val> 5124 <right_val>-0.1866979002952576</right_val></_></_> 5125 <_> 5126 <!-- tree 14 --> 5127 <_> 5128 <!-- root node --> 5129 <feature> 5130 <rects> 5131 <_> 5132 12 6 4 4 -1.</_> 5133 <_> 5134 12 8 4 2 2.</_></rects> 5135 <tilted>0</tilted></feature> 5136 <threshold>0.0115198297426105</threshold> 5137 <left_val>-0.1176315024495125</left_val> 5138 <right_val>0.3672345876693726</right_val></_></_> 5139 <_> 5140 <!-- tree 15 --> 5141 <_> 5142 <!-- root node --> 5143 <feature> 5144 <rects> 5145 <_> 5146 13 5 7 3 -1.</_> 5147 <_> 5148 13 6 7 1 3.</_></rects> 5149 <tilted>0</tilted></feature> 5150 <threshold>-8.9040733873844147e-003</threshold> 5151 <left_val>-0.4893133044242859</left_val> 5152 <right_val>0.1089702025055885</right_val></_></_> 5153 <_> 5154 <!-- tree 16 --> 5155 <_> 5156 <!-- root node --> 5157 <feature> 5158 <rects> 5159 <_> 5160 10 13 1 2 -1.</_> 5161 <_> 5162 10 14 1 1 2.</_></rects> 5163 <tilted>0</tilted></feature> 5164 <threshold>5.3973670583218336e-004</threshold> 5165 <left_val>-0.2185039967298508</left_val> 5166 <right_val>0.1848998963832855</right_val></_></_> 5167 <_> 5168 <!-- tree 17 --> 5169 <_> 5170 <!-- root node --> 5171 <feature> 5172 <rects> 5173 <_> 5174 16 16 4 2 -1.</_> 5175 <_> 5176 18 16 2 2 2.</_></rects> 5177 <tilted>0</tilted></feature> 5178 <threshold>1.3727260520681739e-003</threshold> 5179 <left_val>-0.1507291048765183</left_val> 5180 <right_val>0.2917312979698181</right_val></_></_> 5181 <_> 5182 <!-- tree 18 --> 5183 <_> 5184 <!-- root node --> 5185 <feature> 5186 <rects> 5187 <_> 5188 16 12 4 7 -1.</_> 5189 <_> 5190 18 12 2 7 2.</_></rects> 5191 <tilted>0</tilted></feature> 5192 <threshold>-0.0108073903247714</threshold> 5193 <left_val>0.4289745092391968</left_val> 5194 <right_val>-0.1028013974428177</right_val></_></_> 5195 <_> 5196 <!-- tree 19 --> 5197 <_> 5198 <!-- root node --> 5199 <feature> 5200 <rects> 5201 <_> 5202 16 17 1 3 -1.</_> 5203 <_> 5204 16 18 1 1 3.</_></rects> 5205 <tilted>0</tilted></feature> 5206 <threshold>1.2670770520344377e-003</threshold> 5207 <left_val>0.0741921588778496</left_val> 5208 <right_val>-0.6420825123786926</right_val></_></_> 5209 <_> 5210 <!-- tree 20 --> 5211 <_> 5212 <!-- root node --> 5213 <feature> 5214 <rects> 5215 <_> 5216 19 9 1 3 -1.</_> 5217 <_> 5218 19 10 1 1 3.</_></rects> 5219 <tilted>0</tilted></feature> 5220 <threshold>2.2991129662841558e-003</threshold> 5221 <left_val>0.0471002794802189</left_val> 5222 <right_val>-0.7233523130416870</right_val></_></_> 5223 <_> 5224 <!-- tree 21 --> 5225 <_> 5226 <!-- root node --> 5227 <feature> 5228 <rects> 5229 <_> 5230 18 7 2 6 -1.</_> 5231 <_> 5232 19 7 1 6 2.</_></rects> 5233 <tilted>0</tilted></feature> 5234 <threshold>2.7187510859221220e-003</threshold> 5235 <left_val>-0.1708686947822571</left_val> 5236 <right_val>0.2351350933313370</right_val></_></_> 5237 <_> 5238 <!-- tree 22 --> 5239 <_> 5240 <!-- root node --> 5241 <feature> 5242 <rects> 5243 <_> 5244 8 1 3 4 -1.</_> 5245 <_> 5246 9 1 1 4 3.</_></rects> 5247 <tilted>0</tilted></feature> 5248 <threshold>-6.6619180142879486e-003</threshold> 5249 <left_val>-0.7897542715072632</left_val> 5250 <right_val>0.0450846701860428</right_val></_></_> 5251 <_> 5252 <!-- tree 23 --> 5253 <_> 5254 <!-- root node --> 5255 <feature> 5256 <rects> 5257 <_> 5258 14 0 6 9 -1.</_> 5259 <_> 5260 16 0 2 9 3.</_></rects> 5261 <tilted>0</tilted></feature> 5262 <threshold>-0.0482666492462158</threshold> 5263 <left_val>-0.6957991719245911</left_val> 5264 <right_val>0.0419760793447495</right_val></_></_> 5265 <_> 5266 <!-- tree 24 --> 5267 <_> 5268 <!-- root node --> 5269 <feature> 5270 <rects> 5271 <_> 5272 4 2 10 2 -1.</_> 5273 <_> 5274 9 2 5 2 2.</_></rects> 5275 <tilted>0</tilted></feature> 5276 <threshold>0.0152146900072694</threshold> 5277 <left_val>-0.1081828027963638</left_val> 5278 <right_val>0.3646062016487122</right_val></_></_> 5279 <_> 5280 <!-- tree 25 --> 5281 <_> 5282 <!-- root node --> 5283 <feature> 5284 <rects> 5285 <_> 5286 2 12 8 4 -1.</_> 5287 <_> 5288 2 12 4 2 2.</_> 5289 <_> 5290 6 14 4 2 2.</_></rects> 5291 <tilted>0</tilted></feature> 5292 <threshold>-6.0080131515860558e-003</threshold> 5293 <left_val>0.3097099065780640</left_val> 5294 <right_val>-0.1135921031236649</right_val></_></_> 5295 <_> 5296 <!-- tree 26 --> 5297 <_> 5298 <!-- root node --> 5299 <feature> 5300 <rects> 5301 <_> 5302 0 4 7 3 -1.</_> 5303 <_> 5304 0 5 7 1 3.</_></rects> 5305 <tilted>0</tilted></feature> 5306 <threshold>6.6127157770097256e-003</threshold> 5307 <left_val>0.0806653425097466</left_val> 5308 <right_val>-0.4665853083133698</right_val></_></_> 5309 <_> 5310 <!-- tree 27 --> 5311 <_> 5312 <!-- root node --> 5313 <feature> 5314 <rects> 5315 <_> 5316 14 14 3 3 -1.</_> 5317 <_> 5318 15 14 1 3 3.</_></rects> 5319 <tilted>0</tilted></feature> 5320 <threshold>-7.9607013612985611e-003</threshold> 5321 <left_val>-0.8720194101333618</left_val> 5322 <right_val>0.0367745906114578</right_val></_></_> 5323 <_> 5324 <!-- tree 28 --> 5325 <_> 5326 <!-- root node --> 5327 <feature> 5328 <rects> 5329 <_> 5330 0 3 4 3 -1.</_> 5331 <_> 5332 2 3 2 3 2.</_></rects> 5333 <tilted>0</tilted></feature> 5334 <threshold>3.8847199175506830e-003</threshold> 5335 <left_val>-0.1166628971695900</left_val> 5336 <right_val>0.3307026922702789</right_val></_></_> 5337 <_> 5338 <!-- tree 29 --> 5339 <_> 5340 <!-- root node --> 5341 <feature> 5342 <rects> 5343 <_> 5344 1 0 2 7 -1.</_> 5345 <_> 5346 2 0 1 7 2.</_></rects> 5347 <tilted>0</tilted></feature> 5348 <threshold>-1.0988810099661350e-003</threshold> 5349 <left_val>0.2387257069349289</left_val> 5350 <right_val>-0.1765675991773605</right_val></_></_></trees> 5351 <stage_threshold>-1.1729990243911743</stage_threshold> 5352 <parent>11</parent> 5353 <next>-1</next></_> 5354 <_> 5355 <!-- stage 13 --> 5356 <trees> 5357 <_> 5358 <!-- tree 0 --> 5359 <_> 5360 <!-- root node --> 5361 <feature> 5362 <rects> 5363 <_> 5364 15 16 4 4 -1.</_> 5365 <_> 5366 15 18 4 2 2.</_></rects> 5367 <tilted>0</tilted></feature> 5368 <threshold>3.5903379321098328e-003</threshold> 5369 <left_val>-0.2368807941675186</left_val> 5370 <right_val>0.2463164031505585</right_val></_></_> 5371 <_> 5372 <!-- tree 1 --> 5373 <_> 5374 <!-- root node --> 5375 <feature> 5376 <rects> 5377 <_> 5378 5 8 12 4 -1.</_> 5379 <_> 5380 5 10 12 2 2.</_></rects> 5381 <tilted>0</tilted></feature> 5382 <threshold>6.4815930090844631e-003</threshold> 5383 <left_val>-0.3137362003326416</left_val> 5384 <right_val>0.1867575943470001</right_val></_></_> 5385 <_> 5386 <!-- tree 2 --> 5387 <_> 5388 <!-- root node --> 5389 <feature> 5390 <rects> 5391 <_> 5392 3 17 1 2 -1.</_> 5393 <_> 5394 3 18 1 1 2.</_></rects> 5395 <tilted>0</tilted></feature> 5396 <threshold>7.3048402555286884e-005</threshold> 5397 <left_val>-0.2764435112476349</left_val> 5398 <right_val>0.1649623960256577</right_val></_></_> 5399 <_> 5400 <!-- tree 3 --> 5401 <_> 5402 <!-- root node --> 5403 <feature> 5404 <rects> 5405 <_> 5406 6 1 3 4 -1.</_> 5407 <_> 5408 7 1 1 4 3.</_></rects> 5409 <tilted>0</tilted></feature> 5410 <threshold>-3.8514640182256699e-003</threshold> 5411 <left_val>-0.5601450800895691</left_val> 5412 <right_val>0.1129473969340324</right_val></_></_> 5413 <_> 5414 <!-- tree 4 --> 5415 <_> 5416 <!-- root node --> 5417 <feature> 5418 <rects> 5419 <_> 5420 6 2 3 4 -1.</_> 5421 <_> 5422 7 2 1 4 3.</_></rects> 5423 <tilted>0</tilted></feature> 5424 <threshold>3.8588210009038448e-003</threshold> 5425 <left_val>0.0398489981889725</left_val> 5426 <right_val>-0.5807185769081116</right_val></_></_> 5427 <_> 5428 <!-- tree 5 --> 5429 <_> 5430 <!-- root node --> 5431 <feature> 5432 <rects> 5433 <_> 5434 6 8 9 12 -1.</_> 5435 <_> 5436 9 8 3 12 3.</_></rects> 5437 <tilted>0</tilted></feature> 5438 <threshold>-0.0246512200683355</threshold> 5439 <left_val>0.1675501018762589</left_val> 5440 <right_val>-0.2534367144107819</right_val></_></_> 5441 <_> 5442 <!-- tree 6 --> 5443 <_> 5444 <!-- root node --> 5445 <feature> 5446 <rects> 5447 <_> 5448 8 1 8 6 -1.</_> 5449 <_> 5450 8 3 8 2 3.</_></rects> 5451 <tilted>0</tilted></feature> 5452 <threshold>0.0472455210983753</threshold> 5453 <left_val>-0.1066208034753799</left_val> 5454 <right_val>0.3945198059082031</right_val></_></_> 5455 <_> 5456 <!-- tree 7 --> 5457 <_> 5458 <!-- root node --> 5459 <feature> 5460 <rects> 5461 <_> 5462 14 2 6 3 -1.</_> 5463 <_> 5464 17 2 3 3 2.</_></rects> 5465 <tilted>0</tilted></feature> 5466 <threshold>6.5964651294052601e-003</threshold> 5467 <left_val>-0.1774425059556961</left_val> 5468 <right_val>0.2728019058704376</right_val></_></_> 5469 <_> 5470 <!-- tree 8 --> 5471 <_> 5472 <!-- root node --> 5473 <feature> 5474 <rects> 5475 <_> 5476 0 6 1 3 -1.</_> 5477 <_> 5478 0 7 1 1 3.</_></rects> 5479 <tilted>0</tilted></feature> 5480 <threshold>-1.3177490327507257e-003</threshold> 5481 <left_val>-0.5427265167236328</left_val> 5482 <right_val>0.0486065894365311</right_val></_></_> 5483 <_> 5484 <!-- tree 9 --> 5485 <_> 5486 <!-- root node --> 5487 <feature> 5488 <rects> 5489 <_> 5490 10 0 10 2 -1.</_> 5491 <_> 5492 15 0 5 2 2.</_></rects> 5493 <tilted>0</tilted></feature> 5494 <threshold>-5.0261709839105606e-003</threshold> 5495 <left_val>0.2439424991607666</left_val> 5496 <right_val>-0.1314364969730377</right_val></_></_> 5497 <_> 5498 <!-- tree 10 --> 5499 <_> 5500 <!-- root node --> 5501 <feature> 5502 <rects> 5503 <_> 5504 11 0 3 2 -1.</_> 5505 <_> 5506 12 0 1 2 3.</_></rects> 5507 <tilted>0</tilted></feature> 5508 <threshold>3.4632768947631121e-003</threshold> 5509 <left_val>0.0690493434667587</left_val> 5510 <right_val>-0.7033624053001404</right_val></_></_> 5511 <_> 5512 <!-- tree 11 --> 5513 <_> 5514 <!-- root node --> 5515 <feature> 5516 <rects> 5517 <_> 5518 3 19 10 1 -1.</_> 5519 <_> 5520 8 19 5 1 2.</_></rects> 5521 <tilted>0</tilted></feature> 5522 <threshold>2.1692588925361633e-003</threshold> 5523 <left_val>-0.1328946053981781</left_val> 5524 <right_val>0.2209852933883667</right_val></_></_> 5525 <_> 5526 <!-- tree 12 --> 5527 <_> 5528 <!-- root node --> 5529 <feature> 5530 <rects> 5531 <_> 5532 0 4 7 16 -1.</_> 5533 <_> 5534 0 12 7 8 2.</_></rects> 5535 <tilted>0</tilted></feature> 5536 <threshold>0.0293958708643913</threshold> 5537 <left_val>-0.2853052020072937</left_val> 5538 <right_val>0.1354399025440216</right_val></_></_> 5539 <_> 5540 <!-- tree 13 --> 5541 <_> 5542 <!-- root node --> 5543 <feature> 5544 <rects> 5545 <_> 5546 2 16 1 3 -1.</_> 5547 <_> 5548 2 17 1 1 3.</_></rects> 5549 <tilted>0</tilted></feature> 5550 <threshold>-9.6181448316201568e-004</threshold> 5551 <left_val>-0.5804138183593750</left_val> 5552 <right_val>0.0374506488442421</right_val></_></_> 5553 <_> 5554 <!-- tree 14 --> 5555 <_> 5556 <!-- root node --> 5557 <feature> 5558 <rects> 5559 <_> 5560 7 8 12 6 -1.</_> 5561 <_> 5562 11 8 4 6 3.</_></rects> 5563 <tilted>0</tilted></feature> 5564 <threshold>-0.1082099974155426</threshold> 5565 <left_val>0.3946728110313416</left_val> 5566 <right_val>-0.0786559432744980</right_val></_></_> 5567 <_> 5568 <!-- tree 15 --> 5569 <_> 5570 <!-- root node --> 5571 <feature> 5572 <rects> 5573 <_> 5574 14 9 6 7 -1.</_> 5575 <_> 5576 16 9 2 7 3.</_></rects> 5577 <tilted>0</tilted></feature> 5578 <threshold>-0.0180248692631722</threshold> 5579 <left_val>0.2735562920570374</left_val> 5580 <right_val>-0.1341529935598373</right_val></_></_> 5581 <_> 5582 <!-- tree 16 --> 5583 <_> 5584 <!-- root node --> 5585 <feature> 5586 <rects> 5587 <_> 5588 12 17 6 1 -1.</_> 5589 <_> 5590 14 17 2 1 3.</_></rects> 5591 <tilted>0</tilted></feature> 5592 <threshold>6.2509840354323387e-003</threshold> 5593 <left_val>0.0233880598098040</left_val> 5594 <right_val>-0.8008859157562256</right_val></_></_> 5595 <_> 5596 <!-- tree 17 --> 5597 <_> 5598 <!-- root node --> 5599 <feature> 5600 <rects> 5601 <_> 5602 16 1 3 1 -1.</_> 5603 <_> 5604 17 1 1 1 3.</_></rects> 5605 <tilted>0</tilted></feature> 5606 <threshold>-1.6088379779830575e-003</threshold> 5607 <left_val>-0.5676252245903015</left_val> 5608 <right_val>0.0412156693637371</right_val></_></_> 5609 <_> 5610 <!-- tree 18 --> 5611 <_> 5612 <!-- root node --> 5613 <feature> 5614 <rects> 5615 <_> 5616 0 17 8 2 -1.</_> 5617 <_> 5618 0 17 4 1 2.</_> 5619 <_> 5620 4 18 4 1 2.</_></rects> 5621 <tilted>0</tilted></feature> 5622 <threshold>7.7564752427861094e-004</threshold> 5623 <left_val>-0.1489126980304718</left_val> 5624 <right_val>0.1908618062734604</right_val></_></_> 5625 <_> 5626 <!-- tree 19 --> 5627 <_> 5628 <!-- root node --> 5629 <feature> 5630 <rects> 5631 <_> 5632 17 0 2 1 -1.</_> 5633 <_> 5634 18 0 1 1 2.</_></rects> 5635 <tilted>0</tilted></feature> 5636 <threshold>8.7122338300105184e-005</threshold> 5637 <left_val>-0.1555753052234650</left_val> 5638 <right_val>0.1942822039127350</right_val></_></_> 5639 <_> 5640 <!-- tree 20 --> 5641 <_> 5642 <!-- root node --> 5643 <feature> 5644 <rects> 5645 <_> 5646 4 15 6 5 -1.</_> 5647 <_> 5648 6 15 2 5 3.</_></rects> 5649 <tilted>0</tilted></feature> 5650 <threshold>-0.0207553207874298</threshold> 5651 <left_val>-0.6300653219223023</left_val> 5652 <right_val>0.0361343808472157</right_val></_></_> 5653 <_> 5654 <!-- tree 21 --> 5655 <_> 5656 <!-- root node --> 5657 <feature> 5658 <rects> 5659 <_> 5660 7 2 8 2 -1.</_> 5661 <_> 5662 7 3 8 1 2.</_></rects> 5663 <tilted>0</tilted></feature> 5664 <threshold>-6.2931738793849945e-003</threshold> 5665 <left_val>0.2560924887657166</left_val> 5666 <right_val>-0.1058826968073845</right_val></_></_> 5667 <_> 5668 <!-- tree 22 --> 5669 <_> 5670 <!-- root node --> 5671 <feature> 5672 <rects> 5673 <_> 5674 4 1 8 4 -1.</_> 5675 <_> 5676 4 3 8 2 2.</_></rects> 5677 <tilted>0</tilted></feature> 5678 <threshold>0.0108441496267915</threshold> 5679 <left_val>-0.1012485027313232</left_val> 5680 <right_val>0.3032212853431702</right_val></_></_> 5681 <_> 5682 <!-- tree 23 --> 5683 <_> 5684 <!-- root node --> 5685 <feature> 5686 <rects> 5687 <_> 5688 5 19 2 1 -1.</_> 5689 <_> 5690 6 19 1 1 2.</_></rects> 5691 <tilted>0</tilted></feature> 5692 <threshold>-6.3752777350600809e-005</threshold> 5693 <left_val>0.1911157965660095</left_val> 5694 <right_val>-0.1384923011064529</right_val></_></_> 5695 <_> 5696 <!-- tree 24 --> 5697 <_> 5698 <!-- root node --> 5699 <feature> 5700 <rects> 5701 <_> 5702 5 19 2 1 -1.</_> 5703 <_> 5704 6 19 1 1 2.</_></rects> 5705 <tilted>0</tilted></feature> 5706 <threshold>6.6480963141657412e-005</threshold> 5707 <left_val>-0.1520525068044663</left_val> 5708 <right_val>0.2170630991458893</right_val></_></_> 5709 <_> 5710 <!-- tree 25 --> 5711 <_> 5712 <!-- root node --> 5713 <feature> 5714 <rects> 5715 <_> 5716 16 17 1 3 -1.</_> 5717 <_> 5718 16 18 1 1 3.</_></rects> 5719 <tilted>0</tilted></feature> 5720 <threshold>1.3560829684138298e-003</threshold> 5721 <left_val>0.0494317896664143</left_val> 5722 <right_val>-0.6427984237670898</right_val></_></_> 5723 <_> 5724 <!-- tree 26 --> 5725 <_> 5726 <!-- root node --> 5727 <feature> 5728 <rects> 5729 <_> 5730 0 11 2 3 -1.</_> 5731 <_> 5732 1 11 1 3 2.</_></rects> 5733 <tilted>0</tilted></feature> 5734 <threshold>-9.0662558795884252e-004</threshold> 5735 <left_val>0.1798201054334641</left_val> 5736 <right_val>-0.1404460966587067</right_val></_></_> 5737 <_> 5738 <!-- tree 27 --> 5739 <_> 5740 <!-- root node --> 5741 <feature> 5742 <rects> 5743 <_> 5744 0 19 4 1 -1.</_> 5745 <_> 5746 2 19 2 1 2.</_></rects> 5747 <tilted>0</tilted></feature> 5748 <threshold>1.0473709553480148e-003</threshold> 5749 <left_val>-0.1093354970216751</left_val> 5750 <right_val>0.2426594048738480</right_val></_></_> 5751 <_> 5752 <!-- tree 28 --> 5753 <_> 5754 <!-- root node --> 5755 <feature> 5756 <rects> 5757 <_> 5758 0 18 4 2 -1.</_> 5759 <_> 5760 2 18 2 2 2.</_></rects> 5761 <tilted>0</tilted></feature> 5762 <threshold>-1.0243969736620784e-003</threshold> 5763 <left_val>0.2716268002986908</left_val> 5764 <right_val>-0.1182091981172562</right_val></_></_> 5765 <_> 5766 <!-- tree 29 --> 5767 <_> 5768 <!-- root node --> 5769 <feature> 5770 <rects> 5771 <_> 5772 2 17 1 3 -1.</_> 5773 <_> 5774 2 18 1 1 3.</_></rects> 5775 <tilted>0</tilted></feature> 5776 <threshold>-1.2024149764329195e-003</threshold> 5777 <left_val>-0.7015110254287720</left_val> 5778 <right_val>0.0394898988306522</right_val></_></_> 5779 <_> 5780 <!-- tree 30 --> 5781 <_> 5782 <!-- root node --> 5783 <feature> 5784 <rects> 5785 <_> 5786 5 7 11 2 -1.</_> 5787 <_> 5788 5 8 11 1 2.</_></rects> 5789 <tilted>0</tilted></feature> 5790 <threshold>7.6911649666726589e-003</threshold> 5791 <left_val>-0.0922189131379128</left_val> 5792 <right_val>0.3104628920555115</right_val></_></_> 5793 <_> 5794 <!-- tree 31 --> 5795 <_> 5796 <!-- root node --> 5797 <feature> 5798 <rects> 5799 <_> 5800 9 2 4 10 -1.</_> 5801 <_> 5802 9 7 4 5 2.</_></rects> 5803 <tilted>0</tilted></feature> 5804 <threshold>-0.1396654993295670</threshold> 5805 <left_val>0.6897938847541809</left_val> 5806 <right_val>-0.0397061184048653</right_val></_></_> 5807 <_> 5808 <!-- tree 32 --> 5809 <_> 5810 <!-- root node --> 5811 <feature> 5812 <rects> 5813 <_> 5814 0 2 4 3 -1.</_> 5815 <_> 5816 0 3 4 1 3.</_></rects> 5817 <tilted>0</tilted></feature> 5818 <threshold>2.1276050247251987e-003</threshold> 5819 <left_val>0.0972776114940643</left_val> 5820 <right_val>-0.2884179949760437</right_val></_></_> 5821 <_> 5822 <!-- tree 33 --> 5823 <_> 5824 <!-- root node --> 5825 <feature> 5826 <rects> 5827 <_> 5828 10 19 10 1 -1.</_> 5829 <_> 5830 15 19 5 1 2.</_></rects> 5831 <tilted>0</tilted></feature> 5832 <threshold>-2.7594310231506824e-003</threshold> 5833 <left_val>0.2416867017745972</left_val> 5834 <right_val>-0.1127782016992569</right_val></_></_> 5835 <_> 5836 <!-- tree 34 --> 5837 <_> 5838 <!-- root node --> 5839 <feature> 5840 <rects> 5841 <_> 5842 11 17 8 3 -1.</_> 5843 <_> 5844 15 17 4 3 2.</_></rects> 5845 <tilted>0</tilted></feature> 5846 <threshold>5.2236132323741913e-003</threshold> 5847 <left_val>-0.1143027991056442</left_val> 5848 <right_val>0.2425678074359894</right_val></_></_> 5849 <_> 5850 <!-- tree 35 --> 5851 <_> 5852 <!-- root node --> 5853 <feature> 5854 <rects> 5855 <_> 5856 8 19 3 1 -1.</_> 5857 <_> 5858 9 19 1 1 3.</_></rects> 5859 <tilted>0</tilted></feature> 5860 <threshold>-1.2590440455824137e-003</threshold> 5861 <left_val>-0.5967938899993897</left_val> 5862 <right_val>0.0476639606058598</right_val></_></_> 5863 <_> 5864 <!-- tree 36 --> 5865 <_> 5866 <!-- root node --> 5867 <feature> 5868 <rects> 5869 <_> 5870 14 0 3 4 -1.</_> 5871 <_> 5872 15 0 1 4 3.</_></rects> 5873 <tilted>0</tilted></feature> 5874 <threshold>-3.7192099262028933e-003</threshold> 5875 <left_val>-0.4641413092613220</left_val> 5876 <right_val>0.0528476908802986</right_val></_></_> 5877 <_> 5878 <!-- tree 37 --> 5879 <_> 5880 <!-- root node --> 5881 <feature> 5882 <rects> 5883 <_> 5884 10 6 4 3 -1.</_> 5885 <_> 5886 10 7 4 1 3.</_></rects> 5887 <tilted>0</tilted></feature> 5888 <threshold>5.9696151874959469e-003</threshold> 5889 <left_val>-0.0732442885637283</left_val> 5890 <right_val>0.3874309062957764</right_val></_></_> 5891 <_> 5892 <!-- tree 38 --> 5893 <_> 5894 <!-- root node --> 5895 <feature> 5896 <rects> 5897 <_> 5898 0 8 3 2 -1.</_> 5899 <_> 5900 0 9 3 1 2.</_></rects> 5901 <tilted>0</tilted></feature> 5902 <threshold>-5.1776720210909843e-003</threshold> 5903 <left_val>-0.7419322729110718</left_val> 5904 <right_val>0.0404967106878757</right_val></_></_> 5905 <_> 5906 <!-- tree 39 --> 5907 <_> 5908 <!-- root node --> 5909 <feature> 5910 <rects> 5911 <_> 5912 7 12 3 6 -1.</_> 5913 <_> 5914 7 14 3 2 3.</_></rects> 5915 <tilted>0</tilted></feature> 5916 <threshold>5.0035100430250168e-003</threshold> 5917 <left_val>-0.1388880014419556</left_val> 5918 <right_val>0.1876762062311173</right_val></_></_> 5919 <_> 5920 <!-- tree 40 --> 5921 <_> 5922 <!-- root node --> 5923 <feature> 5924 <rects> 5925 <_> 5926 1 18 1 2 -1.</_> 5927 <_> 5928 1 19 1 1 2.</_></rects> 5929 <tilted>0</tilted></feature> 5930 <threshold>-5.2013457752764225e-004</threshold> 5931 <left_val>-0.5494061708450317</left_val> 5932 <right_val>0.0494178496301174</right_val></_></_> 5933 <_> 5934 <!-- tree 41 --> 5935 <_> 5936 <!-- root node --> 5937 <feature> 5938 <rects> 5939 <_> 5940 0 12 4 4 -1.</_> 5941 <_> 5942 2 12 2 4 2.</_></rects> 5943 <tilted>0</tilted></feature> 5944 <threshold>5.3168768063187599e-003</threshold> 5945 <left_val>-0.0824829787015915</left_val> 5946 <right_val>0.3174056112766266</right_val></_></_> 5947 <_> 5948 <!-- tree 42 --> 5949 <_> 5950 <!-- root node --> 5951 <feature> 5952 <rects> 5953 <_> 5954 1 8 6 7 -1.</_> 5955 <_> 5956 3 8 2 7 3.</_></rects> 5957 <tilted>0</tilted></feature> 5958 <threshold>-0.0147745897993445</threshold> 5959 <left_val>0.2081609964370728</left_val> 5960 <right_val>-0.1211555972695351</right_val></_></_> 5961 <_> 5962 <!-- tree 43 --> 5963 <_> 5964 <!-- root node --> 5965 <feature> 5966 <rects> 5967 <_> 5968 0 8 4 5 -1.</_> 5969 <_> 5970 2 8 2 5 2.</_></rects> 5971 <tilted>0</tilted></feature> 5972 <threshold>-0.0414164513349533</threshold> 5973 <left_val>-0.8243780732154846</left_val> 5974 <right_val>0.0333291888237000</right_val></_></_></trees> 5975 <stage_threshold>-1.0368299484252930</stage_threshold> 5976 <parent>12</parent> 5977 <next>-1</next></_> 5978 <_> 5979 <!-- stage 14 --> 5980 <trees> 5981 <_> 5982 <!-- tree 0 --> 5983 <_> 5984 <!-- root node --> 5985 <feature> 5986 <rects> 5987 <_> 5988 19 16 1 3 -1.</_> 5989 <_> 5990 19 17 1 1 3.</_></rects> 5991 <tilted>0</tilted></feature> 5992 <threshold>9.0962520334869623e-004</threshold> 5993 <left_val>0.0845799669623375</left_val> 5994 <right_val>-0.5611841082572937</right_val></_></_> 5995 <_> 5996 <!-- tree 1 --> 5997 <_> 5998 <!-- root node --> 5999 <feature> 6000 <rects> 6001 <_> 6002 1 5 18 6 -1.</_> 6003 <_> 6004 7 5 6 6 3.</_></rects> 6005 <tilted>0</tilted></feature> 6006 <threshold>-0.0561397895216942</threshold> 6007 <left_val>0.1534174978733063</left_val> 6008 <right_val>-0.2696731984615326</right_val></_></_> 6009 <_> 6010 <!-- tree 2 --> 6011 <_> 6012 <!-- root node --> 6013 <feature> 6014 <rects> 6015 <_> 6016 2 15 4 2 -1.</_> 6017 <_> 6018 2 16 4 1 2.</_></rects> 6019 <tilted>0</tilted></feature> 6020 <threshold>1.0292009683325887e-003</threshold> 6021 <left_val>-0.2048998028039932</left_val> 6022 <right_val>0.2015317976474762</right_val></_></_> 6023 <_> 6024 <!-- tree 3 --> 6025 <_> 6026 <!-- root node --> 6027 <feature> 6028 <rects> 6029 <_> 6030 18 6 2 11 -1.</_> 6031 <_> 6032 19 6 1 11 2.</_></rects> 6033 <tilted>0</tilted></feature> 6034 <threshold>2.8783010784536600e-003</threshold> 6035 <left_val>-0.1735114008188248</left_val> 6036 <right_val>0.2129794955253601</right_val></_></_> 6037 <_> 6038 <!-- tree 4 --> 6039 <_> 6040 <!-- root node --> 6041 <feature> 6042 <rects> 6043 <_> 6044 0 12 2 6 -1.</_> 6045 <_> 6046 0 14 2 2 3.</_></rects> 6047 <tilted>0</tilted></feature> 6048 <threshold>-7.4144392274320126e-003</threshold> 6049 <left_val>-0.5962486863136292</left_val> 6050 <right_val>0.0470779500901699</right_val></_></_> 6051 <_> 6052 <!-- tree 5 --> 6053 <_> 6054 <!-- root node --> 6055 <feature> 6056 <rects> 6057 <_> 6058 12 5 3 2 -1.</_> 6059 <_> 6060 12 6 3 1 2.</_></rects> 6061 <tilted>0</tilted></feature> 6062 <threshold>-1.4831849839538336e-003</threshold> 6063 <left_val>0.1902461051940918</left_val> 6064 <right_val>-0.1598639041185379</right_val></_></_> 6065 <_> 6066 <!-- tree 6 --> 6067 <_> 6068 <!-- root node --> 6069 <feature> 6070 <rects> 6071 <_> 6072 1 3 2 3 -1.</_> 6073 <_> 6074 1 4 2 1 3.</_></rects> 6075 <tilted>0</tilted></feature> 6076 <threshold>4.5968941412866116e-003</threshold> 6077 <left_val>0.0314471311867237</left_val> 6078 <right_val>-0.6869434118270874</right_val></_></_> 6079 <_> 6080 <!-- tree 7 --> 6081 <_> 6082 <!-- root node --> 6083 <feature> 6084 <rects> 6085 <_> 6086 16 14 4 4 -1.</_> 6087 <_> 6088 16 16 4 2 2.</_></rects> 6089 <tilted>0</tilted></feature> 6090 <threshold>2.4255330208688974e-003</threshold> 6091 <left_val>-0.2360935956239700</left_val> 6092 <right_val>0.1103610992431641</right_val></_></_> 6093 <_> 6094 <!-- tree 8 --> 6095 <_> 6096 <!-- root node --> 6097 <feature> 6098 <rects> 6099 <_> 6100 6 8 12 5 -1.</_> 6101 <_> 6102 10 8 4 5 3.</_></rects> 6103 <tilted>0</tilted></feature> 6104 <threshold>-0.0849505662918091</threshold> 6105 <left_val>0.2310716062784195</left_val> 6106 <right_val>-0.1377653032541275</right_val></_></_> 6107 <_> 6108 <!-- tree 9 --> 6109 <_> 6110 <!-- root node --> 6111 <feature> 6112 <rects> 6113 <_> 6114 13 7 2 7 -1.</_> 6115 <_> 6116 14 7 1 7 2.</_></rects> 6117 <tilted>0</tilted></feature> 6118 <threshold>-5.0145681016147137e-003</threshold> 6119 <left_val>0.3867610991001129</left_val> 6120 <right_val>-0.0562173798680305</right_val></_></_> 6121 <_> 6122 <!-- tree 10 --> 6123 <_> 6124 <!-- root node --> 6125 <feature> 6126 <rects> 6127 <_> 6128 1 8 2 6 -1.</_> 6129 <_> 6130 2 8 1 6 2.</_></rects> 6131 <tilted>0</tilted></feature> 6132 <threshold>-2.1482061129063368e-003</threshold> 6133 <left_val>0.1819159984588623</left_val> 6134 <right_val>-0.1761569976806641</right_val></_></_> 6135 <_> 6136 <!-- tree 11 --> 6137 <_> 6138 <!-- root node --> 6139 <feature> 6140 <rects> 6141 <_> 6142 15 0 3 7 -1.</_> 6143 <_> 6144 16 0 1 7 3.</_></rects> 6145 <tilted>0</tilted></feature> 6146 <threshold>-0.0103967702016234</threshold> 6147 <left_val>-0.7535138130187988</left_val> 6148 <right_val>0.0240919701755047</right_val></_></_> 6149 <_> 6150 <!-- tree 12 --> 6151 <_> 6152 <!-- root node --> 6153 <feature> 6154 <rects> 6155 <_> 6156 4 2 6 2 -1.</_> 6157 <_> 6158 6 2 2 2 3.</_></rects> 6159 <tilted>0</tilted></feature> 6160 <threshold>-0.0134667502716184</threshold> 6161 <left_val>-0.7211886048316956</left_val> 6162 <right_val>0.0349493697285652</right_val></_></_> 6163 <_> 6164 <!-- tree 13 --> 6165 <_> 6166 <!-- root node --> 6167 <feature> 6168 <rects> 6169 <_> 6170 0 9 20 9 -1.</_> 6171 <_> 6172 0 12 20 3 3.</_></rects> 6173 <tilted>0</tilted></feature> 6174 <threshold>-0.0844354778528214</threshold> 6175 <left_val>-0.3379263877868652</left_val> 6176 <right_val>0.0711138173937798</right_val></_></_> 6177 <_> 6178 <!-- tree 14 --> 6179 <_> 6180 <!-- root node --> 6181 <feature> 6182 <rects> 6183 <_> 6184 10 14 2 2 -1.</_> 6185 <_> 6186 10 15 2 1 2.</_></rects> 6187 <tilted>0</tilted></feature> 6188 <threshold>2.4771490134298801e-003</threshold> 6189 <left_val>-0.1176510974764824</left_val> 6190 <right_val>0.2254198938608170</right_val></_></_> 6191 <_> 6192 <!