1 <?xml version="1.0"?> 2 <!-- 3 Stump-based 20x20 gentle adaboost frontal face detector. 4 Created by Rainer Lienhart. 5 6 //////////////////////////////////////////////////////////////////////////////////////// 7 8 IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 9 10 By downloading, copying, installing or using the software you agree to this license. 11 If you do not agree to this license, do not download, install, 12 copy or use the software. 13 14 15 Intel License Agreement 16 For Open Source Computer Vision Library 17 18 Copyright (C) 2000, Intel Corporation, all rights reserved. 19 Third party copyrights are property of their respective owners. 20 21 Redistribution and use in source and binary forms, with or without modification, 22 are permitted provided that the following conditions are met: 23 24 * Redistribution's of source code must retain the above copyright notice, 25 this list of conditions and the following disclaimer. 26 27 * Redistribution's in binary form must reproduce the above copyright notice, 28 this list of conditions and the following disclaimer in the documentation 29 and/or other materials provided with the distribution. 30 31 * The name of Intel Corporation may not be used to endorse or promote products 32 derived from this software without specific prior written permission. 33 34 This software is provided by the copyright holders and contributors "as is" and 35 any express or implied warranties, including, but not limited to, the implied 36 warranties of merchantability and fitness for a particular purpose are disclaimed. 37 In no event shall the Intel Corporation or contributors be liable for any direct, 38 indirect, incidental, special, exemplary, or consequential damages 39 (including, but not limited to, procurement of substitute goods or services; 40 loss of use, data, or profits; or business interruption) however caused 41 and on any theory of liability, whether in contract, strict liability, 42 or tort (including negligence or otherwise) arising in any way out of 43 the use of this software, even if advised of the possibility of such damage. 44 --> 45 <opencv_storage> 46 <haarcascade_frontalface_alt type_id="opencv-haar-classifier"> 47 <size>20 20</size> 48 <stages> 49 <_> 50 <!-- stage 0 --> 51 <trees> 52 <_> 53 <!-- tree 0 --> 54 <_> 55 <!-- root node --> 56 <feature> 57 <rects> 58 <_>3 7 14 4 -1.</_> 59 <_>3 9 14 2 2.</_></rects> 60 <tilted>0</tilted></feature> 61 <threshold>4.0141958743333817e-003</threshold> 62 <left_val>0.0337941907346249</left_val> 63 <right_val>0.8378106951713562</right_val></_></_> 64 <_> 65 <!-- tree 1 --> 66 <_> 67 <!-- root node --> 68 <feature> 69 <rects> 70 <_>1 2 18 4 -1.</_> 71 <_>7 2 6 4 3.</_></rects> 72 <tilted>0</tilted></feature> 73 <threshold>0.0151513395830989</threshold> 74 <left_val>0.1514132022857666</left_val> 75 <right_val>0.7488812208175659</right_val></_></_> 76 <_> 77 <!-- tree 2 --> 78 <_> 79 <!-- root node --> 80 <feature> 81 <rects> 82 <_>1 7 15 9 -1.</_> 83 <_>1 10 15 3 3.</_></rects> 84 <tilted>0</tilted></feature> 85 <threshold>4.2109931819140911e-003</threshold> 86 <left_val>0.0900492817163467</left_val> 87 <right_val>0.6374819874763489</right_val></_></_></trees> 88 <stage_threshold>0.8226894140243530</stage_threshold> 89 <parent>-1</parent> 90 <next>-1</next></_> 91 <_> 92 <!-- stage 1 --> 93 <trees> 94 <_> 95 <!-- tree 0 --> 96 <_> 97 <!-- root node --> 98 <feature> 99 <rects> 100 <_>5 6 2 6 -1.</_> 101 <_>5 9 2 3 2.</_></rects> 102 <tilted>0</tilted></feature> 103 <threshold>1.6227109590545297e-003</threshold> 104 <left_val>0.0693085864186287</left_val> 105 <right_val>0.7110946178436279</right_val></_></_> 106 <_> 107 <!-- tree 1 --> 108 <_> 109 <!-- root node --> 110 <feature> 111 <rects> 112 <_>7 5 6 3 -1.</_> 113 <_>9 5 2 3 3.</_></rects> 114 <tilted>0</tilted></feature> 115 <threshold>2.2906649392098188e-003</threshold> 116 <left_val>0.1795803010463715</left_val> 117 <right_val>0.6668692231178284</right_val></_></_> 118 <_> 119 <!-- tree 2 --> 120 <_> 121 <!-- root node --> 122 <feature> 123 <rects> 124 <_>4 0 12 9 -1.</_> 125 <_>4 3 12 3 3.</_></rects> 126 <tilted>0</tilted></feature> 127 <threshold>5.0025708042085171e-003</threshold> 128 <left_val>0.1693672984838486</left_val> 129 <right_val>0.6554006934165955</right_val></_></_> 130 <_> 131 <!-- tree 3 --> 132 <_> 133 <!-- root node --> 134 <feature> 135 <rects> 136 <_>6 9 10 8 -1.</_> 137 <_>6 13 10 4 2.</_></rects> 138 <tilted>0</tilted></feature> 139 <threshold>7.9659894108772278e-003</threshold> 140 <left_val>0.5866332054138184</left_val> 141 <right_val>0.0914145186543465</right_val></_></_> 142 <_> 143 <!-- tree 4 --> 144 <_> 145 <!-- root node --> 146 <feature> 147 <rects> 148 <_>3 6 14 8 -1.</_> 149 <_>3 10 14 4 2.</_></rects> 150 <tilted>0</tilted></feature> 151 <threshold>-3.5227010957896709e-003</threshold> 152 <left_val>0.1413166970014572</left_val> 153 <right_val>0.6031895875930786</right_val></_></_> 154 <_> 155 <!-- tree 5 --> 156 <_> 157 <!-- root node --> 158 <feature> 159 <rects> 160 <_>14 1 6 10 -1.</_> 161 <_>14 1 3 10 2.</_></rects> 162 <tilted>0</tilted></feature> 163 <threshold>0.0366676896810532</threshold> 164 <left_val>0.3675672113895416</left_val> 165 <right_val>0.7920318245887756</right_val></_></_> 166 <_> 167 <!-- tree 6 --> 168 <_> 169 <!-- root node --> 170 <feature> 171 <rects> 172 <_>7 8 5 12 -1.</_> 173 <_>7 12 5 4 3.</_></rects> 174 <tilted>0</tilted></feature> 175 <threshold>9.3361474573612213e-003</threshold> 176 <left_val>0.6161385774612427</left_val> 177 <right_val>0.2088509947061539</right_val></_></_> 178 <_> 179 <!-- tree 7 --> 180 <_> 181 <!-- root node --> 182 <feature> 183 <rects> 184 <_>1 1 18 3 -1.</_> 185 <_>7 1 6 3 3.</_></rects> 186 <tilted>0</tilted></feature> 187 <threshold>8.6961314082145691e-003</threshold> 188 <left_val>0.2836230993270874</left_val> 189 <right_val>0.6360273957252502</right_val></_></_> 190 <_> 191 <!-- tree 8 --> 192 <_> 193 <!-- root node --> 194 <feature> 195 <rects> 196 <_>1 8 17 2 -1.</_> 197 <_>1 9 17 1 2.</_></rects> 198 <tilted>0</tilted></feature> 199 <threshold>1.1488880263641477e-003</threshold> 200 <left_val>0.2223580926656723</left_val> 201 <right_val>0.5800700783729553</right_val></_></_> 202 <_> 203 <!-- tree 9 --> 204 <_> 205 <!-- root node --> 206 <feature> 207 <rects> 208 <_>16 6 4 2 -1.</_> 209 <_>16 7 4 1 2.</_></rects> 210 <tilted>0</tilted></feature> 211 <threshold>-2.1484689787030220e-003</threshold> 212 <left_val>0.2406464070081711</left_val> 213 <right_val>0.5787054896354675</right_val></_></_> 214 <_> 215 <!-- tree 10 --> 216 <_> 217 <!-- root node --> 218 <feature> 219 <rects> 220 <_>5 17 2 2 -1.</_> 221 <_>5 18 2 1 2.</_></rects> 222 <tilted>0</tilted></feature> 223 <threshold>2.1219060290604830e-003</threshold> 224 <left_val>0.5559654831886292</left_val> 225 <right_val>0.1362237036228180</right_val></_></_> 226 <_> 227 <!-- tree 11 --> 228 <_> 229 <!-- root node --> 230 <feature> 231 <rects> 232 <_>14 2 6 12 -1.</_> 233 <_>14 2 3 12 2.</_></rects> 234 <tilted>0</tilted></feature> 235 <threshold>-0.0939491465687752</threshold> 236 <left_val>0.8502737283706665</left_val> 237 <right_val>0.4717740118503571</right_val></_></_> 238 <_> 239 <!-- tree 12 --> 240 <_> 241 <!-- root node --> 242 <feature> 243 <rects> 244 <_>4 0 4 12 -1.</_> 245 <_>4 0 2 6 2.</_> 246 <_>6 6 2 6 2.</_></rects> 247 <tilted>0</tilted></feature> 248 <threshold>1.3777789426967502e-003</threshold> 249 <left_val>0.5993673801422119</left_val> 250 <right_val>0.2834529876708984</right_val></_></_> 251 <_> 252 <!-- tree 13 --> 253 <_> 254 <!-- root node --> 255 <feature> 256 <rects> 257 <_>2 11 18 8 -1.</_> 258 <_>8 11 6 8 3.</_></rects> 259 <tilted>0</tilted></feature> 260 <threshold>0.0730631574988365</threshold> 261 <left_val>0.4341886043548584</left_val> 262 <right_val>0.7060034275054932</right_val></_></_> 263 <_> 264 <!-- tree 14 --> 265 <_> 266 <!-- root node --> 267 <feature> 268 <rects> 269 <_>5 7 10 2 -1.</_> 270 <_>5 8 10 1 2.</_></rects> 271 <tilted>0</tilted></feature> 272 <threshold>3.6767389974556863e-004</threshold> 273 <left_val>0.3027887940406799</left_val> 274 <right_val>0.6051574945449829</right_val></_></_> 275 <_> 276 <!-- tree 15 --> 277 <_> 278 <!-- root node --> 279 <feature> 280 <rects> 281 <_>15 11 5 3 -1.</_> 282 <_>15 12 5 1 3.</_></rects> 283 <tilted>0</tilted></feature> 284 <threshold>-6.0479710809886456e-003</threshold> 285 <left_val>0.1798433959484100</left_val> 286 <right_val>0.5675256848335266</right_val></_></_></trees> 287 <stage_threshold>6.9566087722778320</stage_threshold> 288 <parent>0</parent> 289 <next>-1</next></_> 290 <_> 291 <!-- stage 2 --> 292 <trees> 293 <_> 294 <!-- tree 0 --> 295 <_> 296 <!-- root node --> 297 <feature> 298 <rects> 299 <_>5 3 10 9 -1.</_> 300 <_>5 6 10 3 3.</_></rects> 301 <tilted>0</tilted></feature> 302 <threshold>-0.0165106896311045</threshold> 303 <left_val>0.6644225120544434</left_val> 304 <right_val>0.1424857974052429</right_val></_></_> 305 <_> 306 <!-- tree 1 --> 307 <_> 308 <!-- root node --> 309 <feature> 310 <rects> 311 <_>9 4 2 14 -1.</_> 312 <_>9 11 2 7 2.</_></rects> 313 <tilted>0</tilted></feature> 314 <threshold>2.7052499353885651e-003</threshold> 315 <left_val>0.6325352191925049</left_val> 316 <right_val>0.1288477033376694</right_val></_></_> 317 <_> 318 <!-- tree 2 --> 319 <_> 320 <!-- root node --> 321 <feature> 322 <rects> 323 <_>3 5 4 12 -1.</_> 324 <_>3 9 4 4 3.</_></rects> 325 <tilted>0</tilted></feature> 326 <threshold>2.8069869149476290e-003</threshold> 327 <left_val>0.1240288019180298</left_val> 328 <right_val>0.6193193197250366</right_val></_></_> 329 <_> 330 <!-- tree 3 --> 331 <_> 332 <!-- root node --> 333 <feature> 334 <rects> 335 <_>4 5 12 5 -1.</_> 336 <_>8 5 4 5 3.</_></rects> 337 <tilted>0</tilted></feature> 338 <threshold>-1.5402400167658925e-003</threshold> 339 <left_val>0.1432143002748489</left_val> 340 <right_val>0.5670015811920166</right_val></_></_> 341 <_> 342 <!-- tree 4 --> 343 <_> 344 <!-- root node --> 345 <feature> 346 <rects> 347 <_>5 6 10 8 -1.</_> 348 <_>5 10 10 4 2.</_></rects> 349 <tilted>0</tilted></feature> 350 <threshold>-5.6386279175058007e-004</threshold> 351 <left_val>0.1657433062791824</left_val> 352 <right_val>0.5905207991600037</right_val></_></_> 353 <_> 354 <!-- tree 5 --> 355 <_> 356 <!-- root node --> 357 <feature> 358 <rects> 359 <_>8 0 6 9 -1.</_> 360 <_>8 3 6 3 3.</_></rects> 361 <tilted>0</tilted></feature> 362 <threshold>1.9253729842603207e-003</threshold> 363 <left_val>0.2695507109165192</left_val> 364 <right_val>0.5738824009895325</right_val></_></_> 365 <_> 366 <!-- tree 6 --> 367 <_> 368 <!-- root node --> 369 <feature> 370 <rects> 371 <_>9 12 1 8 -1.</_> 372 <_>9 16 1 4 2.</_></rects> 373 <tilted>0</tilted></feature> 374 <threshold>-5.0214841030538082e-003</threshold> 375 <left_val>0.1893538981676102</left_val> 376 <right_val>0.5782774090766907</right_val></_></_> 377 <_> 378 <!-- tree 7 --> 379 <_> 380 <!-- root node --> 381 <feature> 382 <rects> 383 <_>0 7 20 6 -1.</_> 384 <_>0 9 20 2 3.</_></rects> 385 <tilted>0</tilted></feature> 386 <threshold>2.6365420781075954e-003</threshold> 387 <left_val>0.2309329062700272</left_val> 388 <right_val>0.5695425868034363</right_val></_></_> 389 <_> 390 <!-- tree 8 --> 391 <_> 392 <!-- root node --> 393 <feature> 394 <rects> 395 <_>7 0 6 17 -1.</_> 396 <_>9 0 2 17 3.</_></rects> 397 <tilted>0</tilted></feature> 398 <threshold>-1.5127769438549876e-003</threshold> 399 <left_val>0.2759602069854736</left_val> 400 <right_val>0.5956642031669617</right_val></_></_> 401 <_> 402 <!-- tree 9 --> 403 <_> 404 <!-- root node --> 405 <feature> 406 <rects> 407 <_>9 0 6 4 -1.</_> 408 <_>11 0 2 4 3.</_></rects> 409 <tilted>0</tilted></feature> 410 <threshold>-0.0101574398577213</threshold> 411 <left_val>0.1732538044452667</left_val> 412 <right_val>0.5522047281265259</right_val></_></_> 413 <_> 414 <!-- tree 10 --> 415 <_> 416 <!-- root node --> 417 <feature> 418 <rects> 419 <_>5 1 6 4 -1.</_> 420 <_>7 1 2 4 3.</_></rects> 421 <tilted>0</tilted></feature> 422 <threshold>-0.0119536602869630</threshold> 423 <left_val>0.1339409947395325</left_val> 424 <right_val>0.5559014081954956</right_val></_></_> 425 <_> 426 <!-- tree 11 --> 427 <_> 428 <!-- root node --> 429 <feature> 430 <rects> 431 <_>12 1 6 16 -1.</_> 432 <_>14 1 2 16 3.</_></rects> 433 <tilted>0</tilted></feature> 434 <threshold>4.8859491944313049e-003</threshold> 435 <left_val>0.3628703951835632</left_val> 436 <right_val>0.6188849210739136</right_val></_></_> 437 <_> 438 <!-- tree 12 --> 439 <_> 440 <!-- root node --> 441 <feature> 442 <rects> 443 <_>0 5 18 8 -1.</_> 444 <_>0 5 9 4 2.</_> 445 <_>9 9 9 4 2.</_></rects> 446 <tilted>0</tilted></feature> 447 <threshold>-0.0801329165697098</threshold> 448 <left_val>0.0912110507488251</left_val> 449 <right_val>0.5475944876670837</right_val></_></_> 450 <_> 451 <!-- tree 13 --> 452 <_> 453 <!-- root node --> 454 <feature> 455 <rects> 456 <_>8 15 10 4 -1.</_> 457 <_>13 15 5 2 2.</_> 458 <_>8 17 5 2 2.</_></rects> 459 <tilted>0</tilted></feature> 460 <threshold>1.0643280111253262e-003</threshold> 461 <left_val>0.3715142905712128</left_val> 462 <right_val>0.5711399912834168</right_val></_></_> 463 <_> 464 <!-- tree 14 --> 465 <_> 466 <!-- root node --> 467 <feature> 468 <rects> 469 <_>3 1 4 8 -1.</_> 470 <_>3 1 2 4 2.</_> 471 <_>5 5 2 4 2.</_></rects> 472 <tilted>0</tilted></feature> 473 <threshold>-1.3419450260698795e-003</threshold> 474 <left_val>0.5953313708305359</left_val> 475 <right_val>0.3318097889423370</right_val></_></_> 476 <_> 477 <!-- tree 15 --> 478 <_> 479 <!-- root node --> 480 <feature> 481 <rects> 482 <_>3 6 14 10 -1.</_> 483 <_>10 6 7 5 2.</_> 484 <_>3 11 7 5 2.</_></rects> 485 <tilted>0</tilted></feature> 486 <threshold>-0.0546011403203011</threshold> 487 <left_val>0.1844065934419632</left_val> 488 <right_val>0.5602846145629883</right_val></_></_> 489 <_> 490 <!-- tree 16 --> 491 <_> 492 <!-- root node --> 493 <feature> 494 <rects> 495 <_>2 1 6 16 -1.</_> 496 <_>4 1 2 16 3.</_></rects> 497 <tilted>0</tilted></feature> 498 <threshold>2.9071690514683723e-003</threshold> 499 <left_val>0.3594244122505188</left_val> 500 <right_val>0.6131715178489685</right_val></_></_> 501 <_> 502 <!-- tree 17 --> 503 <_> 504 <!-- root node --> 505 <feature> 506 <rects> 507 <_>0 18 20 2 -1.</_> 508 <_>0 19 20 1 2.</_></rects> 509 <tilted>0</tilted></feature> 510 <threshold>7.4718717951327562e-004</threshold> 511 <left_val>0.5994353294372559</left_val> 512 <right_val>0.3459562957286835</right_val></_></_> 513 <_> 514 <!-- tree 18 --> 515 <_> 516 <!-- root node --> 517 <feature> 518 <rects> 519 <_>8 13 4 3 -1.</_> 520 <_>8 14 4 1 3.</_></rects> 521 <tilted>0</tilted></feature> 522 <threshold>4.3013808317482471e-003</threshold> 523 <left_val>0.4172652065753937</left_val> 524 <right_val>0.6990845203399658</right_val></_></_> 525 <_> 526 <!-- tree 19 --> 527 <_> 528 <!-- root node --> 529 <feature> 530 <rects> 531 <_>9 14 2 3 -1.</_> 532 <_>9 15 2 1 3.</_></rects> 533 <tilted>0</tilted></feature> 534 <threshold>4.5017572119832039e-003</threshold> 535 <left_val>0.4509715139865875</left_val> 536 <right_val>0.7801457047462463</right_val></_></_> 537 <_> 538 <!-- tree 20 --> 539 <_> 540 <!-- root node --> 541 <feature> 542 <rects> 543 <_>0 12 9 6 -1.</_> 544 <_>0 14 9 2 3.</_></rects> 545 <tilted>0</tilted></feature> 546 <threshold>0.0241385009139776</threshold> 547 <left_val>0.5438212752342224</left_val> 548 <right_val>0.1319826990365982</right_val></_></_></trees> 549 <stage_threshold>9.4985427856445313</stage_threshold> 550 <parent>1</parent> 551 <next>-1</next></_> 552 <_> 553 <!-- stage 3 --> 554 <trees> 555 <_> 556 <!-- tree 0 --> 557 <_> 558 <!-- root node --> 559 <feature> 560 <rects> 561 <_>5 7 3 4 -1.</_> 562 <_>5 9 3 2 2.</_></rects> 563 <tilted>0</tilted></feature> 564 <threshold>1.9212230108678341e-003</threshold> 565 <left_val>0.1415266990661621</left_val> 566 <right_val>0.6199870705604553</right_val></_></_> 567 <_> 568 <!-- tree 1 --> 569 <_> 570 <!-- root node --> 571 <feature> 572 <rects> 573 <_>9 3 2 16 -1.</_> 574 <_>9 11 2 8 2.</_></rects> 575 <tilted>0</tilted></feature> 576 <threshold>-1.2748669541906565e-004</threshold> 577 <left_val>0.6191074252128601</left_val> 578 <right_val>0.1884928941726685</right_val></_></_> 579 <_> 580 <!-- tree 2 --> 581 <_> 582 <!-- root node --> 583 <feature> 584 <rects> 585 <_>3 6 13 8 -1.</_> 586 <_>3 10 13 4 2.</_></rects> 587 <tilted>0</tilted></feature> 588 <threshold>5.1409931620582938e-004</threshold> 589 <left_val>0.1487396955490112</left_val> 590 <right_val>0.5857927799224854</right_val></_></_> 591 <_> 592 <!-- tree 3 --> 593 <_> 594 <!-- root node --> 595 <feature> 596 <rects> 597 <_>12 3 8 2 -1.</_> 598 <_>12 3 4 2 2.</_></rects> 599 <tilted>0</tilted></feature> 600 <threshold>4.1878609918057919e-003</threshold> 601 <left_val>0.2746909856796265</left_val> 602 <right_val>0.6359239816665649</right_val></_></_> 603 <_> 604 <!-- tree 4 --> 605 <_> 606 <!-- root node --> 607 <feature> 608 <rects> 609 <_>8 8 4 12 -1.</_> 610 <_>8 12 4 4 3.</_></rects> 611 <tilted>0</tilted></feature> 612 <threshold>5.1015717908740044e-003</threshold> 613 <left_val>0.5870851278305054</left_val> 614 <right_val>0.2175628989934921</right_val></_></_> 615 <_> 616 <!-- tree 5 --> 617 <_> 618 <!-- root node --> 619 <feature> 620 <rects> 621 <_>11 3 8 6 -1.</_> 622 <_>15 3 4 3 2.</_> 623 <_>11 6 4 3 2.</_></rects> 624 <tilted>0</tilted></feature> 625 <threshold>-2.1448440384119749e-003</threshold> 626 <left_val>0.5880944728851318</left_val> 627 <right_val>0.2979590892791748</right_val></_></_> 628 <_> 629 <!-- tree 6 --> 630 <_> 631 <!-- root node --> 632 <feature> 633 <rects> 634 <_>7 1 6 19 -1.</_> 635 <_>9 1 2 19 3.</_></rects> 636 <tilted>0</tilted></feature> 637 <threshold>-2.8977119363844395e-003</threshold> 638 <left_val>0.2373327016830444</left_val> 639 <right_val>0.5876647233963013</right_val></_></_> 640 <_> 641 <!-- tree 7 --> 642 <_> 643 <!-- root node --> 644 <feature> 645 <rects> 646 <_>9 0 6 4 -1.</_> 647 <_>11 0 2 4 3.</_></rects> 648 <tilted>0</tilted></feature> 649 <threshold>-0.0216106791049242</threshold> 650 <left_val>0.1220654994249344</left_val> 651 <right_val>0.5194202065467835</right_val></_></_> 652 <_> 653 <!-- tree 8 --> 654 <_> 655 <!-- root node --> 656 <feature> 657 <rects> 658 <_>3 1 9 3 -1.</_> 659 <_>6 1 3 3 3.</_></rects> 660 <tilted>0</tilted></feature> 661 <threshold>-4.6299318782985210e-003</threshold> 662 <left_val>0.2631230950355530</left_val> 663 <right_val>0.5817409157752991</right_val></_></_> 664 <_> 665 <!-- tree 9 --> 666 <_> 667 <!-- root node --> 668 <feature> 669 <rects> 670 <_>8 15 10 4 -1.</_> 671 <_>13 15 5 2 2.</_> 672 <_>8 17 5 2 2.</_></rects> 673 <tilted>0</tilted></feature> 674 <threshold>5.9393711853772402e-004</threshold> 675 <left_val>0.3638620078563690</left_val> 676 <right_val>0.5698544979095459</right_val></_></_> 677 <_> 678 <!-- tree 10 --> 679 <_> 680 <!-- root node --> 681 <feature> 682 <rects> 683 <_>0 3 6 10 -1.</_> 684 <_>3 3 3 10 2.</_></rects> 685 <tilted>0</tilted></feature> 686 <threshold>0.0538786612451077</threshold> 687 <left_val>0.4303531050682068</left_val> 688 <right_val>0.7559366226196289</right_val></_></_> 689 <_> 690 <!-- tree 11 --> 691 <_> 692 <!-- root node --> 693 <feature> 694 <rects> 695 <_>3 4 15 15 -1.</_> 696 <_>3 9 15 5 3.</_></rects> 697 <tilted>0</tilted></feature> 698 <threshold>1.8887349870055914e-003</threshold> 699 <left_val>0.2122603058815002</left_val> 700 <right_val>0.5613427162170410</right_val></_></_> 701 <_> 702 <!-- tree 12 --> 703 <_> 704 <!-- root node --> 705 <feature> 706 <rects> 707 <_>6 5 8 6 -1.</_> 708 <_>6 7 8 2 3.</_></rects> 709 <tilted>0</tilted></feature> 710 <threshold>-2.3635339457541704e-003</threshold> 711 <left_val>0.5631849169731140</left_val> 712 <right_val>0.2642767131328583</right_val></_></_> 713 <_> 714 <!-- tree 13 --> 715 <_> 716 <!-- root node --> 717 <feature> 718 <rects> 719 <_>4 4 12 10 -1.</_> 720 <_>10 4 6 5 2.</_> 721 <_>4 9 6 5 2.</_></rects> 722 <tilted>0</tilted></feature> 723 <threshold>0.0240177996456623</threshold> 724 <left_val>0.5797107815742493</left_val> 725 <right_val>0.2751705944538117</right_val></_></_> 726 <_> 727 <!-- tree 14 --> 728 <_> 729 <!-- root node --> 730 <feature> 731 <rects> 732 <_>6 4 4 4 -1.</_> 733 <_>8 4 2 4 2.</_></rects> 734 <tilted>0</tilted></feature> 735 <threshold>2.0543030404951423e-004</threshold> 736 <left_val>0.2705242037773132</left_val> 737 <right_val>0.5752568840980530</right_val></_></_> 738 <_> 739 <!-- tree 15 --> 740 <_> 741 <!-- root node --> 742 <feature> 743 <rects> 744 <_>15 11 1 2 -1.</_> 745 <_>15 12 1 1 2.</_></rects> 746 <tilted>0</tilted></feature> 747 <threshold>8.4790197433903813e-004</threshold> 748 <left_val>0.5435624718666077</left_val> 749 <right_val>0.2334876954555512</right_val></_></_> 750 <_> 751 <!-- tree 16 --> 752 <_> 753 <!-- root node --> 754 <feature> 755 <rects> 756 <_>3 11 2 2 -1.</_> 757 <_>3 12 2 1 2.</_></rects> 758 <tilted>0</tilted></feature> 759 <threshold>1.4091329649090767e-003</threshold> 760 <left_val>0.5319424867630005</left_val> 761 <right_val>0.2063155025243759</right_val></_></_> 762 <_> 763 <!-- tree 17 --> 764 <_> 765 <!-- root node --> 766 <feature> 767 <rects> 768 <_>16 11 1 3 -1.</_> 769 <_>16 12 1 1 3.</_></rects> 770 <tilted>0</tilted></feature> 771 <threshold>1.4642629539594054e-003</threshold> 772 <left_val>0.5418980717658997</left_val> 773 <right_val>0.3068861067295075</right_val></_></_> 774 <_> 775 <!-- tree 18 --> 776 <_> 777 <!-- root node --> 778 <feature> 779 <rects> 780 <_>3 15 6 4 -1.</_> 781 <_>3 15 3 2 2.</_> 782 <_>6 17 3 2 2.</_></rects> 783 <tilted>0</tilted></feature> 784 <threshold>1.6352549428120255e-003</threshold> 785 <left_val>0.3695372939109802</left_val> 786 <right_val>0.6112868189811707</right_val></_></_> 787 <_> 788 <!-- tree 19 --> 789 <_> 790 <!-- root node --> 791 <feature> 792 <rects> 793 <_>6 7 8 2 -1.</_> 794 <_>6 8 8 1 2.</_></rects> 795 <tilted>0</tilted></feature> 796 <threshold>8.3172752056270838e-004</threshold> 797 <left_val>0.3565036952495575</left_val> 798 <right_val>0.6025236248970032</right_val></_></_> 799 <_> 800 <!-- tree 20 --> 801 <_> 802 <!-- root node --> 803 <feature> 804 <rects> 805 <_>3 11 1 3 -1.</_> 806 <_>3 12 1 1 3.</_></rects> 807 <tilted>0</tilted></feature> 808 <threshold>-2.0998890977352858e-003</threshold> 809 <left_val>0.1913982033729553</left_val> 810 <right_val>0.5362827181816101</right_val></_></_> 811 <_> 812 <!-- tree 21 --> 813 <_> 814 <!-- root node --> 815 <feature> 816 <rects> 817 <_>6 0 12 2 -1.</_> 818 <_>6 1 12 1 2.</_></rects> 819 <tilted>0</tilted></feature> 820 <threshold>-7.4213981861248612e-004</threshold> 821 <left_val>0.3835555016994476</left_val> 822 <right_val>0.5529310107231140</right_val></_></_> 823 <_> 824 <!-- tree 22 --> 825 <_> 826 <!-- root node --> 827 <feature> 828 <rects> 829 <_>9 14 2 3 -1.</_> 830 <_>9 15 2 1 3.</_></rects> 831 <tilted>0</tilted></feature> 832 <threshold>3.2655049581080675e-003</threshold> 833 <left_val>0.4312896132469177</left_val> 834 <right_val>0.7101895809173584</right_val></_></_> 835 <_> 836 <!-- tree 23 --> 837 <_> 838 <!-- root node --> 839 <feature> 840 <rects> 841 <_>7 15 6 2 -1.</_> 842 <_>7 16 6 1 2.</_></rects> 843 <tilted>0</tilted></feature> 844 <threshold>8.9134991867467761e-004</threshold> 845 <left_val>0.3984830975532532</left_val> 846 <right_val>0.6391963958740234</right_val></_></_> 847 <_> 848 <!-- tree 24 --> 849 <_> 850 <!-- root node --> 851 <feature> 852 <rects> 853 <_>0 5 4 6 -1.</_> 854 <_>0 7 4 2 3.</_></rects> 855 <tilted>0</tilted></feature> 856 <threshold>-0.0152841797098517</threshold> 857 <left_val>0.2366732954978943</left_val> 858 <right_val>0.5433713793754578</right_val></_></_> 859 <_> 860 <!-- tree 25 --> 861 <_> 862 <!-- root node --> 863 <feature> 864 <rects> 865 <_>4 12 12 2 -1.</_> 866 <_>8 12 4 2 3.</_></rects> 867 <tilted>0</tilted></feature> 868 <threshold>4.8381411470472813e-003</threshold> 869 <left_val>0.5817500948905945</left_val> 870 <right_val>0.3239189088344574</right_val></_></_> 871 <_> 872 <!-- tree 26 --> 873 <_> 874 <!-- root node --> 875 <feature> 876 <rects> 877 <_>6 3 1 9 -1.</_> 878 <_>6 6 1 3 3.</_></rects> 879 <tilted>0</tilted></feature> 880 <threshold>-9.1093179071322083e-004</threshold> 881 <left_val>0.5540593862533569</left_val> 882 <right_val>0.2911868989467621</right_val></_></_> 883 <_> 884 <!-- tree 27 --> 885 <_> 886 <!-- root node --> 887 <feature> 888 <rects> 889 <_>10 17 3 2 -1.</_> 890 <_>11 17 1 2 3.</_></rects> 891 <tilted>0</tilted></feature> 892 <threshold>-6.1275060288608074e-003</threshold> 893 <left_val>0.1775255054235458</left_val> 894 <right_val>0.5196629166603088</right_val></_></_> 895 <_> 896 <!-- tree 28 --> 897 <_> 898 <!-- root node --> 899 <feature> 900 <rects> 901 <_>9 9 2 2 -1.</_> 902 <_>9 10 2 1 2.</_></rects> 903 <tilted>0</tilted></feature> 904 <threshold>-4.4576259097084403e-004</threshold> 905 <left_val>0.3024170100688934</left_val> 906 <right_val>0.5533593893051148</right_val></_></_> 907 <_> 908 <!-- tree 29 --> 909 <_> 910 <!-- root node --> 911 <feature> 912 <rects> 913 <_>7 6 6 4 -1.</_> 914 <_>9 6 2 4 3.</_></rects> 915 <tilted>0</tilted></feature> 916 <threshold>0.0226465407758951</threshold> 917 <left_val>0.4414930939674377</left_val> 918 <right_val>0.6975377202033997</right_val></_></_> 919 <_> 920 <!-- tree 30 --> 921 <_> 922 <!-- root node --> 923 <feature> 924 <rects> 925 <_>7 17 3 2 -1.</_> 926 <_>8 17 1 2 3.</_></rects> 927 <tilted>0</tilted></feature> 928 <threshold>-1.8804960418492556e-003</threshold> 929 <left_val>0.2791394889354706</left_val> 930 <right_val>0.5497952103614807</right_val></_></_> 931 <_> 932 <!-- tree 31 --> 933 <_> 934 <!-- root node --> 935 <feature> 936 <rects> 937 <_>10 17 3 3 -1.</_> 938 <_>11 17 1 3 3.</_></rects> 939 <tilted>0</tilted></feature> 940 <threshold>7.0889107882976532e-003</threshold> 941 <left_val>0.5263199210166931</left_val> 942 <right_val>0.2385547012090683</right_val></_></_> 943 <_> 944 <!-- tree 32 --> 945 <_> 946 <!-- root node --> 947 <feature> 948 <rects> 949 <_>8 12 3 2 -1.</_> 950 <_>8 13 3 1 2.</_></rects> 951 <tilted>0</tilted></feature> 952 <threshold>1.7318050377070904e-003</threshold> 953 <left_val>0.4319379031658173</left_val> 954 <right_val>0.6983600854873657</right_val></_></_> 955 <_> 956 <!-- tree 33 --> 957 <_> 958 <!-- root node --> 959 <feature> 960 <rects> 961 <_>9 3 6 2 -1.</_> 962 <_>11 3 2 2 3.</_></rects> 963 <tilted>0</tilted></feature> 964 <threshold>-6.8482700735330582e-003</threshold> 965 <left_val>0.3082042932510376</left_val> 966 <right_val>0.5390920042991638</right_val></_></_> 967 <_> 968 <!-- tree 34 --> 969 <_> 970 <!-- root node --> 971 <feature> 972 <rects> 973 <_>3 11 14 4 -1.</_> 974 <_>3 13 14 2 2.</_></rects> 975 <tilted>0</tilted></feature> 976 <threshold>-1.5062530110299122e-005</threshold> 977 <left_val>0.5521922111511231</left_val> 978 <right_val>0.3120366036891937</right_val></_></_> 979 <_> 980 <!-- tree 35 --> 981 <_> 982 <!-- root node --> 983 <feature> 984 <rects> 985 <_>1 10 18 4 -1.</_> 986 <_>10 10 9 2 2.</_> 987 <_>1 12 9 2 2.</_></rects> 988 <tilted>0</tilted></feature> 989 <threshold>0.0294755697250366</threshold> 990 <left_val>0.5401322841644287</left_val> 991 <right_val>0.1770603060722351</right_val></_></_> 992 <_> 993 <!-- tree 36 --> 994 <_> 995 <!-- root node --> 996 <feature> 997 <rects> 998 <_>0 10 3 3 -1.</_> 999 <_>0 11 3 1 3.</_></rects> 1000 <tilted>0</tilted></feature> 1001 <threshold>8.1387329846620560e-003</threshold> 1002 <left_val>0.5178617835044861</left_val> 1003 <right_val>0.1211019009351730</right_val></_></_> 1004 <_> 1005 <!-- tree 37 --> 1006 <_> 1007 <!-- root node --> 1008 <feature> 1009 <rects> 1010 <_>9 1 6 6 -1.</_> 1011 <_>11 1 2 6 3.</_></rects> 1012 <tilted>0</tilted></feature> 1013 <threshold>0.0209429506212473</threshold> 1014 <left_val>0.5290294289588928</left_val> 1015 <right_val>0.3311221897602081</right_val></_></_> 1016 <_> 1017 <!-- tree 38 --> 1018 <_> 1019 <!-- root node --> 1020 <feature> 1021 <rects> 1022 <_>8 7 3 6 -1.</_> 1023 <_>9 7 1 6 3.</_></rects> 1024 <tilted>0</tilted></feature> 1025 <threshold>-9.5665529370307922e-003</threshold> 1026 <left_val>0.7471994161605835</left_val> 1027 <right_val>0.4451968967914581</right_val></_></_></trees> 1028 <stage_threshold>18.4129695892333980</stage_threshold> 1029 <parent>2</parent> 1030 <next>-1</next></_> 1031 <_> 1032 <!-- stage 4 --> 1033 <trees> 1034 <_> 1035 <!-- tree 0 --> 1036 <_> 1037 <!-- root node --> 1038 <feature> 1039 <rects> 1040 <_>1 0 18 9 -1.</_> 1041 <_>1 3 18 3 3.</_></rects> 1042 <tilted>0</tilted></feature> 1043 <threshold>-2.8206960996612906e-004</threshold> 1044 <left_val>0.2064086049795151</left_val> 1045 <right_val>0.6076732277870178</right_val></_></_> 1046 <_> 1047 <!-- tree 1 --> 1048 <_> 1049 <!-- root node --> 1050 <feature> 1051 <rects> 1052 <_>12 10 2 6 -1.</_> 1053 <_>12 13 2 3 2.</_></rects> 1054 <tilted>0</tilted></feature> 1055 <threshold>1.6790600493550301e-003</threshold> 1056 <left_val>0.5851997137069702</left_val> 1057 <right_val>0.1255383938550949</right_val></_></_> 1058 <_> 1059 <!-- tree 2 --> 1060 <_> 1061 <!-- root node --> 1062 <feature> 1063 <rects> 1064 <_>0 5 19 8 -1.</_> 1065 <_>0 9 19 4 2.</_></rects> 1066 <tilted>0</tilted></feature> 1067 <threshold>6.9827912375330925e-004</threshold> 1068 <left_val>0.0940184295177460</left_val> 1069 <right_val>0.5728961229324341</right_val></_></_> 1070 <_> 1071 <!-- tree 3 --> 1072 <_> 1073 <!-- root node --> 1074 <feature> 1075 <rects> 1076 <_>7 0 6 9 -1.</_> 1077 <_>9 0 2 9 3.</_></rects> 1078 <tilted>0</tilted></feature> 1079 <threshold>7.8959012171253562e-004</threshold> 1080 <left_val>0.1781987994909287</left_val> 1081 <right_val>0.5694308876991272</right_val></_></_> 1082 <_> 1083 <!-- tree 4 --> 1084 <_> 1085 <!-- root node --> 1086 <feature> 1087 <rects> 1088 <_>5 3 6 1 -1.</_> 1089 <_>7 3 2 1 3.</_></rects> 1090 <tilted>0</tilted></feature> 1091 <threshold>-2.8560499195009470e-003</threshold> 1092 <left_val>0.1638399064540863</left_val> 1093 <right_val>0.5788664817810059</right_val></_></_> 1094 <_> 1095 <!-- tree 5 --> 1096 <_> 1097 <!-- root node --> 1098 <feature> 1099 <rects> 1100 <_>11 3 6 1 -1.</_> 1101 <_>13 3 2 1 3.</_></rects> 1102 <tilted>0</tilted></feature> 1103 <threshold>-3.8122469559311867e-003</threshold> 1104 <left_val>0.2085440009832382</left_val> 1105 <right_val>0.5508564710617065</right_val></_></_> 1106 <_> 1107 <!-- tree 6 --> 1108 <_> 1109 <!-- root node --> 1110 <feature> 1111 <rects> 1112 <_>5 10 4 6 -1.</_> 1113 <_>5 13 4 3 2.</_></rects> 1114 <tilted>0</tilted></feature> 1115 <threshold>1.5896620461717248e-003</threshold> 1116 <left_val>0.5702760815620422</left_val> 1117 <right_val>0.1857215017080307</right_val></_></_> 1118 <_> 1119 <!-- tree 7 --> 1120 <_> 1121 <!-- root node --> 1122 <feature> 1123 <rects> 1124 <_>11 3 6 1 -1.</_> 1125 <_>13 3 2 1 3.</_></rects> 1126 <tilted>0</tilted></feature> 1127 <threshold>0.0100783398374915</threshold> 1128 <left_val>0.5116943120956421</left_val> 1129 <right_val>0.2189770042896271</right_val></_></_> 1130 <_> 1131 <!-- tree 8 --> 1132 <_> 1133 <!-- root node --> 1134 <feature> 1135 <rects> 1136 <_>4 4 12 6 -1.</_> 1137 <_>4 6 12 2 3.</_></rects> 1138 <tilted>0</tilted></feature> 1139 <threshold>-0.0635263025760651</threshold> 1140 <left_val>0.7131379842758179</left_val> 1141 <right_val>0.4043813049793243</right_val></_></_> 1142 <_> 1143 <!-- tree 9 --> 1144 <_> 1145 <!-- root node --> 1146 <feature> 1147 <rects> 1148 <_>15 12 2 6 -1.</_> 1149 <_>15 14 2 2 3.</_></rects> 1150 <tilted>0</tilted></feature> 1151 <threshold>-9.1031491756439209e-003</threshold> 1152 <left_val>0.2567181885242462</left_val> 1153 <right_val>0.5463973283767700</right_val></_></_> 1154 <_> 1155 <!-- tree 10 --> 1156 <_> 1157 <!-- root node --> 1158 <feature> 1159 <rects> 1160 <_>9 3 2 2 -1.</_> 1161 <_>10 3 1 2 2.</_></rects> 1162 <tilted>0</tilted></feature> 1163 <threshold>-2.4035000242292881e-003</threshold> 1164 <left_val>0.1700665950775147</left_val> 1165 <right_val>0.5590974092483521</right_val></_></_> 1166 <_> 1167 <!-- tree 11 --> 1168 <_> 1169 <!-- root node --> 1170 <feature> 1171 <rects> 1172 <_>9 3 3 1 -1.</_> 1173 <_>10 3 1 1 3.</_></rects> 1174 <tilted>0</tilted></feature> 1175 <threshold>1.5226360410451889e-003</threshold> 1176 <left_val>0.5410556793212891</left_val> 1177 <right_val>0.2619054019451141</right_val></_></_> 1178 <_> 1179 <!-- tree 12 --> 1180 <_> 1181 <!-- root node --> 1182 <feature> 1183 <rects> 1184 <_>1 1 4 14 -1.</_> 1185 <_>3 1 2 14 2.</_></rects> 1186 <tilted>0</tilted></feature> 1187 <threshold>0.0179974399507046</threshold> 1188 <left_val>0.3732436895370483</left_val> 1189 <right_val>0.6535220742225647</right_val></_></_> 1190 <_> 1191 <!-- tree 13 --> 1192 <_> 1193 <!-- root node --> 1194 <feature> 1195 <rects> 1196 <_>9 0 4 4 -1.</_> 1197 <_>11 0 2 2 2.</_> 1198 <_>9 2 2 2 2.</_></rects> 1199 <tilted>0</tilted></feature> 1200 <threshold>-6.4538191072642803e-003</threshold> 1201 <left_val>0.2626481950283051</left_val> 1202 <right_val>0.5537446141242981</right_val></_></_> 1203 <_> 1204 <!-- tree 14 --> 1205 <_> 1206 <!-- root node --> 1207 <feature> 1208 <rects> 1209 <_>7 5 1 14 -1.</_> 1210 <_>7 12 1 7 2.</_></rects> 1211 <tilted>0</tilted></feature> 1212 <threshold>-0.0118807600811124</threshold> 1213 <left_val>0.2003753930330277</left_val> 1214 <right_val>0.5544745922088623</right_val></_></_> 1215 <_> 1216 <!-- tree 15 --> 1217 <_> 1218 <!-- root node --> 1219 <feature> 1220 <rects> 1221 <_>19 0 1 4 -1.</_> 1222 <_>19 2 1 2 2.</_></rects> 1223 <tilted>0</tilted></feature> 1224 <threshold>1.2713660253211856e-003</threshold> 1225 <left_val>0.5591902732849121</left_val> 1226 <right_val>0.3031975924968720</right_val></_></_> 1227 <_> 1228 <!-- tree 16 --> 1229 <_> 1230 <!-- root node --> 1231 <feature> 1232 <rects> 1233 <_>5 5 6 4 -1.</_> 1234 <_>8 5 3 4 2.</_></rects> 1235 <tilted>0</tilted></feature> 1236 <threshold>1.1376109905540943e-003</threshold> 1237 <left_val>0.2730407118797302</left_val> 1238 <right_val>0.5646508932113648</right_val></_></_> 1239 <_> 1240 <!-- tree 17 --> 1241 <_> 1242 <!-- root node --> 1243 <feature> 1244 <rects> 1245 <_>9 18 3 2 -1.</_> 1246 <_>10 18 1 2 3.</_></rects> 1247 <tilted>0</tilted></feature> 1248 <threshold>-4.2651998810470104e-003</threshold> 1249 <left_val>0.1405909061431885</left_val> 1250 <right_val>0.5461820960044861</right_val></_></_> 1251 <_> 1252 <!-- tree 18 --> 1253 <_> 1254 <!-- root node --> 1255 <feature> 1256 <rects> 1257 <_>8 18 3 2 -1.</_> 1258 <_>9 18 1 2 3.</_></rects> 1259 <tilted>0</tilted></feature> 1260 <threshold>-2.9602861031889915e-003</threshold> 1261 <left_val>0.1795035004615784</left_val> 1262 <right_val>0.5459290146827698</right_val></_></_> 1263 <_> 1264 <!-- tree 19 --> 1265 <_> 1266 <!-- root node --> 1267 <feature> 1268 <rects> 1269 <_>4 5 12 6 -1.</_> 1270 <_>4 7 12 2 3.</_></rects> 1271 <tilted>0</tilted></feature> 1272 <threshold>-8.8448226451873779e-003</threshold> 1273 <left_val>0.5736783146858215</left_val> 1274 <right_val>0.2809219956398010</right_val></_></_> 1275 <_> 1276 <!-- tree 20 --> 1277 <_> 1278 <!-- root node --> 1279 <feature> 1280 <rects> 1281 <_>3 12 2 6 -1.</_> 1282 <_>3 14 2 2 3.</_></rects> 1283 <tilted>0</tilted></feature> 1284 <threshold>-6.6430689767003059e-003</threshold> 1285 <left_val>0.2370675951242447</left_val> 1286 <right_val>0.5503826141357422</right_val></_></_> 1287 <_> 1288 <!-- tree 21 --> 1289 <_> 1290 <!-- root node --> 1291 <feature> 1292 <rects> 1293 <_>10 8 2 12 -1.</_> 1294 <_>10 12 2 4 3.</_></rects> 1295 <tilted>0</tilted></feature> 1296 <threshold>3.9997808635234833e-003</threshold> 1297 <left_val>0.5608199834823608</left_val> 1298 <right_val>0.3304282128810883</right_val></_></_> 1299 <_> 1300 <!-- tree 22 --> 1301 <_> 1302 <!-- root node --> 1303 <feature> 1304 <rects> 1305 <_>7 18 3 2 -1.</_> 1306 <_>8 18 1 2 3.</_></rects> 1307 <tilted>0</tilted></feature> 1308 <threshold>-4.1221720166504383e-003</threshold> 1309 <left_val>0.1640105992555618</left_val> 1310 <right_val>0.5378993153572083</right_val></_></_> 1311 <_> 1312 <!-- tree 23 --> 1313 <_> 1314 <!-- root node --> 1315 <feature> 1316 <rects> 1317 <_>9 0 6 2 -1.</_> 1318 <_>11 0 2 2 3.</_></rects> 1319 <tilted>0</tilted></feature> 1320 <threshold>0.0156249096617103</threshold> 1321 <left_val>0.5227649211883545</left_val> 1322 <right_val>0.2288603931665421</right_val></_></_> 1323 <_> 1324 <!-- tree 24 --> 1325 <_> 1326 <!-- root node --> 1327 <feature> 1328 <rects> 1329 <_>5 11 9 3 -1.</_> 1330 <_>5 12 9 1 3.</_></rects> 1331 <tilted>0</tilted></feature> 1332 <threshold>-0.0103564197197557</threshold> 1333 <left_val>0.7016193866729736</left_val> 1334 <right_val>0.4252927899360657</right_val></_></_> 1335 <_> 1336 <!-- tree 25 --> 1337 <_> 1338 <!-- root node --> 1339 <feature> 1340 <rects> 1341 <_>9 0 6 2 -1.</_> 1342 <_>11 0 2 2 3.</_></rects> 1343 <tilted>0</tilted></feature> 1344 <threshold>-8.7960809469223022e-003</threshold> 1345 <left_val>0.2767347097396851</left_val> 1346 <right_val>0.5355830192565918</right_val></_></_> 1347 <_> 1348 <!-- tree 26 --> 1349 <_> 1350 <!-- root node --> 1351 <feature> 1352 <rects> 1353 <_>1 1 18 5 -1.</_> 1354 <_>7 1 6 5 3.</_></rects> 1355 <tilted>0</tilted></feature> 1356 <threshold>0.1622693985700607</threshold> 1357 <left_val>0.4342240095138550</left_val> 1358 <right_val>0.7442579269409180</right_val></_></_> 1359 <_> 1360 <!-- tree 27 --> 1361 <_> 1362 <!-- root node --> 1363 <feature> 1364 <rects> 1365 <_>8 0 4 4 -1.</_> 1366 <_>10 0 2 2 2.</_> 1367 <_>8 2 2 2 2.</_></rects> 1368 <tilted>0</tilted></feature> 1369 <threshold>4.5542530715465546e-003</threshold> 1370 <left_val>0.5726485848426819</left_val> 1371 <right_val>0.2582125067710877</right_val></_></_> 1372 <_> 1373 <!-- tree 28 --> 1374 <_> 1375 <!-- root node --> 1376 <feature> 1377 <rects> 1378 <_>3 12 1 3 -1.</_> 1379 <_>3 13 1 1 3.</_></rects> 1380 <tilted>0</tilted></feature> 1381 <threshold>-2.1309209987521172e-003</threshold> 1382 <left_val>0.2106848061084747</left_val> 1383 <right_val>0.5361018776893616</right_val></_></_> 1384 <_> 1385 <!-- tree 29 --> 1386 <_> 1387 <!-- root node --> 1388 <feature> 1389 <rects> 1390 <_>8 14 5 3 -1.</_> 1391 <_>8 15 5 1 3.</_></rects> 1392 <tilted>0</tilted></feature> 1393 <threshold>-0.0132084200158715</threshold> 1394 <left_val>0.7593790888786316</left_val> 1395 <right_val>0.4552468061447144</right_val></_></_> 1396 <_> 1397 <!-- tree 30 --> 1398 <_> 1399 <!-- root node --> 1400 <feature> 1401 <rects> 1402 <_>5 4 10 12 -1.</_> 1403 <_>5 4 5 6 2.</_> 1404 <_>10 10 5 6 2.</_></rects> 1405 <tilted>0</tilted></feature> 1406 <threshold>-0.0659966766834259</threshold> 1407 <left_val>0.1252475976943970</left_val> 1408 <right_val>0.5344039797782898</right_val></_></_> 1409 <_> 1410 <!-- tree 31 --> 1411 <_> 1412 <!-- root node --> 1413 <feature> 1414 <rects> 1415 <_>9 6 9 12 -1.</_> 1416 <_>9 10 9 4 3.</_></rects> 1417 <tilted>0</tilted></feature> 1418 <threshold>7.9142656177282333e-003</threshold> 1419 <left_val>0.3315384089946747</left_val> 1420 <right_val>0.5601043105125427</right_val></_></_> 1421 <_> 1422 <!-- tree 32 --> 1423 <_> 1424 <!-- root node --> 1425 <feature> 1426 <rects> 1427 <_>2 2 12 14 -1.</_> 1428 <_>2 2 6 7 2.</_> 1429 <_>8 9 6 7 2.</_></rects> 1430 <tilted>0</tilted></feature> 1431 <threshold>0.0208942797034979</threshold> 1432 <left_val>0.5506049990653992</left_val> 1433 <right_val>0.2768838107585907</right_val></_></_></trees> 1434 <stage_threshold>15.3241395950317380</stage_threshold> 1435 <parent>3</parent> 1436 <next>-1</next></_> 1437 <_> 1438 <!-- stage 5 --> 1439 <trees> 1440 <_> 1441 <!-- tree 0 --> 1442 <_> 1443 <!-- root node --> 1444 <feature> 1445 <rects> 1446 <_>4 7 12 2 -1.</_> 1447 <_>8 7 4 2 3.</_></rects> 1448 <tilted>0</tilted></feature> 1449 <threshold>1.1961159761995077e-003</threshold> 1450 <left_val>0.1762690991163254</left_val> 1451 <right_val>0.6156241297721863</right_val></_></_> 1452 <_> 1453 <!-- tree 1 --> 1454 <_> 1455 <!-- root node --> 1456 <feature> 1457 <rects> 1458 <_>7 4 6 4 -1.</_> 1459 <_>7 6 6 2 2.</_></rects> 1460 <tilted>0</tilted></feature> 1461 <threshold>-1.8679830245673656e-003</threshold> 1462 <left_val>0.6118106842041016</left_val> 1463 <right_val>0.1832399964332581</right_val></_></_> 1464 <_> 1465 <!-- tree 2 --> 1466 <_> 1467 <!-- root node --> 1468 <feature> 1469 <rects> 1470 <_>4 5 11 8 -1.</_> 1471 <_>4 9 11 4 2.</_></rects> 1472 <tilted>0</tilted></feature> 1473 <threshold>-1.9579799845814705e-004</threshold> 1474 <left_val>0.0990442633628845</left_val> 1475 <right_val>0.5723816156387329</right_val></_></_> 1476 <_> 1477 <!-- tree 3 --> 1478 <_> 1479 <!-- root node --> 1480 <feature> 1481 <rects> 1482 <_>3 10 16 4 -1.</_> 1483 <_>3 12 16 2 2.</_></rects> 1484 <tilted>0</tilted></feature> 1485 <threshold>-8.0255657667294145e-004</threshold> 1486 <left_val>0.5579879879951477</left_val> 1487 <right_val>0.2377282977104187</right_val></_></_> 1488 <_> 1489 <!-- tree 4 --> 1490 <_> 1491 <!-- root node --> 1492 <feature> 1493 <rects> 1494 <_>0 0 16 2 -1.</_> 1495 <_>0 1 16 1 2.</_></rects> 1496 <tilted>0</tilted></feature> 1497 <threshold>-2.4510810617357492e-003</threshold> 1498 <left_val>0.2231457978487015</left_val> 1499 <right_val>0.5858935117721558</right_val></_></_> 1500 <_> 1501 <!-- tree 5 --> 1502 <_> 1503 <!-- root node --> 1504 <feature> 1505 <rects> 1506 <_>7 5 6 2 -1.</_> 1507 <_>9 5 2 2 3.</_></rects> 1508 <tilted>0</tilted></feature> 1509 <threshold>5.0361850298941135e-004</threshold> 1510 <left_val>0.2653993964195252</left_val> 1511 <right_val>0.5794103741645813</right_val></_></_> 1512 <_> 1513 <!-- tree 6 --> 1514 <_> 1515 <!-- root node --> 1516 <feature> 1517 <rects> 1518 <_>3 2 6 10 -1.</_> 1519 <_>3 2 3 5 2.</_> 1520 <_>6 7 3 5 2.</_></rects> 1521 <tilted>0</tilted></feature> 1522 <threshold>4.0293349884450436e-003</threshold> 1523 <left_val>0.5803827047348023</left_val> 1524 <right_val>0.2484865039587021</right_val></_></_> 1525 <_> 1526 <!-- tree 7 --> 1527 <_> 1528 <!-- root node --> 1529 <feature> 1530 <rects> 1531 <_>10 5 8 15 -1.</_> 1532 <_>10 10 8 5 3.</_></rects> 1533 <tilted>0</tilted></feature> 1534 <threshold>-0.0144517095759511</threshold> 1535 <left_val>0.1830351948738098</left_val> 1536 <right_val>0.5484204888343811</right_val></_></_> 1537 <_> 1538 <!-- tree 8 --> 1539 <_> 1540 <!-- root node --> 1541 <feature> 1542 <rects> 1543 <_>3 14 8 6 -1.</_> 1544 <_>3 14 4 3 2.</_> 1545 <_>7 17 4 3 2.</_></rects> 1546 <tilted>0</tilted></feature> 1547 <threshold>2.0380979403853416e-003</threshold> 1548 <left_val>0.3363558948040009</left_val> 1549 <right_val>0.6051092743873596</right_val></_></_> 1550 <_> 1551 <!-- tree 9 --> 1552 <_> 1553 <!-- root node --> 1554 <feature> 1555 <rects> 1556 <_>14 2 2 2 -1.</_> 1557 <_>14 3 2 1 2.</_></rects> 1558 <tilted>0</tilted></feature> 1559 <threshold>-1.6155190533027053e-003</threshold> 1560 <left_val>0.2286642044782639</left_val> 1561 <right_val>0.5441246032714844</right_val></_></_> 1562 <_> 1563 <!-- tree 10 --> 1564 <_> 1565 <!-- root node --> 1566 <feature> 1567 <rects> 1568 <_>1 10 7 6 -1.</_> 1569 <_>1 13 7 3 2.</_></rects> 1570 <tilted>0</tilted></feature> 1571 <threshold>3.3458340913057327e-003</threshold> 1572 <left_val>0.5625913143157959</left_val> 1573 <right_val>0.2392338067293167</right_val></_></_> 1574 <_> 1575 <!-- tree 11 --> 1576 <_> 1577 <!-- root node --> 1578 <feature> 1579 <rects> 1580 <_>15 4 4 3 -1.</_> 1581 <_>15 4 2 3 2.</_></rects> 1582 <tilted>0</tilted></feature> 1583 <threshold>1.6379579901695251e-003</threshold> 1584 <left_val>0.3906993865966797</left_val> 1585 <right_val>0.5964621901512146</right_val></_></_> 1586 <_> 1587 <!-- tree 12 --> 1588 <_> 1589 <!-- root node --> 1590 <feature> 1591 <rects> 1592 <_>2 9 14 6 -1.</_> 1593 <_>2 9 7 3 2.</_> 1594 <_>9 12 7 3 2.</_></rects> 1595 <tilted>0</tilted></feature> 1596 <threshold>0.0302512105554342</threshold> 1597 <left_val>0.5248482227325440</left_val> 1598 <right_val>0.1575746983289719</right_val></_></_> 1599 <_> 1600 <!-- tree 13 --> 1601 <_> 1602 <!-- root node --> 1603 <feature> 1604 <rects> 1605 <_>5 7 10 4 -1.</_> 1606 <_>5 9 10 2 2.</_></rects> 1607 <tilted>0</tilted></feature> 1608 <threshold>0.0372519902884960</threshold> 1609 <left_val>0.4194310903549194</left_val> 1610 <right_val>0.6748418807983398</right_val></_></_> 1611 <_> 1612 <!-- tree 14 --> 1613 <_> 1614 <!-- root node --> 1615 <feature> 1616 <rects> 1617 <_>6 9 8 8 -1.</_> 1618 <_>6 9 4 4 2.</_> 1619 <_>10 13 4 4 2.</_></rects> 1620 <tilted>0</tilted></feature> 1621 <threshold>-0.0251097902655602</threshold> 1622 <left_val>0.1882549971342087</left_val> 1623 <right_val>0.5473451018333435</right_val></_></_> 1624 <_> 1625 <!-- tree 15 --> 1626 <_> 1627 <!-- root node --> 1628 <feature> 1629 <rects> 1630 <_>14 1 3 2 -1.</_> 1631 <_>14 2 3 1 2.</_></rects> 1632 <tilted>0</tilted></feature> 1633 <threshold>-5.3099058568477631e-003</threshold> 1634 <left_val>0.1339973062276840</left_val> 1635 <right_val>0.5227110981941223</right_val></_></_> 1636 <_> 1637 <!-- tree 16 --> 1638 <_> 1639 <!-- root node --> 1640 <feature> 1641 <rects> 1642 <_>1 4 4 2 -1.</_> 1643 <_>3 4 2 2 2.</_></rects> 1644 <tilted>0</tilted></feature> 1645 <threshold>1.2086479691788554e-003</threshold> 1646 <left_val>0.3762088119983673</left_val> 1647 <right_val>0.6109635829925537</right_val></_></_> 1648 <_> 1649 <!-- tree 17 --> 1650 <_> 1651 <!-- root node --> 1652 <feature> 1653 <rects> 1654 <_>11 10 2 8 -1.</_> 1655 <_>11 14 2 4 2.</_></rects> 1656 <tilted>0</tilted></feature> 1657 <threshold>-0.0219076797366142</threshold> 1658 <left_val>0.2663142979145050</left_val> 1659 <right_val>0.5404006838798523</right_val></_></_> 1660 <_> 1661 <!-- tree 18 --> 1662 <_> 1663 <!-- root node --> 1664 <feature> 1665 <rects> 1666 <_>0 0 5 3 -1.</_> 1667 <_>0 1 5 1 3.</_></rects> 1668 <tilted>0</tilted></feature> 1669 <threshold>5.4116579703986645e-003</threshold> 1670 <left_val>0.5363578796386719</left_val> 1671 <right_val>0.2232273072004318</right_val></_></_> 1672 <_> 1673 <!-- tree 19 --> 1674 <_> 1675 <!-- root node --> 1676 <feature> 1677 <rects> 1678 <_>2 5 18 8 -1.</_> 1679 <_>11 5 9 4 2.</_> 1680 <_>2 9 9 4 2.</_></rects> 1681 <tilted>0</tilted></feature> 1682 <threshold>0.0699463263154030</threshold> 1683 <left_val>0.5358232855796814</left_val> 1684 <right_val>0.2453698068857193</right_val></_></_> 1685 <_> 1686 <!-- tree 20 --> 1687 <_> 1688 <!-- root node --> 1689 <feature> 1690 <rects> 1691 <_>6 6 1 6 -1.</_> 1692 <_>6 9 1 3 2.</_></rects> 1693 <tilted>0</tilted></feature> 1694 <threshold>3.4520021290518343e-004</threshold> 1695 <left_val>0.2409671992063522</left_val> 1696 <right_val>0.5376930236816406</right_val></_></_> 1697 <_> 1698 <!-- tree 21 --> 1699 <_> 1700 <!-- root node --> 1701 <feature> 1702 <rects> 1703 <_>19 1 1 3 -1.</_> 1704 <_>19 2 1 1 3.</_></rects> 1705 <tilted>0</tilted></feature> 1706 <threshold>1.2627709656953812e-003</threshold> 1707 <left_val>0.5425856709480286</left_val> 1708 <right_val>0.3155693113803864</right_val></_></_> 1709 <_> 1710 <!-- tree 22 --> 1711 <_> 1712 <!-- root node --> 1713 <feature> 1714 <rects> 1715 <_>7 6 6 6 -1.</_> 1716 <_>9 6 2 6 3.</_></rects> 1717 <tilted>0</tilted></feature> 1718 <threshold>0.0227195098996162</threshold> 1719 <left_val>0.4158405959606171</left_val> 1720 <right_val>0.6597865223884583</right_val></_></_> 1721 <_> 1722 <!-- tree 23 --> 1723 <_> 1724 <!-- root node --> 1725 <feature> 1726 <rects> 1727 <_>19 1 1 3 -1.</_> 1728 <_>19 2 1 1 3.</_></rects> 1729 <tilted>0</tilted></feature> 1730 <threshold>-1.8111000536009669e-003</threshold> 1731 <left_val>0.2811253070831299</left_val> 1732 <right_val>0.5505244731903076</right_val></_></_> 1733 <_> 1734 <!-- tree 24 --> 1735 <_> 1736 <!-- root node --> 1737 <feature> 1738 <rects> 1739 <_>3 13 2 3 -1.</_> 1740 <_>3 14 2 1 3.</_></rects> 1741 <tilted>0</tilted></feature> 1742 <threshold>3.3469670452177525e-003</threshold> 1743 <left_val>0.5260028243064880</left_val> 1744 <right_val>0.1891465038061142</right_val></_></_> 1745 <_> 1746 <!-- tree 25 --> 1747 <_> 1748 <!-- root node --> 1749 <feature> 1750 <rects> 1751 <_>8 4 8 12 -1.</_> 1752 <_>12 4 4 6 2.</_> 1753 <_>8 10 4 6 2.</_></rects> 1754 <tilted>0</tilted></feature> 1755 <threshold>4.0791751234792173e-004</threshold> 1756 <left_val>0.5673509240150452</left_val> 1757 <right_val>0.3344210088253021</right_val></_></_> 1758 <_> 1759 <!-- tree 26 --> 1760 <_> 1761 <!-- root node --> 1762 <feature> 1763 <rects> 1764 <_>5 2 6 3 -1.</_> 1765 <_>7 2 2 3 3.</_></rects> 1766 <tilted>0</tilted></feature> 1767 <threshold>0.0127347996458411</threshold> 1768 <left_val>0.5343592166900635</left_val> 1769 <right_val>0.2395612001419067</right_val></_></_> 1770 <_> 1771 <!-- tree 27 --> 1772 <_> 1773 <!-- root node --> 1774 <feature> 1775 <rects> 1776 <_>6 1 9 10 -1.</_> 1777 <_>6 6 9 5 2.</_></rects> 1778 <tilted>0</tilted></feature> 1779 <threshold>-7.3119727894663811e-003</threshold> 1780 <left_val>0.6010890007019043</left_val> 1781 <right_val>0.4022207856178284</right_val></_></_> 1782 <_> 1783 <!-- tree 28 --> 1784 <_> 1785 <!-- root node --> 1786 <feature> 1787 <rects> 1788 <_>0 4 6 12 -1.</_> 1789 <_>2 4 2 12 3.</_></rects> 1790 <tilted>0</tilted></feature> 1791 <threshold>-0.0569487512111664</threshold> 1792 <left_val>0.8199151158332825</left_val> 1793 <right_val>0.4543190896511078</right_val></_></_> 1794 <_> 1795 <!-- tree 29 --> 1796 <_> 1797 <!-- root node --> 1798 <feature> 1799 <rects> 1800 <_>15 13 2 3 -1.</_> 1801 <_>15 14 2 1 3.</_></rects> 1802 <tilted>0</tilted></feature> 1803 <threshold>-5.0116591155529022e-003</threshold> 1804 <left_val>0.2200281023979187</left_val> 1805 <right_val>0.5357710719108582</right_val></_></_> 1806 <_> 1807 <!-- tree 30 --> 1808 <_> 1809 <!-- root node --> 1810 <feature> 1811 <rects> 1812 <_>7 14 5 3 -1.</_> 1813 <_>7 15 5 1 3.</_></rects> 1814 <tilted>0</tilted></feature> 1815 <threshold>6.0334368608891964e-003</threshold> 1816 <left_val>0.4413081109523773</left_val> 1817 <right_val>0.7181751132011414</right_val></_></_> 1818 <_> 1819 <!-- tree 31 --> 1820 <_> 1821 <!-- root node --> 1822 <feature> 1823 <rects> 1824 <_>15 13 3 3 -1.</_> 1825 <_>15 14 3 1 3.</_></rects> 1826 <tilted>0</tilted></feature> 1827 <threshold>3.9437441155314445e-003</threshold> 1828 <left_val>0.5478860735893250</left_val> 1829 <right_val>0.2791733145713806</right_val></_></_> 1830 <_> 1831 <!-- tree 32 --> 1832 <_> 1833 <!-- root node --> 1834 <feature> 1835 <rects> 1836 <_>6 14 8 3 -1.</_> 1837 <_>6 15 8 1 3.</_></rects> 1838 <tilted>0</tilted></feature> 1839 <threshold>-3.6591119132936001e-003</threshold> 1840 <left_val>0.6357867717742920</left_val> 1841 <right_val>0.3989723920822144</right_val></_></_> 1842 <_> 1843 <!-- tree 33 --> 1844 <_> 1845 <!-- root node --> 1846 <feature> 1847 <rects> 1848 <_>15 13 3 3 -1.</_> 1849 <_>15 14 3 1 3.</_></rects> 1850 <tilted>0</tilted></feature> 1851 <threshold>-3.8456181064248085e-003</threshold> 1852 <left_val>0.3493686020374298</left_val> 1853 <right_val>0.5300664901733398</right_val></_></_> 1854 <_> 1855 <!-- tree 34 --> 1856 <_> 1857 <!-- root node --> 1858 <feature> 1859 <rects> 1860 <_>2 13 3 3 -1.</_> 1861 <_>2 14 3 1 3.</_></rects> 1862 <tilted>0</tilted></feature> 1863 <threshold>-7.1926261298358440e-003</threshold> 1864 <left_val>0.1119614988565445</left_val> 1865 <right_val>0.5229672789573669</right_val></_></_> 1866 <_> 1867 <!-- tree 35 --> 1868 <_> 1869 <!-- root node --> 1870 <feature> 1871 <rects> 1872 <_>4 7 12 12 -1.</_> 1873 <_>10 7 6 6 2.</_> 1874 <_>4 13 6 6 2.</_></rects> 1875 <tilted>0</tilted></feature> 1876 <threshold>-0.0527989417314529</threshold> 1877 <left_val>0.2387102991342545</left_val> 1878 <right_val>0.5453451275825501</right_val></_></_> 1879 <_> 1880 <!-- tree 36 --> 1881 <_> 1882 <!-- root node --> 1883 <feature> 1884 <rects> 1885 <_>9 7 2 6 -1.</_> 1886 <_>10 7 1 6 2.</_></rects> 1887 <tilted>0</tilted></feature> 1888 <threshold>-7.9537667334079742e-003</threshold> 1889 <left_val>0.7586917877197266</left_val> 1890 <right_val>0.4439376890659332</right_val></_></_> 1891 <_> 1892 <!-- tree 37 --> 1893 <_> 1894 <!-- root node --> 1895 <feature> 1896 <rects> 1897 <_>8 9 5 2 -1.</_> 1898 <_>8 10 5 1 2.</_></rects> 1899 <tilted>0</tilted></feature> 1900 <threshold>-2.7344180271029472e-003</threshold> 1901 <left_val>0.2565476894378662</left_val> 1902 <right_val>0.5489321947097778</right_val></_></_> 1903 <_> 1904 <!-- tree 38 --> 1905 <_> 1906 <!-- root node --> 1907 <feature> 1908 <rects> 1909 <_>8 6 3 4 -1.</_> 1910 <_>9 6 1 4 3.</_></rects> 1911 <tilted>0</tilted></feature> 1912 <threshold>-1.8507939530536532e-003</threshold> 1913 <left_val>0.6734347939491272</left_val> 1914 <right_val>0.4252474904060364</right_val></_></_> 1915 <_> 1916 <!-- tree 39 --> 1917 <_> 1918 <!-- root node --> 1919 <feature> 1920 <rects> 1921 <_>9 6 2 8 -1.</_> 1922 <_>9 10 2 4 2.</_></rects> 1923 <tilted>0</tilted></feature> 1924 <threshold>0.0159189198166132</threshold> 1925 <left_val>0.5488352775573731</left_val> 1926 <right_val>0.2292661964893341</right_val></_></_> 1927 <_> 1928 <!-- tree 40 --> 1929 <_> 1930 <!-- root node --> 1931 <feature> 1932 <rects> 1933 <_>7 7 3 6 -1.</_> 1934 <_>8 7 1 6 3.</_></rects> 1935 <tilted>0</tilted></feature> 1936 <threshold>-1.2687679845839739e-003</threshold> 1937 <left_val>0.6104331016540527</left_val> 1938 <right_val>0.4022389948368073</right_val></_></_> 1939 <_> 1940 <!-- tree 41 --> 1941 <_> 1942 <!-- root node --> 1943 <feature> 1944 <rects> 1945 <_>11 3 3 3 -1.</_> 1946 <_>12 3 1 3 3.</_></rects> 1947 <tilted>0</tilted></feature> 1948 <threshold>6.2883910723030567e-003</threshold> 1949 <left_val>0.5310853123664856</left_val> 1950 <right_val>0.1536193042993546</right_val></_></_> 1951 <_> 1952 <!-- tree 42 --> 1953 <_> 1954 <!-- root node --> 1955 <feature> 1956 <rects> 1957 <_>5 4 6 1 -1.</_> 1958 <_>7 4 2 1 3.</_></rects> 1959 <tilted>0</tilted></feature> 1960 <threshold>-6.2259892001748085e-003</threshold> 1961 <left_val>0.1729111969470978</left_val> 1962 <right_val>0.5241606235504150</right_val></_></_> 1963 <_> 1964 <!-- tree 43 --> 1965 <_> 1966 <!-- root node --> 1967 <feature> 1968 <rects> 1969 <_>5 6 10 3 -1.</_> 1970 <_>5 7 10 1 3.</_></rects> 1971 <tilted>0</tilted></feature> 1972 <threshold>-0.0121325999498367</threshold> 1973 <left_val>0.6597759723663330</left_val> 1974 <right_val>0.4325182139873505</right_val></_></_></trees> 1975 <stage_threshold>21.0106391906738280</stage_threshold> 1976 <parent>4</parent> 1977 <next>-1</next></_> 1978 <_> 1979 <!-- stage 6 --> 1980 <trees> 1981 <_> 1982 <!-- tree 0 --> 1983 <_> 1984 <!-- root node --> 1985 <feature> 1986 <rects> 1987 <_>7 3 6 9 -1.</_> 1988 <_>7 6 6 3 3.</_></rects> 1989 <tilted>0</tilted></feature> 1990 <threshold>-3.9184908382594585e-003</threshold> 1991 <left_val>0.6103435158729553</left_val> 1992 <right_val>0.1469330936670303</right_val></_></_> 1993 <_> 1994 <!-- tree 1 --> 1995 <_> 1996 <!-- root node --> 1997 <feature> 1998 <rects> 1999 <_>6 7 9 1 -1.</_> 2000 <_>9 7 3 1 3.</_></rects> 2001 <tilted>0</tilted></feature> 2002 <threshold>1.5971299726516008e-003</threshold> 2003 <left_val>0.2632363140583038</left_val> 2004 <right_val>0.5896466970443726</right_val></_></_> 2005 <_> 2006 <!-- tree 2 --> 2007 <_> 2008 <!-- root node --> 2009 <feature> 2010 <rects> 2011 <_>2 8 16 8 -1.</_> 2012 <_>2 12 16 4 2.</_></rects> 2013 <tilted>0</tilted></feature> 2014 <threshold>0.0177801102399826</threshold> 2015 <left_val>0.5872874259948731</left_val> 2016 <right_val>0.1760361939668655</right_val></_></_> 2017 <_> 2018 <!-- tree 3 --> 2019 <_> 2020 <!-- root node --> 2021 <feature> 2022 <rects> 2023 <_>14 6 2 6 -1.</_> 2024 <_>14 9 2 3 2.</_></rects> 2025 <tilted>0</tilted></feature> 2026 <threshold>6.5334769897162914e-004</threshold> 2027 <left_val>0.1567801982164383</left_val> 2028 <right_val>0.5596066117286682</right_val></_></_> 2029 <_> 2030 <!-- tree 4 --> 2031 <_> 2032 <!-- root node --> 2033 <feature> 2034 <rects> 2035 <_>1 5 6 15 -1.</_> 2036 <_>1 10 6 5 3.</_></rects> 2037 <tilted>0</tilted></feature> 2038 <threshold>-2.8353091329336166e-004</threshold> 2039 <left_val>0.1913153976202011</left_val> 2040 <right_val>0.5732036232948303</right_val></_></_> 2041 <_> 2042 <!-- tree 5 --> 2043 <_> 2044 <!-- root node --> 2045 <feature> 2046 <rects> 2047 <_>10 0 6 9 -1.</_> 2048 <_>10 3 6 3 3.</_></rects> 2049 <tilted>0</tilted></feature> 2050 <threshold>1.6104689566418529e-003</threshold> 2051 <left_val>0.2914913892745972</left_val> 2052 <right_val>0.5623080730438232</right_val></_></_> 2053 <_> 2054 <!-- tree 6 --> 2055 <_> 2056 <!-- root node --> 2057 <feature> 2058 <rects> 2059 <_>6 6 7 14 -1.</_> 2060 <_>6 13 7 7 2.</_></rects> 2061 <tilted>0</tilted></feature> 2062 <threshold>-0.0977506190538406</threshold> 2063 <left_val>0.1943476945161820</left_val> 2064 <right_val>0.5648233294487000</right_val></_></_> 2065 <_> 2066 <!-- tree 7 --> 2067 <_> 2068 <!-- root node --> 2069 <feature> 2070 <rects> 2071 <_>13 7 3 6 -1.</_> 2072 <_>13 9 3 2 3.</_></rects> 2073 <tilted>0</tilted></feature> 2074 <threshold>5.5182358482852578e-004</threshold> 2075 <left_val>0.3134616911411285</left_val> 2076 <right_val>0.5504639744758606</right_val></_></_> 2077 <_> 2078 <!-- tree 8 --> 2079 <_> 2080 <!-- root node --> 2081 <feature> 2082 <rects> 2083 <_>1 8 15 4 -1.</_> 2084 <_>6 8 5 4 3.</_></rects> 2085 <tilted>0</tilted></feature> 2086 <threshold>-0.0128582203760743</threshold> 2087 <left_val>0.2536481916904450</left_val> 2088 <right_val>0.5760142803192139</right_val></_></_> 2089 <_> 2090 <!-- tree 9 --> 2091 <_> 2092 <!-- root node --> 2093 <feature> 2094 <rects> 2095 <_>11 2 3 10 -1.</_> 2096 <_>11 7 3 5 2.</_></rects> 2097 <tilted>0</tilted></feature> 2098 <threshold>4.1530239395797253e-003</threshold> 2099 <left_val>0.5767722129821777</left_val> 2100 <right_val>0.3659774065017700</right_val></_></_> 2101 <_> 2102 <!-- tree 10 --> 2103 <_> 2104 <!