-- tree 15 --> 6193 <_> 6194 <!-- root node --> 6195 <feature> 6196 <rects> 6197 <_> 6198 6 5 10 4 -1.</_> 6199 <_> 6200 6 7 10 2 2.</_></rects> 6201 <tilted>0</tilted></feature> 6202 <threshold>0.0158280506730080</threshold> 6203 <left_val>-0.0695362165570259</left_val> 6204 <right_val>0.3139536976814270</right_val></_></_> 6205 <_> 6206 <!-- tree 16 --> 6207 <_> 6208 <!-- root node --> 6209 <feature> 6210 <rects> 6211 <_> 6212 6 1 5 9 -1.</_> 6213 <_> 6214 6 4 5 3 3.</_></rects> 6215 <tilted>0</tilted></feature> 6216 <threshold>0.0649169832468033</threshold> 6217 <left_val>-0.0750435888767242</left_val> 6218 <right_val>0.4067733883857727</right_val></_></_> 6219 <_> 6220 <!-- tree 17 --> 6221 <_> 6222 <!-- root node --> 6223 <feature> 6224 <rects> 6225 <_> 6226 16 18 2 2 -1.</_> 6227 <_> 6228 16 18 1 1 2.</_> 6229 <_> 6230 17 19 1 1 2.</_></rects> 6231 <tilted>0</tilted></feature> 6232 <threshold>2.9652469675056636e-004</threshold> 6233 <left_val>0.0739533603191376</left_val> 6234 <right_val>-0.3454400897026062</right_val></_></_> 6235 <_> 6236 <!-- tree 18 --> 6237 <_> 6238 <!-- root node --> 6239 <feature> 6240 <rects> 6241 <_> 6242 0 14 2 4 -1.</_> 6243 <_> 6244 0 16 2 2 2.</_></rects> 6245 <tilted>0</tilted></feature> 6246 <threshold>1.3129520229995251e-003</threshold> 6247 <left_val>-0.1690943986177445</left_val> 6248 <right_val>0.1525837033987045</right_val></_></_> 6249 <_> 6250 <!-- tree 19 --> 6251 <_> 6252 <!-- root node --> 6253 <feature> 6254 <rects> 6255 <_> 6256 10 8 2 5 -1.</_> 6257 <_> 6258 11 8 1 5 2.</_></rects> 6259 <tilted>0</tilted></feature> 6260 <threshold>-5.8032129891216755e-003</threshold> 6261 <left_val>0.3526014983654022</left_val> 6262 <right_val>-0.0834440663456917</right_val></_></_> 6263 <_> 6264 <!-- tree 20 --> 6265 <_> 6266 <!-- root node --> 6267 <feature> 6268 <rects> 6269 <_> 6270 3 7 12 7 -1.</_> 6271 <_> 6272 7 7 4 7 3.</_></rects> 6273 <tilted>0</tilted></feature> 6274 <threshold>-0.1479167938232422</threshold> 6275 <left_val>0.4300465881824493</left_val> 6276 <right_val>-0.0573099292814732</right_val></_></_> 6277 <_> 6278 <!-- tree 21 --> 6279 <_> 6280 <!-- root node --> 6281 <feature> 6282 <rects> 6283 <_> 6284 0 0 6 6 -1.</_> 6285 <_> 6286 3 0 3 6 2.</_></rects> 6287 <tilted>0</tilted></feature> 6288 <threshold>-0.0165841504931450</threshold> 6289 <left_val>0.2343268990516663</left_val> 6290 <right_val>-0.1090764030814171</right_val></_></_> 6291 <_> 6292 <!-- tree 22 --> 6293 <_> 6294 <!-- root node --> 6295 <feature> 6296 <rects> 6297 <_> 6298 1 0 4 4 -1.</_> 6299 <_> 6300 3 0 2 4 2.</_></rects> 6301 <tilted>0</tilted></feature> 6302 <threshold>3.0183270573616028e-003</threshold> 6303 <left_val>-0.1360093951225281</left_val> 6304 <right_val>0.2640928924083710</right_val></_></_> 6305 <_> 6306 <!-- tree 23 --> 6307 <_> 6308 <!-- root node --> 6309 <feature> 6310 <rects> 6311 <_> 6312 0 0 6 8 -1.</_> 6313 <_> 6314 2 0 2 8 3.</_></rects> 6315 <tilted>0</tilted></feature> 6316 <threshold>-0.0364719182252884</threshold> 6317 <left_val>-0.6280974149703980</left_val> 6318 <right_val>0.0435451082885265</right_val></_></_> 6319 <_> 6320 <!-- tree 24 --> 6321 <_> 6322 <!-- root node --> 6323 <feature> 6324 <rects> 6325 <_> 6326 0 0 2 1 -1.</_> 6327 <_> 6328 1 0 1 1 2.</_></rects> 6329 <tilted>0</tilted></feature> 6330 <threshold>-7.3119226726703346e-005</threshold> 6331 <left_val>0.1647063046693802</left_val> 6332 <right_val>-0.1646378040313721</right_val></_></_> 6333 <_> 6334 <!-- tree 25 --> 6335 <_> 6336 <!-- root node --> 6337 <feature> 6338 <rects> 6339 <_> 6340 0 0 3 3 -1.</_> 6341 <_> 6342 0 1 3 1 3.</_></rects> 6343 <tilted>0</tilted></feature> 6344 <threshold>-3.6719450727105141e-003</threshold> 6345 <left_val>-0.4742136001586914</left_val> 6346 <right_val>0.0485869199037552</right_val></_></_> 6347 <_> 6348 <!-- tree 26 --> 6349 <_> 6350 <!-- root node --> 6351 <feature> 6352 <rects> 6353 <_> 6354 5 4 2 4 -1.</_> 6355 <_> 6356 5 6 2 2 2.</_></rects> 6357 <tilted>0</tilted></feature> 6358 <threshold>-4.0151178836822510e-003</threshold> 6359 <left_val>0.1822218000888825</left_val> 6360 <right_val>-0.1409751027822495</right_val></_></_> 6361 <_> 6362 <!-- tree 27 --> 6363 <_> 6364 <!-- root node --> 6365 <feature> 6366 <rects> 6367 <_> 6368 2 10 9 1 -1.</_> 6369 <_> 6370 5 10 3 1 3.</_></rects> 6371 <tilted>0</tilted></feature> 6372 <threshold>0.0199480205774307</threshold> 6373 <left_val>-0.0697876587510109</left_val> 6374 <right_val>0.3670746088027954</right_val></_></_> 6375 <_> 6376 <!-- tree 28 --> 6377 <_> 6378 <!-- root node --> 6379 <feature> 6380 <rects> 6381 <_> 6382 1 17 1 3 -1.</_> 6383 <_> 6384 1 18 1 1 3.</_></rects> 6385 <tilted>0</tilted></feature> 6386 <threshold>7.6699437340721488e-004</threshold> 6387 <left_val>0.0557292997837067</left_val> 6388 <right_val>-0.4458543062210083</right_val></_></_> 6389 <_> 6390 <!-- tree 29 --> 6391 <_> 6392 <!-- root node --> 6393 <feature> 6394 <rects> 6395 <_> 6396 0 17 2 3 -1.</_> 6397 <_> 6398 0 18 2 1 3.</_></rects> 6399 <tilted>0</tilted></feature> 6400 <threshold>-1.1806039838120341e-003</threshold> 6401 <left_val>-0.4687662124633789</left_val> 6402 <right_val>0.0489022210240364</right_val></_></_> 6403 <_> 6404 <!-- tree 30 --> 6405 <_> 6406 <!-- root node --> 6407 <feature> 6408 <rects> 6409 <_> 6410 0 15 16 3 -1.</_> 6411 <_> 6412 8 15 8 3 2.</_></rects> 6413 <tilted>0</tilted></feature> 6414 <threshold>0.0158473495393991</threshold> 6415 <left_val>-0.1212020963430405</left_val> 6416 <right_val>0.2056653052568436</right_val></_></_> 6417 <_> 6418 <!-- tree 31 --> 6419 <_> 6420 <!-- root node --> 6421 <feature> 6422 <rects> 6423 <_> 6424 0 5 4 1 -1.</_> 6425 <_> 6426 2 5 2 1 2.</_></rects> 6427 <tilted>0</tilted></feature> 6428 <threshold>-1.1985700111836195e-003</threshold> 6429 <left_val>0.2026209980249405</left_val> 6430 <right_val>-0.1282382011413574</right_val></_></_> 6431 <_> 6432 <!-- tree 32 --> 6433 <_> 6434 <!-- root node --> 6435 <feature> 6436 <rects> 6437 <_> 6438 1 0 6 20 -1.</_> 6439 <_> 6440 3 0 2 20 3.</_></rects> 6441 <tilted>0</tilted></feature> 6442 <threshold>-0.1096495985984802</threshold> 6443 <left_val>-0.8661919236183167</left_val> 6444 <right_val>0.0303518492728472</right_val></_></_> 6445 <_> 6446 <!-- tree 33 --> 6447 <_> 6448 <!-- root node --> 6449 <feature> 6450 <rects> 6451 <_> 6452 2 5 4 6 -1.</_> 6453 <_> 6454 2 5 2 3 2.</_> 6455 <_> 6456 4 8 2 3 2.</_></rects> 6457 <tilted>0</tilted></feature> 6458 <threshold>-9.2532606795430183e-003</threshold> 6459 <left_val>0.2934311926364899</left_val> 6460 <right_val>-0.0853619500994682</right_val></_></_> 6461 <_> 6462 <!-- tree 34 --> 6463 <_> 6464 <!-- root node --> 6465 <feature> 6466 <rects> 6467 <_> 6468 9 16 6 3 -1.</_> 6469 <_> 6470 11 16 2 3 3.</_></rects> 6471 <tilted>0</tilted></feature> 6472 <threshold>0.0146865304559469</threshold> 6473 <left_val>0.0327986218035221</left_val> 6474 <right_val>-0.7755656242370606</right_val></_></_> 6475 <_> 6476 <!-- tree 35 --> 6477 <_> 6478 <!-- root node --> 6479 <feature> 6480 <rects> 6481 <_> 6482 11 17 6 1 -1.</_> 6483 <_> 6484 14 17 3 1 2.</_></rects> 6485 <tilted>0</tilted></feature> 6486 <threshold>-1.3514430029317737e-003</threshold> 6487 <left_val>0.2442699968814850</left_val> 6488 <right_val>-0.1150325015187264</right_val></_></_> 6489 <_> 6490 <!-- tree 36 --> 6491 <_> 6492 <!-- root node --> 6493 <feature> 6494 <rects> 6495 <_> 6496 3 17 15 2 -1.</_> 6497 <_> 6498 8 17 5 2 3.</_></rects> 6499 <tilted>0</tilted></feature> 6500 <threshold>-4.3728090822696686e-003</threshold> 6501 <left_val>0.2168767005205154</left_val> 6502 <right_val>-0.1398448050022125</right_val></_></_> 6503 <_> 6504 <!-- tree 37 --> 6505 <_> 6506 <!-- root node --> 6507 <feature> 6508 <rects> 6509 <_> 6510 18 0 2 3 -1.</_> 6511 <_> 6512 18 1 2 1 3.</_></rects> 6513 <tilted>0</tilted></feature> 6514 <threshold>3.4263390116393566e-003</threshold> 6515 <left_val>0.0456142202019691</left_val> 6516 <right_val>-0.5456771254539490</right_val></_></_> 6517 <_> 6518 <!-- tree 38 --> 6519 <_> 6520 <!-- root node --> 6521 <feature> 6522 <rects> 6523 <_> 6524 13 1 7 4 -1.</_> 6525 <_> 6526 13 3 7 2 2.</_></rects> 6527 <tilted>0</tilted></feature> 6528 <threshold>-3.8404068909585476e-003</threshold> 6529 <left_val>0.1494950056076050</left_val> 6530 <right_val>-0.1506250947713852</right_val></_></_> 6531 <_> 6532 <!-- tree 39 --> 6533 <_> 6534 <!-- root node --> 6535 <feature> 6536 <rects> 6537 <_> 6538 13 6 4 4 -1.</_> 6539 <_> 6540 13 6 2 2 2.</_> 6541 <_> 6542 15 8 2 2 2.</_></rects> 6543 <tilted>0</tilted></feature> 6544 <threshold>3.7988980766385794e-003</threshold> 6545 <left_val>-0.0873016268014908</left_val> 6546 <right_val>0.2548153102397919</right_val></_></_> 6547 <_> 6548 <!-- tree 40 --> 6549 <_> 6550 <!-- root node --> 6551 <feature> 6552 <rects> 6553 <_> 6554 17 6 3 4 -1.</_> 6555 <_> 6556 17 8 3 2 2.</_></rects> 6557 <tilted>0</tilted></feature> 6558 <threshold>-2.0094281062483788e-003</threshold> 6559 <left_val>0.1725907027721405</left_val> 6560 <right_val>-0.1428847014904022</right_val></_></_> 6561 <_> 6562 <!-- tree 41 --> 6563 <_> 6564 <!-- root node --> 6565 <feature> 6566 <rects> 6567 <_> 6568 14 9 2 2 -1.</_> 6569 <_> 6570 15 9 1 2 2.</_></rects> 6571 <tilted>0</tilted></feature> 6572 <threshold>-2.4370709434151649e-003</threshold> 6573 <left_val>0.2684809863567352</left_val> 6574 <right_val>-0.0818982198834419</right_val></_></_> 6575 <_> 6576 <!-- tree 42 --> 6577 <_> 6578 <!-- root node --> 6579 <feature> 6580 <rects> 6581 <_> 6582 17 17 1 3 -1.</_> 6583 <_> 6584 17 18 1 1 3.</_></rects> 6585 <tilted>0</tilted></feature> 6586 <threshold>1.0485399980098009e-003</threshold> 6587 <left_val>0.0461132600903511</left_val> 6588 <right_val>-0.4724327921867371</right_val></_></_> 6589 <_> 6590 <!-- tree 43 --> 6591 <_> 6592 <!-- root node --> 6593 <feature> 6594 <rects> 6595 <_> 6596 3 19 8 1 -1.</_> 6597 <_> 6598 7 19 4 1 2.</_></rects> 6599 <tilted>0</tilted></feature> 6600 <threshold>1.7460780218243599e-003</threshold> 6601 <left_val>-0.1103043034672737</left_val> 6602 <right_val>0.2037972956895828</right_val></_></_> 6603 <_> 6604 <!-- tree 44 --> 6605 <_> 6606 <!-- root node --> 6607 <feature> 6608 <rects> 6609 <_> 6610 0 9 3 6 -1.</_> 6611 <_> 6612 0 12 3 3 2.</_></rects> 6613 <tilted>0</tilted></feature> 6614 <threshold>5.8608627878129482e-003</threshold> 6615 <left_val>-0.1561965942382813</left_val> 6616 <right_val>0.1592743992805481</right_val></_></_> 6617 <_> 6618 <!-- tree 45 --> 6619 <_> 6620 <!-- root node --> 6621 <feature> 6622 <rects> 6623 <_> 6624 4 7 15 5 -1.</_> 6625 <_> 6626 9 7 5 5 3.</_></rects> 6627 <tilted>0</tilted></feature> 6628 <threshold>-0.0277249794453382</threshold> 6629 <left_val>0.1134911999106407</left_val> 6630 <right_val>-0.2188514024019241</right_val></_></_> 6631 <_> 6632 <!-- tree 46 --> 6633 <_> 6634 <!-- root node --> 6635 <feature> 6636 <rects> 6637 <_> 6638 6 9 9 5 -1.</_> 6639 <_> 6640 9 9 3 5 3.</_></rects> 6641 <tilted>0</tilted></feature> 6642 <threshold>0.0470806397497654</threshold> 6643 <left_val>-0.0416887290775776</left_val> 6644 <right_val>0.5363004803657532</right_val></_></_> 6645 <_> 6646 <!-- tree 47 --> 6647 <_> 6648 <!-- root node --> 6649 <feature> 6650 <rects> 6651 <_> 6652 8 1 6 2 -1.</_> 6653 <_> 6654 10 1 2 2 3.</_></rects> 6655 <tilted>0</tilted></feature> 6656 <threshold>-7.9283770173788071e-003</threshold> 6657 <left_val>-0.5359513163566589</left_val> 6658 <right_val>0.0442375093698502</right_val></_></_> 6659 <_> 6660 <!-- tree 48 --> 6661 <_> 6662 <!-- root node --> 6663 <feature> 6664 <rects> 6665 <_> 6666 4 0 12 2 -1.</_> 6667 <_> 6668 10 0 6 2 2.</_></rects> 6669 <tilted>0</tilted></feature> 6670 <threshold>-0.0128805404528975</threshold> 6671 <left_val>0.2323794960975647</left_val> 6672 <right_val>-0.1024625003337860</right_val></_></_> 6673 <_> 6674 <!-- tree 49 --> 6675 <_> 6676 <!-- root node --> 6677 <feature> 6678 <rects> 6679 <_> 6680 7 0 10 3 -1.</_> 6681 <_> 6682 12 0 5 3 2.</_></rects> 6683 <tilted>0</tilted></feature> 6684 <threshold>0.0236047692596912</threshold> 6685 <left_val>-0.0882914364337921</left_val> 6686 <right_val>0.3056105971336365</right_val></_></_> 6687 <_> 6688 <!-- tree 50 --> 6689 <_> 6690 <!-- root node --> 6691 <feature> 6692 <rects> 6693 <_> 6694 5 0 9 6 -1.</_> 6695 <_> 6696 5 2 9 2 3.</_></rects> 6697 <tilted>0</tilted></feature> 6698 <threshold>0.0159022007137537</threshold> 6699 <left_val>-0.1223810985684395</left_val> 6700 <right_val>0.1784912049770355</right_val></_></_> 6701 <_> 6702 <!-- tree 51 --> 6703 <_> 6704 <!-- root node --> 6705 <feature> 6706 <rects> 6707 <_> 6708 8 3 6 4 -1.</_> 6709 <_> 6710 8 5 6 2 2.</_></rects> 6711 <tilted>0</tilted></feature> 6712 <threshold>7.9939495772123337e-003</threshold> 6713 <left_val>-0.0837290063500404</left_val> 6714 <right_val>0.3231959044933319</right_val></_></_> 6715 <_> 6716 <!-- tree 52 --> 6717 <_> 6718 <!-- root node --> 6719 <feature> 6720 <rects> 6721 <_> 6722 17 4 2 3 -1.</_> 6723 <_> 6724 17 5 2 1 3.</_></rects> 6725 <tilted>0</tilted></feature> 6726 <threshold>5.7100867852568626e-003</threshold> 6727 <left_val>0.0384792089462280</left_val> 6728 <right_val>-0.6813815236091614</right_val></_></_></trees> 6729 <stage_threshold>-1.0492420196533203</stage_threshold> 6730 <parent>13</parent> 6731 <next>-1</next></_> 6732 <_> 6733 <!-- stage 15 --> 6734 <trees> 6735 <_> 6736 <!-- tree 0 --> 6737 <_> 6738 <!-- root node --> 6739 <feature> 6740 <rects> 6741 <_> 6742 5 2 4 3 -1.</_> 6743 <_> 6744 5 3 4 1 3.</_></rects> 6745 <tilted>0</tilted></feature> 6746 <threshold>2.2480720654129982e-003</threshold> 6747 <left_val>-0.1641687005758286</left_val> 6748 <right_val>0.4164853096008301</right_val></_></_> 6749 <_> 6750 <!-- tree 1 --> 6751 <_> 6752 <!-- root node --> 6753 <feature> 6754 <rects> 6755 <_> 6756 5 9 2 6 -1.</_> 6757 <_> 6758 6 9 1 6 2.</_></rects> 6759 <tilted>0</tilted></feature> 6760 <threshold>4.5813550241291523e-003</threshold> 6761 <left_val>-0.1246595978736877</left_val> 6762 <right_val>0.4038512110710144</right_val></_></_> 6763 <_> 6764 <!-- tree 2 --> 6765 <_> 6766 <!-- root node --> 6767 <feature> 6768 <rects> 6769 <_> 6770 14 10 2 6 -1.</_> 6771 <_> 6772 15 10 1 6 2.</_></rects> 6773 <tilted>0</tilted></feature> 6774 <threshold>-1.6073239967226982e-003</threshold> 6775 <left_val>0.2608245909214020</left_val> 6776 <right_val>-0.2028252035379410</right_val></_></_> 6777 <_> 6778 <!-- tree 3 --> 6779 <_> 6780 <!-- root node --> 6781 <feature> 6782 <rects> 6783 <_> 6784 7 4 3 3 -1.</_> 6785 <_> 6786 7 5 3 1 3.</_></rects> 6787 <tilted>0</tilted></feature> 6788 <threshold>2.5205370038747787e-003</threshold> 6789 <left_val>-0.1055722981691361</left_val> 6790 <right_val>0.3666911125183106</right_val></_></_> 6791 <_> 6792 <!-- tree 4 --> 6793 <_> 6794 <!-- root node --> 6795 <feature> 6796 <rects> 6797 <_> 6798 12 4 8 2 -1.</_> 6799 <_> 6800 12 4 4 1 2.</_> 6801 <_> 6802 16 5 4 1 2.</_></rects> 6803 <tilted>0</tilted></feature> 6804 <threshold>2.4119189474731684e-003</threshold> 6805 <left_val>-0.1387760043144226</left_val> 6806 <right_val>0.2995991110801697</right_val></_></_> 6807 <_> 6808 <!-- tree 5 --> 6809 <_> 6810 <!-- root node --> 6811 <feature> 6812 <rects> 6813 <_> 6814 15 8 1 6 -1.</_> 6815 <_> 6816 15 10 1 2 3.</_></rects> 6817 <tilted>0</tilted></feature> 6818 <threshold>5.7156179100275040e-003</threshold> 6819 <left_val>-0.0776834636926651</left_val> 6820 <right_val>0.4848192036151886</right_val></_></_> 6821 <_> 6822 <!-- tree 6 --> 6823 <_> 6824 <!-- root node --> 6825 <feature> 6826 <rects> 6827 <_> 6828 4 17 11 3 -1.</_> 6829 <_> 6830 4 18 11 1 3.</_></rects> 6831 <tilted>0</tilted></feature> 6832 <threshold>3.1093840952962637e-003</threshold> 6833 <left_val>-0.1122900024056435</left_val> 6834 <right_val>0.2921550869941711</right_val></_></_> 6835 <_> 6836 <!-- tree 7 --> 6837 <_> 6838 <!-- root node --> 6839 <feature> 6840 <rects> 6841 <_> 6842 3 0 16 20 -1.</_> 6843 <_> 6844 3 10 16 10 2.</_></rects> 6845 <tilted>0</tilted></feature> 6846 <threshold>-0.0868366286158562</threshold> 6847 <left_val>-0.3677960038185120</left_val> 6848 <right_val>0.0725972428917885</right_val></_></_> 6849 <_> 6850 <!-- tree 8 --> 6851 <_> 6852 <!-- root node --> 6853 <feature> 6854 <rects> 6855 <_> 6856 12 4 4 6 -1.</_> 6857 <_> 6858 12 6 4 2 3.</_></rects> 6859 <tilted>0</tilted></feature> 6860 <threshold>5.2652182057499886e-003</threshold> 6861 <left_val>-0.1089029014110565</left_val> 6862 <right_val>0.3179126083850861</right_val></_></_> 6863 <_> 6864 <!-- tree 9 --> 6865 <_> 6866 <!-- root node --> 6867 <feature> 6868 <rects> 6869 <_> 6870 11 0 6 6 -1.</_> 6871 <_> 6872 13 0 2 6 3.</_></rects> 6873 <tilted>0</tilted></feature> 6874 <threshold>-0.0199135299772024</threshold> 6875 <left_val>-0.5337343811988831</left_val> 6876 <right_val>0.0705857127904892</right_val></_></_> 6877 <_> 6878 <!-- tree 10 --> 6879 <_> 6880 <!-- root node --> 6881 <feature> 6882 <rects> 6883 <_> 6884 13 1 6 4 -1.</_> 6885 <_> 6886 13 1 3 2 2.</_> 6887 <_> 6888 16 3 3 2 2.</_></rects> 6889 <tilted>0</tilted></feature> 6890 <threshold>3.8297839928418398e-003</threshold> 6891 <left_val>-0.1357591003179550</left_val> 6892 <right_val>0.2278887927532196</right_val></_></_> 6893 <_> 6894 <!-- tree 11 --> 6895 <_> 6896 <!-- root node --> 6897 <feature> 6898 <rects> 6899 <_> 6900 11 0 6 4 -1.</_> 6901 <_> 6902 13 0 2 4 3.</_></rects> 6903 <tilted>0</tilted></feature> 6904 <threshold>0.0104318596422672</threshold> 6905 <left_val>0.0887979120016098</left_val> 6906 <right_val>-0.4795897006988525</right_val></_></_> 6907 <_> 6908 <!-- tree 12 --> 6909 <_> 6910 <!-- root node --> 6911 <feature> 6912 <rects> 6913 <_> 6914 8 6 6 9 -1.</_> 6915 <_> 6916 10 6 2 9 3.</_></rects> 6917 <tilted>0</tilted></feature> 6918 <threshold>-0.0200404394418001</threshold> 6919 <left_val>0.1574553996324539</left_val> 6920 <right_val>-0.1777157038450241</right_val></_></_> 6921 <_> 6922 <!-- tree 13 --> 6923 <_> 6924 <!-- root node --> 6925 <feature> 6926 <rects> 6927 <_> 6928 7 0 3 4 -1.</_> 6929 <_> 6930 8 0 1 4 3.</_></rects> 6931 <tilted>0</tilted></feature> 6932 <threshold>-5.2967290394008160e-003</threshold> 6933 <left_val>-0.6843491792678833</left_val> 6934 <right_val>0.0356714613735676</right_val></_></_> 6935 <_> 6936 <!-- tree 14 --> 6937 <_> 6938 <!-- root node --> 6939 <feature> 6940 <rects> 6941 <_> 6942 0 17 14 2 -1.</_> 6943 <_> 6944 0 17 7 1 2.</_> 6945 <_> 6946 7 18 7 1 2.</_></rects> 6947 <tilted>0</tilted></feature> 6948 <threshold>-2.1624139044433832e-003</threshold> 6949 <left_val>0.2831803858280182</left_val> 6950 <right_val>-0.0985112786293030</right_val></_></_> 6951 <_> 6952 <!-- tree 15 --> 6953 <_> 6954 <!-- root node --> 6955 <feature> 6956 <rects> 6957 <_> 6958 6 18 2 2 -1.</_> 6959 <_> 6960 6 18 1 1 2.</_> 6961 <_> 6962 7 19 1 1 2.</_></rects> 6963 <tilted>0</tilted></feature> 6964 <threshold>-3.5464888787828386e-004</threshold> 6965 <left_val>-0.3707734048366547</left_val> 6966 <right_val>0.0809329524636269</right_val></_></_> 6967 <_> 6968 <!-- tree 16 --> 6969 <_> 6970 <!-- root node --> 6971 <feature> 6972 <rects> 6973 <_> 6974 18 17 1 3 -1.</_> 6975 <_> 6976 18 18 1 1 3.</_></rects> 6977 <tilted>0</tilted></feature> 6978 <threshold>-1.8152060511056334e-004</threshold> 6979 <left_val>-0.3220703005790710</left_val> 6980 <right_val>0.0775510594248772</right_val></_></_> 6981 <_> 6982 <!-- tree 17 --> 6983 <_> 6984 <!-- root node --> 6985 <feature> 6986 <rects> 6987 <_> 6988 17 18 2 2 -1.</_> 6989 <_> 6990 17 18 1 1 2.</_> 6991 <_> 6992 18 19 1 1 2.</_></rects> 6993 <tilted>0</tilted></feature> 6994 <threshold>-2.7563021285459399e-004</threshold> 6995 <left_val>-0.3244127929210663</left_val> 6996 <right_val>0.0879494771361351</right_val></_></_> 6997 <_> 6998 <!-- tree 18 --> 6999 <_> 7000 <!-- root node --> 7001 <feature> 7002 <rects> 7003 <_> 7004 5 7 1 9 -1.</_> 7005 <_> 7006 5 10 1 3 3.</_></rects> 7007 <tilted>0</tilted></feature> 7008 <threshold>6.3823810778558254e-003</threshold> 7009 <left_val>-0.0889247134327888</left_val> 7010 <right_val>0.3172721862792969</right_val></_></_> 7011 <_> 7012 <!-- tree 19 --> 7013 <_> 7014 <!-- root node --> 7015 <feature> 7016 <rects> 7017 <_> 7018 5 3 6 4 -1.</_> 7019 <_> 7020 7 3 2 4 3.</_></rects> 7021 <tilted>0</tilted></feature> 7022 <threshold>0.0111509095877409</threshold> 7023 <left_val>0.0710198432207108</left_val> 7024 <right_val>-0.4049403965473175</right_val></_></_> 7025 <_> 7026 <!-- tree 20 --> 7027 <_> 7028 <!-- root node --> 7029 <feature> 7030 <rects> 7031 <_> 7032 1 9 6 2 -1.</_> 7033 <_> 7034 1 9 3 1 2.</_> 7035 <_> 7036 4 10 3 1 2.</_></rects> 7037 <tilted>0</tilted></feature> 7038 <threshold>-1.0593760525807738e-003</threshold> 7039 <left_val>0.2605066895484924</left_val> 7040 <right_val>-0.1176564022898674</right_val></_></_> 7041 <_> 7042 <!-- tree 21 --> 7043 <_> 7044 <!-- root node --> 7045 <feature> 7046 <rects> 7047 <_> 7048 6 9 2 3 -1.</_> 7049 <_> 7050 7 9 1 3 2.</_></rects> 7051 <tilted>0</tilted></feature> 7052 <threshold>2.3906480055302382e-003</threshold> 7053 <left_val>-0.0843886211514473</left_val> 7054 <right_val>0.3123055100440979</right_val></_></_> 7055 <_> 7056 <!-- tree 22 --> 7057 <_> 7058 <!-- root node --> 7059 <feature> 7060 <rects> 7061 <_> 7062 6 8 6 12 -1.</_> 7063 <_> 7064 8 8 2 12 3.</_></rects> 7065 <tilted>0</tilted></feature> 7066 <threshold>-0.0110007496550679</threshold> 7067 <left_val>0.1915224939584732</left_val> 7068 <right_val>-0.1521002054214478</right_val></_></_> 7069 <_> 7070 <!-- tree 23 --> 7071 <_> 7072 <!-- root node --> 7073 <feature> 7074 <rects> 7075 <_> 7076 4 18 2 2 -1.</_> 7077 <_> 7078 4 18 1 1 2.</_> 7079 <_> 7080 5 19 1 1 2.</_></rects> 7081 <tilted>0</tilted></feature> 7082 <threshold>-2.4643228971399367e-004</threshold> 7083 <left_val>-0.3176515996456146</left_val> 7084 <right_val>0.0865822583436966</right_val></_></_> 7085 <_> 7086 <!-- tree 24 --> 7087 <_> 7088 <!-- root node --> 7089 <feature> 7090 <rects> 7091 <_> 7092 9 1 6 6 -1.</_> 7093 <_> 7094 9 3 6 2 3.</_></rects> 7095 <tilted>0</tilted></feature> 7096 <threshold>0.0230532698333263</threshold> 7097 <left_val>-0.1008976027369499</left_val> 7098 <right_val>0.2576929032802582</right_val></_></_> 7099 <_> 7100 <!-- tree 25 --> 7101 <_> 7102 <!-- root node --> 7103 <feature> 7104 <rects> 7105 <_> 7106 6 17 6 2 -1.</_> 7107 <_> 7108 6 18 6 1 2.</_></rects> 7109 <tilted>0</tilted></feature> 7110 <threshold>-2.2135660983622074e-003</threshold> 7111 <left_val>0.4568921029567719</left_val> 7112 <right_val>-0.0524047911167145</right_val></_></_> 7113 <_> 7114 <!-- tree 26 --> 7115 <_> 7116 <!-- root node --> 7117 <feature> 7118 <rects> 7119 <_> 7120 3 18 16 2 -1.</_> 7121 <_> 7122 3 19 16 1 2.</_></rects> 7123 <tilted>0</tilted></feature> 7124 <threshold>-9.7139709396287799e-004</threshold> 7125 <left_val>-0.3551838099956513</left_val> 7126 <right_val>0.0800943821668625</right_val></_></_> 7127 <_> 7128 <!-- tree 27 --> 7129 <_> 7130 <!-- root node --> 7131 <feature> 7132 <rects> 7133 <_> 7134 3 0 3 11 -1.</_> 7135 <_> 7136 4 0 1 11 3.</_></rects> 7137 <tilted>0</tilted></feature> 7138 <threshold>1.5676229959353805e-003</threshold> 7139 <left_val>0.1009142026305199</left_val> 7140 <right_val>-0.2160304039716721</right_val></_></_> 7141 <_> 7142 <!-- tree 28 --> 7143 <_> 7144 <!-- root node --> 7145 <feature> 7146 <rects> 7147 <_> 7148 13 18 3 1 -1.</_> 7149 <_> 7150 14 18 1 1 3.</_></rects> 7151 <tilted>0</tilted></feature> 7152 <threshold>7.5460801599547267e-004</threshold> 7153 <left_val>0.0578961782157421</left_val> 7154 <right_val>-0.4046111106872559</right_val></_></_> 7155 <_> 7156 <!-- tree 29 --> 7157 <_> 7158 <!-- root node --> 7159 <feature> 7160 <rects> 7161 <_> 7162 6 0 9 6 -1.</_> 7163 <_> 7164 6 2 9 2 3.</_></rects> 7165 <tilted>0</tilted></feature> 7166 <threshold>-0.0206989701837301</threshold> 7167 <left_val>0.3154363036155701</left_val> 7168 <right_val>-0.0807130485773087</right_val></_></_> 7169 <_> 7170 <!-- tree 30 --> 7171 <_> 7172 <!-- root node --> 7173 <feature> 7174 <rects> 7175 <_> 7176 1 2 12 4 -1.</_> 7177 <_> 7178 1 2 6 2 2.</_> 7179 <_> 7180 7 4 6 2 2.</_></rects> 7181 <tilted>0</tilted></feature> 7182 <threshold>-0.0206199400126934</threshold> 7183 <left_val>0.2718166112899780</left_val> 7184 <right_val>-0.0763586163520813</right_val></_></_> 7185 <_> 7186 <!-- tree 31 --> 7187 <_> 7188 <!-- root node --> 7189 <feature> 7190 <rects> 7191 <_> 7192 3 3 6 4 -1.</_> 7193 <_> 7194 5 3 2 4 3.</_></rects> 7195 <tilted>0</tilted></feature> 7196 <threshold>0.0216111298650503</threshold> 7197 <left_val>0.0394934490323067</left_val> 7198 <right_val>-0.5942965149879456</right_val></_></_> 7199 <_> 7200 <!-- tree 32 --> 7201 <_> 7202 <!-- root node --> 7203 <feature> 7204 <rects> 7205 <_> 7206 12 0 8 1 -1.</_> 7207 <_> 7208 16 0 4 1 2.</_></rects> 7209 <tilted>0</tilted></feature> 7210 <threshold>6.5676742233335972e-003</threshold> 7211 <left_val>-0.0983536690473557</left_val> 7212 <right_val>0.2364927977323532</right_val></_></_> 7213 <_> 7214 <!-- tree 33 --> 7215 <_> 7216 <!-- root node --> 7217 <feature> 7218 <rects> 7219 <_> 7220 9 0 6 2 -1.</_> 7221 <_> 7222 11 0 2 2 3.</_></rects> 7223 <tilted>0</tilted></feature> 7224 <threshold>-8.8434796780347824e-003</threshold> 7225 <left_val>-0.5252342820167542</left_val> 7226 <right_val>0.0430999211966991</right_val></_></_> 7227 <_> 7228 <!-- tree 34 --> 7229 <_> 7230 <!-- root node --> 7231 <feature> 7232 <rects> 7233 <_> 7234 3 3 12 1 -1.</_> 7235 <_> 7236 9 3 6 1 2.</_></rects> 7237 <tilted>0</tilted></feature> 7238 <threshold>-9.4260741025209427e-003</threshold> 7239 <left_val>0.2466513067483902</left_val> 7240 <right_val>-0.0941307172179222</right_val></_></_> 7241 <_> 7242 <!-- tree 35 --> 7243 <_> 7244 <!-- root node --> 7245 <feature> 7246 <rects> 7247 <_> 7248 2 7 6 2 -1.</_> 7249 <_> 7250 2 7 3 1 2.</_> 7251 <_> 7252 5 8 3 1 2.</_></rects> 7253 <tilted>0</tilted></feature> 7254 <threshold>-1.9830230157822371e-003</threshold> 7255 <left_val>0.2674370110034943</left_val> 7256 <right_val>-0.0900693163275719</right_val></_></_> 7257 <_> 7258 <!-- tree 36 --> 7259 <_> 7260 <!-- root node --> 7261 <feature> 7262 <rects> 7263 <_> 7264 0 8 4 6 -1.</_> 7265 <_> 7266 0 10 4 2 3.</_></rects> 7267 <tilted>0</tilted></feature> 7268 <threshold>-1.7358399927616119e-003</threshold> 7269 <left_val>0.1594001948833466</left_val> 7270 <right_val>-0.1578941047191620</right_val></_></_> 7271 <_> 7272 <!-- tree 37 --> 7273 <_> 7274 <!-- root node --> 7275 <feature> 7276 <rects> 7277 <_> 7278 9 6 3 7 -1.</_> 7279 <_> 7280 10 6 1 7 3.</_></rects> 7281 <tilted>0</tilted></feature> 7282 <threshold>-0.0135138696059585</threshold> 7283 <left_val>0.4079233109951019</left_val> 7284 <right_val>-0.0642231181263924</right_val></_></_> 7285 <_> 7286 <!-- tree 38 --> 7287 <_> 7288 <!-- root node --> 7289 <feature> 7290 <rects> 7291 <_> 7292 9 6 6 13 -1.</_> 7293 <_> 7294 11 6 2 13 3.</_></rects> 7295 <tilted>0</tilted></feature> 7296 <threshold>-0.0193940103054047</threshold> 7297 <left_val>0.1801564991474152</left_val> 7298 <right_val>-0.1373140066862106</right_val></_></_> 7299 <_> 7300 <!-- tree 39 --> 7301 <_> 7302 <!-- root node --> 7303 <feature> 7304 <rects> 7305 <_> 7306 11 12 6 1 -1.</_> 7307 <_> 7308 13 12 2 1 3.</_></rects> 7309 <tilted>0</tilted></feature> 7310 <threshold>-3.2684770412743092e-003</threshold> 7311 <left_val>0.2908039093017578</left_val> 7312 <right_val>-0.0801619067788124</right_val></_></_> 7313 <_> 7314 <!-- tree 40 --> 7315 <_> 7316 <!-- root node --> 7317 <feature> 7318 <rects> 7319 <_> 7320 18 9 2 6 -1.</_> 7321 <_> 7322 18 12 2 3 2.</_></rects> 7323 <tilted>0</tilted></feature> 7324 <threshold>4.1773589327931404e-004</threshold> 7325 <left_val>-0.2141298055648804</left_val> 7326 <right_val>0.1127343997359276</right_val></_></_> 7327 <_> 7328 <!-- tree 41 --> 7329 <_> 7330 <!-- root node --> 7331 <feature> 7332 <rects> 7333 <_> 7334 17 2 3 9 -1.</_> 7335 <_> 7336 18 2 1 9 3.</_></rects> 7337 <tilted>0</tilted></feature> 7338 <threshold>-7.6351119205355644e-003</threshold> 7339 <left_val>-0.4536595940589905</left_val> 7340 <right_val>0.0546250604093075</right_val></_></_> 7341 <_> 7342 <!-- tree 42 --> 7343 <_> 7344 <!-- root node --> 7345 <feature> 7346 <rects> 7347 <_> 7348 13 8 4 6 -1.</_> 7349 <_> 7350 13 8 2 3 2.</_> 7351 <_> 7352 15 11 2 3 2.</_></rects> 7353 <tilted>0</tilted></feature> 7354 <threshold>-8.3652976900339127e-003</threshold> 7355 <left_val>0.2647292017936707</left_val> 7356 <right_val>-0.0943341106176376</right_val></_></_> 7357 <_> 7358 <!-- tree 43 --> 7359 <_> 7360 <!-- root node --> 7361 <feature> 7362 <rects> 7363 <_> 7364 4 2 12 6 -1.</_> 7365 <_> 7366 10 2 6 6 2.</_></rects> 7367 <tilted>0</tilted></feature> 7368 <threshold>0.0277684498578310</threshold> 7369 <left_val>-0.1013671010732651</left_val> 7370 <right_val>0.2074397951364517</right_val></_></_> 7371 <_> 7372 <!-- tree 44 --> 7373 <_> 7374 <!-- root node --> 7375 <feature> 7376 <rects> 7377 <_> 7378 4 14 16 6 -1.</_> 7379 <_> 7380 12 14 8 6 2.</_></rects> 7381 <tilted>0</tilted></feature> 7382 <threshold>-0.0548912286758423</threshold> 7383 <left_val>0.2884030938148499</left_val> 7384 <right_val>-0.0753120407462120</right_val></_></_> 7385 <_> 7386 <!-- tree 45 --> 7387 <_> 7388 <!-- root node --> 7389 <feature> 7390 <rects> 7391 <_> 7392 6 19 10 1 -1.</_> 7393 <_> 7394 11 19 5 1 2.</_></rects> 7395 <tilted>0</tilted></feature> 7396 <threshold>2.5793339591473341e-003</threshold> 7397 <left_val>-0.1108852997422218</left_val> 7398 <right_val>0.2172496020793915</right_val></_></_> 7399 <_> 7400 <!-- tree 46 --> 7401 <_> 7402 <!-- root node --> 7403 <feature> 7404 <rects> 7405 <_> 7406 6 17 1 3 -1.</_> 7407 <_> 7408 6 18 1 1 3.</_></rects> 7409 <tilted>0</tilted></feature> 7410 <threshold>6.6196516854688525e-005</threshold> 7411 <left_val>-0.1887210011482239</left_val> 7412 <right_val>0.1444068998098373</right_val></_></_> 7413 <_> 7414 <!-- tree 47 --> 7415 <_> 7416 <!-- root node --> 7417 <feature> 7418 <rects> 7419 <_> 7420 4 14 10 3 -1.</_> 7421 <_> 7422 4 15 10 1 3.</_></rects> 7423 <tilted>0</tilted></feature> 7424 <threshold>5.0907251425087452e-003</threshold> 7425 <left_val>-0.0776012316346169</left_val> 7426 <right_val>0.2939837872982025</right_val></_></_> 7427 <_> 7428 <!-- tree 48 --> 7429 <_> 7430 <!-- root node --> 7431 <feature> 7432 <rects> 7433 <_> 7434 6 0 12 12 -1.</_> 7435 <_> 7436 6 4 12 4 3.</_></rects> 7437 <tilted>0</tilted></feature> 7438 <threshold>-0.1044425964355469</threshold> 7439 <left_val>0.2013310939073563</left_val> 7440 <right_val>-0.1090397015213966</right_val></_></_> 7441 <_> 7442 <!-- tree 49 --> 7443 <_> 7444 <!-- root node --> 7445 <feature> 7446 <rects> 7447 <_> 7448 5 7 4 2 -1.</_> 7449 <_> 7450 5 7 2 1 2.</_> 7451 <_> 7452 7 8 2 1 2.</_></rects> 7453 <tilted>0</tilted></feature> 7454 <threshold>-6.7273090826347470e-004</threshold> 7455 <left_val>0.1794590055942535</left_val> 7456 <right_val>-0.1202367022633553</right_val></_></_> 7457 <_> 7458 <!-- tree 50 --> 7459 <_> 7460 <!-- root node --> 7461 <feature> 7462 <rects> 7463 <_> 7464 17 5 3 2 -1.</_> 7465 <_> 7466 18 5 1 2 3.</_></rects> 7467 <tilted>0</tilted></feature> 7468 <threshold>3.2412849832326174e-003</threshold> 7469 <left_val>0.0406881310045719</left_val> 7470 <right_val>-0.5460057258605957</right_val></_></_></trees> 7471 <stage_threshold>-1.1122100353240967</stage_threshold> 7472 <parent>14</parent> 7473 <next>-1</next></_> 7474 <_> 7475 <!-- stage 16 --> 7476 <trees> 7477 <_> 7478 <!-- tree 0 --> 7479 <_> 7480 <!-- root node --> 7481 <feature> 7482 <rects> 7483 <_> 7484 8 13 6 3 -1.</_> 7485 <_> 7486 8 14 6 1 3.</_></rects> 7487 <tilted>0</tilted></feature> 7488 <threshold>5.2965320646762848e-003</threshold> 7489 <left_val>-0.1215452998876572</left_val> 7490 <right_val>0.6442037224769592</right_val></_></_> 7491 <_> 7492 <!-- tree 1 --> 7493 <_> 7494 <!-- root node --> 7495 <feature> 7496 <rects> 7497 <_> 7498 8 13 5 3 -1.</_> 7499 <_> 7500 8 14 5 1 3.</_></rects> 7501 <tilted>0</tilted></feature> 7502 <threshold>-2.5326260365545750e-003</threshold> 7503 <left_val>0.5123322010040283</left_val> 7504 <right_val>-0.1110825985670090</right_val></_></_> 7505 <_> 7506 <!-- tree 2 --> 7507 <_> 7508 <!-- root node --> 7509 <feature> 7510 <rects> 7511 <_> 7512 13 2 1 18 -1.</_> 7513 <_> 7514 13 11 1 9 2.</_></rects> 7515 <tilted>0</tilted></feature> 7516 <threshold>-2.9183230362832546e-003</threshold> 7517 <left_val>-0.5061542987823486</left_val> 7518 <right_val>0.1150197982788086</right_val></_></_> 7519 <_> 7520 <!-- tree 3 --> 7521 <_> 7522 <!-- root node --> 7523 <feature> 7524 <rects> 7525 <_> 7526 6 10 9 2 -1.</_> 7527 <_> 7528 9 10 3 2 3.</_></rects> 7529 <tilted>0</tilted></feature> 7530 <threshold>-0.0236923396587372</threshold> 7531 <left_val>0.3716728091239929</left_val> 7532 <right_val>-0.1467268019914627</right_val></_></_> 7533 <_> 7534 <!-- tree 4 --> 7535 <_> 7536 <!-- root node --> 7537 <feature> 7538 <rects> 7539 <_> 7540 11 0 7 4 -1.</_> 7541 <_> 7542 11 2 7 2 2.</_></rects> 7543 <tilted>0</tilted></feature> 7544 <threshold>0.0201774705201387</threshold> 7545 <left_val>-0.1738884001970291</left_val> 7546 <right_val>0.4775949120521545</right_val></_></_> 7547 <_> 7548 <!-- tree 5 --> 7549 <_> 7550 <!-- root node --> 7551 <feature> 7552 <rects> 7553 <_> 7554 1 0 6 8 -1.</_> 7555 <_> 7556 3 0 2 8 3.</_></rects> 7557 <tilted>0</tilted></feature> 7558 <threshold>-0.0217232108116150</threshold> 7559 <left_val>-0.4388009011745453</left_val> 7560 <right_val>0.1357689946889877</right_val></_></_> 7561 <_> 7562 <!-- tree 6 --> 7563 <_> 7564 <!-- root node --> 7565 <feature> 7566 <rects> 7567 <_> 7568 9 15 3 3 -1.</_> 7569 <_> 7570 9 16 3 1 3.</_></rects> 7571 <tilted>0</tilted></feature> 7572 <threshold>2.8369780629873276e-003</threshold> 7573 <left_val>-0.1251206994056702</left_val> 7574 <right_val>0.4678902924060822</right_val></_></_> 7575 <_> 7576 <!-- tree 7 --> 7577 <_> 7578 <!-- root node --> 7579 <feature> 7580 <rects> 7581 <_> 7582 9 17 9 3 -1.</_> 7583 <_> 7584 9 18 9 1 3.</_></rects> 7585 <tilted>0</tilted></feature> 7586 <threshold>2.7148420922458172e-003</threshold> 7587 <left_val>-0.0880188569426537</left_val> 7588 <right_val>0.3686651885509491</right_val></_></_> 7589 <_> 7590 <!-- tree 8 --> 7591 <_> 7592 <!-- root node --> 7593 <feature> 7594 <rects> 7595 <_> 7596 12 12 3 3 -1.</_> 7597 <_> 7598 12 13 3 1 3.</_></rects> 7599 <tilted>0</tilted></feature> 7600 <threshold>3.2625689636915922e-003</threshold> 7601 <left_val>-0.0853353068232536</left_val> 7602 <right_val>0.5164473056793213</right_val></_></_> 7603 <_> 7604 <!-- tree 9 --> 7605 <_> 7606 <!-- root node --> 7607 <feature> 7608 <rects> 7609 <_> 7610 4 1 3 5 -1.</_> 7611 <_> 7612 5 1 1 5 3.</_></rects> 7613 <tilted>0</tilted></feature> 7614 <threshold>-3.5618850961327553e-003</threshold> 7615 <left_val>-0.4450393021106720</left_val> 7616 <right_val>0.0917381718754768</right_val></_></_> 7617 <_> 7618 <!-- tree 10 --> 7619 <_> 7620 <!-- root node --> 7621 <feature> 7622 <rects> 7623 <_> 7624 10 14 2 3 -1.</_> 7625 <_> 7626 10 15 2 1 3.</_></rects> 7627 <tilted>0</tilted></feature> 7628 <threshold>1.9227749435231090e-003</threshold> 7629 <left_val>-0.1107731014490128</left_val> 7630 <right_val>0.3941699862480164</right_val></_></_> 7631 <_> 7632 <!-- tree 11 --> 7633 <_> 7634 <!-- root node --> 7635 <feature> 7636 <rects> 7637 <_> 7638 18 17 2 2 -1.</_> 7639 <_> 7640 18 17 1 1 2.</_> 7641 <_> 7642 19 18 1 1 2.</_></rects> 7643 <tilted>0</tilted></feature> 7644 <threshold>-3.5111969918943942e-004</threshold> 7645 <left_val>-0.3777570128440857</left_val> 7646 <right_val>0.1216617003083229</right_val></_></_> 7647 <_> 7648 <!-- tree 12 --> 7649 <_> 7650 <!-- root node --> 7651 <feature> 7652 <rects> 7653 <_> 7654 18 18 2 2 -1.</_> 7655 <_> 7656 18 18 1 1 2.</_> 7657 <_> 7658 19 19 1 1 2.</_></rects> 7659 <tilted>0</tilted></feature> 7660 <threshold>1.9121779769193381e-004</threshold> 7661 <left_val>0.0748160183429718</left_val> 7662 <right_val>-0.4076710045337677</right_val></_></_> 7663 <_> 7664 <!-- tree 13 --> 7665 <_> 7666 <!-- root node --> 7667 <feature> 7668 <rects> 7669 <_> 7670 18 18 2 2 -1.</_> 7671 <_> 7672 18 18 1 1 2.</_> 7673 <_> 7674 19 19 1 1 2.</_></rects> 7675 <tilted>0</tilted></feature> 7676 <threshold>-2.6525629800744355e-004</threshold> 7677 <left_val>-0.3315171897411346</left_val> 7678 <right_val>0.1129112020134926</right_val></_></_> 7679 <_> 7680 <!-- tree 14 --> 7681 <_> 7682 <!-- root node --> 7683 <feature> 7684 <rects> 7685 <_> 7686 4 10 9 1 -1.</_> 7687 <_> 7688 7 10 3 1 3.</_></rects> 7689 <tilted>0</tilted></feature> 7690 <threshold>0.0200867000967264</threshold> 7691 <left_val>-0.0615981183946133</left_val> 7692 <right_val>0.5612881779670715</right_val></_></_> 7693 <_> 7694 <!-- tree 15 --> 7695 <_> 7696 <!-- root node --> 7697 <feature> 7698 <rects> 7699 <_> 7700 3 9 6 5 -1.</_> 7701 <_> 7702 5 9 2 5 3.</_></rects> 7703 <tilted>0</tilted></feature> 7704 <threshold>0.0367832481861115</threshold> 7705 <left_val>-0.0602513886988163</left_val> 7706 <right_val>0.5219249129295349</right_val></_></_> 7707 <_> 7708 <!-- tree 16 --> 7709 <_> 7710 <!-- root node --> 7711 <feature> 7712 <rects> 7713 <_> 7714 18 8 1 12 -1.</_> 7715 <_> 7716 18 14 1 6 2.</_></rects> 7717 <tilted>0</tilted></feature> 7718 <threshold>1.3941619545221329e-003</threshold> 7719 <left_val>-0.3550305068492889</left_val> 7720 <right_val>0.1086302027106285</right_val></_></_> 7721 <_> 7722 <!-- tree 17 --> 7723 <_> 7724 <!-- root node --> 7725 <feature> 7726 <rects> 7727 <_> 7728 0 2 8 6 -1.</_> 7729 <_> 7730 0 2 4 3 2.</_> 7731 <_> 7732 4 5 4 3 2.</_></rects> 7733 <tilted>0</tilted></feature> 7734 <threshold>-0.0151816699653864</threshold> 7735 <left_val>0.2273965030908585</left_val> 7736 <right_val>-0.1625299006700516</right_val></_></_> 7737 <_> 7738 <!-- tree 18 --> 7739 <_> 7740 <!-- root node --> 7741 <feature> 7742 <rects> 7743 <_> 7744 9 4 3 3 -1.</_> 7745 <_> 7746 9 5 3 1 3.</_></rects> 7747 <tilted>0</tilted></feature> 7748 <threshold>4.6796840615570545e-003</threshold> 7749 <left_val>-0.0575350411236286</left_val> 7750 <right_val>0.4812423884868622</right_val></_></_> 7751 <_> 7752 <!-- tree 19 --> 7753 <_> 7754 <!-- root node --> 7755 <feature> 7756 <rects> 7757 <_> 7758 3 18 2 2 -1.</_> 7759 <_> 7760 3 18 1 1 2.</_> 7761 <_> 7762 4 19 1 1 2.</_></rects> 7763 <tilted>0</tilted></feature> 7764 <threshold>-1.7988319450523704e-004</threshold> 7765 <left_val>-0.3058767020702362</left_val> 7766 <right_val>0.1086815968155861</right_val></_></_> 7767 <_> 7768 <!-- tree 20 --> 7769 <_> 7770 <!-- root node --> 7771 <feature> 7772 <rects> 7773 <_> 7774 6 4 4 3 -1.</_> 7775 <_> 7776 6 5 4 1 3.</_></rects> 7777 <tilted>0</tilted></feature> 7778 <threshold>-3.5850999411195517e-003</threshold> 7779 <left_val>0.3859694004058838</left_val> 7780 <right_val>-0.0921940729022026</right_val></_></_> 7781 <_> 7782 <!-- tree 21 --> 7783 <_> 7784 <!-- root node --> 7785 <feature> 7786 <rects> 7787 <_> 7788 16 7 4 2 -1.</_> 7789 <_> 7790 16 7 2 1 2.</_> 7791 <_> 7792 18 8 2 1 2.</_></rects> 7793 <tilted>0</tilted></feature> 7794 <threshold>1.0793360415846109e-003</threshold> 7795 <left_val>-0.1119038984179497</left_val> 7796 <right_val>0.3112520873546600</right_val></_></_> 7797 <_> 7798 <!-- tree 22 --> 7799 <_> 7800 <!-- root node --> 7801 <feature> 7802 <rects> 7803 <_> 7804 5 17 1 3 -1.</_> 7805 <_> 7806 5 18 1 1 3.</_></rects> 7807 <tilted>0</tilted></feature> 7808 <threshold>7.3285802500322461e-005</threshold> 7809 <left_val>-0.2023991048336029</left_val> 7810 <right_val>0.1558668017387390</right_val></_></_> 7811 <_> 7812 <!-- tree 23 --> 7813 <_> 7814 <!-- root node --> 7815 <feature> 7816 <rects> 7817 <_> 7818 2 0 15 20 -1.</_> 7819 <_> 7820 2 10 15 10 2.</_></rects> 7821 <tilted>0</tilted></feature> 7822 <threshold>0.1367873996496201</threshold> 7823 <left_val>-0.2167285978794098</left_val> 7824 <right_val>0.1442039012908936</right_val></_></_> 7825 <_> 7826 <!-- tree 24 --> 7827 <_> 7828 <!-- root node --> 7829 <feature> 7830 <rects> 7831 <_> 7832 8 11 6 4 -1.</_> 7833 <_> 7834 8 11 3 2 2.</_> 7835 <_> 7836 11 13 3 2 2.</_></rects> 7837 <tilted>0</tilted></feature> 7838 <threshold>-0.0117292599752545</threshold> 7839 <left_val>0.4350377023220062</left_val> 7840 <right_val>-0.0748865306377411</right_val></_></_> 7841 <_> 7842 <!-- tree 25 --> 7843 <_> 7844 <!-- root node --> 7845 <feature> 7846 <rects> 7847 <_> 7848 8 16 4 3 -1.</_> 7849 <_> 7850 8 17 4 1 3.</_></rects> 7851 <tilted>0</tilted></feature> 7852 <threshold>3.9230841211974621e-003</threshold> 7853 <left_val>-0.0502893291413784</left_val> 7854 <right_val>0.5883116126060486</right_val></_></_> 7855 <_> 7856 <!-- tree 26 --> 7857 <_> 7858 <!-- root node --> 7859 <feature> 7860 <rects> 7861 <_> 7862 8 18 2 2 -1.</_> 7863 <_> 7864 8 18 1 1 2.</_> 7865 <_> 7866 9 19 1 1 2.</_></rects> 7867 <tilted>0</tilted></feature> 7868 <threshold>-2.9819121118634939e-004</threshold> 7869 <left_val>-0.3823240101337433</left_val> 7870 <right_val>0.0924511328339577</right_val></_></_> 7871 <_> 7872 <!-- tree 27 --> 7873 <_> 7874 <!-- root node --> 7875 <feature> 7876 <rects> 7877 <_> 7878 2 16 13 3 -1.</_> 7879 <_> 7880 2 17 13 1 3.</_></rects> 7881 <tilted>0</tilted></feature> 7882 <threshold>-4.7992770560085773e-003</threshold> 7883 <left_val>0.4848878979682922</left_val> 7884 <right_val>-0.0731365233659744</right_val></_></_> 7885 <_> 7886 <!-- tree 28 --> 7887 <_> 7888 <!-- root node --> 7889 <feature> 7890 <rects> 7891 <_> 7892 16 16 2 2 -1.</_> 7893 <_> 7894 16 16 1 1 2.</_> 7895 <_> 7896 17 17 1 1 2.</_></rects> 7897 <tilted>0</tilted></feature> 7898 <threshold>-3.0155890271998942e-004</threshold> 7899 <left_val>-0.3575735986232758</left_val> 7900 <right_val>0.1058188006281853</right_val></_></_> 7901 <_> 7902 <!-- tree 29 --> 7903 <_> 7904 <!-- root node --> 7905 <feature> 7906 <rects> 7907 <_> 7908 8 1 6 3 -1.</_> 7909 <_> 7910 10 1 2 3 3.</_></rects> 7911 <tilted>0</tilted></feature> 7912 <threshold>0.0103907696902752</threshold> 7913 <left_val>0.0529204681515694</left_val> 7914 <right_val>-0.5724965929985046</right_val></_></_> 7915 <_> 7916 <!-- tree 30 --> 7917 <_> 7918 <!-- root node --> 7919 <feature> 7920 <rects> 7921 <_> 7922 16 7 2 2 -1.</_> 7923 <_> 7924 16 7 1 1 2.</_> 7925 <_> 7926 17 8 1 1 2.</_></rects> 7927 <tilted>0</tilted></feature> 7928 <threshold>-9.4488041941076517e-004</threshold> 7929 <left_val>0.4496682882308960</left_val> 7930 <right_val>-0.0830755233764648</right_val></_></_> 7931 <_> 7932 <!-- tree 31 --> 7933 <_> 7934 <!-- root node --> 7935 <feature> 7936 <rects> 7937 <_> 7938 14 7 4 2 -1.</_> 7939 <_> 7940 14 7 2 1 2.</_> 7941 <_> 7942 16 8 2 1 2.</_></rects> 7943 <tilted>0</tilted></feature> 7944 <threshold>1.2651870492845774e-003</threshold> 7945 <left_val>-0.0966954380273819</left_val> 7946 <right_val>0.3130227029323578</right_val></_></_> 7947 <_> 7948 <!-- tree 32 --> 7949 <_> 7950 <!-- root node --> 7951 <feature> 7952 <rects> 7953 <_> 7954 4 0 14 1 -1.</_> 7955 <_> 7956 11 0 7 1 2.</_></rects> 7957 <tilted>0</tilted></feature> 7958 <threshold>0.0170945394784212</threshold> 7959 <left_val>-0.0812489762902260</left_val> 7960 <right_val>0.3611383140087128</right_val></_></_> 7961 <_> 7962 <!-- tree 33 --> 7963 <_> 7964 <!-- root node --> 7965 <feature> 7966 <rects> 7967 <_> 7968 10 4 8 2 -1.</_> 7969 <_> 7970 10 4 4 1 2.</_> 7971 <_> 7972 14 5 4 1 2.</_></rects> 7973 <tilted>0</tilted></feature> 7974 <threshold>2.5973359588533640e-003</threshold> 7975 <left_val>-0.1133835017681122</left_val> 7976 <right_val>0.2223394960165024</right_val></_></_> 7977 <_> 7978 <!-- tree 34 --> 7979 <_> 7980 <!-- root node --> 7981 <feature> 7982 <rects> 7983 <_> 7984 8 2 3 2 -1.</_> 7985 <_> 7986 9 2 1 2 3.</_></rects> 7987 <tilted>0</tilted></feature> 7988 <threshold>1.4527440071105957e-003</threshold> 7989 <left_val>0.0697504431009293</left_val> 7990 <right_val>-0.3672071099281311</right_val></_></_> 7991 <_> 7992 <!-- tree 35 --> 7993 <_> 7994 <!-- root node --> 7995 <feature> 7996 <rects> 7997 <_> 7998 12 11 6 3 -1.</_> 7999 <_> 8000 12 12 6 1 3.</_></rects> 8001 <tilted>0</tilted></feature> 8002 <threshold>4.7638658434152603e-003</threshold> 8003 <left_val>-0.0657889619469643</left_val> 8004 <right_val>0.3832854032516480</right_val></_></_> 8005 <_> 8006 <!-- tree 36 --> 8007 <_> 8008 <!-- root node --> 8009 <feature> 8010 <rects> 8011 <_> 8012 1 5 1 4 -1.</_> 8013 <_> 8014 1 7 1 2 2.</_></rects> 8015 <tilted>0</tilted></feature> 8016 <threshold>-6.2501081265509129e-003</threshold> 8017 <left_val>-0.7075446844100952</left_val> 8018 <right_val>0.0383501984179020</right_val></_></_> 8019 <_> 8020 <!-- tree 37 --> 8021 <_> 8022 <!-- root node --> 8023 <feature> 8024 <rects> 8025 <_> 8026 1 1 1 18 -1.</_> 8027 <_> 8028 1 7 1 6 3.</_></rects> 8029 <tilted>0</tilted></feature> 8030 <threshold>-3.1765329185873270e-003</threshold> 8031 <left_val>0.1375540047883987</left_val> 8032 <right_val>-0.2324002981185913</right_val></_></_> 8033 <_> 8034 <!-- tree 38 --> 8035 <_> 8036 <!-- root node --> 8037 <feature> 8038 <rects> 8039 <_> 8040 11 13 3 2 -1.</_> 8041 <_> 8042 11 14 3 1 2.</_></rects> 8043 <tilted>0</tilted></feature> 8044 <threshold>3.2191169448196888e-003</threshold> 8045 <left_val>-0.1293545067310333</left_val> 8046 <right_val>0.2273788005113602</right_val></_></_> 8047 <_> 8048 <!-- tree 39 --> 8049 <_> 8050 <!-- root node --> 8051 <feature> 8052 <rects> 8053 <_> 8054 0 1 12 2 -1.</_> 8055 <_> 8056 0 1 6 1 2.</_> 8057 <_> 8058 6 2 6 1 2.</_></rects> 8059 <tilted>0</tilted></feature> 8060 <threshold>-5.6365579366683960e-003</threshold> 8061 <left_val>0.3806715011596680</left_val> 8062 <right_val>-0.0672468394041061</right_val></_></_> 8063 <_> 8064 <!-- tree 40 --> 8065 <_> 8066 <!-- root node --> 8067 <feature> 8068 <rects> 8069 <_> 8070 10 18 2 2 -1.</_> 8071 <_> 8072 10 18 1 1 2.</_> 8073 <_> 8074 11 19 1 1 2.</_></rects> 8075 <tilted>0</tilted></feature> 8076 <threshold>-2.3844049428589642e-004</threshold> 8077 <left_val>-0.3112238049507141</left_val> 8078 <right_val>0.0838383585214615</right_val></_></_> 8079 <_> 8080 <!-- tree 41 --> 8081 <_> 8082 <!-- root node --> 8083 <feature> 8084 <rects> 8085 <_> 8086 4 5 4 4 -1.</_> 8087 <_> 8088 4 5 2 2 2.</_> 8089 <_> 8090 6 7 2 2 2.</_></rects> 8091 <tilted>0</tilted></feature> 8092 <threshold>-4.1017560288310051e-003</threshold> 8093 <left_val>0.2606728076934815</left_val> 8094 <right_val>-0.1044974029064179</right_val></_></_> 8095 <_> 8096 <!-- tree 42 --> 8097 <_> 8098 <!-- root node --> 8099 <feature> 8100 <rects> 8101 <_> 8102 6 7 1 3 -1.</_> 8103 <_> 8104 6 8 1 1 3.</_></rects> 8105 <tilted>0</tilted></feature> 8106 <threshold>1.3336989795789123e-003</threshold> 8107 <left_val>-0.0582501403987408</left_val> 8108 <right_val>0.4768244028091431</right_val></_></_> 8109 <_> 8110 <!-- tree 43 --> 8111 <_> 8112 <!-- root node --> 8113 <feature> 8114 <rects> 8115 <_> 8116 14 10 6 2 -1.</_> 8117 <_> 8118 16 10 2 2 3.</_></rects> 8119 <tilted>0</tilted></feature> 8120 <threshold>-1.2090239906683564e-003</threshold> 8121 <left_val>0.1483450978994370</left_val> 8122 <right_val>-0.1732946932315826</right_val></_></_></trees> 8123 <stage_threshold>-1.2529590129852295</stage_threshold> 8124 <parent>15</parent> 8125 <next>-1</next></_> 8126 <_> 8127 <!-- stage 17 --> 8128 <trees> 8129 <_> 8130 <!-- tree 0 --> 8131 <_> 8132 <!-- root node --> 8133 <feature> 8134 <rects> 8135 <_> 8136 16 8 3 6 -1.</_> 8137 <_> 8138 17 8 1 6 3.</_></rects> 8139 <tilted>0</tilted></feature> 8140 <threshold>-3.1760931015014648e-003</threshold> 8141 <left_val>0.3333333134651184</left_val> 8142 <right_val>-0.1664234995841980</right_val></_></_> 8143 <_> 8144 <!-- tree 1 --> 8145 <_> 8146 <!-- root node --> 8147 <feature> 8148 <rects> 8149 <_> 8150 4 10 6 2 -1.</_> 8151 <_> 8152 6 10 2 2 3.</_></rects> 8153 <tilted>0</tilted></feature> 8154 <threshold>0.0248580798506737</threshold> 8155 <left_val>-0.0727288722991943</left_val> 8156 <right_val>0.5667458176612854</right_val></_></_> 8157 <_> 8158 <!-- tree 2 --> 8159 <_> 8160 <!-- root node --> 8161 <feature> 8162 <rects> 8163 <_> 8164 6 5 3 7 -1.</_> 8165 <_> 8166 7 5 1 7 3.</_></rects> 8167 <tilted>0</tilted></feature> 8168 <threshold>-7.7597280032932758e-003</threshold> 8169 <left_val>0.4625856876373291</left_val> 8170 <right_val>-0.0931121781468391</right_val></_></_> 8171 <_> 8172 <!-- tree 3 --> 8173 <_> 8174 <!-- root node --> 8175 <feature> 8176 <rects> 8177 <_> 8178 0 13 6 6 -1.</_> 8179 <_> 8180 0 16 6 3 2.</_></rects> 8181 <tilted>0</tilted></feature> 8182 <threshold>7.8239021822810173e-003</threshold> 8183 <left_val>-0.2741461098194122</left_val> 8184 <right_val>0.1324304938316345</right_val></_></_> 8185 <_> 8186 <!-- tree 4 --> 8187 <_> 8188 <!-- root node --> 8189 <feature> 8190 <rects> 8191 <_> 8192 12 5 1 9 -1.</_> 8193 <_> 8194 12 8 1 3 3.</_></rects> 8195 <tilted>0</tilted></feature> 8196 <threshold>-0.0109488395974040</threshold> 8197 <left_val>0.2234548032283783</left_val> 8198 <right_val>-0.1496544927358627</right_val></_></_> 8199 <_> 8200 <!-- tree 5 --> 8201 <_> 8202 <!-- root node --> 8203 <feature> 8204 <rects> 8205 <_> 8206 5 9 3 3 -1.</_> 8207 <_> 8208 6 9 1 3 3.</_></rects> 8209 <tilted>0</tilted></feature> 8210 <threshold>-3.4349008928984404e-003</threshold> 8211 <left_val>0.3872498869895935</left_val> 8212 <right_val>-0.0661217272281647</right_val></_></_> 8213 <_> 8214 <!-- tree 6 --> 8215 <_> 8216 <!-- root node --> 8217 <feature> 8218 <rects> 8219 <_> 8220 7 5 6 13 -1.</_> 8221 <_> 8222 9 5 2 13 3.</_></rects> 8223 <tilted>0</tilted></feature> 8224 <threshold>-0.0311562903225422</threshold> 8225 <left_val>0.2407827973365784</left_val> 8226 <right_val>-0.1140690967440605</right_val></_></_> 8227 <_> 8228 <!-- tree 7 --> 8229 <_> 8230 <!-- root node --> 8231 <feature> 8232 <rects> 8233 <_> 8234 19 8 1 10 -1.</_> 8235 <_> 8236 19 13 1 5 2.</_></rects> 8237 <tilted>0</tilted></feature> 8238 <threshold>1.1100519914180040e-003</threshold> 8239 <left_val>-0.2820797860622406</left_val> 8240 <right_val>0.1327542960643768</right_val></_></_> 8241 <_> 8242 <!-- tree 8 --> 8243 <_> 8244 <!-- root node --> 8245 <feature> 8246 <rects> 8247 <_> 8248 11 18 6 1 -1.</_> 8249 <_> 8250 13 18 2 1 3.</_></rects> 8251 <tilted>0</tilted></feature> 8252 <threshold>3.1762740109115839e-003</threshold> 8253 <left_val>0.0345859304070473</left_val> 8254 <right_val>-0.5137431025505066</right_val></_></_> 8255 <_> 8256 <!-- tree 9 --> 8257 <_> 8258 <!-- root node --> 8259 <feature> 8260 <rects> 8261 <_> 8262 9 7 6 12 -1.</_> 8263 <_> 8264 11 7 2 12 3.</_></rects> 8265 <tilted>0</tilted></feature> 8266 <threshold>-0.0279774591326714</threshold> 8267 <left_val>0.2392677962779999</left_val> 8268 <right_val>-0.1325591951608658</right_val></_></_> 8269 <_> 8270 <!-- tree 10 --> 8271 <_> 8272 <!-- root node --> 8273 <feature> 8274 <rects> 8275 <_> 8276 12 7 6 6 -1.</_> 8277 <_> 8278 14 7 2 6 3.</_></rects> 8279 <tilted>0</tilted></feature> 8280 <threshold>-0.0230979397892952</threshold> 8281 <left_val>0.3901962041854858</left_val> 8282 <right_val>-0.0784780085086823</right_val></_></_> 8283 <_> 8284 <!-- tree 11 --> 8285 <_> 8286 <!-- root node --> 8287 <feature> 8288 <rects> 8289 <_> 8290 15 8 3 4 -1.</_> 8291 <_> 8292 16 8 1 4 3.</_></rects> 8293 <tilted>0</tilted></feature> 8294 <threshold>-3.9731930010020733e-003</threshold> 8295 <left_val>0.3069106936454773</left_val> 8296 <right_val>-0.0706014037132263</right_val></_></_> 8297 <_> 8298 <!-- tree 12 --> 8299 <_> 8300 <!-- root node --> 8301 <feature> 8302 <rects> 8303 <_> 8304 6 11 4 2 -1.</_> 8305 <_> 8306 6 12 4 1 2.</_></rects> 8307 <tilted>0</tilted></feature> 8308 <threshold>3.0335749033838511e-003</threshold> 8309 <left_val>-0.1400219053030014</left_val> 8310 <right_val>0.1913485974073410</right_val></_></_> 8311 <_> 8312 <!-- tree 13 --> 8313 <_> 8314 <!-- root node --> 8315 <feature> 8316 <rects> 8317 <_> 8318 1 6 6 8 -1.</_> 8319 <_> 8320 3 6 2 8 3.</_></rects> 8321 <tilted>0</tilted></feature> 8322 <threshold>-0.0108443703502417</threshold> 8323 <left_val>0.1654873043298721</left_val> 8324 <right_val>-0.1565777957439423</right_val></_></_> 8325 <_> 8326 <!-- tree 14 --> 8327 <_> 8328 <!-- root node --> 8329 <feature> 8330 <rects> 8331 <_> 8332 11 15 6 5 -1.</_> 8333 <_> 8334 13 15 2 5 3.</_></rects> 8335 <tilted>0</tilted></feature> 8336 <threshold>-0.0181505102664232</threshold> 8337 <left_val>-0.6324359178543091</left_val> 8338 <right_val>0.0395618192851543</right_val></_></_> 8339 <_> 8340 <!-- tree 15 --> 8341 <_> 8342 <!