-- root node --> 2105 <feature> 2106 <rects> 2107 <_>3 7 4 6 -1.</_> 2108 <_>3 9 4 2 3.</_></rects> 2109 <tilted>0</tilted></feature> 2110 <threshold>1.7092459602281451e-003</threshold> 2111 <left_val>0.2843191027641296</left_val> 2112 <right_val>0.5918939113616943</right_val></_></_> 2113 <_> 2114 <!-- tree 11 --> 2115 <_> 2116 <!-- root node --> 2117 <feature> 2118 <rects> 2119 <_>13 3 6 10 -1.</_> 2120 <_>15 3 2 10 3.</_></rects> 2121 <tilted>0</tilted></feature> 2122 <threshold>7.5217359699308872e-003</threshold> 2123 <left_val>0.4052427113056183</left_val> 2124 <right_val>0.6183109283447266</right_val></_></_> 2125 <_> 2126 <!-- tree 12 --> 2127 <_> 2128 <!-- root node --> 2129 <feature> 2130 <rects> 2131 <_>5 7 8 10 -1.</_> 2132 <_>5 7 4 5 2.</_> 2133 <_>9 12 4 5 2.</_></rects> 2134 <tilted>0</tilted></feature> 2135 <threshold>2.2479810286313295e-003</threshold> 2136 <left_val>0.5783755183219910</left_val> 2137 <right_val>0.3135401010513306</right_val></_></_> 2138 <_> 2139 <!-- tree 13 --> 2140 <_> 2141 <!-- root node --> 2142 <feature> 2143 <rects> 2144 <_>4 4 12 12 -1.</_> 2145 <_>10 4 6 6 2.</_> 2146 <_>4 10 6 6 2.</_></rects> 2147 <tilted>0</tilted></feature> 2148 <threshold>0.0520062111318111</threshold> 2149 <left_val>0.5541312098503113</left_val> 2150 <right_val>0.1916636973619461</right_val></_></_> 2151 <_> 2152 <!-- tree 14 --> 2153 <_> 2154 <!-- root node --> 2155 <feature> 2156 <rects> 2157 <_>1 4 6 9 -1.</_> 2158 <_>3 4 2 9 3.</_></rects> 2159 <tilted>0</tilted></feature> 2160 <threshold>0.0120855299755931</threshold> 2161 <left_val>0.4032655954360962</left_val> 2162 <right_val>0.6644591093063355</right_val></_></_> 2163 <_> 2164 <!-- tree 15 --> 2165 <_> 2166 <!-- root node --> 2167 <feature> 2168 <rects> 2169 <_>11 3 2 5 -1.</_> 2170 <_>11 3 1 5 2.</_></rects> 2171 <tilted>0</tilted></feature> 2172 <threshold>1.4687820112158079e-005</threshold> 2173 <left_val>0.3535977900028229</left_val> 2174 <right_val>0.5709382891654968</right_val></_></_> 2175 <_> 2176 <!-- tree 16 --> 2177 <_> 2178 <!-- root node --> 2179 <feature> 2180 <rects> 2181 <_>7 3 2 5 -1.</_> 2182 <_>8 3 1 5 2.</_></rects> 2183 <tilted>0</tilted></feature> 2184 <threshold>7.1395188570022583e-006</threshold> 2185 <left_val>0.3037444949150085</left_val> 2186 <right_val>0.5610269904136658</right_val></_></_> 2187 <_> 2188 <!-- tree 17 --> 2189 <_> 2190 <!-- root node --> 2191 <feature> 2192 <rects> 2193 <_>10 14 2 3 -1.</_> 2194 <_>10 15 2 1 3.</_></rects> 2195 <tilted>0</tilted></feature> 2196 <threshold>-4.6001640148460865e-003</threshold> 2197 <left_val>0.7181087136268616</left_val> 2198 <right_val>0.4580326080322266</right_val></_></_> 2199 <_> 2200 <!-- tree 18 --> 2201 <_> 2202 <!-- root node --> 2203 <feature> 2204 <rects> 2205 <_>5 12 6 2 -1.</_> 2206 <_>8 12 3 2 2.</_></rects> 2207 <tilted>0</tilted></feature> 2208 <threshold>2.0058949012309313e-003</threshold> 2209 <left_val>0.5621951818466187</left_val> 2210 <right_val>0.2953684031963348</right_val></_></_> 2211 <_> 2212 <!-- tree 19 --> 2213 <_> 2214 <!-- root node --> 2215 <feature> 2216 <rects> 2217 <_>9 14 2 3 -1.</_> 2218 <_>9 15 2 1 3.</_></rects> 2219 <tilted>0</tilted></feature> 2220 <threshold>4.5050270855426788e-003</threshold> 2221 <left_val>0.4615387916564941</left_val> 2222 <right_val>0.7619017958641052</right_val></_></_> 2223 <_> 2224 <!-- tree 20 --> 2225 <_> 2226 <!-- root node --> 2227 <feature> 2228 <rects> 2229 <_>4 11 12 6 -1.</_> 2230 <_>4 14 12 3 2.</_></rects> 2231 <tilted>0</tilted></feature> 2232 <threshold>0.0117468303069472</threshold> 2233 <left_val>0.5343837141990662</left_val> 2234 <right_val>0.1772529035806656</right_val></_></_> 2235 <_> 2236 <!-- tree 21 --> 2237 <_> 2238 <!-- root node --> 2239 <feature> 2240 <rects> 2241 <_>11 11 5 9 -1.</_> 2242 <_>11 14 5 3 3.</_></rects> 2243 <tilted>0</tilted></feature> 2244 <threshold>-0.0583163388073444</threshold> 2245 <left_val>0.1686245948076248</left_val> 2246 <right_val>0.5340772271156311</right_val></_></_> 2247 <_> 2248 <!-- tree 22 --> 2249 <_> 2250 <!-- root node --> 2251 <feature> 2252 <rects> 2253 <_>6 15 3 2 -1.</_> 2254 <_>6 16 3 1 2.</_></rects> 2255 <tilted>0</tilted></feature> 2256 <threshold>2.3629379575140774e-004</threshold> 2257 <left_val>0.3792056143283844</left_val> 2258 <right_val>0.6026803851127625</right_val></_></_> 2259 <_> 2260 <!-- tree 23 --> 2261 <_> 2262 <!-- root node --> 2263 <feature> 2264 <rects> 2265 <_>11 0 3 5 -1.</_> 2266 <_>12 0 1 5 3.</_></rects> 2267 <tilted>0</tilted></feature> 2268 <threshold>-7.8156180679798126e-003</threshold> 2269 <left_val>0.1512867063283920</left_val> 2270 <right_val>0.5324323773384094</right_val></_></_> 2271 <_> 2272 <!-- tree 24 --> 2273 <_> 2274 <!-- root node --> 2275 <feature> 2276 <rects> 2277 <_>5 5 6 7 -1.</_> 2278 <_>8 5 3 7 2.</_></rects> 2279 <tilted>0</tilted></feature> 2280 <threshold>-0.0108761601150036</threshold> 2281 <left_val>0.2081822007894516</left_val> 2282 <right_val>0.5319945216178894</right_val></_></_> 2283 <_> 2284 <!-- tree 25 --> 2285 <_> 2286 <!-- root node --> 2287 <feature> 2288 <rects> 2289 <_>13 0 1 9 -1.</_> 2290 <_>13 3 1 3 3.</_></rects> 2291 <tilted>0</tilted></feature> 2292 <threshold>-2.7745519764721394e-003</threshold> 2293 <left_val>0.4098246991634369</left_val> 2294 <right_val>0.5210328102111816</right_val></_></_> 2295 <_> 2296 <!-- tree 26 --> 2297 <_> 2298 <!-- root node --> 2299 <feature> 2300 <rects> 2301 <_>3 2 4 8 -1.</_> 2302 <_>3 2 2 4 2.</_> 2303 <_>5 6 2 4 2.</_></rects> 2304 <tilted>0</tilted></feature> 2305 <threshold>-7.8276381827890873e-004</threshold> 2306 <left_val>0.5693274140357971</left_val> 2307 <right_val>0.3478842079639435</right_val></_></_> 2308 <_> 2309 <!-- tree 27 --> 2310 <_> 2311 <!-- root node --> 2312 <feature> 2313 <rects> 2314 <_>13 12 4 6 -1.</_> 2315 <_>13 14 4 2 3.</_></rects> 2316 <tilted>0</tilted></feature> 2317 <threshold>0.0138704096898437</threshold> 2318 <left_val>0.5326750874519348</left_val> 2319 <right_val>0.2257698029279709</right_val></_></_> 2320 <_> 2321 <!-- tree 28 --> 2322 <_> 2323 <!-- root node --> 2324 <feature> 2325 <rects> 2326 <_>3 12 4 6 -1.</_> 2327 <_>3 14 4 2 3.</_></rects> 2328 <tilted>0</tilted></feature> 2329 <threshold>-0.0236749108880758</threshold> 2330 <left_val>0.1551305055618286</left_val> 2331 <right_val>0.5200707912445068</right_val></_></_> 2332 <_> 2333 <!-- tree 29 --> 2334 <_> 2335 <!-- root node --> 2336 <feature> 2337 <rects> 2338 <_>13 11 3 4 -1.</_> 2339 <_>13 13 3 2 2.</_></rects> 2340 <tilted>0</tilted></feature> 2341 <threshold>-1.4879409718560055e-005</threshold> 2342 <left_val>0.5500566959381104</left_val> 2343 <right_val>0.3820176124572754</right_val></_></_> 2344 <_> 2345 <!-- tree 30 --> 2346 <_> 2347 <!-- root node --> 2348 <feature> 2349 <rects> 2350 <_>4 4 4 3 -1.</_> 2351 <_>4 5 4 1 3.</_></rects> 2352 <tilted>0</tilted></feature> 2353 <threshold>3.6190641112625599e-003</threshold> 2354 <left_val>0.4238683879375458</left_val> 2355 <right_val>0.6639748215675354</right_val></_></_> 2356 <_> 2357 <!-- tree 31 --> 2358 <_> 2359 <!-- root node --> 2360 <feature> 2361 <rects> 2362 <_>7 5 11 8 -1.</_> 2363 <_>7 9 11 4 2.</_></rects> 2364 <tilted>0</tilted></feature> 2365 <threshold>-0.0198171101510525</threshold> 2366 <left_val>0.2150038033723831</left_val> 2367 <right_val>0.5382357835769653</right_val></_></_> 2368 <_> 2369 <!-- tree 32 --> 2370 <_> 2371 <!-- root node --> 2372 <feature> 2373 <rects> 2374 <_>7 8 3 4 -1.</_> 2375 <_>8 8 1 4 3.</_></rects> 2376 <tilted>0</tilted></feature> 2377 <threshold>-3.8154039066284895e-003</threshold> 2378 <left_val>0.6675711274147034</left_val> 2379 <right_val>0.4215297102928162</right_val></_></_> 2380 <_> 2381 <!-- tree 33 --> 2382 <_> 2383 <!-- root node --> 2384 <feature> 2385 <rects> 2386 <_>9 1 6 1 -1.</_> 2387 <_>11 1 2 1 3.</_></rects> 2388 <tilted>0</tilted></feature> 2389 <threshold>-4.9775829538702965e-003</threshold> 2390 <left_val>0.2267289012670517</left_val> 2391 <right_val>0.5386328101158142</right_val></_></_> 2392 <_> 2393 <!-- tree 34 --> 2394 <_> 2395 <!-- root node --> 2396 <feature> 2397 <rects> 2398 <_>5 5 3 3 -1.</_> 2399 <_>5 6 3 1 3.</_></rects> 2400 <tilted>0</tilted></feature> 2401 <threshold>2.2441020701080561e-003</threshold> 2402 <left_val>0.4308691024780273</left_val> 2403 <right_val>0.6855735778808594</right_val></_></_> 2404 <_> 2405 <!-- tree 35 --> 2406 <_> 2407 <!-- root node --> 2408 <feature> 2409 <rects> 2410 <_>0 9 20 6 -1.</_> 2411 <_>10 9 10 3 2.</_> 2412 <_>0 12 10 3 2.</_></rects> 2413 <tilted>0</tilted></feature> 2414 <threshold>0.0122824599966407</threshold> 2415 <left_val>0.5836614966392517</left_val> 2416 <right_val>0.3467479050159454</right_val></_></_> 2417 <_> 2418 <!-- tree 36 --> 2419 <_> 2420 <!-- root node --> 2421 <feature> 2422 <rects> 2423 <_>8 6 3 5 -1.</_> 2424 <_>9 6 1 5 3.</_></rects> 2425 <tilted>0</tilted></feature> 2426 <threshold>-2.8548699337989092e-003</threshold> 2427 <left_val>0.7016944885253906</left_val> 2428 <right_val>0.4311453998088837</right_val></_></_> 2429 <_> 2430 <!-- tree 37 --> 2431 <_> 2432 <!-- root node --> 2433 <feature> 2434 <rects> 2435 <_>11 0 1 3 -1.</_> 2436 <_>11 1 1 1 3.</_></rects> 2437 <tilted>0</tilted></feature> 2438 <threshold>-3.7875669077038765e-003</threshold> 2439 <left_val>0.2895345091819763</left_val> 2440 <right_val>0.5224946141242981</right_val></_></_> 2441 <_> 2442 <!-- tree 38 --> 2443 <_> 2444 <!-- root node --> 2445 <feature> 2446 <rects> 2447 <_>4 2 4 2 -1.</_> 2448 <_>4 3 4 1 2.</_></rects> 2449 <tilted>0</tilted></feature> 2450 <threshold>-1.2201230274513364e-003</threshold> 2451 <left_val>0.2975570857524872</left_val> 2452 <right_val>0.5481644868850708</right_val></_></_> 2453 <_> 2454 <!-- tree 39 --> 2455 <_> 2456 <!-- root node --> 2457 <feature> 2458 <rects> 2459 <_>12 6 4 3 -1.</_> 2460 <_>12 7 4 1 3.</_></rects> 2461 <tilted>0</tilted></feature> 2462 <threshold>0.0101605998352170</threshold> 2463 <left_val>0.4888817965984345</left_val> 2464 <right_val>0.8182697892189026</right_val></_></_> 2465 <_> 2466 <!-- tree 40 --> 2467 <_> 2468 <!-- root node --> 2469 <feature> 2470 <rects> 2471 <_>5 0 6 4 -1.</_> 2472 <_>7 0 2 4 3.</_></rects> 2473 <tilted>0</tilted></feature> 2474 <threshold>-0.0161745697259903</threshold> 2475 <left_val>0.1481492966413498</left_val> 2476 <right_val>0.5239992737770081</right_val></_></_> 2477 <_> 2478 <!-- tree 41 --> 2479 <_> 2480 <!-- root node --> 2481 <feature> 2482 <rects> 2483 <_>9 7 3 8 -1.</_> 2484 <_>10 7 1 8 3.</_></rects> 2485 <tilted>0</tilted></feature> 2486 <threshold>0.0192924607545137</threshold> 2487 <left_val>0.4786309897899628</left_val> 2488 <right_val>0.7378190755844116</right_val></_></_> 2489 <_> 2490 <!-- tree 42 --> 2491 <_> 2492 <!-- root node --> 2493 <feature> 2494 <rects> 2495 <_>9 7 2 2 -1.</_> 2496 <_>10 7 1 2 2.</_></rects> 2497 <tilted>0</tilted></feature> 2498 <threshold>-3.2479539513587952e-003</threshold> 2499 <left_val>0.7374222874641419</left_val> 2500 <right_val>0.4470643997192383</right_val></_></_> 2501 <_> 2502 <!-- tree 43 --> 2503 <_> 2504 <!-- root node --> 2505 <feature> 2506 <rects> 2507 <_>6 7 14 4 -1.</_> 2508 <_>13 7 7 2 2.</_> 2509 <_>6 9 7 2 2.</_></rects> 2510 <tilted>0</tilted></feature> 2511 <threshold>-9.3803480267524719e-003</threshold> 2512 <left_val>0.3489154875278473</left_val> 2513 <right_val>0.5537996292114258</right_val></_></_> 2514 <_> 2515 <!-- tree 44 --> 2516 <_> 2517 <!-- root node --> 2518 <feature> 2519 <rects> 2520 <_>0 5 3 6 -1.</_> 2521 <_>0 7 3 2 3.</_></rects> 2522 <tilted>0</tilted></feature> 2523 <threshold>-0.0126061299815774</threshold> 2524 <left_val>0.2379686981439591</left_val> 2525 <right_val>0.5315443277359009</right_val></_></_> 2526 <_> 2527 <!-- tree 45 --> 2528 <_> 2529 <!-- root node --> 2530 <feature> 2531 <rects> 2532 <_>13 11 3 4 -1.</_> 2533 <_>13 13 3 2 2.</_></rects> 2534 <tilted>0</tilted></feature> 2535 <threshold>-0.0256219301372766</threshold> 2536 <left_val>0.1964688003063202</left_val> 2537 <right_val>0.5138769745826721</right_val></_></_> 2538 <_> 2539 <!-- tree 46 --> 2540 <_> 2541 <!-- root node --> 2542 <feature> 2543 <rects> 2544 <_>4 11 3 4 -1.</_> 2545 <_>4 13 3 2 2.</_></rects> 2546 <tilted>0</tilted></feature> 2547 <threshold>-7.5741496402770281e-005</threshold> 2548 <left_val>0.5590522885322571</left_val> 2549 <right_val>0.3365853130817413</right_val></_></_> 2550 <_> 2551 <!-- tree 47 --> 2552 <_> 2553 <!-- root node --> 2554 <feature> 2555 <rects> 2556 <_>5 9 12 8 -1.</_> 2557 <_>11 9 6 4 2.</_> 2558 <_>5 13 6 4 2.</_></rects> 2559 <tilted>0</tilted></feature> 2560 <threshold>-0.0892108827829361</threshold> 2561 <left_val>0.0634046569466591</left_val> 2562 <right_val>0.5162634849548340</right_val></_></_> 2563 <_> 2564 <!-- tree 48 --> 2565 <_> 2566 <!-- root node --> 2567 <feature> 2568 <rects> 2569 <_>9 12 1 3 -1.</_> 2570 <_>9 13 1 1 3.</_></rects> 2571 <tilted>0</tilted></feature> 2572 <threshold>-2.7670480776578188e-003</threshold> 2573 <left_val>0.7323467731475830</left_val> 2574 <right_val>0.4490706026554108</right_val></_></_> 2575 <_> 2576 <!-- tree 49 --> 2577 <_> 2578 <!-- root node --> 2579 <feature> 2580 <rects> 2581 <_>10 15 2 4 -1.</_> 2582 <_>10 17 2 2 2.</_></rects> 2583 <tilted>0</tilted></feature> 2584 <threshold>2.7152578695677221e-004</threshold> 2585 <left_val>0.4114834964275360</left_val> 2586 <right_val>0.5985518097877502</right_val></_></_></trees> 2587 <stage_threshold>23.9187908172607420</stage_threshold> 2588 <parent>5</parent> 2589 <next>-1</next></_> 2590 <_> 2591 <!-- stage 7 --> 2592 <trees> 2593 <_> 2594 <!-- tree 0 --> 2595 <_> 2596 <!-- root node --> 2597 <feature> 2598 <rects> 2599 <_>7 7 6 1 -1.</_> 2600 <_>9 7 2 1 3.</_></rects> 2601 <tilted>0</tilted></feature> 2602 <threshold>1.4786219689995050e-003</threshold> 2603 <left_val>0.2663545012474060</left_val> 2604 <right_val>0.6643316745758057</right_val></_></_> 2605 <_> 2606 <!-- tree 1 --> 2607 <_> 2608 <!-- root node --> 2609 <feature> 2610 <rects> 2611 <_>12 3 6 6 -1.</_> 2612 <_>15 3 3 3 2.</_> 2613 <_>12 6 3 3 2.</_></rects> 2614 <tilted>0</tilted></feature> 2615 <threshold>-1.8741659587249160e-003</threshold> 2616 <left_val>0.6143848896026611</left_val> 2617 <right_val>0.2518512904644013</right_val></_></_> 2618 <_> 2619 <!-- tree 2 --> 2620 <_> 2621 <!-- root node --> 2622 <feature> 2623 <rects> 2624 <_>0 4 10 6 -1.</_> 2625 <_>0 6 10 2 3.</_></rects> 2626 <tilted>0</tilted></feature> 2627 <threshold>-1.7151009524241090e-003</threshold> 2628 <left_val>0.5766341090202332</left_val> 2629 <right_val>0.2397463023662567</right_val></_></_> 2630 <_> 2631 <!-- tree 3 --> 2632 <_> 2633 <!-- root node --> 2634 <feature> 2635 <rects> 2636 <_>8 3 8 14 -1.</_> 2637 <_>12 3 4 7 2.</_> 2638 <_>8 10 4 7 2.</_></rects> 2639 <tilted>0</tilted></feature> 2640 <threshold>-1.8939269939437509e-003</threshold> 2641 <left_val>0.5682045817375183</left_val> 2642 <right_val>0.2529144883155823</right_val></_></_> 2643 <_> 2644 <!-- tree 4 --> 2645 <_> 2646 <!-- root node --> 2647 <feature> 2648 <rects> 2649 <_>4 4 7 15 -1.</_> 2650 <_>4 9 7 5 3.</_></rects> 2651 <tilted>0</tilted></feature> 2652 <threshold>-5.3006052039563656e-003</threshold> 2653 <left_val>0.1640675961971283</left_val> 2654 <right_val>0.5556079745292664</right_val></_></_> 2655 <_> 2656 <!-- tree 5 --> 2657 <_> 2658 <!-- root node --> 2659 <feature> 2660 <rects> 2661 <_>12 2 6 8 -1.</_> 2662 <_>15 2 3 4 2.</_> 2663 <_>12 6 3 4 2.</_></rects> 2664 <tilted>0</tilted></feature> 2665 <threshold>-0.0466625317931175</threshold> 2666 <left_val>0.6123154163360596</left_val> 2667 <right_val>0.4762830138206482</right_val></_></_> 2668 <_> 2669 <!-- tree 6 --> 2670 <_> 2671 <!-- root node --> 2672 <feature> 2673 <rects> 2674 <_>2 2 6 8 -1.</_> 2675 <_>2 2 3 4 2.</_> 2676 <_>5 6 3 4 2.</_></rects> 2677 <tilted>0</tilted></feature> 2678 <threshold>-7.9431332414969802e-004</threshold> 2679 <left_val>0.5707858800888062</left_val> 2680 <right_val>0.2839404046535492</right_val></_></_> 2681 <_> 2682 <!-- tree 7 --> 2683 <_> 2684 <!-- root node --> 2685 <feature> 2686 <rects> 2687 <_>2 13 18 7 -1.</_> 2688 <_>8 13 6 7 3.</_></rects> 2689 <tilted>0</tilted></feature> 2690 <threshold>0.0148916700854898</threshold> 2691 <left_val>0.4089672863483429</left_val> 2692 <right_val>0.6006367206573486</right_val></_></_> 2693 <_> 2694 <!-- tree 8 --> 2695 <_> 2696 <!-- root node --> 2697 <feature> 2698 <rects> 2699 <_>4 3 8 14 -1.</_> 2700 <_>4 3 4 7 2.</_> 2701 <_>8 10 4 7 2.</_></rects> 2702 <tilted>0</tilted></feature> 2703 <threshold>-1.2046529445797205e-003</threshold> 2704 <left_val>0.5712450742721558</left_val> 2705 <right_val>0.2705289125442505</right_val></_></_> 2706 <_> 2707 <!-- tree 9 --> 2708 <_> 2709 <!-- root node --> 2710 <feature> 2711 <rects> 2712 <_>18 1 2 6 -1.</_> 2713 <_>18 3 2 2 3.</_></rects> 2714 <tilted>0</tilted></feature> 2715 <threshold>6.0619381256401539e-003</threshold> 2716 <left_val>0.5262504220008850</left_val> 2717 <right_val>0.3262225985527039</right_val></_></_> 2718 <_> 2719 <!-- tree 10 --> 2720 <_> 2721 <!-- root node --> 2722 <feature> 2723 <rects> 2724 <_>9 11 2 3 -1.</_> 2725 <_>9 12 2 1 3.</_></rects> 2726 <tilted>0</tilted></feature> 2727 <threshold>-2.5286648888140917e-003</threshold> 2728 <left_val>0.6853830814361572</left_val> 2729 <right_val>0.4199256896972656</right_val></_></_> 2730 <_> 2731 <!-- tree 11 --> 2732 <_> 2733 <!-- root node --> 2734 <feature> 2735 <rects> 2736 <_>18 1 2 6 -1.</_> 2737 <_>18 3 2 2 3.</_></rects> 2738 <tilted>0</tilted></feature> 2739 <threshold>-5.9010218828916550e-003</threshold> 2740 <left_val>0.3266282081604004</left_val> 2741 <right_val>0.5434812903404236</right_val></_></_> 2742 <_> 2743 <!-- tree 12 --> 2744 <_> 2745 <!-- root node --> 2746 <feature> 2747 <rects> 2748 <_>0 1 2 6 -1.</_> 2749 <_>0 3 2 2 3.</_></rects> 2750 <tilted>0</tilted></feature> 2751 <threshold>5.6702760048210621e-003</threshold> 2752 <left_val>0.5468410849571228</left_val> 2753 <right_val>0.2319003939628601</right_val></_></_> 2754 <_> 2755 <!-- tree 13 --> 2756 <_> 2757 <!-- root node --> 2758 <feature> 2759 <rects> 2760 <_>1 5 18 6 -1.</_> 2761 <_>1 7 18 2 3.</_></rects> 2762 <tilted>0</tilted></feature> 2763 <threshold>-3.0304100364446640e-003</threshold> 2764 <left_val>0.5570667982101440</left_val> 2765 <right_val>0.2708238065242767</right_val></_></_> 2766 <_> 2767 <!-- tree 14 --> 2768 <_> 2769 <!-- root node --> 2770 <feature> 2771 <rects> 2772 <_>0 2 6 7 -1.</_> 2773 <_>3 2 3 7 2.</_></rects> 2774 <tilted>0</tilted></feature> 2775 <threshold>2.9803649522364140e-003</threshold> 2776 <left_val>0.3700568974018097</left_val> 2777 <right_val>0.5890625715255737</right_val></_></_> 2778 <_> 2779 <!-- tree 15 --> 2780 <_> 2781 <!-- root node --> 2782 <feature> 2783 <rects> 2784 <_>7 3 6 14 -1.</_> 2785 <_>7 10 6 7 2.</_></rects> 2786 <tilted>0</tilted></feature> 2787 <threshold>-0.0758405104279518</threshold> 2788 <left_val>0.2140070050954819</left_val> 2789 <right_val>0.5419948101043701</right_val></_></_> 2790 <_> 2791 <!-- tree 16 --> 2792 <_> 2793 <!-- root node --> 2794 <feature> 2795 <rects> 2796 <_>3 7 13 10 -1.</_> 2797 <_>3 12 13 5 2.</_></rects> 2798 <tilted>0</tilted></feature> 2799 <threshold>0.0192625392228365</threshold> 2800 <left_val>0.5526772141456604</left_val> 2801 <right_val>0.2726590037345886</right_val></_></_> 2802 <_> 2803 <!-- tree 17 --> 2804 <_> 2805 <!-- root node --> 2806 <feature> 2807 <rects> 2808 <_>11 15 2 2 -1.</_> 2809 <_>11 16 2 1 2.</_></rects> 2810 <tilted>0</tilted></feature> 2811 <threshold>1.8888259364757687e-004</threshold> 2812 <left_val>0.3958011865615845</left_val> 2813 <right_val>0.6017209887504578</right_val></_></_> 2814 <_> 2815 <!-- tree 18 --> 2816 <_> 2817 <!-- root node --> 2818 <feature> 2819 <rects> 2820 <_>2 11 16 4 -1.</_> 2821 <_>2 11 8 2 2.</_> 2822 <_>10 13 8 2 2.</_></rects> 2823 <tilted>0</tilted></feature> 2824 <threshold>0.0293695498257875</threshold> 2825 <left_val>0.5241373777389526</left_val> 2826 <right_val>0.1435758024454117</right_val></_></_> 2827 <_> 2828 <!-- tree 19 --> 2829 <_> 2830 <!-- root node --> 2831 <feature> 2832 <rects> 2833 <_>13 7 6 4 -1.</_> 2834 <_>16 7 3 2 2.</_> 2835 <_>13 9 3 2 2.</_></rects> 2836 <tilted>0</tilted></feature> 2837 <threshold>1.0417619487270713e-003</threshold> 2838 <left_val>0.3385409116744995</left_val> 2839 <right_val>0.5929983258247376</right_val></_></_> 2840 <_> 2841 <!-- tree 20 --> 2842 <_> 2843 <!-- root node --> 2844 <feature> 2845 <rects> 2846 <_>6 10 3 9 -1.</_> 2847 <_>6 13 3 3 3.</_></rects> 2848 <tilted>0</tilted></feature> 2849 <threshold>2.6125640142709017e-003</threshold> 2850 <left_val>0.5485377907752991</left_val> 2851 <right_val>0.3021597862243652</right_val></_></_> 2852 <_> 2853 <!-- tree 21 --> 2854 <_> 2855 <!-- root node --> 2856 <feature> 2857 <rects> 2858 <_>14 6 1 6 -1.</_> 2859 <_>14 9 1 3 2.</_></rects> 2860 <tilted>0</tilted></feature> 2861 <threshold>9.6977467183023691e-004</threshold> 2862 <left_val>0.3375276029109955</left_val> 2863 <right_val>0.5532032847404480</right_val></_></_> 2864 <_> 2865 <!-- tree 22 --> 2866 <_> 2867 <!-- root node --> 2868 <feature> 2869 <rects> 2870 <_>5 10 4 1 -1.</_> 2871 <_>7 10 2 1 2.</_></rects> 2872 <tilted>0</tilted></feature> 2873 <threshold>5.9512659208849072e-004</threshold> 2874 <left_val>0.5631743073463440</left_val> 2875 <right_val>0.3359399139881134</right_val></_></_> 2876 <_> 2877 <!-- tree 23 --> 2878 <_> 2879 <!-- root node --> 2880 <feature> 2881 <rects> 2882 <_>3 8 15 5 -1.</_> 2883 <_>8 8 5 5 3.</_></rects> 2884 <tilted>0</tilted></feature> 2885 <threshold>-0.1015655994415283</threshold> 2886 <left_val>0.0637350380420685</left_val> 2887 <right_val>0.5230425000190735</right_val></_></_> 2888 <_> 2889 <!-- tree 24 --> 2890 <_> 2891 <!-- root node --> 2892 <feature> 2893 <rects> 2894 <_>1 6 5 4 -1.</_> 2895 <_>1 8 5 2 2.</_></rects> 2896 <tilted>0</tilted></feature> 2897 <threshold>0.0361566990613937</threshold> 2898 <left_val>0.5136963129043579</left_val> 2899 <right_val>0.1029528975486755</right_val></_></_> 2900 <_> 2901 <!-- tree 25 --> 2902 <_> 2903 <!-- root node --> 2904 <feature> 2905 <rects> 2906 <_>3 1 17 6 -1.</_> 2907 <_>3 3 17 2 3.</_></rects> 2908 <tilted>0</tilted></feature> 2909 <threshold>3.4624140243977308e-003</threshold> 2910 <left_val>0.3879320025444031</left_val> 2911 <right_val>0.5558289289474487</right_val></_></_> 2912 <_> 2913 <!-- tree 26 --> 2914 <_> 2915 <!-- root node --> 2916 <feature> 2917 <rects> 2918 <_>6 7 8 2 -1.</_> 2919 <_>10 7 4 2 2.</_></rects> 2920 <tilted>0</tilted></feature> 2921 <threshold>0.0195549800992012</threshold> 2922 <left_val>0.5250086784362793</left_val> 2923 <right_val>0.1875859946012497</right_val></_></_> 2924 <_> 2925 <!-- tree 27 --> 2926 <_> 2927 <!-- root node --> 2928 <feature> 2929 <rects> 2930 <_>9 7 3 2 -1.</_> 2931 <_>10 7 1 2 3.</_></rects> 2932 <tilted>0</tilted></feature> 2933 <threshold>-2.3121440317481756e-003</threshold> 2934 <left_val>0.6672028899192810</left_val> 2935 <right_val>0.4679641127586365</right_val></_></_> 2936 <_> 2937 <!-- tree 28 --> 2938 <_> 2939 <!-- root node --> 2940 <feature> 2941 <rects> 2942 <_>8 7 3 2 -1.</_> 2943 <_>9 7 1 2 3.</_></rects> 2944 <tilted>0</tilted></feature> 2945 <threshold>-1.8605289515107870e-003</threshold> 2946 <left_val>0.7163379192352295</left_val> 2947 <right_val>0.4334670901298523</right_val></_></_> 2948 <_> 2949 <!-- tree 29 --> 2950 <_> 2951 <!-- root node --> 2952 <feature> 2953 <rects> 2954 <_>8 9 4 2 -1.</_> 2955 <_>8 10 4 1 2.</_></rects> 2956 <tilted>0</tilted></feature> 2957 <threshold>-9.4026362057775259e-004</threshold> 2958 <left_val>0.3021360933780670</left_val> 2959 <right_val>0.5650203227996826</right_val></_></_> 2960 <_> 2961 <!-- tree 30 --> 2962 <_> 2963 <!-- root node --> 2964 <feature> 2965 <rects> 2966 <_>8 8 4 3 -1.</_> 2967 <_>8 9 4 1 3.</_></rects> 2968 <tilted>0</tilted></feature> 2969 <threshold>-5.2418331615626812e-003</threshold> 2970 <left_val>0.1820009052753449</left_val> 2971 <right_val>0.5250256061553955</right_val></_></_> 2972 <_> 2973 <!-- tree 31 --> 2974 <_> 2975 <!-- root node --> 2976 <feature> 2977 <rects> 2978 <_>9 5 6 4 -1.</_> 2979 <_>9 5 3 4 2.</_></rects> 2980 <tilted>0</tilted></feature> 2981 <threshold>1.1729019752237946e-004</threshold> 2982 <left_val>0.3389188051223755</left_val> 2983 <right_val>0.5445973277091980</right_val></_></_> 2984 <_> 2985 <!-- tree 32 --> 2986 <_> 2987 <!-- root node --> 2988 <feature> 2989 <rects> 2990 <_>8 13 4 3 -1.</_> 2991 <_>8 14 4 1 3.</_></rects> 2992 <tilted>0</tilted></feature> 2993 <threshold>1.1878840159624815e-003</threshold> 2994 <left_val>0.4085349142551422</left_val> 2995 <right_val>0.6253563165664673</right_val></_></_> 2996 <_> 2997 <!-- tree 33 --> 2998 <_> 2999 <!-- root node --> 3000 <feature> 3001 <rects> 3002 <_>4 7 12 6 -1.</_> 3003 <_>10 7 6 3 2.</_> 3004 <_>4 10 6 3 2.</_></rects> 3005 <tilted>0</tilted></feature> 3006 <threshold>-0.0108813596889377</threshold> 3007 <left_val>0.3378399014472961</left_val> 3008 <right_val>0.5700082778930664</right_val></_></_> 3009 <_> 3010 <!-- tree 34 --> 3011 <_> 3012 <!-- root node --> 3013 <feature> 3014 <rects> 3015 <_>8 14 4 3 -1.</_> 3016 <_>8 15 4 1 3.</_></rects> 3017 <tilted>0</tilted></feature> 3018 <threshold>1.7354859737679362e-003</threshold> 3019 <left_val>0.4204635918140411</left_val> 3020 <right_val>0.6523038744926453</right_val></_></_> 3021 <_> 3022 <!-- tree 35 --> 3023 <_> 3024 <!-- root node --> 3025 <feature> 3026 <rects> 3027 <_>9 7 3 3 -1.</_> 3028 <_>9 8 3 1 3.</_></rects> 3029 <tilted>0</tilted></feature> 3030 <threshold>-6.5119052305817604e-003</threshold> 3031 <left_val>0.2595216035842896</left_val> 3032 <right_val>0.5428143739700317</right_val></_></_> 3033 <_> 3034 <!-- tree 36 --> 3035 <_> 3036 <!-- root node --> 3037 <feature> 3038 <rects> 3039 <_>7 4 3 8 -1.</_> 3040 <_>8 4 1 8 3.</_></rects> 3041 <tilted>0</tilted></feature> 3042 <threshold>-1.2136430013924837e-003</threshold> 3043 <left_val>0.6165143847465515</left_val> 3044 <right_val>0.3977893888950348</right_val></_></_> 3045 <_> 3046 <!-- tree 37 --> 3047 <_> 3048 <!-- root node --> 3049 <feature> 3050 <rects> 3051 <_>10 0 3 6 -1.</_> 3052 <_>11 0 1 6 3.</_></rects> 3053 <tilted>0</tilted></feature> 3054 <threshold>-0.0103542404249310</threshold> 3055 <left_val>0.1628028005361557</left_val> 3056 <right_val>0.5219504833221436</right_val></_></_> 3057 <_> 3058 <!-- tree 38 --> 3059 <_> 3060 <!-- root node --> 3061 <feature> 3062 <rects> 3063 <_>6 3 4 8 -1.</_> 3064 <_>8 3 2 8 2.</_></rects> 3065 <tilted>0</tilted></feature> 3066 <threshold>5.5858830455690622e-004</threshold> 3067 <left_val>0.3199650943279266</left_val> 3068 <right_val>0.5503574013710022</right_val></_></_> 3069 <_> 3070 <!-- tree 39 --> 3071 <_> 3072 <!-- root node --> 3073 <feature> 3074 <rects> 3075 <_>14 3 6 13 -1.</_> 3076 <_>14 3 3 13 2.</_></rects> 3077 <tilted>0</tilted></feature> 3078 <threshold>0.0152996499091387</threshold> 3079 <left_val>0.4103994071483612</left_val> 3080 <right_val>0.6122388243675232</right_val></_></_> 3081 <_> 3082 <!-- tree 40 --> 3083 <_> 3084 <!-- root node --> 3085 <feature> 3086 <rects> 3087 <_>8 13 3 6 -1.</_> 3088 <_>8 16 3 3 2.</_></rects> 3089 <tilted>0</tilted></feature> 3090 <threshold>-0.0215882100164890</threshold> 3091 <left_val>0.1034912988543510</left_val> 3092 <right_val>0.5197384953498840</right_val></_></_> 3093 <_> 3094 <!-- tree 41 --> 3095 <_> 3096 <!-- root node --> 3097 <feature> 3098 <rects> 3099 <_>14 3 6 13 -1.</_> 3100 <_>14 3 3 13 2.</_></rects> 3101 <tilted>0</tilted></feature> 3102 <threshold>-0.1283462941646576</threshold> 3103 <left_val>0.8493865132331848</left_val> 3104 <right_val>0.4893102943897247</right_val></_></_> 3105 <_> 3106 <!-- tree 42 --> 3107 <_> 3108 <!-- root node --> 3109 <feature> 3110 <rects> 3111 <_>0 7 10 4 -1.</_> 3112 <_>0 7 5 2 2.</_> 3113 <_>5 9 5 2 2.</_></rects> 3114 <tilted>0</tilted></feature> 3115 <threshold>-2.2927189711481333e-003</threshold> 3116 <left_val>0.3130157887935638</left_val> 3117 <right_val>0.5471575260162354</right_val></_></_> 3118 <_> 3119 <!-- tree 43 --> 3120 <_> 3121 <!-- root node --> 3122 <feature> 3123 <rects> 3124 <_>14 3 6 13 -1.</_> 3125 <_>14 3 3 13 2.</_></rects> 3126 <tilted>0</tilted></feature> 3127 <threshold>0.0799151062965393</threshold> 3128 <left_val>0.4856320917606354</left_val> 3129 <right_val>0.6073989272117615</right_val></_></_> 3130 <_> 3131 <!-- tree 44 --> 3132 <_> 3133 <!-- root node --> 3134 <feature> 3135 <rects> 3136 <_>0 3 6 13 -1.</_> 3137 <_>3 3 3 13 2.</_></rects> 3138 <tilted>0</tilted></feature> 3139 <threshold>-0.0794410929083824</threshold> 3140 <left_val>0.8394674062728882</left_val> 3141 <right_val>0.4624533057212830</right_val></_></_> 3142 <_> 3143 <!-- tree 45 --> 3144 <_> 3145 <!-- root node --> 3146 <feature> 3147 <rects> 3148 <_>9 1 4 1 -1.</_> 3149 <_>9 1 2 1 2.</_></rects> 3150 <tilted>0</tilted></feature> 3151 <threshold>-5.2800010889768600e-003</threshold> 3152 <left_val>0.1881695985794067</left_val> 3153 <right_val>0.5306698083877564</right_val></_></_> 3154 <_> 3155 <!-- tree 46 --> 3156 <_> 3157 <!-- root node --> 3158 <feature> 3159 <rects> 3160 <_>8 0 2 1 -1.</_> 3161 <_>9 0 1 1 2.</_></rects> 3162 <tilted>0</tilted></feature> 3163 <threshold>1.0463109938427806e-003</threshold> 3164 <left_val>0.5271229147911072</left_val> 3165 <right_val>0.2583065927028656</right_val></_></_> 3166 <_> 3167 <!-- tree 47 --> 3168 <_> 3169 <!-- root node --> 3170 <feature> 3171 <rects> 3172 <_>10 16 4 4 -1.</_> 3173 <_>12 16 2 2 2.</_> 3174 <_>10 18 2 2 2.</_></rects> 3175 <tilted>0</tilted></feature> 3176 <threshold>2.6317298761568964e-004</threshold> 3177 <left_val>0.4235304892063141</left_val> 3178 <right_val>0.5735440850257874</right_val></_></_> 3179 <_> 3180 <!-- tree 48 --> 3181 <_> 3182 <!-- root node --> 3183 <feature> 3184 <rects> 3185 <_>9 6 2 3 -1.</_> 3186 <_>10 6 1 3 2.</_></rects> 3187 <tilted>0</tilted></feature> 3188 <threshold>-3.6173160187900066e-003</threshold> 3189 <left_val>0.6934396028518677</left_val> 3190 <right_val>0.4495444893836975</right_val></_></_> 3191 <_> 3192 <!-- tree 49 --> 3193 <_> 3194 <!-- root node --> 3195 <feature> 3196 <rects> 3197 <_>4 5 12 2 -1.</_> 3198 <_>8 5 4 2 3.</_></rects> 3199 <tilted>0</tilted></feature> 3200 <threshold>0.0114218797534704</threshold> 3201 <left_val>0.5900921225547791</left_val> 3202 <right_val>0.4138193130493164</right_val></_></_> 3203 <_> 3204 <!-- tree 50 --> 3205 <_> 3206 <!-- root node --> 3207 <feature> 3208 <rects> 3209 <_>8 7 3 5 -1.</_> 3210 <_>9 7 1 5 3.</_></rects> 3211 <tilted>0</tilted></feature> 3212 <threshold>-1.9963278900831938e-003</threshold> 3213 <left_val>0.6466382741928101</left_val> 3214 <right_val>0.4327239990234375</right_val></_></_></trees> 3215 <stage_threshold>24.5278797149658200</stage_threshold> 3216 <parent>6</parent> 3217 <next>-1</next></_> 3218 <_> 3219 <!-- stage 8 --> 3220 <trees> 3221 <_> 3222 <!-- tree 0 --> 3223 <_> 3224 <!-- root node --> 3225 <feature> 3226 <rects> 3227 <_>6 4 8 6 -1.</_> 3228 <_>6 6 8 2 3.</_></rects> 3229 <tilted>0</tilted></feature> 3230 <threshold>-9.9691245704889297e-003</threshold> 3231 <left_val>0.6142324209213257</left_val> 3232 <right_val>0.2482212036848068</right_val></_></_> 3233 <_> 3234 <!-- tree 1 --> 3235 <_> 3236 <!-- root node --> 3237 <feature> 3238 <rects> 3239 <_>9 5 2 12 -1.</_> 3240 <_>9 11 2 6 2.</_></rects> 3241 <tilted>0</tilted></feature> 3242 <threshold>7.3073059320449829e-004</threshold> 3243 <left_val>0.5704951882362366</left_val> 3244 <right_val>0.2321965992450714</right_val></_></_> 3245 <_> 3246 <!-- tree 2 --> 3247 <_> 3248 <!-- root node --> 3249 <feature> 3250 <rects> 3251 <_>4 6 6 8 -1.</_> 3252 <_>4 10 6 4 2.</_></rects> 3253 <tilted>0</tilted></feature> 3254 <threshold>6.4045301405712962e-004</threshold> 3255 <left_val>0.2112251967191696</left_val> 3256 <right_val>0.5814933180809021</right_val></_></_> 3257 <_> 3258 <!-- tree 3 --> 3259 <_> 3260 <!-- root node --> 3261 <feature> 3262 <rects> 3263 <_>12 2 8 5 -1.</_> 3264 <_>12 2 4 5 2.</_></rects> 3265 <tilted>0</tilted></feature> 3266 <threshold>4.5424019917845726e-003</threshold> 3267 <left_val>0.2950482070446014</left_val> 3268 <right_val>0.5866311788558960</right_val></_></_> 3269 <_> 3270 <!-- tree 4 --> 3271 <_> 3272 <!-- root node --> 3273 <feature> 3274 <rects> 3275 <_>0 8 18 3 -1.</_> 3276 <_>0 9 18 1 3.</_></rects> 3277 <tilted>0</tilted></feature> 3278 <threshold>9.2477443104144186e-005</threshold> 3279 <left_val>0.2990990877151489</left_val> 3280 <right_val>0.5791326761245728</right_val></_></_> 3281 <_> 3282 <!-- tree 5 --> 3283 <_> 3284 <!-- root node --> 3285 <feature> 3286 <rects> 3287 <_>8 12 4 8 -1.</_> 3288 <_>8 16 4 4 2.</_></rects> 3289 <tilted>0</tilted></feature> 3290 <threshold>-8.6603146046400070e-003</threshold> 3291 <left_val>0.2813029885292053</left_val> 3292 <right_val>0.5635542273521423</right_val></_></_> 3293 <_> 3294 <!-- tree 6 --> 3295 <_> 3296 <!-- root node --> 3297 <feature> 3298 <rects> 3299 <_>0 2 8 5 -1.</_> 3300 <_>4 2 4 5 2.</_></rects> 3301 <tilted>0</tilted></feature> 3302 <threshold>8.0515816807746887e-003</threshold> 3303 <left_val>0.3535369038581848</left_val> 3304 <right_val>0.6054757237434387</right_val></_></_> 3305 <_> 3306 <!-- tree 7 --> 3307 <_> 3308 <!-- root node --> 3309 <feature> 3310 <rects> 3311 <_>13 11 3 4 -1.</_> 3312 <_>13 13 3 2 2.</_></rects> 3313 <tilted>0</tilted></feature> 3314 <threshold>4.3835240649059415e-004</threshold> 3315 <left_val>0.5596532225608826</left_val> 3316 <right_val>0.2731510996818543</right_val></_></_> 3317 <_> 3318 <!-- tree 8 --> 3319 <_> 3320 <!-- root node --> 3321 <feature> 3322 <rects> 3323 <_>5 11 6 1 -1.</_> 3324 <_>7 11 2 1 3.</_></rects> 3325 <tilted>0</tilted></feature> 3326 <threshold>-9.8168973636347800e-005</threshold> 3327 <left_val>0.5978031754493713</left_val> 3328 <right_val>0.3638561069965363</right_val></_></_> 3329 <_> 3330 <!-- tree 9 --> 3331 <_> 3332 <!-- root node --> 3333 <feature> 3334 <rects> 3335 <_>11 3 3 1 -1.</_> 3336 <_>12 3 1 1 3.</_></rects> 3337 <tilted>0</tilted></feature> 3338 <threshold>-1.1298790341243148e-003</threshold> 3339 <left_val>0.2755252122879028</left_val> 3340 <right_val>0.5432729125022888</right_val></_></_> 3341 <_> 3342 <!-- tree 10 --> 3343 <_> 3344 <!-- root node --> 3345 <feature> 3346 <rects> 3347 <_>7 13 5 3 -1.</_> 3348 <_>7 14 5 1 3.</_></rects> 3349 <tilted>0</tilted></feature> 3350 <threshold>6.4356150105595589e-003</threshold> 3351 <left_val>0.4305641949176788</left_val> 3352 <right_val>0.7069833278656006</right_val></_></_> 3353 <_> 3354 <!-- tree 11 --> 3355 <_> 3356 <!-- root node --> 3357 <feature> 3358 <rects> 3359 <_>11 11 7 6 -1.</_> 3360 <_>11 14 7 3 2.</_></rects> 3361 <tilted>0</tilted></feature> 3362 <threshold>-0.0568293295800686</threshold> 3363 <left_val>0.2495242953300476</left_val> 3364 <right_val>0.5294997096061707</right_val></_></_> 3365 <_> 3366 <!-- tree 12 --> 3367 <_> 3368 <!-- root node --> 3369 <feature> 3370 <rects> 3371 <_>2 11 7 6 -1.</_> 3372 <_>2 14 7 3 2.</_></rects> 3373 <tilted>0</tilted></feature> 3374 <threshold>4.0668169967830181e-003</threshold> 3375 <left_val>0.5478553175926209</left_val> 3376 <right_val>0.2497723996639252</right_val></_></_> 3377 <_> 3378 <!-- tree 13 --> 3379 <_> 3380 <!-- root node --> 3381 <feature> 3382 <rects> 3383 <_>12 14 2 6 -1.</_> 3384 <_>12 16 2 2 3.</_></rects> 3385 <tilted>0</tilted></feature> 3386 <threshold>4.8164798499783501e-005</threshold> 3387 <left_val>0.3938601016998291</left_val> 3388 <right_val>0.5706356167793274</right_val></_></_> 3389 <_> 3390 <!-- tree 14 --> 3391 <_> 3392 <!-- root node --> 3393 <feature> 3394 <rects> 3395 <_>8 14 3 3 -1.</_> 3396 <_>8 15 3 1 3.</_></rects> 3397 <tilted>0</tilted></feature> 3398 <threshold>6.1795017682015896e-003</threshold> 3399 <left_val>0.4407606124877930</left_val> 3400 <right_val>0.7394766807556152</right_val></_></_> 3401 <_> 3402 <!-- tree 15 --> 3403 <_> 3404 <!-- root node --> 3405 <feature> 3406 <rects> 3407 <_>11 0 3 5 -1.</_> 3408 <_>12 0 1 5 3.</_></rects> 3409 <tilted>0</tilted></feature> 3410 <threshold>6.4985752105712891e-003</threshold> 3411 <left_val>0.5445243120193481</left_val> 3412 <right_val>0.2479152977466583</right_val></_></_> 3413 <_> 3414 <!-- tree 16 --> 3415 <_> 3416 <!-- root node --> 3417 <feature> 3418 <rects> 3419 <_>6 1 4 9 -1.</_> 3420 <_>8 1 2 9 2.</_></rects> 3421 <tilted>0</tilted></feature> 3422 <threshold>-1.0211090557277203e-003</threshold> 3423 <left_val>0.2544766962528229</left_val> 3424 <right_val>0.5338971018791199</right_val></_></_> 3425 <_> 3426 <!-- tree 17 --> 3427 <_> 3428 <!-- root node --> 3429 <feature> 3430 <rects> 3431 <_>10 3 6 1 -1.</_> 3432 <_>12 3 2 1 3.</_></rects> 3433 <tilted>0</tilted></feature> 3434 <threshold>-5.4247528314590454e-003</threshold> 3435 <left_val>0.2718858122825623</left_val> 3436 <right_val>0.5324069261550903</right_val></_></_> 3437 <_> 3438 <!-- tree 18 --> 3439 <_> 3440 <!-- root node --> 3441 <feature> 3442 <rects> 3443 <_>8 8 3 4 -1.</_> 3444 <_>8 10 3 2 2.</_></rects> 3445 <tilted>0</tilted></feature> 3446 <threshold>-1.0559899965301156e-003</threshold> 3447 <left_val>0.3178288042545319</left_val> 3448 <right_val>0.5534508824348450</right_val></_></_> 3449 <_> 3450 <!-- tree 19 --> 3451 <_> 3452 <!-- root node --> 3453 <feature> 3454 <rects> 3455 <_>8 12 4 2 -1.</_> 3456 <_>8 13 4 1 2.</_></rects> 3457 <tilted>0</tilted></feature> 3458 <threshold>6.6465808777138591e-004</threshold> 3459 <left_val>0.4284219145774841</left_val> 3460 <right_val>0.6558194160461426</right_val></_></_> 3461 <_> 3462 <!-- tree 20 --> 3463 <_> 3464 <!-- root node --> 3465 <feature> 3466 <rects> 3467 <_>5 18 4 2 -1.</_> 3468 <_>5 19 4 1 2.</_></rects> 3469 <tilted>0</tilted></feature> 3470 <threshold>-2.7524109464138746e-004</threshold> 3471 <left_val>0.5902860760688782</left_val> 3472 <right_val>0.3810262978076935</right_val></_></_> 3473 <_> 3474 <!-- tree 21 --> 3475 <_> 3476 <!-- root node --> 3477 <feature> 3478 <rects> 3479 <_>2 1 18 6 -1.</_> 3480 <_>2 3 18 2 3.</_></rects> 3481 <tilted>0</tilted></feature> 3482 <threshold>4.2293202131986618e-003</threshold> 3483 <left_val>0.3816489875316620</left_val> 3484 <right_val>0.5709385871887207</right_val></_></_> 3485 <_> 3486 <!-- tree 22 --> 3487 <_> 3488 <!-- root node --> 3489 <feature> 3490 <rects> 3491 <_>6 0 3 2 -1.</_> 3492 <_>7 0 1 2 3.</_></rects> 3493 <tilted>0</tilted></feature> 3494 <threshold>-3.2868210691958666e-003</threshold> 3495 <left_val>0.1747743934392929</left_val> 3496 <right_val>0.5259544253349304</right_val></_></_> 3497 <_> 3498 <!-- tree 23 --> 3499 <_> 3500 <!-- root node --> 3501 <feature> 3502 <rects> 3503 <_>13 8 6 2 -1.</_> 3504 <_>16 8 3 1 2.</_> 3505 <_>13 9 3 1 2.</_></rects> 3506 <tilted>0</tilted></feature> 3507 <threshold>1.5611879643984139e-004</threshold> 3508 <left_val>0.3601722121238709</left_val> 3509 <right_val>0.5725612044334412</right_val></_></_> 3510 <_> 3511 <!-- tree 24 --> 3512 <_> 3513 <!-- root node --> 3514 <feature> 3515 <rects> 3516 <_>6 10 3 6 -1.</_> 3517 <_>6 13 3 3 2.</_></rects> 3518 <tilted>0</tilted></feature> 3519 <threshold>-7.3621381488919724e-006</threshold> 3520 <left_val>0.5401858091354370</left_val> 3521 <right_val>0.3044497072696686</right_val></_></_> 3522 <_> 3523 <!-- tree 25 --> 3524 <_> 3525 <!-- root node --> 3526 <feature> 3527 <rects> 3528 <_>0 13 20 4 -1.</_> 3529 <_>10 13 10 2 2.</_> 3530 <_>0 15 10 2 2.</_></rects> 3531 <tilted>0</tilted></feature> 3532 <threshold>-0.0147672500461340</threshold> 3533 <left_val>0.3220770061016083</left_val> 3534 <right_val>0.5573434829711914</right_val></_></_> 3535 <_> 3536 <!-- tree 26 --> 3537 <_> 3538 <!-- root node --> 3539 <feature> 3540 <rects> 3541 <_>7 7 6 5 -1.</_> 3542 <_>9 7 2 5 3.</_></rects> 3543 <tilted>0</tilted></feature> 3544 <threshold>0.0244895908981562</threshold> 3545 <left_val>0.4301528036594391</left_val> 3546 <right_val>0.6518812775611877</right_val></_></_> 3547 <_> 3548 <!-- tree 27 --> 3549 <_> 3550 <!-- root node --> 3551 <feature> 3552 <rects> 3553 <_>11 0 2 2 -1.</_> 3554 <_>11 1 2 1 2.</_></rects> 3555 <tilted>0</tilted></feature> 3556 <threshold>-3.7652091123163700e-004</threshold> 3557 <left_val>0.3564583063125610</left_val> 3558 <right_val>0.5598236918449402</right_val></_></_> 3559 <_> 3560 <!-- tree 28 --> 3561 <_> 3562 <!-- root node --> 3563 <feature> 3564 <rects> 3565 <_>1 8 6 2 -1.</_> 3566 <_>1 8 3 1 2.</_> 3567 <_>4 9 3 1 2.</_></rects> 3568 <tilted>0</tilted></feature> 3569 <threshold>7.3657688517414499e-006</threshold> 3570 <left_val>0.3490782976150513</left_val> 3571 <right_val>0.5561897754669190</right_val></_></_> 3572 <_> 3573 <!-- tree 29 --> 3574 <_> 3575 <!-- root node --> 3576 <feature> 3577 <rects> 3578 <_>0 2 20 2 -1.</_> 3579 <_>10 2 10 1 2.</_> 3580 <_>0 3 10 1 2.</_></rects> 3581 <tilted>0</tilted></feature> 3582 <threshold>-0.0150999398902059</threshold> 3583 <left_val>0.1776272058486939</left_val> 3584 <right_val>0.5335299968719482</right_val></_></_> 3585 <_> 3586 <!-- tree 30 --> 3587 <_> 3588 <!-- root node --> 3589 <feature> 3590 <rects> 3591 <_>7 14 5 3 -1.</_> 3592 <_>7 15 5 1 3.</_></rects> 3593 <tilted>0</tilted></feature> 3594 <threshold>-3.8316650316119194e-003</threshold> 3595 <left_val>0.6149687767028809</left_val> 3596 <right_val>0.4221394062042236</right_val></_></_> 3597 <_> 3598 <!-- tree 31 --> 3599 <_> 3600 <!-- root node --> 3601 <feature> 3602 <rects> 3603 <_>7 13 6 6 -1.</_> 3604 <_>10 13 3 3 2.</_> 3605 <_>7 16 3 3 2.</_></rects> 3606 <tilted>0</tilted></feature> 3607 <threshold>0.0169254001230001</threshold> 3608 <left_val>0.5413014888763428</left_val> 3609 <right_val>0.2166585028171539</right_val></_></_> 3610 <_> 3611 <!-- tree 32 --> 3612 <_> 3613 <!-- root node --> 3614 <feature> 3615 <rects> 3616 <_>9 12 2 3 -1.</_> 3617 <_>9 13 2 1 3.</_></rects> 3618 <tilted>0</tilted></feature> 3619 <threshold>-3.0477850232273340e-003</threshold> 3620 <left_val>0.6449490785598755</left_val> 3621 <right_val>0.4354617893695831</right_val></_></_> 3622 <_> 3623 <!-- tree 33 --> 3624 <_> 3625 <!-- root node --> 3626 <feature> 3627 <rects> 3628 <_>16 11 1 6 -1.</_> 3629 <_>16 13 1 2 3.</_></rects> 3630 <tilted>0</tilted></feature> 3631 <threshold>3.2140589319169521e-003</threshold> 3632 <left_val>0.5400155186653137</left_val> 3633 <right_val>0.3523217141628265</right_val></_></_> 3634 <_> 3635 <!-- tree 34 --> 3636 <_> 3637 <!-- root node --> 3638 <feature> 3639 <rects> 3640 <_>3 11 1 6 -1.</_> 3641 <_>3 13 1 2 3.</_></rects> 3642 <tilted>0</tilted></feature> 3643 <threshold>-4.0023201145231724e-003</threshold> 3644 <left_val>0.2774524092674255</left_val> 3645 <right_val>0.5338417291641235</right_val></_></_> 3646 <_> 3647 <!-- tree 35 --> 3648 <_> 3649 <!-- root node --> 3650 <feature> 3651 <rects> 3652 <_>4 4 14 12 -1.</_> 3653 <_>11 4 7 6 2.</_> 3654 <_>4 10 7 6 2.</_></rects> 3655 <tilted>0</tilted></feature> 3656 <threshold>7.4182129465043545e-003</threshold> 3657 <left_val>0.5676739215850830</left_val> 3658 <right_val>0.3702817857265472</right_val></_></_> 3659 <_> 3660 <!-- tree 36 --> 3661 <_> 3662 <!-- root node --> 3663 <feature> 3664 <rects> 3665 <_>5 4 3 3 -1.</_> 3666 <_>5 5 3 1 3.</_></rects> 3667 <tilted>0</tilted></feature> 3668 <threshold>-8.8764587417244911e-003</threshold> 3669 <left_val>0.7749221920967102</left_val> 3670 <right_val>0.4583688974380493</right_val></_></_> 3671 <_> 3672 <!-- tree 37 --> 3673 <_> 3674 <!-- root node --> 3675 <feature> 3676 <rects> 3677 <_>12 3 3 3 -1.</_> 3678 <_>13 3 1 3 3.</_></rects> 3679 <tilted>0</tilted></feature> 3680 <threshold>2.7311739977449179e-003</threshold> 3681 <left_val>0.5338721871376038</left_val> 3682 <right_val>0.3996661007404327</right_val></_></_> 3683 <_> 3684 <!-- tree 38 --> 3685 <_> 3686 <!-- root node --> 3687 <feature> 3688 <rects> 3689 <_>6 6 8 3 -1.</_> 3690 <_>6 7 8 1 3.</_></rects> 3691 <tilted>0</tilted></feature> 3692 <threshold>-2.5082379579544067e-003</threshold> 3693 <left_val>0.5611963272094727</left_val> 3694 <right_val>0.3777498900890350</right_val></_></_> 3695 <_> 3696 <!-- tree 39 --> 3697 <_> 3698 <!-- root node --> 3699 <feature> 3700 <rects> 3701 <_>12 3 3 3 -1.</_> 3702 <_>13 3 1 3 3.</_></rects> 3703 <tilted>0</tilted></feature> 3704 <threshold>-8.0541074275970459e-003</threshold> 3705 <left_val>0.2915228903293610</left_val> 3706 <right_val>0.5179182887077332</right_val></_></_> 3707 <_> 3708 <!-- tree 40 --> 3709 <_> 3710 <!-- root node --> 3711 <feature> 3712 <rects> 3713 <_>3 1 4 10 -1.</_> 3714 <_>3 1 2 5 2.</_> 3715 <_>5 6 2 5 2.</_></rects> 3716 <tilted>0</tilted></feature> 3717 <threshold>-9.7938813269138336e-004</threshold> 3718 <left_val>0.5536432862281799</left_val> 3719 <right_val>0.3700192868709564</right_val></_></_> 3720 <_> 3721 <!-- tree 41 --> 3722 <_> 3723 <!-- root node --> 3724 <feature> 3725 <rects> 3726 <_>5 7 10 2 -1.</_> 3727 <_>5 7 5 2 2.</_></rects> 3728 <tilted>0</tilted></feature> 3729 <threshold>-5.8745909482240677e-003</threshold> 3730 <left_val>0.3754391074180603</left_val> 3731 <right_val>0.5679376125335693</right_val></_></_> 3732 <_> 3733 <!-- tree 42 --> 3734 <_> 3735 <!-- root node --> 3736 <feature> 3737 <rects> 3738 <_>8 7 3 3 -1.</_> 3739 <_>9 7 1 3 3.</_></rects> 3740 <tilted>0</tilted></feature> 3741 <threshold>-4.4936719350516796e-003</threshold> 3742 <left_val>0.7019699215888977</left_val> 3743 <right_val>0.4480949938297272</right_val></_></_> 3744 <_> 3745 <!-- tree 43 --> 3746 <_> 3747 <!-- root node --> 3748 <feature> 3749 <rects> 3750 <_>15 12 2 3 -1.</_> 3751 <_>15 13 2 1 3.</_></rects> 3752 <tilted>0</tilted></feature> 3753 <threshold>-5.4389229044318199e-003</threshold> 3754 <left_val>0.2310364991426468</left_val> 3755 <right_val>0.5313386917114258</right_val></_></_> 3756 <_> 3757 <!-- tree 44 --> 3758 <_> 3759 <!-- root node --> 3760 <feature> 3761 <rects> 3762 <_>7 8 3 4 -1.</_> 3763 <_>8 8 1 4 3.</_></rects> 3764 <tilted>0</tilted></feature> 3765 <threshold>-7.5094640487805009e-004</threshold> 3766 <left_val>0.5864868760108948</left_val> 3767 <right_val>0.4129343032836914</right_val></_></_> 3768 <_> 3769 <!-- tree 45 --> 3770 <_> 3771 <!-- root node --> 3772 <feature> 3773 <rects> 3774 <_>13 4 1 12 -1.</_> 3775 <_>13 10 1 6 2.</_></rects> 3776 <tilted>0</tilted></feature> 3777 <threshold>1.4528800420521293e-005</threshold> 3778 <left_val>0.3732407093048096</left_val> 3779 <right_val>0.5619621276855469</right_val></_></_> 3780 <_> 3781 <!-- tree 46 --> 3782 <_> 3783 <!-- root node --> 3784 <feature> 3785 <rects> 3786 <_>4 5 12 12 -1.</_> 3787 <_>4 5 6 6 2.</_> 3788 <_>10 11 6 6 2.</_></rects> 3789 <tilted>0</tilted></feature> 3790 <threshold>0.0407580696046352</threshold> 3791 <left_val>0.5312091112136841</left_val> 3792 <right_val>0.2720521986484528</right_val></_></_> 3793 <_> 3794 <!-- tree 47 --> 3795 <_> 3796 <!-- root node --> 3797 <feature> 3798 <rects> 3799 <_>7 14 7 3 -1.</_> 3800 <_>7 15 7 1 3.</_></rects> 3801 <tilted>0</tilted></feature> 3802 <threshold>6.6505931317806244e-003</threshold> 3803 <left_val>0.4710015952587128</left_val> 3804 <right_val>0.6693493723869324</right_val></_></_> 3805 <_> 3806 <!-- tree 48 --> 3807 <_> 3808 <!-- root node --> 3809 <feature> 3810 <rects> 3811 <_>3 12 2 3 -1.</_> 3812 <_>3 13 2 1 3.</_></rects> 3813 <tilted>0</tilted></feature> 3814 <threshold>4.5759351924061775e-003</threshold> 3815 <left_val>0.5167819261550903</left_val> 3816 <right_val>0.1637275964021683</right_val></_></_> 3817 <_> 3818 <!-- tree 49 --> 3819 <_> 3820 <!-- root node --> 3821 <feature> 3822 <rects> 3823 <_>3 2 14 2 -1.</_> 3824 <_>10 2 7 1 2.</_> 3825 <_>3 3 7 1 2.</_></rects> 3826 <tilted>0</tilted></feature> 3827 <threshold>6.5269311890006065e-003</threshold> 3828 <left_val>0.5397608876228333</left_val> 3829 <right_val>0.2938531935214996</right_val></_></_> 3830 <_> 3831 <!-- tree 50 --> 3832 <_> 3833 <!-- root node --> 3834 <feature> 3835 <rects> 3836 <_>0 1 3 10 -1.</_> 3837 <_>1 1 1 10 3.</_></rects> 3838 <tilted>0</tilted></feature> 3839 <threshold>-0.0136603796854615</threshold> 3840 <left_val>0.7086488008499146</left_val> 3841 <right_val>0.4532200098037720</right_val></_></_> 3842 <_> 3843 <!-- tree 51 --> 3844 <_> 3845 <!-- root node --> 3846 <feature> 3847 <rects> 3848 <_>9 0 6 5 -1.</_> 3849 <_>11 0 2 5 3.</_></rects> 3850 <tilted>0</tilted></feature> 3851 <threshold>0.0273588690906763</threshold> 3852 <left_val>0.5206481218338013</left_val> 3853 <right_val>0.3589231967926025</right_val></_></_> 3854 <_> 3855 <!-- tree 52 --> 3856 <_> 3857 <!-- root node --> 3858 <feature> 3859 <rects> 3860 <_>5 7 6 2 -1.</_> 3861 <_>8 7 3 2 2.</_></rects> 3862 <tilted>0</tilted></feature> 3863 <threshold>6.2197551596909761e-004</threshold> 3864 <left_val>0.3507075905799866</left_val> 3865 <right_val>0.5441123247146606</right_val></_></_> 3866 <_> 3867 <!-- tree 53 --> 3868 <_> 3869 <!-- root node --> 3870 <feature> 3871 <rects> 3872 <_>7 1 6 10 -1.</_> 3873 <_>7 6 6 5 2.</_></rects> 3874 <tilted>0</tilted></feature> 3875 <threshold>-3.3077080734074116e-003</threshold> 3876 <left_val>0.5859522819519043</left_val> 3877 <right_val>0.4024891853332520</right_val></_></_> 3878 <_> 3879 <!-- tree 54 --> 3880 <_> 3881 <!-- root node --> 3882 <feature> 3883 <rects> 3884 <_>1 1 18 3 -1.</_> 3885 <_>7 1 6 3 3.</_></rects> 3886 <tilted>0</tilted></feature> 3887 <threshold>-0.0106311095878482</threshold> 3888 <left_val>0.6743267178535461</left_val> 3889 <right_val>0.4422602951526642</right_val></_></_> 3890 <_> 3891 <!-- tree 55 --> 3892 <_> 3893 <!-- root node --> 3894 <feature> 3895 <rects> 3896 <_>16 3 3 6 -1.</_> 3897 <_>16 5 3 2 3.</_></rects> 3898 <tilted>0</tilted></feature> 3899 <threshold>0.0194416493177414</threshold> 3900 <left_val>0.5282716155052185</left_val> 3901 <right_val>0.1797904968261719</right_val></_></_></trees> 3902 <stage_threshold>27.1533508300781250</stage_threshold> 3903 <parent>7</parent> 3904 <next>-1</next></_> 3905 <_> 3906 <!-- stage 9 --> 3907 <trees> 3908 <_> 3909 <!-- tree 0 --> 3910 <_> 3911 <!-- root node --> 3912 <feature> 3913 <rects> 3914 <_>6 3 7 6 -1.</_> 3915 <_>6 6 7 3 2.</_></rects> 3916 <tilted>0</tilted></feature> 3917 <threshold>-5.5052167735993862e-003</threshold> 3918 <left_val>0.5914731025695801</left_val> 3919 <right_val>0.2626559138298035</right_val></_></_> 3920 <_> 3921 <!-- tree 1 --> 3922 <_> 3923 <!-- root node --> 3924 <feature> 3925 <rects> 3926 <_>4 7 12 2 -1.</_> 3927 <_>8 7 4 2 3.</_></rects> 3928 <tilted>0</tilted></feature> 3929 <threshold>1.9562279339879751e-003</threshold> 3930 <left_val>0.2312581986188889</left_val> 3931 <right_val>0.5741627216339111</right_val></_></_> 3932 <_> 3933 <!-- tree 2 --> 3934 <_> 3935 <!-- root node --> 3936 <feature> 3937 <rects> 3938 <_>0 4 17 10 -1.</_> 3939 <_>0 9 17 5 2.</_></rects> 3940 <tilted>0</tilted></feature> 3941 <threshold>-8.8924784213304520e-003</threshold> 3942 <left_val>0.1656530052423477</left_val> 3943 <right_val>0.5626654028892517</right_val></_></_> 3944 <_> 3945 <!-- tree 3 --> 3946 <_> 3947 <!-- root node --> 3948 <feature> 3949 <rects> 3950 <_>3 4 15 16 -1.</_> 3951 <_>3 12 15 8 2.</_></rects> 3952 <tilted>0</tilted></feature> 3953 <threshold>0.0836383774876595</threshold> 3954 <left_val>0.5423449873924255</left_val> 3955 <right_val>0.1957294940948486</right_val></_></_> 3956 <_> 3957 <!-- tree 4 --> 3958 <_> 3959 <!-- root node --> 3960 <feature> 3961 <rects> 3962 <_>7 15 6 4 -1.</_> 3963 <_>7 17 6 2 2.</_></rects> 3964 <tilted>0</tilted></feature> 3965 <threshold>1.2282270472496748e-003</threshold> 3966 <left_val>0.3417904078960419</left_val> 3967 <right_val>0.5992503762245178</right_val></_></_> 3968 <_> 3969 <!-- tree 5 --> 3970 <_> 3971 <!-- root node --> 3972 <feature> 3973 <rects> 3974 <_>15 2 4 9 -1.</_> 3975 <_>15 2 2 9 2.</_></rects> 3976 <tilted>0</tilted></feature> 3977 <threshold>5.7629169896245003e-003</threshold> 3978 <left_val>0.3719581961631775</left_val> 3979 <right_val>0.6079903841018677</right_val></_></_> 3980 <_> 3981 <!-- tree 6 --> 3982 <_> 3983 <!-- root node --> 3984 <feature> 3985 <rects> 3986 <_>2 3 3 2 -1.</_> 3987 <_>2 4 3 1 2.</_></rects> 3988 <tilted>0</tilted></feature> 3989 <threshold>-1.6417410224676132e-003</threshold> 3990 <left_val>0.2577486038208008</left_val> 3991 <right_val>0.5576915740966797</right_val></_></_> 3992 <_> 3993 <!-- tree 7 --> 3994 <_> 3995 <!-- root node --> 3996 <feature> 3997 <rects> 3998 <_>13 6 7 9 -1.</_> 3999 <_>13 9 7 3 3.</_></rects> 4000 <tilted>0</tilted></feature> 4001 <threshold>3.4113149158656597e-003</threshold> 4002 <left_val>0.2950749099254608</left_val> 4003 <right_val>0.5514171719551086</right_val></_></_> 4004 <_> 4005 <!-- tree 8 --> 4006 <_> 4007 <!-- root node --> 4008 <feature> 4009 <rects> 4010 <_>8 11 4 3 -1.</_> 4011 <_>8 12 4 1 3.</_></rects> 4012 <tilted>0</tilted></feature> 4013 <threshold>-0.0110693201422691</threshold> 4014 <left_val>0.7569358944892883</left_val> 4015 <right_val>0.4477078914642334</right_val></_></_> 4016 <_> 4017 <!-- tree 9 --> 4018 <_> 4019 <!-- root node --> 4020 <feature> 4021 <rects> 4022 <_>0 2 20 6 -1.</_> 4023 <_>10 2 10 3 2.</_> 4024 <_>0 5 10 3 2.</_></rects> 4025 <tilted>0</tilted></feature> 4026 <threshold>0.0348659716546535</threshold> 4027 <left_val>0.5583708882331848</left_val> 4028 <right_val>0.2669621109962463</right_val></_></_> 4029 <_> 4030 <!-- tree 10 --> 4031 <_> 4032 <!-- root node --> 4033 <feature> 4034 <rects> 4035 <_>3 2 6 10 -1.</_> 4036 <_>3 2 3 5 2.</_> 4037 <_>6 7 3 5 2.</_></rects> 4038 <tilted>0</tilted></feature> 4039 <threshold>6.5701099811121821e-004</threshold> 4040 <left_val>0.5627313256263733</left_val> 4041 <right_val>0.2988890111446381</right_val></_></_> 4042 <_> 4043 <!-- tree 11 --> 4044 <_> 4045 <!-- root node --> 4046 <feature> 4047 <rects> 4048 <_>13 10 3 4 -1.</_> 4049 <_>13 12 3 2 2.</_></rects> 4050 <tilted>0</tilted></feature> 4051 <threshold>-0.0243391301482916</threshold> 4052 <left_val>0.2771185040473938</left_val> 4053 <right_val>0.5108863115310669</right_val></_></_> 4054 <_> 4055 <!-- tree 12 --> 4056 <_> 4057 <!-- root node --> 4058 <feature> 4059 <rects> 4060 <_>4 10 3 4 -1.</_> 4061 <_>4 12 3 2 2.</_></rects> 4062 <tilted>0</tilted></feature> 4063 <threshold>5.9435202274471521e-004</threshold> 4064 <left_val>0.5580651760101318</left_val> 4065 <right_val>0.3120341897010803</right_val></_></_> 4066 <_> 4067 <!-- tree 13 --> 4068 <_> 4069 <!-- root node --> 4070 <feature> 4071 <rects> 4072 <_>7 5 6 3 -1.</_> 4073 <_>9 5 2 3 3.</_></rects> 4074 <tilted>0</tilted></feature> 4075 <threshold>2.2971509024500847e-003</threshold> 4076 <left_val>0.3330250084400177</left_val> 4077 <right_val>0.5679075717926025</right_val></_></_> 4078 <_> 4079 <!-- tree 14 --> 4080 <_> 4081 <!-- root node --> 4082 <feature> 4083 <rects> 4084 <_>7 6 6 8 -1.</_> 4085 <_>7 10 6 4 2.</_></rects> 4086 <tilted>0</tilted></feature> 4087 <threshold>-3.7801829166710377e-003</threshold> 4088 <left_val>0.2990534901618958</left_val> 4089 <right_val>0.5344808101654053</right_val></_></_> 4090 <_> 4091 <!-- tree 15 --> 4092 <_> 4093 <!-- root node --> 4094 <feature> 4095 <rects> 4096 <_>0 11 20 6 -1.</_> 4097 <_>0 14 20 3 2.</_></rects> 4098 <tilted>0</tilted></feature> 4099 <threshold>-0.1342066973447800</threshold> 4100 <left_val>0.1463858932256699</left_val> 4101 <right_val>0.5392568111419678</right_val></_></_> 4102 <_> 4103 <!-- tree 16 --> 4104 <_> 4105 <!-- root node --> 4106 <feature> 4107 <rects> 4108 <_>4 13 4 6 -1.</_> 4109 <_>4 13 2 3 2.</_> 4110 <_>6 16 2 3 2.</_></rects> 4111 <tilted>0</tilted></feature> 4112 <threshold>7.5224548345431685e-004</threshold> 4113 <left_val>0.3746953904628754</left_val> 4114 <right_val>0.5692734718322754</right_val></_></_> 4115 <_> 4116 <!-- tree 17 --> 4117 <_> 4118 <!-- root node --> 4119 <feature> 4120 <rects> 4121 <_>6 0 8 12 -1.</_> 4122 <_>10 0 4 6 2.</_> 4123 <_>6 6 4 6 2.</_></rects> 4124 <tilted>0</tilted></feature> 4125 <threshold>-0.0405455417931080</threshold> 4126 <left_val>0.2754747867584229</left_val> 4127 <right_val>0.5484297871589661</right_val></_></_> 4128 <_> 4129 <!-- tree 18 --> 4130 <_> 4131 <!-- root node --> 4132 <feature> 4133 <rects> 4134 <_>2 0 15 2 -1.</_> 4135 <_>2 1 15 1 2.</_></rects> 4136 <tilted>0</tilted></feature> 4137 <threshold>1.2572970008477569e-003</threshold> 4138 <left_val>0.3744584023952484</left_val> 4139 <right_val>0.5756075978279114</right_val></_></_> 4140 <_> 4141 <!-- tree 19 --> 4142 <_> 4143 <!-- root node --> 4144 <feature> 4145 <rects> 4146 <_>9 12 2 3 -1.</_> 4147 <_>9 13 2 1 3.</_></rects> 4148 <tilted>0</tilted></feature> 4149 <threshold>-7.4249948374927044e-003</threshold> 4150 <left_val>0.7513859272003174</left_val> 4151 <right_val>0.4728231132030487</right_val></_></_> 4152 <_> 4153 <!-- tree 20 --> 4154 <_> 4155 <!-- root node --> 4156 <feature> 4157 <rects> 4158 <_>3 12 1 2 -1.</_> 4159 <_>3 13 1 1 2.</_></rects> 4160 <tilted>0</tilted></feature> 4161 <threshold>5.0908129196614027e-004</threshold> 4162 <left_val>0.5404896736145020</left_val> 4163 <right_val>0.2932321131229401</right_val></_></_> 4164 <_> 4165 <!-- tree 21 --> 4166 <_> 4167 <!-- root node --> 4168 <feature> 4169 <rects> 4170 <_>9 11 2 3 -1.</_> 4171 <_>9 12 2 1 3.</_></rects> 4172 <tilted>0</tilted></feature> 4173 <threshold>-1.2808450264856219e-003</threshold> 4174 <left_val>0.6169779896736145</left_val> 4175 <right_val>0.4273349046707153</right_val></_></_> 4176 <_> 4177 <!-- tree 22 --> 4178 <_> 4179 <!-- root node --> 4180 <feature> 4181 <rects> 4182 <_>7 3 3 1 -1.</_> 4183 <_>8 3 1 1 3.</_></rects> 4184 <tilted>0</tilted></feature> 4185 <threshold>-1.8348860321566463e-003</threshold> 4186 <left_val>0.2048496007919312</left_val> 4187 <right_val>0.5206472277641296</right_val></_></_> 4188 <_> 4189 <!-- tree 23 --> 4190 <_> 4191 <!-- root node --> 4192 <feature> 4193 <rects> 4194 <_>17 7 3 6 -1.</_> 4195 <_>17 9 3 2 3.</_></rects> 4196 <tilted>0</tilted></feature> 4197 <threshold>0.0274848695844412</threshold> 4198 <left_val>0.5252984762191773</left_val> 4199 <right_val>0.1675522029399872</right_val></_></_> 4200 <_> 4201 <!-- tree 24 --> 4202 <_> 4203 <!-- root node --> 4204 <feature> 4205 <rects> 4206 <_>7 2 3 2 -1.</_> 4207 <_>8 2 1 2 3.</_></rects> 4208 <tilted>0</tilted></feature> 4209 <threshold>2.2372419480234385e-003</threshold> 4210 <left_val>0.5267782807350159</left_val> 4211 <right_val>0.2777658104896545</right_val></_></_> 4212 <_> 4213 <!-- tree 25 --> 4214 <_> 4215 <!-- root node --> 4216 <feature> 4217 <rects> 4218 <_>11 4 5 3 -1.</_> 4219 <_>11 5 5 1 3.</_></rects> 4220 <tilted>0</tilted></feature> 4221 <threshold>-8.8635291904211044e-003</threshold> 4222 <left_val>0.6954557895660400</left_val> 4223 <right_val>0.4812048971652985</right_val></_></_> 4224 <_> 4225 <!-- tree 26 --> 4226 <_> 4227 <!-- root node --> 4228 <feature> 4229 <rects> 4230 <_>4 4 5 3 -1.</_> 4231 <_>4 5 5 1 3.</_></rects> 4232 <tilted>0</tilted></feature> 4233 <threshold>4.1753971017897129e-003</threshold> 4234 <left_val>0.4291887879371643</left_val> 4235 <right_val>0.6349195837974548</right_val></_></_> 4236 <_> 4237 <!-- tree 27 --> 4238 <_> 4239 <!-- root node --> 4240 <feature> 4241 <rects> 4242 <_>19 3 1 2 -1.</_> 4243 <_>19 4 1 1 2.</_></rects> 4244 <tilted>0</tilted></feature> 4245 <threshold>-1.7098189564421773e-003</threshold> 4246 <left_val>0.2930536866188049</left_val> 4247 <right_val>0.5361248850822449</right_val></_></_> 4248 <_> 4249 <!-- tree 28 --> 4250 <_> 4251 <!-- root node --> 4252 <feature> 4253 <rects> 4254 <_>5 5 4 3 -1.</_> 4255 <_>5 6 4 1 3.</_></rects> 4256 <tilted>0</tilted></feature> 4257 <threshold>6.5328548662364483e-003</threshold> 4258 <left_val>0.4495325088500977</left_val> 4259 <right_val>0.7409694194793701</right_val></_></_> 4260 <_> 4261 <!-- tree 29 --> 4262 <_> 4263 <!-- root node --> 4264 <feature> 4265 <rects> 4266 <_>17 7 3 6 -1.</_> 4267 <_>17 9 3 2 3.</_></rects> 4268 <tilted>0</tilted></feature> 4269 <threshold>-9.5372907817363739e-003</threshold> 4270 <left_val>0.3149119913578033</left_val> 4271 <right_val>0.5416501760482788</right_val></_></_> 4272 <_> 4273 <!-- tree 30 --> 4274 <_> 4275 <!-- root node --> 4276 <feature> 4277 <rects> 4278 <_>0 7 3 6 -1.</_> 4279 <_>0 9 3 2 3.</_></rects> 4280 <tilted>0</tilted></feature> 4281 <threshold>0.0253109894692898</threshold> 4282 <left_val>0.5121892094612122</left_val> 4283 <right_val>0.1311707943677902</right_val></_></_> 4284 <_> 4285 <!-- tree 31 --> 4286 <_> 4287 <!-- root node --> 4288 <feature> 4289 <rects> 4290 <_>14 2 6 9 -1.</_> 4291 <_>14 5 6 3 3.</_></rects> 4292 <tilted>0</tilted></feature> 4293 <threshold>0.0364609695971012</threshold> 4294 <left_val>0.5175911784172058</left_val> 4295 <right_val>0.2591339945793152</right_val></_></_> 4296 <_> 4297 <!-- tree 32 --> 4298 <_> 4299 <!-- root node --> 4300 <feature> 4301 <rects> 4302 <_>0 4 5 6 -1.</_> 4303 <_>0 6 5 2 3.</_></rects> 4304 <tilted>0</tilted></feature> 4305 <threshold>0.0208543296903372</threshold> 4306 <left_val>0.5137140154838562</left_val> 4307 <right_val>0.1582316011190414</right_val></_></_> 4308 <_> 4309 <!-- tree 33 --> 4310 <_> 4311 <!-- root node --> 4312 <feature> 4313 <rects> 4314 <_>10 5 6 2 -1.</_> 4315 <_>12 5 2 2 3.</_></rects> 4316 <tilted>0</tilted></feature> 4317 <threshold>-8.7207747856155038e-004</threshold> 4318 <left_val>0.5574309825897217</left_val> 4319 <right_val>0.4398978948593140</right_val></_></_> 4320 <_> 4321 <!-- tree 34 --> 4322 <_> 4323 <!-- root node --> 4324 <feature> 4325 <rects> 4326 <_>4 5 6 2 -1.</_> 4327 <_>6 5 2 2 3.</_></rects> 4328 <tilted>0</tilted></feature> 4329 <threshold>-1.5227000403683633e-005</threshold> 4330 <left_val>0.5548940896987915</left_val> 4331 <right_val>0.3708069920539856</right_val></_></_> 4332 <_> 4333 <!-- tree 35 --> 4334 <_> 4335 <!-- root node --> 4336 <feature> 4337 <rects> 4338 <_>8 1 4 6 -1.</_> 4339 <_>8 3 4 2 3.</_></rects> 4340 <tilted>0</tilted></feature> 4341 <threshold>-8.4316509310156107e-004</threshold> 4342 <left_val>0.3387419879436493</left_val> 4343 <right_val>0.5554211139678955</right_val></_></_> 4344 <_> 4345 <!-- tree 36 --> 4346 <_> 4347 <!-- root node --> 4348 <feature> 4349 <rects> 4350 <_>0 2 3 6 -1.</_> 4351 <_>0 4 3 2 3.</_></rects> 4352 <tilted>0</tilted></feature> 4353 <threshold>3.6037859972566366e-003</threshold> 4354 <left_val>0.5358061790466309</left_val> 4355 <right_val>0.3411171138286591</right_val></_></_> 4356 <_> 4357 <!-- tree 37 --> 4358 <_> 4359 <!-- root node --> 4360 <feature> 4361 <rects> 4362 <_>6 6 8 3 -1.</_> 4363 <_>6 7 8 1 3.</_></rects> 4364 <tilted>0</tilted></feature> 4365 <threshold>-6.8057891912758350e-003</threshold> 4366 <left_val>0.6125202775001526</left_val> 4367 <right_val>0.4345862865447998</right_val></_></_> 4368 <_> 4369 <!-- tree 38 --> 4370 <_> 4371 <!-- root node --> 4372 <feature> 4373 <rects> 4374 <_>0 1 5 9 -1.</_> 4375 <_>0 4 5 3 3.</_></rects> 4376 <tilted>0</tilted></feature> 4377 <threshold>-0.0470216609537601</threshold> 4378 <left_val>0.2358165979385376</left_val> 4379 <right_val>0.5193738937377930</right_val></_></_> 4380 <_> 4381 <!-- tree 39 --> 4382 <_> 4383 <!-- root node --> 4384 <feature> 4385 <rects> 4386 <_>16 0 4 15 -1.</_> 4387 <_>16 0 2 15 2.</_></rects> 4388 <tilted>0</tilted></feature> 4389 <threshold>-0.0369541086256504</threshold> 4390 <left_val>0.7323111295700073</left_val> 4391 <right_val>0.4760943949222565</right_val></_></_> 4392 <_> 4393 <!-- tree 40 --> 4394 <_> 4395 <!-- root node --> 4396 <feature> 4397 <rects> 4398 <_>1 10 3 2 -1.</_> 4399 <_>1 11 3 1 2.</_></rects> 4400 <tilted>0</tilted></feature> 4401 <threshold>1.0439479956403375e-003</threshold> 4402 <left_val>0.5419455170631409</left_val> 4403 <right_val>0.3411330878734589</right_val></_></_> 4404 <_> 4405 <!-- tree 41 --> 4406 <_> 4407 <!-- root node --> 4408 <feature> 4409 <rects> 4410 <_>14 4 1 10 -1.</_> 4411 <_>14 9 1 5 2.</_></rects> 4412 <tilted>0</tilted></feature> 4413 <threshold>-2.1050689974799752e-004</threshold> 4414 <left_val>0.2821694016456604</left_val> 4415 <right_val>0.5554947257041931</right_val></_></_> 4416 <_> 4417 <!-- tree 42 --> 4418 <_> 4419 <!-- root node --> 4420 <feature> 4421 <rects> 4422 <_>0 1 4 12 -1.</_> 4423 <_>2 1 2 12 2.</_></rects> 4424 <tilted>0</tilted></feature> 4425 <threshold>-0.0808315873146057</threshold> 4426 <left_val>0.9129930138587952</left_val> 4427 <right_val>0.4697434902191162</right_val></_></_> 4428 <_> 4429 <!-- tree 43 --> 4430 <_> 4431 <!-- root node --> 4432 <feature> 4433 <rects> 4434 <_>11 11 4 2 -1.</_> 4435 <_>11 11 2 2 2.</_></rects> 4436 <tilted>0</tilted></feature> 4437 <threshold>-3.6579059087671340e-004</threshold> 4438 <left_val>0.6022670269012451</left_val> 4439 <right_val>0.3978292942047119</right_val></_></_> 4440 <_> 4441 <!-- tree 44 --> 4442 <_> 4443 <!-- root node --> 4444 <feature> 4445 <rects> 4446 <_>5 11 4 2 -1.</_> 4447 <_>7 11 2 2 2.</_></rects> 4448 <tilted>0</tilted></feature> 4449 <threshold>-1.2545920617412776e-004</threshold> 4450 <left_val>0.5613213181495667</left_val> 4451 <right_val>0.3845539987087250</right_val></_></_> 4452 <_> 4453 <!-- tree 45 --> 4454 <_> 4455 <!-- root node --> 4456 <feature> 4457 <rects> 4458 <_>3 8 15 5 -1.</_> 4459 <_>8 8 5 5 3.</_></rects> 4460 <tilted>0</tilted></feature> 4461 <threshold>-0.0687864869832993</threshold> 4462 <left_val>0.2261611968278885</left_val> 4463 <right_val>0.5300496816635132</right_val></_></_> 4464 <_> 4465 <!-- tree 46 --> 4466 <_> 4467 <!-- root node --> 4468 <feature> 4469 <rects> 4470 <_>0 0 6 10 -1.</_> 4471 <_>3 0 3 10 2.</_></rects> 4472 <tilted>0</tilted></feature> 4473 <threshold>0.0124157899990678</threshold> 4474 <left_val>0.4075691998004913</left_val> 4475 <right_val>0.5828812122344971</right_val></_></_> 4476 <_> 4477 <!-- tree 47 --> 4478 <_> 4479 <!-- root node --> 4480 <feature> 4481 <rects> 4482 <_>11 4 3 2 -1.</_> 4483 <_>12 4 1 2 3.</_></rects> 4484 <tilted>0</tilted></feature> 4485 <threshold>-4.7174817882478237e-003</threshold> 4486 <left_val>0.2827253937721252</left_val> 4487 <right_val>0.5267757773399353</right_val></_></_> 4488 <_> 4489 <!-- tree 48 --> 4490 <_> 4491 <!-- root node --> 4492 <feature> 4493 <rects> 4494 <_>8 12 3 8 -1.</_> 4495 <_>8 16 3 4 2.</_></rects> 4496 <tilted>0</tilted></feature> 4497 <threshold>0.0381368584930897</threshold> 4498 <left_val>0.5074741244316101</left_val> 4499 <right_val>0.1023615971207619</right_val></_></_> 4500 <_> 4501 <!-- tree 49 --> 4502 <_> 4503 <!-- root node --> 4504 <feature> 4505 <rects> 4506 <_>8 14 5 3 -1.</_> 4507 <_>8 15 5 1 3.</_></rects> 4508 <tilted>0</tilted></feature> 4509 <threshold>-2.8168049175292253e-003</threshold> 4510 <left_val>0.6169006824493408</left_val> 4511 <right_val>0.4359692931175232</right_val></_></_> 4512 <_> 4513 <!-- tree 50 --> 4514 <_> 4515 <!-- root node --> 4516 <feature> 4517 <rects> 4518 <_>7 14 4 3 -1.</_> 4519 <_>7 15 4 1 3.</_></rects> 4520 <tilted>0</tilted></feature> 4521 <threshold>8.1303603947162628e-003</threshold> 4522 <left_val>0.4524433016777039</left_val> 4523 <right_val>0.7606095075607300</right_val></_></_> 4524 <_> 4525 <!-- tree 51 --> 4526 <_> 4527 <!-- root node --> 4528 <feature> 4529 <rects> 4530 <_>11 4 3 2 -1.</_> 4531 <_>12 4 1 2 3.</_></rects> 4532 <tilted>0</tilted></feature> 4533 <threshold>6.0056019574403763e-003</threshold> 4534 <left_val>0.5240408778190613</left_val> 4535 <right_val>0.1859712004661560</right_val></_></_> 4536 <_> 4537 <!-- tree 52 --> 4538 <_> 4539 <!-- root node --> 4540 <feature> 4541 <rects> 4542 <_>3 15 14 4 -1.</_> 4543 <_>3 15 7 2 2.</_> 4544 <_>10 17 7 2 2.</_></rects> 4545 <tilted>0</tilted></feature> 4546 <threshold>0.0191393196582794</threshold> 4547 <left_val>0.5209379196166992</left_val> 4548 <right_val>0.2332071959972382</right_val></_></_> 4549 <_> 4550 <!-- tree 53 --> 4551 <_> 4552 <!-- root node --> 4553 <feature> 4554 <rects> 4555 <_>2 2 16 4 -1.</_> 4556 <_>10 2 8 2 2.</_> 4557 <_>2 4 8 2 2.</_></rects> 4558 <tilted>0</tilted></feature> 4559 <threshold>0.0164457596838474</threshold> 4560 <left_val>0.5450702905654907</left_val> 4561 <right_val>0.3264234960079193</right_val></_></_> 4562 <_> 4563 <!-- tree 54 --> 4564 <_> 4565 <!-- root node --> 4566 <feature> 4567 <rects> 4568 <_>0 8 6 12 -1.</_> 4569 <_>3 8 3 12 2.</_></rects> 4570 <tilted>0</tilted></feature> 4571 <threshold>-0.0373568907380104</threshold> 4572 <left_val>0.6999046802520752</left_val> 4573 <right_val>0.4533241987228394</right_val></_></_> 4574 <_> 4575 <!-- tree 55 --> 4576 <_> 4577 <!-- root node --> 4578 <feature> 4579 <rects> 4580 <_>5 7 10 2 -1.</_> 4581 <_>5 7 5 2 2.</_></rects> 4582 <tilted>0</tilted></feature> 4583 <threshold>-0.0197279006242752</threshold> 4584 <left_val>0.2653664946556091</left_val> 4585 <right_val>0.5412809848785400</right_val></_></_> 4586 <_> 4587 <!-- tree 56 --> 4588 <_> 4589 <!-- root node --> 4590 <feature> 4591 <rects> 4592 <_>9 7 2 5 -1.</_> 4593 <_>10 7 1 5 2.</_></rects> 4594 <tilted>0</tilted></feature> 4595 <threshold>6.6972579807043076e-003</threshold> 4596 <left_val>0.4480566084384918</left_val> 4597 <right_val>0.7138652205467224</right_val></_></_> 4598 <_> 4599 <!-- tree 57 --> 4600 <_> 4601 <!-- root node --> 4602 <feature> 4603 <rects> 4604 <_>13 7 6 4 -1.</_> 4605 <_>16 7 3 2 2.</_> 4606 <_>13 9 3 2 2.</_></rects> 4607 <tilted>0</tilted></feature> 4608 <threshold>7.4457528535276651e-004</threshold> 4609 <left_val>0.4231350123882294</left_val> 4610 <right_val>0.5471320152282715</right_val></_></_> 4611 <_> 4612 <!-- tree 58 --> 4613 <_> 4614 <!-- root node --> 4615 <feature> 4616 <rects> 4617 <_>0 13 8 2 -1.</_> 4618 <_>0 14 8 1 2.</_></rects> 4619 <tilted>0</tilted></feature> 4620 <threshold>1.1790640419349074e-003</threshold> 4621 <left_val>0.5341702103614807</left_val> 4622 <right_val>0.3130455017089844</right_val></_></_> 4623 <_> 4624 <!-- tree 59 --> 4625 <_> 4626 <!-- root node --> 4627 <feature> 4628 <rects> 4629 <_>13 7 6 4 -1.</_> 4630 <_>16 7 3 2 2.</_> 4631 <_>13 9 3 2 2.</_></rects> 4632 <tilted>0</tilted></feature> 4633 <threshold>0.0349806100130081</threshold> 4634 <left_val>0.5118659734725952</left_val> 4635 <right_val>0.3430530130863190</right_val></_></_> 4636 <_> 4637 <!-- tree 60 --> 4638 <_> 4639 <!-- root node --> 4640 <feature> 4641 <rects> 4642 <_>1 7 6 4 -1.</_> 4643 <_>1 7 3 2 2.</_> 4644 <_>4 9 3 2 2.</_></rects> 4645 <tilted>0</tilted></feature> 4646 <threshold>5.6859792675822973e-004</threshold> 4647 <left_val>0.3532187044620514</left_val> 4648 <right_val>0.5468639731407166</right_val></_></_> 4649 <_> 4650 <!-- tree 61 --> 4651 <_> 4652 <!-- root node --> 4653 <feature> 4654 <rects> 4655 <_>12 6 1 12 -1.</_> 4656 <_>12 12 1 6 2.</_></rects> 4657 <tilted>0</tilted></feature> 4658 <threshold>-0.0113406497985125</threshold> 4659 <left_val>0.2842353880405426</left_val> 4660 <right_val>0.5348700881004334</right_val></_></_> 4661 <_> 4662 <!-- tree 62 --> 4663 <_> 4664 <!-- root node --> 4665 <feature> 4666 <rects> 4667 <_>9 5 2 6 -1.</_> 4668 <_>10 5 1 6 2.</_></rects> 4669 <tilted>0</tilted></feature> 4670 <threshold>-6.6228108480572701e-003</threshold> 4671 <left_val>0.6883640289306641</left_val> 4672 <right_val>0.4492664933204651</right_val></_></_> 4673 <_> 4674 <!-- tree 63 --> 4675 <_> 4676 <!-- root node --> 4677 <feature> 4678 <rects> 4679 <_>14 12 2 3 -1.</_> 4680 <_>14 13 2 1 3.</_></rects> 4681 <tilted>0</tilted></feature> 4682 <threshold>-8.0160330981016159e-003</threshold> 4683 <left_val>0.1709893941879273</left_val> 4684 <right_val>0.5224308967590332</right_val></_></_> 4685 <_> 4686 <!-- tree 64 --> 4687 <_> 4688 <!-- root node --> 4689 <feature> 4690 <rects> 4691 <_>4 12 2 3 -1.</_> 4692 <_>4 13 2 1 3.</_></rects> 4693 <tilted>0</tilted></feature> 4694 <threshold>1.4206819469109178e-003</threshold> 4695 <left_val>0.5290846228599548</left_val> 4696 <right_val>0.2993383109569550</right_val></_></_> 4697 <_> 4698 <!-- tree 65 --> 4699 <_> 4700 <!-- root node --> 4701 <feature> 4702 <rects> 4703 <_>8 12 4 3 -1.</_> 4704 <_>8 13 4 1 3.</_></rects> 4705 <tilted>0</tilted></feature> 4706 <threshold>-2.7801711112260818e-003</threshold> 4707 <left_val>0.6498854160308838</left_val> 4708 <right_val>0.4460499882698059</right_val></_></_> 4709 <_> 4710 <!-- tree 66 --> 4711 <_> 4712 <!-- root node --> 4713 <feature> 4714 <rects> 4715 <_>5 2 2 4 -1.</_> 4716 <_>5 2 1 2 2.</_> 4717 <_>6 4 1 2 2.</_></rects> 4718 <tilted>0</tilted></feature> 4719 <threshold>-1.4747589593753219e-003</threshold> 4720 <left_val>0.3260438144207001</left_val> 4721 <right_val>0.5388113260269165</right_val></_></_> 4722 <_> 4723 <!-- tree 67 --> 4724 <_> 4725 <!-- root node --> 4726 <feature> 4727 <rects> 4728 <_>5 5 11 3 -1.</_> 4729 <_>5 6 11 1 3.</_></rects> 4730 <tilted>0</tilted></feature> 4731 <threshold>-0.0238303393125534</threshold> 4732 <left_val>0.7528941035270691</left_val> 4733 <right_val>0.4801219999790192</right_val></_></_> 4734 <_> 4735 <!-- tree 68 --> 4736 <_> 4737 <!-- root node --> 4738 <feature> 4739 <rects> 4740 <_>7 6 4 12 -1.</_> 4741 <_>7 12 4 6 2.</_></rects> 4742 <tilted>0</tilted></feature> 4743 <threshold>6.9369790144264698e-003</threshold> 4744 <left_val>0.5335165858268738</left_val> 4745 <right_val>0.3261427879333496</right_val></_></_> 4746 <_> 4747 <!-- tree 69 --> 4748 <_> 4749 <!-- root node --> 4750 <feature> 4751 <rects> 4752 <_>12 13 8 5 -1.</_> 4753 <_>12 13 4 5 2.</_></rects> 4754 <tilted>0</tilted></feature> 4755 <threshold>8.2806255668401718e-003</threshold> 4756 <left_val>0.4580394029617310</left_val> 4757 <right_val>0.5737829804420471</right_val></_></_> 4758 <_> 4759 <!-- tree 70 --> 4760 <_> 4761 <!-- root node --> 4762 <feature> 4763 <rects> 4764 <_>7 6 1 12 -1.</_> 4765 <_>7 12 1 6 2.</_></rects> 4766 <tilted>0</tilted></feature> 4767 <threshold>-0.0104395002126694</threshold> 4768 <left_val>0.2592320144176483</left_val> 4769 <right_val>0.5233827829360962</right_val></_></_></trees> 4770 <stage_threshold>34.5541114807128910</stage_threshold> 4771 <parent>8</parent> 4772 <next>-1</next></_> 4773 <_> 4774 <!-- stage 10 --> 4775 <trees> 4776 <_> 4777 <!-- tree 0 --> 4778 <_> 4779 <!-- root node --> 4780 <feature> 4781 <rects> 4782 <_>1 2 6 3 -1.</_> 4783 <_>4 2 3 3 2.</_></rects> 4784 <tilted>0</tilted></feature> 4785 <threshold>7.2006587870419025e-003</threshold> 4786 <left_val>0.3258886039257050</left_val> 4787 <right_val>0.6849808096885681</right_val></_></_> 4788 <_> 4789 <!-- tree 1 --> 4790 <_> 4791 <!-- root node --> 4792 <feature> 4793 <rects> 4794 <_>9 5 6 10 -1.</_> 4795 <_>12 5 3 5 2.</_> 4796 <_>9 10 3 5 2.</_></rects> 4797 <tilted>0</tilted></feature> 4798 <threshold>-2.8593589086085558e-003</threshold> 4799 <left_val>0.5838881134986877</left_val> 4800 <right_val>0.2537829875946045</right_val></_></_> 4801 <_> 4802 <!-- tree 2 --> 4803 <_> 4804 <!-- root node --> 4805 <feature> 4806 <rects> 4807 <_>5 5 8 12 -1.</_> 4808 <_>5 5 4 6 2.</_> 4809 <_>9 11 4 6 2.</_></rects> 4810 <tilted>0</tilted></feature> 4811 <threshold>6.8580528022721410e-004</threshold> 4812 <left_val>0.5708081722259522</left_val> 4813 <right_val>0.2812424004077911</right_val></_></_> 4814 <_> 4815 <!-- tree 3 --> 4816 <_> 4817 <!-- root node --> 4818 <feature> 4819 <rects> 4820 <_>0 7 20 6 -1.</_> 4821 <_>0 9 20 2 3.</_></rects> 4822 <tilted>0</tilted></feature> 4823 <threshold>7.9580191522836685e-003</threshold> 4824 <left_val>0.2501051127910614</left_val> 4825 <right_val>0.5544260740280151</right_val></_></_> 4826 <_> 4827 <!-- tree 4 --> 4828 <_> 4829 <!-- root node --> 4830 <feature> 4831 <rects> 4832 <_>4 2 2 2 -1.</_> 4833 <_>4 3 2 1 2.</_></rects> 4834 <tilted>0</tilted></feature> 4835 <threshold>-1.2124150525778532e-003</threshold> 4836 <left_val>0.2385368049144745</left_val> 4837 <right_val>0.5433350205421448</right_val></_></_> 4838 <_> 4839 <!-- tree 5 --> 4840 <_> 4841 <!-- root node --> 4842 <feature> 4843 <rects> 4844 <_>4 18 12 2 -1.</_> 4845 <_>8 18 4 2 3.</_></rects> 4846 <tilted>0</tilted></feature> 4847 <threshold>7.9426132142543793e-003</threshold> 4848 <left_val>0.3955070972442627</left_val> 4849 <right_val>0.6220757961273193</right_val></_></_> 4850 <_> 4851 <!-- tree 6 --> 4852 <_> 4853 <!-- root node --> 4854 <feature> 4855 <rects> 4856 <_>7 4 4 16 -1.</_> 4857 <_>7 12 4 8 2.</_></rects> 4858 <tilted>0</tilted></feature> 4859 <threshold>2.4630590341985226e-003</threshold> 4860 <left_val>0.5639708042144775</left_val> 4861 <right_val>0.2992357909679413</right_val></_></_> 4862 <_> 4863 <!-- tree 7 --> 4864 <_> 4865 <!-- root node --> 4866 <feature> 4867 <rects> 4868 <_>7 6 7 8 -1.</_> 4869 <_>7 10 7 4 2.</_></rects> 4870 <tilted>0</tilted></feature> 4871 <threshold>-6.0396599583327770e-003</threshold> 4872 <left_val>0.2186512947082520</left_val> 4873 <right_val>0.5411676764488220</right_val></_></_> 4874 <_> 4875 <!-- tree 8 --> 4876 <_> 4877 <!-- root node --> 4878 <feature> 4879 <rects> 4880 <_>6 3 3 1 -1.</_> 4881 <_>7 3 1 1 3.</_></rects> 4882 <tilted>0</tilted></feature> 4883 <threshold>-1.2988339876756072e-003</threshold> 4884 <left_val>0.2350706011056900</left_val> 4885 <right_val>0.5364584922790527</right_val></_></_> 4886 <_> 4887 <!-- tree 9 --> 4888 <_> 4889 <!-- root node --> 4890 <feature> 4891 <rects> 4892 <_>11 15 2 4 -1.</_> 4893 <_>11 17 2 2 2.</_></rects> 4894 <tilted>0</tilted></feature> 4895 <threshold>2.2299369447864592e-004</threshold> 4896 <left_val>0.3804112970829010</left_val> 4897 <right_val>0.5729606151580811</right_val></_></_> 4898 <_> 4899 <!-- tree 10 --> 4900 <_> 4901 <!-- root node --> 4902 <feature> 4903 <rects> 4904 <_>3 5 4 8 -1.</_> 4905 <_>3 9 4 4 2.</_></rects> 4906 <tilted>0</tilted></feature> 4907 <threshold>1.4654280385002494e-003</threshold> 4908 <left_val>0.2510167956352234</left_val> 4909 <right_val>0.5258268713951111</right_val></_></_> 4910 <_> 4911 <!-- tree 11 --> 4912 <_> 4913 <!-- root node --> 4914 <feature> 4915 <rects> 4916 <_>7 1 6 12 -1.</_> 4917 <_>7 7 6 6 2.</_></rects> 4918 <tilted>0</tilted></feature> 4919 <threshold>-8.1210042117163539e-004</threshold> 4920 <left_val>0.5992823839187622</left_val> 4921 <right_val>0.3851158916950226</right_val></_></_> 4922 <_> 4923 <!-- tree 12 --> 4924 <_> 4925 <!-- root node --> 4926 <feature> 4927 <rects> 4928 <_>4 6 6 2 -1.</_> 4929 <_>6 6 2 2 3.</_></rects> 4930 <tilted>0</tilted></feature> 4931 <threshold>-1.3836020370945334e-003</threshold> 4932 <left_val>0.5681396126747131</left_val> 4933 <right_val>0.3636586964130402</right_val></_></_> 4934 <_> 4935 <!-- tree 13 --> 4936 <_> 4937 <!-- root node --> 4938 <feature> 4939 <rects> 4940 <_>16 4 4 6 -1.</_> 4941 <_>16 6 4 2 3.</_></rects> 4942 <tilted>0</tilted></feature> 4943 <threshold>-0.0279364492744207</threshold> 4944 <left_val>0.1491317003965378</left_val> 4945 <right_val>0.5377560257911682</right_val></_></_> 4946 <_> 4947 <!-- tree 14 --> 4948 <_> 4949 <!-- root node --> 4950 <feature> 4951 <rects> 4952 <_>3 3 5 2 -1.</_> 4953 <_>3 4 5 1 2.</_></rects> 4954 <tilted>0</tilted></feature> 4955 <threshold>-4.6919551095925272e-004</threshold> 4956 <left_val>0.3692429959774017</left_val> 4957 <right_val>0.5572484731674194</right_val></_></_> 4958 <_> 4959 <!-- tree 15 --> 4960 <_> 4961 <!-- root node --> 4962 <feature> 4963 <rects> 4964 <_>9 11 2 3 -1.</_> 4965 <_>9 12 2 1 3.</_></rects> 4966 <tilted>0</tilted></feature> 4967 <threshold>-4.9829659983515739e-003</threshold> 4968 <left_val>0.6758509278297424</left_val> 4969 <right_val>0.4532504081726074</right_val></_></_> 4970 <_> 4971 <!-- tree 16 --> 4972 <_> 4973 <!-- root node --> 4974 <feature> 4975 <rects> 4976 <_>2 16 4 2 -1.</_> 4977 <_>2 17 4 1 2.</_></rects> 4978 <tilted>0</tilted></feature> 4979 <threshold>1.8815309740602970e-003</threshold> 4980 <left_val>0.5368022918701172</left_val> 4981 <right_val>0.2932539880275726</right_val></_></_> 4982 <_> 4983 <!-- tree 17 --> 4984 <_> 4985 <!-- root node --> 4986 <feature> 4987 <rects> 4988 <_>7 13 6 6 -1.</_> 4989 <_>10 13 3 3 2.</_> 4990 <_>7 16 3 3 2.</_></rects> 4991 <tilted>0</tilted></feature> 4992 <threshold>-0.0190675500780344</threshold> 4993 <left_val>0.1649377048015595</left_val> 4994 <right_val>0.5330067276954651</right_val></_></_> 4995 <_> 4996 <!-- tree 18 --> 4997 <_> 4998 <!-- root node --> 4999 <feature> 5000 <rects> 5001 <_>7 0 3 4 -1.</_> 5002 <_>8 0 1 4 3.</_></rects> 5003 <tilted>0</tilted></feature> 5004 <threshold>-4.6906559728085995e-003</threshold> 5005 <left_val>0.1963925957679749</left_val> 5006 <right_val>0.5119361877441406</right_val></_></_> 5007 <_> 5008 <!-- tree 19 --> 5009 <_> 5010 <!-- root node --> 5011 <feature> 5012 <rects> 5013 <_>8 15 4 3 -1.</_> 5014 <_>8 16 4 1 3.</_></rects> 5015 <tilted>0</tilted></feature> 5016 <threshold>5.9777139686048031e-003</threshold> 5017 <left_val>0.4671171903610230</left_val> 5018 <right_val>0.7008398175239563</right_val></_></_> 5019 <_> 5020 <!-- tree 20 --> 5021 <_> 5022 <!-- root node --> 5023 <feature> 5024 <rects> 5025 <_>0 4 4 6 -1.</_> 5026 <_>0 6 4 2 3.</_></rects> 5027 <tilted>0</tilted></feature> 5028 <threshold>-0.0333031304180622</threshold> 5029 <left_val>0.1155416965484619</left_val> 5030 <right_val>0.5104162096977234</right_val></_></_> 5031 <_> 5032 <!-- tree 21 --> 5033 <_> 5034 <!-- root node --> 5035 <feature> 5036 <rects> 5037 <_>5 6 12 3 -1.</_> 5038 <_>9 6 4 3 3.</_></rects> 5039 <tilted>0</tilted></feature> 5040 <threshold>0.0907441079616547</threshold> 5041 <left_val>0.5149660110473633</left_val> 5042 <right_val>0.1306173056364059</right_val></_></_> 5043 <_> 5044 <!-- tree 22 --> 5045 <_> 5046 <!-- root node --> 5047 <feature> 5048 <rects> 5049 <_>7 6 6 14 -1.</_> 5050 <_>9 6 2 14 3.</_></rects> 5051 <tilted>0</tilted></feature> 5052 <threshold>9.3555898638442159e-004</threshold> 5053 <left_val>0.3605481088161469</left_val> 5054 <right_val>0.5439859032630920</right_val></_></_> 5055 <_> 5056 <!-- tree 23 --> 5057 <_> 5058 <!-- root node --> 5059 <feature> 5060 <rects> 5061 <_>9 7 3 3 -1.</_> 5062 <_>10 7 1 3 3.</_></rects> 5063 <tilted>0</tilted></feature> 5064 <threshold>0.0149016501381993</threshold> 5065 <left_val>0.4886212050914764</left_val> 5066 <right_val>0.7687569856643677</right_val></_></_> 5067 <_> 5068 <!-- tree 24 --> 5069 <_> 5070 <!-- root node --> 5071 <feature> 5072 <rects> 5073 <_>6 12 2 4 -1.</_> 5074 <_>6 14 2 2 2.</_></rects> 5075 <tilted>0</tilted></feature> 5076 <threshold>6.1594118596985936e-004</threshold> 5077 <left_val>0.5356813073158264</left_val> 5078 <right_val>0.3240939080715179</right_val></_></_> 5079 <_> 5080 <!-- tree 25 --> 5081 <_> 5082 <!-- root node --> 5083 <feature> 5084 <rects> 5085 <_>10 12 7 6 -1.</_> 5086 <_>10 14 7 2 3.</_></rects> 5087 <tilted>0</tilted></feature> 5088 <threshold>-0.0506709888577461</threshold> 5089 <left_val>0.1848621964454651</left_val> 5090 <right_val>0.5230404138565064</right_val></_></_> 5091 <_> 5092 <!-- tree 26 --> 5093 <_> 5094 <!-- root node --> 5095 <feature> 5096 <rects> 5097 <_>1 0 15 2 -1.</_> 5098 <_>1 1 15 1 2.</_></rects> 5099 <tilted>0</tilted></feature> 5100 <threshold>6.8665749859064817e-004</threshold> 5101 <left_val>0.3840579986572266</left_val> 5102 <right_val>0.5517945885658264</right_val></_></_> 5103 <_> 5104 <!-- tree 27 --> 5105 <_> 5106 <!-- root node --> 5107 <feature> 5108 <rects> 5109 <_>14 0 6 6 -1.</_> 5110 <_>14 0 3 6 2.</_></rects> 5111 <tilted>0</tilted></feature> 5112 <threshold>8.3712432533502579e-003</threshold> 5113 <left_val>0.4288564026355743</left_val> 5114 <right_val>0.6131753921508789</right_val></_></_> 5115 <_> 5116 <!-- tree 28 --> 5117 <_> 5118 <!-- root node --> 5119 <feature> 5120 <rects> 5121 <_>5 3 3 1 -1.</_> 5122 <_>6 3 1 1 3.</_></rects> 5123 <tilted>0</tilted></feature> 5124 <threshold>-1.2953069526702166e-003</threshold> 5125 <left_val>0.2913674116134644</left_val> 5126 <right_val>0.5280737876892090</right_val></_></_> 5127 <_> 5128 <!-- tree 29 --> 5129 <_> 5130 <!-- root node --> 5131 <feature> 5132 <rects> 5133 <_>14 0 6 6 -1.</_> 5134 <_>14 0 3 6 2.</_></rects> 5135 <tilted>0</tilted></feature> 5136 <threshold>-0.0419416800141335</threshold> 5137 <left_val>0.7554799914360046</left_val> 5138 <right_val>0.4856030941009522</right_val></_></_> 5139 <_> 5140 <!-- tree 30 --> 5141 <_> 5142 <!-- root node --> 5143 <feature> 5144 <rects> 5145 <_>0 3 20 10 -1.</_> 5146 <_>0 8 20 5 2.</_></rects> 5147 <tilted>0</tilted></feature> 5148 <threshold>-0.0235293805599213</threshold> 5149 <left_val>0.2838279902935028</left_val> 5150 <right_val>0.5256081223487854</right_val></_></_> 5151 <_> 5152 <!-- tree 31 --> 5153 <_> 5154 <!-- root node --> 5155 <feature> 5156 <rects> 5157 <_>14 0 6 6 -1.</_> 5158 <_>14 0 3 6 2.</_></rects> 5159 <tilted>0</tilted></feature> 5160 <threshold>0.0408574491739273</threshold> 5161 <left_val>0.4870935082435608</left_val> 5162 <right_val>0.6277297139167786</right_val></_></_> 5163 <_> 5164 <!-- tree 32 --> 5165 <_> 5166 <!-- root node --> 5167 <feature> 5168 <rects> 5169 <_>0 0 6 6 -1.</_> 5170 <_>3 0 3 6 2.</_></rects> 5171 <tilted>0</tilted></feature> 5172 <threshold>-0.0254068691283464</threshold> 5173 <left_val>0.7099707722663879</left_val> 5174 <right_val>0.4575029015541077</right_val></_></_> 5175 <_> 5176 <!-- tree 33 --> 5177 <_> 5178 <!-- root node --> 5179 <feature> 5180 <rects> 5181 <_>19 15 1 2 -1.</_> 5182 <_>19 16 1 1 2.</_></rects> 5183 <tilted>0</tilted></feature> 5184 <threshold>-4.1415440500713885e-004</threshold> 5185 <left_val>0.4030886888504028</left_val> 5186 <right_val>0.5469412207603455</right_val></_></_> 5187 <_> 5188 <!-- tree 34 --> 5189 <_> 5190 <!-- root node --> 5191 <feature> 5192 <rects> 5193 <_>0 2 4 8 -1.</_> 5194 <_>2 2 2 8 2.</_></rects> 5195 <tilted>0</tilted></feature> 5196 <threshold>0.0218241196125746</threshold> 5197 <left_val>0.4502024054527283</left_val> 5198 <right_val>0.6768701076507568</right_val></_></_> 5199 <_> 5200 <!-- tree 35 --> 5201 <_> 5202 <!-- root node --> 5203 <feature> 5204 <rects> 5205 <_>2 1 18 4 -1.</_> 5206 <_>11 1 9 2 2.</_> 5207 <_>2 3 9 2 2.</_></rects> 5208 <tilted>0</tilted></feature> 5209 <threshold>0.0141140399500728</threshold> 5210 <left_val>0.5442860722541809</left_val> 5211 <right_val>0.3791700005531311</right_val></_></_> 5212 <_> 5213 <!-- tree 36 --> 5214 <_> 5215 <!-- root node --> 5216 <feature> 5217 <rects> 5218 <_>8 12 1 2 -1.</_> 5219 <_>8 13 1 1 2.</_></rects> 5220 <tilted>0</tilted></feature> 5221 <threshold>6.7214590671937913e-005</threshold> 5222 <left_val>0.4200463891029358</left_val> 5223 <right_val>0.5873476266860962</right_val></_></_> 5224 <_> 5225 <!-- tree 37 --> 5226 <_> 5227 <!-- root node --> 5228 <feature> 5229 <rects> 5230 <_>5 2 10 6 -1.</_> 5231 <_>10 2 5 3 2.</_> 5232 <_>5 5 5 3 2.</_></rects> 5233 <tilted>0</tilted></feature> 5234 <threshold>-7.9417638480663300e-003</threshold> 5235 <left_val>0.3792561888694763</left_val> 5236 <right_val>0.5585265755653381</right_val></_></_> 5237 <_> 5238 <!-- tree 38 --> 5239 <_> 5240 <!-- root node --> 5241 <feature> 5242 <rects> 5243 <_>9 7 2 4 -1.</_> 5244 <_>10 7 1 4 2.</_></rects> 5245 <tilted>0</tilted></feature> 5246 <threshold>-7.2144409641623497e-003</threshold> 5247 <left_val>0.7253103852272034</left_val> 5248 <right_val>0.4603548943996429</right_val></_></_> 5249 <_> 5250 <!-- tree 39 --> 5251 <_> 5252 <!-- root node --> 5253 <feature> 5254 <rects> 5255 <_>9 7 3 3 -1.</_> 5256 <_>10 7 1 3 3.</_></rects> 5257 <tilted>0</tilted></feature> 5258 <threshold>2.5817339774221182e-003</threshold> 5259 <left_val>0.4693301916122437</left_val> 5260 <right_val>0.5900238752365112</right_val></_></_> 5261 <_> 5262 <!-- tree 40 --> 5263 <_> 5264 <!-- root node --> 5265 <feature> 5266 <rects> 5267 <_>4 5 12 8 -1.</_> 5268 <_>8 5 4 8 3.</_></rects> 5269 <tilted>0</tilted></feature> 5270 <threshold>0.1340931951999664</threshold> 5271 <left_val>0.5149213075637817</left_val> 5272 <right_val>0.1808844953775406</right_val></_></_> 5273 <_> 5274 <!-- tree 41 --> 5275 <_> 5276 <!-- root node --> 5277 <feature> 5278 <rects> 5279 <_>15 15 4 3 -1.</_> 5280 <_>15 16 4 1 3.</_></rects> 5281 <tilted>0</tilted></feature> 5282 <threshold>2.2962710354477167e-003</threshold> 5283 <left_val>0.5399743914604187</left_val> 5284 <right_val>0.3717867136001587</right_val></_></_> 5285 <_> 5286 <!-- tree 42 --> 5287 <_> 5288 <!-- root node --> 5289 <feature> 5290 <rects> 5291 <_>8 18 3 1 -1.</_> 5292 <_>9 18 1 1 3.</_></rects> 5293 <tilted>0</tilted></feature> 5294 <threshold>-2.1575849968940020e-003</threshold> 5295 <left_val>0.2408495992422104</left_val> 5296 <right_val>0.5148863792419434</right_val></_></_> 5297 <_> 5298 <!-- tree 43 --> 5299 <_> 5300 <!-- root node --> 5301 <feature> 5302 <rects> 5303 <_>9 13 4 3 -1.</_> 5304 <_>9 14 4 1 3.</_></rects> 5305 <tilted>0</tilted></feature> 5306 <threshold>-4.9196188338100910e-003</threshold> 5307 <left_val>0.6573588252067566</left_val> 5308 <right_val>0.4738740026950836</right_val></_></_> 5309 <_> 5310 <!-- tree 44 --> 5311 <_> 5312 <!-- root node --> 5313 <feature> 5314 <rects> 5315 <_>7 13 4 3 -1.</_> 5316 <_>7 14 4 1 3.</_></rects> 5317 <tilted>0</tilted></feature> 5318 <threshold>1.6267469618469477e-003</threshold> 5319 <left_val>0.4192821979522705</left_val> 5320 <right_val>0.6303114295005798</right_val></_></_> 5321 <_> 5322 <!-- tree 45 --> 5323 <_> 5324 <!-- root node --> 5325 <feature> 5326 <rects> 5327 <_>19 15 1 2 -1.</_> 5328 <_>19 16 1 1 2.</_></rects> 5329 <tilted>0</tilted></feature> 5330 <threshold>3.3413388882763684e-004</threshold> 5331 <left_val>0.5540298223495483</left_val> 5332 <right_val>0.3702101111412048</right_val></_></_> 5333 <_> 5334 <!-- tree 46 --> 5335 <_> 5336 <!-- root node --> 5337 <feature> 5338 <rects> 5339 <_>0 15 8 4 -1.</_> 5340 <_>0 17 8 2 2.</_></rects> 5341 <tilted>0</tilted></feature> 5342 <threshold>-0.0266980808228254</threshold> 5343 <left_val>0.1710917949676514</left_val> 5344 <right_val>0.5101410746574402</right_val></_></_> 5345 <_> 5346 <!-- tree 47 --> 5347 <_> 5348 <!-- root node --> 5349 <feature> 5350 <rects> 5351 <_>9 3 6 4 -1.</_> 5352 <_>11 3 2 4 3.</_></rects> 5353 <tilted>0</tilted></feature> 5354 <threshold>-0.0305618792772293</threshold> 5355 <left_val>0.1904218047857285</left_val> 5356 <right_val>0.5168793797492981</right_val></_></_> 5357 <_> 5358 <!-- tree 48 --> 5359 <_> 5360 <!-- root node --> 5361 <feature> 5362 <rects> 5363 <_>8 14 4 3 -1.</_> 5364 <_>8 15 4 1 3.</_></rects> 5365 <tilted>0</tilted></feature> 5366 <threshold>2.8511548880487680e-003</threshold> 5367 <left_val>0.4447506964206696</left_val> 5368 <right_val>0.6313853859901428</right_val></_></_> 5369 <_> 5370 <!-- tree 49 --> 5371 <_> 5372 <!-- root node --> 5373 <feature> 5374 <rects> 5375 <_>3 14 14 6 -1.</_> 5376 <_>3 16 14 2 3.</_></rects> 5377 <tilted>0</tilted></feature> 5378 <threshold>-0.0362114794552326</threshold> 5379 <left_val>0.2490727007389069</left_val> 5380 <right_val>0.5377349257469177</right_val></_></_> 5381 <_> 5382 <!-- tree 50 --> 5383 <_> 5384 <!-- root node --> 5385 <feature> 5386 <rects> 5387 <_>6 3 6 6 -1.</_> 5388 <_>6 6 6 3 2.</_></rects> 5389 <tilted>0</tilted></feature> 5390 <threshold>-2.4115189444273710e-003</threshold> 5391 <left_val>0.5381243228912354</left_val> 5392 <right_val>0.3664236962795258</right_val></_></_> 5393 <_> 5394 <!-- tree 51 --> 5395 <_> 5396 <!-- root node --> 5397 <feature> 5398 <rects> 5399 <_>5 11 10 6 -1.</_> 5400 <_>5 14 10 3 2.</_></rects> 5401 <tilted>0</tilted></feature> 5402 <threshold>-7.7253201743587852e-004</threshold> 5403 <left_val>0.5530232191085815</left_val> 5404 <right_val>0.3541550040245056</right_val></_></_> 5405 <_> 5406 <!-- tree 52 --> 5407 <_> 5408 <!-- root node --> 5409 <feature> 5410 <rects> 5411 <_>3 10 3 4 -1.</_> 5412 <_>4 10 1 4 3.</_></rects> 5413 <tilted>0</tilted></feature> 5414 <threshold>2.9481729143299162e-004</threshold> 5415 <left_val>0.4132699072360992</left_val> 5416 <right_val>0.5667243003845215</right_val></_></_> 5417 <_> 5418 <!-- tree 53 --> 5419 <_> 5420 <!-- root node --> 5421 <feature> 5422 <rects> 5423 <_>13 9 2 2 -1.</_> 5424 <_>13 9 1 2 2.</_></rects> 5425 <tilted>0</tilted></feature> 5426 <threshold>-6.2334560789167881e-003</threshold> 5427 <left_val>0.0987872332334518</left_val> 5428 <right_val>0.5198668837547302</right_val></_></_> 5429 <_> 5430 <!-- tree 54 --> 5431 <_> 5432 <!-- root node --> 5433 <feature> 5434 <rects> 5435 <_>5 3 6 4 -1.</_> 5436 <_>7 3 2 4 3.</_></rects> 5437 <tilted>0</tilted></feature> 5438 <threshold>-0.0262747295200825</threshold> 5439 <left_val>0.0911274924874306</left_val> 5440 <right_val>0.5028107166290283</right_val></_></_> 5441 <_> 5442 <!-- tree 55 --> 5443 <_> 5444 <!-- root node --> 5445 <feature> 5446 <rects> 5447 <_>9 7 3 3 -1.</_> 5448 <_>10 7 1 3 3.</_></rects> 5449 <tilted>0</tilted></feature> 5450 <threshold>5.3212260827422142e-003</threshold> 5451 <left_val>0.4726648926734924</left_val> 5452 <right_val>0.6222720742225647</right_val></_></_> 5453 <_> 5454 <!-- tree 56 --> 5455 <_> 5456 <!-- root node --> 5457 <feature> 5458 <rects> 5459 <_>2 12 2 3 -1.</_> 5460 <_>2 13 2 1 3.</_></rects> 5461 <tilted>0</tilted></feature> 5462 <threshold>-4.1129058226943016e-003</threshold> 5463 <left_val>0.2157457023859024</left_val> 5464 <right_val>0.5137804746627808</right_val></_></_> 5465 <_> 5466 <!-- tree 57 --> 5467 <_> 5468 <!-- root node --> 5469 <feature> 5470 <rects> 5471 <_>9 8 3 12 -1.</_> 5472 <_>9 12 3 4 3.</_></rects> 5473 <tilted>0</tilted></feature> 5474 <threshold>3.2457809429615736e-003</threshold> 5475 <left_val>0.5410770773887634</left_val> 5476 <right_val>0.3721776902675629</right_val></_></_> 5477 <_> 5478 <!-- tree 58 --> 5479 <_> 5480 <!-- root node --> 5481 <feature> 5482 <rects> 5483 <_>3 14 4 6 -1.</_> 5484 <_>3 14 2 3 2.</_> 5485 <_>5 17 2 3 2.</_></rects> 5486 <tilted>0</tilted></feature> 5487 <threshold>-0.0163597092032433</threshold> 5488 <left_val>0.7787874937057495</left_val> 5489 <right_val>0.4685291945934296</right_val></_></_> 5490 <_> 5491 <!-- tree 59 --> 5492 <_> 5493 <!-- root node --> 5494 <feature> 5495 <rects> 5496 <_>16 15 2 2 -1.</_> 5497 <_>16 16 2 1 2.</_></rects> 5498 <tilted>0</tilted></feature> 5499 <threshold>3.2166109303943813e-004</threshold> 5500 <left_val>0.5478987097740173</left_val> 5501 <right_val>0.4240373969078064</right_val></_></_> 5502 <_> 5503 <!-- tree 60 --> 5504 <_> 5505 <!-- root node --> 5506 <feature> 5507 <rects> 5508 <_>2 15 2 2 -1.</_> 5509 <_>2 16 2 1 2.</_></rects> 5510 <tilted>0</tilted></feature> 5511 <threshold>6.4452440710738301e-004</threshold> 5512 <left_val>0.5330560803413391</left_val> 5513 <right_val>0.3501324951648712</right_val></_></_> 5514 <_> 5515 <!-- tree 61 --> 5516 <_> 5517 <!-- root node --> 5518 <feature> 5519 <rects> 5520 <_>8 12 4 3 -1.</_> 5521 <_>8 13 4 1 3.</_></rects> 5522 <tilted>0</tilted></feature> 5523 <threshold>-7.8909732401371002e-003</threshold> 5524 <left_val>0.6923521161079407</left_val> 5525 <right_val>0.4726569056510925</right_val></_></_> 5526 <_> 5527 <!-- tree 62 --> 5528 <_> 5529 <!-- root node --> 5530 <feature> 5531 <rects> 5532 <_>0 7 20 1 -1.</_> 5533 <_>10 7 10 1 2.</_></rects> 5534 <tilted>0</tilted></feature> 5535 <threshold>0.0483362115919590</threshold> 5536 <left_val>0.5055900216102600</left_val> 5537 <right_val>0.0757492035627365</right_val></_></_> 5538 <_> 5539 <!-- tree 63 --> 5540 <_> 5541 <!-- root node --> 5542 <feature> 5543 <rects> 5544 <_>7 6 8 3 -1.</_> 5545 <_>7 6 4 3 2.</_></rects> 5546 <tilted>0</tilted></feature> 5547 <threshold>-7.5178127735853195e-004</threshold> 5548 <left_val>0.3783741891384125</left_val> 5549 <right_val>0.5538573861122131</right_val></_></_> 5550 <_> 5551 <!-- tree 64 --> 5552 <_> 5553 <!-- root node --> 5554 <feature> 5555 <rects> 5556 <_>5 7 8 2 -1.</_> 5557 <_>9 7 4 2 2.</_></rects> 5558 <tilted>0</tilted></feature> 5559 <threshold>-2.4953910615295172e-003</threshold> 5560 <left_val>0.3081651031970978</left_val> 5561 <right_val>0.5359612107276917</right_val></_></_> 5562 <_> 5563 <!-- tree 65 --> 5564 <_> 5565 <!-- root node --> 5566 <feature> 5567 <rects> 5568 <_>9 7 3 5 -1.</_> 5569 <_>10 7 1 5 3.</_></rects> 5570 <tilted>0</tilted></feature> 5571 <threshold>-2.2385010961443186e-003</threshold> 5572 <left_val>0.6633958816528320</left_val> 5573 <right_val>0.4649342894554138</right_val></_></_> 5574 <_> 5575 <!-- tree 66 --> 5576 <_> 5577 <!-- root node --> 5578 <feature> 5579 <rects> 5580 <_>8 7 3 5 -1.</_> 5581 <_>9 7 1 5 3.</_></rects> 5582 <tilted>0</tilted></feature> 5583 <threshold>-1.7988430336117744e-003</threshold> 5584 <left_val>0.6596844792366028</left_val> 5585 <right_val>0.4347187876701355</right_val></_></_> 5586 <_> 5587 <!-- tree 67 --> 5588 <_> 5589 <!-- root node --> 5590 <feature> 5591 <rects> 5592 <_>11 1 3 5 -1.</_> 5593 <_>12 1 1 5 3.</_></rects> 5594 <tilted>0</tilted></feature> 5595 <threshold>8.7860915809869766e-003</threshold> 5596 <left_val>0.5231832861900330</left_val> 5597 <right_val>0.2315579950809479</right_val></_></_> 5598 <_> 5599 <!-- tree 68 --> 5600 <_> 5601 <!-- root node --> 5602 <feature> 5603 <rects> 5604 <_>6 2 3 6 -1.</_> 5605 <_>7 2 1 6 3.</_></rects> 5606 <tilted>0</tilted></feature> 5607 <threshold>3.6715380847454071e-003</threshold> 5608 <left_val>0.5204250216484070</left_val> 5609 <right_val>0.2977376878261566</right_val></_></_> 5610 <_> 5611 <!-- tree 69 --> 5612 <_> 5613 <!-- root node --> 5614 <feature> 5615 <rects> 5616 <_>14 14 6 5 -1.</_> 5617 <_>14 14 3 5 2.</_></rects> 5618 <tilted>0</tilted></feature> 5619 <threshold>-0.0353364497423172</threshold> 5620 <left_val>0.7238878011703491</left_val> 5621 <right_val>0.4861505031585693</right_val></_></_> 5622 <_> 5623 <!-- tree 70 --> 5624 <_> 5625 <!-- root node --> 5626 <feature> 5627 <rects> 5628 <_>9 8 2 2 -1.</_> 5629 <_>9 9 2 1 2.</_></rects> 5630 <tilted>0</tilted></feature> 5631 <threshold>-6.9189240457490087e-004</threshold> 5632 <left_val>0.3105022013187408</left_val> 5633 <right_val>0.5229824781417847</right_val></_></_> 5634 <_> 5635 <!-- tree 71 --> 5636 <_> 5637 <!-- root node --> 5638 <feature> 5639 <rects> 5640 <_>10 7 1 3 -1.</_> 5641 <_>10 8 1 1 3.</_></rects> 5642 <tilted>0</tilted></feature> 5643 <threshold>-3.3946109469980001e-003</threshold> 5644 <left_val>0.3138968050479889</left_val> 5645 <right_val>0.5210173726081848</right_val></_></_> 5646 <_> 5647 <!-- tree 72 --> 5648 <_> 5649 <!-- root node --> 5650 <feature> 5651 <rects> 5652 <_>6 6 2 2 -1.</_> 5653 <_>6 6 1 1 2.</_> 5654 <_>7 7 1 1 2.</_></rects> 5655 <tilted>0</tilted></feature> 5656 <threshold>9.8569283727556467e-004</threshold> 5657 <left_val>0.4536580145359039</left_val> 5658 <right_val>0.6585097908973694</right_val></_></_> 5659 <_> 5660 <!-- tree 73 --> 5661 <_> 5662 <!-- root node --> 5663 <feature> 5664 <rects> 5665 <_>2 11 18 4 -1.</_> 5666 <_>11 11 9 2 2.</_> 5667 <_>2 13 9 2 2.</_></rects> 5668 <tilted>0</tilted></feature> 5669 <threshold>-0.0501631014049053</threshold> 5670 <left_val>0.1804454028606415</left_val> 5671 <right_val>0.5198916792869568</right_val></_></_> 5672 <_> 5673 <!-- tree 74 --> 5674 <_> 5675 <!-- root node --> 5676 <feature> 5677 <rects> 5678 <_>6 6 2 2 -1.</_> 5679 <_>6 6 1 1 2.</_> 5680 <_>7 7 1 1 2.</_></rects> 5681 <tilted>0</tilted></feature> 5682 <threshold>-2.2367259953171015e-003</threshold> 5683 <left_val>0.7255702018737793</left_val> 5684 <right_val>0.4651359021663666</right_val></_></_> 5685 <_> 5686 <!-- tree 75 --> 5687 <_> 5688 <!-- root node --> 5689 <feature> 5690 <rects> 5691 <_>0 15 20 2 -1.</_> 5692 <_>0 16 20 1 2.</_></rects> 5693 <tilted>0</tilted></feature> 5694 <threshold>7.4326287722215056e-004</threshold> 5695 <left_val>0.4412921071052551</left_val> 5696 <right_val>0.5898545980453491</right_val></_></_> 5697 <_> 5698 <!-- tree 76 --> 5699 <_> 5700 <!-- root node --> 5701 <feature> 5702 <rects> 5703 <_>4 14 2 3 -1.</_> 5704 <_>4 15 2 1 3.</_></rects> 5705 <tilted>0</tilted></feature> 5706 <threshold>-9.3485182151198387e-004</threshold> 5707 <left_val>0.3500052988529205</left_val> 5708 <right_val>0.5366017818450928</right_val></_></_> 5709 <_> 5710 <!-- tree 77 --> 5711 <_> 5712 <!-- root node --> 5713 <feature> 5714 <rects> 5715 <_>8 14 4 3 -1.</_> 5716 <_>8 15 4 1 3.</_></rects> 5717 <tilted>0</tilted></feature> 5718 <threshold>0.0174979399889708</threshold> 5719 <left_val>0.4912194907665253</left_val> 5720 <right_val>0.8315284848213196</right_val></_></_> 5721 <_> 5722 <!-- tree 78 --> 5723 <_> 5724 <!-- root node --> 5725 <feature> 5726 <rects> 5727 <_>8 7 2 3 -1.</_> 5728 <_>8 8 2 1 3.</_></rects> 5729 <tilted>0</tilted></feature> 5730 <threshold>-1.5200000489130616e-003</threshold> 5731 <left_val>0.3570275902748108</left_val> 5732 <right_val>0.5370560288429260</right_val></_></_> 5733 <_> 5734 <!-- tree 79 --> 5735 <_> 5736 <!-- root node --> 5737 <feature> 5738 <rects> 5739 <_>9 10 2 3 -1.</_> 5740 <_>9 11 2 1 3.</_></rects> 5741 <tilted>0</tilted></feature> 5742 <threshold>7.8003940870985389e-004</threshold> 5743 <left_val>0.4353772103786469</left_val> 5744 <right_val>0.5967335104942322</right_val></_></_></trees> 5745 <stage_threshold>39.1072883605957030</stage_threshold> 5746 <parent>9</parent> 5747 <next>-1</next></_> 5748 <_> 5749 <!-- stage 11 --> 5750 <trees> 5751 <_> 5752 <!-- tree 0 --> 5753 <_> 5754 <!-- root node --> 5755 <feature> 5756 <rects> 5757 <_>5 4 10 4 -1.</_> 5758 <_>5 6 10 2 2.</_></rects> 5759 <tilted>0</tilted></feature> 5760 <threshold>-9.9945552647113800e-003</threshold> 5761 <left_val>0.6162583231925964</left_val> 5762 <right_val>0.3054533004760742</right_val></_></_> 5763 <_> 5764 <!-- tree 1 --> 5765 <_> 5766 <!-- root node --> 5767 <feature> 5768 <rects> 5769 <_>9 7 6 4 -1.</_> 5770 <_>12 7 3 2 2.</_> 5771 <_>9 9 3 2 2.</_></rects> 5772 <tilted>0</tilted></feature> 5773 <threshold>-1.1085229925811291e-003</threshold> 5774 <left_val>0.5818294882774353</left_val> 5775 <right_val>0.3155578076839447</right_val></_></_> 5776 <_> 5777 <!-- tree 2 --> 5778 <_> 5779 <!-- root node --> 5780 <feature> 5781 <rects> 5782 <_>4 7 3 6 -1.</_> 5783 <_>4 9 3 2 3.</_></rects> 5784 <tilted>0</tilted></feature> 5785 <threshold>1.0364380432292819e-003</threshold> 5786 <left_val>0.2552052140235901</left_val> 5787 <right_val>0.5692911744117737</right_val></_></_> 5788 <_> 5789 <!-- tree 3 --> 5790 <_> 5791 <!-- root node --> 5792 <feature> 5793 <rects> 5794 <_>11 15 4 4 -1.</_> 5795 <_>13 15 2 2 2.</_> 5796 <_>11 17 2 2 2.</_></rects> 5797 <tilted>0</tilted></feature> 5798 <threshold>6.8211311008781195e-004</threshold> 5799 <left_val>0.3685089945793152</left_val> 5800 <right_val>0.5934931039810181</right_val></_></_> 5801 <_> 5802 <!-- tree 4 --> 5803 <_> 5804 <!-- root node --> 5805 <feature> 5806 <rects> 5807 <_>7 8 4 2 -1.</_> 5808 <_>7 9 4 1 2.</_></rects> 5809 <tilted>0</tilted></feature> 5810 <threshold>-6.8057340104132891e-004</threshold> 5811 <left_val>0.2332392036914825</left_val> 5812 <right_val>0.5474792122840881</right_val></_></_> 5813 <_> 5814 <!-- tree 5 --> 5815 <_> 5816 <!-- root node --> 5817 <feature> 5818 <rects> 5819 <_>13 1 4 3 -1.</_> 5820 <_>13 1 2 3 2.</_></rects> 5821 <tilted>0</tilted></feature> 5822 <threshold>2.6068789884448051e-004</threshold> 5823 <left_val>0.3257457017898560</left_val> 5824 <right_val>0.5667545795440674</right_val></_></_> 5825 <_> 5826 <!-- tree 6 --> 5827 <_> 5828 <!-- root node --> 5829 <feature> 5830 <rects> 5831 <_>5 15 4 4 -1.</_> 5832 <_>5 15 2 2 2.</_> 5833 <_>7 17 2 2 2.</_></rects> 5834 <tilted>0</tilted></feature> 5835 <threshold>5.1607372006401420e-004</threshold> 5836 <left_val>0.3744716942310333</left_val> 5837 <right_val>0.5845472812652588</right_val></_></_> 5838 <_> 5839 <!-- tree 7 --> 5840 <_> 5841 <!-- root node --> 5842 <feature> 5843 <rects> 5844 <_>9 5 4 7 -1.</_> 5845 <_>9 5 2 7 2.</_></rects> 5846 <tilted>0</tilted></feature> 5847 <threshold>8.5007521556690335e-004</threshold> 5848 <left_val>0.3420371115207672</left_val> 5849 <right_val>0.5522807240486145</right_val></_></_> 5850 <_> 5851 <!-- tree 8 --> 5852 <_> 5853 <!-- root node --> 5854 <feature> 5855 <rects> 5856 <_>5 6 8 3 -1.</_> 5857 <_>9 6 4 3 2.</_></rects> 5858 <tilted>0</tilted></feature> 5859 <threshold>-1.8607829697430134e-003</threshold> 5860 <left_val>0.2804419994354248</left_val> 5861 <right_val>0.5375424027442932</right_val></_></_> 5862 <_> 5863 <!-- tree 9 --> 5864 <_> 5865 <!-- root node --> 5866 <feature> 5867 <rects> 5868 <_>9 9 2 2 -1.</_> 5869 <_>9 10 2 1 2.</_></rects> 5870 <tilted>0</tilted></feature> 5871 <threshold>-1.5033970121294260e-003</threshold> 5872 <left_val>0.2579050958156586</left_val> 5873 <right_val>0.5498952269554138</right_val></_></_> 5874 <_> 5875 <!-- tree 10 --> 5876 <_> 5877 <!-- root node --> 5878 <feature> 5879 <rects> 5880 <_>7 15 5 3 -1.</_> 5881 <_>7 16 5 1 3.</_></rects> 5882 <tilted>0</tilted></feature> 5883 <threshold>2.3478909861296415e-003</threshold> 5884 <left_val>0.4175156056880951</left_val> 5885 <right_val>0.6313710808753967</right_val></_></_> 5886 <_> 5887 <!-- tree 11 --> 5888 <_> 5889 <!-- root node --> 5890 <feature> 5891 <rects> 5892 <_>11 10 4 3 -1.</_> 5893 <_>11 10 2 3 2.</_></rects> 5894 <tilted>0</tilted></feature> 5895 <threshold>-2.8880240279249847e-004</threshold> 5896 <left_val>0.5865169763565064</left_val> 5897 <right_val>0.4052666127681732</right_val></_></_> 5898 <_> 5899 <!-- tree 12 --> 5900 <_> 5901 <!-- root node --> 5902 <feature> 5903 <rects> 5904 <_>6 9 8 10 -1.</_> 5905 <_>6 14 8 5 2.</_></rects> 5906 <tilted>0</tilted></feature> 5907 <threshold>8.9405477046966553e-003</threshold> 5908 <left_val>0.5211141109466553</left_val> 5909 <right_val>0.2318654060363770</right_val></_></_> 5910 <_> 5911 <!-- tree 13 --> 5912 <_> 5913 <!-- root node --> 5914 <feature> 5915 <rects> 5916 <_>10 11 6 2 -1.</_> 5917 <_>10 11 3 2 2.</_></rects> 5918 <tilted>0</tilted></feature> 5919 <threshold>-0.0193277392536402</threshold> 5920 <left_val>0.2753432989120483</left_val> 5921 <right_val>0.5241525769233704</right_val></_></_> 5922 <_> 5923 <!-- tree 14 --> 5924 <_> 5925 <!-- root node --> 5926 <feature> 5927 <rects> 5928 <_>4 11 6 2 -1.</_> 5929 <_>7 11 3 2 2.</_></rects> 5930 <tilted>0</tilted></feature> 5931 <threshold>-2.0202060113660991e-004</threshold> 5932 <left_val>0.5722978711128235</left_val> 5933 <right_val>0.3677195906639099</right_val></_></_> 5934 <_> 5935 <!-- tree 15 --> 5936 <_> 5937 <!-- root node --> 5938 <feature> 5939 <rects> 5940 <_>11 3 8 1 -1.</_> 5941 <_>11 3 4 1 2.</_></rects> 5942 <tilted>0</tilted></feature> 5943 <threshold>2.1179069299250841e-003</threshold> 5944 <left_val>0.4466108083724976</left_val> 5945 <right_val>0.5542430877685547</right_val></_></_> 5946 <_> 5947 <!-- tree 16 --> 5948 <_> 5949 <!-- root node --> 5950 <feature> 5951 <rects> 5952 <_>6 3 3 2 -1.</_> 5953 <_>7 3 1 2 3.</_></rects> 5954 <tilted>0</tilted></feature> 5955 <threshold>-1.7743760254234076e-003</threshold> 5956 <left_val>0.2813253104686737</left_val> 5957 <right_val>0.5300959944725037</right_val></_></_> 5958 <_> 5959 <!-- tree 17 --> 5960 <_> 5961 <!-- root node --> 5962 <feature> 5963 <rects> 5964 <_>14 5 6 5 -1.</_> 5965 <_>14 5 3 5 2.</_></rects> 5966 <tilted>0</tilted></feature> 5967 <threshold>4.2234458960592747e-003</threshold> 5968 <left_val>0.4399709999561310</left_val> 5969 <right_val>0.5795428156852722</right_val></_></_> 5970 <_> 5971 <!-- tree 18 --> 5972 <_> 5973 <!-- root node --> 5974 <feature> 5975 <rects> 5976 <_>7 5 2 12 -1.</_> 5977 <_>7 11 2 6 2.</_></rects> 5978 <tilted>0</tilted></feature> 5979 <threshold>-0.0143752200528979</threshold> 5980 <left_val>0.2981117963790894</left_val> 5981 <right_val>0.5292059183120728</right_val></_></_> 5982 <_> 5983 <!-- tree 19 --> 5984 <_> 5985 <!-- root node --> 5986 <feature> 5987 <rects> 5988 <_>8 11 4 3 -1.</_> 5989 <_>8 12 4 1 3.</_></rects> 5990 <tilted>0</tilted></feature> 5991 <threshold>-0.0153491804376245</threshold> 5992 <left_val>0.7705215215682983</left_val> 5993 <right_val>0.4748171865940094</right_val></_></_> 5994 <_> 5995 <!-- tree 20 --> 5996 <_> 5997 <!-- root node --> 5998 <feature> 5999 <rects> 6000 <_>4 1 2 3 -1.</_> 6001 <_>5 1 1 3 2.</_></rects> 6002 <tilted>0</tilted></feature> 6003 <threshold>1.5152279956964776e-005</threshold> 6004 <left_val>0.3718844056129456</left_val> 6005 <right_val>0.5576897263526917</right_val></_></_> 6006 <_> 6007 <!-- tree 21 --> 6008 <_> 6009 <!-- root node --> 6010 <feature> 6011 <rects> 6012 <_>18 3 2 6 -1.</_> 6013 <_>18 5 2 2 3.</_></rects> 6014 <tilted>0</tilted></feature> 6015 <threshold>-9.1293919831514359e-003</threshold> 6016 <left_val>0.3615196049213409</left_val> 6017 <right_val>0.5286766886711121</right_val></_></_> 6018 <_> 6019 <!-- tree 22 --> 6020 <_> 6021 <!-- root node --> 6022 <feature> 6023 <rects> 6024 <_>0 3 2 6 -1.</_> 6025 <_>0 5 2 2 3.</_></rects> 6026 <tilted>0</tilted></feature> 6027 <threshold>2.2512159775942564e-003</threshold> 6028 <left_val>0.5364704728126526</left_val> 6029 <right_val>0.3486298024654388</right_val></_></_> 6030 <_> 6031 <!-- tree 23 --> 6032 <_> 6033 <!-- root node --> 6034 <feature> 6035 <rects> 6036 <_>9 12 2 3 -1.</_> 6037 <_>9 13 2 1 3.</_></rects> 6038 <tilted>0</tilted></feature> 6039 <threshold>-4.9696918576955795e-003</threshold> 6040 <left_val>0.6927651762962341</left_val> 6041 <right_val>0.4676836133003235</right_val></_></_> 6042 <_> 6043 <!-- tree 24 --> 6044 <_> 6045 <!-- root node --> 6046 <feature> 6047 <rects> 6048 <_>7 13 4 3 -1.</_> 6049 <_>7 14 4 1 3.</_></rects> 6050 <tilted>0</tilted></feature> 6051 <threshold>-0.0128290103748441</threshold> 6052 <left_val>0.7712153792381287</left_val> 6053 <right_val>0.4660735130310059</right_val></_></_> 6054 <_> 6055 <!-- tree 25 --> 6056 <_> 6057 <!-- root node --> 6058 <feature> 6059 <rects> 6060 <_>18 0 2 6 -1.</_> 6061 <_>18 2 2 2 3.</_></rects> 6062 <tilted>0</tilted></feature> 6063 <threshold>-9.3660065904259682e-003</threshold> 6064 <left_val>0.3374983966350555</left_val> 6065 <right_val>0.5351287722587585</right_val></_></_> 6066 <_> 6067 <!-- tree 26 --> 6068 <_> 6069 <!-- root node --> 6070 <feature> 6071 <rects> 6072 <_>0 0 2 6 -1.</_> 6073 <_>0 2 2 2 3.</_></rects> 6074 <tilted>0</tilted></feature> 6075 <threshold>3.2452319283038378e-003</threshold> 6076 <left_val>0.5325189828872681</left_val> 6077 <right_val>0.3289610147476196</right_val></_></_> 6078 <_> 6079 <!-- tree 27 --> 6080 <_> 6081 <!-- root node --> 6082 <feature> 6083 <rects> 6084 <_>8 14 6 3 -1.</_> 6085 <_>8 15 6 1 3.</_></rects> 6086 <tilted>0</tilted></feature> 6087 <threshold>-0.0117235602810979</threshold> 6088 <left_val>0.6837652921676636</left_val> 6089 <right_val>0.4754300117492676</right_val></_></_> 6090 <_> 6091 <!-- tree 28 --> 6092 <_> 6093 <!-- root node --> 6094 <feature> 6095 <rects> 6096 <_>7 4 2 4 -1.</_> 6097 <_>8 4 1 4 2.</_></rects> 6098 <tilted>0</tilted></feature> 6099 <threshold>2.9257940695970319e-005</threshold> 6100 <left_val>0.3572087883949280</left_val> 6101 <right_val>0.5360502004623413</right_val></_></_> 6102 <_> 6103 <!-- tree 29 --> 6104 <_> 6105 <!-- root node --> 6106 <feature> 6107 <rects> 6108 <_>8 5 4 6 -1.</_> 6109 <_>8 7 4 2 3.</_></rects> 6110 <tilted>0</tilted></feature> 6111 <threshold>-2.2244219508138485e-005</threshold> 6112 <left_val>0.5541427135467529</left_val> 6113 <right_val>0.3552064001560211</right_val></_></_> 6114 <_> 6115 <!-- tree 30 --> 6116 <_> 6117 <!-- root node --> 6118 <feature> 6119 <rects> 6120 <_>6 4 2 2 -1.</_> 6121 <_>7 4 1 2 2.</_></rects> 6122 <tilted>0</tilted></feature> 6123 <threshold>5.0881509669125080e-003</threshold> 6124 <left_val>0.5070844292640686</left_val> 6125 <right_val>0.1256462037563324</right_val></_></_> 6126 <_> 6127 <!-- tree 31 --> 6128 <_> 6129 <!-- root node --> 6130 <feature> 6131 <rects> 6132 <_>3 14 14 4 -1.</_> 6133 <_>10 14 7 2 2.</_> 6134 <_>3 16 7 2 2.</_></rects> 6135 <tilted>0</tilted></feature> 6136 <threshold>0.0274296794086695</threshold> 6137 <left_val>0.5269560217857361</left_val> 6138 <right_val>0.1625818014144898</right_val></_></_> 6139 <_> 6140 <!-- tree 32 --> 6141 <_> 6142 <!-- root node --> 6143 <feature> 6144 <rects> 6145 <_>6 15 6 2 -1.</_> 6146 <_>6 15 3 1 2.</_> 6147 <_>9 16 3 1 2.</_></rects> 6148 <tilted>0</tilted></feature> 6149 <threshold>-6.4142867922782898e-003</threshold> 6150 <left_val>0.7145588994026184</left_val> 6151 <right_val>0.4584197103977203</right_val></_></_> 6152 <_> 6153 <!-- tree 33 --> 6154 <_> 6155 <!-- root node --> 6156 <feature> 6157 <rects> 6158 <_>14 15 6 2 -1.</_> 6159 <_>14 16 6 1 2.</_></rects> 6160 <tilted>0</tilted></feature> 6161 <threshold>3.3479959238320589e-003</threshold> 6162 <left_val>0.5398612022399902</left_val> 6163 <right_val>0.3494696915149689</right_val></_></_> 6164 <_> 6165 <!-- tree 34 --> 6166 <_> 6167 <!-- root node --> 6168 <feature> 6169 <rects> 6170 <_>2 12 12 8 -1.</_> 6171 <_>2 16 12 4 2.</_></rects> 6172 <tilted>0</tilted></feature> 6173 <threshold>-0.0826354920864105</threshold> 6174 <left_val>0.2439192980527878</left_val> 6175 <right_val>0.5160226225852966</right_val></_></_> 6176 <_> 6177 <!-- tree 35 --> 6178 <_> 6179 <!-- root node --> 6180 <feature> 6181 <rects> 6182 <_>7 7 7 2 -1.</_> 6183 <_>7 8 7 1 2.</_></rects> 6184 <tilted>0</tilted></feature> 6185 <threshold>1.0261740535497665e-003</threshold> 6186 <left_val>0.3886891901493073</left_val> 6187 <right_val>0.5767908096313477</right_val></_></_> 6188 <_> 6189 <!-- tree 36 --> 6190 <_> 6191 <!-- root node --> 6192 <feature> 6193 <rects> 6194 <_>0 2 18 2 -1.</_> 6195 <_>0 3 18 1 2.</_></rects> 6196 <tilted>0</tilted></feature> 6197 <threshold>-1.6307090409100056e-003</threshold> 6198 <left_val>0.3389458060264587</left_val> 6199 <right_val>0.5347700715065002</right_val></_></_> 6200 <_> 6201 <!-- tree 37 --> 6202 <_> 6203 <!-- root node --> 6204 <feature> 6205 <rects> 6206 <_>9 6 2 5 -1.</_> 6207 <_>9 6 1 5 2.</_></rects> 6208 <tilted>0</tilted></feature> 6209 <threshold>2.4546680506318808e-003</threshold> 6210 <left_val>0.4601413905620575</left_val> 6211 <right_val>0.6387246847152710</right_val></_></_> 6212 <_> 6213 <!-- tree 38 --> 6214 <_> 6215 <!-- root node --> 6216 <feature> 6217 <rects> 6218 <_>7 5 3 8 -1.</_> 6219 <_>8 5 1 8 3.</_></rects> 6220 <tilted>0</tilted></feature> 6221 <threshold>-9.9476519972085953e-004</threshold> 6222 <left_val>0.5769879221916199</left_val> 6223 <right_val>0.4120396077632904</right_val></_></_> 6224 <_> 6225 <!-- tree 39 --> 6226 <_> 6227 <!-- root node --> 6228 <feature> 6229 <rects> 6230 <_>9 6 3 4 -1.</_> 6231 <_>10 6 1 4 3.</_></rects> 6232 <tilted>0</tilted></feature> 6233 <threshold>0.0154091902077198</threshold> 6234 <left_val>0.4878709018230438</left_val> 6235 <right_val>0.7089822292327881</right_val></_></_> 6236 <_> 6237 <!-- tree 40 --> 6238 <_> 6239 <!-- root node --> 6240 <feature> 6241 <rects> 6242 <_>4 13 3 2 -1.</_> 6243 <_>4 14 3 1 2.</_></rects> 6244 <tilted>0</tilted></feature> 6245 <threshold>1.1784400558099151e-003</threshold> 6246 <left_val>0.5263553261756897</left_val> 6247 <right_val>0.2895244956016541</right_val></_></_> 6248 <_> 6249 <!-- tree 41 --> 6250 <_> 6251 <!-- root node --> 6252 <feature> 6253 <rects> 6254 <_>9 4 6 3 -1.</_> 6255 <_>11 4 2 3 3.</_></rects> 6256 <tilted>0</tilted></feature> 6257 <threshold>-0.0277019198983908</threshold> 6258 <left_val>0.1498828977346420</left_val> 6259 <right_val>0.5219606757164002</right_val></_></_> 6260 <_> 6261 <!-- tree 42 --> 6262 <_> 6263 <!-- root node --> 6264 <feature> 6265 <rects> 6266 <_>5 4 6 3 -1.</_> 6267 <_>7 4 2 3 3.</_></rects> 6268 <tilted>0</tilted></feature> 6269 <threshold>-0.0295053999871016</threshold> 6270 <left_val>0.0248933192342520</left_val> 6271 <right_val>0.4999816119670868</right_val></_></_> 6272 <_> 6273 <!-- tree 43 --> 6274 <_> 6275 <!-- root node --> 6276 <feature> 6277 <rects> 6278 <_>14 11 5 2 -1.</_> 6279 <_>14 12 5 1 2.</_></rects> 6280 <tilted>0</tilted></feature> 6281 <threshold>4.5159430010244250e-004</threshold> 6282 <left_val>0.5464622974395752</left_val> 6283 <right_val>0.4029662907123566</right_val></_></_> 6284 <_> 6285 <!-- tree 44 --> 6286 <_> 6287 <!-- root node --> 6288 <feature> 6289 <rects> 6290 <_>1 2 6 9 -1.</_> 6291 <_>3 2 2 9 3.</_></rects> 6292 <tilted>0</tilted></feature> 6293 <threshold>7.1772639639675617e-003</threshold> 6294 <left_val>0.4271056950092316</left_val> 6295 <right_val>0.5866296887397766</right_val></_></_> 6296 <_> 6297 <!-- tree 45 --> 6298 <_> 6299 <!-- root node --> 6300 <feature> 6301 <rects> 6302 <_>14 6 6 13 -1.