-- root node --> 8343 <feature> 8344 <rects> 8345 <_> 8346 15 17 4 2 -1.</_> 8347 <_> 8348 15 18 4 1 2.</_></rects> 8349 <tilted>0</tilted></feature> 8350 <threshold>7.1052298881113529e-004</threshold> 8351 <left_val>-0.1851557046175003</left_val> 8352 <right_val>0.1340880990028381</right_val></_></_> 8353 <_> 8354 <!-- tree 16 --> 8355 <_> 8356 <!-- root node --> 8357 <feature> 8358 <rects> 8359 <_> 8360 13 11 6 1 -1.</_> 8361 <_> 8362 15 11 2 1 3.</_></rects> 8363 <tilted>0</tilted></feature> 8364 <threshold>0.0108933402225375</threshold> 8365 <left_val>-0.0267302300781012</left_val> 8366 <right_val>0.6097180247306824</right_val></_></_> 8367 <_> 8368 <!-- tree 17 --> 8369 <_> 8370 <!-- root node --> 8371 <feature> 8372 <rects> 8373 <_> 8374 5 18 2 2 -1.</_> 8375 <_> 8376 5 18 1 1 2.</_> 8377 <_> 8378 6 19 1 1 2.</_></rects> 8379 <tilted>0</tilted></feature> 8380 <threshold>-2.8780900174751878e-004</threshold> 8381 <left_val>-0.3006514012813568</left_val> 8382 <right_val>0.0731714591383934</right_val></_></_> 8383 <_> 8384 <!-- tree 18 --> 8385 <_> 8386 <!-- root node --> 8387 <feature> 8388 <rects> 8389 <_> 8390 4 8 4 4 -1.</_> 8391 <_> 8392 4 8 2 2 2.</_> 8393 <_> 8394 6 10 2 2 2.</_></rects> 8395 <tilted>0</tilted></feature> 8396 <threshold>-3.5855069290846586e-003</threshold> 8397 <left_val>0.2621760964393616</left_val> 8398 <right_val>-0.0797140970826149</right_val></_></_> 8399 <_> 8400 <!-- tree 19 --> 8401 <_> 8402 <!-- root node --> 8403 <feature> 8404 <rects> 8405 <_> 8406 11 7 9 3 -1.</_> 8407 <_> 8408 11 8 9 1 3.</_></rects> 8409 <tilted>0</tilted></feature> 8410 <threshold>-0.0197592806071043</threshold> 8411 <left_val>-0.5903922915458679</left_val> 8412 <right_val>0.0406989715993404</right_val></_></_> 8413 <_> 8414 <!-- tree 20 --> 8415 <_> 8416 <!-- root node --> 8417 <feature> 8418 <rects> 8419 <_> 8420 0 3 10 4 -1.</_> 8421 <_> 8422 0 3 5 2 2.</_> 8423 <_> 8424 5 5 5 2 2.</_></rects> 8425 <tilted>0</tilted></feature> 8426 <threshold>-0.0108452104032040</threshold> 8427 <left_val>0.1636455953121185</left_val> 8428 <right_val>-0.1258606016635895</right_val></_></_> 8429 <_> 8430 <!-- tree 21 --> 8431 <_> 8432 <!-- root node --> 8433 <feature> 8434 <rects> 8435 <_> 8436 7 18 6 1 -1.</_> 8437 <_> 8438 9 18 2 1 3.</_></rects> 8439 <tilted>0</tilted></feature> 8440 <threshold>-4.3183090165257454e-003</threshold> 8441 <left_val>-0.5747488141059876</left_val> 8442 <right_val>0.0376443117856979</right_val></_></_> 8443 <_> 8444 <!-- tree 22 --> 8445 <_> 8446 <!-- root node --> 8447 <feature> 8448 <rects> 8449 <_> 8450 0 8 3 3 -1.</_> 8451 <_> 8452 0 9 3 1 3.</_></rects> 8453 <tilted>0</tilted></feature> 8454 <threshold>1.4913700288161635e-003</threshold> 8455 <left_val>0.0609134696424007</left_val> 8456 <right_val>-0.3022292852401733</right_val></_></_> 8457 <_> 8458 <!-- tree 23 --> 8459 <_> 8460 <!-- root node --> 8461 <feature> 8462 <rects> 8463 <_> 8464 0 0 6 8 -1.</_> 8465 <_> 8466 0 0 3 4 2.</_> 8467 <_> 8468 3 4 3 4 2.</_></rects> 8469 <tilted>0</tilted></feature> 8470 <threshold>0.0156756993383169</threshold> 8471 <left_val>-0.0731459110975266</left_val> 8472 <right_val>0.2937945127487183</right_val></_></_> 8473 <_> 8474 <!-- tree 24 --> 8475 <_> 8476 <!-- root node --> 8477 <feature> 8478 <rects> 8479 <_> 8480 7 6 3 8 -1.</_> 8481 <_> 8482 8 6 1 8 3.</_></rects> 8483 <tilted>0</tilted></feature> 8484 <threshold>-0.0110335601493716</threshold> 8485 <left_val>0.3931880891323090</left_val> 8486 <right_val>-0.0470843203365803</right_val></_></_> 8487 <_> 8488 <!-- tree 25 --> 8489 <_> 8490 <!-- root node --> 8491 <feature> 8492 <rects> 8493 <_> 8494 13 7 7 3 -1.</_> 8495 <_> 8496 13 8 7 1 3.</_></rects> 8497 <tilted>0</tilted></feature> 8498 <threshold>8.8555756956338882e-003</threshold> 8499 <left_val>0.0376013815402985</left_val> 8500 <right_val>-0.4910849034786224</right_val></_></_> 8501 <_> 8502 <!-- tree 26 --> 8503 <_> 8504 <!-- root node --> 8505 <feature> 8506 <rects> 8507 <_> 8508 3 3 2 2 -1.</_> 8509 <_> 8510 3 4 2 1 2.</_></rects> 8511 <tilted>0</tilted></feature> 8512 <threshold>-8.9665671112015843e-004</threshold> 8513 <left_val>0.1795202046632767</left_val> 8514 <right_val>-0.1108623966574669</right_val></_></_> 8515 <_> 8516 <!-- tree 27 --> 8517 <_> 8518 <!-- root node --> 8519 <feature> 8520 <rects> 8521 <_> 8522 0 3 3 3 -1.</_> 8523 <_> 8524 0 4 3 1 3.</_></rects> 8525 <tilted>0</tilted></feature> 8526 <threshold>-3.0592409893870354e-003</threshold> 8527 <left_val>-0.4442946016788483</left_val> 8528 <right_val>0.0510054305195808</right_val></_></_> 8529 <_> 8530 <!-- tree 28 --> 8531 <_> 8532 <!-- root node --> 8533 <feature> 8534 <rects> 8535 <_> 8536 9 3 5 2 -1.</_> 8537 <_> 8538 9 4 5 1 2.</_></rects> 8539 <tilted>0</tilted></feature> 8540 <threshold>6.3201179727911949e-003</threshold> 8541 <left_val>-0.0528410896658897</left_val> 8542 <right_val>0.3719710111618042</right_val></_></_> 8543 <_> 8544 <!-- tree 29 --> 8545 <_> 8546 <!-- root node --> 8547 <feature> 8548 <rects> 8549 <_> 8550 6 5 9 4 -1.</_> 8551 <_> 8552 9 5 3 4 3.</_></rects> 8553 <tilted>0</tilted></feature> 8554 <threshold>0.0206828303635120</threshold> 8555 <left_val>0.0576671697199345</left_val> 8556 <right_val>-0.3690159916877747</right_val></_></_> 8557 <_> 8558 <!-- tree 30 --> 8559 <_> 8560 <!-- root node --> 8561 <feature> 8562 <rects> 8563 <_> 8564 3 10 12 3 -1.</_> 8565 <_> 8566 7 10 4 3 3.</_></rects> 8567 <tilted>0</tilted></feature> 8568 <threshold>0.0998226627707481</threshold> 8569 <left_val>-0.0373770184814930</left_val> 8570 <right_val>0.5816559195518494</right_val></_></_> 8571 <_> 8572 <!-- tree 31 --> 8573 <_> 8574 <!-- root node --> 8575 <feature> 8576 <rects> 8577 <_> 8578 8 7 3 6 -1.</_> 8579 <_> 8580 9 7 1 6 3.</_></rects> 8581 <tilted>0</tilted></feature> 8582 <threshold>-6.5854229032993317e-003</threshold> 8583 <left_val>0.2850944101810455</left_val> 8584 <right_val>-0.0609780699014664</right_val></_></_> 8585 <_> 8586 <!-- tree 32 --> 8587 <_> 8588 <!-- root node --> 8589 <feature> 8590 <rects> 8591 <_> 8592 5 5 6 5 -1.</_> 8593 <_> 8594 8 5 3 5 2.</_></rects> 8595 <tilted>0</tilted></feature> 8596 <threshold>-0.0609003007411957</threshold> 8597 <left_val>-0.5103176832199097</left_val> 8598 <right_val>0.0377874001860619</right_val></_></_> 8599 <_> 8600 <!-- tree 33 --> 8601 <_> 8602 <!-- root node --> 8603 <feature> 8604 <rects> 8605 <_> 8606 0 5 2 3 -1.</_> 8607 <_> 8608 0 6 2 1 3.</_></rects> 8609 <tilted>0</tilted></feature> 8610 <threshold>-2.9991709161549807e-003</threshold> 8611 <left_val>-0.4794301092624664</left_val> 8612 <right_val>0.0388338901102543</right_val></_></_> 8613 <_> 8614 <!-- tree 34 --> 8615 <_> 8616 <!-- root node --> 8617 <feature> 8618 <rects> 8619 <_> 8620 9 7 3 4 -1.</_> 8621 <_> 8622 10 7 1 4 3.</_></rects> 8623 <tilted>0</tilted></feature> 8624 <threshold>-9.8906438797712326e-003</threshold> 8625 <left_val>0.4060907959938049</left_val> 8626 <right_val>-0.0478696487843990</right_val></_></_> 8627 <_> 8628 <!-- tree 35 --> 8629 <_> 8630 <!-- root node --> 8631 <feature> 8632 <rects> 8633 <_> 8634 1 0 6 15 -1.</_> 8635 <_> 8636 3 0 2 15 3.</_></rects> 8637 <tilted>0</tilted></feature> 8638 <threshold>-0.0826889276504517</threshold> 8639 <left_val>-0.7067118287086487</left_val> 8640 <right_val>0.0274877492338419</right_val></_></_> 8641 <_> 8642 <!-- tree 36 --> 8643 <_> 8644 <!-- root node --> 8645 <feature> 8646 <rects> 8647 <_> 8648 15 1 3 5 -1.</_> 8649 <_> 8650 16 1 1 5 3.</_></rects> 8651 <tilted>0</tilted></feature> 8652 <threshold>5.0060399807989597e-003</threshold> 8653 <left_val>0.0282084401696920</left_val> 8654 <right_val>-0.5290969014167786</right_val></_></_> 8655 <_> 8656 <!-- tree 37 --> 8657 <_> 8658 <!-- root node --> 8659 <feature> 8660 <rects> 8661 <_> 8662 9 2 3 10 -1.</_> 8663 <_> 8664 10 2 1 10 3.</_></rects> 8665 <tilted>0</tilted></feature> 8666 <threshold>6.1695030890405178e-003</threshold> 8667 <left_val>-0.0545548610389233</left_val> 8668 <right_val>0.3283798098564148</right_val></_></_> 8669 <_> 8670 <!-- tree 38 --> 8671 <_> 8672 <!-- root node --> 8673 <feature> 8674 <rects> 8675 <_> 8676 8 8 6 12 -1.</_> 8677 <_> 8678 10 8 2 12 3.</_></rects> 8679 <tilted>0</tilted></feature> 8680 <threshold>-3.3914761152118444e-003</threshold> 8681 <left_val>0.0921176671981812</left_val> 8682 <right_val>-0.2163711041212082</right_val></_></_> 8683 <_> 8684 <!-- tree 39 --> 8685 <_> 8686 <!-- root node --> 8687 <feature> 8688 <rects> 8689 <_> 8690 16 4 3 4 -1.</_> 8691 <_> 8692 16 6 3 2 2.</_></rects> 8693 <tilted>0</tilted></feature> 8694 <threshold>-2.6131230406463146e-003</threshold> 8695 <left_val>0.1365101933479309</left_val> 8696 <right_val>-0.1378113031387329</right_val></_></_> 8697 <_> 8698 <!-- tree 40 --> 8699 <_> 8700 <!-- root node --> 8701 <feature> 8702 <rects> 8703 <_> 8704 16 7 2 2 -1.</_> 8705 <_> 8706 16 7 1 1 2.</_> 8707 <_> 8708 17 8 1 1 2.</_></rects> 8709 <tilted>0</tilted></feature> 8710 <threshold>8.0490659456700087e-004</threshold> 8711 <left_val>-0.0686371102929115</left_val> 8712 <right_val>0.3358106911182404</right_val></_></_> 8713 <_> 8714 <!-- tree 41 --> 8715 <_> 8716 <!-- root node --> 8717 <feature> 8718 <rects> 8719 <_> 8720 13 0 6 9 -1.</_> 8721 <_> 8722 13 3 6 3 3.</_></rects> 8723 <tilted>0</tilted></feature> 8724 <threshold>-0.0381065085530281</threshold> 8725 <left_val>0.2944543063640595</left_val> 8726 <right_val>-0.0682392269372940</right_val></_></_> 8727 <_> 8728 <!-- tree 42 --> 8729 <_> 8730 <!-- root node --> 8731 <feature> 8732 <rects> 8733 <_> 8734 7 17 1 3 -1.</_> 8735 <_> 8736 7 18 1 1 3.</_></rects> 8737 <tilted>0</tilted></feature> 8738 <threshold>7.2450799052603543e-005</threshold> 8739 <left_val>-0.1675013005733490</left_val> 8740 <right_val>0.1217823028564453</right_val></_></_> 8741 <_> 8742 <!-- tree 43 --> 8743 <_> 8744 <!-- root node --> 8745 <feature> 8746 <rects> 8747 <_> 8748 12 1 4 2 -1.</_> 8749 <_> 8750 12 2 4 1 2.</_></rects> 8751 <tilted>0</tilted></feature> 8752 <threshold>1.5837959945201874e-003</threshold> 8753 <left_val>-0.0920428484678268</left_val> 8754 <right_val>0.2134899049997330</right_val></_></_> 8755 <_> 8756 <!-- tree 44 --> 8757 <_> 8758 <!-- root node --> 8759 <feature> 8760 <rects> 8761 <_> 8762 17 3 1 3 -1.</_> 8763 <_> 8764 17 4 1 1 3.</_></rects> 8765 <tilted>0</tilted></feature> 8766 <threshold>1.2924340553581715e-003</threshold> 8767 <left_val>0.0629172325134277</left_val> 8768 <right_val>-0.3617450892925263</right_val></_></_> 8769 <_> 8770 <!-- tree 45 --> 8771 <_> 8772 <!-- root node --> 8773 <feature> 8774 <rects> 8775 <_> 8776 0 16 9 3 -1.</_> 8777 <_> 8778 0 17 9 1 3.</_></rects> 8779 <tilted>0</tilted></feature> 8780 <threshold>9.9146775901317596e-003</threshold> 8781 <left_val>0.0195340607315302</left_val> 8782 <right_val>-0.8101503849029541</right_val></_></_> 8783 <_> 8784 <!-- tree 46 --> 8785 <_> 8786 <!-- root node --> 8787 <feature> 8788 <rects> 8789 <_> 8790 3 6 2 4 -1.</_> 8791 <_> 8792 3 6 1 2 2.</_> 8793 <_> 8794 4 8 1 2 2.</_></rects> 8795 <tilted>0</tilted></feature> 8796 <threshold>-1.7086310544982553e-003</threshold> 8797 <left_val>0.2552523910999298</left_val> 8798 <right_val>-0.0682294592261314</right_val></_></_> 8799 <_> 8800 <!-- tree 47 --> 8801 <_> 8802 <!-- root node --> 8803 <feature> 8804 <rects> 8805 <_> 8806 13 18 3 1 -1.</_> 8807 <_> 8808 14 18 1 1 3.</_></rects> 8809 <tilted>0</tilted></feature> 8810 <threshold>2.1844399161636829e-003</threshold> 8811 <left_val>0.0233140494674444</left_val> 8812 <right_val>-0.8429678082466126</right_val></_></_> 8813 <_> 8814 <!-- tree 48 --> 8815 <_> 8816 <!-- root node --> 8817 <feature> 8818 <rects> 8819 <_> 8820 0 18 4 2 -1.</_> 8821 <_> 8822 2 18 2 2 2.</_></rects> 8823 <tilted>0</tilted></feature> 8824 <threshold>-3.4244330599904060e-003</threshold> 8825 <left_val>0.2721368968486786</left_val> 8826 <right_val>-0.0763952285051346</right_val></_></_> 8827 <_> 8828 <!-- tree 49 --> 8829 <_> 8830 <!-- root node --> 8831 <feature> 8832 <rects> 8833 <_> 8834 1 19 2 1 -1.</_> 8835 <_> 8836 2 19 1 1 2.</_></rects> 8837 <tilted>0</tilted></feature> 8838 <threshold>2.7591470279730856e-004</threshold> 8839 <left_val>-0.1074284017086029</left_val> 8840 <right_val>0.2288897037506104</right_val></_></_> 8841 <_> 8842 <!-- tree 50 --> 8843 <_> 8844 <!-- root node --> 8845 <feature> 8846 <rects> 8847 <_> 8848 0 18 4 2 -1.</_> 8849 <_> 8850 0 19 4 1 2.</_></rects> 8851 <tilted>0</tilted></feature> 8852 <threshold>-6.0005177510902286e-004</threshold> 8853 <left_val>-0.2985421121120453</left_val> 8854 <right_val>0.0634797364473343</right_val></_></_> 8855 <_> 8856 <!-- tree 51 --> 8857 <_> 8858 <!-- root node --> 8859 <feature> 8860 <rects> 8861 <_> 8862 2 17 1 3 -1.</_> 8863 <_> 8864 2 18 1 1 3.</_></rects> 8865 <tilted>0</tilted></feature> 8866 <threshold>-2.5001438916660845e-004</threshold> 8867 <left_val>-0.2717896997928619</left_val> 8868 <right_val>0.0696150064468384</right_val></_></_> 8869 <_> 8870 <!-- tree 52 --> 8871 <_> 8872 <!-- root node --> 8873 <feature> 8874 <rects> 8875 <_> 8876 4 8 3 5 -1.</_> 8877 <_> 8878 5 8 1 5 3.</_></rects> 8879 <tilted>0</tilted></feature> 8880 <threshold>6.8751391954720020e-003</threshold> 8881 <left_val>-0.0571858994662762</left_val> 8882 <right_val>0.3669595122337341</right_val></_></_> 8883 <_> 8884 <!-- tree 53 --> 8885 <_> 8886 <!-- root node --> 8887 <feature> 8888 <rects> 8889 <_> 8890 2 1 6 7 -1.</_> 8891 <_> 8892 4 1 2 7 3.</_></rects> 8893 <tilted>0</tilted></feature> 8894 <threshold>0.0127619002014399</threshold> 8895 <left_val>0.0679556876420975</left_val> 8896 <right_val>-0.2853415012359619</right_val></_></_> 8897 <_> 8898 <!-- tree 54 --> 8899 <_> 8900 <!-- root node --> 8901 <feature> 8902 <rects> 8903 <_> 8904 3 6 2 8 -1.</_> 8905 <_> 8906 3 6 1 4 2.</_> 8907 <_> 8908 4 10 1 4 2.</_></rects> 8909 <tilted>0</tilted></feature> 8910 <threshold>-1.4752789866179228e-003</threshold> 8911 <left_val>0.2068066000938416</left_val> 8912 <right_val>-0.1005939021706581</right_val></_></_> 8913 <_> 8914 <!-- tree 55 --> 8915 <_> 8916 <!-- root node --> 8917 <feature> 8918 <rects> 8919 <_> 8920 4 5 11 10 -1.</_> 8921 <_> 8922 4 10 11 5 2.</_></rects> 8923 <tilted>0</tilted></feature> 8924 <threshold>0.1213881969451904</threshold> 8925 <left_val>-0.0971267968416214</left_val> 8926 <right_val>0.1978961974382401</right_val></_></_> 8927 <_> 8928 <!-- tree 56 --> 8929 <_> 8930 <!-- root node --> 8931 <feature> 8932 <rects> 8933 <_> 8934 0 13 20 2 -1.</_> 8935 <_> 8936 10 13 10 2 2.</_></rects> 8937 <tilted>0</tilted></feature> 8938 <threshold>-0.0500812791287899</threshold> 8939 <left_val>0.2841717898845673</left_val> 8940 <right_val>-0.0678799971938133</right_val></_></_> 8941 <_> 8942 <!-- tree 57 --> 8943 <_> 8944 <!-- root node --> 8945 <feature> 8946 <rects> 8947 <_> 8948 1 13 16 3 -1.</_> 8949 <_> 8950 9 13 8 3 2.</_></rects> 8951 <tilted>0</tilted></feature> 8952 <threshold>0.0314549505710602</threshold> 8953 <left_val>-0.0894686728715897</left_val> 8954 <right_val>0.2129842042922974</right_val></_></_> 8955 <_> 8956 <!-- tree 58 --> 8957 <_> 8958 <!-- root node --> 8959 <feature> 8960 <rects> 8961 <_> 8962 16 4 4 4 -1.</_> 8963 <_> 8964 16 4 2 2 2.</_> 8965 <_> 8966 18 6 2 2 2.</_></rects> 8967 <tilted>0</tilted></feature> 8968 <threshold>1.8878319533541799e-003</threshold> 8969 <left_val>-0.1165644004940987</left_val> 8970 <right_val>0.1666352003812790</right_val></_></_> 8971 <_> 8972 <!-- tree 59 --> 8973 <_> 8974 <!-- root node --> 8975 <feature> 8976 <rects> 8977 <_> 8978 16 0 4 12 -1.</_> 8979 <_> 8980 16 0 2 6 2.</_> 8981 <_> 8982 18 6 2 6 2.</_></rects> 8983 <tilted>0</tilted></feature> 8984 <threshold>-5.7211960665881634e-003</threshold> 8985 <left_val>0.2370214015245438</left_val> 8986 <right_val>-0.0907766073942184</right_val></_></_> 8987 <_> 8988 <!-- tree 60 --> 8989 <_> 8990 <!-- root node --> 8991 <feature> 8992 <rects> 8993 <_> 8994 14 15 3 1 -1.</_> 8995 <_> 8996 15 15 1 1 3.</_></rects> 8997 <tilted>0</tilted></feature> 8998 <threshold>-1.8076719425152987e-004</threshold> 8999 <left_val>0.1795192956924439</left_val> 9000 <right_val>-0.1079348027706146</right_val></_></_> 9001 <_> 9002 <!-- tree 61 --> 9003 <_> 9004 <!-- root node --> 9005 <feature> 9006 <rects> 9007 <_> 9008 3 4 12 10 -1.</_> 9009 <_> 9010 3 9 12 5 2.</_></rects> 9011 <tilted>0</tilted></feature> 9012 <threshold>-0.1976184993982315</threshold> 9013 <left_val>0.4567429125308991</left_val> 9014 <right_val>-0.0404801592230797</right_val></_></_> 9015 <_> 9016 <!-- tree 62 --> 9017 <_> 9018 <!-- root node --> 9019 <feature> 9020 <rects> 9021 <_> 9022 9 18 2 2 -1.</_> 9023 <_> 9024 9 18 1 1 2.</_> 9025 <_> 9026 10 19 1 1 2.</_></rects> 9027 <tilted>0</tilted></feature> 9028 <threshold>-2.3846809926908463e-004</threshold> 9029 <left_val>-0.2373300939798355</left_val> 9030 <right_val>0.0759221613407135</right_val></_></_> 9031 <_> 9032 <!-- tree 63 --> 9033 <_> 9034 <!-- root node --> 9035 <feature> 9036 <rects> 9037 <_> 9038 9 18 2 2 -1.</_> 9039 <_> 9040 9 18 1 1 2.</_> 9041 <_> 9042 10 19 1 1 2.</_></rects> 9043 <tilted>0</tilted></feature> 9044 <threshold>2.1540730085689574e-004</threshold> 9045 <left_val>0.0816880166530609</left_val> 9046 <right_val>-0.2868503034114838</right_val></_></_> 9047 <_> 9048 <!-- tree 64 --> 9049 <_> 9050 <!-- root node --> 9051 <feature> 9052 <rects> 9053 <_> 9054 13 4 2 14 -1.</_> 9055 <_> 9056 13 4 1 7 2.</_> 9057 <_> 9058 14 11 1 7 2.</_></rects> 9059 <tilted>0</tilted></feature> 9060 <threshold>0.0101630901917815</threshold> 9061 <left_val>-0.0412500202655792</left_val> 9062 <right_val>0.4803834855556488</right_val></_></_> 9063 <_> 9064 <!-- tree 65 --> 9065 <_> 9066 <!-- root node --> 9067 <feature> 9068 <rects> 9069 <_> 9070 4 2 6 4 -1.</_> 9071 <_> 9072 7 2 3 4 2.</_></rects> 9073 <tilted>0</tilted></feature> 9074 <threshold>-7.2184870950877666e-003</threshold> 9075 <left_val>0.1745858043432236</left_val> 9076 <right_val>-0.1014650017023087</right_val></_></_> 9077 <_> 9078 <!-- tree 66 --> 9079 <_> 9080 <!-- root node --> 9081 <feature> 9082 <rects> 9083 <_> 9084 0 0 18 20 -1.</_> 9085 <_> 9086 0 0 9 10 2.</_> 9087 <_> 9088 9 10 9 10 2.</_></rects> 9089 <tilted>0</tilted></feature> 9090 <threshold>0.2426317036151886</threshold> 9091 <left_val>0.0534264817833900</left_val> 9092 <right_val>-0.3231852948665619</right_val></_></_> 9093 <_> 9094 <!-- tree 67 --> 9095 <_> 9096 <!-- root node --> 9097 <feature> 9098 <rects> 9099 <_> 9100 15 11 1 2 -1.</_> 9101 <_> 9102 15 12 1 1 2.</_></rects> 9103 <tilted>0</tilted></feature> 9104 <threshold>6.9304101634770632e-004</threshold> 9105 <left_val>-0.1149917989969254</left_val> 9106 <right_val>0.1479393988847733</right_val></_></_> 9107 <_> 9108 <!-- tree 68 --> 9109 <_> 9110 <!-- root node --> 9111 <feature> 9112 <rects> 9113 <_> 9114 16 10 2 4 -1.</_> 9115 <_> 9116 16 10 1 2 2.</_> 9117 <_> 9118 17 12 1 2 2.</_></rects> 9119 <tilted>0</tilted></feature> 9120 <threshold>3.5475199110805988e-003</threshold> 9121 <left_val>-0.0394249781966209</left_val> 9122 <right_val>0.5312618017196655</right_val></_></_> 9123 <_> 9124 <!-- tree 69 --> 9125 <_> 9126 <!-- root node --> 9127 <feature> 9128 <rects> 9129 <_> 9130 18 17 2 2 -1.</_> 9131 <_> 9132 18 17 1 1 2.</_> 9133 <_> 9134 19 18 1 1 2.</_></rects> 9135 <tilted>0</tilted></feature> 9136 <threshold>2.1403690334409475e-004</threshold> 9137 <left_val>0.0697538331151009</left_val> 9138 <right_val>-0.2731958031654358</right_val></_></_> 9139 <_> 9140 <!-- tree 70 --> 9141 <_> 9142 <!-- root node --> 9143 <feature> 9144 <rects> 9145 <_> 9146 9 17 1 2 -1.</_> 9147 <_> 9148 9 18 1 1 2.</_></rects> 9149 <tilted>0</tilted></feature> 9150 <threshold>-5.7119462871924043e-004</threshold> 9151 <left_val>0.3436990082263947</left_val> 9152 <right_val>-0.0576990097761154</right_val></_></_> 9153 <_> 9154 <!-- tree 71 --> 9155 <_> 9156 <!-- root node --> 9157 <feature> 9158 <rects> 9159 <_> 9160 8 4 9 6 -1.</_> 9161 <_> 9162 11 4 3 6 3.</_></rects> 9163 <tilted>0</tilted></feature> 9164 <threshold>-6.6290069371461868e-003</threshold> 9165 <left_val>0.1175848990678787</left_val> 9166 <right_val>-0.1502013951539993</right_val></_></_></trees> 9167 <stage_threshold>-1.1188739538192749</stage_threshold> 9168 <parent>16</parent> 9169 <next>-1</next></_> 9170 <_> 9171 <!-- stage 18 --> 9172 <trees> 9173 <_> 9174 <!-- tree 0 --> 9175 <_> 9176 <!-- root node --> 9177 <feature> 9178 <rects> 9179 <_> 9180 6 9 9 10 -1.</_> 9181 <_> 9182 9 9 3 10 3.</_></rects> 9183 <tilted>0</tilted></feature> 9184 <threshold>-0.0265134498476982</threshold> 9185 <left_val>0.2056864053010941</left_val> 9186 <right_val>-0.2647390067577362</right_val></_></_> 9187 <_> 9188 <!-- tree 1 --> 9189 <_> 9190 <!-- root node --> 9191 <feature> 9192 <rects> 9193 <_> 9194 5 0 5 4 -1.</_> 9195 <_> 9196 5 2 5 2 2.</_></rects> 9197 <tilted>0</tilted></feature> 9198 <threshold>9.7727458924055099e-003</threshold> 9199 <left_val>-0.1119284033775330</left_val> 9200 <right_val>0.3257054984569550</right_val></_></_> 9201 <_> 9202 <!-- tree 2 --> 9203 <_> 9204 <!-- root node --> 9205 <feature> 9206 <rects> 9207 <_> 9208 5 7 11 4 -1.</_> 9209 <_> 9210 5 9 11 2 2.</_></rects> 9211 <tilted>0</tilted></feature> 9212 <threshold>0.0322903506457806</threshold> 9213 <left_val>-0.0985747575759888</left_val> 9214 <right_val>0.3177917003631592</right_val></_></_> 9215 <_> 9216 <!-- tree 3 --> 9217 <_> 9218 <!-- root node --> 9219 <feature> 9220 <rects> 9221 <_> 9222 2 4 2 14 -1.</_> 9223 <_> 9224 3 4 1 14 2.</_></rects> 9225 <tilted>0</tilted></feature> 9226 <threshold>-2.8103240765631199e-003</threshold> 9227 <left_val>0.1521389931440353</left_val> 9228 <right_val>-0.1968640983104706</right_val></_></_> 9229 <_> 9230 <!-- tree 4 --> 9231 <_> 9232 <!-- root node --> 9233 <feature> 9234 <rects> 9235 <_> 9236 8 6 3 5 -1.</_> 9237 <_> 9238 9 6 1 5 3.</_></rects> 9239 <tilted>0</tilted></feature> 9240 <threshold>-0.0109914299100637</threshold> 9241 <left_val>0.5140765905380249</left_val> 9242 <right_val>-0.0437072105705738</right_val></_></_> 9243 <_> 9244 <!-- tree 5 --> 9245 <_> 9246 <!-- root node --> 9247 <feature> 9248 <rects> 9249 <_> 9250 8 4 3 9 -1.</_> 9251 <_> 9252 9 4 1 9 3.</_></rects> 9253 <tilted>0</tilted></feature> 9254 <threshold>6.3133831135928631e-003</threshold> 9255 <left_val>-0.0927810221910477</left_val> 9256 <right_val>0.3470247089862824</right_val></_></_> 9257 <_> 9258 <!-- tree 6 --> 9259 <_> 9260 <!-- root node --> 9261 <feature> 9262 <rects> 9263 <_> 9264 0 8 20 6 -1.</_> 9265 <_> 9266 0 10 20 2 3.</_></rects> 9267 <tilted>0</tilted></feature> 9268 <threshold>0.0871059820055962</threshold> 9269 <left_val>0.0300536490976810</left_val> 9270 <right_val>-0.8281481862068176</right_val></_></_> 9271 <_> 9272 <!-- tree 7 --> 9273 <_> 9274 <!-- root node --> 9275 <feature> 9276 <rects> 9277 <_> 9278 14 16 6 1 -1.</_> 9279 <_> 9280 17 16 3 1 2.</_></rects> 9281 <tilted>0</tilted></feature> 9282 <threshold>1.1799359926953912e-003</threshold> 9283 <left_val>-0.1292842030525208</left_val> 9284 <right_val>0.2064612060785294</right_val></_></_> 9285 <_> 9286 <!-- tree 8 --> 9287 <_> 9288 <!-- root node --> 9289 <feature> 9290 <rects> 9291 <_> 9292 17 18 2 2 -1.</_> 9293 <_> 9294 17 19 2 1 2.</_></rects> 9295 <tilted>0</tilted></feature> 9296 <threshold>-9.3056890182197094e-004</threshold> 9297 <left_val>-0.5002143979072571</left_val> 9298 <right_val>0.0936669930815697</right_val></_></_> 9299 <_> 9300 <!-- tree 9 --> 9301 <_> 9302 <!-- root node --> 9303 <feature> 9304 <rects> 9305 <_> 9306 8 17 6 3 -1.</_> 9307 <_> 9308 10 17 2 3 3.</_></rects> 9309 <tilted>0</tilted></feature> 9310 <threshold>-0.0136871701106429</threshold> 9311 <left_val>-0.7935814857482910</left_val> 9312 <right_val>-6.6733639687299728e-003</right_val></_></_> 9313 <_> 9314 <!-- tree 10 --> 9315 <_> 9316 <!-- root node --> 9317 <feature> 9318 <rects> 9319 <_> 9320 4 1 9 15 -1.</_> 9321 <_> 9322 7 1 3 15 3.</_></rects> 9323 <tilted>0</tilted></feature> 9324 <threshold>-0.0759174525737762</threshold> 9325 <left_val>0.3046964108943939</left_val> 9326 <right_val>-0.0796558931469917</right_val></_></_> 9327 <_> 9328 <!-- tree 11 --> 9329 <_> 9330 <!-- root node --> 9331 <feature> 9332 <rects> 9333 <_> 9334 11 5 3 12 -1.</_> 9335 <_> 9336 12 5 1 12 3.</_></rects> 9337 <tilted>0</tilted></feature> 9338 <threshold>-2.8559709899127483e-003</threshold> 9339 <left_val>0.2096146047115326</left_val> 9340 <right_val>-0.1273255050182343</right_val></_></_> 9341 <_> 9342 <!-- tree 12 --> 9343 <_> 9344 <!-- root node --> 9345 <feature> 9346 <rects> 9347 <_> 9348 0 15 4 3 -1.</_> 9349 <_> 9350 0 16 4 1 3.</_></rects> 9351 <tilted>0</tilted></feature> 9352 <threshold>-4.0231510065495968e-003</threshold> 9353 <left_val>-0.6581727862358093</left_val> 9354 <right_val>0.0506836399435997</right_val></_></_> 9355 <_> 9356 <!-- tree 13 --> 9357 <_> 9358 <!-- root node --> 9359 <feature> 9360 <rects> 9361 <_> 9362 0 0 15 1 -1.</_> 9363 <_> 9364 5 0 5 1 3.</_></rects> 9365 <tilted>0</tilted></feature> 9366 <threshold>0.0175580400973558</threshold> 9367 <left_val>-0.0853826925158501</left_val> 9368 <right_val>0.3617455959320068</right_val></_></_> 9369 <_> 9370 <!-- tree 14 --> 9371 <_> 9372 <!-- root node --> 9373 <feature> 9374 <rects> 9375 <_> 9376 6 0 6 4 -1.</_> 9377 <_> 9378 8 0 2 4 3.</_></rects> 9379 <tilted>0</tilted></feature> 9380 <threshold>0.0219882391393185</threshold> 9381 <left_val>0.0629436969757080</left_val> 9382 <right_val>-0.7089633941650391</right_val></_></_> 9383 <_> 9384 <!-- tree 15 --> 9385 <_> 9386 <!-- root node --> 9387 <feature> 9388 <rects> 9389 <_> 9390 2 0 9 3 -1.</_> 9391 <_> 9392 5 0 3 3 3.</_></rects> 9393 <tilted>0</tilted></feature> 9394 <threshold>-2.8599589131772518e-003</threshold> 9395 <left_val>0.1468378007411957</left_val> 9396 <right_val>-0.1646597981452942</right_val></_></_> 9397 <_> 9398 <!-- tree 16 --> 9399 <_> 9400 <!-- root node --> 9401 <feature> 9402 <rects> 9403 <_> 9404 13 6 3 7 -1.</_> 9405 <_> 9406 14 6 1 7 3.</_></rects> 9407 <tilted>0</tilted></feature> 9408 <threshold>-0.0100308498367667</threshold> 9409 <left_val>0.4957993924617767</left_val> 9410 <right_val>-0.0271883402019739</right_val></_></_> 9411 <_> 9412 <!-- tree 17 --> 9413 <_> 9414 <!-- root node --> 9415 <feature> 9416 <rects> 9417 <_> 9418 7 6 4 2 -1.</_> 9419 <_> 9420 7 7 4 1 2.