</_> 6303 <_>14 6 3 13 2.</_></rects> 6304 <tilted>0</tilted></feature> 6305 <threshold>-0.0741820484399796</threshold> 6306 <left_val>0.6874179244041443</left_val> 6307 <right_val>0.4919027984142304</right_val></_></_> 6308 <_> 6309 <!-- tree 46 --> 6310 <_> 6311 <!-- root node --> 6312 <feature> 6313 <rects> 6314 <_>3 6 14 8 -1.</_> 6315 <_>3 6 7 4 2.</_> 6316 <_>10 10 7 4 2.</_></rects> 6317 <tilted>0</tilted></feature> 6318 <threshold>-0.0172541607171297</threshold> 6319 <left_val>0.3370676040649414</left_val> 6320 <right_val>0.5348739027976990</right_val></_></_> 6321 <_> 6322 <!-- tree 47 --> 6323 <_> 6324 <!-- root node --> 6325 <feature> 6326 <rects> 6327 <_>16 0 4 11 -1.</_> 6328 <_>16 0 2 11 2.</_></rects> 6329 <tilted>0</tilted></feature> 6330 <threshold>0.0148515598848462</threshold> 6331 <left_val>0.4626792967319489</left_val> 6332 <right_val>0.6129904985427856</right_val></_></_> 6333 <_> 6334 <!-- tree 48 --> 6335 <_> 6336 <!-- root node --> 6337 <feature> 6338 <rects> 6339 <_>3 4 12 12 -1.</_> 6340 <_>3 4 6 6 2.</_> 6341 <_>9 10 6 6 2.</_></rects> 6342 <tilted>0</tilted></feature> 6343 <threshold>0.0100020002573729</threshold> 6344 <left_val>0.5346122980117798</left_val> 6345 <right_val>0.3423453867435455</right_val></_></_> 6346 <_> 6347 <!-- tree 49 --> 6348 <_> 6349 <!-- root node --> 6350 <feature> 6351 <rects> 6352 <_>11 4 5 3 -1.</_> 6353 <_>11 5 5 1 3.</_></rects> 6354 <tilted>0</tilted></feature> 6355 <threshold>2.0138120744377375e-003</threshold> 6356 <left_val>0.4643830060958862</left_val> 6357 <right_val>0.5824304223060608</right_val></_></_> 6358 <_> 6359 <!-- tree 50 --> 6360 <_> 6361 <!-- root node --> 6362 <feature> 6363 <rects> 6364 <_>4 11 4 2 -1.</_> 6365 <_>4 12 4 1 2.</_></rects> 6366 <tilted>0</tilted></feature> 6367 <threshold>1.5135470312088728e-003</threshold> 6368 <left_val>0.5196396112442017</left_val> 6369 <right_val>0.2856149971485138</right_val></_></_> 6370 <_> 6371 <!-- tree 51 --> 6372 <_> 6373 <!-- root node --> 6374 <feature> 6375 <rects> 6376 <_>10 7 2 2 -1.</_> 6377 <_>10 7 1 2 2.</_></rects> 6378 <tilted>0</tilted></feature> 6379 <threshold>3.1381431035697460e-003</threshold> 6380 <left_val>0.4838162958621979</left_val> 6381 <right_val>0.5958529710769653</right_val></_></_> 6382 <_> 6383 <!-- tree 52 --> 6384 <_> 6385 <!-- root node --> 6386 <feature> 6387 <rects> 6388 <_>8 7 2 2 -1.</_> 6389 <_>9 7 1 2 2.</_></rects> 6390 <tilted>0</tilted></feature> 6391 <threshold>-5.1450440660119057e-003</threshold> 6392 <left_val>0.8920302987098694</left_val> 6393 <right_val>0.4741412103176117</right_val></_></_> 6394 <_> 6395 <!-- tree 53 --> 6396 <_> 6397 <!-- root node --> 6398 <feature> 6399 <rects> 6400 <_>9 17 3 2 -1.</_> 6401 <_>10 17 1 2 3.</_></rects> 6402 <tilted>0</tilted></feature> 6403 <threshold>-4.4736708514392376e-003</threshold> 6404 <left_val>0.2033942937850952</left_val> 6405 <right_val>0.5337278842926025</right_val></_></_> 6406 <_> 6407 <!-- tree 54 --> 6408 <_> 6409 <!-- root node --> 6410 <feature> 6411 <rects> 6412 <_>5 6 3 3 -1.</_> 6413 <_>5 7 3 1 3.</_></rects> 6414 <tilted>0</tilted></feature> 6415 <threshold>1.9628470763564110e-003</threshold> 6416 <left_val>0.4571633934974670</left_val> 6417 <right_val>0.6725863218307495</right_val></_></_> 6418 <_> 6419 <!-- tree 55 --> 6420 <_> 6421 <!-- root node --> 6422 <feature> 6423 <rects> 6424 <_>10 0 3 3 -1.</_> 6425 <_>11 0 1 3 3.</_></rects> 6426 <tilted>0</tilted></feature> 6427 <threshold>5.4260450415313244e-003</threshold> 6428 <left_val>0.5271108150482178</left_val> 6429 <right_val>0.2845670878887177</right_val></_></_> 6430 <_> 6431 <!-- tree 56 --> 6432 <_> 6433 <!-- root node --> 6434 <feature> 6435 <rects> 6436 <_>5 6 6 2 -1.</_> 6437 <_>5 6 3 1 2.</_> 6438 <_>8 7 3 1 2.</_></rects> 6439 <tilted>0</tilted></feature> 6440 <threshold>4.9611460417509079e-004</threshold> 6441 <left_val>0.4138312935829163</left_val> 6442 <right_val>0.5718597769737244</right_val></_></_> 6443 <_> 6444 <!-- tree 57 --> 6445 <_> 6446 <!-- root node --> 6447 <feature> 6448 <rects> 6449 <_>12 16 4 3 -1.</_> 6450 <_>12 17 4 1 3.</_></rects> 6451 <tilted>0</tilted></feature> 6452 <threshold>9.3728788197040558e-003</threshold> 6453 <left_val>0.5225151181221008</left_val> 6454 <right_val>0.2804847061634064</right_val></_></_> 6455 <_> 6456 <!-- tree 58 --> 6457 <_> 6458 <!-- root node --> 6459 <feature> 6460 <rects> 6461 <_>3 12 3 2 -1.</_> 6462 <_>3 13 3 1 2.</_></rects> 6463 <tilted>0</tilted></feature> 6464 <threshold>6.0500897234305739e-004</threshold> 6465 <left_val>0.5236768722534180</left_val> 6466 <right_val>0.3314523994922638</right_val></_></_> 6467 <_> 6468 <!-- tree 59 --> 6469 <_> 6470 <!-- root node --> 6471 <feature> 6472 <rects> 6473 <_>9 12 3 2 -1.</_> 6474 <_>9 13 3 1 2.</_></rects> 6475 <tilted>0</tilted></feature> 6476 <threshold>5.6792551185935736e-004</threshold> 6477 <left_val>0.4531059861183167</left_val> 6478 <right_val>0.6276971101760864</right_val></_></_> 6479 <_> 6480 <!-- tree 60 --> 6481 <_> 6482 <!-- root node --> 6483 <feature> 6484 <rects> 6485 <_>1 11 16 4 -1.</_> 6486 <_>1 11 8 2 2.</_> 6487 <_>9 13 8 2 2.</_></rects> 6488 <tilted>0</tilted></feature> 6489 <threshold>0.0246443394571543</threshold> 6490 <left_val>0.5130851864814758</left_val> 6491 <right_val>0.2017143964767456</right_val></_></_> 6492 <_> 6493 <!-- tree 61 --> 6494 <_> 6495 <!-- root node --> 6496 <feature> 6497 <rects> 6498 <_>12 4 3 3 -1.</_> 6499 <_>12 5 3 1 3.</_></rects> 6500 <tilted>0</tilted></feature> 6501 <threshold>-0.0102904504165053</threshold> 6502 <left_val>0.7786595225334168</left_val> 6503 <right_val>0.4876641035079956</right_val></_></_> 6504 <_> 6505 <!-- tree 62 --> 6506 <_> 6507 <!-- root node --> 6508 <feature> 6509 <rects> 6510 <_>4 4 5 3 -1.</_> 6511 <_>4 5 5 1 3.</_></rects> 6512 <tilted>0</tilted></feature> 6513 <threshold>2.0629419013857841e-003</threshold> 6514 <left_val>0.4288598895072937</left_val> 6515 <right_val>0.5881264209747315</right_val></_></_> 6516 <_> 6517 <!-- tree 63 --> 6518 <_> 6519 <!-- root node --> 6520 <feature> 6521 <rects> 6522 <_>12 16 4 3 -1.</_> 6523 <_>12 17 4 1 3.</_></rects> 6524 <tilted>0</tilted></feature> 6525 <threshold>-5.0519481301307678e-003</threshold> 6526 <left_val>0.3523977994918823</left_val> 6527 <right_val>0.5286008715629578</right_val></_></_> 6528 <_> 6529 <!-- tree 64 --> 6530 <_> 6531 <!-- root node --> 6532 <feature> 6533 <rects> 6534 <_>5 4 3 3 -1.</_> 6535 <_>5 5 3 1 3.</_></rects> 6536 <tilted>0</tilted></feature> 6537 <threshold>-5.7692620903253555e-003</threshold> 6538 <left_val>0.6841086149215698</left_val> 6539 <right_val>0.4588094055652618</right_val></_></_> 6540 <_> 6541 <!-- tree 65 --> 6542 <_> 6543 <!-- root node --> 6544 <feature> 6545 <rects> 6546 <_>9 0 2 2 -1.</_> 6547 <_>9 1 2 1 2.</_></rects> 6548 <tilted>0</tilted></feature> 6549 <threshold>-4.5789941214025021e-004</threshold> 6550 <left_val>0.3565520048141480</left_val> 6551 <right_val>0.5485978126525879</right_val></_></_> 6552 <_> 6553 <!-- tree 66 --> 6554 <_> 6555 <!-- root node --> 6556 <feature> 6557 <rects> 6558 <_>8 9 4 2 -1.</_> 6559 <_>8 10 4 1 2.</_></rects> 6560 <tilted>0</tilted></feature> 6561 <threshold>-7.5918837683275342e-004</threshold> 6562 <left_val>0.3368793129920960</left_val> 6563 <right_val>0.5254197120666504</right_val></_></_> 6564 <_> 6565 <!-- tree 67 --> 6566 <_> 6567 <!-- root node --> 6568 <feature> 6569 <rects> 6570 <_>8 8 4 3 -1.</_> 6571 <_>8 9 4 1 3.</_></rects> 6572 <tilted>0</tilted></feature> 6573 <threshold>-1.7737259622663260e-003</threshold> 6574 <left_val>0.3422161042690277</left_val> 6575 <right_val>0.5454015135765076</right_val></_></_> 6576 <_> 6577 <!-- tree 68 --> 6578 <_> 6579 <!-- root node --> 6580 <feature> 6581 <rects> 6582 <_>0 13 6 3 -1.</_> 6583 <_>2 13 2 3 3.</_></rects> 6584 <tilted>0</tilted></feature> 6585 <threshold>-8.5610467940568924e-003</threshold> 6586 <left_val>0.6533612012863159</left_val> 6587 <right_val>0.4485856890678406</right_val></_></_> 6588 <_> 6589 <!-- tree 69 --> 6590 <_> 6591 <!-- root node --> 6592 <feature> 6593 <rects> 6594 <_>16 14 3 2 -1.</_> 6595 <_>16 15 3 1 2.</_></rects> 6596 <tilted>0</tilted></feature> 6597 <threshold>1.7277270089834929e-003</threshold> 6598 <left_val>0.5307580232620239</left_val> 6599 <right_val>0.3925352990627289</right_val></_></_> 6600 <_> 6601 <!-- tree 70 --> 6602 <_> 6603 <!-- root node --> 6604 <feature> 6605 <rects> 6606 <_>1 18 18 2 -1.</_> 6607 <_>7 18 6 2 3.</_></rects> 6608 <tilted>0</tilted></feature> 6609 <threshold>-0.0281996093690395</threshold> 6610 <left_val>0.6857458949089050</left_val> 6611 <right_val>0.4588584005832672</right_val></_></_> 6612 <_> 6613 <!-- tree 71 --> 6614 <_> 6615 <!-- root node --> 6616 <feature> 6617 <rects> 6618 <_>16 14 3 2 -1.</_> 6619 <_>16 15 3 1 2.</_></rects> 6620 <tilted>0</tilted></feature> 6621 <threshold>-1.7781109781935811e-003</threshold> 6622 <left_val>0.4037851095199585</left_val> 6623 <right_val>0.5369856953620911</right_val></_></_> 6624 <_> 6625 <!-- tree 72 --> 6626 <_> 6627 <!-- root node --> 6628 <feature> 6629 <rects> 6630 <_>1 14 3 2 -1.</_> 6631 <_>1 15 3 1 2.</_></rects> 6632 <tilted>0</tilted></feature> 6633 <threshold>3.3177141449414194e-004</threshold> 6634 <left_val>0.5399798750877380</left_val> 6635 <right_val>0.3705750107765198</right_val></_></_> 6636 <_> 6637 <!-- tree 73 --> 6638 <_> 6639 <!-- root node --> 6640 <feature> 6641 <rects> 6642 <_>7 14 6 3 -1.</_> 6643 <_>7 15 6 1 3.</_></rects> 6644 <tilted>0</tilted></feature> 6645 <threshold>2.6385399978607893e-003</threshold> 6646 <left_val>0.4665437042713165</left_val> 6647 <right_val>0.6452730894088745</right_val></_></_> 6648 <_> 6649 <!-- tree 74 --> 6650 <_> 6651 <!-- root node --> 6652 <feature> 6653 <rects> 6654 <_>5 14 8 3 -1.</_> 6655 <_>5 15 8 1 3.</_></rects> 6656 <tilted>0</tilted></feature> 6657 <threshold>-2.1183069329708815e-003</threshold> 6658 <left_val>0.5914781093597412</left_val> 6659 <right_val>0.4064677059650421</right_val></_></_> 6660 <_> 6661 <!-- tree 75 --> 6662 <_> 6663 <!-- root node --> 6664 <feature> 6665 <rects> 6666 <_>10 6 4 14 -1.</_> 6667 <_>10 6 2 14 2.</_></rects> 6668 <tilted>0</tilted></feature> 6669 <threshold>-0.0147732896730304</threshold> 6670 <left_val>0.3642038106918335</left_val> 6671 <right_val>0.5294762849807739</right_val></_></_> 6672 <_> 6673 <!-- tree 76 --> 6674 <_> 6675 <!-- root node --> 6676 <feature> 6677 <rects> 6678 <_>6 6 4 14 -1.</_> 6679 <_>8 6 2 14 2.</_></rects> 6680 <tilted>0</tilted></feature> 6681 <threshold>-0.0168154407292604</threshold> 6682 <left_val>0.2664231956005096</left_val> 6683 <right_val>0.5144972801208496</right_val></_></_> 6684 <_> 6685 <!-- tree 77 --> 6686 <_> 6687 <!-- root node --> 6688 <feature> 6689 <rects> 6690 <_>13 5 2 3 -1.</_> 6691 <_>13 6 2 1 3.</_></rects> 6692 <tilted>0</tilted></feature> 6693 <threshold>-6.3370140269398689e-003</threshold> 6694 <left_val>0.6779531240463257</left_val> 6695 <right_val>0.4852097928524017</right_val></_></_> 6696 <_> 6697 <!-- tree 78 --> 6698 <_> 6699 <!-- root node --> 6700 <feature> 6701 <rects> 6702 <_>7 16 6 1 -1.</_> 6703 <_>9 16 2 1 3.</_></rects> 6704 <tilted>0</tilted></feature> 6705 <threshold>-4.4560048991115764e-005</threshold> 6706 <left_val>0.5613964796066284</left_val> 6707 <right_val>0.4153054058551788</right_val></_></_> 6708 <_> 6709 <!-- tree 79 --> 6710 <_> 6711 <!-- root node --> 6712 <feature> 6713 <rects> 6714 <_>9 12 3 3 -1.</_> 6715 <_>9 13 3 1 3.</_></rects> 6716 <tilted>0</tilted></feature> 6717 <threshold>-1.0240620467811823e-003</threshold> 6718 <left_val>0.5964478254318237</left_val> 6719 <right_val>0.4566304087638855</right_val></_></_> 6720 <_> 6721 <!-- tree 80 --> 6722 <_> 6723 <!-- root node --> 6724 <feature> 6725 <rects> 6726 <_>7 0 3 3 -1.</_> 6727 <_>8 0 1 3 3.</_></rects> 6728 <tilted>0</tilted></feature> 6729 <threshold>-2.3161689750850201e-003</threshold> 6730 <left_val>0.2976115047931671</left_val> 6731 <right_val>0.5188159942626953</right_val></_></_> 6732 <_> 6733 <!-- tree 81 --> 6734 <_> 6735 <!-- root node --> 6736 <feature> 6737 <rects> 6738 <_>4 0 16 18 -1.</_> 6739 <_>4 9 16 9 2.</_></rects> 6740 <tilted>0</tilted></feature> 6741 <threshold>0.5321757197380066</threshold> 6742 <left_val>0.5187839269638062</left_val> 6743 <right_val>0.2202631980180740</right_val></_></_> 6744 <_> 6745 <!-- tree 82 --> 6746 <_> 6747 <!-- root node --> 6748 <feature> 6749 <rects> 6750 <_>1 1 16 14 -1.</_> 6751 <_>1 8 16 7 2.</_></rects> 6752 <tilted>0</tilted></feature> 6753 <threshold>-0.1664305031299591</threshold> 6754 <left_val>0.1866022944450378</left_val> 6755 <right_val>0.5060343146324158</right_val></_></_> 6756 <_> 6757 <!-- tree 83 --> 6758 <_> 6759 <!-- root node --> 6760 <feature> 6761 <rects> 6762 <_>3 9 15 4 -1.</_> 6763 <_>8 9 5 4 3.</_></rects> 6764 <tilted>0</tilted></feature> 6765 <threshold>0.1125352978706360</threshold> 6766 <left_val>0.5212125182151794</left_val> 6767 <right_val>0.1185022965073586</right_val></_></_> 6768 <_> 6769 <!-- tree 84 --> 6770 <_> 6771 <!-- root node --> 6772 <feature> 6773 <rects> 6774 <_>6 12 7 3 -1.</_> 6775 <_>6 13 7 1 3.</_></rects> 6776 <tilted>0</tilted></feature> 6777 <threshold>9.3046864494681358e-003</threshold> 6778 <left_val>0.4589937031269074</left_val> 6779 <right_val>0.6826149225234985</right_val></_></_> 6780 <_> 6781 <!-- tree 85 --> 6782 <_> 6783 <!-- root node --> 6784 <feature> 6785 <rects> 6786 <_>14 15 2 3 -1.</_> 6787 <_>14 16 2 1 3.</_></rects> 6788 <tilted>0</tilted></feature> 6789 <threshold>-4.6255099587142467e-003</threshold> 6790 <left_val>0.3079940974712372</left_val> 6791 <right_val>0.5225008726119995</right_val></_></_> 6792 <_> 6793 <!-- tree 86 --> 6794 <_> 6795 <!-- root node --> 6796 <feature> 6797 <rects> 6798 <_>2 3 16 14 -1.</_> 6799 <_>2 3 8 7 2.</_> 6800 <_>10 10 8 7 2.</_></rects> 6801 <tilted>0</tilted></feature> 6802 <threshold>-0.1111646965146065</threshold> 6803 <left_val>0.2101044058799744</left_val> 6804 <right_val>0.5080801844596863</right_val></_></_> 6805 <_> 6806 <!-- tree 87 --> 6807 <_> 6808 <!-- root node --> 6809 <feature> 6810 <rects> 6811 <_>16 2 4 18 -1.</_> 6812 <_>18 2 2 9 2.</_> 6813 <_>16 11 2 9 2.</_></rects> 6814 <tilted>0</tilted></feature> 6815 <threshold>-0.0108884396031499</threshold> 6816 <left_val>0.5765355229377747</left_val> 6817 <right_val>0.4790464043617249</right_val></_></_> 6818 <_> 6819 <!-- tree 88 --> 6820 <_> 6821 <!-- root node --> 6822 <feature> 6823 <rects> 6824 <_>4 15 2 3 -1.</_> 6825 <_>4 16 2 1 3.</_></rects> 6826 <tilted>0</tilted></feature> 6827 <threshold>5.8564301580190659e-003</threshold> 6828 <left_val>0.5065100193023682</left_val> 6829 <right_val>0.1563598960638046</right_val></_></_> 6830 <_> 6831 <!-- tree 89 --> 6832 <_> 6833 <!-- root node --> 6834 <feature> 6835 <rects> 6836 <_>16 2 4 18 -1.</_> 6837 <_>18 2 2 9 2.</_> 6838 <_>16 11 2 9 2.</_></rects> 6839 <tilted>0</tilted></feature> 6840 <threshold>0.0548543892800808</threshold> 6841 <left_val>0.4966914951801300</left_val> 6842 <right_val>0.7230510711669922</right_val></_></_> 6843 <_> 6844 <!-- tree 90 --> 6845 <_> 6846 <!-- root node --> 6847 <feature> 6848 <rects> 6849 <_>1 1 8 3 -1.</_> 6850 <_>1 2 8 1 3.</_></rects> 6851 <tilted>0</tilted></feature> 6852 <threshold>-0.0111973397433758</threshold> 6853 <left_val>0.2194979041814804</left_val> 6854 <right_val>0.5098798274993897</right_val></_></_> 6855 <_> 6856 <!-- tree 91 --> 6857 <_> 6858 <!-- root node --> 6859 <feature> 6860 <rects> 6861 <_>8 11 4 3 -1.</_> 6862 <_>8 12 4 1 3.</_></rects> 6863 <tilted>0</tilted></feature> 6864 <threshold>4.4069071300327778e-003</threshold> 6865 <left_val>0.4778401851654053</left_val> 6866 <right_val>0.6770902872085571</right_val></_></_> 6867 <_> 6868 <!-- tree 92 --> 6869 <_> 6870 <!-- root node --> 6871 <feature> 6872 <rects> 6873 <_>5 11 5 9 -1.</_> 6874 <_>5 14 5 3 3.</_></rects> 6875 <tilted>0</tilted></feature> 6876 <threshold>-0.0636652931571007</threshold> 6877 <left_val>0.1936362981796265</left_val> 6878 <right_val>0.5081024169921875</right_val></_></_> 6879 <_> 6880 <!-- tree 93 --> 6881 <_> 6882 <!-- root node --> 6883 <feature> 6884 <rects> 6885 <_>16 0 4 11 -1.</_> 6886 <_>16 0 2 11 2.</_></rects> 6887 <tilted>0</tilted></feature> 6888 <threshold>-9.8081491887569427e-003</threshold> 6889 <left_val>0.5999063253402710</left_val> 6890 <right_val>0.4810341000556946</right_val></_></_> 6891 <_> 6892 <!-- tree 94 --> 6893 <_> 6894 <!-- root node --> 6895 <feature> 6896 <rects> 6897 <_>7 0 6 1 -1.</_> 6898 <_>9 0 2 1 3.</_></rects> 6899 <tilted>0</tilted></feature> 6900 <threshold>-2.1717099007219076e-003</threshold> 6901 <left_val>0.3338333964347839</left_val> 6902 <right_val>0.5235472917556763</right_val></_></_> 6903 <_> 6904 <!-- tree 95 --> 6905 <_> 6906 <!-- root node --> 6907 <feature> 6908 <rects> 6909 <_>16 3 3 7 -1.</_> 6910 <_>17 3 1 7 3.</_></rects> 6911 <tilted>0</tilted></feature> 6912 <threshold>-0.0133155202493072</threshold> 6913 <left_val>0.6617069840431213</left_val> 6914 <right_val>0.4919213056564331</right_val></_></_> 6915 <_> 6916 <!-- tree 96 --> 6917 <_> 6918 <!-- root node --> 6919 <feature> 6920 <rects> 6921 <_>1 3 3 7 -1.</_> 6922 <_>2 3 1 7 3.</_></rects> 6923 <tilted>0</tilted></feature> 6924 <threshold>2.5442079640924931e-003</threshold> 6925 <left_val>0.4488744139671326</left_val> 6926 <right_val>0.6082184910774231</right_val></_></_> 6927 <_> 6928 <!-- tree 97 --> 6929 <_> 6930 <!-- root node --> 6931 <feature> 6932 <rects> 6933 <_>7 8 6 12 -1.</_> 6934 <_>7 12 6 4 3.</_></rects> 6935 <tilted>0</tilted></feature> 6936 <threshold>0.0120378397405148</threshold> 6937 <left_val>0.5409392118453980</left_val> 6938 <right_val>0.3292432129383087</right_val></_></_> 6939 <_> 6940 <!-- tree 98 --> 6941 <_> 6942 <!-- root node --> 6943 <feature> 6944 <rects> 6945 <_>0 0 4 11 -1.</_> 6946 <_>2 0 2 11 2.</_></rects> 6947 <tilted>0</tilted></feature> 6948 <threshold>-0.0207010507583618</threshold> 6949 <left_val>0.6819120049476624</left_val> 6950 <right_val>0.4594995975494385</right_val></_></_> 6951 <_> 6952 <!-- tree 99 --> 6953 <_> 6954 <!-- root node --> 6955 <feature> 6956 <rects> 6957 <_>14 0 6 20 -1.</_> 6958 <_>14 0 3 20 2.</_></rects> 6959 <tilted>0</tilted></feature> 6960 <threshold>0.0276082791388035</threshold> 6961 <left_val>0.4630792140960693</left_val> 6962 <right_val>0.5767282843589783</right_val></_></_> 6963 <_> 6964 <!-- tree 100 --> 6965 <_> 6966 <!-- root node --> 6967 <feature> 6968 <rects> 6969 <_>0 3 1 2 -1.</_> 6970 <_>0 4 1 1 2.</_></rects> 6971 <tilted>0</tilted></feature> 6972 <threshold>1.2370620388537645e-003</threshold> 6973 <left_val>0.5165379047393799</left_val> 6974 <right_val>0.2635016143321991</right_val></_></_> 6975 <_> 6976 <!-- tree 101 --> 6977 <_> 6978 <!-- root node --> 6979 <feature> 6980 <rects> 6981 <_>5 5 10 8 -1.</_> 6982 <_>10 5 5 4 2.</_> 6983 <_>5 9 5 4 2.</_></rects> 6984 <tilted>0</tilted></feature> 6985 <threshold>-0.0376693382859230</threshold> 6986 <left_val>0.2536393105983734</left_val> 6987 <right_val>0.5278980135917664</right_val></_></_> 6988 <_> 6989 <!-- tree 102 --> 6990 <_> 6991 <!-- root node --> 6992 <feature> 6993 <rects> 6994 <_>4 7 12 4 -1.</_> 6995 <_>4 7 6 2 2.</_> 6996 <_>10 9 6 2 2.</_></rects> 6997 <tilted>0</tilted></feature> 6998 <threshold>-1.8057259730994701e-003</threshold> 6999 <left_val>0.3985156118869782</left_val> 7000 <right_val>0.5517500042915344</right_val></_></_></trees> 7001 <stage_threshold>50.6104812622070310</stage_threshold> 7002 <parent>10</parent> 7003 <next>-1</next></_> 7004 <_> 7005 <!-- stage 12 --> 7006 <trees> 7007 <_> 7008 <!-- tree 0 --> 7009 <_> 7010 <!-- root node --> 7011 <feature> 7012 <rects> 7013 <_>2 1 6 4 -1.</_> 7014 <_>5 1 3 4 2.</_></rects> 7015 <tilted>0</tilted></feature> 7016 <threshold>4.4299028813838959e-003</threshold> 7017 <left_val>0.2891018092632294</left_val> 7018 <right_val>0.6335226297378540</right_val></_></_> 7019 <_> 7020 <!-- tree 1 --> 7021 <_> 7022 <!-- root node --> 7023 <feature> 7024 <rects> 7025 <_>9 7 6 4 -1.</_> 7026 <_>12 7 3 2 2.</_> 7027 <_>9 9 3 2 2.</_></rects> 7028 <tilted>0</tilted></feature> 7029 <threshold>-2.3813319858163595e-003</threshold> 7030 <left_val>0.6211789250373840</left_val> 7031 <right_val>0.3477487862110138</right_val></_></_> 7032 <_> 7033 <!-- tree 2 --> 7034 <_> 7035 <!-- root node --> 7036 <feature> 7037 <rects> 7038 <_>5 6 2 6 -1.</_> 7039 <_>5 9 2 3 2.</_></rects> 7040 <tilted>0</tilted></feature> 7041 <threshold>2.2915711160749197e-003</threshold> 7042 <left_val>0.2254412025213242</left_val> 7043 <right_val>0.5582118034362793</right_val></_></_> 7044 <_> 7045 <!-- tree 3 --> 7046 <_> 7047 <!-- root node --> 7048 <feature> 7049 <rects> 7050 <_>9 16 6 4 -1.</_> 7051 <_>12 16 3 2 2.</_> 7052 <_>9 18 3 2 2.</_></rects> 7053 <tilted>0</tilted></feature> 7054 <threshold>9.9457940086722374e-004</threshold> 7055 <left_val>0.3711710870265961</left_val> 7056 <right_val>0.5930070877075195</right_val></_></_> 7057 <_> 7058 <!-- tree 4 --> 7059 <_> 7060 <!-- root node --> 7061 <feature> 7062 <rects> 7063 <_>9 4 2 12 -1.</_> 7064 <_>9 10 2 6 2.</_></rects> 7065 <tilted>0</tilted></feature> 7066 <threshold>7.7164667891338468e-004</threshold> 7067 <left_val>0.5651720166206360</left_val> 7068 <right_val>0.3347995877265930</right_val></_></_> 7069 <_> 7070 <!-- tree 5 --> 7071 <_> 7072 <!-- root node --> 7073 <feature> 7074 <rects> 7075 <_>7 1 6 18 -1.</_> 7076 <_>9 1 2 18 3.</_></rects> 7077 <tilted>0</tilted></feature> 7078 <threshold>-1.1386410333216190e-003</threshold> 7079 <left_val>0.3069126009941101</left_val> 7080 <right_val>0.5508630871772766</right_val></_></_> 7081 <_> 7082 <!-- tree 6 --> 7083 <_> 7084 <!-- root node --> 7085 <feature> 7086 <rects> 7087 <_>4 12 12 2 -1.</_> 7088 <_>8 12 4 2 3.</_></rects> 7089 <tilted>0</tilted></feature> 7090 <threshold>-1.6403039626311511e-004</threshold> 7091 <left_val>0.5762827992439270</left_val> 7092 <right_val>0.3699047863483429</right_val></_></_> 7093 <_> 7094 <!-- tree 7 --> 7095 <_> 7096 <!-- root node --> 7097 <feature> 7098 <rects> 7099 <_>8 8 6 2 -1.</_> 7100 <_>8 9 6 1 2.</_></rects> 7101 <tilted>0</tilted></feature> 7102 <threshold>2.9793529392918572e-005</threshold> 7103 <left_val>0.2644244134426117</left_val> 7104 <right_val>0.5437911152839661</right_val></_></_> 7105 <_> 7106 <!-- tree 8 --> 7107 <_> 7108 <!-- root node --> 7109 <feature> 7110 <rects> 7111 <_>8 0 3 6 -1.</_> 7112 <_>9 0 1 6 3.</_></rects> 7113 <tilted>0</tilted></feature> 7114 <threshold>8.5774902254343033e-003</threshold> 7115 <left_val>0.5051138997077942</left_val> 7116 <right_val>0.1795724928379059</right_val></_></_> 7117 <_> 7118 <!-- tree 9 --> 7119 <_> 7120 <!-- root node --> 7121 <feature> 7122 <rects> 7123 <_>11 18 3 2 -1.</_> 7124 <_>11 19 3 1 2.</_></rects> 7125 <tilted>0</tilted></feature> 7126 <threshold>-2.6032689493149519e-004</threshold> 7127 <left_val>0.5826969146728516</left_val> 7128 <right_val>0.4446826875209808</right_val></_></_> 7129 <_> 7130 <!-- tree 10 --> 7131 <_> 7132 <!-- root node --> 7133 <feature> 7134 <rects> 7135 <_>1 1 17 4 -1.</_> 7136 <_>1 3 17 2 2.</_></rects> 7137 <tilted>0</tilted></feature> 7138 <threshold>-6.1404630541801453e-003</threshold> 7139 <left_val>0.3113852143287659</left_val> 7140 <right_val>0.5346971750259399</right_val></_></_> 7141 <_> 7142 <!-- tree 11 --> 7143 <_> 7144 <!-- root node --> 7145 <feature> 7146 <rects> 7147 <_>11 8 4 12 -1.</_> 7148 <_>11 8 2 12 2.</_></rects> 7149 <tilted>0</tilted></feature> 7150 <threshold>-0.0230869501829147</threshold> 7151 <left_val>0.3277946114540100</left_val> 7152 <right_val>0.5331197977066040</right_val></_></_> 7153 <_> 7154 <!-- tree 12 --> 7155 <_> 7156 <!-- root node --> 7157 <feature> 7158 <rects> 7159 <_>8 14 4 3 -1.</_> 7160 <_>8 15 4 1 3.</_></rects> 7161 <tilted>0</tilted></feature> 7162 <threshold>-0.0142436502501369</threshold> 7163 <left_val>0.7381709814071655</left_val> 7164 <right_val>0.4588063061237335</right_val></_></_> 7165 <_> 7166 <!-- tree 13 --> 7167 <_> 7168 <!-- root node --> 7169 <feature> 7170 <rects> 7171 <_>12 3 2 17 -1.</_> 7172 <_>12 3 1 17 2.</_></rects> 7173 <tilted>0</tilted></feature> 7174 <threshold>0.0194871295243502</threshold> 7175 <left_val>0.5256630778312683</left_val> 7176 <right_val>0.2274471968412399</right_val></_></_> 7177 <_> 7178 <!-- tree 14 --> 7179 <_> 7180 <!-- root node --> 7181 <feature> 7182 <rects> 7183 <_>4 7 6 1 -1.</_> 7184 <_>6 7 2 1 3.</_></rects> 7185 <tilted>0</tilted></feature> 7186 <threshold>-9.6681108698248863e-004</threshold> 7187 <left_val>0.5511230826377869</left_val> 7188 <right_val>0.3815006911754608</right_val></_></_> 7189 <_> 7190 <!-- tree 15 --> 7191 <_> 7192 <!-- root node --> 7193 <feature> 7194 <rects> 7195 <_>18 3 2 3 -1.</_> 7196 <_>18 4 2 1 3.</_></rects> 7197 <tilted>0</tilted></feature> 7198 <threshold>3.1474709976464510e-003</threshold> 7199 <left_val>0.5425636768341065</left_val> 7200 <right_val>0.2543726861476898</right_val></_></_> 7201 <_> 7202 <!-- tree 16 --> 7203 <_> 7204 <!-- root node --> 7205 <feature> 7206 <rects> 7207 <_>8 4 3 4 -1.</_> 7208 <_>8 6 3 2 2.</_></rects> 7209 <tilted>0</tilted></feature> 7210 <threshold>-1.8026070029009134e-004</threshold> 7211 <left_val>0.5380191802978516</left_val> 7212 <right_val>0.3406304121017456</right_val></_></_> 7213 <_> 7214 <!-- tree 17 --> 7215 <_> 7216 <!-- root node --> 7217 <feature> 7218 <rects> 7219 <_>4 5 12 10 -1.</_> 7220 <_>4 10 12 5 2.</_></rects> 7221 <tilted>0</tilted></feature> 7222 <threshold>-6.0266260989010334e-003</threshold> 7223 <left_val>0.3035801947116852</left_val> 7224 <right_val>0.5420572161674500</right_val></_></_> 7225 <_> 7226 <!-- tree 18 --> 7227 <_> 7228 <!-- root node --> 7229 <feature> 7230 <rects> 7231 <_>5 18 4 2 -1.</_> 7232 <_>7 18 2 2 2.</_></rects> 7233 <tilted>0</tilted></feature> 7234 <threshold>4.4462960795499384e-004</threshold> 7235 <left_val>0.3990997076034546</left_val> 7236 <right_val>0.5660110116004944</right_val></_></_> 7237 <_> 7238 <!-- tree 19 --> 7239 <_> 7240 <!-- root node --> 7241 <feature> 7242 <rects> 7243 <_>17 2 3 6 -1.</_> 7244 <_>17 4 3 2 3.</_></rects> 7245 <tilted>0</tilted></feature> 7246 <threshold>2.2609760053455830e-003</threshold> 7247 <left_val>0.5562806725502014</left_val> 7248 <right_val>0.3940688073635101</right_val></_></_> 7249 <_> 7250 <!-- tree 20 --> 7251 <_> 7252 <!-- root node --> 7253 <feature> 7254 <rects> 7255 <_>7 7 6 6 -1.</_> 7256 <_>9 7 2 6 3.</_></rects> 7257 <tilted>0</tilted></feature> 7258 <threshold>0.0511330589652061</threshold> 7259 <left_val>0.4609653949737549</left_val> 7260 <right_val>0.7118561863899231</right_val></_></_> 7261 <_> 7262 <!-- tree 21 --> 7263 <_> 7264 <!-- root node --> 7265 <feature> 7266 <rects> 7267 <_>17 2 3 6 -1.</_> 7268 <_>17 4 3 2 3.</_></rects> 7269 <tilted>0</tilted></feature> 7270 <threshold>-0.0177863091230392</threshold> 7271 <left_val>0.2316166013479233</left_val> 7272 <right_val>0.5322144031524658</right_val></_></_> 7273 <_> 7274 <!-- tree 22 --> 7275 <_> 7276 <!-- root node --> 7277 <feature> 7278 <rects> 7279 <_>8 0 3 4 -1.</_> 7280 <_>9 0 1 4 3.</_></rects> 7281 <tilted>0</tilted></feature> 7282 <threshold>-4.9679628573358059e-003</threshold> 7283 <left_val>0.2330771982669830</left_val> 7284 <right_val>0.5122029185295105</right_val></_></_> 7285 <_> 7286 <!-- tree 23 --> 7287 <_> 7288 <!-- root node --> 7289 <feature> 7290 <rects> 7291 <_>9 14 2 3 -1.</_> 7292 <_>9 15 2 1 3.</_></rects> 7293 <tilted>0</tilted></feature> 7294 <threshold>2.0667689386755228e-003</threshold> 7295 <left_val>0.4657444059848785</left_val> 7296 <right_val>0.6455488204956055</right_val></_></_> 7297 <_> 7298 <!-- tree 24 --> 7299 <_> 7300 <!-- root node --> 7301 <feature> 7302 <rects> 7303 <_>0 12 6 3 -1.</_> 7304 <_>0 13 6 1 3.</_></rects> 7305 <tilted>0</tilted></feature> 7306 <threshold>7.4413768015801907e-003</threshold> 7307 <left_val>0.5154392123222351</left_val> 7308 <right_val>0.2361633926630020</right_val></_></_> 7309 <_> 7310 <!-- tree 25 --> 7311 <_> 7312 <!-- root node --> 7313 <feature> 7314 <rects> 7315 <_>8 14 4 3 -1.</_> 7316 <_>8 15 4 1 3.</_></rects> 7317 <tilted>0</tilted></feature> 7318 <threshold>-3.6277279723435640e-003</threshold> 7319 <left_val>0.6219773292541504</left_val> 7320 <right_val>0.4476661086082459</right_val></_></_> 7321 <_> 7322 <!-- tree 26 --> 7323 <_> 7324 <!-- root node --> 7325 <feature> 7326 <rects> 7327 <_>3 12 2 3 -1.</_> 7328 <_>3 13 2 1 3.</_></rects> 7329 <tilted>0</tilted></feature> 7330 <threshold>-5.3530759178102016e-003</threshold> 7331 <left_val>0.1837355047464371</left_val> 7332 <right_val>0.5102208256721497</right_val></_></_> 7333 <_> 7334 <!-- tree 27 --> 7335 <_> 7336 <!-- root node --> 7337 <feature> 7338 <rects> 7339 <_>5 6 12 7 -1.</_> 7340 <_>9 6 4 7 3.</_></rects> 7341 <tilted>0</tilted></feature> 7342 <threshold>0.1453091949224472</threshold> 7343 <left_val>0.5145987272262573</left_val> 7344 <right_val>0.1535930931568146</right_val></_></_> 7345 <_> 7346 <!-- tree 28 --> 7347 <_> 7348 <!-- root node --> 7349 <feature> 7350 <rects> 7351 <_>0 2 3 6 -1.</_> 7352 <_>0 4 3 2 3.</_></rects> 7353 <tilted>0</tilted></feature> 7354 <threshold>2.4394490756094456e-003</threshold> 7355 <left_val>0.5343660116195679</left_val> 7356 <right_val>0.3624661862850189</right_val></_></_> 7357 <_> 7358 <!-- tree 29 --> 7359 <_> 7360 <!-- root node --> 7361 <feature> 7362 <rects> 7363 <_>14 6 1 3 -1.</_> 7364 <_>14 7 1 1 3.</_></rects> 7365 <tilted>0</tilted></feature> 7366 <threshold>-3.1283390708267689e-003</threshold> 7367 <left_val>0.6215007901191711</left_val> 7368 <right_val>0.4845592081546783</right_val></_></_> 7369 <_> 7370 <!-- tree 30 --> 7371 <_> 7372 <!-- root node --> 7373 <feature> 7374 <rects> 7375 <_>2 0 3 14 -1.</_> 7376 <_>3 0 1 14 3.</_></rects> 7377 <tilted>0</tilted></feature> 7378 <threshold>1.7940260004252195e-003</threshold> 7379 <left_val>0.4299261868000031</left_val> 7380 <right_val>0.5824198126792908</right_val></_></_> 7381 <_> 7382 <!-- tree 31 --> 7383 <_> 7384 <!-- root node --> 7385 <feature> 7386 <rects> 7387 <_>12 14 5 6 -1.</_> 7388 <_>12 16 5 2 3.</_></rects> 7389 <tilted>0</tilted></feature> 7390 <threshold>0.0362538211047649</threshold> 7391 <left_val>0.5260334014892578</left_val> 7392 <right_val>0.1439467966556549</right_val></_></_> 7393 <_> 7394 <!-- tree 32 --> 7395 <_> 7396 <!-- root node --> 7397 <feature> 7398 <rects> 7399 <_>4 14 5 6 -1.</_> 7400 <_>4 16 5 2 3.</_></rects> 7401 <tilted>0</tilted></feature> 7402 <threshold>-5.1746722310781479e-003</threshold> 7403 <left_val>0.3506538867950440</left_val> 7404 <right_val>0.5287045240402222</right_val></_></_> 7405 <_> 7406 <!-- tree 33 --> 7407 <_> 7408 <!-- root node --> 7409 <feature> 7410 <rects> 7411 <_>11 10 2 2 -1.</_> 7412 <_>12 10 1 1 2.</_> 7413 <_>11 11 1 1 2.</_></rects> 7414 <tilted>0</tilted></feature> 7415 <threshold>6.5383297624066472e-004</threshold> 7416 <left_val>0.4809640944004059</left_val> 7417 <right_val>0.6122040152549744</right_val></_></_> 7418 <_> 7419 <!-- tree 34 --> 7420 <_> 7421 <!-- root node --> 7422 <feature> 7423 <rects> 7424 <_>5 0 3 14 -1.</_> 7425 <_>6 0 1 14 3.</_></rects> 7426 <tilted>0</tilted></feature> 7427 <threshold>-0.0264802295714617</threshold> 7428 <left_val>0.1139362007379532</left_val> 7429 <right_val>0.5045586228370667</right_val></_></_> 7430 <_> 7431 <!-- tree 35 --> 7432 <_> 7433 <!-- root node --> 7434 <feature> 7435 <rects> 7436 <_>10 15 2 3 -1.</_> 7437 <_>10 16 2 1 3.</_></rects> 7438 <tilted>0</tilted></feature> 7439 <threshold>-3.0440660193562508e-003</threshold> 7440 <left_val>0.6352095007896423</left_val> 7441 <right_val>0.4794734120368958</right_val></_></_> 7442 <_> 7443 <!-- tree 36 --> 7444 <_> 7445 <!-- root node --> 7446 <feature> 7447 <rects> 7448 <_>0 2 2 3 -1.</_> 7449 <_>0 3 2 1 3.</_></rects> 7450 <tilted>0</tilted></feature> 7451 <threshold>3.6993520334362984e-003</threshold> 7452 <left_val>0.5131118297576904</left_val> 7453 <right_val>0.2498510926961899</right_val></_></_> 7454 <_> 7455 <!-- tree 37 --> 7456 <_> 7457 <!-- root node --> 7458 <feature> 7459 <rects> 7460 <_>5 11 12 6 -1.</_> 7461 <_>5 14 12 3 2.</_></rects> 7462 <tilted>0</tilted></feature> 7463 <threshold>-3.6762931267730892e-004</threshold> 7464 <left_val>0.5421394705772400</left_val> 7465 <right_val>0.3709532022476196</right_val></_></_> 7466 <_> 7467 <!-- tree 38 --> 7468 <_> 7469 <!-- root node --> 7470 <feature> 7471 <rects> 7472 <_>6 11 3 9 -1.</_> 7473 <_>6 14 3 3 3.</_></rects> 7474 <tilted>0</tilted></feature> 7475 <threshold>-0.0413822606205940</threshold> 7476 <left_val>0.1894959956407547</left_val> 7477 <right_val>0.5081691741943359</right_val></_></_> 7478 <_> 7479 <!-- tree 39 --> 7480 <_> 7481 <!-- root node --> 7482 <feature> 7483 <rects> 7484 <_>11 10 2 2 -1.</_> 7485 <_>12 10 1 1 2.</_> 7486 <_>11 11 1 1 2.</_></rects> 7487 <tilted>0</tilted></feature> 7488 <threshold>-1.0532729793339968e-003</threshold> 7489 <left_val>0.6454367041587830</left_val> 7490 <right_val>0.4783608913421631</right_val></_></_> 7491 <_> 7492 <!-- tree 40 --> 7493 <_> 7494 <!-- root node --> 7495 <feature> 7496 <rects> 7497 <_>5 6 1 3 -1.</_> 7498 <_>5 7 1 1 3.</_></rects> 7499 <tilted>0</tilted></feature> 7500 <threshold>-2.1648600231856108e-003</threshold> 7501 <left_val>0.6215031147003174</left_val> 7502 <right_val>0.4499826133251190</right_val></_></_> 7503 <_> 7504 <!-- tree 41 --> 7505 <_> 7506 <!-- root node --> 7507 <feature> 7508 <rects> 7509 <_>4 9 13 3 -1.</_> 7510 <_>4 10 13 1 3.</_></rects> 7511 <tilted>0</tilted></feature> 7512 <threshold>-5.6747748749330640e-004</threshold> 7513 <left_val>0.3712610900402069</left_val> 7514 <right_val>0.5419334769248962</right_val></_></_> 7515 <_> 7516 <!-- tree 42 --> 7517 <_> 7518 <!-- root node --> 7519 <feature> 7520 <rects> 7521 <_>1 7 15 6 -1.</_> 7522 <_>6 7 5 6 3.</_></rects> 7523 <tilted>0</tilted></feature> 7524 <threshold>0.1737584024667740</threshold> 7525 <left_val>0.5023643970489502</left_val> 7526 <right_val>0.1215742006897926</right_val></_></_> 7527 <_> 7528 <!-- tree 43 --> 7529 <_> 7530 <!-- root node --> 7531 <feature> 7532 <rects> 7533 <_>4 5 12 6 -1.</_> 7534 <_>8 5 4 6 3.</_></rects> 7535 <tilted>0</tilted></feature> 7536 <threshold>-2.9049699660390615e-003</threshold> 7537 <left_val>0.3240267932415009</left_val> 7538 <right_val>0.5381883978843689</right_val></_></_> 7539 <_> 7540 <!-- tree 44 --> 7541 <_> 7542 <!-- root node --> 7543 <feature> 7544 <rects> 7545 <_>8 10 4 3 -1.</_> 7546 <_>8 11 4 1 3.</_></rects> 7547 <tilted>0</tilted></feature> 7548 <threshold>1.2299539521336555e-003</threshold> 7549 <left_val>0.4165507853031158</left_val> 7550 <right_val>0.5703486204147339</right_val></_></_> 7551 <_> 7552 <!-- tree 45 --> 7553 <_> 7554 <!-- root node --> 7555 <feature> 7556 <rects> 7557 <_>15 14 1 3 -1.</_> 7558 <_>15 15 1 1 3.</_></rects> 7559 <tilted>0</tilted></feature> 7560 <threshold>-5.4329237900674343e-004</threshold> 7561 <left_val>0.3854042887687683</left_val> 7562 <right_val>0.5547549128532410</right_val></_></_> 7563 <_> 7564 <!-- tree 46 --> 7565 <_> 7566 <!-- root node --> 7567 <feature> 7568 <rects> 7569 <_>1 11 5 3 -1.</_> 7570 <_>1 12 5 1 3.</_></rects> 7571 <tilted>0</tilted></feature> 7572 <threshold>-8.3297258242964745e-003</threshold> 7573 <left_val>0.2204494029283524</left_val> 7574 <right_val>0.5097082853317261</right_val></_></_> 7575 <_> 7576 <!-- tree 47 --> 7577 <_> 7578 <!-- root node --> 7579 <feature> 7580 <rects> 7581 <_>7 1 7 12 -1.</_> 7582 <_>7 7 7 6 2.</_></rects> 7583 <tilted>0</tilted></feature> 7584 <threshold>-1.0417630255687982e-004</threshold> 7585 <left_val>0.5607066154479981</left_val> 7586 <right_val>0.4303036034107208</right_val></_></_> 7587 <_> 7588 <!-- tree 48 --> 7589 <_> 7590 <!-- root node --> 7591 <feature> 7592 <rects> 7593 <_>0 1 6 10 -1.</_> 7594 <_>0 1 3 5 2.</_> 7595 <_>3 6 3 5 2.</_></rects> 7596 <tilted>0</tilted></feature> 7597 <threshold>0.0312047004699707</threshold> 7598 <left_val>0.4621657133102417</left_val> 7599 <right_val>0.6982004046440125</right_val></_></_> 7600 <_> 7601 <!-- tree 49 --> 7602 <_> 7603 <!-- root node --> 7604 <feature> 7605 <rects> 7606 <_>16 1 4 3 -1.</_> 7607 <_>16 2 4 1 3.</_></rects> 7608 <tilted>0</tilted></feature> 7609 <threshold>7.8943502157926559e-003</threshold> 7610 <left_val>0.5269594192504883</left_val> 7611 <right_val>0.2269068062305450</right_val></_></_> 7612 <_> 7613 <!-- tree 50 --> 7614 <_> 7615 <!-- root node --> 7616 <feature> 7617 <rects> 7618 <_>5 5 2 3 -1.</_> 7619 <_>5 6 2 1 3.</_></rects> 7620 <tilted>0</tilted></feature> 7621 <threshold>-4.3645310215651989e-003</threshold> 7622 <left_val>0.6359223127365112</left_val> 7623 <right_val>0.4537956118583679</right_val></_></_> 7624 <_> 7625 <!-- tree 51 --> 7626 <_> 7627 <!-- root node --> 7628 <feature> 7629 <rects> 7630 <_>12 2 3 5 -1.</_> 7631 <_>13 2 1 5 3.</_></rects> 7632 <tilted>0</tilted></feature> 7633 <threshold>7.6793059706687927e-003</threshold> 7634 <left_val>0.5274767875671387</left_val> 7635 <right_val>0.2740483880043030</right_val></_></_> 7636 <_> 7637 <!-- tree 52 --> 7638 <_> 7639 <!-- root node --> 7640 <feature> 7641 <rects> 7642 <_>0 3 4 6 -1.</_> 7643 <_>0 5 4 2 3.</_></rects> 7644 <tilted>0</tilted></feature> 7645 <threshold>-0.0254311393946409</threshold> 7646 <left_val>0.2038519978523254</left_val> 7647 <right_val>0.5071732997894287</right_val></_></_> 7648 <_> 7649 <!-- tree 53 --> 7650 <_> 7651 <!-- root node --> 7652 <feature> 7653 <rects> 7654 <_>8 12 4 2 -1.</_> 7655 <_>8 13 4 1 2.</_></rects> 7656 <tilted>0</tilted></feature> 7657 <threshold>8.2000601105391979e-004</threshold> 7658 <left_val>0.4587455093860626</left_val> 7659 <right_val>0.6119868159294128</right_val></_></_> 7660 <_> 7661 <!-- tree 54 --> 7662 <_> 7663 <!-- root node --> 7664 <feature> 7665 <rects> 7666 <_>8 18 3 1 -1.</_> 7667 <_>9 18 1 1 3.</_></rects> 7668 <tilted>0</tilted></feature> 7669 <threshold>2.9284600168466568e-003</threshold> 7670 <left_val>0.5071274042129517</left_val> 7671 <right_val>0.2028204947710037</right_val></_></_> 7672 <_> 7673 <!-- tree 55 --> 7674 <_> 7675 <!-- root node --> 7676 <feature> 7677 <rects> 7678 <_>11 10 2 2 -1.</_> 7679 <_>12 10 1 1 2.</_> 7680 <_>11 11 1 1 2.</_></rects> 7681 <tilted>0</tilted></feature> 7682 <threshold>4.5256470912136137e-005</threshold> 7683 <left_val>0.4812104105949402</left_val> 7684 <right_val>0.5430821776390076</right_val></_></_> 7685 <_> 7686 <!-- tree 56 --> 7687 <_> 7688 <!-- root node --> 7689 <feature> 7690 <rects> 7691 <_>7 10 2 2 -1.</_> 7692 <_>7 10 1 1 2.</_> 7693 <_>8 11 1 1 2.</_></rects> 7694 <tilted>0</tilted></feature> 7695 <threshold>1.3158309739083052e-003</threshold> 7696 <left_val>0.4625813961029053</left_val> 7697 <right_val>0.6779323220252991</right_val></_></_> 7698 <_> 7699 <!-- tree 57 --> 7700 <_> 7701 <!-- root node --> 7702 <feature> 7703 <rects> 7704 <_>11 11 4 4 -1.</_> 7705 <_>11 13 4 2 2.</_></rects> 7706 <tilted>0</tilted></feature> 7707 <threshold>1.5870389761403203e-003</threshold> 7708 <left_val>0.5386291742324829</left_val> 7709 <right_val>0.3431465029716492</right_val></_></_> 7710 <_> 7711 <!-- tree 58 --> 7712 <_> 7713 <!-- root node --> 7714 <feature> 7715 <rects> 7716 <_>8 12 3 8 -1.</_> 7717 <_>9 12 1 8 3.</_></rects> 7718 <tilted>0</tilted></feature> 7719 <threshold>-0.0215396601706743</threshold> 7720 <left_val>0.0259425006806850</left_val> 7721 <right_val>0.5003222823143005</right_val></_></_> 7722 <_> 7723 <!-- tree 59 --> 7724 <_> 7725 <!-- root node --> 7726 <feature> 7727 <rects> 7728 <_>13 0 6 3 -1.</_> 7729 <_>13 1 6 1 3.</_></rects> 7730 <tilted>0</tilted></feature> 7731 <threshold>0.0143344802781940</threshold> 7732 <left_val>0.5202844738960266</left_val> 7733 <right_val>0.1590632945299149</right_val></_></_> 7734 <_> 7735 <!-- tree 60 --> 7736 <_> 7737 <!-- root node --> 7738 <feature> 7739 <rects> 7740 <_>8 8 3 4 -1.</_> 7741 <_>9 8 1 4 3.</_></rects> 7742 <tilted>0</tilted></feature> 7743 <threshold>-8.3881383761763573e-003</threshold> 7744 <left_val>0.7282481193542481</left_val> 7745 <right_val>0.4648044109344482</right_val></_></_> 7746 <_> 7747 <!-- tree 61 --> 7748 <_> 7749 <!-- root node --> 7750 <feature> 7751 <rects> 7752 <_>5 7 10 10 -1.</_> 7753 <_>10 7 5 5 2.</_> 7754 <_>5 12 5 5 2.</_></rects> 7755 <tilted>0</tilted></feature> 7756 <threshold>9.1906841844320297e-003</threshold> 7757 <left_val>0.5562356710433960</left_val> 7758 <right_val>0.3923191130161285</right_val></_></_> 7759 <_> 7760 <!-- tree 62 --> 7761 <_> 7762 <!-- root node --> 7763 <feature> 7764 <rects> 7765 <_>3 18 8 2 -1.</_> 7766 <_>3 18 4 1 2.</_> 7767 <_>7 19 4 1 2.</_></rects> 7768 <tilted>0</tilted></feature> 7769 <threshold>-5.8453059755265713e-003</threshold> 7770 <left_val>0.6803392767906189</left_val> 7771 <right_val>0.4629127979278565</right_val></_></_> 7772 <_> 7773 <!-- tree 63 --> 7774 <_> 7775 <!-- root node --> 7776 <feature> 7777 <rects> 7778 <_>10 2 6 8 -1.</_> 7779 <_>12 2 2 8 3.</_></rects> 7780 <tilted>0</tilted></feature> 7781 <threshold>-0.0547077991068363</threshold> 7782 <left_val>0.2561671137809753</left_val> 7783 <right_val>0.5206125974655151</right_val></_></_> 7784 <_> 7785 <!-- tree 64 --> 7786 <_> 7787 <!-- root node --> 7788 <feature> 7789 <rects> 7790 <_>4 2 6 8 -1.</_> 7791 <_>6 2 2 8 3.</_></rects> 7792 <tilted>0</tilted></feature> 7793 <threshold>9.1142775490880013e-003</threshold> 7794 <left_val>0.5189620256423950</left_val> 7795 <right_val>0.3053877055644989</right_val></_></_> 7796 <_> 7797 <!-- tree 65 --> 7798 <_> 7799 <!-- root node --> 7800 <feature> 7801 <rects> 7802 <_>11 0 3 7 -1.</_> 7803 <_>12 0 1 7 3.</_></rects> 7804 <tilted>0</tilted></feature> 7805 <threshold>-0.0155750000849366</threshold> 7806 <left_val>0.1295074969530106</left_val> 7807 <right_val>0.5169094800949097</right_val></_></_> 7808 <_> 7809 <!-- tree 66 --> 7810 <_> 7811 <!-- root node --> 7812 <feature> 7813 <rects> 7814 <_>7 11 2 1 -1.</_> 7815 <_>8 11 1 1 2.</_></rects> 7816 <tilted>0</tilted></feature> 7817 <threshold>-1.2050600344082341e-004</threshold> 7818 <left_val>0.5735098123550415</left_val> 7819 <right_val>0.4230825006961823</right_val></_></_> 7820 <_> 7821 <!-- tree 67 --> 7822 <_> 7823 <!-- root node --> 7824 <feature> 7825 <rects> 7826 <_>15 14 1 3 -1.</_> 7827 <_>15 15 1 1 3.</_></rects> 7828 <tilted>0</tilted></feature> 7829 <threshold>1.2273970060050488e-003</threshold> 7830 <left_val>0.5289878249168396</left_val> 7831 <right_val>0.4079791903495789</right_val></_></_> 7832 <_> 7833 <!-- tree 68 --> 7834 <_> 7835 <!-- root node --> 7836 <feature> 7837 <rects> 7838 <_>7 15 2 2 -1.</_> 7839 <_>7 15 1 1 2.</_> 7840 <_>8 16 1 1 2.</_></rects> 7841 <tilted>0</tilted></feature> 7842 <threshold>-1.2186600361019373e-003</threshold> 7843 <left_val>0.6575639843940735</left_val> 7844 <right_val>0.4574409127235413</right_val></_></_> 7845 <_> 7846 <!-- tree 69 --> 7847 <_> 7848 <!-- root node --> 7849 <feature> 7850 <rects> 7851 <_>15 14 1 3 -1.</_> 7852 <_>15 15 1 1 3.</_></rects> 7853 <tilted>0</tilted></feature> 7854 <threshold>-3.3256649039685726e-003</threshold> 7855 <left_val>0.3628047108650208</left_val> 7856 <right_val>0.5195019841194153</right_val></_></_> 7857 <_> 7858 <!-- tree 70 --> 7859 <_> 7860 <!-- root node --> 7861 <feature> 7862 <rects> 7863 <_>6 0 3 7 -1.</_> 7864 <_>7 0 1 7 3.</_></rects> 7865 <tilted>0</tilted></feature> 7866 <threshold>-0.0132883097976446</threshold> 7867 <left_val>0.1284265965223312</left_val> 7868 <right_val>0.5043488740921021</right_val></_></_> 7869 <_> 7870 <!-- tree 71 --> 7871 <_> 7872 <!-- root node --> 7873 <feature> 7874 <rects> 7875 <_>18 1 2 7 -1.</_> 7876 <_>18 1 1 7 2.</_></rects> 7877 <tilted>0</tilted></feature> 7878 <threshold>-3.3839771058410406e-003</threshold> 7879 <left_val>0.6292240023612976</left_val> 7880 <right_val>0.4757505953311920</right_val></_></_> 7881 <_> 7882 <!-- tree 72 --> 7883 <_> 7884 <!-- root node --> 7885 <feature> 7886 <rects> 7887 <_>2 0 8 20 -1.</_> 7888 <_>2 10 8 10 2.</_></rects> 7889 <tilted>0</tilted></feature> 7890 <threshold>-0.2195422053337097</threshold> 7891 <left_val>0.1487731933593750</left_val> 7892 <right_val>0.5065013766288757</right_val></_></_> 7893 <_> 7894 <!-- tree 73 --> 7895 <_> 7896 <!-- root node --> 7897 <feature> 7898 <rects> 7899 <_>3 0 15 6 -1.</_> 7900 <_>3 2 15 2 3.</_></rects> 7901 <tilted>0</tilted></feature> 7902 <threshold>4.9111708067357540e-003</threshold> 7903 <left_val>0.4256102144718170</left_val> 7904 <right_val>0.5665838718414307</right_val></_></_> 7905 <_> 7906 <!-- tree 74 --> 7907 <_> 7908 <!-- root node --> 7909 <feature> 7910 <rects> 7911 <_>4 3 12 2 -1.</_> 7912 <_>4 4 12 1 2.</_></rects> 7913 <tilted>0</tilted></feature> 7914 <threshold>-1.8744950648397207e-004</threshold> 7915 <left_val>0.4004144072532654</left_val> 7916 <right_val>0.5586857199668884</right_val></_></_> 7917 <_> 7918 <!-- tree 75 --> 7919 <_> 7920 <!-- root node --> 7921 <feature> 7922 <rects> 7923 <_>16 0 4 5 -1.</_> 7924 <_>16 0 2 5 2.</_></rects> 7925 <tilted>0</tilted></feature> 7926 <threshold>-5.2178641781210899e-003</threshold> 7927 <left_val>0.6009116172790527</left_val> 7928 <right_val>0.4812706112861633</right_val></_></_> 7929 <_> 7930 <!-- tree 76 --> 7931 <_> 7932 <!-- root node --> 7933 <feature> 7934 <rects> 7935 <_>7 0 3 4 -1.</_> 7936 <_>8 0 1 4 3.</_></rects> 7937 <tilted>0</tilted></feature> 7938 <threshold>-1.1111519997939467e-003</threshold> 7939 <left_val>0.3514933884143829</left_val> 7940 <right_val>0.5287089943885803</right_val></_></_> 7941 <_> 7942 <!-- tree 77 --> 7943 <_> 7944 <!-- root node --> 7945 <feature> 7946 <rects> 7947 <_>16 0 4 5 -1.</_> 7948 <_>16 0 2 5 2.</_></rects> 7949 <tilted>0</tilted></feature> 7950 <threshold>4.4036400504410267e-003</threshold> 7951 <left_val>0.4642275869846344</left_val> 7952 <right_val>0.5924085974693298</right_val></_></_> 7953 <_> 7954 <!-- tree 78 --> 7955 <_> 7956 <!-- root node --> 7957 <feature> 7958 <rects> 7959 <_>1 7 6 13 -1.</_> 7960 <_>3 7 2 13 3.</_></rects> 7961 <tilted>0</tilted></feature> 7962 <threshold>0.1229949966073036</threshold> 7963 <left_val>0.5025529265403748</left_val> 7964 <right_val>0.0691524818539619</right_val></_></_> 7965 <_> 7966 <!-- tree 79 --> 7967 <_> 7968 <!-- root node --> 7969 <feature> 7970 <rects> 7971 <_>16 0 4 5 -1.</_> 7972 <_>16 0 2 5 2.</_></rects> 7973 <tilted>0</tilted></feature> 7974 <threshold>-0.0123135102912784</threshold> 7975 <left_val>0.5884591937065125</left_val> 7976 <right_val>0.4934012889862061</right_val></_></_> 7977 <_> 7978 <!-- tree 80 --> 7979 <_> 7980 <!-- root node --> 7981 <feature> 7982 <rects> 7983 <_>0 0 4 5 -1.</_> 7984 <_>2 0 2 5 2.</_></rects> 7985 <tilted>0</tilted></feature> 7986 <threshold>4.1471039876341820e-003</threshold> 7987 <left_val>0.4372239112854004</left_val> 7988 <right_val>0.5893477797508240</right_val></_></_> 7989 <_> 7990 <!-- tree 81 --> 7991 <_> 7992 <!-- root node --> 7993 <feature> 7994 <rects> 7995 <_>14 12 3 6 -1.</_> 7996 <_>14 14 3 2 3.</_></rects> 7997 <tilted>0</tilted></feature> 7998 <threshold>-3.5502649843692780e-003</threshold> 7999 <left_val>0.4327551126480103</left_val> 8000 <right_val>0.5396270155906677</right_val></_></_> 8001 <_> 8002 <!-- tree 82 --> 8003 <_> 8004 <!-- root node --> 8005 <feature> 8006 <rects> 8007 <_>3 12 3 6 -1.</_> 8008 <_>3 14 3 2 3.</_></rects> 8009 <tilted>0</tilted></feature> 8010 <threshold>-0.0192242693156004</threshold> 8011 <left_val>0.1913134008646011</left_val> 8012 <right_val>0.5068330764770508</right_val></_></_> 8013 <_> 8014 <!-- tree 83 --> 8015 <_> 8016 <!-- root node --> 8017 <feature> 8018 <rects> 8019 <_>16 1 4 3 -1.</_> 8020 <_>16 2 4 1 3.</_></rects> 8021 <tilted>0</tilted></feature> 8022 <threshold>1.4395059552043676e-003</threshold> 8023 <left_val>0.5308178067207336</left_val> 8024 <right_val>0.4243533015251160</right_val></_></_> 8025 <_> 8026 <!-- tree 84 --> 8027 <_> 8028 <!-- root node --> 8029 <feature> 8030 <rects> 8031 <_>8 7 2 10 -1.</_> 8032 <_>8 7 1 5 2.</_> 8033 <_>9 12 1 5 2.</_></rects> 8034 <tilted>0</tilted></feature> 8035 <threshold>-6.7751999013125896e-003</threshold> 8036 <left_val>0.6365395784378052</left_val> 8037 <right_val>0.4540086090564728</right_val></_></_> 8038 <_> 8039 <!-- tree 85 --> 8040 <_> 8041 <!-- root node --> 8042 <feature> 8043 <rects> 8044 <_>11 11 4 4 -1.</_> 8045 <_>11 13 4 2 2.</_></rects> 8046 <tilted>0</tilted></feature> 8047 <threshold>7.0119630545377731e-003</threshold> 8048 <left_val>0.5189834237098694</left_val> 8049 <right_val>0.3026199936866760</right_val></_></_> 8050 <_> 8051 <!-- tree 86 --> 8052 <_> 8053 <!-- root node --> 8054 <feature> 8055 <rects> 8056 <_>0 1 4 3 -1.</_> 8057 <_>0 2 4 1 3.</_></rects> 8058 <tilted>0</tilted></feature> 8059 <threshold>5.4014651104807854e-003</threshold> 8060 <left_val>0.5105062127113342</left_val> 8061 <right_val>0.2557682991027832</right_val></_></_> 8062 <_> 8063 <!-- tree 87 --> 8064 <_> 8065 <!-- root node --> 8066 <feature> 8067 <rects> 8068 <_>13 4 1 3 -1.</_> 8069 <_>13 5 1 1 3.</_></rects> 8070 <tilted>0</tilted></feature> 8071 <threshold>9.0274988906458020e-004</threshold> 8072 <left_val>0.4696914851665497</left_val> 8073 <right_val>0.5861827731132507</right_val></_></_> 8074 <_> 8075 <!-- tree 88 --> 8076 <_> 8077 <!-- root node --> 8078 <feature> 8079 <rects> 8080 <_>7 15 3 5 -1.</_> 8081 <_>8 15 1 5 3.</_></rects> 8082 <tilted>0</tilted></feature> 8083 <threshold>0.0114744501188397</threshold> 8084 <left_val>0.5053645968437195</left_val> 8085 <right_val>0.1527177989482880</right_val></_></_> 8086 <_> 8087 <!-- tree 89 --> 8088 <_> 8089 <!-- root node --> 8090 <feature> 8091 <rects> 8092 <_>9 7 3 5 -1.</_> 8093 <_>10 7 1 5 3.</_></rects> 8094 <tilted>0</tilted></feature> 8095 <threshold>-6.7023430019617081e-003</threshold> 8096 <left_val>0.6508980989456177</left_val> 8097 <right_val>0.4890604019165039</right_val></_></_> 8098 <_> 8099 <!-- tree 90 --> 8100 <_> 8101 <!-- root node --> 8102 <feature> 8103 <rects> 8104 <_>8 7 3 5 -1.</_> 8105 <_>9 7 1 5 3.</_></rects> 8106 <tilted>0</tilted></feature> 8107 <threshold>-2.0462959073483944e-003</threshold> 8108 <left_val>0.6241816878318787</left_val> 8109 <right_val>0.4514600038528442</right_val></_></_> 8110 <_> 8111 <!-- tree 91 --> 8112 <_> 8113 <!-- root node --> 8114 <feature> 8115 <rects> 8116 <_>10 6 4 14 -1.</_> 8117 <_>10 6 2 14 2.</_></rects> 8118 <tilted>0</tilted></feature> 8119 <threshold>-9.9951568990945816e-003</threshold> 8120 <left_val>0.3432781100273132</left_val> 8121 <right_val>0.5400953888893127</right_val></_></_> 8122 <_> 8123 <!-- tree 92 --> 8124 <_> 8125 <!-- root node --> 8126 <feature> 8127 <rects> 8128 <_>0 5 5 6 -1.</_> 8129 <_>0 7 5 2 3.</_></rects> 8130 <tilted>0</tilted></feature> 8131 <threshold>-0.0357007086277008</threshold> 8132 <left_val>0.1878059059381485</left_val> 8133 <right_val>0.5074077844619751</right_val></_></_> 8134 <_> 8135 <!-- tree 93 --> 8136 <_> 8137 <!-- root node --> 8138 <feature> 8139 <rects> 8140 <_>9 5 6 4 -1.</_> 8141 <_>9 5 3 4 2.</_></rects> 8142 <tilted>0</tilted></feature> 8143 <threshold>4.5584561303257942e-004</threshold> 8144 <left_val>0.3805277049541473</left_val> 8145 <right_val>0.5402569770812988</right_val></_></_> 8146 <_> 8147 <!-- tree 94 --> 8148 <_> 8149 <!-- root node --> 8150 <feature> 8151 <rects> 8152 <_>0 0 18 10 -1.</_> 8153 <_>6 0 6 10 3.</_></rects> 8154 <tilted>0</tilted></feature> 8155 <threshold>-0.0542606003582478</threshold> 8156 <left_val>0.6843714714050293</left_val> 8157 <right_val>0.4595097005367279</right_val></_></_> 8158 <_> 8159 <!-- tree 95 --> 8160 <_> 8161 <!-- root node --> 8162 <feature> 8163 <rects> 8164 <_>10 6 4 14 -1.</_> 8165 <_>10 6 2 14 2.</_></rects> 8166 <tilted>0</tilted></feature> 8167 <threshold>6.0600461438298225e-003</threshold> 8168 <left_val>0.5502905249595642</left_val> 8169 <right_val>0.4500527977943420</right_val></_></_> 8170 <_> 8171 <!-- tree 96 --> 8172 <_> 8173 <!-- root node --> 8174 <feature> 8175 <rects> 8176 <_>6 6 4 14 -1.</_> 8177 <_>8 6 2 14 2.</_></rects> 8178 <tilted>0</tilted></feature> 8179 <threshold>-6.4791832119226456e-003</threshold> 8180 <left_val>0.3368858098983765</left_val> 8181 <right_val>0.5310757160186768</right_val></_></_> 8182 <_> 8183 <!-- tree 97 --> 8184 <_> 8185 <!-- root node --> 8186 <feature> 8187 <rects> 8188 <_>13 4 1 3 -1.</_> 8189 <_>13 5 1 1 3.</_></rects> 8190 <tilted>0</tilted></feature> 8191 <threshold>-1.4939469983801246e-003</threshold> 8192 <left_val>0.6487640142440796</left_val> 8193 <right_val>0.4756175875663757</right_val></_></_> 8194 <_> 8195 <!-- tree 98 --> 8196 <_> 8197 <!-- root node --> 8198 <feature> 8199 <rects> 8200 <_>5 1 2 3 -1.</_> 8201 <_>6 1 1 3 2.</_></rects> 8202 <tilted>0</tilted></feature> 8203 <threshold>1.4610530342906713e-005</threshold> 8204 <left_val>0.4034579098224640</left_val> 8205 <right_val>0.5451064109802246</right_val></_></_> 8206 <_> 8207 <!-- tree 99 --> 8208 <_> 8209 <!-- root node --> 8210 <feature> 8211 <rects> 8212 <_>18 1 2 18 -1.</_> 8213 <_>19 1 1 9 2.</_> 8214 <_>18 10 1 9 2.</_></rects> 8215 <tilted>0</tilted></feature> 8216 <threshold>-7.2321938350796700e-003</threshold> 8217 <left_val>0.6386873722076416</left_val> 8218 <right_val>0.4824739992618561</right_val></_></_> 8219 <_> 8220 <!-- tree 100 --> 8221 <_> 8222 <!-- root node --> 8223 <feature> 8224 <rects> 8225 <_>2 1 4 3 -1.</_> 8226 <_>2 2 4 1 3.</_></rects> 8227 <tilted>0</tilted></feature> 8228 <threshold>-4.0645818226039410e-003</threshold> 8229 <left_val>0.2986421883106232</left_val> 8230 <right_val>0.5157335996627808</right_val></_></_> 8231 <_> 8232 <!-- tree 101 --> 8233 <_> 8234 <!-- root node --> 8235 <feature> 8236 <rects> 8237 <_>18 1 2 18 -1.</_> 8238 <_>19 1 1 9 2.</_> 8239 <_>18 10 1 9 2.</_></rects> 8240 <tilted>0</tilted></feature> 8241 <threshold>0.0304630808532238</threshold> 8242 <left_val>0.5022199749946594</left_val> 8243 <right_val>0.7159956097602844</right_val></_></_> 8244 <_> 8245 <!-- tree 102 --> 8246 <_> 8247 <!-- root node --> 8248 <feature> 8249 <rects> 8250 <_>1 14 4 6 -1.</_> 8251 <_>1 14 2 3 2.</_> 8252 <_>3 17 2 3 2.</_></rects> 8253 <tilted>0</tilted></feature> 8254 <threshold>-8.0544911324977875e-003</threshold> 8255 <left_val>0.6492452025413513</left_val> 8256 <right_val>0.4619275033473969</right_val></_></_> 8257 <_> 8258 <!-- tree 103 --> 8259 <_> 8260 <!-- root node --> 8261 <feature> 8262 <rects> 8263 <_>10 11 7 6 -1.</_> 8264 <_>10 13 7 2 3.</_></rects> 8265 <tilted>0</tilted></feature> 8266 <threshold>0.0395051389932632</threshold> 8267 <left_val>0.5150570869445801</left_val> 8268 <right_val>0.2450613975524902</right_val></_></_> 8269 <_> 8270 <!-- tree 104 --> 8271 <_> 8272 <!-- root node --> 8273 <feature> 8274 <rects> 8275 <_>0 10 6 10 -1.</_> 8276 <_>0 10 3 5 2.</_> 8277 <_>3 15 3 5 2.</_></rects> 8278 <tilted>0</tilted></feature> 8279 <threshold>8.4530208259820938e-003</threshold> 8280 <left_val>0.4573669135570526</left_val> 8281 <right_val>0.6394037008285523</right_val></_></_> 8282 <_> 8283 <!-- tree 105 --> 8284 <_> 8285 <!-- root node --> 8286 <feature> 8287 <rects> 8288 <_>11 0 3 4 -1.</_> 8289 <_>12 0 1 4 3.</_></rects> 8290 <tilted>0</tilted></feature> 8291 <threshold>-1.1688120430335402e-003</threshold> 8292 <left_val>0.3865512013435364</left_val> 8293 <right_val>0.5483661293983460</right_val></_></_> 8294 <_> 8295 <!-- tree 106 --> 8296 <_> 8297 <!-- root node --> 8298 <feature> 8299 <rects> 8300 <_>5 10 5 6 -1.</_> 8301 <_>5 13 5 3 2.</_></rects> 8302 <tilted>0</tilted></feature> 8303 <threshold>2.8070670086890459e-003</threshold> 8304 <left_val>0.5128579139709473</left_val> 8305 <right_val>0.2701480090618134</right_val></_></_> 8306 <_> 8307 <!-- tree 107 --> 8308 <_> 8309 <!-- root node --> 8310 <feature> 8311 <rects> 8312 <_>14 6 1 8 -1.</_> 8313 <_>14 10 1 4 2.</_></rects> 8314 <tilted>0</tilted></feature> 8315 <threshold>4.7365209320560098e-004</threshold> 8316 <left_val>0.4051581919193268</left_val> 8317 <right_val>0.5387461185455322</right_val></_></_> 8318 <_> 8319 <!-- tree 108 --> 8320 <_> 8321 <!-- root node --> 8322 <feature> 8323 <rects> 8324 <_>1 7 18 6 -1.</_> 8325 <_>1 7 9 3 2.</_> 8326 <_>10 10 9 3 2.</_></rects> 8327 <tilted>0</tilted></feature> 8328 <threshold>0.0117410803213716</threshold> 8329 <left_val>0.5295950174331665</left_val> 8330 <right_val>0.3719413876533508</right_val></_></_> 8331 <_> 8332 <!-- tree 109 --> 8333 <_> 8334 <!-- root node --> 8335 <feature> 8336 <rects> 8337 <_>9 7 2 2 -1.</_> 8338 <_>9 7 1 2 2.</_></rects> 8339 <tilted>0</tilted></feature> 8340 <threshold>3.1833238899707794e-003</threshold> 8341 <left_val>0.4789406955242157</left_val> 8342 <right_val>0.6895126104354858</right_val></_></_> 8343 <_> 8344 <!-- tree 110 --> 8345 <_> 8346 <!-- root node --> 8347 <feature> 8348 <rects> 8349 <_>5 9 4 5 -1.</_> 8350 <_>7 9 2 5 2.</_></rects> 8351 <tilted>0</tilted></feature> 8352 <threshold>7.0241501089185476e-004</threshold> 8353 <left_val>0.5384489297866821</left_val> 8354 <right_val>0.3918080925941467</right_val></_></_></trees> 8355 <stage_threshold>54.6200714111328130</stage_threshold> 8356 <parent>11</parent> 8357 <next>-1</next></_> 8358 <_> 8359 <!-- stage 13 --> 8360 <trees> 8361 <_> 8362 <!-- tree 0 --> 8363 <_> 8364 <!-- root node --> 8365 <feature> 8366 <rects> 8367 <_>7 6 6 3 -1.</_> 8368 <_>9 6 2 3 3.</_></rects> 8369 <tilted>0</tilted></feature> 8370 <threshold>0.0170599296689034</threshold> 8371 <left_val>0.3948527872562408</left_val> 8372 <right_val>0.7142534852027893</right_val></_></_> 8373 <_> 8374 <!-- tree 1 --> 8375 <_> 8376 <!-- root node --> 8377 <feature> 8378 <rects> 8379 <_>1 0 18 4 -1.</_> 8380 <_>7 0 6 4 3.</_></rects> 8381 <tilted>0</tilted></feature> 8382 <threshold>0.0218408405780792</threshold> 8383 <left_val>0.3370316028594971</left_val> 8384 <right_val>0.6090016961097717</right_val></_></_> 8385 <_> 8386 <!-- tree 2 --> 8387 <_> 8388 <!-- root node --> 8389 <feature> 8390 <rects> 8391 <_>7 15 2 4 -1.</_> 8392 <_>7 17 2 2 2.</_></rects> 8393 <tilted>0</tilted></feature> 8394 <threshold>2.4520049919374287e-004</threshold> 8395 <left_val>0.3500576019287109</left_val> 8396 <right_val>0.5987902283668518</right_val></_></_> 8397 <_> 8398 <!-- tree 3 --> 8399 <_> 8400 <!-- root node --> 8401 <feature> 8402 <rects> 8403 <_>1 0 19 9 -1.</_> 8404 <_>1 3 19 3 3.</_></rects> 8405 <tilted>0</tilted></feature> 8406 <threshold>8.3272606134414673e-003</threshold> 8407 <left_val>0.3267528116703033</left_val> 8408 <right_val>0.5697240829467773</right_val></_></_> 8409 <_> 8410 <!-- tree 4 --> 8411 <_> 8412 <!-- root node --> 8413 <feature> 8414 <rects> 8415 <_>3 7 3 6 -1.</_> 8416 <_>3 9 3 2 3.</_></rects> 8417 <tilted>0</tilted></feature> 8418 <threshold>5.7148298947140574e-004</threshold> 8419 <left_val>0.3044599890708923</left_val> 8420 <right_val>0.5531656742095947</right_val></_></_> 8421 <_> 8422 <!-- tree 5 --> 8423 <_> 8424 <!-- root node --> 8425 <feature> 8426 <rects> 8427 <_>13 7 4 4 -1.</_> 8428 <_>15 7 2 2 2.</_> 8429 <_>13 9 2 2 2.</_></rects> 8430 <tilted>0</tilted></feature> 8431 <threshold>6.7373987985774875e-004</threshold> 8432 <left_val>0.3650012016296387</left_val> 8433 <right_val>0.5672631263732910</right_val></_></_> 8434 <_> 8435 <!-- tree 6 --> 8436 <_> 8437 <!-- root node --> 8438 <feature> 8439 <rects> 8440 <_>3 7 4 4 -1.</_> 8441 <_>3 7 2 2 2.</_> 8442 <_>5 9 2 2 2.</_></rects> 8443 <tilted>0</tilted></feature> 8444 <threshold>3.4681590477703139e-005</threshold> 8445 <left_val>0.3313541114330292</left_val> 8446 <right_val>0.5388727188110352</right_val></_></_> 8447 <_> 8448 <!-- tree 7 --> 8449 <_> 8450 <!-- root node --> 8451 <feature> 8452 <rects> 8453 <_>9 6 10 8 -1.</_> 8454 <_>9 10 10 4 2.</_></rects> 8455 <tilted>0</tilted></feature> 8456 <threshold>-5.8563398197293282e-003</threshold> 8457 <left_val>0.2697942852973938</left_val> 8458 <right_val>0.5498778820037842</right_val></_></_> 8459 <_> 8460 <!-- tree 8 --> 8461 <_> 8462 <!-- root node --> 8463 <feature> 8464 <rects> 8465 <_>3 8 14 12 -1.</_> 8466 <_>3 14 14 6 2.</_></rects> 8467 <tilted>0</tilted></feature> 8468 <threshold>8.5102273151278496e-003</threshold> 8469 <left_val>0.5269358158111572</left_val> 8470 <right_val>0.2762879133224487</right_val></_></_> 8471 <_> 8472 <!-- tree 9 --> 8473 <_> 8474 <!-- root node --> 8475 <feature> 8476 <rects> 8477 <_>6 5 10 12 -1.</_> 8478 <_>11 5 5 6 2.</_> 8479 <_>6 11 5 6 2.</_></rects> 8480 <tilted>0</tilted></feature> 8481 <threshold>-0.0698172077536583</threshold> 8482 <left_val>0.2909603118896484</left_val> 8483 <right_val>0.5259246826171875</right_val></_></_> 8484 <_> 8485 <!-- tree 10 --> 8486 <_> 8487 <!-- root node --> 8488 <feature> 8489 <rects> 8490 <_>9 11 2 3 -1.</_> 8491 <_>9 12 2 1 3.</_></rects> 8492 <tilted>0</tilted></feature> 8493 <threshold>-8.6113670840859413e-004</threshold> 8494 <left_val>0.5892577171325684</left_val> 8495 <right_val>0.4073697924613953</right_val></_></_> 8496 <_> 8497 <!-- tree 11 --> 8498 <_> 8499 <!-- root node --> 8500 <feature> 8501 <rects> 8502 <_>9 5 6 5 -1.</_> 8503 <_>9 5 3 5 2.</_></rects> 8504 <tilted>0</tilted></feature> 8505 <threshold>9.7149249631911516e-004</threshold> 8506 <left_val>0.3523564040660858</left_val> 8507 <right_val>0.5415862202644348</right_val></_></_> 8508 <_> 8509 <!-- tree 12 --> 8510 <_> 8511 <!-- root node --> 8512 <feature> 8513 <rects> 8514 <_>9 4 2 4 -1.</_> 8515 <_>9 6 2 2 2.</_></rects> 8516 <tilted>0</tilted></feature> 8517 <threshold>-1.4727490452060010e-005</threshold> 8518 <left_val>0.5423017740249634</left_val> 8519 <right_val>0.3503156006336212</right_val></_></_> 8520 <_> 8521 <!-- tree 13 --> 8522 <_> 8523 <!-- root node --> 8524 <feature> 8525 <rects> 8526 <_>9 5 6 5 -1.</_> 8527 <_>9 5 3 5 2.</_></rects> 8528 <tilted>0</tilted></feature> 8529 <threshold>0.0484202913939953</threshold> 8530 <left_val>0.5193945765495300</left_val> 8531 <right_val>0.3411195874214172</right_val></_></_> 8532 <_> 8533 <!-- tree 14 --> 8534 <_> 8535 <!-- root node --> 8536 <feature> 8537 <rects> 8538 <_>5 5 6 5 -1.</_> 8539 <_>8 5 3 5 2.</_></rects> 8540 <tilted>0</tilted></feature> 8541 <threshold>1.3257140526548028e-003</threshold> 8542 <left_val>0.3157769143581390</left_val> 8543 <right_val>0.5335376262664795</right_val></_></_> 8544 <_> 8545 <!-- tree 15 --> 8546 <_> 8547 <!-- root node --> 8548 <feature> 8549 <rects> 8550 <_>11 2 6 1 -1.</_> 8551 <_>13 2 2 1 3.</_></rects> 8552 <tilted>0</tilted></feature> 8553 <threshold>1.4922149603080470e-005</threshold> 8554 <left_val>0.4451299905776978</left_val> 8555 <right_val>0.5536553859710693</right_val></_></_> 8556 <_> 8557 <!-- tree 16 --> 8558 <_> 8559 <!-- root node --> 8560 <feature> 8561 <rects> 8562 <_>3 2 6 1 -1.</_> 8563 <_>5 2 2 1 3.</_></rects> 8564 <tilted>0</tilted></feature> 8565 <threshold>-2.7173398993909359e-003</threshold> 8566 <left_val>0.3031741976737976</left_val> 8567 <right_val>0.5248088836669922</right_val></_></_> 8568 <_> 8569 <!-- tree 17 --> 8570 <_> 8571 <!-- root node --> 8572 <feature> 8573 <rects> 8574 <_>13 5 2 3 -1.</_> 8575 <_>13 6 2 1 3.</_></rects> 8576 <tilted>0</tilted></feature> 8577 <threshold>2.9219500720500946e-003</threshold> 8578 <left_val>0.4781453013420105</left_val> 8579 <right_val>0.6606041789054871</right_val></_></_> 8580 <_> 8581 <!-- tree 18 --> 8582 <_> 8583 <!-- root node --> 8584 <feature> 8585 <rects> 8586 <_>0 10 1 4 -1.</_> 8587 <_>0 12 1 2 2.</_></rects> 8588 <tilted>0</tilted></feature> 8589 <threshold>-1.9804988987743855e-003</threshold> 8590 <left_val>0.3186308145523071</left_val> 8591 <right_val>0.5287625193595886</right_val></_></_> 8592 <_> 8593 <!-- tree 19 --> 8594 <_> 8595 <!-- root node --> 8596 <feature> 8597 <rects> 8598 <_>13 5 2 3 -1.</_> 8599 <_>13 6 2 1 3.</_></rects> 8600 <tilted>0</tilted></feature> 8601 <threshold>-4.0012109093368053e-003</threshold> 8602 <left_val>0.6413596868515015</left_val> 8603 <right_val>0.4749928116798401</right_val></_></_> 8604 <_> 8605 <!-- tree 20 --> 8606 <_> 8607 <!-- root node --> 8608 <feature> 8609 <rects> 8610 <_>8 18 3 2 -1.</_> 8611 <_>9 18 1 2 3.</_></rects> 8612 <tilted>0</tilted></feature> 8613 <threshold>-4.3491991236805916e-003</threshold> 8614 <left_val>0.1507498025894165</left_val> 8615 <right_val>0.5098996758460999</right_val></_></_> 8616 <_> 8617 <!-- tree 21 --> 8618 <_> 8619 <!-- root node --> 8620 <feature> 8621 <rects> 8622 <_>6 15 9 2 -1.</_> 8623 <_>6 16 9 1 2.</_></rects> 8624 <tilted>0</tilted></feature> 8625 <threshold>1.3490889687091112e-003</threshold> 8626 <left_val>0.4316158890724182</left_val> 8627 <right_val>0.5881167054176331</right_val></_></_> 8628 <_> 8629 <!-- tree 22 --> 8630 <_> 8631 <!-- root node --> 8632 <feature> 8633 <rects> 8634 <_>8 14 4 3 -1.</_> 8635 <_>8 15 4 1 3.</_></rects> 8636 <tilted>0</tilted></feature> 8637 <threshold>0.0185970701277256</threshold> 8638 <left_val>0.4735553860664368</left_val> 8639 <right_val>0.9089794158935547</right_val></_></_> 8640 <_> 8641 <!-- tree 23 --> 8642 <_> 8643 <!-- root node --> 8644 <feature> 8645 <rects> 8646 <_>18 4 2 4 -1.</_> 8647 <_>18 6 2 2 2.</_></rects> 8648 <tilted>0</tilted></feature> 8649 <threshold>-1.8562379991635680e-003</threshold> 8650 <left_val>0.3553189039230347</left_val> 8651 <right_val>0.5577837228775024</right_val></_></_> 8652 <_> 8653 <!-- tree 24 --> 8654 <_> 8655 <!-- root node --> 8656 <feature> 8657 <rects> 8658 <_>5 5 2 3 -1.</_> 8659 <_>5 6 2 1 3.</_></rects> 8660 <tilted>0</tilted></feature> 8661 <threshold>2.2940430790185928e-003</threshold> 8662 <left_val>0.4500094950199127</left_val> 8663 <right_val>0.6580877900123596</right_val></_></_> 8664 <_> 8665 <!-- tree 25 --> 8666 <_> 8667 <!-- root node --> 8668 <feature> 8669 <rects> 8670 <_>15 16 3 2 -1.</_> 8671 <_>15 17 3 1 2.</_></rects> 8672 <tilted>0</tilted></feature> 8673 <threshold>2.9982850537635386e-004</threshold> 8674 <left_val>0.5629242062568665</left_val> 8675 <right_val>0.3975878953933716</right_val></_></_> 8676 <_> 8677 <!-- tree 26 --> 8678 <_> 8679 <!-- root node --> 8680 <feature> 8681 <rects> 8682 <_>0 0 3 9 -1.</_> 8683 <_>0 3 3 3 3.</_></rects> 8684 <tilted>0</tilted></feature> 8685 <threshold>3.5455459728837013e-003</threshold> 8686 <left_val>0.5381547212600708</left_val> 8687 <right_val>0.3605485856533051</right_val></_></_> 8688 <_> 8689 <!-- tree 27 --> 8690 <_> 8691 <!-- root node --> 8692 <feature> 8693 <rects> 8694 <_>9 7 3 3 -1.</_> 8695 <_>9 8 3 1 3.</_></rects> 8696 <tilted>0</tilted></feature> 8697 <threshold>9.6104722470045090e-003</threshold> 8698 <left_val>0.5255997180938721</left_val> 8699 <right_val>0.1796745955944061</right_val></_></_> 8700 <_> 8701 <!-- tree 28 --> 8702 <_> 8703 <!-- root node --> 8704 <feature> 8705 <rects> 8706 <_>8 7 3 3 -1.</_> 8707 <_>8 8 3 1 3.</_></rects> 8708 <tilted>0</tilted></feature> 8709 <threshold>-6.2783220782876015e-003</threshold> 8710 <left_val>0.2272856980562210</left_val> 8711 <right_val>0.5114030241966248</right_val></_></_> 8712 <_> 8713 <!-- tree 29 --> 8714 <_> 8715 <!-- root node --> 8716 <feature> 8717 <rects> 8718 <_>9 5 2 6 -1.</_> 8719 <_>9 5 1 6 2.</_></rects> 8720 <tilted>0</tilted></feature> 8721 <threshold>3.4598479978740215e-003</threshold> 8722 <left_val>0.4626308083534241</left_val> 8723 <right_val>0.6608219146728516</right_val></_></_> 8724 <_> 8725 <!-- tree 30 --> 8726 <_> 8727 <!-- root node --> 8728 <feature> 8729 <rects> 8730 <_>8 6 3 4 -1.</_> 8731 <_>9 6 1 4 3.</_></rects> 8732 <tilted>0</tilted></feature> 8733 <threshold>-1.3112019514665008e-003</threshold> 8734 <left_val>0.6317539811134338</left_val> 8735 <right_val>0.4436857998371124</right_val></_></_> 8736 <_> 8737 <!-- tree 31 --> 8738 <_> 8739 <!-- root node --> 8740 <feature> 8741 <rects> 8742 <_>7 6 8 12 -1.</_> 8743 <_>11 6 4 6 2.</_> 8744 <_>7 12 4 6 2.</_></rects> 8745 <tilted>0</tilted></feature> 8746 <threshold>2.6876179035753012e-003</threshold> 8747 <left_val>0.5421109795570374</left_val> 8748 <right_val>0.4054022133350372</right_val></_></_> 8749 <_> 8750 <!-- tree 32 --> 8751 <_> 8752 <!-- root node --> 8753 <feature> 8754 <rects> 8755 <_>5 6 8 12 -1.</_> 8756 <_>5 6 4 6 2.</_> 8757 <_>9 12 4 6 2.</_></rects> 8758 <tilted>0</tilted></feature> 8759 <threshold>3.9118169806897640e-003</threshold> 8760 <left_val>0.5358477830886841</left_val> 8761 <right_val>0.3273454904556274</right_val></_></_> 8762 <_> 8763 <!-- tree 33 --> 8764 <_> 8765 <!-- root node --> 8766 <feature> 8767 <rects> 8768 <_>12 4 3 3 -1.</_> 8769 <_>12 5 3 1 3.</_></rects> 8770 <tilted>0</tilted></feature> 8771 <threshold>-0.0142064504325390</threshold> 8772 <left_val>0.7793576717376709</left_val> 8773 <right_val>0.4975781142711639</right_val></_></_> 8774 <_> 8775 <!-- tree 34 --> 8776 <_> 8777 <!-- root node --> 8778 <feature> 8779 <rects> 8780 <_>2 16 3 2 -1.</_> 8781 <_>2 17 3 1 2.</_></rects> 8782 <tilted>0</tilted></feature> 8783 <threshold>7.1705528534948826e-004</threshold> 8784 <left_val>0.5297319889068604</left_val> 8785 <right_val>0.3560903966426849</right_val></_></_> 8786 <_> 8787 <!-- tree 35 --> 8788 <_> 8789 <!-- root node --> 8790 <feature> 8791 <rects> 8792 <_>12 4 3 3 -1.</_> 8793 <_>12 5 3 1 3.</_></rects> 8794 <tilted>0</tilted></feature> 8795 <threshold>1.6635019565001130e-003</threshold> 8796 <left_val>0.4678094089031220</left_val> 8797 <right_val>0.5816481709480286</right_val></_></_> 8798 <_> 8799 <!-- tree 36 --> 8800 <_> 8801 <!-- root node --> 8802 <feature> 8803 <rects> 8804 <_>2 12 6 6 -1.</_> 8805 <_>2 14 6 2 3.</_></rects> 8806 <tilted>0</tilted></feature> 8807 <threshold>3.3686188980937004e-003</threshold> 8808 <left_val>0.5276734232902527</left_val> 8809 <right_val>0.3446420133113861</right_val></_></_> 8810 <_> 8811 <!-- tree 37 --> 8812 <_> 8813 <!-- root node --> 8814 <feature> 8815 <rects> 8816 <_>7 13 6 3 -1.</_> 8817 <_>7 14 6 1 3.</_></rects> 8818 <tilted>0</tilted></feature> 8819 <threshold>0.0127995302900672</threshold> 8820 <left_val>0.4834679961204529</left_val> 8821 <right_val>0.7472159266471863</right_val></_></_> 8822 <_> 8823 <!-- tree 38 --> 8824 <_> 8825 <!-- root node --> 8826 <feature> 8827 <rects> 8828 <_>6 14 6 3 -1.</_> 8829 <_>6 15 6 1 3.</_></rects> 8830 <tilted>0</tilted></feature> 8831 <threshold>3.3901201095432043e-003</threshold> 8832 <left_val>0.4511859118938446</left_val> 8833 <right_val>0.6401721239089966</right_val></_></_> 8834 <_> 8835 <!-- tree 39 --> 8836 <_> 8837 <!-- root node --> 8838 <feature> 8839 <rects> 8840 <_>14 15 5 3 -1.</_> 8841 <_>14 16 5 1 3.</_></rects> 8842 <tilted>0</tilted></feature> 8843 <threshold>4.7070779837667942e-003</threshold> 8844 <left_val>0.5335658788681030</left_val> 8845 <right_val>0.3555220961570740</right_val></_></_> 8846 <_> 8847 <!-- tree 40 --> 8848 <_> 8849 <!-- root node --> 8850 <feature> 8851 <rects> 8852 <_>5 4 3 3 -1.</_> 8853 <_>5 5 3 1 3.</_></rects> 8854 <tilted>0</tilted></feature> 8855 <threshold>1.4819339849054813e-003</threshold> 8856 <left_val>0.4250707030296326</left_val> 8857 <right_val>0.5772724151611328</right_val></_></_> 8858 <_> 8859 <!-- tree 41 --> 8860 <_> 8861 <!-- root node --> 8862 <feature> 8863 <rects> 8864 <_>14 15 5 3 -1.</_> 8865 <_>14 16 5 1 3.</_></rects> 8866 <tilted>0</tilted></feature> 8867 <threshold>-6.9995759986341000e-003</threshold> 8868 <left_val>0.3003320097923279</left_val> 8869 <right_val>0.5292900204658508</right_val></_></_> 8870 <_> 8871 <!-- tree 42 --> 8872 <_> 8873 <!-- root node --> 8874 <feature> 8875 <rects> 8876 <_>5 3 6 2 -1.</_> 8877 <_>7 3 2 2 3.</_></rects> 8878 <tilted>0</tilted></feature> 8879 <threshold>0.0159390103071928</threshold> 8880 <left_val>0.5067319273948669</left_val> 8881 <right_val>0.1675581932067871</right_val></_></_> 8882 <_> 8883 <!-- tree 43 --> 8884 <_> 8885 <!-- root node --> 8886 <feature> 8887 <rects> 8888 <_>8 15 4 3 -1.</_> 8889 <_>8 16 4 1 3.</_></rects> 8890 <tilted>0</tilted></feature> 8891 <threshold>7.6377349905669689e-003</threshold> 8892 <left_val>0.4795069992542267</left_val> 8893 <right_val>0.7085601091384888</right_val></_></_> 8894 <_> 8895 <!-- tree 44 --> 8896 <_> 8897 <!-- root node --> 8898 <feature> 8899 <rects> 8900 <_>1 15 5 3 -1.</_> 8901 <_>1 16 5 1 3.</_></rects> 8902 <tilted>0</tilted></feature> 8903 <threshold>6.7334040068089962e-003</threshold> 8904 <left_val>0.5133113265037537</left_val> 8905 <right_val>0.2162470072507858</right_val></_></_> 8906 <_> 8907 <!-- tree 45 --> 8908 <_> 8909 <!-- root node --> 8910 <feature> 8911 <rects> 8912 <_>8 13 4 6 -1.</_> 8913 <_>10 13 2 3 2.</_> 8914 <_>8 16 2 3 2.</_></rects> 8915 <tilted>0</tilted></feature> 8916 <threshold>-0.0128588099032640</threshold> 8917 <left_val>0.1938841938972473</left_val> 8918 <right_val>0.5251371860504150</right_val></_></_> 8919 <_> 8920 <!-- tree 46 --> 8921 <_> 8922 <!-- root node --> 8923 <feature> 8924 <rects> 8925 <_>7 8 3 3 -1.</_> 8926 <_>8 8 1 3 3.</_></rects> 8927 <tilted>0</tilted></feature> 8928 <threshold>-6.2270800117403269e-004</threshold> 8929 <left_val>0.5686538219451904</left_val> 8930 <right_val>0.4197868108749390</right_val></_></_> 8931 <_> 8932 <!-- tree 47 --> 8933 <_> 8934 <!-- root node --> 8935 <feature> 8936 <rects> 8937 <_>12 0 5 4 -1.</_> 8938 <_>12 2 5 2 2.</_></rects> 8939 <tilted>0</tilted></feature> 8940 <threshold>-5.2651681471616030e-004</threshold> 8941 <left_val>0.4224168956279755</left_val> 8942 <right_val>0.5429695844650269</right_val></_></_> 8943 <_> 8944 <!-- tree 48 --> 8945 <_> 8946 <!-- root node --> 8947 <feature> 8948 <rects> 8949 <_>0 2 20 2 -1.</_> 8950 <_>0 2 10 1 2.</_> 8951 <_>10 3 10 1 2.</_></rects> 8952 <tilted>0</tilted></feature> 8953 <threshold>0.0110750999301672</threshold> 8954 <left_val>0.5113775134086609</left_val> 8955 <right_val>0.2514517903327942</right_val></_></_> 8956 <_> 8957 <!-- tree 49 --> 8958 <_> 8959 <!-- root node --> 8960 <feature> 8961 <rects> 8962 <_>1 0 18 4 -1.</_> 8963 <_>7 0 6 4 3.</_></rects> 8964 <tilted>0</tilted></feature> 8965 <threshold>-0.0367282517254353</threshold> 8966 <left_val>0.7194662094116211</left_val> 8967 <right_val>0.4849618971347809</right_val></_></_> 8968 <_> 8969 <!-- tree 50 --> 8970 <_> 8971 <!-- root node --> 8972 <feature> 8973 <rects> 8974 <_>4 3 6 1 -1.</_> 8975 <_>6 3 2 1 3.</_></rects> 8976 <tilted>0</tilted></feature> 8977 <threshold>-2.8207109426148236e-004</threshold> 8978 <left_val>0.3840261995792389</left_val> 8979 <right_val>0.5394446253776550</right_val></_></_> 8980 <_> 8981 <!-- tree 51 --> 8982 <_> 8983 <!-- root node --> 8984 <feature> 8985 <rects> 8986 <_>4 18 13 2 -1.</_> 8987 <_>4 19 13 1 2.</_></rects> 8988 <tilted>0</tilted></feature> 8989 <threshold>-2.7489690110087395e-003</threshold> 8990 <left_val>0.5937088727951050</left_val> 8991 <right_val>0.4569182097911835</right_val></_></_> 8992 <_> 8993 <!-- tree 52 --> 8994 <_> 8995 <!-- root node --> 8996 <feature> 8997 <rects> 8998 <_>2 10 3 6 -1.</_> 8999 <_>2 12 3 2 3.</_></rects> 9000 <tilted>0</tilted></feature> 9001 <threshold>0.0100475195795298</threshold> 9002 <left_val>0.5138576030731201</left_val> 9003 <right_val>0.2802298069000244</right_val></_></_> 9004 <_> 9005 <!-- tree 53 --> 9006 <_> 9007 <!-- root node --> 9008 <feature> 9009 <rects> 9010 <_>14 12 6 8 -1.</_> 9011 <_>17 12 3 4 2.</_> 9012 <_>14 16 3 4 2.</_></rects> 9013 <tilted>0</tilted></feature> 9014 <threshold>-8.1497840583324432e-003</threshold> 9015 <left_val>0.6090037226676941</left_val> 9016 <right_val>0.4636121094226837</right_val></_></_> 9017 <_> 9018 <!-- tree 54 --> 9019 <_> 9020 <!-- root node --> 9021 <feature> 9022 <rects> 9023 <_>4 13 10 6 -1.</_> 9024 <_>4 13 5 3 2.</_> 9025 <_>9 16 5 3 2.</_></rects> 9026 <tilted>0</tilted></feature> 9027 <threshold>-6.8833888508379459e-003</threshold> 9028 <left_val>0.3458611071109772</left_val> 9029 <right_val>0.5254660248756409</right_val></_></_> 9030 <_> 9031 <!-- tree 55 --> 9032 <_> 9033 <!-- root node --> 9034 <feature> 9035 <rects> 9036 <_>14 12 1 2 -1.</_> 9037 <_>14 13 1 1 2.</_></rects> 9038 <tilted>0</tilted></feature> 9039 <threshold>-1.4039360394235700e-005</threshold> 9040 <left_val>0.5693104267120361</left_val> 9041 <right_val>0.4082083106040955</right_val></_></_> 9042 <_> 9043 <!-- tree 56 --> 9044 <_> 9045 <!-- root node --> 9046 <feature> 9047 <rects> 9048 <_>8 13 4 3 -1.</_> 9049 <_>8 14 4 1 3.</_></rects> 9050 <tilted>0</tilted></feature> 9051 <threshold>1.5498419525101781e-003</threshold> 9052 <left_val>0.4350537061691284</left_val> 9053 <right_val>0.5806517004966736</right_val></_></_> 9054 <_> 9055 <!-- tree 57 --> 9056 <_> 9057 <!-- root node --> 9058 <feature> 9059 <rects> 9060 <_>14 12 2 2 -1.</_> 9061 <_>14 13 2 1 2.</_></rects> 9062 <tilted>0</tilted></feature> 9063 <threshold>-6.7841499112546444e-003</threshold> 9064 <left_val>0.1468873023986816</left_val> 9065 <right_val>0.5182775259017944</right_val></_></_> 9066 <_> 9067 <!-- tree 58 --> 9068 <_> 9069 <!-- root node --> 9070 <feature> 9071 <rects> 9072 <_>4 12 2 2 -1.</_> 9073 <_>4 13 2 1 2.</_></rects> 9074 <tilted>0</tilted></feature> 9075 <threshold>2.1705629478674382e-004</threshold> 9076 <left_val>0.5293524265289307</left_val> 9077 <right_val>0.3456174135208130</right_val></_></_> 9078 <_> 9079 <!-- tree 59 --> 9080 <_> 9081 <!-- root node --> 9082 <feature> 9083 <rects> 9084 <_>8 12 9 2 -1.</_> 9085 <_>8 13 9 1 2.</_></rects> 9086 <tilted>0</tilted></feature> 9087 <threshold>3.1198898795992136e-004</threshold> 9088 <left_val>0.4652450978755951</left_val> 9089 <right_val>0.5942413806915283</right_val></_></_> 9090 <_> 9091 <!-- tree 60 --> 9092 <_> 9093 <!-- root node --> 9094 <feature> 9095 <rects> 9096 <_>9 14 2 3 -1.</_> 9097 <_>9 15 2 1 3.</_></rects> 9098 <tilted>0</tilted></feature> 9099 <threshold>5.4507530294358730e-003</threshold> 9100 <left_val>0.4653508961200714</left_val> 9101 <right_val>0.7024846076965332</right_val></_></_> 9102 <_> 9103 <!-- tree 61 --> 9104 <_> 9105 <!-- root node --> 9106 <feature> 9107 <rects> 9108 <_>11 10 3 6 -1.</_> 9109 <_>11 13 3 3 2.</_></rects> 9110 <tilted>0</tilted></feature> 9111 <threshold>-2.5818689027801156e-004</threshold> 9112 <left_val>0.5497295260429382</left_val> 9113 <right_val>0.3768967092037201</right_val></_></_> 9114 <_> 9115 <!-- tree 62 --> 9116 <_> 9117 <!-- root node --> 9118 <feature> 9119 <rects> 9120 <_>5 6 9 12 -1.</_> 9121 <_>5 12 9 6 2.</_></rects> 9122 <tilted>0</tilted></feature> 9123 <threshold>-0.0174425393342972</threshold> 9124 <left_val>0.3919087946414948</left_val> 9125 <right_val>0.5457497835159302</right_val></_></_> 9126 <_> 9127 <!-- tree 63 --> 9128 <_> 9129 <!-- root node --> 9130 <feature> 9131 <rects> 9132 <_>11 10 3 6 -1.</_> 9133 <_>11 13 3 3 2.</_></rects> 9134 <tilted>0</tilted></feature> 9135 <threshold>-0.0453435294330120</threshold> 9136 <left_val>0.1631357073783875</left_val> 9137 <right_val>0.5154908895492554</right_val></_></_> 9138 <_> 9139 <!-- tree 64 --> 9140 <_> 9141 <!-- root node --> 9142 <feature> 9143 <rects> 9144 <_>6 10 3 6 -1.</_> 9145 <_>6 13 3 3 2.</_></rects> 9146 <tilted>0</tilted></feature> 9147 <threshold>1.9190689781680703e-003</threshold> 9148 <left_val>0.5145897865295410</left_val> 9149 <right_val>0.2791895866394043</right_val></_></_> 9150 <_> 9151 <!-- tree 65 --> 9152 <_> 9153 <!-- root node --> 9154 <feature> 9155 <rects> 9156 <_>5 4 11 3 -1.</_> 9157 <_>5 5 11 1 3.</_></rects> 9158 <tilted>0</tilted></feature> 9159 <threshold>-6.0177869163453579e-003</threshold> 9160 <left_val>0.6517636179924011</left_val> 9161 <right_val>0.4756332933902741</right_val></_></_> 9162 <_> 9163 <!-- tree 66 --> 9164 <_> 9165 <!-- root node --> 9166 <feature> 9167 <rects> 9168 <_>7 1 5 10 -1.</_> 9169 <_>7 6 5 5 2.</_></rects> 9170 <tilted>0</tilted></feature> 9171 <threshold>-4.0720738470554352e-003</threshold> 9172 <left_val>0.5514652729034424</left_val> 9173 <right_val>0.4092685878276825</right_val></_></_> 9174 <_> 9175 <!-- tree 67 --> 9176 <_> 9177 <!-- root node --> 9178 <feature> 9179 <rects> 9180 <_>2 8 18 2 -1.</_> 9181 <_>2 9 18 1 2.</_></rects> 9182 <tilted>0</tilted></feature> 9183 <threshold>3.9855059003457427e-004</threshold> 9184 <left_val>0.3165240883827210</left_val> 9185 <right_val>0.5285550951957703</right_val></_></_> 9186 <_> 9187 <!-- tree 68 --> 9188 <_> 9189 <!-- root node --> 9190 <feature> 9191 <rects> 9192 <_>7 17 5 3 -1.</_> 9193 <_>7 18 5 1 3.</_></rects> 9194 <tilted>0</tilted></feature> 9195 <threshold>-6.5418570302426815e-003</threshold> 9196 <left_val>0.6853377819061279</left_val> 9197 <right_val>0.4652808904647827</right_val></_></_> 9198 <_> 9199 <!-- tree 69 --> 9200 <_> 9201 <!-- root node --> 9202 <feature> 9203 <rects> 9204 <_>5 9 12 1 -1.</_> 9205 <_>9 9 4 1 3.</_></rects> 9206 <tilted>0</tilted></feature> 9207 <threshold>3.4845089539885521e-003</threshold> 9208 <left_val>0.5484588146209717</left_val> 9209 <right_val>0.4502759873867035</right_val></_></_> 9210 <_> 9211 <!-- tree 70 --> 9212 <_> 9213 <!-- root node --> 9214 <feature> 9215 <rects> 9216 <_>0 14 6 6 -1.</_> 9217 <_>0 14 3 3 2.</_> 9218 <_>3 17 3 3 2.</_></rects> 9219 <tilted>0</tilted></feature> 9220 <threshold>-0.0136967804282904</threshold> 9221 <left_val>0.6395779848098755</left_val> 9222 <right_val>0.4572555124759674</right_val></_></_> 9223 <_> 9224 <!-- tree 71 --> 9225 <_> 9226 <!-- root node --> 9227 <feature> 9228 <rects> 9229 <_>5 9 12 1 -1.</_> 9230 <_>9 9 4 1 3.</_></rects> 9231 <tilted>0</tilted></feature> 9232 <threshold>-0.0173471402376890</threshold> 9233 <left_val>0.2751072943210602</left_val> 9234 <right_val>0.5181614756584168</right_val></_></_> 9235 <_> 9236 <!-- tree 72 --> 9237 <_> 9238 <!-- root node --> 9239 <feature> 9240 <rects> 9241 <_>3 9 12 1 -1.</_> 9242 <_>7 9 4 1 3.</_></rects> 9243 <tilted>0</tilted></feature> 9244 <threshold>-4.0885428898036480e-003</threshold> 9245 <left_val>0.3325636088848114</left_val> 9246 <right_val>0.5194984078407288</right_val></_></_> 9247 <_> 9248 <!-- tree 73 --> 9249 <_> 9250 <!-- root node --> 9251 <feature> 9252 <rects> 9253 <_>14 10 6 7 -1.</_> 9254 <_>14 10 3 7 2.</_></rects> 9255 <tilted>0</tilted></feature> 9256 <threshold>-9.4687901437282562e-003</threshold> 9257 <left_val>0.5942280888557434</left_val> 9258 <right_val>0.4851819872856140</right_val></_></_> 9259 <_> 9260 <!-- tree 74 --> 9261 <_> 9262 <!-- root node --> 9263 <feature> 9264 <rects> 9265 <_>1 0 16 2 -1.</_> 9266 <_>1 1 16 1 2.</_></rects> 9267 <tilted>0</tilted></feature> 9268 <threshold>1.7084840219467878e-003</threshold> 9269 <left_val>0.4167110919952393</left_val> 9270 <right_val>0.5519806146621704</right_val></_></_> 9271 <_> 9272 <!-- tree 75 --> 9273 <_> 9274 <!-- root node --> 9275 <feature> 9276 <rects> 9277 <_>10 9 10 9 -1.</_> 9278 <_>10 12 10 3 3.</_></rects> 9279 <tilted>0</tilted></feature> 9280 <threshold>9.4809094443917274e-003</threshold> 9281 <left_val>0.5433894991874695</left_val> 9282 <right_val>0.4208514988422394</right_val></_></_> 9283 <_> 9284 <!-- tree 76 --> 9285 <_> 9286 <!-- root node --> 9287 <feature> 9288 <rects> 9289 <_>0 1 10 2 -1.</_> 9290 <_>5 1 5 2 2.</_></rects> 9291 <tilted>0</tilted></feature> 9292 <threshold>-4.7389650717377663e-003</threshold> 9293 <left_val>0.6407189965248108</left_val> 9294 <right_val>0.4560655057430267</right_val></_></_> 9295 <_> 9296 <!-- tree 77 --> 9297 <_> 9298 <!-- root node --> 9299 <feature> 9300 <rects> 9301 <_>17 3 2 3 -1.</_> 9302 <_>17 4 2 1 3.</_></rects> 9303 <tilted>0</tilted></feature> 9304 <threshold>6.5761050209403038e-003</threshold> 9305 <left_val>0.5214555263519287</left_val> 9306 <right_val>0.2258227020502091</right_val></_></_> 9307 <_> 9308 <!-- tree 78 --> 9309 <_> 9310 <!-- root node --> 9311 <feature> 9312 <rects> 9313 <_>1 3 2 3 -1.</_> 9314 <_>1 4 2 1 3.</_></rects> 9315 <tilted>0</tilted></feature> 9316 <threshold>-2.1690549328923225e-003</threshold> 9317 <left_val>0.3151527941226959</left_val> 9318 <right_val>0.5156704783439636</right_val></_></_> 9319 <_> 9320 <!-- tree 79 --> 9321 <_> 9322 <!-- root node --> 9323 <feature> 9324 <rects> 9325 <_>9 7 3 6 -1.</_> 9326 <_>10 7 1 6 3.</_></rects> 9327 <tilted>0</tilted></feature> 9328 <threshold>0.0146601703017950</threshold> 9329 <left_val>0.4870837032794952</left_val> 9330 <right_val>0.6689941287040710</right_val></_></_> 9331 <_> 9332 <!-- tree 80 --> 9333 <_> 9334 <!-- root node --> 9335 <feature> 9336 <rects> 9337 <_>6 5 4 3 -1.</_> 9338 <_>8 5 2 3 2.</_></rects> 9339 <tilted>0</tilted></feature> 9340 <threshold>1.7231999663636088e-004</threshold> 9341 <left_val>0.3569748997688294</left_val> 9342 <right_val>0.5251078009605408</right_val></_></_> 9343 <_> 9344 <!-- tree 81 --> 9345 <_> 9346 <!-- root node --> 9347 <feature> 9348 <rects> 9349 <_>7 5 6 6 -1.</_> 9350 <_>9 5 2 6 3.</_></rects> 9351 <tilted>0</tilted></feature> 9352 <threshold>-0.0218037609010935</threshold> 9353 <left_val>0.8825920820236206</left_val> 9354 <right_val>0.4966329932212830</right_val></_></_> 9355 <_> 9356 <!-- tree 82 --> 9357 <_> 9358 <!-- root node --> 9359 <feature> 9360 <rects> 9361 <_>3 4 12 12 -1.</_> 9362 <_>3 4 6 6 2.</_> 9363 <_>9 10 6 6 2.</_></rects> 9364 <tilted>0</tilted></feature> 9365 <threshold>-0.0947361066937447</threshold> 9366 <left_val>0.1446162015199661</left_val> 9367 <right_val>0.5061113834381104</right_val></_></_> 9368 <_> 9369 <!-- tree 83 --> 9370 <_> 9371 <!-- root node --> 9372 <feature> 9373 <rects> 9374 <_>9 2 6 15 -1.</_> 9375 <_>11 2 2 15 3.</_></rects> 9376 <tilted>0</tilted></feature> 9377 <threshold>5.5825551971793175e-003</threshold> 9378 <left_val>0.5396478772163391</left_val> 9379 <right_val>0.4238066077232361</right_val></_></_> 9380 <_> 9381 <!-- tree 84 --> 9382 <_> 9383 <!-- root node --> 9384 <feature> 9385 <rects> 9386 <_>2 2 6 17 -1.</_> 9387 <_>4 2 2 17 3.</_></rects> 9388 <tilted>0</tilted></feature> 9389 <threshold>1.9517090404406190e-003</threshold> 9390 <left_val>0.4170410931110382</left_val> 9391 <right_val>0.5497786998748779</right_val></_></_> 9392 <_> 9393 <!-- tree 85 --> 9394 <_> 9395 <!-- root node --> 9396 <feature> 9397 <rects> 9398 <_>14 10 6 7 -1.</_> 9399 <_>14 10 3 7 2.</_></rects> 9400 <tilted>0</tilted></feature> 9401 <threshold>0.0121499001979828</threshold> 9402 <left_val>0.4698367118835449</left_val> 9403 <right_val>0.5664274096488953</right_val></_></_> 9404 <_> 9405 <!-- tree 86 --> 9406 <_> 9407 <!-- root node --> 9408 <feature> 9409 <rects> 9410 <_>0 10 6 7 -1.</_> 9411 <_>3 10 3 7 2.</_></rects> 9412 <tilted>0</tilted></feature> 9413 <threshold>-7.5169620104134083e-003</threshold> 9414 <left_val>0.6267772912979126</left_val> 9415 <right_val>0.4463135898113251</right_val></_></_> 9416 <_> 9417 <!-- tree 87 --> 9418 <_> 9419 <!-- root node --> 9420 <feature> 9421 <rects> 9422 <_>9 2 6 15 -1.</_> 9423 <_>11 2 2 15 3.</_></rects> 9424 <tilted>0</tilted></feature> 9425 <threshold>-0.0716679096221924</threshold> 9426 <left_val>0.3097011148929596</left_val> 9427 <right_val>0.5221003293991089</right_val></_></_> 9428 <_> 9429 <!-- tree 88 --> 9430 <_> 9431 <!-- root node --> 9432 <feature> 9433 <rects> 9434 <_>5 2 6 15 -1.</_> 9435 <_>7 2 2 15 3.</_></rects> 9436 <tilted>0</tilted></feature> 9437 <threshold>-0.0882924199104309</threshold> 9438 <left_val>0.0811238884925842</left_val> 9439 <right_val>0.5006365180015564</right_val></_></_> 9440 <_> 9441 <!-- tree 89 --> 9442 <_> 9443 <!-- root node --> 9444 <feature> 9445 <rects> 9446 <_>17 9 3 6 -1.</_> 9447 <_>17 11 3 2 3.</_></rects> 9448 <tilted>0</tilted></feature> 9449 <threshold>0.0310630798339844</threshold> 9450 <left_val>0.5155503749847412</left_val> 9451 <right_val>0.1282255947589874</right_val></_></_> 9452 <_> 9453 <!-- tree 90 --> 9454 <_> 9455 <!-- root node --> 9456 <feature> 9457 <rects> 9458 <_>6 7 6 6 -1.</_> 9459 <_>8 7 2 6 3.</_></rects> 9460 <tilted>0</tilted></feature> 9461 <threshold>0.0466218404471874</threshold> 9462 <left_val>0.4699777960777283</left_val> 9463 <right_val>0.7363960742950440</right_val></_></_> 9464 <_> 9465 <!-- tree 91 --> 9466 <_> 9467 <!-- root node --> 9468 <feature> 9469 <rects> 9470 <_>1 10 18 6 -1.</_> 9471 <_>10 10 9 3 2.</_> 9472 <_>1 13 9 3 2.</_></rects> 9473 <tilted>0</tilted></feature> 9474 <threshold>-0.0121894897893071</threshold> 9475 <left_val>0.3920530080795288</left_val> 9476 <right_val>0.5518996715545654</right_val></_></_> 9477 <_> 9478 <!-- tree 92 --> 9479 <_> 9480 <!-- root node --> 9481 <feature> 9482 <rects> 9483 <_>0 9 10 9 -1.</_> 9484 <_>0 12 10 3 3.</_></rects> 9485 <tilted>0</tilted></feature> 9486 <threshold>0.0130161102861166</threshold> 9487 <left_val>0.5260658264160156</left_val> 9488 <right_val>0.3685136139392853</right_val></_></_> 9489 <_> 9490 <!-- tree 93 --> 9491 <_> 9492 <!-- root node --> 9493 <feature> 9494 <rects> 9495 <_>8 15 4 3 -1.</_> 9496 <_>8 16 4 1 3.</_></rects> 9497 <tilted>0</tilted></feature> 9498 <threshold>-3.4952899441123009e-003</threshold> 9499 <left_val>0.6339294910430908</left_val> 9500 <right_val>0.4716280996799469</right_val></_></_> 9501 <_> 9502 <!-- tree 94 --> 9503 <_> 9504 <!-- root node --> 9505 <feature> 9506 <rects> 9507 <_>5 12 3 4 -1.</_> 9508 <_>5 14 3 2 2.</_></rects> 9509 <tilted>0</tilted></feature> 9510 <threshold>-4.4015039748046547e-005</threshold> 9511 <left_val>0.5333027243614197</left_val> 9512 <right_val>0.3776184916496277</right_val></_></_> 9513 <_> 9514 <!-- tree 95 --> 9515 <_> 9516 <!-- root node --> 9517 <feature> 9518 <rects> 9519 <_>3 3 16 12 -1.</_> 9520 <_>3 9 16 6 2.</_></rects> 9521 <tilted>0</tilted></feature> 9522 <threshold>-0.1096649020910263</threshold> 9523 <left_val>0.1765342056751251</left_val> 9524 <right_val>0.5198346972465515</right_val></_></_> 9525 <_> 9526 <!-- tree 96 --> 9527 <_> 9528 <!-- root node --> 9529 <feature> 9530 <rects> 9531 <_>1 1 12 12 -1.</_> 9532 <_>1 1 6 6 2.</_> 9533 <_>7 7 6 6 2.</_></rects> 9534 <tilted>0</tilted></feature> 9535 <threshold>-9.0279558207839727e-004</threshold> 9536 <left_val>0.5324159860610962</left_val> 9537 <right_val>0.3838908076286316</right_val></_></_> 9538 <_> 9539 <!-- tree 97 --> 9540 <_> 9541 <!-- root node --> 9542 <feature> 9543 <rects> 9544 <_>10 4 2 4 -1.</_> 9545 <_>11 4 1 2 2.</_> 9546 <_>10 6 1 2 2.</_></rects> 9547 <tilted>0</tilted></feature> 9548 <threshold>7.1126641705632210e-004</threshold> 9549 <left_val>0.4647929966449738</left_val> 9550 <right_val>0.5755224227905273</right_val></_></_> 9551 <_> 9552 <!-- tree 98 --> 9553 <_> 9554 <!-- root node --> 9555 <feature> 9556 <rects> 9557 <_>0 9 10 2 -1.</_> 9558 <_>0 9 5 1 2.</_> 9559 <_>5 10 5 1 2.</_></rects> 9560 <tilted>0</tilted></feature> 9561 <threshold>-3.1250279862433672e-003</threshold> 9562 <left_val>0.3236708939075470</left_val> 9563 <right_val>0.5166770815849304</right_val></_></_> 9564 <_> 9565 <!-- tree 99 --> 9566 <_> 9567 <!-- root node --> 9568 <feature> 9569 <rects> 9570 <_>9 11 3 3 -1.</_> 9571 <_>9 12 3 1 3.</_></rects> 9572 <tilted>0</tilted></feature> 9573 <threshold>2.4144679773598909e-003</threshold> 9574 <left_val>0.4787439107894898</left_val> 9575 <right_val>0.6459717750549316</right_val></_></_> 9576 <_> 9577 <!-- tree 100 --> 9578 <_> 9579 <!-- root node --> 9580 <feature> 9581 <rects> 9582 <_>3 12 9 2 -1.</_> 9583 <_>3 13 9 1 2.</_></rects> 9584 <tilted>0</tilted></feature> 9585 <threshold>4.4391240226104856e-004</threshold> 9586 <left_val>0.4409308135509491</left_val> 9587 <right_val>0.6010255813598633</right_val></_></_> 9588 <_> 9589 <!-- tree 101 --> 9590 <_> 9591 <!-- root node --> 9592 <feature> 9593 <rects> 9594 <_>9 9 2 2 -1.</_> 9595 <_>9 10 2 1 2.</_></rects> 9596 <tilted>0</tilted></feature> 9597 <threshold>-2.2611189342569560e-004</threshold> 9598 <left_val>0.4038113951683044</left_val> 9599 <right_val>0.5493255853652954</right_val></_></_></trees> 9600 <stage_threshold>50.1697311401367190</stage_threshold> 9601 <parent>12</parent> 9602 <next>-1</next></_> 9603 <_> 9604 <!-- stage 14 --> 9605 <trees> 9606 <_> 9607 <!-- tree 0 --> 9608 <_> 9609 <!-- root node --> 9610 <feature> 9611 <rects> 9612 <_>3 4 13 6 -1.</_> 9613 <_>3 6 13 2 3.</_></rects> 9614 <tilted>0</tilted></feature> 9615 <threshold>-0.0469012893736362</threshold> 9616 <left_val>0.6600171923637390</left_val> 9617 <right_val>0.3743801116943359</right_val></_></_> 9618 <_> 9619 <!-- tree 1 --> 9620 <_> 9621 <!-- root node --> 9622 <feature> 9623 <rects> 9624 <_>9 7 6 4 -1.</_> 9625 <_>12 7 3 2 2.</_> 9626 <_>9 9 3 2 2.</_></rects> 9627 <tilted>0</tilted></feature> 9628 <threshold>-1.4568349579349160e-003</threshold> 9629 <left_val>0.5783991217613220</left_val> 9630 <right_val>0.3437797129154205</right_val></_></_> 9631 <_> 9632 <!-- tree 2 --> 9633 <_> 9634 <!-- root node --> 9635 <feature> 9636 <rects> 9637 <_>1 0 6 8 -1.</_> 9638 <_>4 0 3 8 2.</_></rects> 9639 <tilted>0</tilted></feature> 9640 <threshold>5.5598369799554348e-003</threshold> 9641 <left_val>0.3622266948223114</left_val> 9642 <right_val>0.5908216238021851</right_val></_></_> 9643 <_> 9644 <!-- tree 3 --> 9645 <_> 9646 <!-- root node --> 9647 <feature> 9648 <rects> 9649 <_>9 5 2 12 -1.</_> 9650 <_>9 11 2 6 2.</_></rects> 9651 <tilted>0</tilted></feature> 9652 <threshold>7.3170487303286791e-004</threshold> 9653 <left_val>0.5500419139862061</left_val> 9654 <right_val>0.2873558104038239</right_val></_></_> 9655 <_> 9656 <!-- tree 4 --> 9657 <_> 9658 <!-- root node --> 9659 <feature> 9660 <rects> 9661 <_>4 4 3 10 -1.</_> 9662 <_>4 9 3 5 2.</_></rects> 9663 <tilted>0</tilted></feature> 9664 <threshold>1.3318009441718459e-003</threshold> 9665 <left_val>0.2673169970512390</left_val> 9666 <right_val>0.5431019067764282</right_val></_></_> 9667 <_> 9668 <!-- tree 5 --> 9669 <_> 9670 <!-- root node --> 9671 <feature> 9672 <rects> 9673 <_>6 17 8 3 -1.</_> 9674 <_>6 18 8 1 3.</_></rects> 9675 <tilted>0</tilted></feature> 9676 <threshold>2.4347059661522508e-004</threshold> 9677 <left_val>0.3855027854442596</left_val> 9678 <right_val>0.5741388797760010</right_val></_></_> 9679 <_> 9680 <!-- tree 6 --> 9681 <_> 9682 <!-- root node --> 9683 <feature> 9684 <rects> 9685 <_>0 5 10 6 -1.</_> 9686 <_>0 7 10 2 3.</_></rects> 9687 <tilted>0</tilted></feature> 9688 <threshold>-3.0512469820678234e-003</threshold> 9689 <left_val>0.5503209829330444</left_val> 9690 <right_val>0.3462845087051392</right_val></_></_> 9691 <_> 9692 <!-- tree 7 --> 9693 <_> 9694 <!-- root node --> 9695 <feature> 9696 <rects> 9697 <_>13 2 3 2 -1.</_> 9698 <_>13 3 3 1 2.</_></rects> 9699 <tilted>0</tilted></feature> 9700 <threshold>-6.8657199153676629e-004</threshold> 9701 <left_val>0.3291221857070923</left_val> 9702 <right_val>0.5429509282112122</right_val></_></_> 9703 <_> 9704 <!-- tree 8 --> 9705 <_> 9706 <!-- root node --> 9707 <feature> 9708 <rects> 9709 <_>7 5 4 5 -1.</_> 9710 <_>9 5 2 5 2.</_></rects> 9711 <tilted>0</tilted></feature> 9712 <threshold>1.4668200165033340e-003</threshold> 9713 <left_val>0.3588382005691528</left_val> 9714 <right_val>0.5351811051368713</right_val></_></_> 9715 <_> 9716 <!-- tree 9 --> 9717 <_> 9718 <!-- root node --> 9719 <feature> 9720 <rects> 9721 <_>12 14 3 6 -1.</_> 9722 <_>12 16 3 2 3.</_></rects> 9723 <tilted>0</tilted></feature> 9724 <threshold>3.2021870720200241e-004</threshold> 9725 <left_val>0.4296841919422150</left_val> 9726 <right_val>0.5700234174728394</right_val></_></_> 9727 <_> 9728 <!-- tree 10 --> 9729 <_> 9730 <!-- root node --> 9731 <feature> 9732 <rects> 9733 <_>1 11 8 2 -1.</_> 9734 <_>1 12 8 1 2.</_></rects> 9735 <tilted>0</tilted></feature> 9736 <threshold>7.4122188379988074e-004</threshold> 9737 <left_val>0.5282164812088013</left_val> 9738 <right_val>0.3366870880126953</right_val></_></_> 9739 <_> 9740 <!-- tree 11 --> 9741 <_> 9742 <!-- root node --> 9743 <feature> 9744 <rects> 9745 <_>7 13 6 3 -1.</_> 9746 <_>7 14 6 1 3.</_></rects> 9747 <tilted>0</tilted></feature> 9748 <threshold>3.8330298848450184e-003</threshold> 9749 <left_val>0.4559567868709564</left_val> 9750 <right_val>0.6257336139678955</right_val></_></_> 9751 <_> 9752 <!-- tree 12 --> 9753 <_> 9754 <!-- root node --> 9755 <feature> 9756 <rects> 9757 <_>0 5 3 6 -1.</_> 9758 <_>0 7 3 2 3.</_></rects> 9759 <tilted>0</tilted></feature> 9760 <threshold>-0.0154564399272203</threshold> 9761 <left_val>0.2350116968154907</left_val> 9762 <right_val>0.5129452943801880</right_val></_></_> 9763 <_> 9764 <!-- tree 13 --> 9765 <_> 9766 <!-- root node --> 9767 <feature> 9768 <rects> 9769 <_>13 2 3 2 -1.</_> 9770 <_>13 3 3 1 2.</_></rects> 9771 <tilted>0</tilted></feature> 9772 <threshold>2.6796779129654169e-003</threshold> 9773 <left_val>0.5329415202140808</left_val> 9774 <right_val>0.4155062139034271</right_val></_></_> 9775 <_> 9776 <!-- tree 14 --> 9777 <_> 9778 <!-- root node --> 9779 <feature> 9780 <rects> 9781 <_>4 14 4 6 -1.</_> 9782 <_>4 14 2 3 2.</_> 9783 <_>6 17 2 3 2.</_></rects> 9784 <tilted>0</tilted></feature> 9785 <threshold>2.8296569362282753e-003</threshold> 9786 <left_val>0.4273087978363037</left_val> 9787 <right_val>0.5804538130760193</right_val></_></_> 9788 <_> 9789 <!-- tree 15 --> 9790 <_> 9791 <!-- root node --> 9792 <feature> 9793 <rects> 9794 <_>13 2 3 2 -1.</_> 9795 <_>13 3 3 1 2.</_></rects> 9796 <tilted>0</tilted></feature> 9797 <threshold>-3.9444249123334885e-003</threshold> 9798 <left_val>0.2912611961364746</left_val> 9799 <right_val>0.5202686190605164</right_val></_></_> 9800 <_> 9801 <!-- tree 16 --> 9802 <_> 9803 <!-- root node --> 9804 <feature> 9805 <rects> 9806 <_>8 2 4 12 -1.</_> 9807 <_>8 6 4 4 3.</_></rects> 9808 <tilted>0</tilted></feature> 9809 <threshold>2.7179559692740440e-003</threshold> 9810 <left_val>0.5307688117027283</left_val> 9811 <right_val>0.3585677146911621</right_val></_></_> 9812 <_> 9813 <!-- tree 17 --> 9814 <_> 9815 <!-- root node --> 9816 <feature> 9817 <rects> 9818 <_>14 0 6 8 -1.</_> 9819 <_>17 0 3 4 2.</_> 9820 <_>14 4 3 4 2.</_></rects> 9821 <tilted>0</tilted></feature> 9822 <threshold>5.9077627956867218e-003</threshold> 9823 <left_val>0.4703775048255920</left_val> 9824 <right_val>0.5941585898399353</right_val></_></_> 9825 <_> 9826 <!-- tree 18 --> 9827 <_> 9828 <!-- root node --> 9829 <feature> 9830 <rects> 9831 <_>7 17 3 2 -1.</_> 9832 <_>8 17 1 2 3.</_></rects> 9833 <tilted>0</tilted></feature> 9834 <threshold>-4.2240349575877190e-003</threshold> 9835 <left_val>0.2141567021608353</left_val> 9836 <right_val>0.5088796019554138</right_val></_></_> 9837 <_> 9838 <!-- tree 19 --> 9839 <_> 9840 <!-- root node --> 9841 <feature> 9842 <rects> 9843 <_>8 12 4 2 -1.</_> 9844 <_>8 13 4 1 2.</_></rects> 9845 <tilted>0</tilted></feature> 9846 <threshold>4.0725888684391975e-003</threshold> 9847 <left_val>0.4766413867473602</left_val> 9848 <right_val>0.6841061115264893</right_val></_></_> 9849 <_> 9850 <!-- tree 20 --> 9851 <_> 9852 <!-- root node --> 9853 <feature> 9854 <rects> 9855 <_>6 0 8 12 -1.</_> 9856 <_>6 0 4 6 2.</_> 9857 <_>10 6 4 6 2.</_></rects> 9858 <tilted>0</tilted></feature> 9859 <threshold>0.0101495301350951</threshold> 9860 <left_val>0.5360798835754395</left_val> 9861 <right_val>0.3748497068881989</right_val></_></_> 9862 <_> 9863 <!-- tree 21 --> 9864 <_> 9865 <!-- root node --> 9866 <feature> 9867 <rects> 9868 <_>14 0 2 10 -1.</_> 9869 <_>15 0 1 5 2.</_> 9870 <_>14 5 1 5 2.</_></rects> 9871 <tilted>0</tilted></feature> 9872 <threshold>-1.8864999583456665e-004</threshold> 9873 <left_val>0.5720130205154419</left_val> 9874 <right_val>0.3853805065155029</right_val></_></_> 9875 <_> 9876 <!-- tree 22 --> 9877 <_> 9878 <!-- root node --> 9879 <feature> 9880 <rects> 9881 <_>5 3 8 6 -1.</_> 9882 <_>5 3 4 3 2.</_> 9883 <_>9 6 4 3 2.</_></rects> 9884 <tilted>0</tilted></feature> 9885 <threshold>-4.8864358104765415e-003</threshold> 9886 <left_val>0.3693122863769531</left_val> 9887 <right_val>0.5340958833694458</right_val></_></_> 9888 <_> 9889 <!-- tree 23 --> 9890 <_> 9891 <!-- root node --> 9892 <feature> 9893 <rects> 9894 <_>14 0 6 10 -1.</_> 9895 <_>17 0 3 5 2.</_> 9896 <_>14 5 3 5 2.</_></rects> 9897 <tilted>0</tilted></feature> 9898 <threshold>0.0261584799736738</threshold> 9899 <left_val>0.4962374866008759</left_val> 9900 <right_val>0.6059989929199219</right_val></_></_> 9901 <_> 9902 <!-- tree 24 --> 9903 <_> 9904 <!-- root node --> 9905 <feature> 9906 <rects> 9907 <_>9 14 1 2 -1.</_> 9908 <_>9 15 1 1 2.</_></rects> 9909 <tilted>0</tilted></feature> 9910 <threshold>4.8560759751126170e-004</threshold> 9911 <left_val>0.4438945949077606</left_val> 9912 <right_val>0.6012468934059143</right_val></_></_> 9913 <_> 9914 <!-- tree 25 --> 9915 <_> 9916 <!-- root node --> 9917 <feature> 9918 <rects> 9919 <_>15 10 4 3 -1.</_> 9920 <_>15 11 4 1 3.</_></rects> 9921 <tilted>0</tilted></feature> 9922 <threshold>0.0112687097862363</threshold> 9923 <left_val>0.5244250297546387</left_val> 9924 <right_val>0.1840388029813767</right_val></_></_> 9925 <_> 9926 <!-- tree 26 --> 9927 <_> 9928 <!-- root node --> 9929 <feature> 9930 <rects> 9931 <_>8 14 2 3 -1.</_> 9932 <_>8 15 2 1 3.</_></rects> 9933 <tilted>0</tilted></feature> 9934 <threshold>-2.8114619199186563e-003</threshold> 9935 <left_val>0.6060283780097961</left_val> 9936 <right_val>0.4409897029399872</right_val></_></_> 9937 <_> 9938 <!-- tree 27 --> 9939 <_> 9940 <!-- root node --> 9941 <feature> 9942 <rects> 9943 <_>3 13 14 4 -1.</_> 9944 <_>10 13 7 2 2.</_> 9945 <_>3 15 7 2 2.</_></rects> 9946 <tilted>0</tilted></feature> 9947 <threshold>-5.6112729944288731e-003</threshold> 9948 <left_val>0.3891170918941498</left_val> 9949 <right_val>0.5589237213134766</right_val></_></_> 9950 <_> 9951 <!-- tree 28 --> 9952 <_> 9953 <!-- root node --> 9954 <feature> 9955 <rects> 9956 <_>1 10 4 3 -1.</_> 9957 <_>1 11 4 1 3.</_></rects> 9958 <tilted>0</tilted></feature> 9959 <threshold>8.5680093616247177e-003</threshold> 9960 <left_val>0.5069345831871033</left_val> 9961 <right_val>0.2062619030475617</right_val></_></_> 9962 <_> 9963 <!-- tree 29 --> 9964 <_> 9965 <!-- root node --> 9966 <feature> 9967 <rects> 9968 <_>9 11 6 1 -1.</_> 9969 <_>11 11 2 1 3.</_></rects> 9970 <tilted>0</tilted></feature> 9971 <threshold>-3.8172779022715986e-004</threshold> 9972 <left_val>0.5882201790809631</left_val> 9973 <right_val>0.4192610979080200</right_val></_></_> 9974 <_> 9975 <!-- tree 30 --> 9976 <_> 9977 <!-- root node --> 9978 <feature> 9979 <rects> 9980 <_>5 11 6 1 -1.</_> 9981 <_>7 11 2 1 3.</_></rects> 9982 <tilted>0</tilted></feature> 9983 <threshold>-1.7680290329735726e-004</threshold> 9984 <left_val>0.5533605813980103</left_val> 9985 <right_val>0.4003368914127350</right_val></_></_> 9986 <_> 9987 <!-- tree 31 --> 9988 <_> 9989 <!-- root node --> 9990 <feature> 9991 <rects> 9992 <_>3 5 16 15 -1.</_> 9993 <_>3 10 16 5 3.</_></rects> 9994 <tilted>0</tilted></feature> 9995 <threshold>6.5112537704408169e-003</threshold> 9996 <left_val>0.3310146927833557</left_val> 9997 <right_val>0.5444191098213196</right_val></_></_> 9998 <_> 9999 <!-- tree 32 --> 10000 <_> 10001 <!-- root node --> 10002 <feature> 10003 <rects> 10004 <_>6 12 4 2 -1.</_> 10005 <_>8 12 2 2 2.</_></rects> 10006 <tilted>0</tilted></feature> 10007 <threshold>-6.5948683186434209e-005</threshold> 10008 <left_val>0.5433831810951233</left_val> 10009 <right_val>0.3944905996322632</right_val></_></_> 10010 <_> 10011 <!-- tree 33 --> 10012 <_> 10013 <!-- root node --> 10014 <feature> 10015 <rects> 10016 <_>4 4 12 10 -1.</_> 10017 <_>10 4 6 5 2.</_> 10018 <_>4 9 6 5 2.</_></rects> 10019 <tilted>0</tilted></feature> 10020 <threshold>6.9939051754772663e-003</threshold> 10021 <left_val>0.5600358247756958</left_val> 10022 <right_val>0.4192714095115662</right_val></_></_> 10023 <_> 10024 <!-- tree 34 --> 10025 <_> 10026 <!-- root node --> 10027 <feature> 10028 <rects> 10029 <_>8 6 3 4 -1.</_> 10030 <_>9 6 1 4 3.</_></rects> 10031 <tilted>0</tilted></feature> 10032 <threshold>-4.6744439750909805e-003</threshold> 10033 <left_val>0.6685466766357422</left_val> 10034 <right_val>0.4604960978031158</right_val></_></_> 10035 <_> 10036 <!-- tree 35 --> 10037 <_> 10038 <!-- root node --> 10039 <feature> 10040 <rects> 10041 <_>8 12 4 8 -1.</_> 10042 <_>10 12 2 4 2.</_> 10043 <_>8 16 2 4 2.</_></rects> 10044 <tilted>0</tilted></feature> 10045 <threshold>0.0115898502990603</threshold> 10046 <left_val>0.5357121229171753</left_val> 10047 <right_val>0.2926830053329468</right_val></_></_> 10048 <_> 10049 <!-- tree 36 --> 10050 <_> 10051 <!-- root node --> 10052 <feature> 10053 <rects> 10054 <_>8 14 4 3 -1.</_> 10055 <_>8 15 4 1 3.</_></rects> 10056 <tilted>0</tilted></feature> 10057 <threshold>0.0130078401416540</threshold> 10058 <left_val>0.4679817855358124</left_val> 10059 <right_val>0.7307463288307190</right_val></_></_> 10060 <_> 10061 <!-- tree 37 --> 10062 <_> 10063 <!-- root node --> 10064 <feature> 10065 <rects> 10066 <_>12 2 3 2 -1.</_> 10067 <_>13 2 1 2 3.</_></rects> 10068 <tilted>0</tilted></feature> 10069 <threshold>-1.1008579749614000e-003</threshold> 10070 <left_val>0.3937501013278961</left_val> 10071 <right_val>0.5415065288543701</right_val></_></_> 10072 <_> 10073 <!-- tree 38 --> 10074 <_> 10075 <!-- root node --> 10076 <feature> 10077 <rects> 10078 <_>8 15 3 2 -1.</_> 10079 <_>8 16 3 1 2.</_></rects> 10080 <tilted>0</tilted></feature> 10081 <threshold>6.0472649056464434e-004</threshold> 10082 <left_val>0.4242376089096069</left_val> 10083 <right_val>0.5604041218757629</right_val></_></_> 10084 <_> 10085 <!-- tree 39 --> 10086 <_> 10087 <!-- root node --> 10088 <feature> 10089 <rects> 10090 <_>6 0 9 14 -1.</_> 10091 <_>9 0 3 14 3.</_></rects> 10092 <tilted>0</tilted></feature> 10093 <threshold>-0.0144948400557041</threshold> 10094 <left_val>0.3631210029125214</left_val> 10095 <right_val>0.5293182730674744</right_val></_></_> 10096 <_> 10097 <!-- tree 40 --> 10098 <_> 10099 <!-- root node --> 10100 <feature> 10101 <rects> 10102 <_>9 6 2 3 -1.</_> 10103 <_>10 6 1 3 2.</_></rects> 10104 <tilted>0</tilted></feature> 10105 <threshold>-5.3056948818266392e-003</threshold> 10106 <left_val>0.6860452294349670</left_val> 10107 <right_val>0.4621821045875549</right_val></_></_> 10108 <_> 10109 <!-- tree 41 --> 10110 <_> 10111 <!-- root node --> 10112 <feature> 10113 <rects> 10114 <_>10 8 2 3 -1.</_> 10115 <_>10 9 2 1 3.</_></rects> 10116 <tilted>0</tilted></feature> 10117 <threshold>-8.1829127157106996e-004</threshold> 10118 <left_val>0.3944096863269806</left_val> 10119 <right_val>0.5420439243316650</right_val></_></_> 10120 <_> 10121 <!-- tree 42 --> 10122 <_> 10123 <!-- root node --> 10124 <feature> 10125 <rects> 10126 <_>0 9 4 6 -1.</_> 10127 <_>0 11 4 2 3.</_></rects> 10128 <tilted>0</tilted></feature> 10129 <threshold>-0.0190775208175182</threshold> 10130 <left_val>0.1962621957063675</left_val> 10131 <right_val>0.5037891864776611</right_val></_></_> 10132 <_> 10133 <!-- tree 43 --> 10134 <_> 10135 <!-- root node --> 10136 <feature> 10137 <rects> 10138 <_>6 0 8 2 -1.</_> 10139 <_>6 1 8 1 2.</_></rects> 10140 <tilted>0</tilted></feature> 10141 <threshold>3.5549470339901745e-004</threshold> 10142 <left_val>0.4086259007453919</left_val> 10143 <right_val>0.5613973140716553</right_val></_></_> 10144 <_> 10145 <!-- tree 44 --> 10146 <_> 10147 <!-- root node --> 10148 <feature> 10149 <rects> 10150 <_>6 14 7 3 -1.</_> 10151 <_>6 15 7 1 3.</_></rects> 10152 <tilted>0</tilted></feature> 10153 <threshold>1.9679730758070946e-003</threshold> 10154 <left_val>0.4489121139049530</left_val> 10155 <right_val>0.5926123261451721</right_val></_></_> 10156 <_> 10157 <!-- tree 45 --> 10158 <_> 10159 <!-- root node --> 10160 <feature> 10161 <rects> 10162 <_>8 10 8 9 -1.</_> 10163 <_>8 13 8 3 3.</_></rects> 10164 <tilted>0</tilted></feature> 10165 <threshold>6.9189141504466534e-003</threshold> 10166 <left_val>0.5335925817489624</left_val> 10167 <right_val>0.3728385865688324</right_val></_></_> 10168 <_> 10169 <!-- tree 46 --> 10170 <_> 10171 <!-- root node --> 10172 <feature> 10173 <rects> 10174 <_>5 2 3 2 -1.</_> 10175 <_>6 2 1 2 3.</_></rects> 10176 <tilted>0</tilted></feature> 10177 <threshold>2.9872779268771410e-003</threshold> 10178 <left_val>0.5111321210861206</left_val> 10179 <right_val>0.2975643873214722</right_val></_></_> 10180 <_> 10181 <!-- tree 47 --> 10182 <_> 10183 <!-- root node --> 10184 <feature> 10185 <rects> 10186 <_>14 1 6 8 -1.</_> 10187 <_>17 1 3 4 2.</_> 10188 <_>14 5 3 4 2.</_></rects> 10189 <tilted>0</tilted></feature> 10190 <threshold>-6.2264618463814259e-003</threshold> 10191 <left_val>0.5541489720344544</left_val> 10192 <right_val>0.4824537932872772</right_val></_></_> 10193 <_> 10194 <!-- tree 48 --> 10195 <_> 10196 <!-- root node --> 10197 <feature> 10198 <rects> 10199 <_>0 1 6 8 -1.</_> 10200 <_>0 1 3 4 2.</_> 10201 <_>3 5 3 4 2.</_></rects> 10202 <tilted>0</tilted></feature> 10203 <threshold>0.0133533002808690</threshold> 10204 <left_val>0.4586423933506012</left_val> 10205 <right_val>0.6414797902107239</right_val></_></_> 10206 <_> 10207 <!-- tree 49 --> 10208 <_> 10209 <!-- root node --> 10210 <feature> 10211 <rects> 10212 <_>1 2 18 6 -1.</_> 10213 <_>10 2 9 3 2.</_> 10214 <_>1 5 9 3 2.</_></rects> 10215 <tilted>0</tilted></feature> 10216 <threshold>0.0335052385926247</threshold> 10217 <left_val>0.5392425060272217</left_val> 10218 <right_val>0.3429994881153107</right_val></_></_> 10219 <_> 10220 <!-- tree 50 --> 10221 <_> 10222 <!-- root node --> 10223 <feature> 10224 <rects> 10225 <_>9 3 2 1 -1.</_> 10226 <_>10 3 1 1 2.</_></rects> 10227 <tilted>0</tilted></feature> 10228 <threshold>-2.5294460356235504e-003</threshold> 10229 <left_val>0.1703713983297348</left_val> 10230 <right_val>0.5013315081596375</right_val></_></_> 10231 <_> 10232 <!-- tree 51 --> 10233 <_> 10234 <!-- root node --> 10235 <feature> 10236 <rects> 10237 <_>13 2 4 6 -1.</_> 10238 <_>15 2 2 3 2.</_> 10239 <_>13 5 2 3 2.</_></rects> 10240 <tilted>0</tilted></feature> 10241 <threshold>-1.2801629491150379e-003</threshold> 10242 <left_val>0.5305461883544922</left_val> 10243 <right_val>0.4697405099868774</right_val></_></_> 10244 <_> 10245 <!-- tree 52 --> 10246 <_> 10247 <!-- root node --> 10248 <feature> 10249 <rects> 10250 <_>5 4 3 3 -1.</_> 10251 <_>5 5 3 1 3.</_></rects> 10252 <tilted>0</tilted></feature> 10253 <threshold>7.0687388069927692e-003</threshold> 10254 <left_val>0.4615545868873596</left_val> 10255 <right_val>0.6436504721641541</right_val></_></_> 10256 <_> 10257 <!-- tree 53 --> 10258 <_> 10259 <!-- root node --> 10260 <feature> 10261 <rects> 10262 <_>13 5 1 3 -1.</_> 10263 <_>13 6 1 1 3.</_></rects> 10264 <tilted>0</tilted></feature> 10265 <threshold>9.6880499040707946e-004</threshold> 10266 <left_val>0.4833599030971527</left_val> 10267 <right_val>0.6043894290924072</right_val></_></_> 10268 <_> 10269 <!-- tree 54 --> 10270 <_> 10271 <!-- root node --> 10272 <feature> 10273 <rects> 10274 <_>2 16 5 3 -1.</_> 10275 <_>2 17 5 1 3.</_></rects> 10276 <tilted>0</tilted></feature> 10277 <threshold>3.9647659286856651e-003</threshold> 10278 <left_val>0.5187637209892273</left_val> 10279 <right_val>0.3231816887855530</right_val></_></_> 10280 <_> 10281 <!-- tree 55 --> 10282 <_> 10283 <!-- root node --> 10284 <feature> 10285 <rects> 10286 <_>13 2 4 6 -1.</_> 10287 <_>15 2 2 3 2.</_> 10288 <_>13 5 2 3 2.</_></rects> 10289 <tilted>0</tilted></feature> 10290 <threshold>-0.0220577307045460</threshold> 10291 <left_val>0.4079256951808929</left_val> 10292 <right_val>0.5200980901718140</right_val></_></_> 10293 <_> 10294 <!-- tree 56 --> 10295 <_> 10296 <!-- root node --> 10297 <feature> 10298 <rects> 10299 <_>3 2 4 6 -1.</_> 10300 <_>3 2 2 3 2.</_> 10301 <_>5 5 2 3 2.</_></rects> 10302 <tilted>0</tilted></feature> 10303 <threshold>-6.6906312713399529e-004</threshold> 10304 <left_val>0.5331609249114990</left_val> 10305 <right_val>0.3815600872039795</right_val></_></_> 10306 <_> 10307 <!-- tree 57 --> 10308 <_> 10309 <!-- root node --> 10310 <feature> 10311 <rects> 10312 <_>13 5 1 2 -1.</_> 10313 <_>13 6 1 1 2.</_></rects> 10314 <tilted>0</tilted></feature> 10315 <threshold>-6.7009328631684184e-004</threshold> 10316 <left_val>0.5655422210693359</left_val> 10317 <right_val>0.4688901901245117</right_val></_></_> 10318 <_> 10319 <!-- tree 58 --> 10320 <_> 10321 <!-- root node --> 10322 <feature> 10323 <rects> 10324 <_>5 5 2 2 -1.</_> 10325 <_>5 6 2 1 2.</_></rects> 10326 <tilted>0</tilted></feature> 10327 <threshold>7.4284552829340100e-004</threshold> 10328 <left_val>0.4534381031990051</left_val> 10329 <right_val>0.6287400126457214</right_val></_></_> 10330 <_> 10331 <!-- tree 59 --> 10332 <_> 10333 <!-- root node --> 10334 <feature> 10335 <rects> 10336 <_>13 9 2 2 -1.</_> 10337 <_>13 9 1 2 2.</_></rects> 10338 <tilted>0</tilted></feature> 10339 <threshold>2.2227810695767403e-003</threshold> 10340 <left_val>0.5350633263587952</left_val> 10341 <right_val>0.3303655982017517</right_val></_></_> 10342 <_> 10343 <!-- tree 60 --> 10344 <_> 10345 <!-- root node --> 10346 <feature> 10347 <rects> 10348 <_>5 9 2 2 -1.</_> 10349 <_>6 9 1 2 2.</_></rects> 10350 <tilted>0</tilted></feature> 10351 <threshold>-5.4130521602928638e-003</threshold> 10352 <left_val>0.1113687008619309</left_val> 10353 <right_val>0.5005434751510620</right_val></_></_> 10354 <_> 10355 <!-- tree 61 --> 10356 <_> 10357 <!-- root node --> 10358 <feature> 10359 <rects> 10360 <_>13 17 3 2 -1.</_> 10361 <_>13 18 3 1 2.</_></rects> 10362 <tilted>0</tilted></feature> 10363 <threshold>-1.4520040167553816e-005</threshold> 10364 <left_val>0.5628737807273865</left_val> 10365 <right_val>0.4325133860111237</right_val></_></_> 10366 <_> 10367 <!-- tree 62 --> 10368 <_> 10369 <!-- root node --> 10370 <feature> 10371 <rects> 10372 <_>6 16 4 4 -1.</_> 10373 <_>6 16 2 2 2.</_> 10374 <_>8 18 2 2 2.</_></rects> 10375 <tilted>0</tilted></feature> 10376 <threshold>2.3369169502984732e-004</threshold> 10377 <left_val>0.4165835082530975</left_val> 10378 <right_val>0.5447791218757629</right_val></_></_> 10379 <_> 10380 <!-- tree 63 --> 10381 <_> 10382 <!-- root node --> 10383 <feature> 10384 <rects> 10385 <_>9 16 2 3 -1.</_> 10386 <_>9 17 2 1 3.</_></rects> 10387 <tilted>0</tilted></feature> 10388 <threshold>4.2894547805190086e-003</threshold> 10389 <left_val>0.4860391020774841</left_val> 10390 <right_val>0.6778649091720581</right_val></_></_> 10391 <_> 10392 <!-- tree 64 --> 10393 <_> 10394 <!-- root node --> 10395 <feature> 10396 <rects> 10397 <_>0 13 9 6 -1.</_> 10398 <_>0 15 9 2 3.</_></rects> 10399 <tilted>0</tilted></feature> 10400 <threshold>5.9103150852024555e-003</threshold> 10401 <left_val>0.5262305140495300</left_val> 10402 <right_val>0.3612113893032074</right_val></_></_> 10403 <_> 10404 <!-- tree 65 --> 10405 <_> 10406 <!-- root node --> 10407 <feature> 10408 <rects> 10409 <_>9 14 2 6 -1.</_> 10410 <_>9 17 2 3 2.</_></rects> 10411 <tilted>0</tilted></feature> 10412 <threshold>0.0129005396738648</threshold> 10413 <left_val>0.5319377183914185</left_val> 10414 <right_val>0.3250288069248200</right_val></_></_> 10415 <_> 10416 <!-- tree 66 --> 10417 <_> 10418 <!-- root node --> 10419 <feature> 10420 <rects> 10421 <_>9 15 2 3 -1.</_> 10422 <_>9 16 2 1 3.</_></rects> 10423 <tilted>0</tilted></feature> 10424 <threshold>4.6982979401946068e-003</threshold> 10425 <left_val>0.4618245065212250</left_val> 10426 <right_val>0.6665925979614258</right_val></_></_> 10427 <_> 10428 <!-- tree 67 --> 10429 <_> 10430 <!-- root node --> 10431 <feature> 10432 <rects> 10433 <_>1 10 18 6 -1.</_> 10434 <_>1 12 18 2 3.</_></rects> 10435 <tilted>0</tilted></feature> 10436 <threshold>0.0104398597031832</threshold> 10437 <left_val>0.5505670905113220</left_val> 10438 <right_val>0.3883604109287262</right_val></_></_> 10439 <_> 10440 <!-- tree 68 --> 10441 <_> 10442 <!-- root node --> 10443 <feature> 10444 <rects> 10445 <_>8 11 4 2 -1.</_> 10446 <_>8 12 4 1 2.</_></rects> 10447 <tilted>0</tilted></feature> 10448 <threshold>3.0443191062659025e-003</threshold> 10449 <left_val>0.4697853028774262</left_val> 10450 <right_val>0.7301844954490662</right_val></_></_> 10451 <_> 10452 <!-- tree 69 --> 10453 <_> 10454 <!-- root node --> 10455 <feature> 10456 <rects> 10457 <_>7 9 6 2 -1.</_> 10458 <_>7 10 6 1 2.</_></rects> 10459 <tilted>0</tilted></feature> 10460 <threshold>-6.1593751888722181e-004</threshold> 10461 <left_val>0.3830839097499847</left_val> 10462 <right_val>0.5464984178543091</right_val></_></_> 10463 <_> 10464 <!-- tree 70 --> 10465 <_> 10466 <!-- root node --> 10467 <feature> 10468 <rects> 10469 <_>8 8 2 3 -1.</_> 10470 <_>8 9 2 1 3.</_></rects> 10471 <tilted>0</tilted></feature> 10472 <threshold>-3.4247159492224455e-003</threshold> 10473 <left_val>0.2566300034523010</left_val> 10474 <right_val>0.5089530944824219</right_val></_></_> 10475 <_> 10476 <!