</_></rects> 9421 <tilted>0</tilted></feature> 9422 <threshold>-6.9560329429805279e-003</threshold> 9423 <left_val>0.2797777950763702</left_val> 9424 <right_val>-0.0779533311724663</right_val></_></_> 9425 <_> 9426 <!-- tree 18 --> 9427 <_> 9428 <!-- root node --> 9429 <feature> 9430 <rects> 9431 <_> 9432 6 18 6 1 -1.</_> 9433 <_> 9434 8 18 2 1 3.</_></rects> 9435 <tilted>0</tilted></feature> 9436 <threshold>-3.8356808945536613e-003</threshold> 9437 <left_val>-0.5816398262977600</left_val> 9438 <right_val>0.0357399396598339</right_val></_></_> 9439 <_> 9440 <!-- tree 19 --> 9441 <_> 9442 <!-- root node --> 9443 <feature> 9444 <rects> 9445 <_> 9446 18 6 2 2 -1.</_> 9447 <_> 9448 18 7 2 1 2.</_></rects> 9449 <tilted>0</tilted></feature> 9450 <threshold>-3.2647319603711367e-003</threshold> 9451 <left_val>-0.4994508028030396</left_val> 9452 <right_val>0.0469864904880524</right_val></_></_> 9453 <_> 9454 <!-- tree 20 --> 9455 <_> 9456 <!-- root node --> 9457 <feature> 9458 <rects> 9459 <_> 9460 6 4 7 3 -1.</_> 9461 <_> 9462 6 5 7 1 3.</_></rects> 9463 <tilted>0</tilted></feature> 9464 <threshold>-7.8412350267171860e-003</threshold> 9465 <left_val>0.3453283011913300</left_val> 9466 <right_val>-0.0688104033470154</right_val></_></_> 9467 <_> 9468 <!-- tree 21 --> 9469 <_> 9470 <!-- root node --> 9471 <feature> 9472 <rects> 9473 <_> 9474 12 7 3 1 -1.</_> 9475 <_> 9476 13 7 1 1 3.</_></rects> 9477 <tilted>0</tilted></feature> 9478 <threshold>-8.1718113506212831e-005</threshold> 9479 <left_val>0.1504171043634415</left_val> 9480 <right_val>-0.1414667963981628</right_val></_></_> 9481 <_> 9482 <!-- tree 22 --> 9483 <_> 9484 <!-- root node --> 9485 <feature> 9486 <rects> 9487 <_> 9488 15 1 2 10 -1.</_> 9489 <_> 9490 15 1 1 5 2.</_> 9491 <_> 9492 16 6 1 5 2.</_></rects> 9493 <tilted>0</tilted></feature> 9494 <threshold>-3.2448628917336464e-003</threshold> 9495 <left_val>0.2272451072931290</left_val> 9496 <right_val>-0.0928602069616318</right_val></_></_> 9497 <_> 9498 <!-- tree 23 --> 9499 <_> 9500 <!-- root node --> 9501 <feature> 9502 <rects> 9503 <_> 9504 0 18 2 2 -1.</_> 9505 <_> 9506 0 19 2 1 2.</_></rects> 9507 <tilted>0</tilted></feature> 9508 <threshold>-7.8561151167377830e-004</threshold> 9509 <left_val>-0.4431901872158051</left_val> 9510 <right_val>0.0578124411404133</right_val></_></_> 9511 <_> 9512 <!-- tree 24 --> 9513 <_> 9514 <!-- root node --> 9515 <feature> 9516 <rects> 9517 <_> 9518 19 4 1 8 -1.</_> 9519 <_> 9520 19 8 1 4 2.</_></rects> 9521 <tilted>0</tilted></feature> 9522 <threshold>-6.2474247533828020e-004</threshold> 9523 <left_val>0.1395238935947418</left_val> 9524 <right_val>-0.1466871947050095</right_val></_></_> 9525 <_> 9526 <!-- tree 25 --> 9527 <_> 9528 <!-- root node --> 9529 <feature> 9530 <rects> 9531 <_> 9532 1 17 1 3 -1.</_> 9533 <_> 9534 1 18 1 1 3.</_></rects> 9535 <tilted>0</tilted></feature> 9536 <threshold>-3.2942948746494949e-004</threshold> 9537 <left_val>-0.2990157008171082</left_val> 9538 <right_val>0.0760667398571968</right_val></_></_> 9539 <_> 9540 <!-- tree 26 --> 9541 <_> 9542 <!-- root node --> 9543 <feature> 9544 <rects> 9545 <_> 9546 0 15 6 4 -1.</_> 9547 <_> 9548 0 15 3 2 2.</_> 9549 <_> 9550 3 17 3 2 2.</_></rects> 9551 <tilted>0</tilted></feature> 9552 <threshold>1.2605739757418633e-003</threshold> 9553 <left_val>-0.1612560003995895</left_val> 9554 <right_val>0.1395380049943924</right_val></_></_> 9555 <_> 9556 <!-- tree 27 --> 9557 <_> 9558 <!-- root node --> 9559 <feature> 9560 <rects> 9561 <_> 9562 19 0 1 18 -1.</_> 9563 <_> 9564 19 6 1 6 3.</_></rects> 9565 <tilted>0</tilted></feature> 9566 <threshold>-0.0516670197248459</threshold> 9567 <left_val>-0.5314283967018127</left_val> 9568 <right_val>0.0407195203006268</right_val></_></_> 9569 <_> 9570 <!-- tree 28 --> 9571 <_> 9572 <!-- root node --> 9573 <feature> 9574 <rects> 9575 <_> 9576 10 2 6 2 -1.</_> 9577 <_> 9578 12 2 2 2 3.</_></rects> 9579 <tilted>0</tilted></feature> 9580 <threshold>-0.0152856195345521</threshold> 9581 <left_val>-0.7820637822151184</left_val> 9582 <right_val>0.0271837692707777</right_val></_></_> 9583 <_> 9584 <!-- tree 29 --> 9585 <_> 9586 <!-- root node --> 9587 <feature> 9588 <rects> 9589 <_> 9590 2 8 12 2 -1.</_> 9591 <_> 9592 6 8 4 2 3.</_></rects> 9593 <tilted>0</tilted></feature> 9594 <threshold>0.0690298229455948</threshold> 9595 <left_val>-0.0364270210266113</left_val> 9596 <right_val>0.7110251784324646</right_val></_></_> 9597 <_> 9598 <!-- tree 30 --> 9599 <_> 9600 <!-- root node --> 9601 <feature> 9602 <rects> 9603 <_> 9604 16 0 4 1 -1.</_> 9605 <_> 9606 18 0 2 1 2.</_></rects> 9607 <tilted>0</tilted></feature> 9608 <threshold>1.4522749697789550e-003</threshold> 9609 <left_val>-0.0968905165791512</left_val> 9610 <right_val>0.2166842073202133</right_val></_></_> 9611 <_> 9612 <!-- tree 31 --> 9613 <_> 9614 <!-- root node --> 9615 <feature> 9616 <rects> 9617 <_> 9618 8 4 2 6 -1.</_> 9619 <_> 9620 8 7 2 3 2.</_></rects> 9621 <tilted>0</tilted></feature> 9622 <threshold>-2.4765590205788612e-003</threshold> 9623 <left_val>0.1164531037211418</left_val> 9624 <right_val>-0.1822797954082489</right_val></_></_> 9625 <_> 9626 <!-- tree 32 --> 9627 <_> 9628 <!-- root node --> 9629 <feature> 9630 <rects> 9631 <_> 9632 14 5 2 10 -1.</_> 9633 <_> 9634 15 5 1 10 2.</_></rects> 9635 <tilted>0</tilted></feature> 9636 <threshold>-1.5134819550439715e-003</threshold> 9637 <left_val>0.1786397993564606</left_val> 9638 <right_val>-0.1221496984362602</right_val></_></_> 9639 <_> 9640 <!-- tree 33 --> 9641 <_> 9642 <!-- root node --> 9643 <feature> 9644 <rects> 9645 <_> 9646 13 4 2 2 -1.</_> 9647 <_> 9648 13 5 2 1 2.</_></rects> 9649 <tilted>0</tilted></feature> 9650 <threshold>-1.5099470037966967e-003</threshold> 9651 <left_val>0.1808623969554901</left_val> 9652 <right_val>-0.1144606992602348</right_val></_></_> 9653 <_> 9654 <!-- tree 34 --> 9655 <_> 9656 <!-- root node --> 9657 <feature> 9658 <rects> 9659 <_> 9660 11 1 3 6 -1.</_> 9661 <_> 9662 11 3 3 2 3.</_></rects> 9663 <tilted>0</tilted></feature> 9664 <threshold>-6.7054620012640953e-003</threshold> 9665 <left_val>0.2510659992694855</left_val> 9666 <right_val>-0.0918714627623558</right_val></_></_> 9667 <_> 9668 <!-- tree 35 --> 9669 <_> 9670 <!-- root node --> 9671 <feature> 9672 <rects> 9673 <_> 9674 6 9 12 2 -1.</_> 9675 <_> 9676 10 9 4 2 3.</_></rects> 9677 <tilted>0</tilted></feature> 9678 <threshold>-0.0140752000734210</threshold> 9679 <left_val>0.1370750963687897</left_val> 9680 <right_val>-0.1733350008726120</right_val></_></_> 9681 <_> 9682 <!-- tree 36 --> 9683 <_> 9684 <!-- root node --> 9685 <feature> 9686 <rects> 9687 <_> 9688 9 16 4 2 -1.</_> 9689 <_> 9690 9 17 4 1 2.</_></rects> 9691 <tilted>0</tilted></feature> 9692 <threshold>-2.2400720044970512e-003</threshold> 9693 <left_val>0.4009298086166382</left_val> 9694 <right_val>-0.0475768782198429</right_val></_></_> 9695 <_> 9696 <!-- tree 37 --> 9697 <_> 9698 <!-- root node --> 9699 <feature> 9700 <rects> 9701 <_> 9702 5 14 15 4 -1.</_> 9703 <_> 9704 5 16 15 2 2.</_></rects> 9705 <tilted>0</tilted></feature> 9706 <threshold>0.0197823699563742</threshold> 9707 <left_val>-0.1904035061597824</left_val> 9708 <right_val>0.1492341011762619</right_val></_></_> 9709 <_> 9710 <!-- tree 38 --> 9711 <_> 9712 <!-- root node --> 9713 <feature> 9714 <rects> 9715 <_> 9716 18 16 2 2 -1.</_> 9717 <_> 9718 18 17 2 1 2.</_></rects> 9719 <tilted>0</tilted></feature> 9720 <threshold>2.6002870872616768e-003</threshold> 9721 <left_val>0.0469717681407928</left_val> 9722 <right_val>-0.4330765902996063</right_val></_></_> 9723 <_> 9724 <!-- tree 39 --> 9725 <_> 9726 <!-- root node --> 9727 <feature> 9728 <rects> 9729 <_> 9730 16 18 2 2 -1.</_> 9731 <_> 9732 16 18 1 1 2.</_> 9733 <_> 9734 17 19 1 1 2.</_></rects> 9735 <tilted>0</tilted></feature> 9736 <threshold>-5.3445628145709634e-004</threshold> 9737 <left_val>-0.4374423027038574</left_val> 9738 <right_val>0.0415201894938946</right_val></_></_> 9739 <_> 9740 <!-- tree 40 --> 9741 <_> 9742 <!-- root node --> 9743 <feature> 9744 <rects> 9745 <_> 9746 6 4 3 8 -1.</_> 9747 <_> 9748 7 4 1 8 3.</_></rects> 9749 <tilted>0</tilted></feature> 9750 <threshold>-0.0174665097147226</threshold> 9751 <left_val>0.6581817269325256</left_val> 9752 <right_val>-0.0344474911689758</right_val></_></_> 9753 <_> 9754 <!-- tree 41 --> 9755 <_> 9756 <!-- root node --> 9757 <feature> 9758 <rects> 9759 <_> 9760 5 9 3 1 -1.</_> 9761 <_> 9762 6 9 1 1 3.</_></rects> 9763 <tilted>0</tilted></feature> 9764 <threshold>-2.0425589755177498e-003</threshold> 9765 <left_val>0.3965792953968048</left_val> 9766 <right_val>-0.0440524294972420</right_val></_></_> 9767 <_> 9768 <!-- tree 42 --> 9769 <_> 9770 <!-- root node --> 9771 <feature> 9772 <rects> 9773 <_> 9774 0 8 1 6 -1.</_> 9775 <_> 9776 0 10 1 2 3.</_></rects> 9777 <tilted>0</tilted></feature> 9778 <threshold>2.6661779265850782e-003</threshold> 9779 <left_val>0.0587709583342075</left_val> 9780 <right_val>-0.3280636966228485</right_val></_></_> 9781 <_> 9782 <!-- tree 43 --> 9783 <_> 9784 <!-- root node --> 9785 <feature> 9786 <rects> 9787 <_> 9788 11 2 9 6 -1.</_> 9789 <_> 9790 14 2 3 6 3.</_></rects> 9791 <tilted>0</tilted></feature> 9792 <threshold>-0.0559823699295521</threshold> 9793 <left_val>-0.5173547267913818</left_val> 9794 <right_val>0.0357918404042721</right_val></_></_> 9795 <_> 9796 <!-- tree 44 --> 9797 <_> 9798 <!-- root node --> 9799 <feature> 9800 <rects> 9801 <_> 9802 12 2 6 4 -1.</_> 9803 <_> 9804 14 2 2 4 3.</_></rects> 9805 <tilted>0</tilted></feature> 9806 <threshold>-1.5066330088302493e-003</threshold> 9807 <left_val>0.1512386947870255</left_val> 9808 <right_val>-0.1252018064260483</right_val></_></_> 9809 <_> 9810 <!-- tree 45 --> 9811 <_> 9812 <!-- root node --> 9813 <feature> 9814 <rects> 9815 <_> 9816 1 7 2 4 -1.</_> 9817 <_> 9818 1 9 2 2 2.</_></rects> 9819 <tilted>0</tilted></feature> 9820 <threshold>-0.0114723695442081</threshold> 9821 <left_val>-0.6293053030967712</left_val> 9822 <right_val>0.0347043313086033</right_val></_></_> 9823 <_> 9824 <!-- tree 46 --> 9825 <_> 9826 <!-- root node --> 9827 <feature> 9828 <rects> 9829 <_> 9830 13 1 6 4 -1.</_> 9831 <_> 9832 13 3 6 2 2.</_></rects> 9833 <tilted>0</tilted></feature> 9834 <threshold>0.0234096292406321</threshold> 9835 <left_val>-0.0580633506178856</left_val> 9836 <right_val>0.3866822123527527</right_val></_></_> 9837 <_> 9838 <!-- tree 47 --> 9839 <_> 9840 <!-- root node --> 9841 <feature> 9842 <rects> 9843 <_> 9844 4 10 2 10 -1.</_> 9845 <_> 9846 4 10 1 5 2.</_> 9847 <_> 9848 5 15 1 5 2.</_></rects> 9849 <tilted>0</tilted></feature> 9850 <threshold>-2.3243729956448078e-003</threshold> 9851 <left_val>0.1875409930944443</left_val> 9852 <right_val>-0.0983946695923805</right_val></_></_> 9853 <_> 9854 <!-- tree 48 --> 9855 <_> 9856 <!-- root node --> 9857 <feature> 9858 <rects> 9859 <_> 9860 2 16 9 3 -1.</_> 9861 <_> 9862 5 16 3 3 3.</_></rects> 9863 <tilted>0</tilted></feature> 9864 <threshold>-0.0290392991155386</threshold> 9865 <left_val>-0.5448690056800842</left_val> 9866 <right_val>0.0409263409674168</right_val></_></_> 9867 <_> 9868 <!-- tree 49 --> 9869 <_> 9870 <!-- root node --> 9871 <feature> 9872 <rects> 9873 <_> 9874 1 2 3 9 -1.</_> 9875 <_> 9876 2 2 1 9 3.</_></rects> 9877 <tilted>0</tilted></feature> 9878 <threshold>-0.0144746499136090</threshold> 9879 <left_val>-0.6724839210510254</left_val> 9880 <right_val>0.0231288503855467</right_val></_></_> 9881 <_> 9882 <!-- tree 50 --> 9883 <_> 9884 <!-- root node --> 9885 <feature> 9886 <rects> 9887 <_> 9888 19 7 1 4 -1.</_> 9889 <_> 9890 19 9 1 2 2.</_></rects> 9891 <tilted>0</tilted></feature> 9892 <threshold>-5.2086091600358486e-003</threshold> 9893 <left_val>-0.4327144026756287</left_val> 9894 <right_val>0.0437806509435177</right_val></_></_> 9895 <_> 9896 <!-- tree 51 --> 9897 <_> 9898 <!-- root node --> 9899 <feature> 9900 <rects> 9901 <_> 9902 14 11 6 8 -1.</_> 9903 <_> 9904 14 11 3 4 2.</_> 9905 <_> 9906 17 15 3 4 2.</_></rects> 9907 <tilted>0</tilted></feature> 9908 <threshold>4.9382899887859821e-003</threshold> 9909 <left_val>-0.1087862029671669</left_val> 9910 <right_val>0.1934258937835693</right_val></_></_> 9911 <_> 9912 <!-- tree 52 --> 9913 <_> 9914 <!-- root node --> 9915 <feature> 9916 <rects> 9917 <_> 9918 15 12 4 6 -1.</_> 9919 <_> 9920 15 12 2 3 2.</_> 9921 <_> 9922 17 15 2 3 2.</_></rects> 9923 <tilted>0</tilted></feature> 9924 <threshold>-4.3193930760025978e-003</threshold> 9925 <left_val>0.2408093065023422</left_val> 9926 <right_val>-0.1038080006837845</right_val></_></_> 9927 <_> 9928 <!-- tree 53 --> 9929 <_> 9930 <!-- root node --> 9931 <feature> 9932 <rects> 9933 <_> 9934 16 15 2 2 -1.</_> 9935 <_> 9936 16 15 1 1 2.</_> 9937 <_> 9938 17 16 1 1 2.</_></rects> 9939 <tilted>0</tilted></feature> 9940 <threshold>2.3705669445917010e-004</threshold> 9941 <left_val>-0.0873490720987320</left_val> 9942 <right_val>0.2046623975038528</right_val></_></_> 9943 <_> 9944 <!-- tree 54 --> 9945 <_> 9946 <!-- root node --> 9947 <feature> 9948 <rects> 9949 <_> 9950 17 16 2 2 -1.</_> 9951 <_> 9952 17 16 1 1 2.</_> 9953 <_> 9954 18 17 1 1 2.</_></rects> 9955 <tilted>0</tilted></feature> 9956 <threshold>4.7858079778961837e-004</threshold> 9957 <left_val>0.0456245802342892</left_val> 9958 <right_val>-0.3885467052459717</right_val></_></_> 9959 <_> 9960 <!-- tree 55 --> 9961 <_> 9962 <!-- root node --> 9963 <feature> 9964 <rects> 9965 <_> 9966 17 16 2 2 -1.</_> 9967 <_> 9968 17 16 1 1 2.</_> 9969 <_> 9970 18 17 1 1 2.</_></rects> 9971 <tilted>0</tilted></feature> 9972 <threshold>-8.5342838428914547e-004</threshold> 9973 <left_val>-0.5507794022560120</left_val> 9974 <right_val>0.0358258895576000</right_val></_></_> 9975 <_> 9976 <!-- tree 56 --> 9977 <_> 9978 <!-- root node --> 9979 <feature> 9980 <rects> 9981 <_> 9982 2 3 2 2 -1.</_> 9983 <_> 9984 2 3 1 1 2.</_> 9985 <_> 9986 3 4 1 1 2.</_></rects> 9987 <tilted>0</tilted></feature> 9988 <threshold>5.4772121075075120e-005</threshold> 9989 <left_val>-0.1122523993253708</left_val> 9990 <right_val>0.1750351935625076</right_val></_></_> 9991 <_> 9992 <!-- tree 57 --> 9993 <_> 9994 <!-- root node --> 9995 <feature> 9996 <rects> 9997 <_> 9998 10 10 3 3 -1.</_> 9999 <_> 10000 11 10 1 3 3.</_></rects> 10001 <tilted>0</tilted></feature> 10002 <threshold>-3.8445889949798584e-003</threshold> 10003 <left_val>0.2452670037746429</left_val> 10004 <right_val>-0.0811325684189796</right_val></_></_> 10005 <_> 10006 <!-- tree 58 --> 10007 <_> 10008 <!-- root node --> 10009 <feature> 10010 <rects> 10011 <_> 10012 5 9 7 8 -1.</_> 10013 <_> 10014 5 13 7 4 2.</_></rects> 10015 <tilted>0</tilted></feature> 10016 <threshold>-0.0401284582912922</threshold> 10017 <left_val>-0.6312270760536194</left_val> 10018 <right_val>0.0269726701080799</right_val></_></_> 10019 <_> 10020 <!-- tree 59 --> 10021 <_> 10022 <!-- root node --> 10023 <feature> 10024 <rects> 10025 <_> 10026 7 16 2 2 -1.</_> 10027 <_> 10028 7 16 1 1 2.</_> 10029 <_> 10030 8 17 1 1 2.</_></rects> 10031 <tilted>0</tilted></feature> 10032 <threshold>-1.7886360001284629e-004</threshold> 10033 <left_val>0.1985509991645813</left_val> 10034 <right_val>-0.1033368036150932</right_val></_></_> 10035 <_> 10036 <!-- tree 60 --> 10037 <_> 10038 <!-- root node --> 10039 <feature> 10040 <rects> 10041 <_> 10042 7 16 2 2 -1.</_> 10043 <_> 10044 7 16 1 1 2.</_> 10045 <_> 10046 8 17 1 1 2.</_></rects> 10047 <tilted>0</tilted></feature> 10048 <threshold>1.7668239888735116e-004</threshold> 10049 <left_val>-0.0913590118288994</left_val> 10050 <right_val>0.1984872072935104</right_val></_></_> 10051 <_> 10052 <!-- tree 61 --> 10053 <_> 10054 <!-- root node --> 10055 <feature> 10056 <rects> 10057 <_> 10058 9 8 10 3 -1.</_> 10059 <_> 10060 14 8 5 3 2.</_></rects> 10061 <tilted>0</tilted></feature> 10062 <threshold>0.0727633833885193</threshold> 10063 <left_val>0.0500755794346333</left_val> 10064 <right_val>-0.3385263085365295</right_val></_></_> 10065 <_> 10066 <!-- tree 62 --> 10067 <_> 10068 <!-- root node --> 10069 <feature> 10070 <rects> 10071 <_> 10072 6 7 4 8 -1.</_> 10073 <_> 10074 6 7 2 4 2.</_> 10075 <_> 10076 8 11 2 4 2.</_></rects> 10077 <tilted>0</tilted></feature> 10078 <threshold>0.0101816300302744</threshold> 10079 <left_val>-0.0932299792766571</left_val> 10080 <right_val>0.2005959004163742</right_val></_></_> 10081 <_> 10082 <!-- tree 63 --> 10083 <_> 10084 <!-- root node --> 10085 <feature> 10086 <rects> 10087 <_> 10088 1 6 4 3 -1.</_> 10089 <_> 10090 1 7 4 1 3.</_></rects> 10091 <tilted>0</tilted></feature> 10092 <threshold>2.4409969337284565e-003</threshold> 10093 <left_val>0.0646366328001022</left_val> 10094 <right_val>-0.2692174017429352</right_val></_></_> 10095 <_> 10096 <!-- tree 64 --> 10097 <_> 10098 <!-- root node --> 10099 <feature> 10100 <rects> 10101 <_> 10102 6 10 6 10 -1.</_> 10103 <_> 10104 8 10 2 10 3.</_></rects> 10105 <tilted>0</tilted></feature> 10106 <threshold>-3.6227488890290260e-003</threshold> 10107 <left_val>0.1316989064216614</left_val> 10108 <right_val>-0.1251484006643295</right_val></_></_> 10109 <_> 10110 <!-- tree 65 --> 10111 <_> 10112 <!-- root node --> 10113 <feature> 10114 <rects> 10115 <_> 10116 4 6 3 6 -1.</_> 10117 <_> 10118 5 6 1 6 3.</_></rects> 10119 <tilted>0</tilted></feature> 10120 <threshold>-1.3635610230267048e-003</threshold> 10121 <left_val>0.1635046005249023</left_val> 10122 <right_val>-0.1066593974828720</right_val></_></_></trees> 10123 <stage_threshold>-1.0888810157775879</stage_threshold> 10124 <parent>17</parent> 10125 <next>-1</next></_> 10126 <_> 10127 <!-- stage 19 --> 10128 <trees> 10129 <_> 10130 <!-- tree 0 --> 10131 <_> 10132 <!-- root node --> 10133 <feature> 10134 <rects> 10135 <_> 10136 3 10 4 4 -1.</_> 10137 <_> 10138 3 10 2 2 2.</_> 10139 <_> 10140 5 12 2 2 2.</_></rects> 10141 <tilted>0</tilted></feature> 10142 <threshold>-9.6991164609789848e-003</threshold> 10143 <left_val>0.6112532019615173</left_val> 10144 <right_val>-0.0662253126502037</right_val></_></_> 10145 <_> 10146 <!-- tree 1 --> 10147 <_> 10148 <!-- root node --> 10149 <feature> 10150 <rects> 10151 <_> 10152 3 10 4 4 -1.</_> 10153 <_> 10154 3 10 2 2 2.</_> 10155 <_> 10156 5 12 2 2 2.</_></rects> 10157 <tilted>0</tilted></feature> 10158 <threshold>-9.6426531672477722e-003</threshold> 10159 <left_val>-1.</left_val> 10160 <right_val>2.7699959464371204e-003</right_val></_></_> 10161 <_> 10162 <!-- tree 2 --> 10163 <_> 10164 <!-- root node --> 10165 <feature> 10166 <rects> 10167 <_> 10168 3 10 4 4 -1.</_> 10169 <_> 10170 3 10 2 2 2.</_> 10171 <_> 10172 5 12 2 2 2.</_></rects> 10173 <tilted>0</tilted></feature> 10174 <threshold>-9.6381865441799164e-003</threshold> 10175 <left_val>1.</left_val> 10176 <right_val>-2.9904270195402205e-004</right_val></_></_> 10177 <_> 10178 <!-- tree 3 --> 10179 <_> 10180 <!-- root node --> 10181 <feature> 10182 <rects> 10183 <_> 10184 14 8 2 6 -1.</_> 10185 <_> 10186 15 8 1 6 2.</_></rects> 10187 <tilted>0</tilted></feature> 10188 <threshold>-4.2553939856588840e-003</threshold> 10189 <left_val>0.2846438884735107</left_val> 10190 <right_val>-0.1554012000560761</right_val></_></_> 10191 <_> 10192 <!-- tree 4 --> 10193 <_> 10194 <!-- root node --> 10195 <feature> 10196 <rects> 10197 <_> 10198 3 10 4 4 -1.</_> 10199 <_> 10200 3 10 2 2 2.</_> 10201 <_> 10202 5 12 2 2 2.</_></rects> 10203 <tilted>0</tilted></feature> 10204 <threshold>-9.6223521977663040e-003</threshold> 10205 <left_val>-1.</left_val> 10206 <right_val>0.0439991801977158</right_val></_></_> 10207 <_> 10208 <!-- tree 5 --> 10209 <_> 10210 <!-- root node --> 10211 <feature> 10212 <rects> 10213 <_> 10214 3 10 4 4 -1.</_> 10215 <_> 10216 3 10 2 2 2.</_> 10217 <_> 10218 5 12 2 2 2.</_></rects> 10219 <tilted>0</tilted></feature> 10220 <threshold>-9.1231241822242737e-003</threshold> 10221 <left_val>0.8686934113502502</left_val> 10222 <right_val>-2.7267890982329845e-003</right_val></_></_> 10223 <_> 10224 <!-- tree 6 --> 10225 <_> 10226 <!-- root node --> 10227 <feature> 10228 <rects> 10229 <_> 10230 12 4 3 9 -1.</_> 10231 <_> 10232 13 4 1 9 3.</_></rects> 10233 <tilted>0</tilted></feature> 10234 <threshold>-8.6240433156490326e-003</threshold> 10235 <left_val>0.4535248875617981</left_val> 10236 <right_val>-0.0860713794827461</right_val></_></_> 10237 <_> 10238 <!-- tree 7 --> 10239 <_> 10240 <!-- root node --> 10241 <feature> 10242 <rects> 10243 <_> 10244 12 3 1 12 -1.</_> 10245 <_> 10246 12 7 1 4 3.</_></rects> 10247 <tilted>0</tilted></feature> 10248 <threshold>-8.9324144646525383e-003</threshold> 10249 <left_val>0.1337555944919586</left_val> 10250 <right_val>-0.2601251900196075</right_val></_></_> 10251 <_> 10252 <!-- tree 8 --> 10253 <_> 10254 <!-- root node --> 10255 <feature> 10256 <rects> 10257 <_> 10258 2 0 18 1 -1.</_> 10259 <_> 10260 8 0 6 1 3.</_></rects> 10261 <tilted>0</tilted></feature> 10262 <threshold>-0.0142078101634979</threshold> 10263 <left_val>0.3207764029502869</left_val> 10264 <right_val>-0.0972264111042023</right_val></_></_> 10265 <_> 10266 <!-- tree 9 --> 10267 <_> 10268 <!-- root node --> 10269 <feature> 10270 <rects> 10271 <_> 10272 10 0 10 6 -1.</_> 10273 <_> 10274 10 0 5 3 2.</_> 10275 <_> 10276 15 3 5 3 2.</_></rects> 10277 <tilted>0</tilted></feature> 10278 <threshold>0.0259110108017921</threshold> 10279 <left_val>-0.1296408027410507</left_val> 10280 <right_val>0.2621864974498749</right_val></_></_> 10281 <_> 10282 <!-- tree 10 --> 10283 <_> 10284 <!-- root node --> 10285 <feature> 10286 <rects> 10287 <_> 10288 18 16 2 2 -1.</_> 10289 <_> 10290 18 17 2 1 2.</_></rects> 10291 <tilted>0</tilted></feature> 10292 <threshold>2.0531509653665125e-004</threshold> 10293 <left_val>-0.1240428015589714</left_val> 10294 <right_val>0.2106295973062515</right_val></_></_> 10295 <_> 10296 <!-- tree 11 --> 10297 <_> 10298 <!-- root node --> 10299 <feature> 10300 <rects> 10301 <_> 10302 3 5 4 2 -1.</_> 10303 <_> 10304 3 5 2 1 2.</_> 10305 <_> 10306 5 6 2 1 2.</_></rects> 10307 <tilted>0</tilted></feature> 10308 <threshold>-5.4795680625829846e-005</threshold> 10309 <left_val>0.1197429969906807</left_val> 10310 <right_val>-0.2320127934217453</right_val></_></_> 10311 <_> 10312 <!-- tree 12 --> 10313 <_> 10314 <!-- root node --> 10315 <feature> 10316 <rects> 10317 <_> 10318 11 8 3 3 -1.</_> 10319 <_> 10320 12 8 1 3 3.</_></rects> 10321 <tilted>0</tilted></feature> 10322 <threshold>6.8555199541151524e-003</threshold> 10323 <left_val>-0.0632761269807816</left_val> 10324 <right_val>0.4104425013065338</right_val></_></_> 10325 <_> 10326 <!-- tree 13 --> 10327 <_> 10328 <!-- root node --> 10329 <feature> 10330 <rects> 10331 <_> 10332 11 7 3 5 -1.</_> 10333 <_> 10334 12 7 1 5 3.</_></rects> 10335 <tilted>0</tilted></feature> 10336 <threshold>-0.0122530404478312</threshold> 10337 <left_val>0.5488333106040955</left_val> 10338 <right_val>-0.0397311002016068</right_val></_></_> 10339 <_> 10340 <!-- tree 14 --> 10341 <_> 10342 <!-- root node --> 10343 <feature> 10344 <rects> 10345 <_> 10346 3 19 15 1 -1.</_> 10347 <_> 10348 8 19 5 1 3.</_></rects> 10349 <tilted>0</tilted></feature> 10350 <threshold>-3.9058770053088665e-003</threshold> 10351 <left_val>0.2419098019599915</left_val> 10352 <right_val>-0.0970960110425949</right_val></_></_> 10353 <_> 10354 <!-- tree 15 --> 10355 <_> 10356 <!-- root node --> 10357 <feature> 10358 <rects> 10359 <_> 10360 8 13 3 2 -1.</_> 10361 <_> 10362 8 14 3 1 2.</_></rects> 10363 <tilted>0</tilted></feature> 10364 <threshold>2.7560980524867773e-003</threshold> 10365 <left_val>-0.1256967931985855</left_val> 10366 <right_val>0.1945665031671524</right_val></_></_> 10367 <_> 10368 <!-- tree 16 --> 10369 <_> 10370 <!-- root node --> 10371 <feature> 10372 <rects> 10373 <_> 10374 2 12 8 4 -1.</_> 10375 <_> 10376 2 12 4 2 2.</_> 10377 <_> 10378 6 14 4 2 2.</_></rects> 10379 <tilted>0</tilted></feature> 10380 <threshold>-7.7662160620093346e-003</threshold> 10381 <left_val>0.2976570129394531</left_val> 10382 <right_val>-0.0968181565403938</right_val></_></_> 10383 <_> 10384 <!-- tree 17 --> 10385 <_> 10386 <!-- root node --> 10387 <feature> 10388 <rects> 10389 <_> 10390 16 16 2 2 -1.</_> 10391 <_> 10392 16 16 1 1 2.</_> 10393 <_> 10394 17 17 1 1 2.</_></rects> 10395 <tilted>0</tilted></feature> 10396 <threshold>3.8997188676148653e-004</threshold> 10397 <left_val>0.0621884018182755</left_val> 10398 <right_val>-0.4204089939594269</right_val></_></_> 10399 <_> 10400 <!-- tree 18 --> 10401 <_> 10402 <!-- root node --> 10403 <feature> 10404 <rects> 10405 <_> 10406 7 0 3 2 -1.</_> 10407 <_> 10408 8 0 1 2 3.</_></rects> 10409 <tilted>0</tilted></feature> 10410 <threshold>3.3579880837351084e-003</threshold> 10411 <left_val>0.0474981404840946</left_val> 10412 <right_val>-0.6321688294410706</right_val></_></_> 10413 <_> 10414 <!-- tree 19 --> 10415 <_> 10416 <!-- root node --> 10417 <feature> 10418 <rects> 10419 <_> 10420 6 7 2 5 -1.</_> 10421 <_> 10422 7 7 1 5 2.</_></rects> 10423 <tilted>0</tilted></feature> 10424 <threshold>-0.0167455393821001</threshold> 10425 <left_val>0.7109813094139099</left_val> 10426 <right_val>-0.0391573496162891</right_val></_></_> 10427 <_> 10428 <!-- tree 20 --> 10429 <_> 10430 <!-- root node --> 10431 <feature> 10432 <rects> 10433 <_> 10434 18 0 2 17 -1.</_> 10435 <_> 10436 19 0 1 17 2.</_></rects> 10437 <tilted>0</tilted></feature> 10438 <threshold>-6.5409899689257145e-003</threshold> 10439 <left_val>-0.3504317104816437</left_val> 10440 <right_val>0.0706169530749321</right_val></_></_> 10441 <_> 10442 <!-- tree 21 --> 10443 <_> 10444 <!-- root node --> 10445 <feature> 10446 <rects> 10447 <_> 10448 16 16 1 3 -1.</_> 10449 <_> 10450 16 17 1 1 3.</_></rects> 10451 <tilted>0</tilted></feature> 10452 <threshold>3.0016340315341949e-004</threshold> 10453 <left_val>0.0919024571776390</left_val> 10454 <right_val>-0.2461867034435272</right_val></_></_> 10455 <_> 10456 <!-- tree 22 --> 10457 <_> 10458 <!-- root node --> 10459 <feature> 10460 <rects> 10461 <_> 10462 14 8 3 7 -1.</_> 10463 <_> 10464 15 8 1 7 3.</_></rects> 10465 <tilted>0</tilted></feature> 10466 <threshold>0.0149189904332161</threshold> 10467 <left_val>-0.0519094504415989</left_val> 10468 <right_val>0.5663604140281677</right_val></_></_> 10469 <_> 10470 <!-- tree 23 --> 10471 <_> 10472 <!-- root node --> 10473 <feature> 10474 <rects> 10475 <_> 10476 10 17 2 2 -1.</_> 10477 <_> 10478 10 17 1 1 2.</_> 10479 <_> 10480 11 18 1 1 2.</_></rects> 10481 <tilted>0</tilted></feature> 10482 <threshold>4.8153079114854336e-004</threshold> 10483 <left_val>0.0646595582365990</left_val> 10484 <right_val>-0.3659060895442963</right_val></_></_> 10485 <_> 10486 <!