-- tree 71 --> 10477 <_> 10478 <!-- root node --> 10479 <feature> 10480 <rects> 10481 <_>17 5 3 4 -1.</_> 10482 <_>18 5 1 4 3.</_></rects> 10483 <tilted>0</tilted></feature> 10484 <threshold>-9.3538565561175346e-003</threshold> 10485 <left_val>0.6469966173171997</left_val> 10486 <right_val>0.4940795898437500</right_val></_></_> 10487 <_> 10488 <!-- tree 72 --> 10489 <_> 10490 <!-- root node --> 10491 <feature> 10492 <rects> 10493 <_>1 19 18 1 -1.</_> 10494 <_>7 19 6 1 3.</_></rects> 10495 <tilted>0</tilted></feature> 10496 <threshold>0.0523389987647533</threshold> 10497 <left_val>0.4745982885360718</left_val> 10498 <right_val>0.7878770828247070</right_val></_></_> 10499 <_> 10500 <!-- tree 73 --> 10501 <_> 10502 <!-- root node --> 10503 <feature> 10504 <rects> 10505 <_>9 0 3 2 -1.</_> 10506 <_>10 0 1 2 3.</_></rects> 10507 <tilted>0</tilted></feature> 10508 <threshold>3.5765620414167643e-003</threshold> 10509 <left_val>0.5306664705276489</left_val> 10510 <right_val>0.2748498022556305</right_val></_></_> 10511 <_> 10512 <!-- tree 74 --> 10513 <_> 10514 <!-- root node --> 10515 <feature> 10516 <rects> 10517 <_>1 8 1 6 -1.</_> 10518 <_>1 10 1 2 3.</_></rects> 10519 <tilted>0</tilted></feature> 10520 <threshold>7.1555317845195532e-004</threshold> 10521 <left_val>0.5413125753402710</left_val> 10522 <right_val>0.4041908979415894</right_val></_></_> 10523 <_> 10524 <!-- tree 75 --> 10525 <_> 10526 <!-- root node --> 10527 <feature> 10528 <rects> 10529 <_>12 17 8 3 -1.</_> 10530 <_>12 17 4 3 2.</_></rects> 10531 <tilted>0</tilted></feature> 10532 <threshold>-0.0105166798457503</threshold> 10533 <left_val>0.6158512234687805</left_val> 10534 <right_val>0.4815283119678497</right_val></_></_> 10535 <_> 10536 <!-- tree 76 --> 10537 <_> 10538 <!-- root node --> 10539 <feature> 10540 <rects> 10541 <_>0 5 3 4 -1.</_> 10542 <_>1 5 1 4 3.</_></rects> 10543 <tilted>0</tilted></feature> 10544 <threshold>7.7347927726805210e-003</threshold> 10545 <left_val>0.4695805907249451</left_val> 10546 <right_val>0.7028980851173401</right_val></_></_> 10547 <_> 10548 <!-- tree 77 --> 10549 <_> 10550 <!-- root node --> 10551 <feature> 10552 <rects> 10553 <_>9 7 2 3 -1.</_> 10554 <_>9 8 2 1 3.</_></rects> 10555 <tilted>0</tilted></feature> 10556 <threshold>-4.3226778507232666e-003</threshold> 10557 <left_val>0.2849566042423248</left_val> 10558 <right_val>0.5304684042930603</right_val></_></_> 10559 <_> 10560 <!-- tree 78 --> 10561 <_> 10562 <!-- root node --> 10563 <feature> 10564 <rects> 10565 <_>7 11 2 2 -1.</_> 10566 <_>7 11 1 1 2.</_> 10567 <_>8 12 1 1 2.</_></rects> 10568 <tilted>0</tilted></feature> 10569 <threshold>-2.5534399319440126e-003</threshold> 10570 <left_val>0.7056984901428223</left_val> 10571 <right_val>0.4688892066478729</right_val></_></_> 10572 <_> 10573 <!-- tree 79 --> 10574 <_> 10575 <!-- root node --> 10576 <feature> 10577 <rects> 10578 <_>11 3 2 5 -1.</_> 10579 <_>11 3 1 5 2.</_></rects> 10580 <tilted>0</tilted></feature> 10581 <threshold>1.0268510231981054e-004</threshold> 10582 <left_val>0.3902932107448578</left_val> 10583 <right_val>0.5573464035987854</right_val></_></_> 10584 <_> 10585 <!-- tree 80 --> 10586 <_> 10587 <!-- root node --> 10588 <feature> 10589 <rects> 10590 <_>7 3 2 5 -1.</_> 10591 <_>8 3 1 5 2.</_></rects> 10592 <tilted>0</tilted></feature> 10593 <threshold>7.1395188570022583e-006</threshold> 10594 <left_val>0.3684231936931610</left_val> 10595 <right_val>0.5263987779617310</right_val></_></_> 10596 <_> 10597 <!-- tree 81 --> 10598 <_> 10599 <!-- root node --> 10600 <feature> 10601 <rects> 10602 <_>15 13 2 3 -1.</_> 10603 <_>15 14 2 1 3.</_></rects> 10604 <tilted>0</tilted></feature> 10605 <threshold>-1.6711989883333445e-003</threshold> 10606 <left_val>0.3849175870418549</left_val> 10607 <right_val>0.5387271046638489</right_val></_></_> 10608 <_> 10609 <!-- tree 82 --> 10610 <_> 10611 <!-- root node --> 10612 <feature> 10613 <rects> 10614 <_>5 6 2 3 -1.</_> 10615 <_>5 7 2 1 3.</_></rects> 10616 <tilted>0</tilted></feature> 10617 <threshold>4.9260449595749378e-003</threshold> 10618 <left_val>0.4729771912097931</left_val> 10619 <right_val>0.7447251081466675</right_val></_></_> 10620 <_> 10621 <!-- tree 83 --> 10622 <_> 10623 <!-- root node --> 10624 <feature> 10625 <rects> 10626 <_>4 19 15 1 -1.</_> 10627 <_>9 19 5 1 3.</_></rects> 10628 <tilted>0</tilted></feature> 10629 <threshold>4.3908702209591866e-003</threshold> 10630 <left_val>0.4809181094169617</left_val> 10631 <right_val>0.5591921806335449</right_val></_></_> 10632 <_> 10633 <!-- tree 84 --> 10634 <_> 10635 <!-- root node --> 10636 <feature> 10637 <rects> 10638 <_>1 19 15 1 -1.</_> 10639 <_>6 19 5 1 3.</_></rects> 10640 <tilted>0</tilted></feature> 10641 <threshold>-0.0177936293184757</threshold> 10642 <left_val>0.6903678178787231</left_val> 10643 <right_val>0.4676927030086517</right_val></_></_> 10644 <_> 10645 <!-- tree 85 --> 10646 <_> 10647 <!-- root node --> 10648 <feature> 10649 <rects> 10650 <_>15 13 2 3 -1.</_> 10651 <_>15 14 2 1 3.</_></rects> 10652 <tilted>0</tilted></feature> 10653 <threshold>2.0469669252634048e-003</threshold> 10654 <left_val>0.5370690226554871</left_val> 10655 <right_val>0.3308162093162537</right_val></_></_> 10656 <_> 10657 <!-- tree 86 --> 10658 <_> 10659 <!-- root node --> 10660 <feature> 10661 <rects> 10662 <_>5 0 4 15 -1.</_> 10663 <_>7 0 2 15 2.</_></rects> 10664 <tilted>0</tilted></feature> 10665 <threshold>0.0298914890736341</threshold> 10666 <left_val>0.5139865279197693</left_val> 10667 <right_val>0.3309059143066406</right_val></_></_> 10668 <_> 10669 <!-- tree 87 --> 10670 <_> 10671 <!-- root node --> 10672 <feature> 10673 <rects> 10674 <_>9 6 2 5 -1.</_> 10675 <_>9 6 1 5 2.</_></rects> 10676 <tilted>0</tilted></feature> 10677 <threshold>1.5494900289922953e-003</threshold> 10678 <left_val>0.4660237133502960</left_val> 10679 <right_val>0.6078342795372009</right_val></_></_> 10680 <_> 10681 <!-- tree 88 --> 10682 <_> 10683 <!-- root node --> 10684 <feature> 10685 <rects> 10686 <_>9 5 2 7 -1.</_> 10687 <_>10 5 1 7 2.</_></rects> 10688 <tilted>0</tilted></feature> 10689 <threshold>1.4956969534978271e-003</threshold> 10690 <left_val>0.4404835999011993</left_val> 10691 <right_val>0.5863919854164124</right_val></_></_> 10692 <_> 10693 <!-- tree 89 --> 10694 <_> 10695 <!-- root node --> 10696 <feature> 10697 <rects> 10698 <_>16 11 3 3 -1.</_> 10699 <_>16 12 3 1 3.</_></rects> 10700 <tilted>0</tilted></feature> 10701 <threshold>9.5885928021743894e-004</threshold> 10702 <left_val>0.5435971021652222</left_val> 10703 <right_val>0.4208523035049439</right_val></_></_> 10704 <_> 10705 <!-- tree 90 --> 10706 <_> 10707 <!-- root node --> 10708 <feature> 10709 <rects> 10710 <_>1 11 3 3 -1.</_> 10711 <_>1 12 3 1 3.</_></rects> 10712 <tilted>0</tilted></feature> 10713 <threshold>4.9643701640889049e-004</threshold> 10714 <left_val>0.5370578169822693</left_val> 10715 <right_val>0.4000622034072876</right_val></_></_> 10716 <_> 10717 <!-- tree 91 --> 10718 <_> 10719 <!-- root node --> 10720 <feature> 10721 <rects> 10722 <_>6 6 8 3 -1.</_> 10723 <_>6 7 8 1 3.</_></rects> 10724 <tilted>0</tilted></feature> 10725 <threshold>-2.7280810754746199e-003</threshold> 10726 <left_val>0.5659412741661072</left_val> 10727 <right_val>0.4259642958641052</right_val></_></_> 10728 <_> 10729 <!-- tree 92 --> 10730 <_> 10731 <!-- root node --> 10732 <feature> 10733 <rects> 10734 <_>0 15 6 2 -1.</_> 10735 <_>0 16 6 1 2.</_></rects> 10736 <tilted>0</tilted></feature> 10737 <threshold>2.3026480339467525e-003</threshold> 10738 <left_val>0.5161657929420471</left_val> 10739 <right_val>0.3350869119167328</right_val></_></_> 10740 <_> 10741 <!-- tree 93 --> 10742 <_> 10743 <!-- root node --> 10744 <feature> 10745 <rects> 10746 <_>1 0 18 6 -1.</_> 10747 <_>7 0 6 6 3.</_></rects> 10748 <tilted>0</tilted></feature> 10749 <threshold>0.2515163123607636</threshold> 10750 <left_val>0.4869661927223206</left_val> 10751 <right_val>0.7147309780120850</right_val></_></_> 10752 <_> 10753 <!-- tree 94 --> 10754 <_> 10755 <!-- root node --> 10756 <feature> 10757 <rects> 10758 <_>6 0 3 4 -1.</_> 10759 <_>7 0 1 4 3.</_></rects> 10760 <tilted>0</tilted></feature> 10761 <threshold>-4.6328022144734859e-003</threshold> 10762 <left_val>0.2727448940277100</left_val> 10763 <right_val>0.5083789825439453</right_val></_></_> 10764 <_> 10765 <!-- tree 95 --> 10766 <_> 10767 <!-- root node --> 10768 <feature> 10769 <rects> 10770 <_>14 10 4 10 -1.</_> 10771 <_>16 10 2 5 2.</_> 10772 <_>14 15 2 5 2.</_></rects> 10773 <tilted>0</tilted></feature> 10774 <threshold>-0.0404344908893108</threshold> 10775 <left_val>0.6851438879966736</left_val> 10776 <right_val>0.5021767020225525</right_val></_></_> 10777 <_> 10778 <!-- tree 96 --> 10779 <_> 10780 <!-- root node --> 10781 <feature> 10782 <rects> 10783 <_>3 2 3 2 -1.</_> 10784 <_>4 2 1 2 3.</_></rects> 10785 <tilted>0</tilted></feature> 10786 <threshold>1.4972220014897175e-005</threshold> 10787 <left_val>0.4284465014934540</left_val> 10788 <right_val>0.5522555112838745</right_val></_></_> 10789 <_> 10790 <!-- tree 97 --> 10791 <_> 10792 <!-- root node --> 10793 <feature> 10794 <rects> 10795 <_>11 2 2 2 -1.</_> 10796 <_>11 3 2 1 2.</_></rects> 10797 <tilted>0</tilted></feature> 10798 <threshold>-2.4050309730228037e-004</threshold> 10799 <left_val>0.4226118922233582</left_val> 10800 <right_val>0.5390074849128723</right_val></_></_> 10801 <_> 10802 <!-- tree 98 --> 10803 <_> 10804 <!-- root node --> 10805 <feature> 10806 <rects> 10807 <_>2 10 4 10 -1.</_> 10808 <_>2 10 2 5 2.</_> 10809 <_>4 15 2 5 2.</_></rects> 10810 <tilted>0</tilted></feature> 10811 <threshold>0.0236578397452831</threshold> 10812 <left_val>0.4744631946086884</left_val> 10813 <right_val>0.7504366040229797</right_val></_></_> 10814 <_> 10815 <!-- tree 99 --> 10816 <_> 10817 <!-- root node --> 10818 <feature> 10819 <rects> 10820 <_>0 13 20 6 -1.</_> 10821 <_>10 13 10 3 2.</_> 10822 <_>0 16 10 3 2.</_></rects> 10823 <tilted>0</tilted></feature> 10824 <threshold>-8.1449104472994804e-003</threshold> 10825 <left_val>0.4245058894157410</left_val> 10826 <right_val>0.5538362860679627</right_val></_></_> 10827 <_> 10828 <!-- tree 100 --> 10829 <_> 10830 <!-- root node --> 10831 <feature> 10832 <rects> 10833 <_>0 5 2 15 -1.</_> 10834 <_>1 5 1 15 2.</_></rects> 10835 <tilted>0</tilted></feature> 10836 <threshold>-3.6992130335420370e-003</threshold> 10837 <left_val>0.5952357053756714</left_val> 10838 <right_val>0.4529713094234467</right_val></_></_> 10839 <_> 10840 <!-- tree 101 --> 10841 <_> 10842 <!-- root node --> 10843 <feature> 10844 <rects> 10845 <_>1 7 18 4 -1.</_> 10846 <_>10 7 9 2 2.</_> 10847 <_>1 9 9 2 2.</_></rects> 10848 <tilted>0</tilted></feature> 10849 <threshold>-6.7718601785600185e-003</threshold> 10850 <left_val>0.4137794077396393</left_val> 10851 <right_val>0.5473399758338928</right_val></_></_> 10852 <_> 10853 <!-- tree 102 --> 10854 <_> 10855 <!-- root node --> 10856 <feature> 10857 <rects> 10858 <_>0 0 2 17 -1.</_> 10859 <_>1 0 1 17 2.</_></rects> 10860 <tilted>0</tilted></feature> 10861 <threshold>4.2669530957937241e-003</threshold> 10862 <left_val>0.4484114944934845</left_val> 10863 <right_val>0.5797994136810303</right_val></_></_> 10864 <_> 10865 <!-- tree 103 --> 10866 <_> 10867 <!-- root node --> 10868 <feature> 10869 <rects> 10870 <_>2 6 16 6 -1.</_> 10871 <_>10 6 8 3 2.</_> 10872 <_>2 9 8 3 2.</_></rects> 10873 <tilted>0</tilted></feature> 10874 <threshold>1.7791989957913756e-003</threshold> 10875 <left_val>0.5624858736991882</left_val> 10876 <right_val>0.4432444870471954</right_val></_></_> 10877 <_> 10878 <!-- tree 104 --> 10879 <_> 10880 <!-- root node --> 10881 <feature> 10882 <rects> 10883 <_>8 14 1 3 -1.</_> 10884 <_>8 15 1 1 3.</_></rects> 10885 <tilted>0</tilted></feature> 10886 <threshold>1.6774770338088274e-003</threshold> 10887 <left_val>0.4637751877307892</left_val> 10888 <right_val>0.6364241838455200</right_val></_></_> 10889 <_> 10890 <!-- tree 105 --> 10891 <_> 10892 <!-- root node --> 10893 <feature> 10894 <rects> 10895 <_>8 15 4 2 -1.</_> 10896 <_>8 16 4 1 2.</_></rects> 10897 <tilted>0</tilted></feature> 10898 <threshold>1.1732629500329494e-003</threshold> 10899 <left_val>0.4544503092765808</left_val> 10900 <right_val>0.5914415717124939</right_val></_></_> 10901 <_> 10902 <!-- tree 106 --> 10903 <_> 10904 <!-- root node --> 10905 <feature> 10906 <rects> 10907 <_>5 2 8 2 -1.</_> 10908 <_>5 2 4 1 2.</_> 10909 <_>9 3 4 1 2.</_></rects> 10910 <tilted>0</tilted></feature> 10911 <threshold>8.6998171173036098e-004</threshold> 10912 <left_val>0.5334752798080444</left_val> 10913 <right_val>0.3885917961597443</right_val></_></_> 10914 <_> 10915 <!-- tree 107 --> 10916 <_> 10917 <!-- root node --> 10918 <feature> 10919 <rects> 10920 <_>6 11 8 6 -1.</_> 10921 <_>6 14 8 3 2.</_></rects> 10922 <tilted>0</tilted></feature> 10923 <threshold>7.6378340600058436e-004</threshold> 10924 <left_val>0.5398585200309753</left_val> 10925 <right_val>0.3744941949844360</right_val></_></_> 10926 <_> 10927 <!-- tree 108 --> 10928 <_> 10929 <!-- root node --> 10930 <feature> 10931 <rects> 10932 <_>9 13 2 2 -1.</_> 10933 <_>9 14 2 1 2.</_></rects> 10934 <tilted>0</tilted></feature> 10935 <threshold>1.5684569370932877e-004</threshold> 10936 <left_val>0.4317873120307922</left_val> 10937 <right_val>0.5614616274833679</right_val></_></_> 10938 <_> 10939 <!-- tree 109 --> 10940 <_> 10941 <!-- root node --> 10942 <feature> 10943 <rects> 10944 <_>18 4 2 6 -1.</_> 10945 <_>18 6 2 2 3.</_></rects> 10946 <tilted>0</tilted></feature> 10947 <threshold>-0.0215113703161478</threshold> 10948 <left_val>0.1785925030708313</left_val> 10949 <right_val>0.5185542702674866</right_val></_></_> 10950 <_> 10951 <!-- tree 110 --> 10952 <_> 10953 <!-- root node --> 10954 <feature> 10955 <rects> 10956 <_>9 12 2 2 -1.</_> 10957 <_>9 13 2 1 2.</_></rects> 10958 <tilted>0</tilted></feature> 10959 <threshold>1.3081369979772717e-004</threshold> 10960 <left_val>0.4342499077320099</left_val> 10961 <right_val>0.5682849884033203</right_val></_></_> 10962 <_> 10963 <!-- tree 111 --> 10964 <_> 10965 <!-- root node --> 10966 <feature> 10967 <rects> 10968 <_>18 4 2 6 -1.</_> 10969 <_>18 6 2 2 3.</_></rects> 10970 <tilted>0</tilted></feature> 10971 <threshold>0.0219920407980680</threshold> 10972 <left_val>0.5161716938018799</left_val> 10973 <right_val>0.2379394024610519</right_val></_></_> 10974 <_> 10975 <!-- tree 112 --> 10976 <_> 10977 <!-- root node --> 10978 <feature> 10979 <rects> 10980 <_>9 13 1 3 -1.</_> 10981 <_>9 14 1 1 3.</_></rects> 10982 <tilted>0</tilted></feature> 10983 <threshold>-8.0136500764638186e-004</threshold> 10984 <left_val>0.5986763238906860</left_val> 10985 <right_val>0.4466426968574524</right_val></_></_> 10986 <_> 10987 <!-- tree 113 --> 10988 <_> 10989 <!-- root node --> 10990 <feature> 10991 <rects> 10992 <_>18 4 2 6 -1.</_> 10993 <_>18 6 2 2 3.</_></rects> 10994 <tilted>0</tilted></feature> 10995 <threshold>-8.2736099138855934e-003</threshold> 10996 <left_val>0.4108217954635620</left_val> 10997 <right_val>0.5251057147979736</right_val></_></_> 10998 <_> 10999 <!-- tree 114 --> 11000 <_> 11001 <!-- root node --> 11002 <feature> 11003 <rects> 11004 <_>0 4 2 6 -1.</_> 11005 <_>0 6 2 2 3.</_></rects> 11006 <tilted>0</tilted></feature> 11007 <threshold>3.6831789184361696e-003</threshold> 11008 <left_val>0.5173814296722412</left_val> 11009 <right_val>0.3397518098354340</right_val></_></_> 11010 <_> 11011 <!-- tree 115 --> 11012 <_> 11013 <!-- root node --> 11014 <feature> 11015 <rects> 11016 <_>9 12 3 3 -1.</_> 11017 <_>9 13 3 1 3.</_></rects> 11018 <tilted>0</tilted></feature> 11019 <threshold>-7.9525681212544441e-003</threshold> 11020 <left_val>0.6888983249664307</left_val> 11021 <right_val>0.4845924079418182</right_val></_></_> 11022 <_> 11023 <!-- tree 116 --> 11024 <_> 11025 <!-- root node --> 11026 <feature> 11027 <rects> 11028 <_>3 13 2 3 -1.</_> 11029 <_>3 14 2 1 3.</_></rects> 11030 <tilted>0</tilted></feature> 11031 <threshold>1.5382299898192286e-003</threshold> 11032 <left_val>0.5178567171096802</left_val> 11033 <right_val>0.3454113900661469</right_val></_></_> 11034 <_> 11035 <!-- tree 117 --> 11036 <_> 11037 <!-- root node --> 11038 <feature> 11039 <rects> 11040 <_>13 13 4 3 -1.</_> 11041 <_>13 14 4 1 3.</_></rects> 11042 <tilted>0</tilted></feature> 11043 <threshold>-0.0140435304492712</threshold> 11044 <left_val>0.1678421050310135</left_val> 11045 <right_val>0.5188667774200440</right_val></_></_> 11046 <_> 11047 <!-- tree 118 --> 11048 <_> 11049 <!-- root node --> 11050 <feature> 11051 <rects> 11052 <_>5 4 3 3 -1.</_> 11053 <_>5 5 3 1 3.</_></rects> 11054 <tilted>0</tilted></feature> 11055 <threshold>1.4315890148282051e-003</threshold> 11056 <left_val>0.4368256926536560</left_val> 11057 <right_val>0.5655773878097534</right_val></_></_> 11058 <_> 11059 <!-- tree 119 --> 11060 <_> 11061 <!-- root node --> 11062 <feature> 11063 <rects> 11064 <_>5 2 10 6 -1.</_> 11065 <_>5 4 10 2 3.</_></rects> 11066 <tilted>0</tilted></feature> 11067 <threshold>-0.0340142287313938</threshold> 11068 <left_val>0.7802296280860901</left_val> 11069 <right_val>0.4959217011928558</right_val></_></_> 11070 <_> 11071 <!-- tree 120 --> 11072 <_> 11073 <!-- root node --> 11074 <feature> 11075 <rects> 11076 <_>3 13 4 3 -1.</_> 11077 <_>3 14 4 1 3.</_></rects> 11078 <tilted>0</tilted></feature> 11079 <threshold>-0.0120272999629378</threshold> 11080 <left_val>0.1585101038217545</left_val> 11081 <right_val>0.5032231807708740</right_val></_></_> 11082 <_> 11083 <!-- tree 121 --> 11084 <_> 11085 <!-- root node --> 11086 <feature> 11087 <rects> 11088 <_>3 7 15 5 -1.</_> 11089 <_>8 7 5 5 3.</_></rects> 11090 <tilted>0</tilted></feature> 11091 <threshold>0.1331661939620972</threshold> 11092 <left_val>0.5163304805755615</left_val> 11093 <right_val>0.2755128145217896</right_val></_></_> 11094 <_> 11095 <!-- tree 122 --> 11096 <_> 11097 <!-- root node --> 11098 <feature> 11099 <rects> 11100 <_>3 7 12 2 -1.</_> 11101 <_>7 7 4 2 3.</_></rects> 11102 <tilted>0</tilted></feature> 11103 <threshold>-1.5221949433907866e-003</threshold> 11104 <left_val>0.3728317916393280</left_val> 11105 <right_val>0.5214552283287048</right_val></_></_> 11106 <_> 11107 <!-- tree 123 --> 11108 <_> 11109 <!-- root node --> 11110 <feature> 11111 <rects> 11112 <_>10 3 3 9 -1.</_> 11113 <_>11 3 1 9 3.</_></rects> 11114 <tilted>0</tilted></feature> 11115 <threshold>-9.3929271679371595e-004</threshold> 11116 <left_val>0.5838379263877869</left_val> 11117 <right_val>0.4511165022850037</right_val></_></_> 11118 <_> 11119 <!-- tree 124 --> 11120 <_> 11121 <!-- root node --> 11122 <feature> 11123 <rects> 11124 <_>8 6 4 6 -1.</_> 11125 <_>10 6 2 6 2.</_></rects> 11126 <tilted>0</tilted></feature> 11127 <threshold>0.0277197398245335</threshold> 11128 <left_val>0.4728286862373352</left_val> 11129 <right_val>0.7331544756889343</right_val></_></_> 11130 <_> 11131 <!-- tree 125 --> 11132 <_> 11133 <!-- root node --> 11134 <feature> 11135 <rects> 11136 <_>9 7 4 3 -1.</_> 11137 <_>9 8 4 1 3.</_></rects> 11138 <tilted>0</tilted></feature> 11139 <threshold>3.1030150130391121e-003</threshold> 11140 <left_val>0.5302202105522156</left_val> 11141 <right_val>0.4101563096046448</right_val></_></_> 11142 <_> 11143 <!-- tree 126 --> 11144 <_> 11145 <!-- root node --> 11146 <feature> 11147 <rects> 11148 <_>0 9 4 9 -1.</_> 11149 <_>2 9 2 9 2.</_></rects> 11150 <tilted>0</tilted></feature> 11151 <threshold>0.0778612196445465</threshold> 11152 <left_val>0.4998334050178528</left_val> 11153 <right_val>0.1272961944341660</right_val></_></_> 11154 <_> 11155 <!-- tree 127 --> 11156 <_> 11157 <!-- root node --> 11158 <feature> 11159 <rects> 11160 <_>9 13 3 5 -1.</_> 11161 <_>10 13 1 5 3.</_></rects> 11162 <tilted>0</tilted></feature> 11163 <threshold>-0.0158549398183823</threshold> 11164 <left_val>0.0508333593606949</left_val> 11165 <right_val>0.5165656208992004</right_val></_></_> 11166 <_> 11167 <!-- tree 128 --> 11168 <_> 11169 <!-- root node --> 11170 <feature> 11171 <rects> 11172 <_>7 7 6 3 -1.</_> 11173 <_>9 7 2 3 3.</_></rects> 11174 <tilted>0</tilted></feature> 11175 <threshold>-4.9725300632417202e-003</threshold> 11176 <left_val>0.6798133850097656</left_val> 11177 <right_val>0.4684231877326965</right_val></_></_> 11178 <_> 11179 <!-- tree 129 --> 11180 <_> 11181 <!-- root node --> 11182 <feature> 11183 <rects> 11184 <_>9 7 3 5 -1.</_> 11185 <_>10 7 1 5 3.</_></rects> 11186 <tilted>0</tilted></feature> 11187 <threshold>-9.7676506265997887e-004</threshold> 11188 <left_val>0.6010771989822388</left_val> 11189 <right_val>0.4788931906223297</right_val></_></_> 11190 <_> 11191 <!-- tree 130 --> 11192 <_> 11193 <!-- root node --> 11194 <feature> 11195 <rects> 11196 <_>5 7 8 2 -1.</_> 11197 <_>9 7 4 2 2.</_></rects> 11198 <tilted>0</tilted></feature> 11199 <threshold>-2.4647710379213095e-003</threshold> 11200 <left_val>0.3393397927284241</left_val> 11201 <right_val>0.5220503807067871</right_val></_></_> 11202 <_> 11203 <!-- tree 131 --> 11204 <_> 11205 <!-- root node --> 11206 <feature> 11207 <rects> 11208 <_>5 9 12 2 -1.</_> 11209 <_>9 9 4 2 3.</_></rects> 11210 <tilted>0</tilted></feature> 11211 <threshold>-6.7937700077891350e-003</threshold> 11212 <left_val>0.4365136921405792</left_val> 11213 <right_val>0.5239663124084473</right_val></_></_> 11214 <_> 11215 <!-- tree 132 --> 11216 <_> 11217 <!-- root node --> 11218 <feature> 11219 <rects> 11220 <_>5 6 10 3 -1.</_> 11221 <_>10 6 5 3 2.</_></rects> 11222 <tilted>0</tilted></feature> 11223 <threshold>0.0326080210506916</threshold> 11224 <left_val>0.5052723884582520</left_val> 11225 <right_val>0.2425214946269989</right_val></_></_> 11226 <_> 11227 <!-- tree 133 --> 11228 <_> 11229 <!-- root node --> 11230 <feature> 11231 <rects> 11232 <_>10 12 3 1 -1.</_> 11233 <_>11 12 1 1 3.</_></rects> 11234 <tilted>0</tilted></feature> 11235 <threshold>-5.8514421107247472e-004</threshold> 11236 <left_val>0.5733973979949951</left_val> 11237 <right_val>0.4758574068546295</right_val></_></_> 11238 <_> 11239 <!-- tree 134 --> 11240 <_> 11241 <!-- root node --> 11242 <feature> 11243 <rects> 11244 <_>0 1 11 15 -1.</_> 11245 <_>0 6 11 5 3.</_></rects> 11246 <tilted>0</tilted></feature> 11247 <threshold>-0.0296326000243425</threshold> 11248 <left_val>0.3892289102077484</left_val> 11249 <right_val>0.5263597965240479</right_val></_></_></trees> 11250 <stage_threshold>66.6691207885742190</stage_threshold> 11251 <parent>13</parent> 11252 <next>-1</next></_> 11253 <_> 11254 <!-- stage 15 --> 11255 <trees> 11256 <_> 11257 <!-- tree 0 --> 11258 <_> 11259 <!-- root node --> 11260 <feature> 11261 <rects> 11262 <_>1 0 18 6 -1.</_> 11263 <_>7 0 6 6 3.</_></rects> 11264 <tilted>0</tilted></feature> 11265 <threshold>0.0465508513152599</threshold> 11266 <left_val>0.3276950120925903</left_val> 11267 <right_val>0.6240522861480713</right_val></_></_> 11268 <_> 11269 <!-- tree 1 --> 11270 <_> 11271 <!-- root node --> 11272 <feature> 11273 <rects> 11274 <_>7 7 6 1 -1.</_> 11275 <_>9 7 2 1 3.</_></rects> 11276 <tilted>0</tilted></feature> 11277 <threshold>7.9537127166986465e-003</threshold> 11278 <left_val>0.4256485104560852</left_val> 11279 <right_val>0.6942939162254334</right_val></_></_> 11280 <_> 11281 <!-- tree 2 --> 11282 <_> 11283 <!-- root node --> 11284 <feature> 11285 <rects> 11286 <_>5 16 6 4 -1.</_> 11287 <_>5 16 3 2 2.</_> 11288 <_>8 18 3 2 2.</_></rects> 11289 <tilted>0</tilted></feature> 11290 <threshold>6.8221561377868056e-004</threshold> 11291 <left_val>0.3711487054824829</left_val> 11292 <right_val>0.5900732874870300</right_val></_></_> 11293 <_> 11294 <!-- tree 3 --> 11295 <_> 11296 <!-- root node --> 11297 <feature> 11298 <rects> 11299 <_>6 5 9 8 -1.</_> 11300 <_>6 9 9 4 2.</_></rects> 11301 <tilted>0</tilted></feature> 11302 <threshold>-1.9348249770700932e-004</threshold> 11303 <left_val>0.2041133940219879</left_val> 11304 <right_val>0.5300545096397400</right_val></_></_> 11305 <_> 11306 <!-- tree 4 --> 11307 <_> 11308 <!-- root node --> 11309 <feature> 11310 <rects> 11311 <_>5 10 2 6 -1.</_> 11312 <_>5 13 2 3 2.</_></rects> 11313 <tilted>0</tilted></feature> 11314 <threshold>-2.6710508973337710e-004</threshold> 11315 <left_val>0.5416126251220703</left_val> 11316 <right_val>0.3103179037570953</right_val></_></_> 11317 <_> 11318 <!-- tree 5 --> 11319 <_> 11320 <!-- root node --> 11321 <feature> 11322 <rects> 11323 <_>7 6 8 10 -1.</_> 11324 <_>11 6 4 5 2.</_> 11325 <_>7 11 4 5 2.</_></rects> 11326 <tilted>0</tilted></feature> 11327 <threshold>2.7818060480058193e-003</threshold> 11328 <left_val>0.5277832746505737</left_val> 11329 <right_val>0.3467069864273071</right_val></_></_> 11330 <_> 11331 <!-- tree 6 --> 11332 <_> 11333 <!-- root node --> 11334 <feature> 11335 <rects> 11336 <_>5 6 8 10 -1.</_> 11337 <_>5 6 4 5 2.</_> 11338 <_>9 11 4 5 2.</_></rects> 11339 <tilted>0</tilted></feature> 11340 <threshold>-4.6779078547842801e-004</threshold> 11341 <left_val>0.5308231115341187</left_val> 11342 <right_val>0.3294492065906525</right_val></_></_> 11343 <_> 11344 <!-- tree 7 --> 11345 <_> 11346 <!-- root node --> 11347 <feature> 11348 <rects> 11349 <_>9 5 2 2 -1.</_> 11350 <_>9 6 2 1 2.</_></rects> 11351 <tilted>0</tilted></feature> 11352 <threshold>-3.0335160772665404e-005</threshold> 11353 <left_val>0.5773872733116150</left_val> 11354 <right_val>0.3852097094058991</right_val></_></_> 11355 <_> 11356 <!-- tree 8 --> 11357 <_> 11358 <!-- root node --> 11359 <feature> 11360 <rects> 11361 <_>5 12 8 2 -1.</_> 11362 <_>5 13 8 1 2.</_></rects> 11363 <tilted>0</tilted></feature> 11364 <threshold>7.8038009814918041e-004</threshold> 11365 <left_val>0.4317438900470734</left_val> 11366 <right_val>0.6150057911872864</right_val></_></_> 11367 <_> 11368 <!-- tree 9 --> 11369 <_> 11370 <!-- root node --> 11371 <feature> 11372 <rects> 11373 <_>10 2 8 2 -1.</_> 11374 <_>10 3 8 1 2.</_></rects> 11375 <tilted>0</tilted></feature> 11376 <threshold>-4.2553851380944252e-003</threshold> 11377 <left_val>0.2933903932571411</left_val> 11378 <right_val>0.5324292778968811</right_val></_></_> 11379 <_> 11380 <!-- tree 10 --> 11381 <_> 11382 <!-- root node --> 11383 <feature> 11384 <rects> 11385 <_>4 0 2 10 -1.</_> 11386 <_>4 0 1 5 2.</_> 11387 <_>5 5 1 5 2.</_></rects> 11388 <tilted>0</tilted></feature> 11389 <threshold>-2.4735610350035131e-004</threshold> 11390 <left_val>0.5468844771385193</left_val> 11391 <right_val>0.3843030035495758</right_val></_></_> 11392 <_> 11393 <!-- tree 11 --> 11394 <_> 11395 <!-- root node --> 11396 <feature> 11397 <rects> 11398 <_>9 10 2 2 -1.</_> 11399 <_>9 11 2 1 2.</_></rects> 11400 <tilted>0</tilted></feature> 11401 <threshold>-1.4724259381182492e-004</threshold> 11402 <left_val>0.4281542897224426</left_val> 11403 <right_val>0.5755587220191956</right_val></_></_> 11404 <_> 11405 <!-- tree 12 --> 11406 <_> 11407 <!-- root node --> 11408 <feature> 11409 <rects> 11410 <_>2 8 15 3 -1.</_> 11411 <_>2 9 15 1 3.</_></rects> 11412 <tilted>0</tilted></feature> 11413 <threshold>1.1864770203828812e-003</threshold> 11414 <left_val>0.3747301101684570</left_val> 11415 <right_val>0.5471466183662415</right_val></_></_> 11416 <_> 11417 <!-- tree 13 --> 11418 <_> 11419 <!-- root node --> 11420 <feature> 11421 <rects> 11422 <_>8 13 4 3 -1.</_> 11423 <_>8 14 4 1 3.</_></rects> 11424 <tilted>0</tilted></feature> 11425 <threshold>2.3936580400913954e-003</threshold> 11426 <left_val>0.4537783861160278</left_val> 11427 <right_val>0.6111528873443604</right_val></_></_> 11428 <_> 11429 <!-- tree 14 --> 11430 <_> 11431 <!-- root node --> 11432 <feature> 11433 <rects> 11434 <_>7 2 3 2 -1.</_> 11435 <_>8 2 1 2 3.</_></rects> 11436 <tilted>0</tilted></feature> 11437 <threshold>-1.5390539774671197e-003</threshold> 11438 <left_val>0.2971341907978058</left_val> 11439 <right_val>0.5189538002014160</right_val></_></_> 11440 <_> 11441 <!-- tree 15 --> 11442 <_> 11443 <!-- root node --> 11444 <feature> 11445 <rects> 11446 <_>7 13 6 3 -1.</_> 11447 <_>7 14 6 1 3.</_></rects> 11448 <tilted>0</tilted></feature> 11449 <threshold>-7.1968790143728256e-003</threshold> 11450 <left_val>0.6699066758155823</left_val> 11451 <right_val>0.4726476967334747</right_val></_></_> 11452 <_> 11453 <!-- tree 16 --> 11454 <_> 11455 <!-- root node --> 11456 <feature> 11457 <rects> 11458 <_>9 9 2 2 -1.</_> 11459 <_>9 10 2 1 2.</_></rects> 11460 <tilted>0</tilted></feature> 11461 <threshold>-4.1499789222143590e-004</threshold> 11462 <left_val>0.3384954035282135</left_val> 11463 <right_val>0.5260317921638489</right_val></_></_> 11464 <_> 11465 <!-- tree 17 --> 11466 <_> 11467 <!-- root node --> 11468 <feature> 11469 <rects> 11470 <_>17 2 3 6 -1.</_> 11471 <_>17 4 3 2 3.</_></rects> 11472 <tilted>0</tilted></feature> 11473 <threshold>4.4359830208122730e-003</threshold> 11474 <left_val>0.5399122238159180</left_val> 11475 <right_val>0.3920140862464905</right_val></_></_> 11476 <_> 11477 <!-- tree 18 --> 11478 <_> 11479 <!-- root node --> 11480 <feature> 11481 <rects> 11482 <_>1 5 3 4 -1.</_> 11483 <_>2 5 1 4 3.</_></rects> 11484 <tilted>0</tilted></feature> 11485 <threshold>2.6606200262904167e-003</threshold> 11486 <left_val>0.4482578039169312</left_val> 11487 <right_val>0.6119617819786072</right_val></_></_> 11488 <_> 11489 <!-- tree 19 --> 11490 <_> 11491 <!-- root node --> 11492 <feature> 11493 <rects> 11494 <_>14 8 4 6 -1.</_> 11495 <_>14 10 4 2 3.</_></rects> 11496 <tilted>0</tilted></feature> 11497 <threshold>-1.5287200221791863e-003</threshold> 11498 <left_val>0.3711237907409668</left_val> 11499 <right_val>0.5340266227722168</right_val></_></_> 11500 <_> 11501 <!-- tree 20 --> 11502 <_> 11503 <!-- root node --> 11504 <feature> 11505 <rects> 11506 <_>1 4 3 8 -1.</_> 11507 <_>2 4 1 8 3.</_></rects> 11508 <tilted>0</tilted></feature> 11509 <threshold>-4.7397250309586525e-003</threshold> 11510 <left_val>0.6031088232994080</left_val> 11511 <right_val>0.4455145001411438</right_val></_></_> 11512 <_> 11513 <!-- tree 21 --> 11514 <_> 11515 <!-- root node --> 11516 <feature> 11517 <rects> 11518 <_>8 13 4 6 -1.</_> 11519 <_>8 16 4 3 2.</_></rects> 11520 <tilted>0</tilted></feature> 11521 <threshold>-0.0148291299119592</threshold> 11522 <left_val>0.2838754057884216</left_val> 11523 <right_val>0.5341861844062805</right_val></_></_> 11524 <_> 11525 <!-- tree 22 --> 11526 <_> 11527 <!-- root node --> 11528 <feature> 11529 <rects> 11530 <_>3 14 2 2 -1.</_> 11531 <_>3 15 2 1 2.</_></rects> 11532 <tilted>0</tilted></feature> 11533 <threshold>9.2275557108223438e-004</threshold> 11534 <left_val>0.5209547281265259</left_val> 11535 <right_val>0.3361653983592987</right_val></_></_> 11536 <_> 11537 <!-- tree 23 --> 11538 <_> 11539 <!-- root node --> 11540 <feature> 11541 <rects> 11542 <_>14 8 4 6 -1.</_> 11543 <_>14 10 4 2 3.</_></rects> 11544 <tilted>0</tilted></feature> 11545 <threshold>0.0835298076272011</threshold> 11546 <left_val>0.5119969844818115</left_val> 11547 <right_val>0.0811644494533539</right_val></_></_> 11548 <_> 11549 <!-- tree 24 --> 11550 <_> 11551 <!-- root node --> 11552 <feature> 11553 <rects> 11554 <_>2 8 4 6 -1.</_> 11555 <_>2 10 4 2 3.</_></rects> 11556 <tilted>0</tilted></feature> 11557 <threshold>-7.5633148662745953e-004</threshold> 11558 <left_val>0.3317120075225830</left_val> 11559 <right_val>0.5189831256866455</right_val></_></_> 11560 <_> 11561 <!-- tree 25 --> 11562 <_> 11563 <!-- root node --> 11564 <feature> 11565 <rects> 11566 <_>10 14 1 6 -1.</_> 11567 <_>10 17 1 3 2.</_></rects> 11568 <tilted>0</tilted></feature> 11569 <threshold>9.8403859883546829e-003</threshold> 11570 <left_val>0.5247598290443420</left_val> 11571 <right_val>0.2334959059953690</right_val></_></_> 11572 <_> 11573 <!-- tree 26 --> 11574 <_> 11575 <!-- root node --> 11576 <feature> 11577 <rects> 11578 <_>7 5 3 6 -1.</_> 11579 <_>8 5 1 6 3.</_></rects> 11580 <tilted>0</tilted></feature> 11581 <threshold>-1.5953830443322659e-003</threshold> 11582 <left_val>0.5750094056129456</left_val> 11583 <right_val>0.4295622110366821</right_val></_></_> 11584 <_> 11585 <!-- tree 27 --> 11586 <_> 11587 <!-- root node --> 11588 <feature> 11589 <rects> 11590 <_>11 2 2 6 -1.</_> 11591 <_>12 2 1 3 2.</_> 11592 <_>11 5 1 3 2.</_></rects> 11593 <tilted>0</tilted></feature> 11594 <threshold>3.4766020689858124e-005</threshold> 11595 <left_val>0.4342445135116577</left_val> 11596 <right_val>0.5564029216766357</right_val></_></_> 11597 <_> 11598 <!-- tree 28 --> 11599 <_> 11600 <!-- root node --> 11601 <feature> 11602 <rects> 11603 <_>6 6 6 5 -1.</_> 11604 <_>8 6 2 5 3.</_></rects> 11605 <tilted>0</tilted></feature> 11606 <threshold>0.0298629105091095</threshold> 11607 <left_val>0.4579147100448608</left_val> 11608 <right_val>0.6579188108444214</right_val></_></_> 11609 <_> 11610 <!-- tree 29 --> 11611 <_> 11612 <!-- root node --> 11613 <feature> 11614 <rects> 11615 <_>17 1 3 6 -1.</_> 11616 <_>17 3 3 2 3.</_></rects> 11617 <tilted>0</tilted></feature> 11618 <threshold>0.0113255903124809</threshold> 11619 <left_val>0.5274311900138855</left_val> 11620 <right_val>0.3673888146877289</right_val></_></_> 11621 <_> 11622 <!-- tree 30 --> 11623 <_> 11624 <!-- root node --> 11625 <feature> 11626 <rects> 11627 <_>8 7 3 5 -1.</_> 11628 <_>9 7 1 5 3.</_></rects> 11629 <tilted>0</tilted></feature> 11630 <threshold>-8.7828645482659340e-003</threshold> 11631 <left_val>0.7100368738174439</left_val> 11632 <right_val>0.4642167091369629</right_val></_></_> 11633 <_> 11634 <!-- tree 31 --> 11635 <_> 11636 <!-- root node --> 11637 <feature> 11638 <rects> 11639 <_>9 18 3 2 -1.</_> 11640 <_>10 18 1 2 3.</_></rects> 11641 <tilted>0</tilted></feature> 11642 <threshold>4.3639959767460823e-003</threshold> 11643 <left_val>0.5279216170310974</left_val> 11644 <right_val>0.2705877125263214</right_val></_></_> 11645 <_> 11646 <!-- tree 32 --> 11647 <_> 11648 <!-- root node --> 11649 <feature> 11650 <rects> 11651 <_>8 18 3 2 -1.</_> 11652 <_>9 18 1 2 3.</_></rects> 11653 <tilted>0</tilted></feature> 11654 <threshold>4.1804728098213673e-003</threshold> 11655 <left_val>0.5072525143623352</left_val> 11656 <right_val>0.2449083030223846</right_val></_></_> 11657 <_> 11658 <!-- tree 33 --> 11659 <_> 11660 <!-- root node --> 11661 <feature> 11662 <rects> 11663 <_>12 3 5 2 -1.</_> 11664 <_>12 4 5 1 2.</_></rects> 11665 <tilted>0</tilted></feature> 11666 <threshold>-4.5668511302210391e-004</threshold> 11667 <left_val>0.4283105134963989</left_val> 11668 <right_val>0.5548691153526306</right_val></_></_> 11669 <_> 11670 <!-- tree 34 --> 11671 <_> 11672 <!-- root node --> 11673 <feature> 11674 <rects> 11675 <_>7 1 5 12 -1.</_> 11676 <_>7 7 5 6 2.</_></rects> 11677 <tilted>0</tilted></feature> 11678 <threshold>-3.7140368949621916e-003</threshold> 11679 <left_val>0.5519387722015381</left_val> 11680 <right_val>0.4103653132915497</right_val></_></_> 11681 <_> 11682 <!-- tree 35 --> 11683 <_> 11684 <!-- root node --> 11685 <feature> 11686 <rects> 11687 <_>1 0 18 4 -1.</_> 11688 <_>7 0 6 4 3.</_></rects> 11689 <tilted>0</tilted></feature> 11690 <threshold>-0.0253042895346880</threshold> 11691 <left_val>0.6867002248764038</left_val> 11692 <right_val>0.4869889020919800</right_val></_></_> 11693 <_> 11694 <!-- tree 36 --> 11695 <_> 11696 <!-- root node --> 11697 <feature> 11698 <rects> 11699 <_>4 2 2 2 -1.</_> 11700 <_>4 3 2 1 2.</_></rects> 11701 <tilted>0</tilted></feature> 11702 <threshold>-3.4454080741852522e-004</threshold> 11703 <left_val>0.3728874027729034</left_val> 11704 <right_val>0.5287693142890930</right_val></_></_> 11705 <_> 11706 <!-- tree 37 --> 11707 <_> 11708 <!-- root node --> 11709 <feature> 11710 <rects> 11711 <_>11 14 4 2 -1.</_> 11712 <_>13 14 2 1 2.</_> 11713 <_>11 15 2 1 2.</_></rects> 11714 <tilted>0</tilted></feature> 11715 <threshold>-8.3935231668874621e-004</threshold> 11716 <left_val>0.6060152053833008</left_val> 11717 <right_val>0.4616062045097351</right_val></_></_> 11718 <_> 11719 <!-- tree 38 --> 11720 <_> 11721 <!-- root node --> 11722 <feature> 11723 <rects> 11724 <_>0 2 3 6 -1.</_> 11725 <_>0 4 3 2 3.</_></rects> 11726 <tilted>0</tilted></feature> 11727 <threshold>0.0172800496220589</threshold> 11728 <left_val>0.5049635767936707</left_val> 11729 <right_val>0.1819823980331421</right_val></_></_> 11730 <_> 11731 <!-- tree 39 --> 11732 <_> 11733 <!-- root node --> 11734 <feature> 11735 <rects> 11736 <_>9 7 2 3 -1.</_> 11737 <_>9 8 2 1 3.</_></rects> 11738 <tilted>0</tilted></feature> 11739 <threshold>-6.3595077954232693e-003</threshold> 11740 <left_val>0.1631239950656891</left_val> 11741 <right_val>0.5232778787612915</right_val></_></_> 11742 <_> 11743 <!-- tree 40 --> 11744 <_> 11745 <!-- root node --> 11746 <feature> 11747 <rects> 11748 <_>5 5 1 3 -1.</_> 11749 <_>5 6 1 1 3.</_></rects> 11750 <tilted>0</tilted></feature> 11751 <threshold>1.0298109846189618e-003</threshold> 11752 <left_val>0.4463278055191040</left_val> 11753 <right_val>0.6176549196243286</right_val></_></_> 11754 <_> 11755 <!-- tree 41 --> 11756 <_> 11757 <!-- root node --> 11758 <feature> 11759 <rects> 11760 <_>10 10 6 1 -1.</_> 11761 <_>10 10 3 1 2.</_></rects> 11762 <tilted>0</tilted></feature> 11763 <threshold>1.0117109632119536e-003</threshold> 11764 <left_val>0.5473384857177734</left_val> 11765 <right_val>0.4300698935985565</right_val></_></_> 11766 <_> 11767 <!-- tree 42 --> 11768 <_> 11769 <!-- root node --> 11770 <feature> 11771 <rects> 11772 <_>4 10 6 1 -1.</_> 11773 <_>7 10 3 1 2.</_></rects> 11774 <tilted>0</tilted></feature> 11775 <threshold>-0.0103088002651930</threshold> 11776 <left_val>0.1166985034942627</left_val> 11777 <right_val>0.5000867247581482</right_val></_></_> 11778 <_> 11779 <!-- tree 43 --> 11780 <_> 11781 <!-- root node --> 11782 <feature> 11783 <rects> 11784 <_>9 17 3 3 -1.</_> 11785 <_>9 18 3 1 3.</_></rects> 11786 <tilted>0</tilted></feature> 11787 <threshold>5.4682018235325813e-003</threshold> 11788 <left_val>0.4769287109375000</left_val> 11789 <right_val>0.6719213724136353</right_val></_></_> 11790 <_> 11791 <!-- tree 44 --> 11792 <_> 11793 <!-- root node --> 11794 <feature> 11795 <rects> 11796 <_>4 14 1 3 -1.</_> 11797 <_>4 15 1 1 3.</_></rects> 11798 <tilted>0</tilted></feature> 11799 <threshold>-9.1696460731327534e-004</threshold> 11800 <left_val>0.3471089899539948</left_val> 11801 <right_val>0.5178164839744568</right_val></_></_> 11802 <_> 11803 <!-- tree 45 --> 11804 <_> 11805 <!-- root node --> 11806 <feature> 11807 <rects> 11808 <_>12 5 3 3 -1.</_> 11809 <_>12 6 3 1 3.</_></rects> 11810 <tilted>0</tilted></feature> 11811 <threshold>2.3922820109874010e-003</threshold> 11812 <left_val>0.4785236120223999</left_val> 11813 <right_val>0.6216310858726502</right_val></_></_> 11814 <_> 11815 <!-- tree 46 --> 11816 <_> 11817 <!-- root node --> 11818 <feature> 11819 <rects> 11820 <_>4 5 12 3 -1.</_> 11821 <_>4 6 12 1 3.</_></rects> 11822 <tilted>0</tilted></feature> 11823 <threshold>-7.5573818758130074e-003</threshold> 11824 <left_val>0.5814796090126038</left_val> 11825 <right_val>0.4410085082054138</right_val></_></_> 11826 <_> 11827 <!-- tree 47 --> 11828 <_> 11829 <!-- root node --> 11830 <feature> 11831 <rects> 11832 <_>9 8 2 3 -1.</_> 11833 <_>9 9 2 1 3.</_></rects> 11834 <tilted>0</tilted></feature> 11835 <threshold>-7.7024032361805439e-004</threshold> 11836 <left_val>0.3878000080585480</left_val> 11837 <right_val>0.5465722084045410</right_val></_></_> 11838 <_> 11839 <!-- tree 48 --> 11840 <_> 11841 <!-- root node --> 11842 <feature> 11843 <rects> 11844 <_>4 9 3 3 -1.</_> 11845 <_>5 9 1 3 3.</_></rects> 11846 <tilted>0</tilted></feature> 11847 <threshold>-8.7125990539789200e-003</threshold> 11848 <left_val>0.1660051047801971</left_val> 11849 <right_val>0.4995836019515991</right_val></_></_> 11850 <_> 11851 <!-- tree 49 --> 11852 <_> 11853 <!-- root node --> 11854 <feature> 11855 <rects> 11856 <_>6 0 9 17 -1.</_> 11857 <_>9 0 3 17 3.</_></rects> 11858 <tilted>0</tilted></feature> 11859 <threshold>-0.0103063201531768</threshold> 11860 <left_val>0.4093391001224518</left_val> 11861 <right_val>0.5274233818054199</right_val></_></_> 11862 <_> 11863 <!-- tree 50 --> 11864 <_> 11865 <!-- root node --> 11866 <feature> 11867 <rects> 11868 <_>9 12 1 3 -1.</_> 11869 <_>9 13 1 1 3.</_></rects> 11870 <tilted>0</tilted></feature> 11871 <threshold>-2.0940979011356831e-003</threshold> 11872 <left_val>0.6206194758415222</left_val> 11873 <right_val>0.4572280049324036</right_val></_></_> 11874 <_> 11875 <!-- tree 51 --> 11876 <_> 11877 <!-- root node --> 11878 <feature> 11879 <rects> 11880 <_>9 5 2 15 -1.</_> 11881 <_>9 10 2 5 3.</_></rects> 11882 <tilted>0</tilted></feature> 11883 <threshold>6.8099051713943481e-003</threshold> 11884 <left_val>0.5567759275436401</left_val> 11885 <right_val>0.4155600070953369</right_val></_></_> 11886 <_> 11887 <!-- tree 52 --> 11888 <_> 11889 <!-- root node --> 11890 <feature> 11891 <rects> 11892 <_>8 14 2 3 -1.</_> 11893 <_>8 15 2 1 3.</_></rects> 11894 <tilted>0</tilted></feature> 11895 <threshold>-1.0746059706434608e-003</threshold> 11896 <left_val>0.5638927817344666</left_val> 11897 <right_val>0.4353024959564209</right_val></_></_> 11898 <_> 11899 <!-- tree 53 --> 11900 <_> 11901 <!-- root node --> 11902 <feature> 11903 <rects> 11904 <_>10 14 1 3 -1.</_> 11905 <_>10 15 1 1 3.</_></rects> 11906 <tilted>0</tilted></feature> 11907 <threshold>2.1550289820879698e-003</threshold> 11908 <left_val>0.4826265871524811</left_val> 11909 <right_val>0.6749758124351502</right_val></_></_> 11910 <_> 11911 <!-- tree 54 --> 11912 <_> 11913 <!-- root node --> 11914 <feature> 11915 <rects> 11916 <_>7 1 6 5 -1.</_> 11917 <_>9 1 2 5 3.</_></rects> 11918 <tilted>0</tilted></feature> 11919 <threshold>0.0317423194646835</threshold> 11920 <left_val>0.5048379898071289</left_val> 11921 <right_val>0.1883248984813690</right_val></_></_> 11922 <_> 11923 <!-- tree 55 --> 11924 <_> 11925 <!-- root node --> 11926 <feature> 11927 <rects> 11928 <_>0 0 20 2 -1.</_> 11929 <_>0 0 10 2 2.</_></rects> 11930 <tilted>0</tilted></feature> 11931 <threshold>-0.0783827230334282</threshold> 11932 <left_val>0.2369548976421356</left_val> 11933 <right_val>0.5260158181190491</right_val></_></_> 11934 <_> 11935 <!-- tree 56 --> 11936 <_> 11937 <!-- root node --> 11938 <feature> 11939 <rects> 11940 <_>2 13 5 3 -1.</_> 11941 <_>2 14 5 1 3.</_></rects> 11942 <tilted>0</tilted></feature> 11943 <threshold>5.7415119372308254e-003</threshold> 11944 <left_val>0.5048828721046448</left_val> 11945 <right_val>0.2776469886302948</right_val></_></_> 11946 <_> 11947 <!-- tree 57 --> 11948 <_> 11949 <!-- root node --> 11950 <feature> 11951 <rects> 11952 <_>9 11 2 3 -1.</_> 11953 <_>9 12 2 1 3.</_></rects> 11954 <tilted>0</tilted></feature> 11955 <threshold>-2.9014600440859795e-003</threshold> 11956 <left_val>0.6238604784011841</left_val> 11957 <right_val>0.4693317115306854</right_val></_></_> 11958 <_> 11959 <!-- tree 58 --> 11960 <_> 11961 <!-- root node --> 11962 <feature> 11963 <rects> 11964 <_>2 5 9 15 -1.</_> 11965 <_>2 10 9 5 3.</_></rects> 11966 <tilted>0</tilted></feature> 11967 <threshold>-2.6427931152284145e-003</threshold> 11968 <left_val>0.3314141929149628</left_val> 11969 <right_val>0.5169777274131775</right_val></_></_> 11970 <_> 11971 <!-- tree 59 --> 11972 <_> 11973 <!-- root node --> 11974 <feature> 11975 <rects> 11976 <_>5 0 12 10 -1.</_> 11977 <_>11 0 6 5 2.</_> 11978 <_>5 5 6 5 2.</_></rects> 11979 <tilted>0</tilted></feature> 11980 <threshold>-0.1094966009259224</threshold> 11981 <left_val>0.2380045056343079</left_val> 11982 <right_val>0.5183441042900085</right_val></_></_> 11983 <_> 11984 <!-- tree 60 --> 11985 <_> 11986 <!-- root node --> 11987 <feature> 11988 <rects> 11989 <_>5 1 2 3 -1.</_> 11990 <_>6 1 1 3 2.</_></rects> 11991 <tilted>0</tilted></feature> 11992 <threshold>7.4075913289561868e-005</threshold> 11993 <left_val>0.4069635868072510</left_val> 11994 <right_val>0.5362150073051453</right_val></_></_> 11995 <_> 11996 <!-- tree 61 --> 11997 <_> 11998 <!-- root node --> 11999 <feature> 12000 <rects> 12001 <_>10 7 6 1 -1.</_> 12002 <_>12 7 2 1 3.</_></rects> 12003 <tilted>0</tilted></feature> 12004 <threshold>-5.0593802006915212e-004</threshold> 12005 <left_val>0.5506706237792969</left_val> 12006 <right_val>0.4374594092369080</right_val></_></_> 12007 <_> 12008 <!-- tree 62 --> 12009 <_> 12010 <!-- root node --> 12011 <feature> 12012 <rects> 12013 <_>3 1 2 10 -1.</_> 12014 <_>3 1 1 5 2.</_> 12015 <_>4 6 1 5 2.</_></rects> 12016 <tilted>0</tilted></feature> 12017 <threshold>-8.2131777890026569e-004</threshold> 12018 <left_val>0.5525709986686707</left_val> 12019 <right_val>0.4209375977516174</right_val></_></_> 12020 <_> 12021 <!-- tree 63 --> 12022 <_> 12023 <!-- root node --> 12024 <feature> 12025 <rects> 12026 <_>13 7 2 1 -1.</_> 12027 <_>13 7 1 1 2.</_></rects> 12028 <tilted>0</tilted></feature> 12029 <threshold>-6.0276539443293586e-005</threshold> 12030 <left_val>0.5455474853515625</left_val> 12031 <right_val>0.4748266041278839</right_val></_></_> 12032 <_> 12033 <!-- tree 64 --> 12034 <_> 12035 <!-- root node --> 12036 <feature> 12037 <rects> 12038 <_>4 13 4 6 -1.</_> 12039 <_>4 15 4 2 3.</_></rects> 12040 <tilted>0</tilted></feature> 12041 <threshold>6.8065142259001732e-003</threshold> 12042 <left_val>0.5157995820045471</left_val> 12043 <right_val>0.3424577116966248</right_val></_></_> 12044 <_> 12045 <!-- tree 65 --> 12046 <_> 12047 <!-- root node --> 12048 <feature> 12049 <rects> 12050 <_>13 7 2 1 -1.</_> 12051 <_>13 7 1 1 2.</_></rects> 12052 <tilted>0</tilted></feature> 12053 <threshold>1.7202789895236492e-003</threshold> 12054 <left_val>0.5013207793235779</left_val> 12055 <right_val>0.6331263780593872</right_val></_></_> 12056 <_> 12057 <!-- tree 66 --> 12058 <_> 12059 <!-- root node --> 12060 <feature> 12061 <rects> 12062 <_>5 7 2 1 -1.</_> 12063 <_>6 7 1 1 2.</_></rects> 12064 <tilted>0</tilted></feature> 12065 <threshold>-1.3016929733566940e-004</threshold> 12066 <left_val>0.5539718270301819</left_val> 12067 <right_val>0.4226869940757752</right_val></_></_> 12068 <_> 12069 <!-- tree 67 --> 12070 <_> 12071 <!-- root node --> 12072 <feature> 12073 <rects> 12074 <_>2 12 18 4 -1.</_> 12075 <_>11 12 9 2 2.</_> 12076 <_>2 14 9 2 2.</_></rects> 12077 <tilted>0</tilted></feature> 12078 <threshold>-4.8016388900578022e-003</threshold> 12079 <left_val>0.4425095021724701</left_val> 12080 <right_val>0.5430780053138733</right_val></_></_> 12081 <_> 12082 <!-- tree 68 --> 12083 <_> 12084 <!-- root node --> 12085 <feature> 12086 <rects> 12087 <_>5 7 2 2 -1.</_> 12088 <_>5 7 1 1 2.</_> 12089 <_>6 8 1 1 2.</_></rects> 12090 <tilted>0</tilted></feature> 12091 <threshold>-2.5399310979992151e-003</threshold> 12092 <left_val>0.7145782113075256</left_val> 12093 <right_val>0.4697605073451996</right_val></_></_> 12094 <_> 12095 <!-- tree 69 --> 12096 <_> 12097 <!-- root node --> 12098 <feature> 12099 <rects> 12100 <_>16 3 4 2 -1.</_> 12101 <_>16 4 4 1 2.</_></rects> 12102 <tilted>0</tilted></feature> 12103 <threshold>-1.4278929447755218e-003</threshold> 12104 <left_val>0.4070445001125336</left_val> 12105 <right_val>0.5399605035781860</right_val></_></_> 12106 <_> 12107 <!-- tree 70 --> 12108 <_> 12109 <!-- root node --> 12110 <feature> 12111 <rects> 12112 <_>0 2 2 18 -1.</_> 12113 <_>0 2 1 9 2.</_> 12114 <_>1 11 1 9 2.</_></rects> 12115 <tilted>0</tilted></feature> 12116 <threshold>-0.0251425504684448</threshold> 12117 <left_val>0.7884690761566162</left_val> 12118 <right_val>0.4747352004051209</right_val></_></_> 12119 <_> 12120 <!-- tree 71 --> 12121 <_> 12122 <!-- root node --> 12123 <feature> 12124 <rects> 12125 <_>1 2 18 4 -1.</_> 12126 <_>10 2 9 2 2.</_> 12127 <_>1 4 9 2 2.</_></rects> 12128 <tilted>0</tilted></feature> 12129 <threshold>-3.8899609353393316e-003</threshold> 12130 <left_val>0.4296191930770874</left_val> 12131 <right_val>0.5577110052108765</right_val></_></_> 12132 <_> 12133 <!-- tree 72 --> 12134 <_> 12135 <!-- root node --> 12136 <feature> 12137 <rects> 12138 <_>9 14 1 3 -1.</_> 12139 <_>9 15 1 1 3.</_></rects> 12140 <tilted>0</tilted></feature> 12141 <threshold>4.3947459198534489e-003</threshold> 12142 <left_val>0.4693162143230438</left_val> 12143 <right_val>0.7023944258689880</right_val></_></_> 12144 <_> 12145 <!-- tree 73 --> 12146 <_> 12147 <!-- root node --> 12148 <feature> 12149 <rects> 12150 <_>2 12 18 4 -1.</_> 12151 <_>11 12 9 2 2.</_> 12152 <_>2 14 9 2 2.</_></rects> 12153 <tilted>0</tilted></feature> 12154 <threshold>0.0246784202754498</threshold> 12155 <left_val>0.5242322087287903</left_val> 12156 <right_val>0.3812510073184967</right_val></_></_> 12157 <_> 12158 <!-- tree 74 --> 12159 <_> 12160 <!-- root node --> 12161 <feature> 12162 <rects> 12163 <_>0 12 18 4 -1.</_> 12164 <_>0 12 9 2 2.</_> 12165 <_>9 14 9 2 2.</_></rects> 12166 <tilted>0</tilted></feature> 12167 <threshold>0.0380476787686348</threshold> 12168 <left_val>0.5011739730834961</left_val> 12169 <right_val>0.1687828004360199</right_val></_></_> 12170 <_> 12171 <!-- tree 75 --> 12172 <_> 12173 <!-- root node --> 12174 <feature> 12175 <rects> 12176 <_>11 4 5 3 -1.</_> 12177 <_>11 5 5 1 3.</_></rects> 12178 <tilted>0</tilted></feature> 12179 <threshold>7.9424865543842316e-003</threshold> 12180 <left_val>0.4828582108020783</left_val> 12181 <right_val>0.6369568109512329</right_val></_></_> 12182 <_> 12183 <!-- tree 76 --> 12184 <_> 12185 <!-- root node --> 12186 <feature> 12187 <rects> 12188 <_>6 4 7 3 -1.</_> 12189 <_>6 5 7 1 3.</_></rects> 12190 <tilted>0</tilted></feature> 12191 <threshold>-1.5110049862414598e-003</threshold> 12192 <left_val>0.5906485915184021</left_val> 12193 <right_val>0.4487667977809906</right_val></_></_> 12194 <_> 12195 <!-- tree 77 --> 12196 <_> 12197 <!-- root node --> 12198 <feature> 12199 <rects> 12200 <_>13 17 3 3 -1.</_> 12201 <_>13 18 3 1 3.</_></rects> 12202 <tilted>0</tilted></feature> 12203 <threshold>6.4201741479337215e-003</threshold> 12204 <left_val>0.5241097807884216</left_val> 12205 <right_val>0.2990570068359375</right_val></_></_> 12206 <_> 12207 <!-- tree 78 --> 12208 <_> 12209 <!-- root node --> 12210 <feature> 12211 <rects> 12212 <_>8 1 3 4 -1.</_> 12213 <_>9 1 1 4 3.</_></rects> 12214 <tilted>0</tilted></feature> 12215 <threshold>-2.9802159406244755e-003</threshold> 12216 <left_val>0.3041465878486633</left_val> 12217 <right_val>0.5078489780426025</right_val></_></_> 12218 <_> 12219 <!-- tree 79 --> 12220 <_> 12221 <!-- root node --> 12222 <feature> 12223 <rects> 12224 <_>11 4 2 4 -1.</_> 12225 <_>11 4 1 4 2.</_></rects> 12226 <tilted>0</tilted></feature> 12227 <threshold>-7.4580078944563866e-004</threshold> 12228 <left_val>0.4128139019012451</left_val> 12229 <right_val>0.5256826281547546</right_val></_></_> 12230 <_> 12231 <!-- tree 80 --> 12232 <_> 12233 <!-- root node --> 12234 <feature> 12235 <rects> 12236 <_>0 17 9 3 -1.</_> 12237 <_>3 17 3 3 3.</_></rects> 12238 <tilted>0</tilted></feature> 12239 <threshold>-0.0104709500446916</threshold> 12240 <left_val>0.5808395147323608</left_val> 12241 <right_val>0.4494296014308929</right_val></_></_> 12242 <_> 12243 <!-- tree 81 --> 12244 <_> 12245 <!-- root node --> 12246 <feature> 12247 <rects> 12248 <_>11 0 2 8 -1.</_> 12249 <_>12 0 1 4 2.</_> 12250 <_>11 4 1 4 2.</_></rects> 12251 <tilted>0</tilted></feature> 12252 <threshold>9.3369204550981522e-003</threshold> 12253 <left_val>0.5246552824974060</left_val> 12254 <right_val>0.2658948898315430</right_val></_></_> 12255 <_> 12256 <!-- tree 82 --> 12257 <_> 12258 <!-- root node --> 12259 <feature> 12260 <rects> 12261 <_>0 8 6 12 -1.</_> 12262 <_>0 8 3 6 2.</_> 12263 <_>3 14 3 6 2.</_></rects> 12264 <tilted>0</tilted></feature> 12265 <threshold>0.0279369000345469</threshold> 12266 <left_val>0.4674955010414124</left_val> 12267 <right_val>0.7087256908416748</right_val></_></_> 12268 <_> 12269 <!-- tree 83 --> 12270 <_> 12271 <!-- root node --> 12272 <feature> 12273 <rects> 12274 <_>10 7 4 12 -1.</_> 12275 <_>10 13 4 6 2.</_></rects> 12276 <tilted>0</tilted></feature> 12277 <threshold>7.4277678504586220e-003</threshold> 12278 <left_val>0.5409486889839172</left_val> 12279 <right_val>0.3758518099784851</right_val></_></_> 12280 <_> 12281 <!-- tree 84 --> 12282 <_> 12283 <!-- root node --> 12284 <feature> 12285 <rects> 12286 <_>5 3 8 14 -1.</_> 12287 <_>5 10 8 7 2.</_></rects> 12288 <tilted>0</tilted></feature> 12289 <threshold>-0.0235845092684031</threshold> 12290 <left_val>0.3758639991283417</left_val> 12291 <right_val>0.5238550901412964</right_val></_></_> 12292 <_> 12293 <!-- tree 85 --> 12294 <_> 12295 <!-- root node --> 12296 <feature> 12297 <rects> 12298 <_>14 10 6 1 -1.</_> 12299 <_>14 10 3 1 2.</_></rects> 12300 <tilted>0</tilted></feature> 12301 <threshold>1.1452640173956752e-003</threshold> 12302 <left_val>0.4329578876495361</left_val> 12303 <right_val>0.5804247260093689</right_val></_></_> 12304 <_> 12305 <!-- tree 86 --> 12306 <_> 12307 <!-- root node --> 12308 <feature> 12309 <rects> 12310 <_>0 4 10 4 -1.</_> 12311 <_>0 6 10 2 2.</_></rects> 12312 <tilted>0</tilted></feature> 12313 <threshold>-4.3468660442158580e-004</threshold> 12314 <left_val>0.5280618071556091</left_val> 12315 <right_val>0.3873069882392883</right_val></_></_> 12316 <_> 12317 <!-- tree 87 --> 12318 <_> 12319 <!-- root node --> 12320 <feature> 12321 <rects> 12322 <_>10 0 5 8 -1.</_> 12323 <_>10 4 5 4 2.</_></rects> 12324 <tilted>0</tilted></feature> 12325 <threshold>0.0106485402211547</threshold> 12326 <left_val>0.4902113080024719</left_val> 12327 <right_val>0.5681251883506775</right_val></_></_> 12328 <_> 12329 <!-- tree 88 --> 12330 <_> 12331 <!-- root node --> 12332 <feature> 12333 <rects> 12334 <_>8 1 4 8 -1.</_> 12335 <_>8 1 2 4 2.</_> 12336 <_>10 5 2 4 2.</_></rects> 12337 <tilted>0</tilted></feature> 12338 <threshold>-3.9418050437234342e-004</threshold> 12339 <left_val>0.5570880174636841</left_val> 12340 <right_val>0.4318251013755798</right_val></_></_> 12341 <_> 12342 <!-- tree 89 --> 12343 <_> 12344 <!-- root node --> 12345 <feature> 12346 <rects> 12347 <_>9 11 6 1 -1.</_> 12348 <_>11 11 2 1 3.</_></rects> 12349 <tilted>0</tilted></feature> 12350 <threshold>-1.3270479394122958e-004</threshold> 12351 <left_val>0.5658439993858337</left_val> 12352 <right_val>0.4343554973602295</right_val></_></_> 12353 <_> 12354 <!-- tree 90 --> 12355 <_> 12356 <!-- root node --> 12357 <feature> 12358 <rects> 12359 <_>8 9 3 4 -1.</_> 12360 <_>9 9 1 4 3.</_></rects> 12361 <tilted>0</tilted></feature> 12362 <threshold>-2.0125510636717081e-003</threshold> 12363 <left_val>0.6056739091873169</left_val> 12364 <right_val>0.4537523984909058</right_val></_></_> 12365 <_> 12366 <!-- tree 91 --> 12367 <_> 12368 <!-- root node --> 12369 <feature> 12370 <rects> 12371 <_>18 4 2 6 -1.</_> 12372 <_>18 6 2 2 3.</_></rects> 12373 <tilted>0</tilted></feature> 12374 <threshold>2.4854319635778666e-003</threshold> 12375 <left_val>0.5390477180480957</left_val> 12376 <right_val>0.4138010144233704</right_val></_></_> 12377 <_> 12378 <!-- tree 92 --> 12379 <_> 12380 <!-- root node --> 12381 <feature> 12382 <rects> 12383 <_>8 8 3 4 -1.</_> 12384 <_>9 8 1 4 3.</_></rects> 12385 <tilted>0</tilted></feature> 12386 <threshold>1.8237880431115627e-003</threshold> 12387 <left_val>0.4354828894138336</left_val> 12388 <right_val>0.5717188715934753</right_val></_></_> 12389 <_> 12390 <!-- tree 93 --> 12391 <_> 12392 <!-- root node --> 12393 <feature> 12394 <rects> 12395 <_>7 1 13 3 -1.</_> 12396 <_>7 2 13 1 3.</_></rects> 12397 <tilted>0</tilted></feature> 12398 <threshold>-0.0166566595435143</threshold> 12399 <left_val>0.3010913133621216</left_val> 12400 <right_val>0.5216122865676880</right_val></_></_> 12401 <_> 12402 <!-- tree 94 --> 12403 <_> 12404 <!-- root node --> 12405 <feature> 12406 <rects> 12407 <_>7 13 6 1 -1.</_> 12408 <_>9 13 2 1 3.</_></rects> 12409 <tilted>0</tilted></feature> 12410 <threshold>8.0349558265879750e-004</threshold> 12411 <left_val>0.5300151109695435</left_val> 12412 <right_val>0.3818396925926209</right_val></_></_> 12413 <_> 12414 <!-- tree 95 --> 12415 <_> 12416 <!-- root node --> 12417 <feature> 12418 <rects> 12419 <_>12 11 3 6 -1.</_> 12420 <_>12 13 3 2 3.</_></rects> 12421 <tilted>0</tilted></feature> 12422 <threshold>3.4170378930866718e-003</threshold> 12423 <left_val>0.5328028798103333</left_val> 12424 <right_val>0.4241400063037872</right_val></_></_> 12425 <_> 12426 <!-- tree 96 --> 12427 <_> 12428 <!-- root node --> 12429 <feature> 12430 <rects> 12431 <_>5 11 6 1 -1.</_> 12432 <_>7 11 2 1 3.</_></rects> 12433 <tilted>0</tilted></feature> 12434 <threshold>-3.6222729249857366e-004</threshold> 12435 <left_val>0.5491728186607361</left_val> 12436 <right_val>0.4186977148056030</right_val></_></_> 12437 <_> 12438 <!-- tree 97 --> 12439 <_> 12440 <!-- root node --> 12441 <feature> 12442 <rects> 12443 <_>1 4 18 10 -1.</_> 12444 <_>10 4 9 5 2.</_> 12445 <_>1 9 9 5 2.</_></rects> 12446 <tilted>0</tilted></feature> 12447 <threshold>-0.1163002029061317</threshold> 12448 <left_val>0.1440722048282623</left_val> 12449 <right_val>0.5226451158523560</right_val></_></_> 12450 <_> 12451 <!-- tree 98 --> 12452 <_> 12453 <!-- root node --> 12454 <feature> 12455 <rects> 12456 <_>8 6 4 9 -1.</_> 12457 <_>8 9 4 3 3.</_></rects> 12458 <tilted>0</tilted></feature> 12459 <threshold>-0.0146950101479888</threshold> 12460 <left_val>0.7747725248336792</left_val> 12461 <right_val>0.4715717136859894</right_val></_></_> 12462 <_> 12463 <!-- tree 99 --> 12464 <_> 12465 <!-- root node --> 12466 <feature> 12467 <rects> 12468 <_>8 6 4 3 -1.</_> 12469 <_>8 7 4 1 3.</_></rects> 12470 <tilted>0</tilted></feature> 12471 <threshold>2.1972130052745342e-003</threshold> 12472 <left_val>0.5355433821678162</left_val> 12473 <right_val>0.3315644860267639</right_val></_></_> 12474 <_> 12475 <!-- tree 100 --> 12476 <_> 12477 <!-- root node --> 12478 <feature> 12479 <rects> 12480 <_>8 7 3 3 -1.</_> 12481 <_>9 7 1 3 3.</_></rects> 12482 <tilted>0</tilted></feature> 12483 <threshold>-4.6965209185145795e-004</threshold> 12484 <left_val>0.5767235159873962</left_val> 12485 <right_val>0.4458136856555939</right_val></_></_> 12486 <_> 12487 <!-- tree 101 --> 12488 <_> 12489 <!-- root node --> 12490 <feature> 12491 <rects> 12492 <_>14 15 4 3 -1.</_> 12493 <_>14 16 4 1 3.</_></rects> 12494 <tilted>0</tilted></feature> 12495 <threshold>6.5144998952746391e-003</threshold> 12496 <left_val>0.5215674042701721</left_val> 12497 <right_val>0.3647888898849487</right_val></_></_> 12498 <_> 12499 <!-- tree 102 --> 12500 <_> 12501 <!-- root node --> 12502 <feature> 12503 <rects> 12504 <_>5 10 3 10 -1.</_> 12505 <_>6 10 1 10 3.</_></rects> 12506 <tilted>0</tilted></feature> 12507 <threshold>0.0213000606745481</threshold> 12508 <left_val>0.4994204938411713</left_val> 12509 <right_val>0.1567950993776321</right_val></_></_> 12510 <_> 12511 <!-- tree 103 --> 12512 <_> 12513 <!-- root node --> 12514 <feature> 12515 <rects> 12516 <_>8 15 4 3 -1.</_> 12517 <_>8 16 4 1 3.</_></rects> 12518 <tilted>0</tilted></feature> 12519 <threshold>3.1881409231573343e-003</threshold> 12520 <left_val>0.4742200076580048</left_val> 12521 <right_val>0.6287270188331604</right_val></_></_> 12522 <_> 12523 <!-- tree 104 --> 12524 <_> 12525 <!-- root node --> 12526 <feature> 12527 <rects> 12528 <_>0 8 1 6 -1.</_> 12529 <_>0 10 1 2 3.</_></rects> 12530 <tilted>0</tilted></feature> 12531 <threshold>9.0019777417182922e-004</threshold> 12532 <left_val>0.5347954034805298</left_val> 12533 <right_val>0.3943752050399780</right_val></_></_> 12534 <_> 12535 <!-- tree 105 --> 12536 <_> 12537 <!-- root node --> 12538 <feature> 12539 <rects> 12540 <_>10 15 1 3 -1.</_> 12541 <_>10 16 1 1 3.</_></rects> 12542 <tilted>0</tilted></feature> 12543 <threshold>-5.1772277802228928e-003</threshold> 12544 <left_val>0.6727191805839539</left_val> 12545 <right_val>0.5013138055801392</right_val></_></_> 12546 <_> 12547 <!-- tree 106 --> 12548 <_> 12549 <!-- root node --> 12550 <feature> 12551 <rects> 12552 <_>2 15 4 3 -1.</_> 12553 <_>2 16 4 1 3.</_></rects> 12554 <tilted>0</tilted></feature> 12555 <threshold>-4.3764649890363216e-003</threshold> 12556 <left_val>0.3106675148010254</left_val> 12557 <right_val>0.5128793120384216</right_val></_></_> 12558 <_> 12559 <!-- tree 107 --> 12560 <_> 12561 <!-- root node --> 12562 <feature> 12563 <rects> 12564 <_>18 3 2 8 -1.</_> 12565 <_>19 3 1 4 2.</_> 12566 <_>18 7 1 4 2.</_></rects> 12567 <tilted>0</tilted></feature> 12568 <threshold>2.6299960445612669e-003</threshold> 12569 <left_val>0.4886310100555420</left_val> 12570 <right_val>0.5755215883255005</right_val></_></_> 12571 <_> 12572 <!-- tree 108 --> 12573 <_> 12574 <!-- root node --> 12575 <feature> 12576 <rects> 12577 <_>0 3 2 8 -1.</_> 12578 <_>0 3 1 4 2.</_> 12579 <_>1 7 1 4 2.</_></rects> 12580 <tilted>0</tilted></feature> 12581 <threshold>-2.0458688959479332e-003</threshold> 12582 <left_val>0.6025794148445129</left_val> 12583 <right_val>0.4558076858520508</right_val></_></_> 12584 <_> 12585 <!-- tree 109 --> 12586 <_> 12587 <!-- root node --> 12588 <feature> 12589 <rects> 12590 <_>3 7 14 10 -1.</_> 12591 <_>10 7 7 5 2.</_> 12592 <_>3 12 7 5 2.</_></rects> 12593 <tilted>0</tilted></feature> 12594 <threshold>0.0694827064871788</threshold> 12595 <left_val>0.5240747928619385</left_val> 12596 <right_val>0.2185259014368057</right_val></_></_> 12597 <_> 12598 <!-- tree 110 --> 12599 <_> 12600 <!-- root node --> 12601 <feature> 12602 <rects> 12603 <_>0 7 19 3 -1.</_> 12604 <_>0 8 19 1 3.</_></rects> 12605 <tilted>0</tilted></feature> 12606 <threshold>0.0240489393472672</threshold> 12607 <left_val>0.5011867284774780</left_val> 12608 <right_val>0.2090622037649155</right_val></_></_> 12609 <_> 12610 <!-- tree 111 --> 12611 <_> 12612 <!-- root node --> 12613 <feature> 12614 <rects> 12615 <_>12 6 3 3 -1.</_> 12616 <_>12 7 3 1 3.</_></rects> 12617 <tilted>0</tilted></feature> 12618 <threshold>3.1095340382307768e-003</threshold> 12619 <left_val>0.4866712093353272</left_val> 12620 <right_val>0.7108548283576965</right_val></_></_> 12621 <_> 12622 <!-- tree 112 --> 12623 <_> 12624 <!-- root node --> 12625 <feature> 12626 <rects> 12627 <_>0 6 1 3 -1.</_> 12628 <_>0 7 1 1 3.</_></rects> 12629 <tilted>0</tilted></feature> 12630 <threshold>-1.2503260513767600e-003</threshold> 12631 <left_val>0.3407891094684601</left_val> 12632 <right_val>0.5156195163726807</right_val></_></_> 12633 <_> 12634 <!-- tree 113 --> 12635 <_> 12636 <!-- root node --> 12637 <feature> 12638 <rects> 12639 <_>12 6 3 3 -1.</_> 12640 <_>12 7 3 1 3.</_></rects> 12641 <tilted>0</tilted></feature> 12642 <threshold>-1.0281190043315291e-003</threshold> 12643 <left_val>0.5575572252273560</left_val> 12644 <right_val>0.4439432024955750</right_val></_></_> 12645 <_> 12646 <!-- tree 114 --> 12647 <_> 12648 <!-- root node --> 12649 <feature> 12650 <rects> 12651 <_>5 6 3 3 -1.</_> 12652 <_>5 7 3 1 3.</_></rects> 12653 <tilted>0</tilted></feature> 12654 <threshold>-8.8893622159957886e-003</threshold> 12655 <left_val>0.6402000784873962</left_val> 12656 <right_val>0.4620442092418671</right_val></_></_> 12657 <_> 12658 <!-- tree 115 --> 12659 <_> 12660 <!-- root node --> 12661 <feature> 12662 <rects> 12663 <_>8 2 4 2 -1.</_> 12664 <_>8 3 4 1 2.</_></rects> 12665 <tilted>0</tilted></feature> 12666 <threshold>-6.1094801640138030e-004</threshold> 12667 <left_val>0.3766441941261292</left_val> 12668 <right_val>0.5448899865150452</right_val></_></_> 12669 <_> 12670 <!-- tree 116 --> 12671 <_> 12672 <!-- root node --> 12673 <feature> 12674 <rects> 12675 <_>6 3 4 12 -1.</_> 12676 <_>8 3 2 12 2.</_></rects> 12677 <tilted>0</tilted></feature> 12678 <threshold>-5.7686357758939266e-003</threshold> 12679 <left_val>0.3318648934364319</left_val> 12680 <right_val>0.5133677124977112</right_val></_></_> 12681 <_> 12682 <!-- tree 117 --> 12683 <_> 12684 <!-- root node --> 12685 <feature> 12686 <rects> 12687 <_>13 6 2 3 -1.</_> 12688 <_>13 7 2 1 3.</_></rects> 12689 <tilted>0</tilted></feature> 12690 <threshold>1.8506490159779787e-003</threshold> 12691 <left_val>0.4903570115566254</left_val> 12692 <right_val>0.6406934857368469</right_val></_></_> 12693 <_> 12694 <!-- tree 118 --> 12695 <_> 12696 <!-- root node --> 12697 <feature> 12698 <rects> 12699 <_>0 10 20 4 -1.</_> 12700 <_>0 12 20 2 2.</_></rects> 12701 <tilted>0</tilted></feature> 12702 <threshold>-0.0997994691133499</threshold> 12703 <left_val>0.1536051034927368</left_val> 12704 <right_val>0.5015562176704407</right_val></_></_> 12705 <_> 12706 <!-- tree 119 --> 12707 <_> 12708 <!-- root node --> 12709 <feature> 12710 <rects> 12711 <_>2 0 17 14 -1.</_> 12712 <_>2 7 17 7 2.</_></rects> 12713 <tilted>0</tilted></feature> 12714 <threshold>-0.3512834906578064</threshold> 12715 <left_val>0.0588231310248375</left_val> 12716 <right_val>0.5174378752708435</right_val></_></_> 12717 <_> 12718 <!-- tree 120 --> 12719 <_> 12720 <!-- root node --> 12721 <feature> 12722 <rects> 12723 <_>0 0 6 10 -1.</_> 12724 <_>0 0 3 5 2.</_> 12725 <_>3 5 3 5 2.</_></rects> 12726 <tilted>0</tilted></feature> 12727 <threshold>-0.0452445708215237</threshold> 12728 <left_val>0.6961488723754883</left_val> 12729 <right_val>0.4677872955799103</right_val></_></_> 12730 <_> 12731 <!-- tree 121 --> 12732 <_> 12733 <!-- root node --> 12734 <feature> 12735 <rects> 12736 <_>14 6 6 4 -1.</_> 12737 <_>14 6 3 4 2.</_></rects> 12738 <tilted>0</tilted></feature> 12739 <threshold>0.0714815780520439</threshold> 12740 <left_val>0.5167986154556274</left_val> 12741 <right_val>0.1038092970848084</right_val></_></_> 12742 <_> 12743 <!-- tree 122 --> 12744 <_> 12745 <!-- root node --> 12746 <feature> 12747 <rects> 12748 <_>0 6 6 4 -1.</_> 12749 <_>3 6 3 4 2.</_></rects> 12750 <tilted>0</tilted></feature> 12751 <threshold>2.1895780228078365e-003</threshold> 12752 <left_val>0.4273078143596649</left_val> 12753 <right_val>0.5532060861587524</right_val></_></_> 12754 <_> 12755 <!-- tree 123 --> 12756 <_> 12757 <!-- root node --> 12758 <feature> 12759 <rects> 12760 <_>13 2 7 2 -1.</_> 12761 <_>13 3 7 1 2.</_></rects> 12762 <tilted>0</tilted></feature> 12763 <threshold>-5.9242651332169771e-004</threshold> 12764 <left_val>0.4638943970203400</left_val> 12765 <right_val>0.5276389122009277</right_val></_></_> 12766 <_> 12767 <!-- tree 124 --> 12768 <_> 12769 <!-- root node --> 12770 <feature> 12771 <rects> 12772 <_>0 2 7 2 -1.</_> 12773 <_>0 3 7 1 2.</_></rects> 12774 <tilted>0</tilted></feature> 12775 <threshold>1.6788389766588807e-003</threshold> 12776 <left_val>0.5301648974418640</left_val> 12777 <right_val>0.3932034969329834</right_val></_></_> 12778 <_> 12779 <!-- tree 125 --> 12780 <_> 12781 <!-- root node --> 12782 <feature> 12783 <rects> 12784 <_>6 11 14 2 -1.</_> 12785 <_>13 11 7 1 2.</_> 12786 <_>6 12 7 1 2.</_></rects> 12787 <tilted>0</tilted></feature> 12788 <threshold>-2.2163488902151585e-003</threshold> 12789 <left_val>0.5630694031715393</left_val> 12790 <right_val>0.4757033884525299</right_val></_></_> 12791 <_> 12792 <!-- tree 126 --> 12793 <_> 12794 <!-- root node --> 12795 <feature> 12796 <rects> 12797 <_>8 5 2 2 -1.</_> 12798 <_>8 5 1 1 2.</_> 12799 <_>9 6 1 1 2.</_></rects> 12800 <tilted>0</tilted></feature> 12801 <threshold>1.1568699846975505e-004</threshold> 12802 <left_val>0.4307535886764526</left_val> 12803 <right_val>0.5535702705383301</right_val></_></_> 12804 <_> 12805 <!-- tree 127 --> 12806 <_> 12807 <!-- root node --> 12808 <feature> 12809 <rects> 12810 <_>13 9 2 3 -1.</_> 12811 <_>13 9 1 3 2.</_></rects> 12812 <tilted>0</tilted></feature> 12813 <threshold>-7.2017288766801357e-003</threshold> 12814 <left_val>0.1444882005453110</left_val> 12815 <right_val>0.5193064212799072</right_val></_></_> 12816 <_> 12817 <!-- tree 128 --> 12818 <_> 12819 <!-- root node --> 12820 <feature> 12821 <rects> 12822 <_>1 1 3 12 -1.</_> 12823 <_>2 1 1 12 3.</_></rects> 12824 <tilted>0</tilted></feature> 12825 <threshold>8.9081272017210722e-004</threshold> 12826 <left_val>0.4384432137012482</left_val> 12827 <right_val>0.5593621134757996</right_val></_></_> 12828 <_> 12829 <!-- tree 129 --> 12830 <_> 12831 <!-- root node --> 12832 <feature> 12833 <rects> 12834 <_>17 4 1 3 -1.</_> 12835 <_>17 5 1 1 3.</_></rects> 12836 <tilted>0</tilted></feature> 12837 <threshold>1.9605009583756328e-004</threshold> 12838 <left_val>0.5340415835380554</left_val> 12839 <right_val>0.4705956876277924</right_val></_></_> 12840 <_> 12841 <!-- tree 130 --> 12842 <_> 12843 <!-- root node --> 12844 <feature> 12845 <rects> 12846 <_>2 4 1 3 -1.</_> 12847 <_>2 5 1 1 3.</_></rects> 12848 <tilted>0</tilted></feature> 12849 <threshold>5.2022142335772514e-004</threshold> 12850 <left_val>0.5213856101036072</left_val> 12851 <right_val>0.3810079097747803</right_val></_></_> 12852 <_> 12853 <!-- tree 131 --> 12854 <_> 12855 <!-- root node --> 12856 <feature> 12857 <rects> 12858 <_>14 5 1 3 -1.</_> 12859 <_>14 6 1 1 3.</_></rects> 12860 <tilted>0</tilted></feature> 12861 <threshold>9.4588572392240167e-004</threshold> 12862 <left_val>0.4769414961338043</left_val> 12863 <right_val>0.6130738854408264</right_val></_></_> 12864 <_> 12865 <!-- tree 132 --> 12866 <_> 12867 <!-- root node --> 12868 <feature> 12869 <rects> 12870 <_>7 16 2 3 -1.</_> 12871 <_>7 17 2 1 3.</_></rects> 12872 <tilted>0</tilted></feature> 12873 <threshold>9.1698471806012094e-005</threshold> 12874 <left_val>0.4245009124279022</left_val> 12875 <right_val>0.5429363250732422</right_val></_></_> 12876 <_> 12877 <!-- tree 133 --> 12878 <_> 12879 <!-- root node --> 12880 <feature> 12881 <rects> 12882 <_>8 13 4 6 -1.</_> 12883 <_>10 13 2 3 2.</_> 12884 <_>8 16 2 3 2.</_></rects> 12885 <tilted>0</tilted></feature> 12886 <threshold>2.1833200007677078e-003</threshold> 12887 <left_val>0.5457730889320374</left_val> 12888 <right_val>0.4191075861454010</right_val></_></_> 12889 <_> 12890 <!-- tree 134 --> 12891 <_> 12892 <!-- root node --> 12893 <feature> 12894 <rects> 12895 <_>5 5 1 3 -1.</_> 12896 <_>5 6 1 1 3.</_></rects> 12897 <tilted>0</tilted></feature> 12898 <threshold>-8.6039671441540122e-004</threshold> 12899 <left_val>0.5764588713645935</left_val> 12900 <right_val>0.4471659958362579</right_val></_></_> 12901 <_> 12902 <!-- tree 135 --> 12903 <_> 12904 <!-- root node --> 12905 <feature> 12906 <rects> 12907 <_>16 0 4 20 -1.</_> 12908 <_>16 0 2 20 2.</_></rects> 12909 <tilted>0</tilted></feature> 12910 <threshold>-0.0132362395524979</threshold> 12911 <left_val>0.6372823119163513</left_val> 12912 <right_val>0.4695009887218475</right_val></_></_> 12913 <_> 12914 <!-- tree 136 --> 12915 <_> 12916 <!-- root node --> 12917 <feature> 12918 <rects> 12919 <_>5 1 2 6 -1.</_> 12920 <_>5 1 1 3 2.</_> 12921 <_>6 4 1 3 2.</_></rects> 12922 <tilted>0</tilted></feature> 12923 <threshold>4.3376701069064438e-004</threshold> 12924 <left_val>0.5317873954772949</left_val> 12925 <right_val>0.3945829868316650</right_val></_></_></trees> 12926 <stage_threshold>67.6989212036132810</stage_threshold> 12927 <parent>14</parent> 12928 <next>-1</next></_> 12929 <_> 12930 <!-- stage 16 --> 12931 <trees> 12932 <_> 12933 <!-- tree 0 --> 12934 <_> 12935 <!-- root node --> 12936 <feature> 12937 <rects> 12938 <_>5 4 10 4 -1.</_> 12939 <_>5 6 10 2 2.</_></rects> 12940 <tilted>0</tilted></feature> 12941 <threshold>-0.0248471498489380</threshold> 12942 <left_val>0.6555516719818115</left_val> 12943 <right_val>0.3873311877250671</right_val></_></_> 12944 <_> 12945 <!-- tree 1 --> 12946 <_> 12947 <!-- root node --> 12948 <feature> 12949 <rects> 12950 <_>15 2 4 12 -1.</_> 12951 <_>15 2 2 12 2.</_></rects> 12952 <tilted>0</tilted></feature> 12953 <threshold>6.1348611488938332e-003</threshold> 12954 <left_val>0.3748072087764740</left_val> 12955 <right_val>0.5973997712135315</right_val></_></_> 12956 <_> 12957 <!-- tree 2 --> 12958 <_> 12959 <!-- root node --> 12960 <feature> 12961 <rects> 12962 <_>7 6 4 12 -1.</_> 12963 <_>7 12 4 6 2.</_></rects> 12964 <tilted>0</tilted></feature> 12965 <threshold>6.4498498104512691e-003</threshold> 12966 <left_val>0.5425491929054260</left_val> 12967 <right_val>0.2548811137676239</right_val></_></_> 12968 <_> 12969 <!-- tree 3 --> 12970 <_> 12971 <!-- root node --> 12972 <feature> 12973 <rects> 12974 <_>14 5 1 8 -1.</_> 12975 <_>14 9 1 4 2.</_></rects> 12976 <tilted>0</tilted></feature> 12977 <threshold>6.3491211039945483e-004</threshold> 12978 <left_val>0.2462442070245743</left_val> 12979 <right_val>0.5387253761291504</right_val></_></_> 12980 <_> 12981 <!-- tree 4 --> 12982 <_> 12983 <!-- root node --> 12984 <feature> 12985 <rects> 12986 <_>1 4 14 10 -1.</_> 12987 <_>1 4 7 5 2.</_> 12988 <_>8 9 7 5 2.</_></rects> 12989 <tilted>0</tilted></feature> 12990 <threshold>1.4023890253156424e-003</threshold> 12991 <left_val>0.5594322085380554</left_val> 12992 <right_val>0.3528657853603363</right_val></_></_> 12993 <_> 12994 <!-- tree 5 --> 12995 <_> 12996 <!-- root node --> 12997 <feature> 12998 <rects> 12999 <_>11 6 6 14 -1.</_> 13000 <_>14 6 3 7 2.</_> 13001 <_>11 13 3 7 2.</_></rects> 13002 <tilted>0</tilted></feature> 13003 <threshold>3.0044000595808029e-004</threshold> 13004 <left_val>0.3958503901958466</left_val> 13005 <right_val>0.5765938162803650</right_val></_></_> 13006 <_> 13007 <!-- tree 6 --> 13008 <_> 13009 <!-- root node --> 13010 <feature> 13011 <rects> 13012 <_>3 6 6 14 -1.</_> 13013 <_>3 6 3 7 2.</_> 13014 <_>6 13 3 7 2.</_></rects> 13015 <tilted>0</tilted></feature> 13016 <threshold>1.0042409849120304e-004</threshold> 13017 <left_val>0.3698996901512146</left_val> 13018 <right_val>0.5534998178482056</right_val></_></_> 13019 <_> 13020 <!-- tree 7 --> 13021 <_> 13022 <!-- root node --> 13023 <feature> 13024 <rects> 13025 <_>4 9 15 2 -1.</_> 13026 <_>9 9 5 2 3.</_></rects> 13027 <tilted>0</tilted></feature> 13028 <threshold>-5.0841490738093853e-003</threshold> 13029 <left_val>0.3711090981960297</left_val> 13030 <right_val>0.5547800064086914</right_val></_></_> 13031 <_> 13032 <!-- tree 8 --> 13033 <_> 13034 <!-- root node --> 13035 <feature> 13036 <rects> 13037 <_>7 14 6 3 -1.</_> 13038 <_>7 15 6 1 3.</_></rects> 13039 <tilted>0</tilted></feature> 13040 <threshold>-0.0195372607558966</threshold> 13041 <left_val>0.7492755055427551</left_val> 13042 <right_val>0.4579297006130219</right_val></_></_> 13043 <_> 13044 <!-- tree 9 --> 13045 <_> 13046 <!-- root node --> 13047 <feature> 13048 <rects> 13049 <_>6 3 14 4 -1.</_> 13050 <_>13 3 7 2 2.</_> 13051 <_>6 5 7 2 2.</_></rects> 13052 <tilted>0</tilted></feature> 13053 <threshold>-7.4532740654831287e-006</threshold> 13054 <left_val>0.5649787187576294</left_val> 13055 <right_val>0.3904069960117340</right_val></_></_> 13056 <_> 13057 <!-- tree 10 --> 13058 <_> 13059 <!-- root node --> 13060 <feature> 13061 <rects> 13062 <_>1 9 15 2 -1.</_> 13063 <_>6 9 5 2 3.</_></rects> 13064 <tilted>0</tilted></feature> 13065 <threshold>-3.6079459823668003e-003</threshold> 13066 <left_val>0.3381088078022003</left_val> 13067 <right_val>0.5267801284790039</right_val></_></_> 13068 <_> 13069 <!-- tree 11 --> 13070 <_> 13071 <!-- root node --> 13072 <feature> 13073 <rects> 13074 <_>6 11 8 9 -1.</_> 13075 <_>6 14 8 3 3.</_></rects> 13076 <tilted>0</tilted></feature> 13077 <threshold>2.0697501022368670e-003</threshold> 13078 <left_val>0.5519291162490845</left_val> 13079 <right_val>0.3714388906955719</right_val></_></_> 13080 <_> 13081 <!-- tree 12 --> 13082 <_> 13083 <!-- root node --> 13084 <feature> 13085 <rects> 13086 <_>7 4 3 8 -1.</_> 13087 <_>8 4 1 8 3.</_></rects> 13088 <tilted>0</tilted></feature> 13089 <threshold>-4.6463840408250690e-004</threshold> 13090 <left_val>0.5608214735984802</left_val> 13091 <right_val>0.4113566875457764</right_val></_></_> 13092 <_> 13093 <!-- tree 13 --> 13094 <_> 13095 <!-- root node --> 13096 <feature> 13097 <rects> 13098 <_>14 6 2 6 -1.</_> 13099 <_>14 9 2 3 2.</_></rects> 13100 <tilted>0</tilted></feature> 13101 <threshold>7.5490452582016587e-004</threshold> 13102 <left_val>0.3559206128120422</left_val> 13103 <right_val>0.5329356193542481</right_val></_></_> 13104 <_> 13105 <!-- tree 14 --> 13106 <_> 13107 <!-- root node --> 13108 <feature> 13109 <rects> 13110 <_>5 7 6 4 -1.</_> 13111 <_>5 7 3 2 2.</_> 13112 <_>8 9 3 2 2.</_></rects> 13113 <tilted>0</tilted></feature> 13114 <threshold>-9.8322238773107529e-004</threshold> 13115 <left_val>0.5414795875549316</left_val> 13116 <right_val>0.3763205111026764</right_val></_></_> 13117 <_> 13118 <!-- tree 15 --> 13119 <_> 13120 <!-- root node --> 13121 <feature> 13122 <rects> 13123 <_>1 1 18 19 -1.</_> 13124 <_>7 1 6 19 3.</_></rects> 13125 <tilted>0</tilted></feature> 13126 <threshold>-0.0199406407773495</threshold> 13127 <left_val>0.6347903013229370</left_val> 13128 <right_val>0.4705299139022827</right_val></_></_> 13129 <_> 13130 <!-- tree 16 --> 13131 <_> 13132 <!-- root node --> 13133 <feature> 13134 <rects> 13135 <_>1 2 6 5 -1.</_> 13136 <_>4 2 3 5 2.</_></rects> 13137 <tilted>0</tilted></feature> 13138 <threshold>3.7680300883948803e-003</threshold> 13139 <left_val>0.3913489878177643</left_val> 13140 <right_val>0.5563716292381287</right_val></_></_> 13141 <_> 13142 <!-- tree 17 --> 13143 <_> 13144 <!-- root node --> 13145 <feature> 13146 <rects> 13147 <_>12 17 6 2 -1.</_> 13148 <_>12 18 6 1 2.</_></rects> 13149 <tilted>0</tilted></feature> 13150 <threshold>-9.4528505578637123e-003</threshold> 13151 <left_val>0.2554892897605896</left_val> 13152 <right_val>0.5215116739273071</right_val></_></_> 13153 <_> 13154 <!-- tree 18 --> 13155 <_> 13156 <!-- root node --> 13157 <feature> 13158 <rects> 13159 <_>2 17 6 2 -1.</_> 13160 <_>2 18 6 1 2.</_></rects> 13161 <tilted>0</tilted></feature> 13162 <threshold>2.9560849070549011e-003</threshold> 13163 <left_val>0.5174679160118103</left_val> 13164 <right_val>0.3063920140266419</right_val></_></_> 13165 <_> 13166 <!-- tree 19 --> 13167 <_> 13168 <!-- root node --> 13169 <feature> 13170 <rects> 13171 <_>17 3 3 6 -1.</_> 13172 <_>17 5 3 2 3.</_></rects> 13173 <tilted>0</tilted></feature> 13174 <threshold>9.1078737750649452e-003</threshold> 13175 <left_val>0.5388448238372803</left_val> 13176 <right_val>0.2885963022708893</right_val></_></_> 13177 <_> 13178 <!-- tree 20 --> 13179 <_> 13180 <!-- root node --> 13181 <feature> 13182 <rects> 13183 <_>8 17 3 3 -1.</_> 13184 <_>8 18 3 1 3.</_></rects> 13185 <tilted>0</tilted></feature> 13186 <threshold>1.8219229532405734e-003</threshold> 13187 <left_val>0.4336043000221252</left_val> 13188 <right_val>0.5852196812629700</right_val></_></_> 13189 <_> 13190 <!-- tree 21 --> 13191 <_> 13192 <!-- root node --> 13193 <feature> 13194 <rects> 13195 <_>10 13 2 6 -1.</_> 13196 <_>10 16 2 3 2.</_></rects> 13197 <tilted>0</tilted></feature> 13198 <threshold>0.0146887395530939</threshold> 13199 <left_val>0.5287361741065979</left_val> 13200 <right_val>0.2870005965232849</right_val></_></_> 13201 <_> 13202 <!-- tree 22 --> 13203 <_> 13204 <!-- root node --> 13205 <feature> 13206 <rects> 13207 <_>7 13 6 3 -1.</_> 13208 <_>7 14 6 1 3.</_></rects> 13209 <tilted>0</tilted></feature> 13210 <threshold>-0.0143879903480411</threshold> 13211 <left_val>0.7019448876380920</left_val> 13212 <right_val>0.4647370874881744</right_val></_></_> 13213 <_> 13214 <!-- tree 23 --> 13215 <_> 13216 <!-- root node --> 13217 <feature> 13218 <rects> 13219 <_>17 3 3 6 -1.</_> 13220 <_>17 5 3 2 3.</_></rects> 13221 <tilted>0</tilted></feature> 13222 <threshold>-0.0189866498112679</threshold> 13223 <left_val>0.2986552119255066</left_val> 13224 <right_val>0.5247011780738831</right_val></_></_> 13225 <_> 13226 <!-- tree 24 --> 13227 <_> 13228 <!-- root node --> 13229 <feature> 13230 <rects> 13231 <_>8 13 2 3 -1.</_> 13232 <_>8 14 2 1 3.</_></rects> 13233 <tilted>0</tilted></feature> 13234 <threshold>1.1527639580890536e-003</threshold> 13235 <left_val>0.4323473870754242</left_val> 13236 <right_val>0.5931661725044251</right_val></_></_> 13237 <_> 13238 <!-- tree 25 --> 13239 <_> 13240 <!-- root node --> 13241 <feature> 13242 <rects> 13243 <_>9 3 6 2 -1.</_> 13244 <_>11 3 2 2 3.</_></rects> 13245 <tilted>0</tilted></feature> 13246 <threshold>0.0109336702153087</threshold> 13247 <left_val>0.5286864042282105</left_val> 13248 <right_val>0.3130319118499756</right_val></_></_> 13249 <_> 13250 <!-- tree 26 --> 13251 <_> 13252 <!-- root node --> 13253 <feature> 13254 <rects> 13255 <_>0 3 3 6 -1.</_> 13256 <_>0 5 3 2 3.</_></rects> 13257 <tilted>0</tilted></feature> 13258 <threshold>-0.0149327302351594</threshold> 13259 <left_val>0.2658419013023377</left_val> 13260 <right_val>0.5084077119827271</right_val></_></_> 13261 <_> 13262 <!-- tree 27 --> 13263 <_> 13264 <!-- root node --> 13265 <feature> 13266 <rects> 13267 <_>8 5 4 6 -1.</_> 13268 <_>8 7 4 2 3.</_></rects> 13269 <tilted>0</tilted></feature> 13270 <threshold>-2.9970539617352188e-004</threshold> 13271 <left_val>0.5463526844978333</left_val> 13272 <right_val>0.3740724027156830</right_val></_></_> 13273 <_> 13274 <!-- tree 28 --> 13275 <_> 13276 <!-- root node --> 13277 <feature> 13278 <rects> 13279 <_>5 5 3 2 -1.</_> 13280 <_>5 6 3 1 2.</_></rects> 13281 <tilted>0</tilted></feature> 13282 <threshold>4.1677621193230152e-003</threshold> 13283 <left_val>0.4703496992588043</left_val> 13284 <right_val>0.7435721755027771</right_val></_></_> 13285 <_> 13286 <!-- tree 29 --> 13287 <_> 13288 <!-- root node --> 13289 <feature> 13290 <rects> 13291 <_>10 1 3 4 -1.</_> 13292 <_>11 1 1 4 3.</_></rects> 13293 <tilted>0</tilted></feature> 13294 <threshold>-6.3905320130288601e-003</threshold> 13295 <left_val>0.2069258987903595</left_val> 13296 <right_val>0.5280538201332092</right_val></_></_> 13297 <_> 13298 <!-- tree 30 --> 13299 <_> 13300 <!-- root node --> 13301 <feature> 13302 <rects> 13303 <_>1 2 5 9 -1.</_> 13304 <_>1 5 5 3 3.</_></rects> 13305 <tilted>0</tilted></feature> 13306 <threshold>4.5029609464108944e-003</threshold> 13307 <left_val>0.5182648897171021</left_val> 13308 <right_val>0.3483543097972870</right_val></_></_> 13309 <_> 13310 <!-- tree 31 --> 13311 <_> 13312 <!-- root node --> 13313 <feature> 13314 <rects> 13315 <_>13 6 2 3 -1.</_> 13316 <_>13 7 2 1 3.</_></rects> 13317 <tilted>0</tilted></feature> 13318 <threshold>-9.2040365561842918e-003</threshold> 13319 <left_val>0.6803777217864990</left_val> 13320 <right_val>0.4932360053062439</right_val></_></_> 13321 <_> 13322 <!-- tree 32 --> 13323 <_> 13324 <!-- root node --> 13325 <feature> 13326 <rects> 13327 <_>0 6 14 3 -1.</_> 13328 <_>7 6 7 3 2.</_></rects> 13329 <tilted>0</tilted></feature> 13330 <threshold>0.0813272595405579</threshold> 13331 <left_val>0.5058398842811585</left_val> 13332 <right_val>0.2253051996231079</right_val></_></_> 13333 <_> 13334 <!-- tree 33 --> 13335 <_> 13336 <!-- root node --> 13337 <feature> 13338 <rects> 13339 <_>2 11 18 8 -1.</_> 13340 <_>2 15 18 4 2.</_></rects> 13341 <tilted>0</tilted></feature> 13342 <threshold>-0.1507928073406220</threshold> 13343 <left_val>0.2963424921035767</left_val> 13344 <right_val>0.5264679789543152</right_val></_></_> 13345 <_> 13346 <!-- tree 34 --> 13347 <_> 13348 <!-- root node --> 13349 <feature> 13350 <rects> 13351 <_>5 6 2 3 -1.</_> 13352 <_>5 7 2 1 3.</_></rects> 13353 <tilted>0</tilted></feature> 13354 <threshold>3.3179009333252907e-003</threshold> 13355 <left_val>0.4655495882034302</left_val> 13356 <right_val>0.7072932124137878</right_val></_></_> 13357 <_> 13358 <!-- tree 35 --> 13359 <_> 13360 <!-- root node --> 13361 <feature> 13362 <rects> 13363 <_>10 6 4 2 -1.</_> 13364 <_>12 6 2 1 2.</_> 13365 <_>10 7 2 1 2.</_></rects> 13366 <tilted>0</tilted></feature> 13367 <threshold>7.7402801252901554e-004</threshold> 13368 <left_val>0.4780347943305969</left_val> 13369 <right_val>0.5668237805366516</right_val></_></_> 13370 <_> 13371 <!-- tree 36 --> 13372 <_> 13373 <!-- root node --> 13374 <feature> 13375 <rects> 13376 <_>6 6 4 2 -1.</_> 13377 <_>6 6 2 1 2.</_> 13378 <_>8 7 2 1 2.</_></rects> 13379 <tilted>0</tilted></feature> 13380 <threshold>6.8199541419744492e-004</threshold> 13381 <left_val>0.4286996126174927</left_val> 13382 <right_val>0.5722156763076782</right_val></_></_> 13383 <_> 13384 <!-- tree 37 --> 13385 <_> 13386 <!-- root node --> 13387 <feature> 13388 <rects> 13389 <_>10 1 3 4 -1.</_> 13390 <_>11 1 1 4 3.</_></rects> 13391 <tilted>0</tilted></feature> 13392 <threshold>5.3671570494771004e-003</threshold> 13393 <left_val>0.5299307107925415</left_val> 13394 <right_val>0.3114621937274933</right_val></_></_> 13395 <_> 13396 <!-- tree 38 --> 13397 <_> 13398 <!-- root node --> 13399 <feature> 13400 <rects> 13401 <_>7 1 2 7 -1.</_> 13402 <_>8 1 1 7 2.</_></rects> 13403 <tilted>0</tilted></feature> 13404 <threshold>9.7018666565418243e-005</threshold> 13405 <left_val>0.3674638867378235</left_val> 13406 <right_val>0.5269461870193481</right_val></_></_> 13407 <_> 13408 <!-- tree 39 --> 13409 <_> 13410 <!-- root node --> 13411 <feature> 13412 <rects> 13413 <_>4 2 15 14 -1.</_> 13414 <_>4 9 15 7 2.</_></rects> 13415 <tilted>0</tilted></feature> 13416 <threshold>-0.1253408938646317</threshold> 13417 <left_val>0.2351492047309876</left_val> 13418 <right_val>0.5245791077613831</right_val></_></_> 13419 <_> 13420 <!-- tree 40 --> 13421 <_> 13422 <!-- root node --> 13423 <feature> 13424 <rects> 13425 <_>8 7 3 2 -1.</_> 13426 <_>9 7 1 2 3.</_></rects> 13427 <tilted>0</tilted></feature> 13428 <threshold>-5.2516269497573376e-003</threshold> 13429 <left_val>0.7115936875343323</left_val> 13430 <right_val>0.4693767130374908</right_val></_></_> 13431 <_> 13432 <!-- tree 41 --> 13433 <_> 13434 <!-- root node --> 13435 <feature> 13436 <rects> 13437 <_>2 3 18 4 -1.</_> 13438 <_>11 3 9 2 2.</_> 13439 <_>2 5 9 2 2.</_></rects> 13440 <tilted>0</tilted></feature> 13441 <threshold>-7.8342109918594360e-003</threshold> 13442 <left_val>0.4462651014328003</left_val> 13443 <right_val>0.5409085750579834</right_val></_></_> 13444 <_> 13445 <!-- tree 42 --> 13446 <_> 13447 <!-- root node --> 13448 <feature> 13449 <rects> 13450 <_>9 7 2 2 -1.</_> 13451 <_>10 7 1 2 2.</_></rects> 13452 <tilted>0</tilted></feature> 13453 <threshold>-1.1310069821774960e-003</threshold> 13454 <left_val>0.5945618748664856</left_val> 13455 <right_val>0.4417662024497986</right_val></_></_> 13456 <_> 13457 <!-- tree 43 --> 13458 <_> 13459 <!-- root node --> 13460 <feature> 13461 <rects> 13462 <_>13 9 2 3 -1.</_> 13463 <_>13 9 1 3 2.</_></rects> 13464 <tilted>0</tilted></feature> 13465 <threshold>1.7601120052859187e-003</threshold> 13466 <left_val>0.5353249907493591</left_val> 13467 <right_val>0.3973453044891357</right_val></_></_> 13468 <_> 13469 <!-- tree 44 --> 13470 <_> 13471 <!-- root node --> 13472 <feature> 13473 <rects> 13474 <_>5 2 6 2 -1.</_> 13475 <_>7 2 2 2 3.</_></rects> 13476 <tilted>0</tilted></feature> 13477 <threshold>-8.1581249833106995e-004</threshold> 13478 <left_val>0.3760268092155457</left_val> 13479 <right_val>0.5264726877212524</right_val></_></_> 13480 <_> 13481 <!-- tree 45 --> 13482 <_> 13483 <!-- root node --> 13484 <feature> 13485 <rects> 13486 <_>9 5 2 7 -1.</_> 13487 <_>9 5 1 7 2.</_></rects> 13488 <tilted>0</tilted></feature> 13489 <threshold>-3.8687589112669230e-003</threshold> 13490 <left_val>0.6309912800788879</left_val> 13491 <right_val>0.4749819934368134</right_val></_></_> 13492 <_> 13493 <!-- tree 46 --> 13494 <_> 13495 <!-- root node --> 13496 <feature> 13497 <rects> 13498 <_>5 9 2 3 -1.</_> 13499 <_>6 9 1 3 2.</_></rects> 13500 <tilted>0</tilted></feature> 13501 <threshold>1.5207129763439298e-003</threshold> 13502 <left_val>0.5230181813240051</left_val> 13503 <right_val>0.3361223936080933</right_val></_></_> 13504 <_> 13505 <!-- tree 47 --> 13506 <_> 13507 <!-- root node --> 13508 <feature> 13509 <rects> 13510 <_>6 0 14 18 -1.</_> 13511 <_>6 9 14 9 2.</_></rects> 13512 <tilted>0</tilted></feature> 13513 <threshold>0.5458673834800720</threshold> 13514 <left_val>0.5167139768600464</left_val> 13515 <right_val>0.1172635033726692</right_val></_></_> 13516 <_> 13517 <!-- tree 48 --> 13518 <_> 13519 <!-- root node --> 13520 <feature> 13521 <rects> 13522 <_>2 16 6 3 -1.</_> 13523 <_>2 17 6 1 3.</_></rects> 13524 <tilted>0</tilted></feature> 13525 <threshold>0.0156501904129982</threshold> 13526 <left_val>0.4979439079761505</left_val> 13527 <right_val>0.1393294930458069</right_val></_></_> 13528 <_> 13529 <!-- tree 49 --> 13530 <_> 13531 <!-- root node --> 13532 <feature> 13533 <rects> 13534 <_>9 7 3 6 -1.</_> 13535 <_>10 7 1 6 3.</_></rects> 13536 <tilted>0</tilted></feature> 13537 <threshold>-0.0117318602278829</threshold> 13538 <left_val>0.7129650712013245</left_val> 13539 <right_val>0.4921196103096008</right_val></_></_> 13540 <_> 13541 <!-- tree 50 --> 13542 <_> 13543 <!-- root node --> 13544 <feature> 13545 <rects> 13546 <_>7 8 4 3 -1.</_> 13547 <_>7 9 4 1 3.</_></rects> 13548 <tilted>0</tilted></feature> 13549 <threshold>-6.1765122227370739e-003</threshold> 13550 <left_val>0.2288102954626083</left_val> 13551 <right_val>0.5049701929092407</right_val></_></_> 13552 <_> 13553 <!-- tree 51 --> 13554 <_> 13555 <!-- root node --> 13556 <feature> 13557 <rects> 13558 <_>7 12 6 3 -1.</_> 13559 <_>7 13 6 1 3.</_></rects> 13560 <tilted>0</tilted></feature> 13561 <threshold>2.2457661107182503e-003</threshold> 13562 <left_val>0.4632433950901032</left_val> 13563 <right_val>0.6048725843429565</right_val></_></_> 13564 <_> 13565 <!-- tree 52 --> 13566 <_> 13567 <!-- root node --> 13568 <feature> 13569 <rects> 13570 <_>9 12 2 3 -1.</_> 13571 <_>9 13 2 1 3.</_></rects> 13572 <tilted>0</tilted></feature> 13573 <threshold>-5.1915869116783142e-003</threshold> 13574 <left_val>0.6467421054840088</left_val> 13575 <right_val>0.4602192938327789</right_val></_></_> 13576 <_> 13577 <!-- tree 53 --> 13578 <_> 13579 <!-- root node --> 13580 <feature> 13581 <rects> 13582 <_>7 12 6 2 -1.</_> 13583 <_>9 12 2 2 3.</_></rects> 13584 <tilted>0</tilted></feature> 13585 <threshold>-0.0238278806209564</threshold> 13586 <left_val>0.1482000946998596</left_val> 13587 <right_val>0.5226079225540161</right_val></_></_> 13588 <_> 13589 <!-- tree 54 --> 13590 <_> 13591 <!-- root node --> 13592 <feature> 13593 <rects> 13594 <_>5 11 4 6 -1.</_> 13595 <_>5 14 4 3 2.</_></rects> 13596 <tilted>0</tilted></feature> 13597 <threshold>1.0284580057486892e-003</threshold> 13598 <left_val>0.5135489106178284</left_val> 13599 <right_val>0.3375957012176514</right_val></_></_> 13600 <_> 13601 <!-- tree 55 --> 13602 <_> 13603 <!-- root node --> 13604 <feature> 13605 <rects> 13606 <_>11 12 7 2 -1.</_> 13607 <_>11 13 7 1 2.</_></rects> 13608 <tilted>0</tilted></feature> 13609 <threshold>-0.0100788502022624</threshold> 13610 <left_val>0.2740561068058014</left_val> 13611 <right_val>0.5303567051887512</right_val></_></_> 13612 <_> 13613 <!-- tree 56 --> 13614 <_> 13615 <!-- root node --> 13616 <feature> 13617 <rects> 13618 <_>6 10 8 6 -1.</_> 13619 <_>6 10 4 3 2.</_> 13620 <_>10 13 4 3 2.</_></rects> 13621 <tilted>0</tilted></feature> 13622 <threshold>2.6168930344283581e-003</threshold> 13623 <left_val>0.5332670807838440</left_val> 13624 <right_val>0.3972454071044922</right_val></_></_> 13625 <_> 13626 <!-- tree 57 --> 13627 <_> 13628 <!-- root node --> 13629 <feature> 13630 <rects> 13631 <_>11 10 3 4 -1.</_> 13632 <_>11 12 3 2 2.</_></rects> 13633 <tilted>0</tilted></feature> 13634 <threshold>5.4385367548093200e-004</threshold> 13635 <left_val>0.5365604162216187</left_val> 13636 <right_val>0.4063411951065064</right_val></_></_> 13637 <_> 13638 <!-- tree 58 --> 13639 <_> 13640 <!-- root node --> 13641 <feature> 13642 <rects> 13643 <_>9 16 2 3 -1.</_> 13644 <_>9 17 2 1 3.</_></rects> 13645 <tilted>0</tilted></feature> 13646 <threshold>5.3510512225329876e-003</threshold> 13647 <left_val>0.4653759002685547</left_val> 13648 <right_val>0.6889045834541321</right_val></_></_> 13649 <_> 13650 <!-- tree 59 --> 13651 <_> 13652 <!-- root node --> 13653 <feature> 13654 <rects> 13655 <_>13 3 1 9 -1.</_> 13656 <_>13 6 1 3 3.</_></rects> 13657 <tilted>0</tilted></feature> 13658 <threshold>-1.5274790348485112e-003</threshold> 13659 <left_val>0.5449501276016235</left_val> 13660 <right_val>0.3624723851680756</right_val></_></_> 13661 <_> 13662 <!-- tree 60 --> 13663 <_> 13664 <!-- root node --> 13665 <feature> 13666 <rects> 13667 <_>1 13 14 6 -1.</_> 13668 <_>1 15 14 2 3.</_></rects> 13669 <tilted>0</tilted></feature> 13670 <threshold>-0.0806244164705276</threshold> 13671 <left_val>0.1656087040901184</left_val> 13672 <right_val>0.5000287294387817</right_val></_></_> 13673 <_> 13674 <!-- tree 61 --> 13675 <_> 13676 <!-- root node --> 13677 <feature> 13678 <rects> 13679 <_>13 6 1 6 -1.</_> 13680 <_>13 9 1 3 2.</_></rects> 13681 <tilted>0</tilted></feature> 13682 <threshold>0.0221920292824507</threshold> 13683 <left_val>0.5132731199264526</left_val> 13684 <right_val>0.2002808004617691</right_val></_></_> 13685 <_> 13686 <!-- tree 62 --> 13687 <_> 13688 <!-- root node --> 13689 <feature> 13690 <rects> 13691 <_>0 4 3 8 -1.</_> 13692 <_>1 4 1 8 3.</_></rects> 13693 <tilted>0</tilted></feature> 13694 <threshold>7.3100631125271320e-003</threshold> 13695 <left_val>0.4617947936058044</left_val> 13696 <right_val>0.6366536021232605</right_val></_></_> 13697 <_> 13698 <!-- tree 63 --> 13699 <_> 13700 <!-- root node --> 13701 <feature> 13702 <rects> 13703 <_>18 0 2 18 -1.</_> 13704 <_>18 0 1 18 2.</_></rects> 13705 <tilted>0</tilted></feature> 13706 <threshold>-6.4063072204589844e-003</threshold> 13707 <left_val>0.5916250944137573</left_val> 13708 <right_val>0.4867860972881317</right_val></_></_> 13709 <_> 13710 <!-- tree 64 --> 13711 <_> 13712 <!-- root node --> 13713 <feature> 13714 <rects> 13715 <_>2 3 6 2 -1.</_> 13716 <_>2 4 6 1 2.</_></rects> 13717 <tilted>0</tilted></feature> 13718 <threshold>-7.6415040530264378e-004</threshold> 13719 <left_val>0.3888409137725830</left_val> 13720 <right_val>0.5315797924995422</right_val></_></_> 13721 <_> 13722 <!-- tree 65 --> 13723 <_> 13724 <!-- root node --> 13725 <feature> 13726 <rects> 13727 <_>9 0 8 6 -1.</_> 13728 <_>9 2 8 2 3.</_></rects> 13729 <tilted>0</tilted></feature> 13730 <threshold>7.6734489994123578e-004</threshold> 13731 <left_val>0.4159064888954163</left_val> 13732 <right_val>0.5605279803276062</right_val></_></_> 13733 <_> 13734 <!-- tree 66 --> 13735 <_> 13736 <!-- root node --> 13737 <feature> 13738 <rects> 13739 <_>6 6 1 6 -1.</_> 13740 <_>6 9 1 3 2.</_></rects> 13741 <tilted>0</tilted></feature> 13742 <threshold>6.1474501853808761e-004</threshold> 13743 <left_val>0.3089022040367127</left_val> 13744 <right_val>0.5120148062705994</right_val></_></_> 13745 <_> 13746 <!-- tree 67 --> 13747 <_> 13748 <!-- root node --> 13749 <feature> 13750 <rects> 13751 <_>14 8 6 3 -1.</_> 13752 <_>14 9 6 1 3.</_></rects> 13753 <tilted>0</tilted></feature> 13754 <threshold>-5.0105270929634571e-003</threshold> 13755 <left_val>0.3972199857234955</left_val> 13756 <right_val>0.5207306146621704</right_val></_></_> 13757 <_> 13758 <!-- tree 68 --> 13759 <_> 13760 <!-- root node --> 13761 <feature> 13762 <rects> 13763 <_>0 0 2 18 -1.</_> 13764 <_>1 0 1 18 2.</_></rects> 13765 <tilted>0</tilted></feature> 13766 <threshold>-8.6909132078289986e-003</threshold> 13767 <left_val>0.6257408261299133</left_val> 13768 <right_val>0.4608575999736786</right_val></_></_> 13769 <_> 13770 <!-- tree 69 --> 13771 <_> 13772 <!-- root node --> 13773 <feature> 13774 <rects> 13775 <_>1 18 18 2 -1.</_> 13776 <_>10 18 9 1 2.</_> 13777 <_>1 19 9 1 2.</_></rects> 13778 <tilted>0</tilted></feature> 13779 <threshold>-0.0163914598524570</threshold> 13780 <left_val>0.2085209935903549</left_val> 13781 <right_val>0.5242266058921814</right_val></_></_> 13782 <_> 13783 <!-- tree 70 --> 13784 <_> 13785 <!-- root node --> 13786 <feature> 13787 <rects> 13788 <_>3 15 2 2 -1.</_> 13789 <_>3 16 2 1 2.</_></rects> 13790 <tilted>0</tilted></feature> 13791 <threshold>4.0973909199237823e-004</threshold> 13792 <left_val>0.5222427248954773</left_val> 13793 <right_val>0.3780320882797241</right_val></_></_> 13794 <_> 13795 <!-- tree 71 --> 13796 <_> 13797 <!-- root node --> 13798 <feature> 13799 <rects> 13800 <_>8 14 5 3 -1.</_> 13801 <_>8 15 5 1 3.</_></rects> 13802 <tilted>0</tilted></feature> 13803 <threshold>-2.5242289993911982e-003</threshold> 13804 <left_val>0.5803927183151245</left_val> 13805 <right_val>0.4611890017986298</right_val></_></_> 13806 <_> 13807 <!-- tree 72 --> 13808 <_> 13809 <!-- root node --> 13810 <feature> 13811 <rects> 13812 <_>8 14 2 3 -1.</_> 13813 <_>8 15 2 1 3.</_></rects> 13814 <tilted>0</tilted></feature> 13815 <threshold>5.0945312250405550e-004</threshold> 13816 <left_val>0.4401271939277649</left_val> 13817 <right_val>0.5846015810966492</right_val></_></_> 13818 <_> 13819 <!-- tree 73 --> 13820 <_> 13821 <!-- root node --> 13822 <feature> 13823 <rects> 13824 <_>12 3 3 3 -1.</_> 13825 <_>13 3 1 3 3.</_></rects> 13826 <tilted>0</tilted></feature> 13827 <threshold>1.9656419754028320e-003</threshold> 13828 <left_val>0.5322325229644775</left_val> 13829 <right_val>0.4184590876102448</right_val></_></_> 13830 <_> 13831 <!-- tree 74 --> 13832 <_> 13833 <!-- root node --> 13834 <feature> 13835 <rects> 13836 <_>7 5 6 2 -1.</_> 13837 <_>9 5 2 2 3.</_></rects> 13838 <tilted>0</tilted></feature> 13839 <threshold>5.6298897834494710e-004</threshold> 13840 <left_val>0.3741844892501831</left_val> 13841 <right_val>0.5234565734863281</right_val></_></_> 13842 <_> 13843 <!-- tree 75 --> 13844 <_> 13845 <!-- root node --> 13846 <feature> 13847 <rects> 13848 <_>15 5 5 2 -1.</_> 13849 <_>15 6 5 1 2.</_></rects> 13850 <tilted>0</tilted></feature> 13851 <threshold>-6.7946797935292125e-004</threshold> 13852 <left_val>0.4631041884422302</left_val> 13853 <right_val>0.5356478095054627</right_val></_></_> 13854 <_> 13855 <!-- tree 76 --> 13856 <_> 13857 <!-- root node --> 13858 <feature> 13859 <rects> 13860 <_>0 5 5 2 -1.</_> 13861 <_>0 6 5 1 2.</_></rects> 13862 <tilted>0</tilted></feature> 13863 <threshold>7.2856349870562553e-003</threshold> 13864 <left_val>0.5044670104980469</left_val> 13865 <right_val>0.2377564013004303</right_val></_></_> 13866 <_> 13867 <!-- tree 77 --> 13868 <_> 13869 <!-- root node --> 13870 <feature> 13871 <rects> 13872 <_>17 14 1 6 -1.</_> 13873 <_>17 17 1 3 2.</_></rects> 13874 <tilted>0</tilted></feature> 13875 <threshold>-0.0174594894051552</threshold> 13876 <left_val>0.7289121150970459</left_val> 13877 <right_val>0.5050435066223145</right_val></_></_> 13878 <_> 13879 <!-- tree 78 --> 13880 <_> 13881 <!-- root node --> 13882 <feature> 13883 <rects> 13884 <_>2 9 9 3 -1.</_> 13885 <_>5 9 3 3 3.</_></rects> 13886 <tilted>0</tilted></feature> 13887 <threshold>-0.0254217498004436</threshold> 13888 <left_val>0.6667134761810303</left_val> 13889 <right_val>0.4678100049495697</right_val></_></_> 13890 <_> 13891 <!-- tree 79 --> 13892 <_> 13893 <!-- root node --> 13894 <feature> 13895 <rects> 13896 <_>12 3 3 3 -1.</_> 13897 <_>13 3 1 3 3.</_></rects> 13898 <tilted>0</tilted></feature> 13899 <threshold>-1.5647639520466328e-003</threshold> 13900 <left_val>0.4391759037971497</left_val> 13901 <right_val>0.5323626995086670</right_val></_></_> 13902 <_> 13903 <!-- tree 80 --> 13904 <_> 13905 <!-- root node --> 13906 <feature> 13907 <rects> 13908 <_>0 0 4 18 -1.</_> 13909 <_>2 0 2 18 2.</_></rects> 13910 <tilted>0</tilted></feature> 13911 <threshold>0.0114443600177765</threshold> 13912 <left_val>0.4346440136432648</left_val> 13913 <right_val>0.5680012106895447</right_val></_></_> 13914 <_> 13915 <!-- tree 81 --> 13916 <_> 13917 <!-- root node --> 13918 <feature> 13919 <rects> 13920 <_>17 6 1 3 -1.</_> 13921 <_>17 7 1 1 3.</_></rects> 13922 <tilted>0</tilted></feature> 13923 <threshold>-6.7352550104260445e-004</threshold> 13924 <left_val>0.4477140903472900</left_val> 13925 <right_val>0.5296812057495117</right_val></_></_> 13926 <_> 13927 <!-- tree 82 --> 13928 <_> 13929 <!-- root node --> 13930 <feature> 13931 <rects> 13932 <_>2 14 1 6 -1.</_> 13933 <_>2 17 1 3 2.</_></rects> 13934 <tilted>0</tilted></feature> 13935 <threshold>9.3194209039211273e-003</threshold> 13936 <left_val>0.4740200042724609</left_val> 13937 <right_val>0.7462607026100159</right_val></_></_> 13938 <_> 13939 <!-- tree 83 --> 13940 <_> 13941 <!-- root node --> 13942 <feature> 13943 <rects> 13944 <_>19 8 1 2 -1.</_> 13945 <_>19 9 1 1 2.</_></rects> 13946 <tilted>0</tilted></feature> 13947 <threshold>1.3328490604180843e-004</threshold> 13948 <left_val>0.5365061759948731</left_val> 13949 <right_val>0.4752134978771210</right_val></_></_> 13950 <_> 13951 <!-- tree 84 --> 13952 <_> 13953 <!-- root node --> 13954 <feature> 13955 <rects> 13956 <_>5 3 3 3 -1.</_> 13957 <_>6 3 1 3 3.</_></rects> 13958 <tilted>0</tilted></feature> 13959 <threshold>-7.8815799206495285e-003</threshold> 13960 <left_val>0.1752219051122665</left_val> 13961 <right_val>0.5015255212783814</right_val></_></_> 13962 <_> 13963 <!-- tree 85 --> 13964 <_> 13965 <!-- root node --> 13966 <feature> 13967 <rects> 13968 <_>9 16 2 3 -1.</_> 13969 <_>9 17 2 1 3.</_></rects> 13970 <tilted>0</tilted></feature> 13971 <threshold>-5.7985680177807808e-003</threshold> 13972 <left_val>0.7271236777305603</left_val> 13973 <right_val>0.4896200895309448</right_val></_></_> 13974 <_> 13975 <!-- tree 86 --> 13976 <_> 13977 <!-- root node --> 13978 <feature> 13979 <rects> 13980 <_>2 6 1 3 -1.</_> 13981 <_>2 7 1 1 3.</_></rects> 13982 <tilted>0</tilted></feature> 13983 <threshold>-3.8922499516047537e-004</threshold> 13984 <left_val>0.4003908932209015</left_val> 13985 <right_val>0.5344941020011902</right_val></_></_> 13986 <_> 13987 <!-- tree 87 --> 13988 <_> 13989 <!-- root node --> 13990 <feature> 13991 <rects> 13992 <_>12 4 8 2 -1.</_> 13993 <_>16 4 4 1 2.</_> 13994 <_>12 5 4 1 2.</_></rects> 13995 <tilted>0</tilted></feature> 13996 <threshold>-1.9288610201328993e-003</threshold> 13997 <left_val>0.5605612993240356</left_val> 13998 <right_val>0.4803955852985382</right_val></_></_> 13999 <_> 14000 <!-- tree 88 --> 14001 <_> 14002 <!-- root node --> 14003 <feature> 14004 <rects> 14005 <_>0 4 8 2 -1.</_> 14006 <_>0 4 4 1 2.</_> 14007 <_>4 5 4 1 2.</_></rects> 14008 <tilted>0</tilted></feature> 14009 <threshold>8.4214154630899429e-003</threshold> 14010 <left_val>0.4753246903419495</left_val> 14011 <right_val>0.7623608708381653</right_val></_></_> 14012 <_> 14013 <!-- tree 89 --> 14014 <_> 14015 <!-- root node --> 14016 <feature> 14017 <rects> 14018 <_>2 16 18 4 -1.</_> 14019 <_>2 18 18 2 2.</_></rects> 14020 <tilted>0</tilted></feature> 14021 <threshold>8.1655876711010933e-003</threshold> 14022 <left_val>0.5393261909484863</left_val> 14023 <right_val>0.4191643893718720</right_val></_></_> 14024 <_> 14025 <!-- tree 90 --> 14026 <_> 14027 <!-- root node --> 14028 <feature> 14029 <rects> 14030 <_>7 15 2 4 -1.</_> 14031 <_>7 17 2 2 2.</_></rects> 14032 <tilted>0</tilted></feature> 14033 <threshold>4.8280550981871784e-004</threshold> 14034 <left_val>0.4240800142288208</left_val> 14035 <right_val>0.5399821996688843</right_val></_></_> 14036 <_> 14037 <!-- tree 91 --> 14038 <_> 14039 <!-- root node --> 14040 <feature> 14041 <rects> 14042 <_>4 0 14 3 -1.</_> 14043 <_>4 1 14 1 3.</_></rects> 14044 <tilted>0</tilted></feature> 14045 <threshold>-2.7186630759388208e-003</threshold> 14046 <left_val>0.4244599938392639</left_val> 14047 <right_val>0.5424923896789551</right_val></_></_> 14048 <_> 14049 <!-- tree 92 --> 14050 <_> 14051 <!-- root node --> 14052 <feature> 14053 <rects> 14054 <_>0 0 4 20 -1.</_> 14055 <_>2 0 2 20 2.</_></rects> 14056 <tilted>0</tilted></feature> 14057 <threshold>-0.0125072300434113</threshold> 14058 <left_val>0.5895841717720032</left_val> 14059 <right_val>0.4550411105155945</right_val></_></_> 14060 <_> 14061 <!-- tree 93 --> 14062 <_> 14063 <!-- root node --> 14064 <feature> 14065 <rects> 14066 <_>12 4 4 8 -1.</_> 14067 <_>14 4 2 4 2.</_> 14068 <_>12 8 2 4 2.</_></rects> 14069 <tilted>0</tilted></feature> 14070 <threshold>-0.0242865197360516</threshold> 14071 <left_val>0.2647134959697723</left_val> 14072 <right_val>0.5189179778099060</right_val></_></_> 14073 <_> 14074 <!-- tree 94 --> 14075 <_> 14076 <!-- root node --> 14077 <feature> 14078 <rects> 14079 <_>6 7 2 2 -1.</_> 14080 <_>6 7 1 1 2.</_> 14081 <_>7 8 1 1 2.</_></rects> 14082 <tilted>0</tilted></feature> 14083 <threshold>-2.9676330741494894e-003</threshold> 14084 <left_val>0.7347682714462280</left_val> 14085 <right_val>0.4749749898910523</right_val></_></_> 14086 <_> 14087 <!-- tree 95 --> 14088 <_> 14089 <!-- root node --> 14090 <feature> 14091 <rects> 14092 <_>10 6 2 3 -1.</_> 14093 <_>10 7 2 1 3.</_></rects> 14094 <tilted>0</tilted></feature> 14095 <threshold>-0.0125289997085929</threshold> 14096 <left_val>0.2756049931049347</left_val> 14097 <right_val>0.5177599787712097</right_val></_></_> 14098 <_> 14099 <!-- tree 96 --> 14100 <_> 14101 <!-- root node --> 14102 <feature> 14103 <rects> 14104 <_>8 7 3 2 -1.</_> 14105 <_>8 8 3 1 2.</_></rects> 14106 <tilted>0</tilted></feature> 14107 <threshold>-1.0104000102728605e-003</threshold> 14108 <left_val>0.3510560989379883</left_val> 14109 <right_val>0.5144724249839783</right_val></_></_> 14110 <_> 14111 <!-- tree 97 --> 14112 <_> 14113 <!-- root node --> 14114 <feature> 14115 <rects> 14116 <_>8 2 6 12 -1.</_> 14117 <_>8 8 6 6 2.</_></rects> 14118 <tilted>0</tilted></feature> 14119 <threshold>-2.1348530426621437e-003</threshold> 14120 <left_val>0.5637925863265991</left_val> 14121 <right_val>0.4667319953441620</right_val></_></_> 14122 <_> 14123 <!-- tree 98 --> 14124 <_> 14125 <!-- root node --> 14126 <feature> 14127 <rects> 14128 <_>4 0 11 12 -1.</_> 14129 <_>4 4 11 4 3.</_></rects> 14130 <tilted>0</tilted></feature> 14131 <threshold>0.0195642597973347</threshold> 14132 <left_val>0.4614573121070862</left_val> 14133 <right_val>0.6137639880180359</right_val></_></_> 14134 <_> 14135 <!-- tree 99 --> 14136 <_> 14137 <!-- root node --> 14138 <feature> 14139 <rects> 14140 <_>14 9 6 11 -1.</_> 14141 <_>16 9 2 11 3.</_></rects> 14142 <tilted>0</tilted></feature> 14143 <threshold>-0.0971463471651077</threshold> 14144 <left_val>0.2998378872871399</left_val> 14145 <right_val>0.5193555951118469</right_val></_></_> 14146 <_> 14147 <!-- tree 100 --> 14148 <_> 14149 <!-- root node --> 14150 <feature> 14151 <rects> 14152 <_>0 14 4 3 -1.</_> 14153 <_>0 15 4 1 3.</_></rects> 14154 <tilted>0</tilted></feature> 14155 <threshold>4.5014568604528904e-003</threshold> 14156 <left_val>0.5077884793281555</left_val> 14157 <right_val>0.3045755922794342</right_val></_></_> 14158 <_> 14159 <!-- tree 101 --> 14160 <_> 14161 <!-- root node --> 14162 <feature> 14163 <rects> 14164 <_>9 10 2 3 -1.</_> 14165 <_>9 11 2 1 3.</_></rects> 14166 <tilted>0</tilted></feature> 14167 <threshold>6.3706971704959869e-003</threshold> 14168 <left_val>0.4861018955707550</left_val> 14169 <right_val>0.6887500882148743</right_val></_></_> 14170 <_> 14171 <!-- tree 102 --> 14172 <_> 14173 <!-- root node --> 14174 <feature> 14175 <rects> 14176 <_>5 11 3 2 -1.</_> 14177 <_>5 12 3 1 2.</_></rects> 14178 <tilted>0</tilted></feature> 14179 <threshold>-9.0721528977155685e-003</threshold> 14180 <left_val>0.1673395931720734</left_val> 14181 <right_val>0.5017563104629517</right_val></_></_> 14182 <_> 14183 <!-- tree 103 --> 14184 <_> 14185 <!-- root node --> 14186 <feature> 14187 <rects> 14188 <_>9 15 3 3 -1.</_> 14189 <_>10 15 1 3 3.</_></rects> 14190 <tilted>0</tilted></feature> 14191 <threshold>-5.3537208586931229e-003</threshold> 14192 <left_val>0.2692756950855255</left_val> 14193 <right_val>0.5242633223533630</right_val></_></_> 14194 <_> 14195 <!-- tree 104 --> 14196 <_> 14197 <!-- root node --> 14198 <feature> 14199 <rects> 14200 <_>8 8 3 4 -1.</_> 14201 <_>9 8 1 4 3.</_></rects> 14202 <tilted>0</tilted></feature> 14203 <threshold>-0.0109328404068947</threshold> 14204 <left_val>0.7183864116668701</left_val> 14205 <right_val>0.4736028909683228</right_val></_></_> 14206 <_> 14207 <!-- tree 105 --> 14208 <_> 14209 <!-- root node --> 14210 <feature> 14211 <rects> 14212 <_>9 15 3 3 -1.</_> 14213 <_>10 15 1 3 3.</_></rects> 14214 <tilted>0</tilted></feature> 14215 <threshold>8.2356072962284088e-003</threshold> 14216 <left_val>0.5223966836929321</left_val> 14217 <right_val>0.2389862984418869</right_val></_></_> 14218 <_> 14219 <!-- tree 106 --> 14220 <_> 14221 <!-- root node --> 14222 <feature> 14223 <rects> 14224 <_>7 7 3 2 -1.</_> 14225 <_>8 7 1 2 3.</_></rects> 14226 <tilted>0</tilted></feature> 14227 <threshold>-1.0038160253316164e-003</threshold> 14228 <left_val>0.5719355940818787</left_val> 14229 <right_val>0.4433943033218384</right_val></_></_> 14230 <_> 14231 <!-- tree 107 --> 14232 <_> 14233 <!-- root node --> 14234 <feature> 14235 <rects> 14236 <_>2 10 16 4 -1.</_> 14237 <_>10 10 8 2 2.</_> 14238 <_>2 12 8 2 2.</_></rects> 14239 <tilted>0</tilted></feature> 14240 <threshold>4.0859128348529339e-003</threshold> 14241 <left_val>0.5472841858863831</left_val> 14242 <right_val>0.4148836135864258</right_val></_></_> 14243 <_> 14244 <!-- tree 108 --> 14245 <_> 14246 <!-- root node --> 14247 <feature> 14248 <rects> 14249 <_>2 3 4 17 -1.</_> 14250 <_>4 3 2 17 2.</_></rects> 14251 <tilted>0</tilted></feature> 14252 <threshold>0.1548541933298111</threshold> 14253 <left_val>0.4973812103271484</left_val> 14254 <right_val>0.0610615983605385</right_val></_></_> 14255 <_> 14256 <!-- tree 109 --> 14257 <_> 14258 <!-- root node --> 14259 <feature> 14260 <rects> 14261 <_>15 13 2 7 -1.</_> 14262 <_>15 13 1 7 2.</_></rects> 14263 <tilted>0</tilted></feature> 14264 <threshold>2.0897459762636572e-004</threshold> 14265 <left_val>0.4709174036979675</left_val> 14266 <right_val>0.5423889160156250</right_val></_></_> 14267 <_> 14268 <!-- tree 110 --> 14269 <_> 14270 <!-- root node --> 14271 <feature> 14272 <rects> 14273 <_>2 2 6 1 -1.</_> 14274 <_>5 2 3 1 2.</_></rects> 14275 <tilted>0</tilted></feature> 14276 <threshold>3.3316991175524890e-004</threshold> 14277 <left_val>0.4089626967906952</left_val> 14278 <right_val>0.5300992131233215</right_val></_></_> 14279 <_> 14280 <!-- tree 111 --> 14281 <_> 14282 <!-- root node --> 14283 <feature> 14284 <rects> 14285 <_>5 2 12 4 -1.</_> 14286 <_>9 2 4 4 3.</_></rects> 14287 <tilted>0</tilted></feature> 14288 <threshold>-0.0108134001493454</threshold> 14289 <left_val>0.6104369759559631</left_val> 14290 <right_val>0.4957334101200104</right_val></_></_> 14291 <_> 14292 <!-- tree 112 --> 14293 <_> 14294 <!-- root node --> 14295 <feature> 14296 <rects> 14297 <_>6 0 8 12 -1.</_> 14298 <_>6 0 4 6 2.</_> 14299 <_>10 6 4 6 2.</_></rects> 14300 <tilted>0</tilted></feature> 14301 <threshold>0.0456560105085373</threshold> 14302 <left_val>0.5069689154624939</left_val> 14303 <right_val>0.2866660058498383</right_val></_></_> 14304 <_> 14305 <!-- tree 113 --> 14306 <_> 14307 <!-- root node --> 14308 <feature> 14309 <rects> 14310 <_>13 7 2 2 -1.</_> 14311 <_>14 7 1 1 2.</_> 14312 <_>13 8 1 1 2.</_></rects> 14313 <tilted>0</tilted></feature> 14314 <threshold>1.2569549726322293e-003</threshold> 14315 <left_val>0.4846917092800140</left_val> 14316 <right_val>0.6318171024322510</right_val></_></_> 14317 <_> 14318 <!-- tree 114 --> 14319 <_> 14320 <!-- root node --> 14321 <feature> 14322 <rects> 14323 <_>0 12 20 6 -1.</_> 14324 <_>0 14 20 2 3.</_></rects> 14325 <tilted>0</tilted></feature> 14326 <threshold>-0.1201507002115250</threshold> 14327 <left_val>0.0605261400341988</left_val> 14328 <right_val>0.4980959892272949</right_val></_></_> 14329 <_> 14330 <!-- tree 115 --> 14331 <_> 14332 <!-- root node --> 14333 <feature> 14334 <rects> 14335 <_>14 7 2 3 -1.</_> 14336 <_>14 7 1 3 2.</_></rects> 14337 <tilted>0</tilted></feature> 14338 <threshold>-1.0533799650147557e-004</threshold> 14339 <left_val>0.5363109707832336</left_val> 14340 <right_val>0.4708042144775391</right_val></_></_> 14341 <_> 14342 <!-- tree 116 --> 14343 <_> 14344 <!-- root node --> 14345 <feature> 14346 <rects> 14347 <_>0 8 9 12 -1.</_> 14348 <_>3 8 3 12 3.</_></rects> 14349 <tilted>0</tilted></feature> 14350 <threshold>-0.2070319056510925</threshold> 14351 <left_val>0.0596603304147720</left_val> 14352 <right_val>0.4979098141193390</right_val></_></_> 14353 <_> 14354 <!-- tree 117 --> 14355 <_> 14356 <!-- root node --> 14357 <feature> 14358 <rects> 14359 <_>3 0 16 2 -1.</_> 14360 <_>3 0 8 2 2.</_></rects> 14361 <tilted>0</tilted></feature> 14362 <threshold>1.2909180077258497e-004</threshold> 14363 <left_val>0.4712977111339569</left_val> 14364 <right_val>0.5377997756004334</right_val></_></_> 14365 <_> 14366 <!-- tree 118 --> 14367 <_> 14368 <!-- root node --> 14369 <feature> 14370 <rects> 14371 <_>6 15 3 3 -1.</_> 14372 <_>6 16 3 1 3.</_></rects> 14373 <tilted>0</tilted></feature> 14374 <threshold>3.8818528992123902e-004</threshold> 14375 <left_val>0.4363538026809692</left_val> 14376 <right_val>0.5534191131591797</right_val></_></_> 14377 <_> 14378 <!-- tree 119 --> 14379 <_> 14380 <!-- root node --> 14381 <feature> 14382 <rects> 14383 <_>8 15 6 3 -1.</_> 14384 <_>8 16 6 1 3.</_></rects> 14385 <tilted>0</tilted></feature> 14386 <threshold>-2.9243610333651304e-003</threshold> 14387 <left_val>0.5811185836791992</left_val> 14388 <right_val>0.4825215935707092</right_val></_></_> 14389 <_> 14390 <!-- tree 120 --> 14391 <_> 14392 <!-- root node --> 14393 <feature> 14394 <rects> 14395 <_>0 10 1 6 -1.</_> 14396 <_>0 12 1 2 3.</_></rects> 14397 <tilted>0</tilted></feature> 14398 <threshold>8.3882332546636462e-004</threshold> 14399 <left_val>0.5311700105667114</left_val> 14400 <right_val>0.4038138985633850</right_val></_></_> 14401 <_> 14402 <!-- tree 121 --> 14403 <_> 14404 <!-- root node --> 14405 <feature> 14406 <rects> 14407 <_>10 9 4 3 -1.</_> 14408 <_>10 10 4 1 3.</_></rects> 14409 <tilted>0</tilted></feature> 14410 <threshold>-1.9061550265178084e-003</threshold> 14411 <left_val>0.3770701885223389</left_val> 14412 <right_val>0.5260015130043030</right_val></_></_> 14413 <_> 14414 <!-- tree 122 --> 14415 <_> 14416 <!-- root node --> 14417 <feature> 14418 <rects> 14419 <_>9 15 2 3 -1.</_> 14420 <_>9 16 2 1 3.</_></rects> 14421 <tilted>0</tilted></feature> 14422 <threshold>8.9514348655939102e-003</threshold> 14423 <left_val>0.4766167998313904</left_val> 14424 <right_val>0.7682183980941773</right_val></_></_> 14425 <_> 14426 <!-- tree 123 --> 14427 <_> 14428 <!-- root node --> 14429 <feature> 14430 <rects> 14431 <_>5 7 10 1 -1.</_> 14432 <_>5 7 5 1 2.</_></rects> 14433 <tilted>0</tilted></feature> 14434 <threshold>0.0130834598094225</threshold> 14435 <left_val>0.5264462828636169</left_val> 14436 <right_val>0.3062222003936768</right_val></_></_> 14437 <_> 14438 <!-- tree 124 --> 14439 <_> 14440 <!-- root node --> 14441 <feature> 14442 <rects> 14443 <_>4 0 12 19 -1.</_> 14444 <_>10 0 6 19 2.</_></rects> 14445 <tilted>0</tilted></feature> 14446 <threshold>-0.2115933001041412</threshold> 14447 <left_val>0.6737198233604431</left_val> 14448 <right_val>0.4695810079574585</right_val></_></_> 14449 <_> 14450 <!-- tree 125 --> 14451 <_> 14452 <!-- root node --> 14453 <feature> 14454 <rects> 14455 <_>0 6 20 6 -1.</_> 14456 <_>10 6 10 3 2.</_> 14457 <_>0 9 10 3 2.</_></rects> 14458 <tilted>0</tilted></feature> 14459 <threshold>3.1493250280618668e-003</threshold> 14460 <left_val>0.5644835233688355</left_val> 14461 <right_val>0.4386953115463257</right_val></_></_> 14462 <_> 14463 <!-- tree 126 --> 14464 <_> 14465 <!-- root node --> 14466 <feature> 14467 <rects> 14468 <_>3 6 2 2 -1.</_> 14469 <_>3 6 1 1 2.</_> 14470 <_>4 7 1 1 2.</_></rects> 14471 <tilted>0</tilted></feature> 14472 <threshold>3.9754100725986063e-004</threshold> 14473 <left_val>0.4526061117649078</left_val> 14474 <right_val>0.5895630121231079</right_val></_></_> 14475 <_> 14476 <!-- tree 127 --> 14477 <_> 14478 <!-- root node --> 14479 <feature> 14480 <rects> 14481 <_>15 6 2 2 -1.</_> 14482 <_>16 6 1 1 2.</_> 14483 <_>15 7 1 1 2.</_></rects> 14484 <tilted>0</tilted></feature> 14485 <threshold>-1.3814480043947697e-003</threshold> 14486 <left_val>0.6070582270622253</left_val> 14487 <right_val>0.4942413866519928</right_val></_></_> 14488 <_> 14489 <!-- tree 128 --> 14490 <_> 14491 <!-- root node --> 14492 <feature> 14493 <rects> 14494 <_>3 6 2 2 -1.</_> 14495 <_>3 6 1 1 2.</_> 14496 <_>4 7 1 1 2.</_></rects> 14497 <tilted>0</tilted></feature> 14498 <threshold>-5.8122188784182072e-004</threshold> 14499 <left_val>0.5998213291168213</left_val> 14500 <right_val>0.4508252143859863</right_val></_></_> 14501 <_> 14502 <!-- tree 129 --> 14503 <_> 14504 <!-- root node --> 14505 <feature> 14506 <rects> 14507 <_>14 4 1 12 -1.</_> 14508 <_>14 10 1 6 2.</_></rects> 14509 <tilted>0</tilted></feature> 14510 <threshold>-2.3905329871922731e-003</threshold> 14511 <left_val>0.4205588996410370</left_val> 14512 <right_val>0.5223848223686218</right_val></_></_> 14513 <_> 14514 <!-- tree 130 --> 14515 <_> 14516 <!-- root node --> 14517 <feature> 14518 <rects> 14519 <_>2 5 16 10 -1.