-- tree 24 --> 10487 <_> 10488 <!-- root node --> 10489 <feature> 10490 <rects> 10491 <_> 10492 4 9 1 3 -1.</_> 10493 <_> 10494 4 10 1 1 3.</_></rects> 10495 <tilted>0</tilted></feature> 10496 <threshold>-3.0211321427486837e-004</threshold> 10497 <left_val>0.1792656928300858</left_val> 10498 <right_val>-0.1141066029667854</right_val></_></_> 10499 <_> 10500 <!-- tree 25 --> 10501 <_> 10502 <!-- root node --> 10503 <feature> 10504 <rects> 10505 <_> 10506 18 10 2 3 -1.</_> 10507 <_> 10508 18 11 2 1 3.</_></rects> 10509 <tilted>0</tilted></feature> 10510 <threshold>3.8521419628523290e-004</threshold> 10511 <left_val>0.1034561991691589</left_val> 10512 <right_val>-0.2007246017456055</right_val></_></_> 10513 <_> 10514 <!-- tree 26 --> 10515 <_> 10516 <!-- root node --> 10517 <feature> 10518 <rects> 10519 <_> 10520 12 1 3 10 -1.</_> 10521 <_> 10522 13 1 1 10 3.</_></rects> 10523 <tilted>0</tilted></feature> 10524 <threshold>8.0837132409214973e-003</threshold> 10525 <left_val>-0.0660734623670578</left_val> 10526 <right_val>0.3028424978256226</right_val></_></_> 10527 <_> 10528 <!-- tree 27 --> 10529 <_> 10530 <!-- root node --> 10531 <feature> 10532 <rects> 10533 <_> 10534 8 12 9 1 -1.</_> 10535 <_> 10536 11 12 3 1 3.</_></rects> 10537 <tilted>0</tilted></feature> 10538 <threshold>-0.0228049699217081</threshold> 10539 <left_val>0.5296235084533691</left_val> 10540 <right_val>-0.0401189997792244</right_val></_></_> 10541 <_> 10542 <!-- tree 28 --> 10543 <_> 10544 <!-- root node --> 10545 <feature> 10546 <rects> 10547 <_> 10548 5 18 2 2 -1.</_> 10549 <_> 10550 5 18 1 1 2.</_> 10551 <_> 10552 6 19 1 1 2.</_></rects> 10553 <tilted>0</tilted></feature> 10554 <threshold>1.9440450705587864e-004</threshold> 10555 <left_val>0.0818548202514648</left_val> 10556 <right_val>-0.2466336041688919</right_val></_></_> 10557 <_> 10558 <!-- tree 29 --> 10559 <_> 10560 <!-- root node --> 10561 <feature> 10562 <rects> 10563 <_> 10564 19 6 1 9 -1.</_> 10565 <_> 10566 19 9 1 3 3.</_></rects> 10567 <tilted>0</tilted></feature> 10568 <threshold>-0.0128480903804302</threshold> 10569 <left_val>-0.3497331142425537</left_val> 10570 <right_val>0.0569162294268608</right_val></_></_> 10571 <_> 10572 <!-- tree 30 --> 10573 <_> 10574 <!-- root node --> 10575 <feature> 10576 <rects> 10577 <_> 10578 4 7 2 4 -1.</_> 10579 <_> 10580 4 7 1 2 2.</_> 10581 <_> 10582 5 9 1 2 2.</_></rects> 10583 <tilted>0</tilted></feature> 10584 <threshold>-1.0937290498986840e-003</threshold> 10585 <left_val>0.2336868047714233</left_val> 10586 <right_val>-0.0916048064827919</right_val></_></_> 10587 <_> 10588 <!-- tree 31 --> 10589 <_> 10590 <!-- root node --> 10591 <feature> 10592 <rects> 10593 <_> 10594 1 4 6 14 -1.</_> 10595 <_> 10596 3 4 2 14 3.</_></rects> 10597 <tilted>0</tilted></feature> 10598 <threshold>1.0032650316134095e-003</threshold> 10599 <left_val>0.1185218021273613</left_val> 10600 <right_val>-0.1846919059753418</right_val></_></_> 10601 <_> 10602 <!-- tree 32 --> 10603 <_> 10604 <!-- root node --> 10605 <feature> 10606 <rects> 10607 <_> 10608 10 5 9 3 -1.</_> 10609 <_> 10610 13 5 3 3 3.</_></rects> 10611 <tilted>0</tilted></feature> 10612 <threshold>-0.0446884296834469</threshold> 10613 <left_val>-0.6436246037483215</left_val> 10614 <right_val>0.0303632691502571</right_val></_></_> 10615 <_> 10616 <!-- tree 33 --> 10617 <_> 10618 <!-- root node --> 10619 <feature> 10620 <rects> 10621 <_> 10622 18 7 2 6 -1.</_> 10623 <_> 10624 18 9 2 2 3.</_></rects> 10625 <tilted>0</tilted></feature> 10626 <threshold>8.1657543778419495e-003</threshold> 10627 <left_val>0.0436746589839458</left_val> 10628 <right_val>-0.4300208985805512</right_val></_></_> 10629 <_> 10630 <!-- tree 34 --> 10631 <_> 10632 <!-- root node --> 10633 <feature> 10634 <rects> 10635 <_> 10636 5 6 2 7 -1.</_> 10637 <_> 10638 6 6 1 7 2.</_></rects> 10639 <tilted>0</tilted></feature> 10640 <threshold>-0.0117178102955222</threshold> 10641 <left_val>0.4178147912025452</left_val> 10642 <right_val>-0.0482336990535259</right_val></_></_> 10643 <_> 10644 <!-- tree 35 --> 10645 <_> 10646 <!-- root node --> 10647 <feature> 10648 <rects> 10649 <_> 10650 10 4 6 8 -1.</_> 10651 <_> 10652 13 4 3 8 2.</_></rects> 10653 <tilted>0</tilted></feature> 10654 <threshold>0.0842771306633949</threshold> 10655 <left_val>0.0534612797200680</left_val> 10656 <right_val>-0.3795219063758850</right_val></_></_> 10657 <_> 10658 <!-- tree 36 --> 10659 <_> 10660 <!-- root node --> 10661 <feature> 10662 <rects> 10663 <_> 10664 0 8 2 9 -1.</_> 10665 <_> 10666 0 11 2 3 3.</_></rects> 10667 <tilted>0</tilted></feature> 10668 <threshold>0.0142118399962783</threshold> 10669 <left_val>0.0449009388685226</left_val> 10670 <right_val>-0.4298149943351746</right_val></_></_> 10671 <_> 10672 <!-- tree 37 --> 10673 <_> 10674 <!-- root node --> 10675 <feature> 10676 <rects> 10677 <_> 10678 0 7 5 3 -1.</_> 10679 <_> 10680 0 8 5 1 3.</_></rects> 10681 <tilted>0</tilted></feature> 10682 <threshold>1.5028340276330709e-003</threshold> 10683 <left_val>0.0822276398539543</left_val> 10684 <right_val>-0.2470639944076538</right_val></_></_> 10685 <_> 10686 <!-- tree 38 --> 10687 <_> 10688 <!-- root node --> 10689 <feature> 10690 <rects> 10691 <_> 10692 8 1 7 2 -1.</_> 10693 <_> 10694 8 2 7 1 2.</_></rects> 10695 <tilted>0</tilted></feature> 10696 <threshold>0.0100035797804594</threshold> 10697 <left_val>-0.0572216697037220</left_val> 10698 <right_val>0.3460937142372131</right_val></_></_> 10699 <_> 10700 <!-- tree 39 --> 10701 <_> 10702 <!-- root node --> 10703 <feature> 10704 <rects> 10705 <_> 10706 7 5 3 5 -1.</_> 10707 <_> 10708 8 5 1 5 3.</_></rects> 10709 <tilted>0</tilted></feature> 10710 <threshold>-9.0706320479512215e-003</threshold> 10711 <left_val>0.4505808949470520</left_val> 10712 <right_val>-0.0427953191101551</right_val></_></_> 10713 <_> 10714 <!-- tree 40 --> 10715 <_> 10716 <!-- root node --> 10717 <feature> 10718 <rects> 10719 <_> 10720 19 2 1 2 -1.</_> 10721 <_> 10722 19 3 1 1 2.</_></rects> 10723 <tilted>0</tilted></feature> 10724 <threshold>-3.3141620224341750e-004</threshold> 10725 <left_val>0.1833691000938416</left_val> 10726 <right_val>-0.1075994968414307</right_val></_></_> 10727 <_> 10728 <!-- tree 41 --> 10729 <_> 10730 <!-- root node --> 10731 <feature> 10732 <rects> 10733 <_> 10734 6 7 10 11 -1.</_> 10735 <_> 10736 11 7 5 11 2.</_></rects> 10737 <tilted>0</tilted></feature> 10738 <threshold>0.1972327977418900</threshold> 10739 <left_val>-0.0303638298064470</left_val> 10740 <right_val>0.6642342805862427</right_val></_></_> 10741 <_> 10742 <!-- tree 42 --> 10743 <_> 10744 <!-- root node --> 10745 <feature> 10746 <rects> 10747 <_> 10748 9 19 6 1 -1.</_> 10749 <_> 10750 11 19 2 1 3.</_></rects> 10751 <tilted>0</tilted></feature> 10752 <threshold>-7.1258801035583019e-003</threshold> 10753 <left_val>-0.8922504782676697</left_val> 10754 <right_val>0.0256699901074171</right_val></_></_> 10755 <_> 10756 <!-- tree 43 --> 10757 <_> 10758 <!-- root node --> 10759 <feature> 10760 <rects> 10761 <_> 10762 3 0 12 1 -1.</_> 10763 <_> 10764 7 0 4 1 3.</_></rects> 10765 <tilted>0</tilted></feature> 10766 <threshold>8.6921341717243195e-003</threshold> 10767 <left_val>-0.0707643702626228</left_val> 10768 <right_val>0.2821052968502045</right_val></_></_> 10769 <_> 10770 <!-- tree 44 --> 10771 <_> 10772 <!-- root node --> 10773 <feature> 10774 <rects> 10775 <_> 10776 4 1 6 5 -1.</_> 10777 <_> 10778 6 1 2 5 3.</_></rects> 10779 <tilted>0</tilted></feature> 10780 <threshold>8.9262127876281738e-003</threshold> 10781 <left_val>0.0710782334208488</left_val> 10782 <right_val>-0.3023256063461304</right_val></_></_> 10783 <_> 10784 <!-- tree 45 --> 10785 <_> 10786 <!-- root node --> 10787 <feature> 10788 <rects> 10789 <_> 10790 6 12 12 6 -1.</_> 10791 <_> 10792 10 12 4 6 3.</_></rects> 10793 <tilted>0</tilted></feature> 10794 <threshold>0.0572860091924667</threshold> 10795 <left_val>0.0509741306304932</left_val> 10796 <right_val>-0.3919695019721985</right_val></_></_> 10797 <_> 10798 <!-- tree 46 --> 10799 <_> 10800 <!-- root node --> 10801 <feature> 10802 <rects> 10803 <_> 10804 16 13 2 3 -1.</_> 10805 <_> 10806 16 14 2 1 3.</_></rects> 10807 <tilted>0</tilted></feature> 10808 <threshold>3.7920880131423473e-003</threshold> 10809 <left_val>0.0338419415056705</left_val> 10810 <right_val>-0.5101628899574280</right_val></_></_> 10811 <_> 10812 <!-- tree 47 --> 10813 <_> 10814 <!-- root node --> 10815 <feature> 10816 <rects> 10817 <_> 10818 7 14 4 2 -1.</_> 10819 <_> 10820 7 15 4 1 2.</_></rects> 10821 <tilted>0</tilted></feature> 10822 <threshold>-1.4508679741993546e-003</threshold> 10823 <left_val>0.3087914884090424</left_val> 10824 <right_val>-0.0638450831174850</right_val></_></_> 10825 <_> 10826 <!-- tree 48 --> 10827 <_> 10828 <!-- root node --> 10829 <feature> 10830 <rects> 10831 <_> 10832 7 14 2 2 -1.</_> 10833 <_> 10834 7 15 2 1 2.</_></rects> 10835 <tilted>0</tilted></feature> 10836 <threshold>9.8390132188796997e-004</threshold> 10837 <left_val>-0.1302956938743591</left_val> 10838 <right_val>0.1460441052913666</right_val></_></_> 10839 <_> 10840 <!-- tree 49 --> 10841 <_> 10842 <!-- root node --> 10843 <feature> 10844 <rects> 10845 <_> 10846 3 10 2 4 -1.</_> 10847 <_> 10848 3 10 1 2 2.</_> 10849 <_> 10850 4 12 1 2 2.</_></rects> 10851 <tilted>0</tilted></feature> 10852 <threshold>-1.7221809830516577e-003</threshold> 10853 <left_val>0.2915700972080231</left_val> 10854 <right_val>-0.0685495585203171</right_val></_></_> 10855 <_> 10856 <!-- tree 50 --> 10857 <_> 10858 <!-- root node --> 10859 <feature> 10860 <rects> 10861 <_> 10862 0 3 2 6 -1.</_> 10863 <_> 10864 0 5 2 2 3.</_></rects> 10865 <tilted>0</tilted></feature> 10866 <threshold>0.0109482500702143</threshold> 10867 <left_val>0.0343514084815979</left_val> 10868 <right_val>-0.4770225882530212</right_val></_></_> 10869 <_> 10870 <!-- tree 51 --> 10871 <_> 10872 <!-- root node --> 10873 <feature> 10874 <rects> 10875 <_> 10876 1 10 2 2 -1.</_> 10877 <_> 10878 1 10 1 1 2.</_> 10879 <_> 10880 2 11 1 1 2.</_></rects> 10881 <tilted>0</tilted></feature> 10882 <threshold>-1.7176309484057128e-005</threshold> 10883 <left_val>0.1605526953935623</left_val> 10884 <right_val>-0.1169084012508392</right_val></_></_> 10885 <_> 10886 <!-- tree 52 --> 10887 <_> 10888 <!-- root node --> 10889 <feature> 10890 <rects> 10891 <_> 10892 16 4 4 3 -1.</_> 10893 <_> 10894 16 5 4 1 3.</_></rects> 10895 <tilted>0</tilted></feature> 10896 <threshold>-5.4884208366274834e-003</threshold> 10897 <left_val>-0.4341588914394379</left_val> 10898 <right_val>0.0461062416434288</right_val></_></_> 10899 <_> 10900 <!-- tree 53 --> 10901 <_> 10902 <!-- root node --> 10903 <feature> 10904 <rects> 10905 <_> 10906 5 10 2 4 -1.</_> 10907 <_> 10908 5 10 1 2 2.</_> 10909 <_> 10910 6 12 1 2 2.</_></rects> 10911 <tilted>0</tilted></feature> 10912 <threshold>-3.0975250992923975e-003</threshold> 10913 <left_val>0.3794333934783936</left_val> 10914 <right_val>-0.0568605512380600</right_val></_></_> 10915 <_> 10916 <!-- tree 54 --> 10917 <_> 10918 <!-- root node --> 10919 <feature> 10920 <rects> 10921 <_> 10922 5 11 13 2 -1.</_> 10923 <_> 10924 5 12 13 1 2.</_></rects> 10925 <tilted>0</tilted></feature> 10926 <threshold>6.4182081259787083e-003</threshold> 10927 <left_val>-0.1585821062326431</left_val> 10928 <right_val>0.1233541965484619</right_val></_></_> 10929 <_> 10930 <!-- tree 55 --> 10931 <_> 10932 <!-- root node --> 10933 <feature> 10934 <rects> 10935 <_> 10936 10 2 3 11 -1.</_> 10937 <_> 10938 11 2 1 11 3.</_></rects> 10939 <tilted>0</tilted></feature> 10940 <threshold>0.0118312397971749</threshold> 10941 <left_val>-0.0409292913973331</left_val> 10942 <right_val>0.4587895870208740</right_val></_></_> 10943 <_> 10944 <!-- tree 56 --> 10945 <_> 10946 <!-- root node --> 10947 <feature> 10948 <rects> 10949 <_> 10950 10 2 4 4 -1.</_> 10951 <_> 10952 10 4 4 2 2.</_></rects> 10953 <tilted>0</tilted></feature> 10954 <threshold>0.0135404998436570</threshold> 10955 <left_val>-0.0537255592644215</left_val> 10956 <right_val>0.3505612015724182</right_val></_></_> 10957 <_> 10958 <!-- tree 57 --> 10959 <_> 10960 <!-- root node --> 10961 <feature> 10962 <rects> 10963 <_> 10964 8 8 6 2 -1.</_> 10965 <_> 10966 10 8 2 2 3.</_></rects> 10967 <tilted>0</tilted></feature> 10968 <threshold>-2.5932150892913342e-003</threshold> 10969 <left_val>0.1101052016019821</left_val> 10970 <right_val>-0.1675221025943756</right_val></_></_> 10971 <_> 10972 <!-- tree 58 --> 10973 <_> 10974 <!-- root node --> 10975 <feature> 10976 <rects> 10977 <_> 10978 11 2 3 3 -1.</_> 10979 <_> 10980 12 2 1 3 3.</_></rects> 10981 <tilted>0</tilted></feature> 10982 <threshold>1.6856270376592875e-003</threshold> 10983 <left_val>0.0665743574500084</left_val> 10984 <right_val>-0.3083502054214478</right_val></_></_> 10985 <_> 10986 <!-- tree 59 --> 10987 <_> 10988 <!-- root node --> 10989 <feature> 10990 <rects> 10991 <_> 10992 6 18 14 2 -1.</_> 10993 <_> 10994 6 18 7 1 2.</_> 10995 <_> 10996 13 19 7 1 2.</_></rects> 10997 <tilted>0</tilted></feature> 10998 <threshold>2.6524690911173820e-003</threshold> 10999 <left_val>0.0663184821605682</left_val> 11000 <right_val>-0.2786133885383606</right_val></_></_> 11001 <_> 11002 <!-- tree 60 --> 11003 <_> 11004 <!-- root node --> 11005 <feature> 11006 <rects> 11007 <_> 11008 17 7 1 12 -1.</_> 11009 <_> 11010 17 11 1 4 3.</_></rects> 11011 <tilted>0</tilted></feature> 11012 <threshold>-7.7341729775071144e-003</threshold> 11013 <left_val>0.1971835941076279</left_val> 11014 <right_val>-0.1078291982412338</right_val></_></_> 11015 <_> 11016 <!-- tree 61 --> 11017 <_> 11018 <!-- root node --> 11019 <feature> 11020 <rects> 11021 <_> 11022 10 5 10 3 -1.</_> 11023 <_> 11024 10 6 10 1 3.</_></rects> 11025 <tilted>0</tilted></feature> 11026 <threshold>5.0944271497428417e-003</threshold> 11027 <left_val>0.0853374898433685</left_val> 11028 <right_val>-0.2484700977802277</right_val></_></_> 11029 <_> 11030 <!-- tree 62 --> 11031 <_> 11032 <!-- root node --> 11033 <feature> 11034 <rects> 11035 <_> 11036 6 1 3 3 -1.</_> 11037 <_> 11038 7 1 1 3 3.</_></rects> 11039 <tilted>0</tilted></feature> 11040 <threshold>-2.9162371065467596e-003</threshold> 11041 <left_val>-0.4747635126113892</left_val> 11042 <right_val>0.0335664898157120</right_val></_></_> 11043 <_> 11044 <!-- tree 63 --> 11045 <_> 11046 <!-- root node --> 11047 <feature> 11048 <rects> 11049 <_> 11050 13 8 3 1 -1.</_> 11051 <_> 11052 14 8 1 1 3.</_></rects> 11053 <tilted>0</tilted></feature> 11054 <threshold>3.0121419113129377e-003</threshold> 11055 <left_val>-0.0475753806531429</left_val> 11056 <right_val>0.4258680045604706</right_val></_></_> 11057 <_> 11058 <!-- tree 64 --> 11059 <_> 11060 <!-- root node --> 11061 <feature> 11062 <rects> 11063 <_> 11064 10 14 2 6 -1.</_> 11065 <_> 11066 10 16 2 2 3.</_></rects> 11067 <tilted>0</tilted></feature> 11068 <threshold>3.1694869976490736e-003</threshold> 11069 <left_val>-0.1051945015788078</left_val> 11070 <right_val>0.1716345995664597</right_val></_></_> 11071 <_> 11072 <!-- tree 65 --> 11073 <_> 11074 <!-- root node --> 11075 <feature> 11076 <rects> 11077 <_> 11078 4 1 12 14 -1.</_> 11079 <_> 11080 8 1 4 14 3.</_></rects> 11081 <tilted>0</tilted></feature> 11082 <threshold>0.2232756018638611</threshold> 11083 <left_val>-0.0143702095374465</left_val> 11084 <right_val>0.9248365163803101</right_val></_></_> 11085 <_> 11086 <!-- tree 66 --> 11087 <_> 11088 <!-- root node --> 11089 <feature> 11090 <rects> 11091 <_> 11092 14 1 6 14 -1.</_> 11093 <_> 11094 16 1 2 14 3.</_></rects> 11095 <tilted>0</tilted></feature> 11096 <threshold>-0.0955850481987000</threshold> 11097 <left_val>-0.7420663833618164</left_val> 11098 <right_val>0.0278189703822136</right_val></_></_> 11099 <_> 11100 <!-- tree 67 --> 11101 <_> 11102 <!-- root node --> 11103 <feature> 11104 <rects> 11105 <_> 11106 3 16 2 2 -1.</_> 11107 <_> 11108 3 16 1 1 2.</_> 11109 <_> 11110 4 17 1 1 2.</_></rects> 11111 <tilted>0</tilted></feature> 11112 <threshold>3.4773729566950351e-005</threshold> 11113 <left_val>-0.1276578009128571</left_val> 11114 <right_val>0.1292666941881180</right_val></_></_> 11115 <_> 11116 <!-- tree 68 --> 11117 <_> 11118 <!-- root node --> 11119 <feature> 11120 <rects> 11121 <_> 11122 0 16 2 2 -1.</_> 11123 <_> 11124 0 17 2 1 2.</_></rects> 11125 <tilted>0</tilted></feature> 11126 <threshold>7.2459770308341831e-005</threshold> 11127 <left_val>-0.1651857942342758</left_val> 11128 <right_val>0.1003680974245071</right_val></_></_></trees> 11129 <stage_threshold>-1.0408929586410522</stage_threshold> 11130 <parent>18</parent> 11131 <next>-1</next></_> 11132 <_> 11133 <!-- stage 20 --> 11134 <trees> 11135 <_> 11136 <!-- tree 0 --> 11137 <_> 11138 <!-- root node --> 11139 <feature> 11140 <rects> 11141 <_> 11142 15 6 4 6 -1.</_> 11143 <_> 11144 15 6 2 3 2.</_> 11145 <_> 11146 17 9 2 3 2.</_></rects> 11147 <tilted>0</tilted></feature> 11148 <threshold>-6.5778270363807678e-003</threshold> 11149 <left_val>0.3381525874137878</left_val> 11150 <right_val>-0.1528190970420837</right_val></_></_> 11151 <_> 11152 <!-- tree 1 --> 11153 <_> 11154 <!-- root node --> 11155 <feature> 11156 <rects> 11157 <_> 11158 12 5 2 2 -1.</_> 11159 <_> 11160 12 6 2 1 2.</_></rects> 11161 <tilted>0</tilted></feature> 11162 <threshold>-1.0922809597104788e-003</threshold> 11163 <left_val>0.2228236943483353</left_val> 11164 <right_val>-0.1930849999189377</right_val></_></_> 11165 <_> 11166 <!-- tree 2 --> 11167 <_> 11168 <!-- root node --> 11169 <feature> 11170 <rects> 11171 <_> 11172 7 6 6 13 -1.</_> 11173 <_> 11174 9 6 2 13 3.</_></rects> 11175 <tilted>0</tilted></feature> 11176 <threshold>-0.0297595895826817</threshold> 11177 <left_val>0.2595987021923065</left_val> 11178 <right_val>-0.1540940999984741</right_val></_></_> 11179 <_> 11180 <!-- tree 3 --> 11181 <_> 11182 <!-- root node --> 11183 <feature> 11184 <rects> 11185 <_> 11186 1 9 6 5 -1.</_> 11187 <_> 11188 3 9 2 5 3.</_></rects> 11189 <tilted>0</tilted></feature> 11190 <threshold>-0.0131475403904915</threshold> 11191 <left_val>0.1903381049633026</left_val> 11192 <right_val>-0.1654399931430817</right_val></_></_> 11193 <_> 11194 <!-- tree 4 --> 11195 <_> 11196 <!-- root node --> 11197 <feature> 11198 <rects> 11199 <_> 11200 0 5 3 4 -1.</_> 11201 <_> 11202 0 7 3 2 2.</_></rects> 11203 <tilted>0</tilted></feature> 11204 <threshold>-1.4396329643204808e-003</threshold> 11205 <left_val>0.2007171064615250</left_val> 11206 <right_val>-0.1233894005417824</right_val></_></_> 11207 <_> 11208 <!-- tree 5 --> 11209 <_> 11210 <!-- root node --> 11211 <feature> 11212 <rects> 11213 <_> 11214 4 1 16 2 -1.</_> 11215 <_> 11216 4 1 8 1 2.</_> 11217 <_> 11218 12 2 8 1 2.</_></rects> 11219 <tilted>0</tilted></feature> 11220 <threshold>-3.5928250290453434e-003</threshold> 11221 <left_val>0.2398552000522614</left_val> 11222 <right_val>-0.1292214989662170</right_val></_></_> 11223 <_> 11224 <!-- tree 6 --> 11225 <_> 11226 <!-- root node --> 11227 <feature> 11228 <rects> 11229 <_> 11230 1 18 4 2 -1.</_> 11231 <_> 11232 1 18 2 1 2.</_> 11233 <_> 11234 3 19 2 1 2.</_></rects> 11235 <tilted>0</tilted></feature> 11236 <threshold>-1.5314699849113822e-003</threshold> 11237 <left_val>-0.4901489913463593</left_val> 11238 <right_val>0.1027503013610840</right_val></_></_> 11239 <_> 11240 <!-- tree 7 --> 11241 <_> 11242 <!-- root node --> 11243 <feature> 11244 <rects> 11245 <_> 11246 7 7 3 4 -1.</_> 11247 <_> 11248 8 7 1 4 3.</_></rects> 11249 <tilted>0</tilted></feature> 11250 <threshold>-6.2372139655053616e-003</threshold> 11251 <left_val>0.3121463954448700</left_val> 11252 <right_val>-0.1140562966465950</right_val></_></_> 11253 <_> 11254 <!-- tree 8 --> 11255 <_> 11256 <!-- root node --> 11257 <feature> 11258 <rects> 11259 <_> 11260 3 4 9 3 -1.</_> 11261 <_> 11262 6 4 3 3 3.</_></rects> 11263 <tilted>0</tilted></feature> 11264 <threshold>-0.0333646498620510</threshold> 11265 <left_val>-0.4952087998390198</left_val> 11266 <right_val>0.0513284504413605</right_val></_></_> 11267 <_> 11268 <!-- tree 9 --> 11269 <_> 11270 <!-- root node --> 11271 <feature> 11272 <rects> 11273 <_> 11274 4 6 6 10 -1.</_> 11275 <_> 11276 6 6 2 10 3.</_></rects> 11277 <tilted>0</tilted></feature> 11278 <threshold>-0.0228276997804642</threshold> 11279 <left_val>0.3255882859230042</left_val> 11280 <right_val>-0.0650893077254295</right_val></_></_> 11281 <_> 11282 <!-- tree 10 --> 11283 <_> 11284 <!-- root node --> 11285 <feature> 11286 <rects> 11287 <_> 11288 9 0 8 10 -1.</_> 11289 <_> 11290 13 0 4 10 2.</_></rects> 11291 <tilted>0</tilted></feature> 11292 <threshold>-0.0861990973353386</threshold> 11293 <left_val>-0.6764633059501648</left_val> 11294 <right_val>0.0269856993108988</right_val></_></_> 11295 <_> 11296 <!-- tree 11 --> 11297 <_> 11298 <!-- root node --> 11299 <feature> 11300 <rects> 11301 <_> 11302 8 0 8 1 -1.</_> 11303 <_> 11304 12 0 4 1 2.</_></rects> 11305 <tilted>0</tilted></feature> 11306 <threshold>-2.1065981127321720e-003</threshold> 11307 <left_val>0.2245243042707443</left_val> 11308 <right_val>-0.1261022984981537</right_val></_></_> 11309 <_> 11310 <!-- tree 12 --> 11311 <_> 11312 <!-- root node --> 11313 <feature> 11314 <rects> 11315 <_> 11316 6 2 8 16 -1.</_> 11317 <_> 11318 6 2 4 8 2.</_> 11319 <_> 11320 10 10 4 8 2.</_></rects> 11321 <tilted>0</tilted></feature> 11322 <threshold>0.0391201488673687</threshold> 11323 <left_val>0.1132939979434013</left_val> 11324 <right_val>-0.2686063051223755</right_val></_></_> 11325 <_> 11326 <!-- tree 13 --> 11327 <_> 11328 <!-- root node --> 11329 <feature> 11330 <rects> 11331 <_> 11332 14 10 2 10 -1.</_> 11333 <_> 11334 14 10 1 5 2.</_> 11335 <_> 11336 15 15 1 5 2.</_></rects> 11337 <tilted>0</tilted></feature> 11338 <threshold>3.5082739777863026e-003</threshold> 11339 <left_val>-0.1135995984077454</left_val> 11340 <right_val>0.2564977109432221</right_val></_></_> 11341 <_> 11342 <!-- tree 14 --> 11343 <_> 11344 <!-- root node --> 11345 <feature> 11346 <rects> 11347 <_> 11348 12 11 1 2 -1.</_> 11349 <_> 11350 12 12 1 1 2.</_></rects> 11351 <tilted>0</tilted></feature> 11352 <threshold>5.9289898490533233e-004</threshold> 11353 <left_val>-0.1494296938180924</left_val> 11354 <right_val>0.1640983968973160</right_val></_></_> 11355 <_> 11356 <!-- tree 15 --> 11357 <_> 11358 <!-- root node --> 11359 <feature> 11360 <rects> 11361 <_> 11362 16 0 3 8 -1.</_> 11363 <_> 11364 17 0 1 8 3.</_></rects> 11365 <tilted>0</tilted></feature> 11366 <threshold>7.1766850305721164e-004</threshold> 11367 <left_val>0.0999056920409203</left_val> 11368 <right_val>-0.2196796983480454</right_val></_></_> 11369 <_> 11370 <!-- tree 16 --> 11371 <_> 11372 <!-- root node --> 11373 <feature> 11374 <rects> 11375 <_> 11376 14 0 6 10 -1.</_> 11377 <_> 11378 17 0 3 10 2.</_></rects> 11379 <tilted>0</tilted></feature> 11380 <threshold>-0.0218036007136106</threshold> 11381 <left_val>-0.3171172142028809</left_val> 11382 <right_val>0.0828895866870880</right_val></_></_> 11383 <_> 11384 <!-- tree 17 --> 11385 <_> 11386 <!-- root node --> 11387 <feature> 11388 <rects> 11389 <_> 11390 16 0 3 5 -1.</_> 11391 <_> 11392 17 0 1 5 3.</_></rects> 11393 <tilted>0</tilted></feature> 11394 <threshold>-3.2962779514491558e-003</threshold> 11395 <left_val>-0.3804872930049896</left_val> 11396 <right_val>0.0608193799853325</right_val></_></_> 11397 <_> 11398 <!-- tree 18 --> 11399 <_> 11400 <!-- root node --> 11401 <feature> 11402 <rects> 11403 <_> 11404 4 5 11 2 -1.</_> 11405 <_> 11406 4 6 11 1 2.</_></rects> 11407 <tilted>0</tilted></feature> 11408 <threshold>2.4196270387619734e-003</threshold> 11409 <left_val>-0.0960130169987679</left_val> 11410 <right_val>0.2854058146476746</right_val></_></_> 11411 <_> 11412 <!-- tree 19 --> 11413 <_> 11414 <!-- root node --> 11415 <feature> 11416 <rects> 11417 <_> 11418 1 0 2 1 -1.</_> 11419 <_> 11420 2 0 1 1 2.</_></rects> 11421 <tilted>0</tilted></feature> 11422 <threshold>-4.4187481398694217e-004</threshold> 11423 <left_val>0.2212793976068497</left_val> 11424 <right_val>-0.0974349081516266</right_val></_></_> 11425 <_> 11426 <!-- tree 20 --> 11427 <_> 11428 <!-- root node --> 11429 <feature> 11430 <rects> 11431 <_> 11432 0 0 2 3 -1.</_> 11433 <_> 11434 0 1 2 1 3.</_></rects> 11435 <tilted>0</tilted></feature> 11436 <threshold>3.4523929934948683e-003</threshold> 11437 <left_val>0.0375531204044819</left_val> 11438 <right_val>-0.5796905159950256</right_val></_></_> 11439 <_> 11440 <!-- tree 21 --> 11441 <_> 11442 <!-- root node --> 11443 <feature> 11444 <rects> 11445 <_> 11446 11 6 6 11 -1.</_> 11447 <_> 11448 13 6 2 11 3.</_></rects> 11449 <tilted>0</tilted></feature> 11450 <threshold>-0.0218346007168293</threshold> 11451 <left_val>0.2956213951110840</left_val> 11452 <right_val>-0.0800483003258705</right_val></_></_> 11453 <_> 11454 <!-- tree 22 --> 11455 <_> 11456 <!-- root node --> 11457 <feature> 11458 <rects> 11459 <_> 11460 14 0 3 1 -1.</_> 11461 <_> 11462 15 0 1 1 3.</_></rects> 11463 <tilted>0</tilted></feature> 11464 <threshold>-2.1309500152710825e-004</threshold> 11465 <left_val>0.2281450927257538</left_val> 11466 <right_val>-0.1011418998241425</right_val></_></_> 11467 <_> 11468 <!-- tree 23 --> 11469 <_> 11470 <!-- root node --> 11471 <feature> 11472 <rects> 11473 <_> 11474 19 7 1 2 -1.</_> 11475 <_> 11476 19 8 1 1 2.</_></rects> 11477 <tilted>0</tilted></feature> 11478 <threshold>-1.6166249988600612e-003</threshold> 11479 <left_val>-0.5054119825363159</left_val> 11480 <right_val>0.0447645410895348</right_val></_></_> 11481 <_> 11482 <!-- tree 24 --> 11483 <_> 11484 <!-- root node --> 11485 <feature> 11486 <rects> 11487 <_> 11488 17 0 3 9 -1.</_> 11489 <_> 11490 18 0 1 9 3.</_></rects> 11491 <tilted>0</tilted></feature> 11492 <threshold>7.5959609821438789e-003</threshold> 11493 <left_val>0.0459865406155586</left_val> 11494 <right_val>-0.4119768142700195</right_val></_></_> 11495 <_> 11496 <!-- tree 25 --> 11497 <_> 11498 <!-- root node --> 11499 <feature> 11500 <rects> 11501 <_> 11502 12 7 3 4 -1.</_> 11503 <_> 11504 13 7 1 4 3.</_></rects> 11505 <tilted>0</tilted></feature> 11506 <threshold>3.8601809646934271e-003</threshold> 11507 <left_val>-0.0865631699562073</left_val> 11508 <right_val>0.2480999976396561</right_val></_></_> 11509 <_> 11510 <!-- tree 26 --> 11511 <_> 11512 <!-- root node --> 11513 <feature> 11514 <rects> 11515 <_> 11516 0 1 14 2 -1.</_> 11517 <_> 11518 0 1 7 1 2.</_> 11519 <_> 11520 7 2 7 1 2.</_></rects> 11521 <tilted>0</tilted></feature> 11522 <threshold>6.0622231103479862e-003</threshold> 11523 <left_val>-0.0755573734641075</left_val> 11524 <right_val>0.2843326032161713</right_val></_></_> 11525 <_> 11526 <!-- tree 27 --> 11527 <_> 11528 <!-- root node --> 11529 <feature> 11530 <rects> 11531 <_> 11532 3 1 3 2 -1.</_> 11533 <_> 11534 4 1 1 2 3.</_></rects> 11535 <tilted>0</tilted></feature> 11536 <threshold>-1.7097420059144497e-003</threshold> 11537 <left_val>-0.3529582023620606</left_val> 11538 <right_val>0.0584104992449284</right_val></_></_> 11539 <_> 11540 <!-- tree 28 --> 11541 <_> 11542 <!-- root node --> 11543 <feature> 11544 <rects> 11545 <_> 11546 4 0 15 2 -1.</_> 11547 <_> 11548 9 0 5 2 3.</_></rects> 11549 <tilted>0</tilted></feature> 11550 <threshold>0.0165155790746212</threshold> 11551 <left_val>-0.0804869532585144</left_val> 11552 <right_val>0.2353743016719818</right_val></_></_> 11553 <_> 11554 <!-- tree 29 --> 11555 <_> 11556 <!-- root node --> 11557 <feature> 11558 <rects> 11559 <_> 11560 10 2 6 1 -1.</_> 11561 <_> 11562 12 2 2 1 3.</_></rects> 11563 <tilted>0</tilted></feature> 11564 <threshold>4.8465100117027760e-003</threshold> 11565 <left_val>0.0418952181935310</left_val> 11566 <right_val>-0.4844304919242859</right_val></_></_> 11567 <_> 11568 <!-- tree 30 --> 11569 <_> 11570 <!-- root node --> 11571 <feature> 11572 <rects> 11573 <_> 11574 9 4 6 11 -1.</_> 11575 <_> 11576 11 4 2 11 3.</_></rects> 11577 <tilted>0</tilted></feature> 11578 <threshold>-0.0311671700328588</threshold> 11579 <left_val>0.1919230967760086</left_val> 11580 <right_val>-0.1026815995573998</right_val></_></_> 11581 <_> 11582 <!-- tree 31 --> 11583 <_> 11584 <!-- root node --> 11585 <feature> 11586 <rects> 11587 <_> 11588 2 16 2 4 -1.</_> 11589 <_> 11590 2 18 2 2 2.</_></rects> 11591 <tilted>0</tilted></feature> 11592 <threshold>6.1892281519249082e-004</threshold> 11593 <left_val>-0.2108577042818070</left_val> 11594 <right_val>0.0938869267702103</right_val></_></_> 11595 <_> 11596 <!-- tree 32 --> 11597 <_> 11598 <!-- root node --> 11599 <feature> 11600 <rects> 11601 <_> 11602 6 17 6 3 -1.</_> 11603 <_> 11604 8 17 2 3 3.</_></rects> 11605 <tilted>0</tilted></feature> 11606 <threshold>0.0119463102892041</threshold> 11607 <left_val>0.0390961691737175</left_val> 11608 <right_val>-0.6224862933158875</right_val></_></_> 11609 <_> 11610 <!-- tree 33 --> 11611 <_> 11612 <!-- root node --> 11613 <feature> 11614 <rects> 11615 <_> 11616 7 9 6 2 -1.</_> 11617 <_> 11618 9 9 2 2 3.</_></rects> 11619 <tilted>0</tilted></feature> 11620 <threshold>-7.5677200220525265e-003</threshold> 11621 <left_val>0.1593683958053589</left_val> 11622 <right_val>-0.1225078031420708</right_val></_></_> 11623 <_> 11624 <!-- tree 34 --> 11625 <_> 11626 <!-- root node --> 11627 <feature> 11628 <rects> 11629 <_> 11630 6 8 9 2 -1.</_> 11631 <_> 11632 9 8 3 2 3.</_></rects> 11633 <tilted>0</tilted></feature> 11634 <threshold>-0.0537474118173122</threshold> 11635 <left_val>-0.5562217831611633</left_val> 11636 <right_val>0.0411900095641613</right_val></_></_> 11637 <_> 11638 <!-- tree 35 --> 11639 <_> 11640 <!-- root node --> 11641 <feature> 11642 <rects> 11643 <_> 11644 6 6 2 10 -1.</_> 11645 <_> 11646 6 6 1 5 2.</_> 11647 <_> 11648 7 11 1 5 2.</_></rects> 11649 <tilted>0</tilted></feature> 11650 <threshold>0.0155135300010443</threshold> 11651 <left_val>-0.0398268811404705</left_val> 11652 <right_val>0.6240072846412659</right_val></_></_> 11653 <_> 11654 <!-- tree 36 --> 11655 <_> 11656 <!-- root node --> 11657 <feature> 11658 <rects> 11659 <_> 11660 0 11 2 3 -1.</_> 11661 <_> 11662 0 12 2 1 3.</_></rects> 11663 <tilted>0</tilted></feature> 11664 <threshold>1.5246650436893106e-003</threshold> 11665 <left_val>0.0701386779546738</left_val> 11666 <right_val>-0.3078907132148743</right_val></_></_> 11667 <_> 11668 <!-- tree 37 --> 11669 <_> 11670 <!-- root node --> 11671 <feature> 11672 <rects> 11673 <_> 11674 11 15 4 1 -1.</_> 11675 <_> 11676 13 15 2 1 2.</_></rects> 11677 <tilted>0</tilted></feature> 11678 <threshold>-4.8315100139006972e-004</threshold> 11679 <left_val>0.1788765937089920</left_val> 11680 <right_val>-0.1095862016081810</right_val></_></_> 11681 <_> 11682 <!-- tree 38 --> 11683 <_> 11684 <!-- root node --> 11685 <feature> 11686 <rects> 11687 <_> 11688 6 17 1 2 -1.</_> 11689 <_> 11690 6 18 1 1 2.</_></rects> 11691 <tilted>0</tilted></feature> 11692 <threshold>2.7374739293009043e-003</threshold> 11693 <left_val>0.0274785906076431</left_val> 11694 <right_val>-0.8848956823348999</right_val></_></_> 11695 <_> 11696 <!-- tree 39 --> 11697 <_> 11698 <!-- root node --> 11699 <feature> 11700 <rects> 11701 <_> 11702 0 0 6 20 -1.</_> 11703 <_> 11704 2 0 2 20 3.</_></rects> 11705 <tilted>0</tilted></feature> 11706 <threshold>-0.0657877177000046</threshold> 11707 <left_val>-0.4643214046955109</left_val> 11708 <right_val>0.0350371487438679</right_val></_></_> 11709 <_> 11710 <!-- tree 40 --> 11711 <_> 11712 <!-- root node --> 11713 <feature> 11714 <rects> 11715 <_> 11716 3 10 2 2 -1.</_> 11717 <_> 11718 4 10 1 2 2.</_></rects> 11719 <tilted>0</tilted></feature> 11720 <threshold>1.2409730115905404e-003</threshold> 11721 <left_val>-0.0964792370796204</left_val> 11722 <right_val>0.2877922058105469</right_val></_></_> 11723 <_> 11724 <!-- tree 41 --> 11725 <_> 11726 <!-- root node --> 11727 <feature> 11728 <rects> 11729 <_> 11730 4 7 3 5 -1.</_> 11731 <_> 11732 5 7 1 5 3.</_></rects> 11733 <tilted>0</tilted></feature> 11734 <threshold>8.1398809561505914e-004</threshold> 11735 <left_val>0.1151171997189522</left_val> 11736 <right_val>-0.1676616072654724</right_val></_></_> 11737 <_> 11738 <!-- tree 42 --> 11739 <_> 11740 <!-- root node --> 11741 <feature> 11742 <rects> 11743 <_> 11744 3 12 6 2 -1.</_> 11745 <_> 11746 5 12 2 2 3.</_></rects> 11747 <tilted>0</tilted></feature> 11748 <threshold>0.0239018201828003</threshold> 11749 <left_val>-0.0326031893491745</left_val> 11750 <right_val>0.6001734733581543</right_val></_></_> 11751 <_> 11752 <!-- tree 43 --> 11753 <_> 11754 <!-- root node --> 11755 <feature> 11756 <rects> 11757 <_> 11758 6 15 7 4 -1.</_> 11759 <_> 11760 6 17 7 2 2.</_></rects> 11761 <tilted>0</tilted></feature> 11762 <threshold>0.0275566000491381</threshold> 11763 <left_val>-0.0661373436450958</left_val> 11764 <right_val>0.2999447882175446</right_val></_></_> 11765 <_> 11766 <!-- tree 44 --> 11767 <_> 11768 <!-- root node --> 11769 <feature> 11770 <rects> 11771 <_> 11772 17 16 2 2 -1.</_> 11773 <_> 11774 17 16 1 1 2.</_> 11775 <_> 11776 18 17 1 1 2.</_></rects> 11777 <tilted>0</tilted></feature> 11778 <threshold>-3.8070970913395286e-004</threshold> 11779 <left_val>-0.3388118147850037</left_val> 11780 <right_val>0.0644507706165314</right_val></_></_> 11781 <_> 11782 <!-- tree 45 --> 11783 <_> 11784 <!-- root node --> 11785 <feature> 11786 <rects> 11787 <_> 11788 15 1 3 16 -1.</_> 11789 <_> 11790 16 1 1 16 3.</_></rects> 11791 <tilted>0</tilted></feature> 11792 <threshold>-1.3335429830476642e-003</threshold> 11793 <left_val>0.1458866000175476</left_val> 11794 <right_val>-0.1321762055158615</right_val></_></_> 11795 <_> 11796 <!-- tree 46 --> 11797 <_> 11798 <!-- root node --> 11799 <feature> 11800 <rects> 11801 <_> 11802 6 16 6 3 -1.</_> 11803 <_> 11804 8 16 2 3 3.</_></rects> 11805 <tilted>0</tilted></feature> 11806 <threshold>-9.3507990241050720e-003</threshold> 11807 <left_val>-0.5117782950401306</left_val> 11808 <right_val>0.0349694713950157</right_val></_></_> 11809 <_> 11810 <!-- tree 47 --> 11811 <_> 11812 <!-- root node --> 11813 <feature> 11814 <rects> 11815 <_> 11816 15 14 3 2 -1.</_> 11817 <_> 11818 15 15 3 1 2.</_></rects> 11819 <tilted>0</tilted></feature> 11820 <threshold>7.6215229928493500e-003</threshold> 11821 <left_val>0.0232495293021202</left_val> 11822 <right_val>-0.6961941123008728</right_val></_></_> 11823 <_> 11824 <!-- tree 48 --> 11825 <_> 11826 <!-- root node --> 11827 <feature> 11828 <rects> 11829 <_> 11830 12 16 1 2 -1.</_> 11831 <_> 11832 12 17 1 1 2.</_></rects> 11833 <tilted>0</tilted></feature> 11834 <threshold>-5.3407860832521692e-005</threshold> 11835 <left_val>0.2372737973928452</left_val> 11836 <right_val>-0.0869107097387314</right_val></_></_> 11837 <_> 11838 <!-- tree 49 --> 11839 <_> 11840 <!-- root node --> 11841 <feature> 11842 <rects> 11843 <_> 11844 0 2 4 4 -1.</_> 11845 <_> 11846 0 2 2 2 2.</_> 11847 <_> 11848 2 4 2 2 2.</_></rects> 11849 <tilted>0</tilted></feature> 11850 <threshold>-1.5332329785451293e-003</threshold> 11851 <left_val>0.1922841072082520</left_val> 11852 <right_val>-0.1042239964008331</right_val></_></_> 11853 <_> 11854 <!-- tree 50 --> 11855 <_> 11856 <!-- root node --> 11857 <feature> 11858 <rects> 11859 <_> 11860 1 1 6 4 -1.</_> 11861 <_> 11862 1 1 3 2 2.</_> 11863 <_> 11864 4 3 3 2 2.</_></rects> 11865 <tilted>0</tilted></feature> 11866 <threshold>4.3135890737175941e-003</threshold> 11867 <left_val>-0.0962195470929146</left_val> 11868 <right_val>0.2560121119022369</right_val></_></_> 11869 <_> 11870 <!-- tree 51 --> 11871 <_> 11872 <!-- root node --> 11873 <feature> 11874 <rects> 11875 <_> 11876 1 18 1 2 -1.</_> 11877 <_> 11878 1 19 1 1 2.</_></rects> 11879 <tilted>0</tilted></feature> 11880 <threshold>-2.3042880638968199e-004</threshold> 11881 <left_val>-0.3156475126743317</left_val> 11882 <right_val>0.0588385984301567</right_val></_></_> 11883 <_> 11884 <!-- tree 52 --> 11885 <_> 11886 <!-- root node --> 11887 <feature> 11888 <rects> 11889 <_> 11890 4 7 2 3 -1.</_> 11891 <_> 11892 4 8 2 1 3.</_></rects> 11893 <tilted>0</tilted></feature> 11894 <threshold>-7.8411828726530075e-003</threshold> 11895 <left_val>-0.6634092926979065</left_val> 11896 <right_val>0.0245009995996952</right_val></_></_> 11897 <_> 11898 <!-- tree 53 --> 11899 <_> 11900 <!-- root node --> 11901 <feature> 11902 <rects> 11903 <_> 11904 1 0 9 14 -1.</_> 11905 <_> 11906 1 7 9 7 2.</_></rects> 11907 <tilted>0</tilted></feature> 11908 <threshold>0.1710374057292938</threshold> 11909 <left_val>0.0338314995169640</left_val> 11910 <right_val>-0.4561594128608704</right_val></_></_> 11911 <_> 11912 <!-- tree 54 --> 11913 <_> 11914 <!-- root node --> 11915 <feature> 11916 <rects> 11917 <_> 11918 4 9 2 6 -1.</_> 11919 <_> 11920 4 9 1 3 2.</_> 11921 <_> 11922 5 12 1 3 2.</_></rects> 11923 <tilted>0</tilted></feature> 11924 <threshold>-1.6011140542104840e-003</threshold> 11925 <left_val>0.2157489061355591</left_val> 11926 <right_val>-0.0836225301027298</right_val></_></_> 11927 <_> 11928 <!-- tree 55 --> 11929 <_> 11930 <!-- root node --> 11931 <feature> 11932 <rects> 11933 <_> 11934 3 9 4 3 -1.</_> 11935 <_> 11936 5 9 2 3 2.</_></rects> 11937 <tilted>0</tilted></feature> 11938 <threshold>-0.0105357803404331</threshold> 11939 <left_val>0.2455231994390488</left_val> 11940 <right_val>-0.0823844894766808</right_val></_></_> 11941 <_> 11942 <!-- tree 56 --> 11943 <_> 11944 <!-- root node --> 11945 <feature> 11946 <rects> 11947 <_> 11948 0 9 2 4 -1.</_> 11949 <_> 11950 0 11 2 2 2.</_></rects> 11951 <tilted>0</tilted></feature> 11952 <threshold>-5.8351638726890087e-003</threshold> 11953 <left_val>-0.4780732989311218</left_val> 11954 <right_val>0.0440862216055393</right_val></_></_> 11955 <_> 11956 <!-- tree 57 --> 11957 <_> 11958 <!-- root node --> 11959 <feature> 11960 <rects> 11961 <_> 11962 16 6 3 10 -1.</_> 11963 <_> 11964 17 6 1 10 3.</_></rects> 11965 <tilted>0</tilted></feature> 11966 <threshold>-0.0187061093747616</threshold> 11967 <left_val>-0.6002402901649475</left_val> 11968 <right_val>0.0214100405573845</right_val></_></_> 11969 <_> 11970 <!-- tree 58 --> 11971 <_> 11972 <!-- root node --> 11973 <feature> 11974 <rects> 11975 <_> 11976 16 11 2 1 -1.</_> 11977 <_> 11978 17 11 1 1 2.</_></rects> 11979 <tilted>0</tilted></feature> 11980 <threshold>-9.3307439237833023e-004</threshold> 11981 <left_val>0.2432359009981155</left_val> 11982 <right_val>-0.0741657167673111</right_val></_></_></trees> 11983 <stage_threshold>-1.0566600561141968</stage_threshold> 11984 <parent>19</parent> 11985 <next>-1</next></_> 11986 <_> 11987 <!-- stage 21 --> 11988 <trees> 11989 <_> 11990 <!-- tree 0 --> 11991 <_> 11992 <!-- root node --> 11993 <feature> 11994 <rects> 11995 <_> 11996 5 7 4 4 -1.</_> 11997 <_> 11998 5 9 4 2 2.</_></rects> 11999 <tilted>0</tilted></feature> 12000 <threshold>0.0106462296098471</threshold> 12001 <left_val>-0.1386138945817947</left_val> 12002 <right_val>0.2649407088756561</right_val></_></_> 12003 <_> 12004 <!-- tree 1 --> 12005 <_> 12006 <!-- root node --> 12007 <feature> 12008 <rects> 12009 <_> 12010 10 11 9 2 -1.</_> 12011 <_> 12012 13 11 3 2 3.</_></rects> 12013 <tilted>0</tilted></feature> 12014 <threshold>0.0352982692420483</threshold> 12015 <left_val>-0.0758217275142670</left_val> 12016 <right_val>0.3902106881141663</right_val></_></_> 12017 <_> 12018 <!-- tree 2 --> 12019 <_> 12020 <!-- root node --> 12021 <feature> 12022 <rects> 12023 <_> 12024 15 10 2 2 -1.</_> 12025 <_> 12026 15 10 1 1 2.</_> 12027 <_> 12028 16 11 1 1 2.</_></rects> 12029 <tilted>0</tilted></feature> 12030 <threshold>7.5638387352228165e-004</threshold> 12031 <left_val>-0.0955214425921440</left_val> 12032 <right_val>0.2906199991703033</right_val></_></_> 12033 <_> 12034 <!-- tree 3 --> 12035 <_> 12036 <!-- root node --> 12037 <feature> 12038 <rects> 12039 <_> 12040 10 6 6 14 -1.</_> 12041 <_> 12042 10 13 6 7 2.</_></rects> 12043 <tilted>0</tilted></feature> 12044 <threshold>0.0924977064132690</threshold> 12045 <left_val>-0.2770423889160156</left_val> 12046 <right_val>0.0794747024774551</right_val></_></_> 12047 <_> 12048 <!-- tree 4 --> 12049 <_> 12050 <!-- root node --> 12051 <feature> 12052 <rects> 12053 <_> 12054 14 7 3 5 -1.</_> 12055 <_> 12056 15 7 1 5 3.</_></rects> 12057 <tilted>0</tilted></feature> 12058 <threshold>-2.9340879991650581e-003</threshold> 12059 <left_val>0.2298953980207443</left_val> 12060 <right_val>-0.0785500109195709</right_val></_></_> 12061 <_> 12062 <!-- tree 5 --> 12063 <_> 12064 <!-- root node --> 12065 <feature> 12066 <rects> 12067 <_> 12068 6 11 12 3 -1.</_> 12069 <_> 12070 10 11 4 3 3.</_></rects> 12071 <tilted>0</tilted></feature> 12072 <threshold>-0.0865358486771584</threshold> 12073 <left_val>0.4774481058120728</left_val> 12074 <right_val>-6.8231220357120037e-003</right_val></_></_> 12075 <_> 12076 <!-- tree 6 --> 12077 <_> 12078 <!-- root node --> 12079 <feature> 12080 <rects> 12081 <_> 12082 17 16 1 2 -1.</_> 12083 <_> 12084 17 17 1 1 2.</_></rects> 12085 <tilted>0</tilted></feature> 12086 <threshold>5.4699288739357144e-005</threshold> 12087 <left_val>-0.2264260947704315</left_val> 12088 <right_val>0.0881921127438545</right_val></_></_> 12089 <_> 12090 <!-- tree 7 --> 12091 <_> 12092 <!-- root node --> 12093 <feature> 12094 <rects> 12095 <_> 12096 8 5 5 4 -1.</_> 12097 <_> 12098 8 7 5 2 2.</_></rects> 12099 <tilted>0</tilted></feature> 12100 <threshold>-0.0365925207734108</threshold> 12101 <left_val>0.2735387086868286</left_val> 12102 <right_val>-0.0986067429184914</right_val></_></_> 12103 <_> 12104 <!-- tree 8 --> 12105 <_> 12106 <!-- root node --> 12107 <feature> 12108 <rects> 12109 <_> 12110 11 6 4 2 -1.</_> 12111 <_> 12112 11 7 4 1 2.</_></rects> 12113 <tilted>0</tilted></feature> 12114 <threshold>2.6469118893146515e-003</threshold> 12115 <left_val>-0.0440839789807796</left_val> 12116 <right_val>0.3144528865814209</right_val></_></_> 12117 <_> 12118 <!-- tree 9 --> 12119 <_> 12120 <!-- root node --> 12121 <feature> 12122 <rects> 12123 <_> 12124 3 4 8 2 -1.</_> 12125 <_> 12126 3 4 4 1 2.</_> 12127 <_> 12128 7 5 4 1 2.</_></rects> 12129 <tilted>0</tilted></feature> 12130 <threshold>-4.4271810911595821e-003</threshold> 12131 <left_val>0.2382272928953171</left_val> 12132 <right_val>-0.0867842733860016</right_val></_></_> 12133 <_> 12134 <!-- tree 10 --> 12135 <_> 12136 <!-- root node --> 12137 <feature> 12138 <rects> 12139 <_> 12140 0 8 6 6 -1.</_> 12141 <_> 12142 2 8 2 6 3.</_></rects> 12143 <tilted>0</tilted></feature> 12144 <threshold>-5.1882481202483177e-003</threshold> 12145 <left_val>0.1504276990890503</left_val> 12146 <right_val>-0.1267210990190506</right_val></_></_> 12147 <_> 12148 <!-- tree 11 --> 12149 <_> 12150 <!-- root node --> 12151 <feature> 12152 <rects> 12153 <_> 12154 7 4 6 2 -1.</_> 12155 <_> 12156 7 5 6 1 2.</_></rects> 12157 <tilted>0</tilted></feature> 12158 <threshold>4.5530400238931179e-003</threshold> 12159 <left_val>-0.0559450201690197</left_val> 12160 <right_val>0.3650163114070892</right_val></_></_> 12161 <_> 12162 <!-- tree 12 --> 12163 <_> 12164 <!-- root node --> 12165 <feature> 12166 <rects> 12167 <_> 12168 7 3 6 3 -1.</_> 12169 <_> 12170 9 3 2 3 3.</_></rects> 12171 <tilted>0</tilted></feature> 12172 <threshold>0.0145624103024602</threshold> 12173 <left_val>0.0363977700471878</left_val> 12174 <right_val>-0.5355919003486633</right_val></_></_> 12175 <_> 12176 <!-- tree 13 --> 12177 <_> 12178 <!-- root node --> 12179 <feature> 12180 <rects> 12181 <_> 12182 2 17 3 3 -1.</_> 12183 <_> 12184 2 18 3 1 3.</_></rects> 12185 <tilted>0</tilted></feature> 12186 <threshold>6.8677567469421774e-005</threshold> 12187 <left_val>-0.1747962981462479</left_val> 12188 <right_val>0.1106870993971825</right_val></_></_> 12189 <_> 12190 <!-- tree 14 --> 12191 <_> 12192 <!-- root node --> 12193 <feature> 12194 <rects> 12195 <_> 12196 3 10 6 1 -1.</_> 12197 <_> 12198 5 10 2 1 3.</_></rects> 12199 <tilted>0</tilted></feature> 12200 <threshold>-5.9744901955127716e-003</threshold> 12201 <left_val>0.3107787072658539</left_val> 12202 <right_val>-0.0665302276611328</right_val></_></_> 12203 <_> 12204 <!-- tree 15 --> 12205 <_> 12206 <!-- root node --> 12207 <feature> 12208 <rects> 12209 <_> 12210 7 2 6 2 -1.</_> 12211 <_> 12212 9 2 2 2 3.</_></rects> 12213 <tilted>0</tilted></feature> 12214 <threshold>-5.8691250160336494e-003</threshold> 12215 <left_val>-0.3190149068832398</left_val> 12216 <right_val>0.0639318302273750</right_val></_></_> 12217 <_> 12218 <!-- tree 16 --> 12219 <_> 12220 <!-- root node --> 12221 <feature> 12222 <rects> 12223 <_> 12224 4 11 9 1 -1.</_> 12225 <_> 12226 7 11 3 1 3.</_></rects> 12227 <tilted>0</tilted></feature> 12228 <threshold>-0.0111403102055192</threshold> 12229 <left_val>0.2436479032039642</left_val> 12230 <right_val>-0.0809351801872253</right_val></_></_> 12231 <_> 12232 <!-- tree 17 --> 12233 <_> 12234 <!-- root node --> 12235 <feature> 12236 <rects> 12237 <_> 12238 7 7 11 12 -1.</_> 12239 <_> 12240 7 13 11 6 2.</_></rects> 12241 <tilted>0</tilted></feature> 12242 <threshold>-0.0586435310542583</threshold> 12243 <left_val>-0.7608326077461243</left_val> 12244 <right_val>0.0308096297085285</right_val></_></_> 12245 <_> 12246 <!-- tree 18 --> 12247 <_> 12248 <!-- root node --> 12249 <feature> 12250 <rects> 12251 <_> 12252 3 2 3 4 -1.</_> 12253 <_> 12254 4 2 1 4 3.</_></rects> 12255 <tilted>0</tilted></feature> 12256 <threshold>-4.6097282320261002e-003</threshold> 12257 <left_val>-0.4531502127647400</left_val> 12258 <right_val>0.0298790596425533</right_val></_></_> 12259 <_> 12260 <!-- tree 19 --> 12261 <_> 12262 <!-- root node --> 12263 <feature> 12264 <rects> 12265 <_> 12266 9 7 9 3 -1.</_> 12267 <_> 12268 12 7 3 3 3.</_></rects> 12269 <tilted>0</tilted></feature> 12270 <threshold>-9.3032103031873703e-003</threshold> 12271 <left_val>0.1451337933540344</left_val> 12272 <right_val>-0.1103316992521286</right_val></_></_> 12273 <_> 12274 <!-- tree 20 --> 12275 <_> 12276 <!-- root node --> 12277 <feature> 12278 <rects> 12279 <_> 12280 15 11 2 6 -1.</_> 12281 <_> 12282 15 11 1 3 2.</_> 12283 <_> 12284 16 14 1 3 2.</_></rects> 12285 <tilted>0</tilted></feature> 12286 <threshold>1.3253629440441728e-003</threshold> 12287 <left_val>-0.0976989567279816</left_val> 12288 <right_val>0.1964644044637680</right_val></_></_> 12289 <_> 12290 <!-- tree 21 --> 12291 <_> 12292 <!-- root node --> 12293 <feature> 12294 <rects> 12295 <_> 12296 0 5 5 3 -1.</_> 12297 <_> 12298 0 6 5 1 3.</_></rects> 12299 <tilted>0</tilted></feature> 12300 <threshold>4.9800761044025421e-003</threshold> 12301 <left_val>0.0336480811238289</left_val> 12302 <right_val>-0.3979220986366272</right_val></_></_> 12303 <_> 12304 <!-- tree 22 --> 12305 <_> 12306 <!-- root node --> 12307 <feature> 12308 <rects> 12309 <_> 12310 8 1 6 12 -1.</_> 12311 <_> 12312 10 1 2 12 3.</_></rects> 12313 <tilted>0</tilted></feature> 12314 <threshold>-7.6542161405086517e-003</threshold> 12315 <left_val>0.0908419936895370</left_val> 12316 <right_val>-0.1596754938364029</right_val></_></_> 12317 <_> 12318 <!-- tree 23 --> 12319 <_> 12320 <!-- root node --> 12321 <feature> 12322 <rects> 12323 <_> 12324 3 7 15 13 -1.</_> 12325 <_> 12326 8 7 5 13 3.</_></rects> 12327 <tilted>0</tilted></feature> 12328 <threshold>-0.3892059028148651</threshold> 12329 <left_val>-0.6657109260559082</left_val> 12330 <right_val>0.0190288294106722</right_val></_></_> 12331 <_> 12332 <!-- tree 24 --> 12333 <_> 12334 <!-- root node --> 12335 <feature> 12336 <rects> 12337 <_> 12338 0 9 9 9 -1.</_> 12339 <_> 12340 0 12 9 3 3.</_></rects> 12341 <tilted>0</tilted></feature> 12342 <threshold>-0.1001966968178749</threshold> 12343 <left_val>-0.5755926966667175</left_val> 12344 <right_val>0.0242827795445919</right_val></_></_> 12345 <_> 12346 <!-- tree 25 --> 12347 <_> 12348 <!-- root node --> 12349 <feature> 12350 <rects> 12351 <_> 12352 16 0 3 8 -1.</_> 12353 <_> 12354 17 0 1 8 3.</_></rects> 12355 <tilted>0</tilted></feature> 12356 <threshold>7.3541211895644665e-004</threshold> 12357 <left_val>0.0879198014736176</left_val> 12358 <right_val>-0.1619534045457840</right_val></_></_> 12359 <_> 12360 <!-- tree 26 --> 12361 <_> 12362 <!-- root node --> 12363 <feature> 12364 <rects> 12365 <_> 12366 16 2 4 2 -1.</_> 12367 <_> 12368 18 2 2 2 2.</_></rects> 12369 <tilted>0</tilted></feature> 12370 <threshold>-3.4802639856934547e-003</threshold> 12371 <left_val>0.2606449127197266</left_val> 12372 <right_val>-0.0602008104324341</right_val></_></_> 12373 <_> 12374 <!-- tree 27 --> 12375 <_> 12376 <!-- root node --> 12377 <feature> 12378 <rects> 12379 <_> 12380 13 0 6 5 -1.</_> 12381 <_> 12382 16 0 3 5 2.</_></rects> 12383 <tilted>0</tilted></feature> 12384 <threshold>8.4000425413250923e-003</threshold> 12385 <left_val>-0.1097972989082336</left_val> 12386 <right_val>0.1570730954408646</right_val></_></_> 12387 <_> 12388 <!-- tree 28 --> 12389 <_> 12390 <!-- root node --> 12391 <feature> 12392 <rects> 12393 <_> 12394 15 1 3 2 -1.</_> 12395 <_> 12396 16 1 1 2 3.</_></rects> 12397 <tilted>0</tilted></feature> 12398 <threshold>2.3786011151969433e-003</threshold> 12399 <left_val>0.0360582396388054</left_val> 12400 <right_val>-0.4727719128131867</right_val></_></_> 12401 <_> 12402 <!-- tree 29 --> 12403 <_> 12404 <!-- root node --> 12405 <feature> 12406 <rects> 12407 <_> 12408 11 8 3 2 -1.</_> 12409 <_> 12410 12 8 1 2 3.</_></rects> 12411 <tilted>0</tilted></feature> 12412 <threshold>7.3831682093441486e-003</threshold> 12413 <left_val>-0.0357563607394695</left_val> 12414 <right_val>0.4949859082698822</right_val></_></_> 12415 <_> 12416 <!-- tree 30 --> 12417 <_> 12418 <!-- root node --> 12419 <feature> 12420 <rects> 12421 <_> 12422 1 8 2 12 -1.</_> 12423 <_> 12424 1 8 1 6 2.</_> 12425 <_> 12426 2 14 1 6 2.</_></rects> 12427 <tilted>0</tilted></feature> 12428 <threshold>3.2115620560944080e-003</threshold> 12429 <left_val>-0.1012556031346321</left_val> 12430 <right_val>0.1574798971414566</right_val></_></_> 12431 <_> 12432 <!-- tree 31 --> 12433 <_> 12434 <!-- root node --> 12435 <feature> 12436 <rects> 12437 <_> 12438 0 1 6 12 -1.</_> 12439 <_> 12440 2 1 2 12 3.</_></rects> 12441 <tilted>0</tilted></feature> 12442 <threshold>-0.0782096683979034</threshold> 12443 <left_val>-0.7662708163261414</left_val> 12444 <right_val>0.0229658298194408</right_val></_></_> 12445 <_> 12446 <!-- tree 32 --> 12447 <_> 12448 <!-- root node --> 12449 <feature> 12450 <rects> 12451 <_> 12452 19 17 1 3 -1.</_> 12453 <_> 12454 19 18 1 1 3.</_></rects> 12455 <tilted>0</tilted></feature> 12456 <threshold>5.3303989261621609e-005</threshold> 12457 <left_val>-0.1341435015201569</left_val> 12458 <right_val>0.1111491993069649</right_val></_></_> 12459 <_> 12460 <!-- tree 33 --> 12461 <_> 12462 <!-- root node --> 12463 <feature> 12464 <rects> 12465 <_> 12466 11 3 3 10 -1.</_> 12467 <_> 12468 12 3 1 10 3.</_></rects> 12469 <tilted>0</tilted></feature> 12470 <threshold>-9.6419155597686768e-003</threshold> 12471 <left_val>0.2506802976131439</left_val> 12472 <right_val>-0.0666081383824348</right_val></_></_> 12473 <_> 12474 <!-- tree 34 --> 12475 <_> 12476 <!-- root node --> 12477 <feature> 12478 <rects> 12479 <_> 12480 8 1 9 8 -1.</_> 12481 <_> 12482 11 1 3 8 3.</_></rects> 12483 <tilted>0</tilted></feature> 12484 <threshold>-0.0710926726460457</threshold> 12485 <left_val>-0.4005681872367859</left_val> 12486 <right_val>0.0402977913618088</right_val></_></_> 12487 <_> 12488 <!-- tree 35 --> 12489 <_> 12490 <!-- root node --> 12491 <feature> 12492 <rects> 12493 <_> 12494 18 16 2 2 -1.</_> 12495 <_> 12496 18 16 1 1 2.</_> 12497 <_> 12498 19 17 1 1 2.</_></rects> 12499 <tilted>0</tilted></feature> 12500 <threshold>3.5171560011804104e-004</threshold> 12501 <left_val>0.0418611802160740</left_val> 12502 <right_val>-0.3296119868755341</right_val></_></_> 12503 <_> 12504 <!-- tree 36 --> 12505 <_> 12506 <!-- root node --> 12507 <feature> 12508 <rects> 12509 <_> 12510 18 16 2 2 -1.</_> 12511 <_> 12512 18 16 1 1 2.</_> 12513 <_> 12514 19 17 1 1 2.</_></rects> 12515 <tilted>0</tilted></feature> 12516 <threshold>-3.3458150574006140e-004</threshold> 12517 <left_val>-0.2602983117103577</left_val> 12518 <right_val>0.0678927376866341</right_val></_></_> 12519 <_> 12520 <!-- tree 37 --> 12521 <_> 12522 <!-- root node --> 12523 <feature> 12524 <rects> 12525 <_> 12526 6 13 2 6 -1.</_> 12527 <_> 12528 6 15 2 2 3.</_></rects> 12529 <tilted>0</tilted></feature> 12530 <threshold>-4.1451421566307545e-003</threshold> 12531 <left_val>0.2396769970655441</left_val> 12532 <right_val>-0.0720933377742767</right_val></_></_> 12533 <_> 12534 <!-- tree 38 --> 12535 <_> 12536 <!-- root node --> 12537 <feature> 12538 <rects> 12539 <_> 12540 9 14 2 2 -1.</_> 12541 <_> 12542 9 15 2 1 2.</_></rects> 12543 <tilted>0</tilted></feature> 12544 <threshold>3.1754500232636929e-003</threshold> 12545 <left_val>-0.0712352693080902</left_val> 12546 <right_val>0.2412845045328140</right_val></_></_> 12547 <_> 12548 <!-- tree 39 --> 12549 <_> 12550 <!-- root node --> 12551 <feature> 12552 <rects> 12553 <_> 12554 14 10 2 4 -1.</_> 12555 <_> 12556 14 10 1 2 2.</_> 12557 <_> 12558 15 12 1 2 2.</_></rects> 12559 <tilted>0</tilted></feature> 12560 <threshold>-5.5184490047395229e-003</threshold> 12561 <left_val>0.5032023787498474</left_val> 12562 <right_val>-0.0296866800636053</right_val></_></_> 12563 <_> 12564 <!-- tree 40 --> 12565 <_> 12566 <!-- root node --> 12567 <feature> 12568 <rects> 12569 <_> 12570 0 15 2 2 -1.</_> 12571 <_> 12572 0 15 1 1 2.</_> 12573 <_> 12574 1 16 1 1 2.</_></rects> 12575 <tilted>0</tilted></feature> 12576 <threshold>-3.0242869979701936e-004</threshold> 12577 <left_val>0.2487905025482178</left_val> 12578 <right_val>-0.0567585788667202</right_val></_></_> 12579 <_> 12580 <!-- tree 41 --> 12581 <_> 12582 <!-- root node --> 12583 <feature> 12584 <rects> 12585 <_> 12586 6 7 2 2 -1.</_> 12587 <_> 12588 6 7 1 1 2.</_> 12589 <_> 12590 7 8 1 1 2.</_></rects> 12591 <tilted>0</tilted></feature> 12592 <threshold>-1.3125919504091144e-003</threshold> 12593 <left_val>0.3174780011177063</left_val> 12594 <right_val>-0.0418458618223667</right_val></_></_> 12595 <_> 12596 <!-- tree 42 --> 12597 <_> 12598 <!-- root node --> 12599 <feature> 12600 <rects> 12601 <_> 12602 11 18 2 2 -1.</_> 12603 <_> 12604 11 18 1 1 2.</_> 12605 <_> 12606 12 19 1 1 2.</_></rects> 12607 <tilted>0</tilted></feature> 12608 <threshold>-2.7123570907860994e-004</threshold> 12609 <left_val>-0.2704207003116608</left_val> 12610 <right_val>0.0568289905786514</right_val></_></_> 12611 <_> 12612 <!-- tree 43 --> 12613 <_> 12614 <!-- root node --> 12615 <feature> 12616 <rects> 12617 <_> 12618 0 0 6 4 -1.</_> 12619 <_> 12620 0 0 3 2 2.</_> 12621 <_> 12622 3 2 3 2 2.</_></rects> 12623 <tilted>0</tilted></feature> 12624 <threshold>-7.3241777718067169e-003</threshold> 12625 <left_val>0.2755667865276337</left_val> 12626 <right_val>-0.0542529709637165</right_val></_></_> 12627 <_> 12628 <!-- tree 44 --> 12629 <_> 12630 <!-- root node --> 12631 <feature> 12632 <rects> 12633 <_> 12634 4 1 6 6 -1.</_> 12635 <_> 12636 6 1 2 6 3.</_></rects> 12637 <tilted>0</tilted></feature> 12638 <threshold>-0.0168517101556063</threshold> 12639 <left_val>-0.3485291004180908</left_val> 12640 <right_val>0.0453689992427826</right_val></_></_> 12641 <_> 12642 <!-- tree 45 --> 12643 <_> 12644 <!-- root node --> 12645 <feature> 12646 <rects> 12647 <_> 12648 15 13 5 4 -1.</_> 12649 <_> 12650 15 15 5 2 2.</_></rects> 12651 <tilted>0</tilted></feature> 12652 <threshold>0.0299021005630493</threshold> 12653 <left_val>0.0316210798919201</left_val> 12654 <right_val>-0.4311437010765076</right_val></_></_> 12655 <_> 12656 <!-- tree 46 --> 12657 <_> 12658 <!-- root node --> 12659 <feature> 12660 <rects> 12661 <_> 12662 7 17 6 1 -1.</_> 12663 <_> 12664 9 17 2 1 3.</_></rects> 12665 <tilted>0</tilted></feature> 12666 <threshold>2.8902660124003887e-003</threshold> 12667 <left_val>0.0380299612879753</left_val> 12668 <right_val>-0.3702709972858429</right_val></_></_> 12669 <_> 12670 <!-- tree 47 --> 12671 <_> 12672 <!-- root node --> 12673 <feature> 12674 <rects> 12675 <_> 12676 16 19 4 1 -1.</_> 12677 <_> 12678 18 19 2 1 2.</_></rects> 12679 <tilted>0</tilted></feature> 12680 <threshold>-1.9242949783802032e-003</threshold> 12681 <left_val>0.2480027973651886</left_val> 12682 <right_val>-0.0593332983553410</right_val></_></_> 12683 <_> 12684 <!-- tree 48 --> 12685 <_> 12686 <!-- root node --> 12687 <feature> 12688 <rects> 12689 <_> 12690 16 16 4 4 -1.</_> 12691 <_> 12692 18 16 2 4 2.</_></rects> 12693 <tilted>0</tilted></feature> 12694 <threshold>4.9354149959981441e-003</threshold> 12695 <left_val>-0.0830684006214142</left_val> 12696 <right_val>0.2204380929470062</right_val></_></_> 12697 <_> 12698 <!-- tree 49 --> 12699 <_> 12700 <!-- root node --> 12701 <feature> 12702 <rects> 12703 <_> 12704 7 8 9 4 -1.</_> 12705 <_> 12706 10 8 3 4 3.</_></rects> 12707 <tilted>0</tilted></feature> 12708 <threshold>0.0820756033062935</threshold> 12709 <left_val>-0.0194134395569563</left_val> 12710 <right_val>0.6908928751945496</right_val></_></_> 12711 <_> 12712 <!-- tree 50 --> 12713 <_> 12714 <!-- root node --> 12715 <feature> 12716 <rects> 12717 <_> 12718 16 18 2 2 -1.</_> 12719 <_> 12720 16 18 1 1 2.</_> 12721 <_> 12722 17 19 1 1 2.</_></rects> 12723 <tilted>0</tilted></feature> 12724 <threshold>-2.4699489586055279e-004</threshold> 12725 <left_val>-0.2466056942939758</left_val> 12726 <right_val>0.0647764503955841</right_val></_></_> 12727 <_> 12728 <!-- tree 51 --> 12729 <_> 12730 <!-- root node --> 12731 <feature> 12732 <rects> 12733 <_> 12734 2 9 2 4 -1.</_> 12735 <_> 12736 2 9 1 2 2.</_> 12737 <_> 12738 3 11 1 2 2.</_></rects> 12739 <tilted>0</tilted></feature> 12740 <threshold>-1.8365769647061825e-003</threshold> 12741 <left_val>0.2883616089820862</left_val> 12742 <right_val>-0.0533904582262039</right_val></_></_> 12743 <_> 12744 <!-- tree 52 --> 12745 <_> 12746 <!-- root node --> 12747 <feature> 12748 <rects> 12749 <_> 12750 0 3 8 4 -1.</_> 12751 <_> 12752 0 3 4 2 2.</_> 12753 <_> 12754 4 5 4 2 2.</_></rects> 12755 <tilted>0</tilted></feature> 12756 <threshold>-4.9553811550140381e-003</threshold> 12757 <left_val>0.1274082958698273</left_val> 12758 <right_val>-0.1255941987037659</right_val></_></_> 12759 <_> 12760 <!-- tree 53 --> 12761 <_> 12762 <!-- root node --> 12763 <feature> 12764 <rects> 12765 <_> 12766 0 1 8 1 -1.</_> 12767 <_> 12768 4 1 4 1 2.</_></rects> 12769 <tilted>0</tilted></feature> 12770 <threshold>-8.3086621016263962e-003</threshold> 12771 <left_val>0.2347811013460159</left_val> 12772 <right_val>-0.0716764926910400</right_val></_></_> 12773 <_> 12774 <!-- tree 54 --> 12775 <_> 12776 <!-- root node --> 12777 <feature> 12778 <rects> 12779 <_> 12780 0 5 8 9 -1.</_> 12781 <_> 12782 4 5 4 9 2.</_></rects> 12783 <tilted>0</tilted></feature> 12784 <threshold>-0.1087991967797279</threshold> 12785 <left_val>-0.2599223852157593</left_val> 12786 <right_val>0.0586897395551205</right_val></_></_> 12787 <_> 12788 <!-- tree 55 --> 12789 <_> 12790 <!-- root node --> 12791 <feature> 12792 <rects> 12793 <_> 12794 7 18 6 2 -1.</_> 12795 <_> 12796 9 18 2 2 3.</_></rects> 12797 <tilted>0</tilted></feature> 12798 <threshold>-9.6786450594663620e-003</threshold> 12799 <left_val>-0.7072042822837830</left_val> 12800 <right_val>0.0187492594122887</right_val></_></_> 12801 <_> 12802 <!-- tree 56 --> 12803 <_> 12804 <!-- root node --> 12805 <feature> 12806 <rects> 12807 <_> 12808 0 4 1 12 -1.</_> 12809 <_> 12810 0 8 1 4 3.</_></rects> 12811 <tilted>0</tilted></feature> 12812 <threshold>-0.0271368306130171</threshold> 12813 <left_val>-0.5838422775268555</left_val> 12814 <right_val>0.0216841306537390</right_val></_></_> 12815 <_> 12816 <!-- tree 57 --> 12817 <_> 12818 <!-- root node --> 12819 <feature> 12820 <rects> 12821 <_> 12822 19 13 1 6 -1.</_> 12823 <_> 12824 19 15 1 2 3.</_></rects> 12825 <tilted>0</tilted></feature> 12826 <threshold>-6.5389778465032578e-003</threshold> 12827 <left_val>-0.5974891185760498</left_val> 12828 <right_val>0.0214803107082844</right_val></_></_> 12829 <_> 12830 <!-- tree 58 --> 12831 <_> 12832 <!-- root node --> 12833 <feature> 12834 <rects> 12835 <_> 12836 2 8 6 8 -1.</_> 12837 <_> 12838 4 8 2 8 3.</_></rects> 12839 <tilted>0</tilted></feature> 12840 <threshold>-0.0120956301689148</threshold> 12841 <left_val>0.1326903998851776</left_val> 12842 <right_val>-0.0997227206826210</right_val></_></_> 12843 <_> 12844 <!-- tree 59 --> 12845 <_> 12846 <!-- root node --> 12847 <feature> 12848 <rects> 12849 <_> 12850 0 0 9 17 -1.</_> 12851 <_> 12852 3 0 3 17 3.</_></rects> 12853 <tilted>0</tilted></feature> 12854 <threshold>-0.1677609980106354</threshold> 12855 <left_val>-0.5665506720542908</left_val> 12856 <right_val>0.0321230888366699</right_val></_></_> 12857 <_> 12858 <!-- tree 60 --> 12859 <_> 12860 <!-- root node --> 12861 <feature> 12862 <rects> 12863 <_> 12864 7 9 6 8 -1.</_> 12865 <_> 12866 9 9 2 8 3.</_></rects> 12867 <tilted>0</tilted></feature> 12868 <threshold>-0.0132625503465533</threshold> 12869 <left_val>0.1149559020996094</left_val> 12870 <right_val>-0.1173838973045349</right_val></_></_> 12871 <_> 12872 <!-- tree 61 --> 12873 <_> 12874 <!-- root node --> 12875 <feature> 12876 <rects> 12877 <_> 12878 5 10 9 4 -1.</_> 12879 <_> 12880 8 10 3 4 3.</_></rects> 12881 <tilted>0</tilted></feature> 12882 <threshold>0.0767445191740990</threshold> 12883 <left_val>-0.0314132310450077</left_val> 12884 <right_val>0.5993549227714539</right_val></_></_> 12885 <_> 12886 <!-- tree 62 --> 12887 <_> 12888 <!-- root node --> 12889 <feature> 12890 <rects> 12891 <_> 12892 5 0 8 3 -1.</_> 12893 <_> 12894 5 1 8 1 3.</_></rects> 12895 <tilted>0</tilted></feature> 12896 <threshold>5.0785229541361332e-003</threshold> 12897 <left_val>-0.0529119409620762</left_val> 12898 <right_val>0.2334239929914475</right_val></_></_> 12899 <_> 12900 <!-- tree 63 --> 12901 <_> 12902 <!-- root node --> 12903 <feature> 12904 <rects> 12905 <_> 12906 16 6 4 4 -1.</_> 12907 <_> 12908 16 6 2 2 2.</_> 12909 <_> 12910 18 8 2 2 2.</_></rects> 12911 <tilted>0</tilted></feature> 12912 <threshold>3.1800279393792152e-003</threshold> 12913 <left_val>-0.0777343884110451</left_val> 12914 <right_val>0.1765290945768356</right_val></_></_> 12915 <_> 12916 <!-- tree 64 --> 12917 <_> 12918 <!-- root node --> 12919 <feature> 12920 <rects> 12921 <_> 12922 17 4 2 8 -1.</_> 12923 <_> 12924 17 4 1 4 2.</_> 12925 <_> 12926 18 8 1 4 2.</_></rects> 12927 <tilted>0</tilted></feature> 12928 <threshold>-1.7729829996824265e-003</threshold> 12929 <left_val>0.1959162950515747</left_val> 12930 <right_val>-0.0797521993517876</right_val></_></_> 12931 <_> 12932 <!-- tree 65 --> 12933 <_> 12934 <!-- root node --> 12935 <feature> 12936 <rects> 12937 <_> 12938 2 16 1 3 -1.</_> 12939 <_> 12940 2 17 1 1 3.</_></rects> 12941 <tilted>0</tilted></feature> 12942 <threshold>-4.8560940194875002e-004</threshold> 12943 <left_val>-0.2880037128925324</left_val> 12944 <right_val>0.0490471199154854</right_val></_></_> 12945 <_> 12946 <!-- tree 66 --> 12947 <_> 12948 <!-- root node --> 12949 <feature> 12950 <rects> 12951 <_> 12952 2 16 1 3 -1.</_> 12953 <_> 12954 2 17 1 1 3.</_></rects> 12955 <tilted>0</tilted></feature> 12956 <threshold>3.6554320831783116e-004</threshold> 12957 <left_val>0.0679228976368904</left_val> 12958 <right_val>-0.2249943017959595</right_val></_></_> 12959 <_> 12960 <!-- tree 67 --> 12961 <_> 12962 <!-- root node --> 12963 <feature> 12964 <rects> 12965 <_> 12966 11 0 1 3 -1.</_> 12967 <_> 12968 11 1 1 1 3.</_></rects> 12969 <tilted>0</tilted></feature> 12970 <threshold>-2.6938671362586319e-004</threshold> 12971 <left_val>0.1658217012882233</left_val> 12972 <right_val>-0.0897440984845161</right_val></_></_> 12973 <_> 12974 <!-- tree 68 --> 12975 <_> 12976 <!-- root node --> 12977 <feature> 12978 <rects> 12979 <_> 12980 11 2 9 7 -1.</_> 12981 <_> 12982 14 2 3 7 3.</_></rects> 12983 <tilted>0</tilted></feature> 12984 <threshold>0.0786842331290245</threshold> 12985 <left_val>0.0260816793888807</left_val> 12986 <right_val>-0.5569373965263367</right_val></_></_> 12987 <_> 12988 <!-- tree 69 --> 12989 <_> 12990 <!-- root node --> 12991 <feature> 12992 <rects> 12993 <_> 12994 10 2 3 6 -1.</_> 12995 <_> 12996 11 2 1 6 3.</_></rects> 12997 <tilted>0</tilted></feature> 12998 <threshold>-7.3774810880422592e-004</threshold> 12999 <left_val>0.1403687000274658</left_val> 13000 <right_val>-0.1180030032992363</right_val></_></_> 13001 <_> 13002 <!-- tree 70 --> 13003 <_> 13004 <!-- root node --> 13005 <feature> 13006 <rects> 13007 <_> 13008 5 9 15 2 -1.</_> 13009 <_> 13010 5 10 15 1 2.</_></rects> 13011 <tilted>0</tilted></feature> 13012 <threshold>0.0239578299224377</threshold> 13013 <left_val>0.0304707400500774</left_val> 13014 <right_val>-0.4615997970104218</right_val></_></_> 13015 <_> 13016 <!-- tree 71 --> 13017 <_> 13018 <!-- root node --> 13019 <feature> 13020 <rects> 13021 <_> 13022 8 16 6 2 -1.</_> 13023 <_> 13024 8 17 6 1 2.</_></rects> 13025 <tilted>0</tilted></feature> 13026 <threshold>-1.6239080578088760e-003</threshold> 13027 <left_val>0.2632707953453064</left_val> 13028 <right_val>-0.0567653700709343</right_val></_></_> 13029 <_> 13030 <!-- tree 72 --> 13031 <_> 13032 <!-- root node --> 13033 <feature> 13034 <rects> 13035 <_> 13036 9 16 10 2 -1.</_> 13037 <_> 13038 9 16 5 1 2.</_> 13039 <_> 13040 14 17 5 1 2.</_></rects> 13041 <tilted>0</tilted></feature> 13042 <threshold>-9.0819748584181070e-004</threshold> 13043 <left_val>0.1546245962381363</left_val> 13044 <right_val>-0.1108706966042519</right_val></_></_> 13045 <_> 13046 <!-- tree 73 --> 13047 <_> 13048 <!-- root node --> 13049 <feature> 13050 <rects> 13051 <_> 13052 9 17 2 2 -1.</_> 13053 <_> 13054 9 17 1 1 2.</_> 13055 <_> 13056 10 18 1 1 2.</_></rects> 13057 <tilted>0</tilted></feature> 13058 <threshold>3.9806248969398439e-004</threshold> 13059 <left_val>0.0556303709745407</left_val> 13060 <right_val>-0.2833195924758911</right_val></_></_> 13061 <_> 13062 <!-- tree 74 --> 13063 <_> 13064 <!-- root node --> 13065 <feature> 13066 <rects> 13067 <_> 13068 10 15 6 4 -1.</_> 13069 <_> 13070 10 15 3 2 2.</_> 13071 <_> 13072 13 17 3 2 2.</_></rects> 13073 <tilted>0</tilted></feature> 13074 <threshold>2.0506449509412050e-003</threshold> 13075 <left_val>-0.0916048362851143</left_val> 13076 <right_val>0.1758553981781006</right_val></_></_> 13077 <_> 13078 <!-- tree 75 --> 13079 <_> 13080 <!-- root node --> 13081 <feature> 13082 <rects> 13083 <_> 13084 4 5 15 12 -1.</_> 13085 <_> 13086 9 5 5 12 3.</_></rects> 13087 <tilted>0</tilted></feature> 13088 <threshold>0.0267425496131182</threshold> 13089 <left_val>0.0620030313730240</left_val> 13090 <right_val>-0.2448700070381165</right_val></_></_> 13091 <_> 13092 <!-- tree 76 --> 13093 <_> 13094 <!-- root node --> 13095 <feature> 13096 <rects> 13097 <_> 13098 11 13 2 3 -1.</_> 13099 <_> 13100 11 14 2 1 3.</_></rects> 13101 <tilted>0</tilted></feature> 13102 <threshold>-2.1497008856385946e-003</threshold> 13103 <left_val>0.2944929897785187</left_val> 13104 <right_val>-0.0532181486487389</right_val></_></_> 13105 <_> 13106 <!-- tree 77 --> 13107 <_> 13108 <!-- root node --> 13109 <feature> 13110 <rects> 13111 <_> 13112 8 13 7 3 -1.</_> 13113 <_> 13114 8 14 7 1 3.</_></rects> 13115 <tilted>0</tilted></feature> 13116 <threshold>5.6671658530831337e-003</threshold> 13117 <left_val>-0.0642982423305511</left_val> 13118 <right_val>0.2490568011999130</right_val></_></_> 13119 <_> 13120 <!-- tree 78 --> 13121 <_> 13122 <!-- root node --> 13123 <feature> 13124 <rects> 13125 <_> 13126 1 12 1 2 -1.</_> 13127 <_> 13128 1 13 1 1 2.</_></rects> 13129 <tilted>0</tilted></feature> 13130 <threshold>6.8317902332637459e-005</threshold> 13131 <left_val>-0.1681963056325913</left_val> 13132 <right_val>0.0965485796332359</right_val></_></_> 13133 <_> 13134 <!-- tree 79 --> 13135 <_> 13136 <!-- root node --> 13137 <feature> 13138 <rects> 13139 <_> 13140 16 18 2 2 -1.</_> 13141 <_> 13142 16 18 1 1 2.</_> 13143 <_> 13144 17 19 1 1 2.</_></rects> 13145 <tilted>0</tilted></feature> 13146 <threshold>1.7600439605303109e-004</threshold> 13147 <left_val>0.0653080120682716</left_val> 13148 <right_val>-0.2426788061857224</right_val></_></_> 13149 <_> 13150 <!-- tree 80 --> 13151 <_> 13152 <!-- root node --> 13153 <feature> 13154 <rects> 13155 <_> 13156 1 19 18 1 -1.</_> 13157 <_> 13158 7 19 6 1 3.</_></rects> 13159 <tilted>0</tilted></feature> 13160 <threshold>4.1861608624458313e-003</threshold> 13161 <left_val>-0.0979885831475258</left_val> 13162 <right_val>0.1805288940668106</right_val></_></_> 13163 <_> 13164 <!-- tree 81 --> 13165 <_> 13166 <!-- root node --> 13167 <feature> 13168 <rects> 13169 <_> 13170 1 17 6 1 -1.</_> 13171 <_> 13172 4 17 3 1 2.</_></rects> 13173 <tilted>0</tilted></feature> 13174 <threshold>-2.1808340679854155e-003</threshold> 13175 <left_val>0.1923127025365830</left_val> 13176 <right_val>-0.0941239297389984</right_val></_></_> 13177 <_> 13178 <!-- tree 82 --> 13179 <_> 13180 <!-- root node --> 13181 <feature> 13182 <rects> 13183 <_> 13184 1 3 1 12 -1.</_> 13185 <_> 13186 1 9 1 6 2.</_></rects> 13187 <tilted>0</tilted></feature> 13188 <threshold>0.0217304006218910</threshold> 13189 <left_val>0.0355785116553307</left_val> 13190 <right_val>-0.4508853852748871</right_val></_></_> 13191 <_> 13192 <!-- tree 83 --> 13193 <_> 13194 <!-- root node --> 13195 <feature> 13196 <rects> 13197 <_> 13198 0 9 3 6 -1.</_> 13199 <_> 13200 0 11 3 2 3.</_></rects> 13201 <tilted>0</tilted></feature> 13202 <threshold>-0.0147802699357271</threshold> 13203 <left_val>-0.4392701089382172</left_val> 13204 <right_val>0.0317355915904045</right_val></_></_> 13205 <_> 13206 <!-- tree 84 --> 13207 <_> 13208 <!-- root node --> 13209 <feature> 13210 <rects> 13211 <_> 13212 5 4 3 10 -1.</_> 13213 <_> 13214 6 4 1 10 3.</_></rects> 13215 <tilted>0</tilted></feature> 13216 <threshold>-3.6145891062915325e-003</threshold> 13217 <left_val>0.1981147974729538</left_val> 13218 <right_val>-0.0777014195919037</right_val></_></_> 13219 <_> 13220 <!-- tree 85 --> 13221 <_> 13222 <!-- root node --> 13223 <feature> 13224 <rects> 13225 <_> 13226 6 17 2 1 -1.</_> 13227 <_> 13228 7 17 1 1 2.</_></rects> 13229 <tilted>0</tilted></feature> 13230 <threshold>1.8892709631472826e-003</threshold> 13231 <left_val>0.0199624393135309</left_val> 13232 <right_val>-0.7204172015190125</right_val></_></_> 13233 <_> 13234 <!-- tree 86 --> 13235 <_> 13236 <!-- root node --> 13237 <feature> 13238 <rects> 13239 <_> 13240 1 0 6 12 -1.</_> 13241 <_> 13242 3 0 2 12 3.</_></rects> 13243 <tilted>0</tilted></feature> 13244 <threshold>-1.3822480104863644e-003</threshold> 13245 <left_val>0.0984669476747513</left_val> 13246 <right_val>-0.1488108038902283</right_val></_></_> 13247 <_> 13248 <!-- tree 87 --> 13249 <_> 13250 <!-- root node --> 13251 <feature> 13252 <rects> 13253 <_> 13254 4 7 9 2 -1.</_> 13255 <_> 13256 7 7 3 2 3.</_></rects> 13257 <tilted>0</tilted></feature> 13258 <threshold>-3.9505911991000175e-003</threshold> 13259 <left_val>0.1159323006868362</left_val> 13260 <right_val>-0.1279197037220001</right_val></_></_></trees> 13261 <stage_threshold>-0.9769343137741089</stage_threshold> 13262 <parent>20</parent> 13263 <next>-1</next></_> 13264 <_> 13265 <!-- stage 22 --> 13266 <trees> 13267 <_> 13268 <!-- tree 0 --> 13269 <_> 13270 <!-- root node --> 13271 <feature> 13272 <rects> 13273 <_> 13274 6 11 9 1 -1.</_> 13275 <_> 13276 9 11 3 1 3.</_></rects> 13277 <tilted>0</tilted></feature> 13278 <threshold>-0.0193955395370722</threshold> 13279 <left_val>0.4747475087642670</left_val> 13280 <right_val>-0.1172109022736549</right_val></_></_> 13281 <_> 13282 <!-- tree 1 --> 13283 <_> 13284 <!-- root node --> 13285 <feature> 13286 <rects> 13287 <_> 13288 17 10 2 10 -1.</_> 13289 <_> 13290 17 15 2 5 2.</_></rects> 13291 <tilted>0</tilted></feature> 13292 <threshold>0.0131189199164510</threshold> 13293 <left_val>-0.2555212974548340</left_val> 13294 <right_val>0.1637880057096481</right_val></_></_> 13295 <_> 13296 <!-- tree 2 --> 13297 <_> 13298 <!-- root node --> 13299 <feature> 13300 <rects> 13301 <_> 13302 4 10 2 10 -1.</_> 13303 <_> 13304 4 10 1 5 2.</_> 13305 <_> 13306 5 15 1 5 2.</_></rects> 13307 <tilted>0</tilted></feature> 13308 <threshold>-5.1606801571324468e-004</threshold> 13309 <left_val>0.1945261955261231</left_val> 13310 <right_val>-0.1744889020919800</right_val></_></_> 13311 <_> 13312 <!-- tree 3 --> 13313 <_> 13314 <!-- root node --> 13315 <feature> 13316 <rects> 13317 <_> 13318 12 3 3 12 -1.</_> 13319 <_> 13320 13 3 1 12 3.</_></rects> 13321 <tilted>0</tilted></feature> 13322 <threshold>-0.0131841599941254</threshold> 13323 <left_val>0.4418145120143890</left_val> 13324 <right_val>-0.0900487527251244</right_val></_></_> 13325 <_> 13326 <!-- tree 4 --> 13327 <_> 13328 <!-- root node --> 13329 <feature> 13330 <rects> 13331 <_> 13332 15 3 4 6 -1.</_> 13333 <_> 13334 15 3 2 3 2.</_> 13335 <_> 13336 17 6 2 3 2.</_></rects> 13337 <tilted>0</tilted></feature> 13338 <threshold>3.4657081123441458e-003</threshold> 13339 <left_val>-0.1347709000110626</left_val> 13340 <right_val>0.1805634051561356</right_val></_></_> 13341 <_> 13342 <!-- tree 5 --> 13343 <_> 13344 <!-- root node --> 13345 <feature> 13346 <rects> 13347 <_> 13348 12 8 3 3 -1.</_> 13349 <_> 13350 13 8 1 3 3.</_></rects> 13351 <tilted>0</tilted></feature> 13352 <threshold>6.2980200164020061e-003</threshold> 13353 <left_val>-0.0541649796068668</left_val> 13354 <right_val>0.3603338003158569</right_val></_></_> 13355 <_> 13356 <!-- tree 6 --> 13357 <_> 13358 <!-- root node --> 13359 <feature> 13360 <rects> 13361 <_> 13362 4 14 2 4 -1.</_> 13363 <_> 13364 4 16 2 2 2.</_></rects> 13365 <tilted>0</tilted></feature> 13366 <threshold>1.6879989998415112e-003</threshold> 13367 <left_val>-0.1999794989824295</left_val> 13368 <right_val>0.1202159970998764</right_val></_></_> 13369 <_> 13370 <!-- tree 7 --> 13371 <_> 13372 <!-- root node --> 13373 <feature> 13374 <rects> 13375 <_> 13376 6 16 1 3 -1.</_> 13377 <_> 13378 6 17 1 1 3.</_></rects> 13379 <tilted>0</tilted></feature> 13380 <threshold>3.6039709812030196e-004</threshold> 13381 <left_val>0.1052414029836655</left_val> 13382 <right_val>-0.2411606013774872</right_val></_></_> 13383 <_> 13384 <!-- tree 8 --> 13385 <_> 13386 <!-- root node --> 13387 <feature> 13388 <rects> 13389 <_> 13390 1 1 2 3 -1.</_> 13391 <_> 13392 2 1 1 3 2.</_></rects> 13393 <tilted>0</tilted></feature> 13394 <threshold>-1.5276849735528231e-003</threshold> 13395 <left_val>0.2813552916049957</left_val> 13396 <right_val>-0.0689648166298866</right_val></_></_> 13397 <_> 13398 <!-- tree 9 --> 13399 <_> 13400 <!-- root node --> 13401 <feature> 13402 <rects> 13403 <_> 13404 0 2 4 1 -1.</_> 13405 <_> 13406 2 2 2 1 2.</_></rects> 13407 <tilted>0</tilted></feature> 13408 <threshold>3.5033570602536201e-003</threshold> 13409 <left_val>-0.0825195834040642</left_val> 13410 <right_val>0.4071359038352966</right_val></_></_> 13411 <_> 13412 <!-- tree 10 --> 13413 <_> 13414 <!-- root node --> 13415 <feature> 13416 <rects> 13417 <_> 13418 8 17 12 3 -1.</_> 13419 <_> 13420 12 17 4 3 3.</_></rects> 13421 <tilted>0</tilted></feature> 13422 <threshold>-4.7337161377072334e-003</threshold> 13423 <left_val>0.1972700953483582</left_val> 13424 <right_val>-0.1171014010906220</right_val></_></_> 13425 <_> 13426 <!-- tree 11 --> 13427 <_> 13428 <!-- root node --> 13429 <feature> 13430 <rects> 13431 <_> 13432 9 16 6 4 -1.</_> 13433 <_> 13434 11 16 2 4 3.</_></rects> 13435 <tilted>0</tilted></feature> 13436 <threshold>-0.0115571497008204</threshold> 13437 <left_val>-0.5606111288070679</left_val> 13438 <right_val>0.0681709572672844</right_val></_></_> 13439 <_> 13440 <!-- tree 12 --> 13441 <_> 13442 <!-- root node --> 13443 <feature> 13444 <rects> 13445 <_> 13446 4 6 3 6 -1.</_> 13447 <_> 13448 4 9 3 3 2.</_></rects> 13449 <tilted>0</tilted></feature> 13450 <threshold>-0.0274457205086946</threshold> 13451 <left_val>0.4971862137317658</left_val> 13452 <right_val>-0.0623801499605179</right_val></_></_> 13453 <_> 13454 <!-- tree 13 --> 13455 <_> 13456 <!-- root node --> 13457 <feature> 13458 <rects> 13459 <_> 13460 6 2 12 9 -1.</_> 13461 <_> 13462 6 5 12 3 3.</_></rects> 13463 <tilted>0</tilted></feature> 13464 <threshold>-0.0528257787227631</threshold> 13465 <left_val>0.1692122071981430</left_val> 13466 <right_val>-0.1309355050325394</right_val></_></_> 13467 <_> 13468 <!-- tree 14 --> 13469 <_> 13470 <!-- root node --> 13471 <feature> 13472 <rects> 13473 <_> 13474 6 0 14 20 -1.</_> 13475 <_> 13476 6 0 7 10 2.</_> 13477 <_> 13478 13 10 7 10 2.</_></rects> 13479 <tilted>0</tilted></feature> 13480 <threshold>-0.2984969913959503</threshold> 13481 <left_val>-0.6464967131614685</left_val> 13482 <right_val>0.0400768183171749</right_val></_></_> 13483 <_> 13484 <!-- tree 15 --> 13485 <_> 13486 <!-- root node --> 13487 <feature> 13488 <rects> 13489 <_> 13490 15 16 2 2 -1.</_> 13491 <_> 13492 15 16 1 1 2.</_> 13493 <_> 13494 16 17 1 1 2.</_></rects> 13495 <tilted>0</tilted></feature> 13496 <threshold>-2.6307269581593573e-004</threshold> 13497 <left_val>0.2512794137001038</left_val> 13498 <right_val>-0.0894948393106461</right_val></_></_> 13499 <_> 13500 <!-- tree 16 --> 13501 <_> 13502 <!-- root node --> 13503 <feature> 13504 <rects> 13505 <_> 13506 15 16 2 2 -1.</_> 13507 <_> 13508 15 16 1 1 2.</_> 13509 <_> 13510 16 17 1 1 2.</_></rects> 13511 <tilted>0</tilted></feature> 13512 <threshold>2.3261709429789335e-004</threshold> 13513 <left_val>-0.0868439897894859</left_val> 13514 <right_val>0.2383197993040085</right_val></_></_> 13515 <_> 13516 <!-- tree 17 --> 13517 <_> 13518 <!-- root node --> 13519 <feature> 13520 <rects> 13521 <_> 13522 19 8 1 3 -1.</_> 13523 <_> 13524 19 9 1 1 3.</_></rects> 13525 <tilted>0</tilted></feature> 13526 <threshold>2.3631360090803355e-004</threshold> 13527 <left_val>0.1155446022748947</left_val> 13528 <right_val>-0.1893634945154190</right_val></_></_> 13529 <_> 13530 <!-- tree 18 --> 13531 <_> 13532 <!-- root node --> 13533 <feature> 13534 <rects> 13535 <_> 13536 13 4 1 2 -1.</_> 13537 <_> 13538 13 5 1 1 2.</_></rects> 13539 <tilted>0</tilted></feature> 13540 <threshold>2.0742209162563086e-003</threshold> 13541 <left_val>-0.0485948510468006</left_val> 13542 <right_val>0.5748599171638489</right_val></_></_> 13543 <_> 13544 <!-- tree 19 --> 13545 <_> 13546 <!-- root node --> 13547 <feature> 13548 <rects> 13549 <_> 13550 0 4 4 2 -1.</_> 13551 <_> 13552 0 5 4 1 2.</_></rects> 13553 <tilted>0</tilted></feature> 13554 <threshold>-7.0308889262378216e-003</threshold> 13555 <left_val>-0.5412080883979797</left_val> 13556 <right_val>0.0487437509000301</right_val></_></_> 13557 <_> 13558 <!-- tree 20 --> 13559 <_> 13560 <!-- root node --> 13561 <feature> 13562 <rects> 13563 <_> 13564 19 5 1 6 -1.</_> 13565 <_> 13566 19 7 1 2 3.</_></rects> 13567 <tilted>0</tilted></feature> 13568 <threshold>8.2652270793914795e-003</threshold> 13569 <left_val>0.0264945197850466</left_val> 13570 <right_val>-0.6172845959663391</right_val></_></_> 13571 <_> 13572 <!-- tree 21 --> 13573 <_> 13574 <!-- root node --> 13575 <feature> 13576 <rects> 13577 <_> 13578 16 0 2 1 -1.</_> 13579 <_> 13580 17 0 1 1 2.</_></rects> 13581 <tilted>0</tilted></feature> 13582 <threshold>2.0042760297656059e-004</threshold> 13583 <left_val>-0.1176863014698029</left_val> 13584 <right_val>0.1633386015892029</right_val></_></_> 13585