</_> 14520 <_>2 5 8 5 2.</_> 14521 <_>10 10 8 5 2.</_></rects> 14522 <tilted>0</tilted></feature> 14523 <threshold>0.0272689294070005</threshold> 14524 <left_val>0.5206447243690491</left_val> 14525 <right_val>0.3563301861286163</right_val></_></_> 14526 <_> 14527 <!-- tree 131 --> 14528 <_> 14529 <!-- root node --> 14530 <feature> 14531 <rects> 14532 <_>9 17 3 2 -1.</_> 14533 <_>10 17 1 2 3.</_></rects> 14534 <tilted>0</tilted></feature> 14535 <threshold>-3.7658358924090862e-003</threshold> 14536 <left_val>0.3144704103469849</left_val> 14537 <right_val>0.5218814015388489</right_val></_></_> 14538 <_> 14539 <!-- tree 132 --> 14540 <_> 14541 <!-- root node --> 14542 <feature> 14543 <rects> 14544 <_>1 4 2 2 -1.</_> 14545 <_>1 5 2 1 2.</_></rects> 14546 <tilted>0</tilted></feature> 14547 <threshold>-1.4903489500284195e-003</threshold> 14548 <left_val>0.3380196094512940</left_val> 14549 <right_val>0.5124437212944031</right_val></_></_> 14550 <_> 14551 <!-- tree 133 --> 14552 <_> 14553 <!-- root node --> 14554 <feature> 14555 <rects> 14556 <_>5 0 15 5 -1.</_> 14557 <_>10 0 5 5 3.</_></rects> 14558 <tilted>0</tilted></feature> 14559 <threshold>-0.0174282304942608</threshold> 14560 <left_val>0.5829960703849793</left_val> 14561 <right_val>0.4919725954532623</right_val></_></_> 14562 <_> 14563 <!-- tree 134 --> 14564 <_> 14565 <!-- root node --> 14566 <feature> 14567 <rects> 14568 <_>0 0 15 5 -1.</_> 14569 <_>5 0 5 5 3.</_></rects> 14570 <tilted>0</tilted></feature> 14571 <threshold>-0.0152780301868916</threshold> 14572 <left_val>0.6163144707679749</left_val> 14573 <right_val>0.4617887139320374</right_val></_></_> 14574 <_> 14575 <!-- tree 135 --> 14576 <_> 14577 <!-- root node --> 14578 <feature> 14579 <rects> 14580 <_>11 2 2 17 -1.</_> 14581 <_>11 2 1 17 2.</_></rects> 14582 <tilted>0</tilted></feature> 14583 <threshold>0.0319956094026566</threshold> 14584 <left_val>0.5166357159614563</left_val> 14585 <right_val>0.1712764054536820</right_val></_></_> 14586 <_> 14587 <!-- tree 136 --> 14588 <_> 14589 <!-- root node --> 14590 <feature> 14591 <rects> 14592 <_>7 2 2 17 -1.</_> 14593 <_>8 2 1 17 2.</_></rects> 14594 <tilted>0</tilted></feature> 14595 <threshold>-3.8256710395216942e-003</threshold> 14596 <left_val>0.3408012092113495</left_val> 14597 <right_val>0.5131387710571289</right_val></_></_> 14598 <_> 14599 <!-- tree 137 --> 14600 <_> 14601 <!-- root node --> 14602 <feature> 14603 <rects> 14604 <_>15 11 2 9 -1.</_> 14605 <_>15 11 1 9 2.</_></rects> 14606 <tilted>0</tilted></feature> 14607 <threshold>-8.5186436772346497e-003</threshold> 14608 <left_val>0.6105518937110901</left_val> 14609 <right_val>0.4997941851615906</right_val></_></_> 14610 <_> 14611 <!-- tree 138 --> 14612 <_> 14613 <!-- root node --> 14614 <feature> 14615 <rects> 14616 <_>3 11 2 9 -1.</_> 14617 <_>4 11 1 9 2.</_></rects> 14618 <tilted>0</tilted></feature> 14619 <threshold>9.0641621500253677e-004</threshold> 14620 <left_val>0.4327270984649658</left_val> 14621 <right_val>0.5582311153411865</right_val></_></_> 14622 <_> 14623 <!-- tree 139 --> 14624 <_> 14625 <!-- root node --> 14626 <feature> 14627 <rects> 14628 <_>5 16 14 4 -1.</_> 14629 <_>5 16 7 4 2.</_></rects> 14630 <tilted>0</tilted></feature> 14631 <threshold>0.0103448498994112</threshold> 14632 <left_val>0.4855653047561646</left_val> 14633 <right_val>0.5452420115470886</right_val></_></_></trees> 14634 <stage_threshold>69.2298736572265630</stage_threshold> 14635 <parent>15</parent> 14636 <next>-1</next></_> 14637 <_> 14638 <!-- stage 17 --> 14639 <trees> 14640 <_> 14641 <!-- tree 0 --> 14642 <_> 14643 <!-- root node --> 14644 <feature> 14645 <rects> 14646 <_>1 4 18 1 -1.</_> 14647 <_>7 4 6 1 3.</_></rects> 14648 <tilted>0</tilted></feature> 14649 <threshold>7.8981826081871986e-003</threshold> 14650 <left_val>0.3332524895668030</left_val> 14651 <right_val>0.5946462154388428</right_val></_></_> 14652 <_> 14653 <!-- tree 1 --> 14654 <_> 14655 <!-- root node --> 14656 <feature> 14657 <rects> 14658 <_>13 7 6 4 -1.</_> 14659 <_>16 7 3 2 2.</_> 14660 <_>13 9 3 2 2.</_></rects> 14661 <tilted>0</tilted></feature> 14662 <threshold>1.6170160379260778e-003</threshold> 14663 <left_val>0.3490641117095947</left_val> 14664 <right_val>0.5577868819236755</right_val></_></_> 14665 <_> 14666 <!-- tree 2 --> 14667 <_> 14668 <!-- root node --> 14669 <feature> 14670 <rects> 14671 <_>9 8 2 12 -1.</_> 14672 <_>9 12 2 4 3.</_></rects> 14673 <tilted>0</tilted></feature> 14674 <threshold>-5.5449741194024682e-004</threshold> 14675 <left_val>0.5542566180229187</left_val> 14676 <right_val>0.3291530013084412</right_val></_></_> 14677 <_> 14678 <!-- tree 3 --> 14679 <_> 14680 <!-- root node --> 14681 <feature> 14682 <rects> 14683 <_>12 1 6 6 -1.</_> 14684 <_>12 3 6 2 3.</_></rects> 14685 <tilted>0</tilted></feature> 14686 <threshold>1.5428980113938451e-003</threshold> 14687 <left_val>0.3612579107284546</left_val> 14688 <right_val>0.5545979142189026</right_val></_></_> 14689 <_> 14690 <!-- tree 4 --> 14691 <_> 14692 <!-- root node --> 14693 <feature> 14694 <rects> 14695 <_>5 2 6 6 -1.</_> 14696 <_>5 2 3 3 2.</_> 14697 <_>8 5 3 3 2.</_></rects> 14698 <tilted>0</tilted></feature> 14699 <threshold>-1.0329450014978647e-003</threshold> 14700 <left_val>0.3530139029026032</left_val> 14701 <right_val>0.5576140284538269</right_val></_></_> 14702 <_> 14703 <!-- tree 5 --> 14704 <_> 14705 <!-- root node --> 14706 <feature> 14707 <rects> 14708 <_>9 16 6 4 -1.</_> 14709 <_>12 16 3 2 2.</_> 14710 <_>9 18 3 2 2.</_></rects> 14711 <tilted>0</tilted></feature> 14712 <threshold>7.7698158565908670e-004</threshold> 14713 <left_val>0.3916778862476349</left_val> 14714 <right_val>0.5645321011543274</right_val></_></_> 14715 <_> 14716 <!-- tree 6 --> 14717 <_> 14718 <!-- root node --> 14719 <feature> 14720 <rects> 14721 <_>1 2 18 3 -1.</_> 14722 <_>7 2 6 3 3.</_></rects> 14723 <tilted>0</tilted></feature> 14724 <threshold>0.1432030051946640</threshold> 14725 <left_val>0.4667482078075409</left_val> 14726 <right_val>0.7023633122444153</right_val></_></_> 14727 <_> 14728 <!-- tree 7 --> 14729 <_> 14730 <!-- root node --> 14731 <feature> 14732 <rects> 14733 <_>7 4 9 10 -1.</_> 14734 <_>7 9 9 5 2.</_></rects> 14735 <tilted>0</tilted></feature> 14736 <threshold>-7.3866490274667740e-003</threshold> 14737 <left_val>0.3073684871196747</left_val> 14738 <right_val>0.5289257764816284</right_val></_></_> 14739 <_> 14740 <!-- tree 8 --> 14741 <_> 14742 <!-- root node --> 14743 <feature> 14744 <rects> 14745 <_>5 9 4 4 -1.</_> 14746 <_>7 9 2 4 2.</_></rects> 14747 <tilted>0</tilted></feature> 14748 <threshold>-6.2936742324382067e-004</threshold> 14749 <left_val>0.5622118115425110</left_val> 14750 <right_val>0.4037049114704132</right_val></_></_> 14751 <_> 14752 <!-- tree 9 --> 14753 <_> 14754 <!-- root node --> 14755 <feature> 14756 <rects> 14757 <_>11 10 3 6 -1.</_> 14758 <_>11 13 3 3 2.</_></rects> 14759 <tilted>0</tilted></feature> 14760 <threshold>7.8893528552725911e-004</threshold> 14761 <left_val>0.5267661213874817</left_val> 14762 <right_val>0.3557874858379364</right_val></_></_> 14763 <_> 14764 <!-- tree 10 --> 14765 <_> 14766 <!-- root node --> 14767 <feature> 14768 <rects> 14769 <_>7 11 5 3 -1.</_> 14770 <_>7 12 5 1 3.</_></rects> 14771 <tilted>0</tilted></feature> 14772 <threshold>-0.0122280502691865</threshold> 14773 <left_val>0.6668320894241333</left_val> 14774 <right_val>0.4625549912452698</right_val></_></_> 14775 <_> 14776 <!-- tree 11 --> 14777 <_> 14778 <!-- root node --> 14779 <feature> 14780 <rects> 14781 <_>7 11 6 6 -1.</_> 14782 <_>10 11 3 3 2.</_> 14783 <_>7 14 3 3 2.</_></rects> 14784 <tilted>0</tilted></feature> 14785 <threshold>3.5420239437371492e-003</threshold> 14786 <left_val>0.5521438121795654</left_val> 14787 <right_val>0.3869673013687134</right_val></_></_> 14788 <_> 14789 <!-- tree 12 --> 14790 <_> 14791 <!-- root node --> 14792 <feature> 14793 <rects> 14794 <_>0 0 10 9 -1.</_> 14795 <_>0 3 10 3 3.</_></rects> 14796 <tilted>0</tilted></feature> 14797 <threshold>-1.0585320414975286e-003</threshold> 14798 <left_val>0.3628678023815155</left_val> 14799 <right_val>0.5320926904678345</right_val></_></_> 14800 <_> 14801 <!-- tree 13 --> 14802 <_> 14803 <!-- root node --> 14804 <feature> 14805 <rects> 14806 <_>13 14 1 6 -1.</_> 14807 <_>13 16 1 2 3.</_></rects> 14808 <tilted>0</tilted></feature> 14809 <threshold>1.4935660146875307e-005</threshold> 14810 <left_val>0.4632444977760315</left_val> 14811 <right_val>0.5363323092460632</right_val></_></_> 14812 <_> 14813 <!-- tree 14 --> 14814 <_> 14815 <!-- root node --> 14816 <feature> 14817 <rects> 14818 <_>0 2 3 6 -1.</_> 14819 <_>0 4 3 2 3.</_></rects> 14820 <tilted>0</tilted></feature> 14821 <threshold>5.2537708543241024e-003</threshold> 14822 <left_val>0.5132231712341309</left_val> 14823 <right_val>0.3265708982944489</right_val></_></_> 14824 <_> 14825 <!-- tree 15 --> 14826 <_> 14827 <!-- root node --> 14828 <feature> 14829 <rects> 14830 <_>8 14 4 3 -1.</_> 14831 <_>8 15 4 1 3.</_></rects> 14832 <tilted>0</tilted></feature> 14833 <threshold>-8.2338023930788040e-003</threshold> 14834 <left_val>0.6693689823150635</left_val> 14835 <right_val>0.4774140119552612</right_val></_></_> 14836 <_> 14837 <!-- tree 16 --> 14838 <_> 14839 <!-- root node --> 14840 <feature> 14841 <rects> 14842 <_>6 14 1 6 -1.</_> 14843 <_>6 16 1 2 3.</_></rects> 14844 <tilted>0</tilted></feature> 14845 <threshold>2.1866810129722580e-005</threshold> 14846 <left_val>0.4053862094879150</left_val> 14847 <right_val>0.5457931160926819</right_val></_></_> 14848 <_> 14849 <!-- tree 17 --> 14850 <_> 14851 <!-- root node --> 14852 <feature> 14853 <rects> 14854 <_>9 15 2 3 -1.</_> 14855 <_>9 16 2 1 3.</_></rects> 14856 <tilted>0</tilted></feature> 14857 <threshold>-3.8150229956954718e-003</threshold> 14858 <left_val>0.6454995870590210</left_val> 14859 <right_val>0.4793178141117096</right_val></_></_> 14860 <_> 14861 <!-- tree 18 --> 14862 <_> 14863 <!-- root node --> 14864 <feature> 14865 <rects> 14866 <_>6 4 3 3 -1.</_> 14867 <_>7 4 1 3 3.</_></rects> 14868 <tilted>0</tilted></feature> 14869 <threshold>1.1105879675596952e-003</threshold> 14870 <left_val>0.5270407199859619</left_val> 14871 <right_val>0.3529678881168366</right_val></_></_> 14872 <_> 14873 <!-- tree 19 --> 14874 <_> 14875 <!-- root node --> 14876 <feature> 14877 <rects> 14878 <_>9 0 11 3 -1.</_> 14879 <_>9 1 11 1 3.</_></rects> 14880 <tilted>0</tilted></feature> 14881 <threshold>-5.7707689702510834e-003</threshold> 14882 <left_val>0.3803547024726868</left_val> 14883 <right_val>0.5352957844734192</right_val></_></_> 14884 <_> 14885 <!-- tree 20 --> 14886 <_> 14887 <!-- root node --> 14888 <feature> 14889 <rects> 14890 <_>0 6 20 3 -1.</_> 14891 <_>0 7 20 1 3.</_></rects> 14892 <tilted>0</tilted></feature> 14893 <threshold>-3.0158339068293571e-003</threshold> 14894 <left_val>0.5339403152465820</left_val> 14895 <right_val>0.3887133002281189</right_val></_></_> 14896 <_> 14897 <!-- tree 21 --> 14898 <_> 14899 <!-- root node --> 14900 <feature> 14901 <rects> 14902 <_>10 1 1 2 -1.</_> 14903 <_>10 2 1 1 2.</_></rects> 14904 <tilted>0</tilted></feature> 14905 <threshold>-8.5453689098358154e-004</threshold> 14906 <left_val>0.3564616143703461</left_val> 14907 <right_val>0.5273603796958923</right_val></_></_> 14908 <_> 14909 <!-- tree 22 --> 14910 <_> 14911 <!-- root node --> 14912 <feature> 14913 <rects> 14914 <_>9 6 2 6 -1.</_> 14915 <_>10 6 1 6 2.</_></rects> 14916 <tilted>0</tilted></feature> 14917 <threshold>0.0110505102202296</threshold> 14918 <left_val>0.4671907126903534</left_val> 14919 <right_val>0.6849737763404846</right_val></_></_> 14920 <_> 14921 <!-- tree 23 --> 14922 <_> 14923 <!-- root node --> 14924 <feature> 14925 <rects> 14926 <_>5 8 12 1 -1.</_> 14927 <_>9 8 4 1 3.</_></rects> 14928 <tilted>0</tilted></feature> 14929 <threshold>0.0426058396697044</threshold> 14930 <left_val>0.5151473283767700</left_val> 14931 <right_val>0.0702200904488564</right_val></_></_> 14932 <_> 14933 <!-- tree 24 --> 14934 <_> 14935 <!-- root node --> 14936 <feature> 14937 <rects> 14938 <_>3 8 12 1 -1.</_> 14939 <_>7 8 4 1 3.</_></rects> 14940 <tilted>0</tilted></feature> 14941 <threshold>-3.0781750101596117e-003</threshold> 14942 <left_val>0.3041661083698273</left_val> 14943 <right_val>0.5152602195739746</right_val></_></_> 14944 <_> 14945 <!-- tree 25 --> 14946 <_> 14947 <!-- root node --> 14948 <feature> 14949 <rects> 14950 <_>9 7 3 5 -1.</_> 14951 <_>10 7 1 5 3.</_></rects> 14952 <tilted>0</tilted></feature> 14953 <threshold>-5.4815728217363358e-003</threshold> 14954 <left_val>0.6430295705795288</left_val> 14955 <right_val>0.4897229969501495</right_val></_></_> 14956 <_> 14957 <!-- tree 26 --> 14958 <_> 14959 <!-- root node --> 14960 <feature> 14961 <rects> 14962 <_>3 9 6 2 -1.</_> 14963 <_>6 9 3 2 2.</_></rects> 14964 <tilted>0</tilted></feature> 14965 <threshold>3.1881860923022032e-003</threshold> 14966 <left_val>0.5307493209838867</left_val> 14967 <right_val>0.3826209902763367</right_val></_></_> 14968 <_> 14969 <!-- tree 27 --> 14970 <_> 14971 <!-- root node --> 14972 <feature> 14973 <rects> 14974 <_>12 9 3 3 -1.</_> 14975 <_>12 10 3 1 3.</_></rects> 14976 <tilted>0</tilted></feature> 14977 <threshold>3.5947180003859103e-004</threshold> 14978 <left_val>0.4650047123432159</left_val> 14979 <right_val>0.5421904921531677</right_val></_></_> 14980 <_> 14981 <!-- tree 28 --> 14982 <_> 14983 <!-- root node --> 14984 <feature> 14985 <rects> 14986 <_>7 0 6 1 -1.</_> 14987 <_>9 0 2 1 3.</_></rects> 14988 <tilted>0</tilted></feature> 14989 <threshold>-4.0705031715333462e-003</threshold> 14990 <left_val>0.2849679887294769</left_val> 14991 <right_val>0.5079116225242615</right_val></_></_> 14992 <_> 14993 <!-- tree 29 --> 14994 <_> 14995 <!-- root node --> 14996 <feature> 14997 <rects> 14998 <_>12 9 3 3 -1.</_> 14999 <_>12 10 3 1 3.</_></rects> 15000 <tilted>0</tilted></feature> 15001 <threshold>-0.0145941702648997</threshold> 15002 <left_val>0.2971645891666412</left_val> 15003 <right_val>0.5128461718559265</right_val></_></_> 15004 <_> 15005 <!-- tree 30 --> 15006 <_> 15007 <!-- root node --> 15008 <feature> 15009 <rects> 15010 <_>7 10 2 1 -1.</_> 15011 <_>8 10 1 1 2.</_></rects> 15012 <tilted>0</tilted></feature> 15013 <threshold>-1.1947689927183092e-004</threshold> 15014 <left_val>0.5631098151206970</left_val> 15015 <right_val>0.4343082010746002</right_val></_></_> 15016 <_> 15017 <!-- tree 31 --> 15018 <_> 15019 <!-- root node --> 15020 <feature> 15021 <rects> 15022 <_>6 4 9 13 -1.</_> 15023 <_>9 4 3 13 3.</_></rects> 15024 <tilted>0</tilted></feature> 15025 <threshold>-6.9344649091362953e-004</threshold> 15026 <left_val>0.4403578042984009</left_val> 15027 <right_val>0.5359959006309509</right_val></_></_> 15028 <_> 15029 <!-- tree 32 --> 15030 <_> 15031 <!-- root node --> 15032 <feature> 15033 <rects> 15034 <_>6 8 4 2 -1.</_> 15035 <_>6 9 4 1 2.</_></rects> 15036 <tilted>0</tilted></feature> 15037 <threshold>1.4834799912932795e-005</threshold> 15038 <left_val>0.3421008884906769</left_val> 15039 <right_val>0.5164697766304016</right_val></_></_> 15040 <_> 15041 <!-- tree 33 --> 15042 <_> 15043 <!-- root node --> 15044 <feature> 15045 <rects> 15046 <_>16 2 4 6 -1.</_> 15047 <_>16 2 2 6 2.</_></rects> 15048 <tilted>0</tilted></feature> 15049 <threshold>9.0296985581517220e-003</threshold> 15050 <left_val>0.4639343023300171</left_val> 15051 <right_val>0.6114075183868408</right_val></_></_> 15052 <_> 15053 <!-- tree 34 --> 15054 <_> 15055 <!-- root node --> 15056 <feature> 15057 <rects> 15058 <_>0 17 6 3 -1.</_> 15059 <_>0 18 6 1 3.</_></rects> 15060 <tilted>0</tilted></feature> 15061 <threshold>-8.0640818923711777e-003</threshold> 15062 <left_val>0.2820158898830414</left_val> 15063 <right_val>0.5075494050979614</right_val></_></_> 15064 <_> 15065 <!-- tree 35 --> 15066 <_> 15067 <!-- root node --> 15068 <feature> 15069 <rects> 15070 <_>10 10 3 10 -1.</_> 15071 <_>10 15 3 5 2.</_></rects> 15072 <tilted>0</tilted></feature> 15073 <threshold>0.0260621197521687</threshold> 15074 <left_val>0.5208905935287476</left_val> 15075 <right_val>0.2688778042793274</right_val></_></_> 15076 <_> 15077 <!-- tree 36 --> 15078 <_> 15079 <!-- root node --> 15080 <feature> 15081 <rects> 15082 <_>8 7 3 5 -1.</_> 15083 <_>9 7 1 5 3.</_></rects> 15084 <tilted>0</tilted></feature> 15085 <threshold>0.0173146594315767</threshold> 15086 <left_val>0.4663713872432709</left_val> 15087 <right_val>0.6738539934158325</right_val></_></_> 15088 <_> 15089 <!-- tree 37 --> 15090 <_> 15091 <!-- root node --> 15092 <feature> 15093 <rects> 15094 <_>10 4 4 3 -1.</_> 15095 <_>10 4 2 3 2.</_></rects> 15096 <tilted>0</tilted></feature> 15097 <threshold>0.0226666405797005</threshold> 15098 <left_val>0.5209349989891052</left_val> 15099 <right_val>0.2212723940610886</right_val></_></_> 15100 <_> 15101 <!-- tree 38 --> 15102 <_> 15103 <!-- root node --> 15104 <feature> 15105 <rects> 15106 <_>8 4 3 8 -1.</_> 15107 <_>9 4 1 8 3.</_></rects> 15108 <tilted>0</tilted></feature> 15109 <threshold>-2.1965929772704840e-003</threshold> 15110 <left_val>0.6063101291656494</left_val> 15111 <right_val>0.4538190066814423</right_val></_></_> 15112 <_> 15113 <!-- tree 39 --> 15114 <_> 15115 <!-- root node --> 15116 <feature> 15117 <rects> 15118 <_>6 6 9 13 -1.</_> 15119 <_>9 6 3 13 3.</_></rects> 15120 <tilted>0</tilted></feature> 15121 <threshold>-9.5282476395368576e-003</threshold> 15122 <left_val>0.4635204970836639</left_val> 15123 <right_val>0.5247430801391602</right_val></_></_> 15124 <_> 15125 <!-- tree 40 --> 15126 <_> 15127 <!-- root node --> 15128 <feature> 15129 <rects> 15130 <_>6 0 8 12 -1.</_> 15131 <_>6 0 4 6 2.</_> 15132 <_>10 6 4 6 2.</_></rects> 15133 <tilted>0</tilted></feature> 15134 <threshold>8.0943619832396507e-003</threshold> 15135 <left_val>0.5289440155029297</left_val> 15136 <right_val>0.3913882076740265</right_val></_></_> 15137 <_> 15138 <!-- tree 41 --> 15139 <_> 15140 <!-- root node --> 15141 <feature> 15142 <rects> 15143 <_>14 2 6 8 -1.</_> 15144 <_>16 2 2 8 3.</_></rects> 15145 <tilted>0</tilted></feature> 15146 <threshold>-0.0728773325681686</threshold> 15147 <left_val>0.7752001881599426</left_val> 15148 <right_val>0.4990234971046448</right_val></_></_> 15149 <_> 15150 <!-- tree 42 --> 15151 <_> 15152 <!-- root node --> 15153 <feature> 15154 <rects> 15155 <_>6 0 3 6 -1.</_> 15156 <_>7 0 1 6 3.</_></rects> 15157 <tilted>0</tilted></feature> 15158 <threshold>-6.9009521976113319e-003</threshold> 15159 <left_val>0.2428039014339447</left_val> 15160 <right_val>0.5048090219497681</right_val></_></_> 15161 <_> 15162 <!-- tree 43 --> 15163 <_> 15164 <!-- root node --> 15165 <feature> 15166 <rects> 15167 <_>14 2 6 8 -1.</_> 15168 <_>16 2 2 8 3.</_></rects> 15169 <tilted>0</tilted></feature> 15170 <threshold>-0.0113082397729158</threshold> 15171 <left_val>0.5734364986419678</left_val> 15172 <right_val>0.4842376112937927</right_val></_></_> 15173 <_> 15174 <!-- tree 44 --> 15175 <_> 15176 <!-- root node --> 15177 <feature> 15178 <rects> 15179 <_>0 5 6 6 -1.</_> 15180 <_>0 8 6 3 2.</_></rects> 15181 <tilted>0</tilted></feature> 15182 <threshold>0.0596132017672062</threshold> 15183 <left_val>0.5029836297035217</left_val> 15184 <right_val>0.2524977028369904</right_val></_></_> 15185 <_> 15186 <!-- tree 45 --> 15187 <_> 15188 <!-- root node --> 15189 <feature> 15190 <rects> 15191 <_>9 12 6 2 -1.</_> 15192 <_>12 12 3 1 2.</_> 15193 <_>9 13 3 1 2.</_></rects> 15194 <tilted>0</tilted></feature> 15195 <threshold>-2.8624620754271746e-003</threshold> 15196 <left_val>0.6073045134544373</left_val> 15197 <right_val>0.4898459911346436</right_val></_></_> 15198 <_> 15199 <!-- tree 46 --> 15200 <_> 15201 <!-- root node --> 15202 <feature> 15203 <rects> 15204 <_>8 17 3 2 -1.</_> 15205 <_>9 17 1 2 3.</_></rects> 15206 <tilted>0</tilted></feature> 15207 <threshold>4.4781449250876904e-003</threshold> 15208 <left_val>0.5015289187431335</left_val> 15209 <right_val>0.2220316976308823</right_val></_></_> 15210 <_> 15211 <!-- tree 47 --> 15212 <_> 15213 <!-- root node --> 15214 <feature> 15215 <rects> 15216 <_>11 6 2 2 -1.</_> 15217 <_>12 6 1 1 2.</_> 15218 <_>11 7 1 1 2.</_></rects> 15219 <tilted>0</tilted></feature> 15220 <threshold>-1.7513240454718471e-003</threshold> 15221 <left_val>0.6614428758621216</left_val> 15222 <right_val>0.4933868944644928</right_val></_></_> 15223 <_> 15224 <!-- tree 48 --> 15225 <_> 15226 <!-- root node --> 15227 <feature> 15228 <rects> 15229 <_>1 9 18 2 -1.</_> 15230 <_>7 9 6 2 3.</_></rects> 15231 <tilted>0</tilted></feature> 15232 <threshold>0.0401634201407433</threshold> 15233 <left_val>0.5180878043174744</left_val> 15234 <right_val>0.3741044998168945</right_val></_></_> 15235 <_> 15236 <!-- tree 49 --> 15237 <_> 15238 <!-- root node --> 15239 <feature> 15240 <rects> 15241 <_>11 6 2 2 -1.</_> 15242 <_>12 6 1 1 2.</_> 15243 <_>11 7 1 1 2.</_></rects> 15244 <tilted>0</tilted></feature> 15245 <threshold>3.4768949262797832e-004</threshold> 15246 <left_val>0.4720416963100433</left_val> 15247 <right_val>0.5818032026290894</right_val></_></_> 15248 <_> 15249 <!-- tree 50 --> 15250 <_> 15251 <!-- root node --> 15252 <feature> 15253 <rects> 15254 <_>3 4 12 8 -1.</_> 15255 <_>7 4 4 8 3.</_></rects> 15256 <tilted>0</tilted></feature> 15257 <threshold>2.6551650371402502e-003</threshold> 15258 <left_val>0.3805010914802551</left_val> 15259 <right_val>0.5221335887908936</right_val></_></_> 15260 <_> 15261 <!-- tree 51 --> 15262 <_> 15263 <!-- root node --> 15264 <feature> 15265 <rects> 15266 <_>13 11 5 3 -1.</_> 15267 <_>13 12 5 1 3.</_></rects> 15268 <tilted>0</tilted></feature> 15269 <threshold>-8.7706279009580612e-003</threshold> 15270 <left_val>0.2944166064262390</left_val> 15271 <right_val>0.5231295228004456</right_val></_></_> 15272 <_> 15273 <!-- tree 52 --> 15274 <_> 15275 <!-- root node --> 15276 <feature> 15277 <rects> 15278 <_>9 10 2 3 -1.</_> 15279 <_>9 11 2 1 3.</_></rects> 15280 <tilted>0</tilted></feature> 15281 <threshold>-5.5122091434895992e-003</threshold> 15282 <left_val>0.7346177101135254</left_val> 15283 <right_val>0.4722816944122315</right_val></_></_> 15284 <_> 15285 <!-- tree 53 --> 15286 <_> 15287 <!-- root node --> 15288 <feature> 15289 <rects> 15290 <_>14 7 2 3 -1.</_> 15291 <_>14 7 1 3 2.</_></rects> 15292 <tilted>0</tilted></feature> 15293 <threshold>6.8672042107209563e-004</threshold> 15294 <left_val>0.5452876091003418</left_val> 15295 <right_val>0.4242413043975830</right_val></_></_> 15296 <_> 15297 <!-- tree 54 --> 15298 <_> 15299 <!-- root node --> 15300 <feature> 15301 <rects> 15302 <_>5 4 1 3 -1.</_> 15303 <_>5 5 1 1 3.</_></rects> 15304 <tilted>0</tilted></feature> 15305 <threshold>5.6019669864326715e-004</threshold> 15306 <left_val>0.4398862123489380</left_val> 15307 <right_val>0.5601285099983215</right_val></_></_> 15308 <_> 15309 <!-- tree 55 --> 15310 <_> 15311 <!-- root node --> 15312 <feature> 15313 <rects> 15314 <_>13 4 2 3 -1.</_> 15315 <_>13 5 2 1 3.</_></rects> 15316 <tilted>0</tilted></feature> 15317 <threshold>2.4143769405782223e-003</threshold> 15318 <left_val>0.4741686880588532</left_val> 15319 <right_val>0.6136621832847595</right_val></_></_> 15320 <_> 15321 <!-- tree 56 --> 15322 <_> 15323 <!-- root node --> 15324 <feature> 15325 <rects> 15326 <_>5 4 2 3 -1.</_> 15327 <_>5 5 2 1 3.</_></rects> 15328 <tilted>0</tilted></feature> 15329 <threshold>-1.5680900542065501e-003</threshold> 15330 <left_val>0.6044552922248840</left_val> 15331 <right_val>0.4516409933567047</right_val></_></_> 15332 <_> 15333 <!-- tree 57 --> 15334 <_> 15335 <!-- root node --> 15336 <feature> 15337 <rects> 15338 <_>9 8 2 3 -1.</_> 15339 <_>9 9 2 1 3.</_></rects> 15340 <tilted>0</tilted></feature> 15341 <threshold>-3.6827491130679846e-003</threshold> 15342 <left_val>0.2452459037303925</left_val> 15343 <right_val>0.5294982194900513</right_val></_></_> 15344 <_> 15345 <!-- tree 58 --> 15346 <_> 15347 <!-- root node --> 15348 <feature> 15349 <rects> 15350 <_>8 9 2 2 -1.</_> 15351 <_>8 10 2 1 2.</_></rects> 15352 <tilted>0</tilted></feature> 15353 <threshold>-2.9409190756268799e-004</threshold> 15354 <left_val>0.3732838034629822</left_val> 15355 <right_val>0.5251451134681702</right_val></_></_> 15356 <_> 15357 <!-- tree 59 --> 15358 <_> 15359 <!-- root node --> 15360 <feature> 15361 <rects> 15362 <_>15 14 1 4 -1.</_> 15363 <_>15 16 1 2 2.</_></rects> 15364 <tilted>0</tilted></feature> 15365 <threshold>4.2847759323194623e-004</threshold> 15366 <left_val>0.5498809814453125</left_val> 15367 <right_val>0.4065535068511963</right_val></_></_> 15368 <_> 15369 <!-- tree 60 --> 15370 <_> 15371 <!-- root node --> 15372 <feature> 15373 <rects> 15374 <_>3 12 2 2 -1.</_> 15375 <_>3 13 2 1 2.</_></rects> 15376 <tilted>0</tilted></feature> 15377 <threshold>-4.8817070201039314e-003</threshold> 15378 <left_val>0.2139908969402313</left_val> 15379 <right_val>0.4999957084655762</right_val></_></_> 15380 <_> 15381 <!-- tree 61 --> 15382 <_> 15383 <!-- root node --> 15384 <feature> 15385 <rects> 15386 <_>12 15 2 2 -1.</_> 15387 <_>13 15 1 1 2.</_> 15388 <_>12 16 1 1 2.</_></rects> 15389 <tilted>0</tilted></feature> 15390 <threshold>2.7272020815871656e-004</threshold> 15391 <left_val>0.4650287032127380</left_val> 15392 <right_val>0.5813428759574890</right_val></_></_> 15393 <_> 15394 <!-- tree 62 --> 15395 <_> 15396 <!-- root node --> 15397 <feature> 15398 <rects> 15399 <_>9 13 2 2 -1.</_> 15400 <_>9 14 2 1 2.</_></rects> 15401 <tilted>0</tilted></feature> 15402 <threshold>2.0947199664078653e-004</threshold> 15403 <left_val>0.4387486875057221</left_val> 15404 <right_val>0.5572792887687683</right_val></_></_> 15405 <_> 15406 <!-- tree 63 --> 15407 <_> 15408 <!-- root node --> 15409 <feature> 15410 <rects> 15411 <_>4 11 14 9 -1.</_> 15412 <_>4 14 14 3 3.</_></rects> 15413 <tilted>0</tilted></feature> 15414 <threshold>0.0485011897981167</threshold> 15415 <left_val>0.5244972705841065</left_val> 15416 <right_val>0.3212889134883881</right_val></_></_> 15417 <_> 15418 <!-- tree 64 --> 15419 <_> 15420 <!-- root node --> 15421 <feature> 15422 <rects> 15423 <_>7 13 4 3 -1.</_> 15424 <_>7 14 4 1 3.</_></rects> 15425 <tilted>0</tilted></feature> 15426 <threshold>-4.5166411437094212e-003</threshold> 15427 <left_val>0.6056813001632690</left_val> 15428 <right_val>0.4545882046222687</right_val></_></_> 15429 <_> 15430 <!-- tree 65 --> 15431 <_> 15432 <!-- root node --> 15433 <feature> 15434 <rects> 15435 <_>15 14 1 4 -1.</_> 15436 <_>15 16 1 2 2.</_></rects> 15437 <tilted>0</tilted></feature> 15438 <threshold>-0.0122916800901294</threshold> 15439 <left_val>0.2040929049253464</left_val> 15440 <right_val>0.5152214169502258</right_val></_></_> 15441 <_> 15442 <!-- tree 66 --> 15443 <_> 15444 <!-- root node --> 15445 <feature> 15446 <rects> 15447 <_>4 14 1 4 -1.</_> 15448 <_>4 16 1 2 2.</_></rects> 15449 <tilted>0</tilted></feature> 15450 <threshold>4.8549679922871292e-004</threshold> 15451 <left_val>0.5237604975700378</left_val> 15452 <right_val>0.3739503026008606</right_val></_></_> 15453 <_> 15454 <!-- tree 67 --> 15455 <_> 15456 <!-- root node --> 15457 <feature> 15458 <rects> 15459 <_>14 0 6 13 -1.</_> 15460 <_>16 0 2 13 3.</_></rects> 15461 <tilted>0</tilted></feature> 15462 <threshold>0.0305560491979122</threshold> 15463 <left_val>0.4960533976554871</left_val> 15464 <right_val>0.5938246250152588</right_val></_></_> 15465 <_> 15466 <!-- tree 68 --> 15467 <_> 15468 <!-- root node --> 15469 <feature> 15470 <rects> 15471 <_>4 1 2 12 -1.</_> 15472 <_>4 1 1 6 2.</_> 15473 <_>5 7 1 6 2.</_></rects> 15474 <tilted>0</tilted></feature> 15475 <threshold>-1.5105320198927075e-004</threshold> 15476 <left_val>0.5351303815841675</left_val> 15477 <right_val>0.4145204126834869</right_val></_></_> 15478 <_> 15479 <!-- tree 69 --> 15480 <_> 15481 <!-- root node --> 15482 <feature> 15483 <rects> 15484 <_>11 14 6 6 -1.</_> 15485 <_>14 14 3 3 2.</_> 15486 <_>11 17 3 3 2.</_></rects> 15487 <tilted>0</tilted></feature> 15488 <threshold>2.4937440175563097e-003</threshold> 15489 <left_val>0.4693366885185242</left_val> 15490 <right_val>0.5514941215515137</right_val></_></_> 15491 <_> 15492 <!-- tree 70 --> 15493 <_> 15494 <!-- root node --> 15495 <feature> 15496 <rects> 15497 <_>3 14 6 6 -1.</_> 15498 <_>3 14 3 3 2.</_> 15499 <_>6 17 3 3 2.</_></rects> 15500 <tilted>0</tilted></feature> 15501 <threshold>-0.0123821301385760</threshold> 15502 <left_val>0.6791396737098694</left_val> 15503 <right_val>0.4681667983531952</right_val></_></_> 15504 <_> 15505 <!-- tree 71 --> 15506 <_> 15507 <!-- root node --> 15508 <feature> 15509 <rects> 15510 <_>14 17 3 2 -1.</_> 15511 <_>14 18 3 1 2.</_></rects> 15512 <tilted>0</tilted></feature> 15513 <threshold>-5.1333461888134480e-003</threshold> 15514 <left_val>0.3608739078044891</left_val> 15515 <right_val>0.5229160189628601</right_val></_></_> 15516 <_> 15517 <!-- tree 72 --> 15518 <_> 15519 <!-- root node --> 15520 <feature> 15521 <rects> 15522 <_>3 17 3 2 -1.</_> 15523 <_>3 18 3 1 2.</_></rects> 15524 <tilted>0</tilted></feature> 15525 <threshold>5.1919277757406235e-004</threshold> 15526 <left_val>0.5300073027610779</left_val> 15527 <right_val>0.3633613884449005</right_val></_></_> 15528 <_> 15529 <!-- tree 73 --> 15530 <_> 15531 <!-- root node --> 15532 <feature> 15533 <rects> 15534 <_>14 0 6 13 -1.</_> 15535 <_>16 0 2 13 3.</_></rects> 15536 <tilted>0</tilted></feature> 15537 <threshold>0.1506042033433914</threshold> 15538 <left_val>0.5157316923141480</left_val> 15539 <right_val>0.2211782038211823</right_val></_></_> 15540 <_> 15541 <!-- tree 74 --> 15542 <_> 15543 <!-- root node --> 15544 <feature> 15545 <rects> 15546 <_>0 0 6 13 -1.</_> 15547 <_>2 0 2 13 3.</_></rects> 15548 <tilted>0</tilted></feature> 15549 <threshold>7.7144149690866470e-003</threshold> 15550 <left_val>0.4410496950149536</left_val> 15551 <right_val>0.5776609182357788</right_val></_></_> 15552 <_> 15553 <!-- tree 75 --> 15554 <_> 15555 <!-- root node --> 15556 <feature> 15557 <rects> 15558 <_>10 10 7 6 -1.</_> 15559 <_>10 12 7 2 3.</_></rects> 15560 <tilted>0</tilted></feature> 15561 <threshold>9.4443522393703461e-003</threshold> 15562 <left_val>0.5401855111122131</left_val> 15563 <right_val>0.3756650090217590</right_val></_></_> 15564 <_> 15565 <!-- tree 76 --> 15566 <_> 15567 <!-- root node --> 15568 <feature> 15569 <rects> 15570 <_>6 15 2 2 -1.</_> 15571 <_>6 15 1 1 2.</_> 15572 <_>7 16 1 1 2.</_></rects> 15573 <tilted>0</tilted></feature> 15574 <threshold>2.5006249779835343e-004</threshold> 15575 <left_val>0.4368270933628082</left_val> 15576 <right_val>0.5607374906539917</right_val></_></_> 15577 <_> 15578 <!-- tree 77 --> 15579 <_> 15580 <!-- root node --> 15581 <feature> 15582 <rects> 15583 <_>6 11 8 6 -1.</_> 15584 <_>10 11 4 3 2.</_> 15585 <_>6 14 4 3 2.</_></rects> 15586 <tilted>0</tilted></feature> 15587 <threshold>-3.3077150583267212e-003</threshold> 15588 <left_val>0.4244799017906189</left_val> 15589 <right_val>0.5518230795860291</right_val></_></_> 15590 <_> 15591 <!-- tree 78 --> 15592 <_> 15593 <!-- root node --> 15594 <feature> 15595 <rects> 15596 <_>7 6 2 2 -1.</_> 15597 <_>7 6 1 1 2.</_> 15598 <_>8 7 1 1 2.</_></rects> 15599 <tilted>0</tilted></feature> 15600 <threshold>7.4048910755664110e-004</threshold> 15601 <left_val>0.4496962130069733</left_val> 15602 <right_val>0.5900576710700989</right_val></_></_> 15603 <_> 15604 <!-- tree 79 --> 15605 <_> 15606 <!-- root node --> 15607 <feature> 15608 <rects> 15609 <_>2 2 16 6 -1.</_> 15610 <_>10 2 8 3 2.</_> 15611 <_>2 5 8 3 2.</_></rects> 15612 <tilted>0</tilted></feature> 15613 <threshold>0.0440920516848564</threshold> 15614 <left_val>0.5293493270874023</left_val> 15615 <right_val>0.3156355023384094</right_val></_></_> 15616 <_> 15617 <!-- tree 80 --> 15618 <_> 15619 <!-- root node --> 15620 <feature> 15621 <rects> 15622 <_>5 4 3 3 -1.</_> 15623 <_>5 5 3 1 3.</_></rects> 15624 <tilted>0</tilted></feature> 15625 <threshold>3.3639909233897924e-003</threshold> 15626 <left_val>0.4483296871185303</left_val> 15627 <right_val>0.5848662257194519</right_val></_></_> 15628 <_> 15629 <!-- tree 81 --> 15630 <_> 15631 <!-- root node --> 15632 <feature> 15633 <rects> 15634 <_>11 7 3 10 -1.</_> 15635 <_>11 12 3 5 2.</_></rects> 15636 <tilted>0</tilted></feature> 15637 <threshold>-3.9760079234838486e-003</threshold> 15638 <left_val>0.4559507071971893</left_val> 15639 <right_val>0.5483639240264893</right_val></_></_> 15640 <_> 15641 <!-- tree 82 --> 15642 <_> 15643 <!-- root node --> 15644 <feature> 15645 <rects> 15646 <_>6 7 3 10 -1.</_> 15647 <_>6 12 3 5 2.</_></rects> 15648 <tilted>0</tilted></feature> 15649 <threshold>2.7716930489987135e-003</threshold> 15650 <left_val>0.5341786146163940</left_val> 15651 <right_val>0.3792484104633331</right_val></_></_> 15652 <_> 15653 <!-- tree 83 --> 15654 <_> 15655 <!-- root node --> 15656 <feature> 15657 <rects> 15658 <_>10 7 3 2 -1.</_> 15659 <_>11 7 1 2 3.</_></rects> 15660 <tilted>0</tilted></feature> 15661 <threshold>-2.4123019829858094e-004</threshold> 15662 <left_val>0.5667188763618469</left_val> 15663 <right_val>0.4576973021030426</right_val></_></_> 15664 <_> 15665 <!-- tree 84 --> 15666 <_> 15667 <!-- root node --> 15668 <feature> 15669 <rects> 15670 <_>8 12 4 2 -1.</_> 15671 <_>8 13 4 1 2.</_></rects> 15672 <tilted>0</tilted></feature> 15673 <threshold>4.9425667384639382e-004</threshold> 15674 <left_val>0.4421244859695435</left_val> 15675 <right_val>0.5628787279129028</right_val></_></_> 15676 <_> 15677 <!-- tree 85 --> 15678 <_> 15679 <!-- root node --> 15680 <feature> 15681 <rects> 15682 <_>10 1 1 3 -1.</_> 15683 <_>10 2 1 1 3.</_></rects> 15684 <tilted>0</tilted></feature> 15685 <threshold>-3.8876468897797167e-004</threshold> 15686 <left_val>0.4288370907306671</left_val> 15687 <right_val>0.5391063094139099</right_val></_></_> 15688 <_> 15689 <!-- tree 86 --> 15690 <_> 15691 <!-- root node --> 15692 <feature> 15693 <rects> 15694 <_>1 2 4 18 -1.</_> 15695 <_>1 2 2 9 2.</_> 15696 <_>3 11 2 9 2.</_></rects> 15697 <tilted>0</tilted></feature> 15698 <threshold>-0.0500488989055157</threshold> 15699 <left_val>0.6899513006210327</left_val> 15700 <right_val>0.4703742861747742</right_val></_></_> 15701 <_> 15702 <!-- tree 87 --> 15703 <_> 15704 <!-- root node --> 15705 <feature> 15706 <rects> 15707 <_>12 4 4 12 -1.</_> 15708 <_>12 10 4 6 2.</_></rects> 15709 <tilted>0</tilted></feature> 15710 <threshold>-0.0366354808211327</threshold> 15711 <left_val>0.2217779010534287</left_val> 15712 <right_val>0.5191826224327087</right_val></_></_> 15713 <_> 15714 <!-- tree 88 --> 15715 <_> 15716 <!-- root node --> 15717 <feature> 15718 <rects> 15719 <_>0 0 1 6 -1.</_> 15720 <_>0 2 1 2 3.</_></rects> 15721 <tilted>0</tilted></feature> 15722 <threshold>2.4273579474538565e-003</threshold> 15723 <left_val>0.5136224031448364</left_val> 15724 <right_val>0.3497397899627686</right_val></_></_> 15725 <_> 15726 <!-- tree 89 --> 15727 <_> 15728 <!-- root node --> 15729 <feature> 15730 <rects> 15731 <_>9 11 2 3 -1.</_> 15732 <_>9 12 2 1 3.</_></rects> 15733 <tilted>0</tilted></feature> 15734 <threshold>1.9558030180633068e-003</threshold> 15735 <left_val>0.4826192855834961</left_val> 15736 <right_val>0.6408380866050720</right_val></_></_> 15737 <_> 15738 <!-- tree 90 --> 15739 <_> 15740 <!-- root node --> 15741 <feature> 15742 <rects> 15743 <_>8 7 4 3 -1.</_> 15744 <_>8 8 4 1 3.</_></rects> 15745 <tilted>0</tilted></feature> 15746 <threshold>-1.7494610510766506e-003</threshold> 15747 <left_val>0.3922835886478424</left_val> 15748 <right_val>0.5272685289382935</right_val></_></_> 15749 <_> 15750 <!-- tree 91 --> 15751 <_> 15752 <!-- root node --> 15753 <feature> 15754 <rects> 15755 <_>10 7 3 2 -1.</_> 15756 <_>11 7 1 2 3.</_></rects> 15757 <tilted>0</tilted></feature> 15758 <threshold>0.0139550799503922</threshold> 15759 <left_val>0.5078201889991760</left_val> 15760 <right_val>0.8416504859924316</right_val></_></_> 15761 <_> 15762 <!-- tree 92 --> 15763 <_> 15764 <!-- root node --> 15765 <feature> 15766 <rects> 15767 <_>7 7 3 2 -1.</_> 15768 <_>8 7 1 2 3.</_></rects> 15769 <tilted>0</tilted></feature> 15770 <threshold>-2.1896739781368524e-004</threshold> 15771 <left_val>0.5520489811897278</left_val> 15772 <right_val>0.4314234852790833</right_val></_></_> 15773 <_> 15774 <!-- tree 93 --> 15775 <_> 15776 <!-- root node --> 15777 <feature> 15778 <rects> 15779 <_>9 4 6 1 -1.</_> 15780 <_>11 4 2 1 3.</_></rects> 15781 <tilted>0</tilted></feature> 15782 <threshold>-1.5131309628486633e-003</threshold> 15783 <left_val>0.3934605121612549</left_val> 15784 <right_val>0.5382571220397949</right_val></_></_> 15785 <_> 15786 <!-- tree 94 --> 15787 <_> 15788 <!-- root node --> 15789 <feature> 15790 <rects> 15791 <_>8 7 2 3 -1.</_> 15792 <_>9 7 1 3 2.</_></rects> 15793 <tilted>0</tilted></feature> 15794 <threshold>-4.3622800149023533e-003</threshold> 15795 <left_val>0.7370628714561462</left_val> 15796 <right_val>0.4736475944519043</right_val></_></_> 15797 <_> 15798 <!-- tree 95 --> 15799 <_> 15800 <!-- root node --> 15801 <feature> 15802 <rects> 15803 <_>12 7 8 6 -1.</_> 15804 <_>16 7 4 3 2.</_> 15805 <_>12 10 4 3 2.</_></rects> 15806 <tilted>0</tilted></feature> 15807 <threshold>0.0651605874300003</threshold> 15808 <left_val>0.5159279704093933</left_val> 15809 <right_val>0.3281595110893250</right_val></_></_> 15810 <_> 15811 <!-- tree 96 --> 15812 <_> 15813 <!-- root node --> 15814 <feature> 15815 <rects> 15816 <_>0 7 8 6 -1.</_> 15817 <_>0 7 4 3 2.</_> 15818 <_>4 10 4 3 2.</_></rects> 15819 <tilted>0</tilted></feature> 15820 <threshold>-2.3567399475723505e-003</threshold> 15821 <left_val>0.3672826886177063</left_val> 15822 <right_val>0.5172886252403259</right_val></_></_> 15823 <_> 15824 <!-- tree 97 --> 15825 <_> 15826 <!-- root node --> 15827 <feature> 15828 <rects> 15829 <_>18 2 2 10 -1.</_> 15830 <_>19 2 1 5 2.</_> 15831 <_>18 7 1 5 2.</_></rects> 15832 <tilted>0</tilted></feature> 15833 <threshold>0.0151466596871614</threshold> 15834 <left_val>0.5031493902206421</left_val> 15835 <right_val>0.6687604188919067</right_val></_></_> 15836 <_> 15837 <!-- tree 98 --> 15838 <_> 15839 <!-- root node --> 15840 <feature> 15841 <rects> 15842 <_>0 2 6 4 -1.</_> 15843 <_>3 2 3 4 2.</_></rects> 15844 <tilted>0</tilted></feature> 15845 <threshold>-0.0228509604930878</threshold> 15846 <left_val>0.6767519712448120</left_val> 15847 <right_val>0.4709596931934357</right_val></_></_> 15848 <_> 15849 <!-- tree 99 --> 15850 <_> 15851 <!-- root node --> 15852 <feature> 15853 <rects> 15854 <_>9 4 6 1 -1.</_> 15855 <_>11 4 2 1 3.</_></rects> 15856 <tilted>0</tilted></feature> 15857 <threshold>4.8867650330066681e-003</threshold> 15858 <left_val>0.5257998108863831</left_val> 15859 <right_val>0.4059878885746002</right_val></_></_> 15860 <_> 15861 <!-- tree 100 --> 15862 <_> 15863 <!-- root node --> 15864 <feature> 15865 <rects> 15866 <_>7 15 2 2 -1.</_> 15867 <_>7 15 1 1 2.</_> 15868 <_>8 16 1 1 2.</_></rects> 15869 <tilted>0</tilted></feature> 15870 <threshold>1.7619599821045995e-003</threshold> 15871 <left_val>0.4696272909641266</left_val> 15872 <right_val>0.6688278913497925</right_val></_></_> 15873 <_> 15874 <!-- tree 101 --> 15875 <_> 15876 <!-- root node --> 15877 <feature> 15878 <rects> 15879 <_>11 13 1 6 -1.</_> 15880 <_>11 16 1 3 2.</_></rects> 15881 <tilted>0</tilted></feature> 15882 <threshold>-1.2942519970238209e-003</threshold> 15883 <left_val>0.4320712983608246</left_val> 15884 <right_val>0.5344281792640686</right_val></_></_> 15885 <_> 15886 <!-- tree 102 --> 15887 <_> 15888 <!-- root node --> 15889 <feature> 15890 <rects> 15891 <_>8 13 1 6 -1.</_> 15892 <_>8 16 1 3 2.</_></rects> 15893 <tilted>0</tilted></feature> 15894 <threshold>0.0109299495816231</threshold> 15895 <left_val>0.4997706115245819</left_val> 15896 <right_val>0.1637486070394516</right_val></_></_> 15897 <_> 15898 <!-- tree 103 --> 15899 <_> 15900 <!-- root node --> 15901 <feature> 15902 <rects> 15903 <_>14 3 2 1 -1.</_> 15904 <_>14 3 1 1 2.</_></rects> 15905 <tilted>0</tilted></feature> 15906 <threshold>2.9958489903947338e-005</threshold> 15907 <left_val>0.4282417893409729</left_val> 15908 <right_val>0.5633224248886108</right_val></_></_> 15909 <_> 15910 <!-- tree 104 --> 15911 <_> 15912 <!-- root node --> 15913 <feature> 15914 <rects> 15915 <_>8 15 2 3 -1.</_> 15916 <_>8 16 2 1 3.</_></rects> 15917 <tilted>0</tilted></feature> 15918 <threshold>-6.5884361974895000e-003</threshold> 15919 <left_val>0.6772121191024780</left_val> 15920 <right_val>0.4700526893138886</right_val></_></_> 15921 <_> 15922 <!-- tree 105 --> 15923 <_> 15924 <!-- root node --> 15925 <feature> 15926 <rects> 15927 <_>12 15 7 4 -1.</_> 15928 <_>12 17 7 2 2.</_></rects> 15929 <tilted>0</tilted></feature> 15930 <threshold>3.2527779694646597e-003</threshold> 15931 <left_val>0.5313397049903870</left_val> 15932 <right_val>0.4536148905754089</right_val></_></_> 15933 <_> 15934 <!-- tree 106 --> 15935 <_> 15936 <!-- root node --> 15937 <feature> 15938 <rects> 15939 <_>4 14 12 3 -1.</_> 15940 <_>4 15 12 1 3.</_></rects> 15941 <tilted>0</tilted></feature> 15942 <threshold>-4.0435739792883396e-003</threshold> 15943 <left_val>0.5660061836242676</left_val> 15944 <right_val>0.4413388967514038</right_val></_></_> 15945 <_> 15946 <!-- tree 107 --> 15947 <_> 15948 <!-- root node --> 15949 <feature> 15950 <rects> 15951 <_>10 3 3 2 -1.</_> 15952 <_>11 3 1 2 3.</_></rects> 15953 <tilted>0</tilted></feature> 15954 <threshold>-1.2523540062829852e-003</threshold> 15955 <left_val>0.3731913864612579</left_val> 15956 <right_val>0.5356451869010925</right_val></_></_> 15957 <_> 15958 <!-- tree 108 --> 15959 <_> 15960 <!-- root node --> 15961 <feature> 15962 <rects> 15963 <_>4 12 2 2 -1.</_> 15964 <_>4 13 2 1 2.</_></rects> 15965 <tilted>0</tilted></feature> 15966 <threshold>1.9246719602961093e-004</threshold> 15967 <left_val>0.5189986228942871</left_val> 15968 <right_val>0.3738811016082764</right_val></_></_> 15969 <_> 15970 <!-- tree 109 --> 15971 <_> 15972 <!-- root node --> 15973 <feature> 15974 <rects> 15975 <_>10 11 4 6 -1.</_> 15976 <_>10 14 4 3 2.</_></rects> 15977 <tilted>0</tilted></feature> 15978 <threshold>-0.0385896712541580</threshold> 15979 <left_val>0.2956373989582062</left_val> 15980 <right_val>0.5188810825347900</right_val></_></_> 15981 <_> 15982 <!-- tree 110 --> 15983 <_> 15984 <!-- root node --> 15985 <feature> 15986 <rects> 15987 <_>7 13 2 2 -1.</_> 15988 <_>7 13 1 1 2.</_> 15989 <_>8 14 1 1 2.</_></rects> 15990 <tilted>0</tilted></feature> 15991 <threshold>1.5489870565943420e-004</threshold> 15992 <left_val>0.4347135126590729</left_val> 15993 <right_val>0.5509533286094666</right_val></_></_> 15994 <_> 15995 <!-- tree 111 --> 15996 <_> 15997 <!-- root node --> 15998 <feature> 15999 <rects> 16000 <_>4 11 14 4 -1.</_> 16001 <_>11 11 7 2 2.</_> 16002 <_>4 13 7 2 2.</_></rects> 16003 <tilted>0</tilted></feature> 16004 <threshold>-0.0337638482451439</threshold> 16005 <left_val>0.3230330049991608</left_val> 16006 <right_val>0.5195475816726685</right_val></_></_> 16007 <_> 16008 <!-- tree 112 --> 16009 <_> 16010 <!-- root node --> 16011 <feature> 16012 <rects> 16013 <_>1 18 18 2 -1.</_> 16014 <_>7 18 6 2 3.</_></rects> 16015 <tilted>0</tilted></feature> 16016 <threshold>-8.2657067105174065e-003</threshold> 16017 <left_val>0.5975489020347595</left_val> 16018 <right_val>0.4552114009857178</right_val></_></_> 16019 <_> 16020 <!-- tree 113 --> 16021 <_> 16022 <!-- root node --> 16023 <feature> 16024 <rects> 16025 <_>11 18 2 2 -1.</_> 16026 <_>12 18 1 1 2.</_> 16027 <_>11 19 1 1 2.</_></rects> 16028 <tilted>0</tilted></feature> 16029 <threshold>1.4481440302915871e-005</threshold> 16030 <left_val>0.4745678007602692</left_val> 16031 <right_val>0.5497426986694336</right_val></_></_> 16032 <_> 16033 <!-- tree 114 --> 16034 <_> 16035 <!-- root node --> 16036 <feature> 16037 <rects> 16038 <_>7 18 2 2 -1.</_> 16039 <_>7 18 1 1 2.</_> 16040 <_>8 19 1 1 2.</_></rects> 16041 <tilted>0</tilted></feature> 16042 <threshold>1.4951299817766994e-005</threshold> 16043 <left_val>0.4324473142623901</left_val> 16044 <right_val>0.5480644106864929</right_val></_></_> 16045 <_> 16046 <!-- tree 115 --> 16047 <_> 16048 <!-- root node --> 16049 <feature> 16050 <rects> 16051 <_>12 18 8 2 -1.</_> 16052 <_>12 19 8 1 2.</_></rects> 16053 <tilted>0</tilted></feature> 16054 <threshold>-0.0187417995184660</threshold> 16055 <left_val>0.1580052971839905</left_val> 16056 <right_val>0.5178533196449280</right_val></_></_> 16057 <_> 16058 <!-- tree 116 --> 16059 <_> 16060 <!-- root node --> 16061 <feature> 16062 <rects> 16063 <_>7 14 6 2 -1.</_> 16064 <_>7 15 6 1 2.</_></rects> 16065 <tilted>0</tilted></feature> 16066 <threshold>1.7572239739820361e-003</threshold> 16067 <left_val>0.4517636895179749</left_val> 16068 <right_val>0.5773764252662659</right_val></_></_> 16069 <_> 16070 <!-- tree 117 --> 16071 <_> 16072 <!-- root node --> 16073 <feature> 16074 <rects> 16075 <_>8 12 4 8 -1.</_> 16076 <_>10 12 2 4 2.</_> 16077 <_>8 16 2 4 2.</_></rects> 16078 <tilted>0</tilted></feature> 16079 <threshold>-3.1391119118779898e-003</threshold> 16080 <left_val>0.4149647951126099</left_val> 16081 <right_val>0.5460842251777649</right_val></_></_> 16082 <_> 16083 <!-- tree 118 --> 16084 <_> 16085 <!-- root node --> 16086 <feature> 16087 <rects> 16088 <_>4 9 3 3 -1.</_> 16089 <_>4 10 3 1 3.</_></rects> 16090 <tilted>0</tilted></feature> 16091 <threshold>6.6656779381446540e-005</threshold> 16092 <left_val>0.4039090871810913</left_val> 16093 <right_val>0.5293084979057312</right_val></_></_> 16094 <_> 16095 <!-- tree 119 --> 16096 <_> 16097 <!-- root node --> 16098 <feature> 16099 <rects> 16100 <_>7 10 6 2 -1.</_> 16101 <_>9 10 2 2 3.</_></rects> 16102 <tilted>0</tilted></feature> 16103 <threshold>6.7743421532213688e-003</threshold> 16104 <left_val>0.4767651855945587</left_val> 16105 <right_val>0.6121956110000610</right_val></_></_> 16106 <_> 16107 <!-- tree 120 --> 16108 <_> 16109 <!-- root node --> 16110 <feature> 16111 <rects> 16112 <_>5 0 4 15 -1.</_> 16113 <_>7 0 2 15 2.</_></rects> 16114 <tilted>0</tilted></feature> 16115 <threshold>-7.3868161998689175e-003</threshold> 16116 <left_val>0.3586258888244629</left_val> 16117 <right_val>0.5187280774116516</right_val></_></_> 16118 <_> 16119 <!-- tree 121 --> 16120 <_> 16121 <!-- root node --> 16122 <feature> 16123 <rects> 16124 <_>8 6 12 14 -1.</_> 16125 <_>12 6 4 14 3.</_></rects> 16126 <tilted>0</tilted></feature> 16127 <threshold>0.0140409301966429</threshold> 16128 <left_val>0.4712139964103699</left_val> 16129 <right_val>0.5576155781745911</right_val></_></_> 16130 <_> 16131 <!-- tree 122 --> 16132 <_> 16133 <!-- root node --> 16134 <feature> 16135 <rects> 16136 <_>5 16 3 3 -1.</_> 16137 <_>5 17 3 1 3.</_></rects> 16138 <tilted>0</tilted></feature> 16139 <threshold>-5.5258329957723618e-003</threshold> 16140 <left_val>0.2661027014255524</left_val> 16141 <right_val>0.5039281249046326</right_val></_></_> 16142 <_> 16143 <!-- tree 123 --> 16144 <_> 16145 <!-- root node --> 16146 <feature> 16147 <rects> 16148 <_>8 1 12 19 -1.</_> 16149 <_>12 1 4 19 3.</_></rects> 16150 <tilted>0</tilted></feature> 16151 <threshold>0.3868423998355866</threshold> 16152 <left_val>0.5144339799880981</left_val> 16153 <right_val>0.2525899112224579</right_val></_></_> 16154 <_> 16155 <!-- tree 124 --> 16156 <_> 16157 <!-- root node --> 16158 <feature> 16159 <rects> 16160 <_>3 0 3 2 -1.</_> 16161 <_>3 1 3 1 2.</_></rects> 16162 <tilted>0</tilted></feature> 16163 <threshold>1.1459240340627730e-004</threshold> 16164 <left_val>0.4284994900226593</left_val> 16165 <right_val>0.5423371195793152</right_val></_></_> 16166 <_> 16167 <!-- tree 125 --> 16168 <_> 16169 <!-- root node --> 16170 <feature> 16171 <rects> 16172 <_>10 12 4 5 -1.</_> 16173 <_>10 12 2 5 2.</_></rects> 16174 <tilted>0</tilted></feature> 16175 <threshold>-0.0184675697237253</threshold> 16176 <left_val>0.3885835111141205</left_val> 16177 <right_val>0.5213062167167664</right_val></_></_> 16178 <_> 16179 <!-- tree 126 --> 16180 <_> 16181 <!-- root node --> 16182 <feature> 16183 <rects> 16184 <_>6 12 4 5 -1.</_> 16185 <_>8 12 2 5 2.</_></rects> 16186 <tilted>0</tilted></feature> 16187 <threshold>-4.5907011372037232e-004</threshold> 16188 <left_val>0.5412563085556030</left_val> 16189 <right_val>0.4235909879207611</right_val></_></_> 16190 <_> 16191 <!-- tree 127 --> 16192 <_> 16193 <!-- root node --> 16194 <feature> 16195 <rects> 16196 <_>11 11 2 2 -1.</_> 16197 <_>12 11 1 1 2.</_> 16198 <_>11 12 1 1 2.</_></rects> 16199 <tilted>0</tilted></feature> 16200 <threshold>1.2527540093287826e-003</threshold> 16201 <left_val>0.4899305105209351</left_val> 16202 <right_val>0.6624091267585754</right_val></_></_> 16203 <_> 16204 <!-- tree 128 --> 16205 <_> 16206 <!-- root node --> 16207 <feature> 16208 <rects> 16209 <_>0 2 3 6 -1.</_> 16210 <_>0 4 3 2 3.</_></rects> 16211 <tilted>0</tilted></feature> 16212 <threshold>1.4910609461367130e-003</threshold> 16213 <left_val>0.5286778211593628</left_val> 16214 <right_val>0.4040051996707916</right_val></_></_> 16215 <_> 16216 <!-- tree 129 --> 16217 <_> 16218 <!-- root node --> 16219 <feature> 16220 <rects> 16221 <_>11 11 2 2 -1.</_> 16222 <_>12 11 1 1 2.</_> 16223 <_>11 12 1 1 2.</_></rects> 16224 <tilted>0</tilted></feature> 16225 <threshold>-7.5435562757775187e-004</threshold> 16226 <left_val>0.6032990217208862</left_val> 16227 <right_val>0.4795120060443878</right_val></_></_> 16228 <_> 16229 <!-- tree 130 --> 16230 <_> 16231 <!-- root node --> 16232 <feature> 16233 <rects> 16234 <_>7 6 4 10 -1.</_> 16235 <_>7 11 4 5 2.</_></rects> 16236 <tilted>0</tilted></feature> 16237 <threshold>-6.9478838704526424e-003</threshold> 16238 <left_val>0.4084401130676270</left_val> 16239 <right_val>0.5373504161834717</right_val></_></_> 16240 <_> 16241 <!-- tree 131 --> 16242 <_> 16243 <!-- root node --> 16244 <feature> 16245 <rects> 16246 <_>11 11 2 2 -1.</_> 16247 <_>12 11 1 1 2.</_> 16248 <_>11 12 1 1 2.</_></rects> 16249 <tilted>0</tilted></feature> 16250 <threshold>2.8092920547351241e-004</threshold> 16251 <left_val>0.4846062958240509</left_val> 16252 <right_val>0.5759382247924805</right_val></_></_> 16253 <_> 16254 <!-- tree 132 --> 16255 <_> 16256 <!-- root node --> 16257 <feature> 16258 <rects> 16259 <_>2 13 5 2 -1.</_> 16260 <_>2 14 5 1 2.</_></rects> 16261 <tilted>0</tilted></feature> 16262 <threshold>9.6073717577382922e-004</threshold> 16263 <left_val>0.5164741277694702</left_val> 16264 <right_val>0.3554979860782623</right_val></_></_> 16265 <_> 16266 <!-- tree 133 --> 16267 <_> 16268 <!-- root node --> 16269 <feature> 16270 <rects> 16271 <_>11 11 2 2 -1.</_> 16272 <_>12 11 1 1 2.</_> 16273 <_>11 12 1 1 2.</_></rects> 16274 <tilted>0</tilted></feature> 16275 <threshold>-2.6883929967880249e-004</threshold> 16276 <left_val>0.5677582025527954</left_val> 16277 <right_val>0.4731765985488892</right_val></_></_> 16278 <_> 16279 <!-- tree 134 --> 16280 <_> 16281 <!-- root node --> 16282 <feature> 16283 <rects> 16284 <_>7 11 2 2 -1.</_> 16285 <_>7 11 1 1 2.</_> 16286 <_>8 12 1 1 2.</_></rects> 16287 <tilted>0</tilted></feature> 16288 <threshold>2.1599370520561934e-003</threshold> 16289 <left_val>0.4731487035751343</left_val> 16290 <right_val>0.7070567011833191</right_val></_></_> 16291 <_> 16292 <!-- tree 135 --> 16293 <_> 16294 <!-- root node --> 16295 <feature> 16296 <rects> 16297 <_>14 13 3 3 -1.</_> 16298 <_>14 14 3 1 3.</_></rects> 16299 <tilted>0</tilted></feature> 16300 <threshold>5.6235301308333874e-003</threshold> 16301 <left_val>0.5240243077278137</left_val> 16302 <right_val>0.2781791985034943</right_val></_></_> 16303 <_> 16304 <!-- tree 136 --> 16305 <_> 16306 <!-- root node --> 16307 <feature> 16308 <rects> 16309 <_>3 13 3 3 -1.</_> 16310 <_>3 14 3 1 3.</_></rects> 16311 <tilted>0</tilted></feature> 16312 <threshold>-5.0243991427123547e-003</threshold> 16313 <left_val>0.2837013900279999</left_val> 16314 <right_val>0.5062304139137268</right_val></_></_> 16315 <_> 16316 <!-- tree 137 --> 16317 <_> 16318 <!-- root node --> 16319 <feature> 16320 <rects> 16321 <_>9 14 2 3 -1.</_> 16322 <_>9 15 2 1 3.</_></rects> 16323 <tilted>0</tilted></feature> 16324 <threshold>-9.7611639648675919e-003</threshold> 16325 <left_val>0.7400717735290527</left_val> 16326 <right_val>0.4934569001197815</right_val></_></_> 16327 <_> 16328 <!-- tree 138 --> 16329 <_> 16330 <!-- root node --> 16331 <feature> 16332 <rects> 16333 <_>8 7 3 3 -1.</_> 16334 <_>8 8 3 1 3.</_></rects> 16335 <tilted>0</tilted></feature> 16336 <threshold>4.1515100747346878e-003</threshold> 16337 <left_val>0.5119131207466126</left_val> 16338 <right_val>0.3407008051872253</right_val></_></_> 16339 <_> 16340 <!-- tree 139 --> 16341 <_> 16342 <!-- root node --> 16343 <feature> 16344 <rects> 16345 <_>13 5 3 3 -1.</_> 16346 <_>13 6 3 1 3.</_></rects> 16347 <tilted>0</tilted></feature> 16348 <threshold>6.2465080991387367e-003</threshold> 16349 <left_val>0.4923788011074066</left_val> 16350 <right_val>0.6579058766365051</right_val></_></_> 16351 <_> 16352 <!-- tree 140 --> 16353 <_> 16354 <!-- root node --> 16355 <feature> 16356 <rects> 16357 <_>0 9 5 3 -1.</_> 16358 <_>0 10 5 1 3.</_></rects> 16359 <tilted>0</tilted></feature> 16360 <threshold>-7.0597478188574314e-003</threshold> 16361 <left_val>0.2434711009263992</left_val> 16362 <right_val>0.5032842159271240</right_val></_></_> 16363 <_> 16364 <!-- tree 141 --> 16365 <_> 16366 <!-- root node --> 16367 <feature> 16368 <rects> 16369 <_>13 5 3 3 -1.</_> 16370 <_>13 6 3 1 3.</_></rects> 16371 <tilted>0</tilted></feature> 16372 <threshold>-2.0587709732353687e-003</threshold> 16373 <left_val>0.5900310873985291</left_val> 16374 <right_val>0.4695087075233460</right_val></_></_> 16375 <_> 16376 <!-- tree 142 --> 16377 <_> 16378 <!-- root node --> 16379 <feature> 16380 <rects> 16381 <_>9 12 2 8 -1.</_> 16382 <_>9 12 1 4 2.</_> 16383 <_>10 16 1 4 2.</_></rects> 16384 <tilted>0</tilted></feature> 16385 <threshold>-2.4146060459315777e-003</threshold> 16386 <left_val>0.3647317886352539</left_val> 16387 <right_val>0.5189201831817627</right_val></_></_> 16388 <_> 16389 <!-- tree 143 --> 16390 <_> 16391 <!-- root node --> 16392 <feature> 16393 <rects> 16394 <_>11 7 2 2 -1.</_> 16395 <_>12 7 1 1 2.</_> 16396 <_>11 8 1 1 2.</_></rects> 16397 <tilted>0</tilted></feature> 16398 <threshold>-1.4817609917372465e-003</threshold> 16399 <left_val>0.6034948229789734</left_val> 16400 <right_val>0.4940128028392792</right_val></_></_> 16401 <_> 16402 <!-- tree 144 --> 16403 <_> 16404 <!-- root node --> 16405 <feature> 16406 <rects> 16407 <_>0 16 6 4 -1.</_> 16408 <_>3 16 3 4 2.</_></rects> 16409 <tilted>0</tilted></feature> 16410 <threshold>-6.3016400672495365e-003</threshold> 16411 <left_val>0.5818989872932434</left_val> 16412 <right_val>0.4560427963733673</right_val></_></_> 16413 <_> 16414 <!-- tree 145 --> 16415 <_> 16416 <!-- root node --> 16417 <feature> 16418 <rects> 16419 <_>10 6 2 3 -1.</_> 16420 <_>10 7 2 1 3.</_></rects> 16421 <tilted>0</tilted></feature> 16422 <threshold>3.4763428848236799e-003</threshold> 16423 <left_val>0.5217475891113281</left_val> 16424 <right_val>0.3483993113040924</right_val></_></_> 16425 <_> 16426 <!-- tree 146 --> 16427 <_> 16428 <!-- root node --> 16429 <feature> 16430 <rects> 16431 <_>9 5 2 6 -1.</_> 16432 <_>9 7 2 2 3.</_></rects> 16433 <tilted>0</tilted></feature> 16434 <threshold>-0.0222508702427149</threshold> 16435 <left_val>0.2360700070858002</left_val> 16436 <right_val>0.5032082796096802</right_val></_></_> 16437 <_> 16438 <!-- tree 147 --> 16439 <_> 16440 <!-- root node --> 16441 <feature> 16442 <rects> 16443 <_>12 15 8 4 -1.</_> 16444 <_>12 15 4 4 2.</_></rects> 16445 <tilted>0</tilted></feature> 16446 <threshold>-0.0306125506758690</threshold> 16447 <left_val>0.6499186754226685</left_val> 16448 <right_val>0.4914919137954712</right_val></_></_> 16449 <_> 16450 <!-- tree 148 --> 16451 <_> 16452 <!-- root node --> 16453 <feature> 16454 <rects> 16455 <_>0 14 8 6 -1.</_> 16456 <_>4 14 4 6 2.</_></rects> 16457 <tilted>0</tilted></feature> 16458 <threshold>0.0130574796348810</threshold> 16459 <left_val>0.4413323104381561</left_val> 16460 <right_val>0.5683764219284058</right_val></_></_> 16461 <_> 16462 <!-- tree 149 --> 16463 <_> 16464 <!-- root node --> 16465 <feature> 16466 <rects> 16467 <_>9 0 3 2 -1.</_> 16468 <_>10 0 1 2 3.</_></rects> 16469 <tilted>0</tilted></feature> 16470 <threshold>-6.0095742810517550e-004</threshold> 16471 <left_val>0.4359731078147888</left_val> 16472 <right_val>0.5333483219146729</right_val></_></_> 16473 <_> 16474 <!-- tree 150 --> 16475 <_> 16476 <!-- root node --> 16477 <feature> 16478 <rects> 16479 <_>4 15 4 2 -1.</_> 16480 <_>6 15 2 2 2.</_></rects> 16481 <tilted>0</tilted></feature> 16482 <threshold>-4.1514250915497541e-004</threshold> 16483 <left_val>0.5504062771797180</left_val> 16484 <right_val>0.4326060116291046</right_val></_></_> 16485 <_> 16486 <!-- tree 151 --> 16487 <_> 16488 <!-- root node --> 16489 <feature> 16490 <rects> 16491 <_>12 7 3 13 -1.</_> 16492 <_>13 7 1 13 3.</_></rects> 16493 <tilted>0</tilted></feature> 16494 <threshold>-0.0137762902304530</threshold> 16495 <left_val>0.4064112901687622</left_val> 16496 <right_val>0.5201548933982849</right_val></_></_> 16497 <_> 16498 <!-- tree 152 --> 16499 <_> 16500 <!-- root node --> 16501 <feature> 16502 <rects> 16503 <_>5 7 3 13 -1.</_> 16504 <_>6 7 1 13 3.</_></rects> 16505 <tilted>0</tilted></feature> 16506 <threshold>-0.0322965085506439</threshold> 16507 <left_val>0.0473519712686539</left_val> 16508 <right_val>0.4977194964885712</right_val></_></_> 16509 <_> 16510 <!-- tree 153 --> 16511 <_> 16512 <!-- root node --> 16513 <feature> 16514 <rects> 16515 <_>9 6 3 9 -1.</_> 16516 <_>9 9 3 3 3.</_></rects> 16517 <tilted>0</tilted></feature> 16518 <threshold>0.0535569787025452</threshold> 16519 <left_val>0.4881733059883118</left_val> 16520 <right_val>0.6666939258575440</right_val></_></_> 16521 <_> 16522 <!-- tree 154 --> 16523 <_> 16524 <!-- root node --> 16525 <feature> 16526 <rects> 16527 <_>4 4 7 12 -1.</_> 16528 <_>4 10 7 6 2.</_></rects> 16529 <tilted>0</tilted></feature> 16530 <threshold>8.1889545544981956e-003</threshold> 16531 <left_val>0.5400037169456482</left_val> 16532 <right_val>0.4240820109844208</right_val></_></_> 16533 <_> 16534 <!-- tree 155 --> 16535 <_> 16536 <!-- root node --> 16537 <feature> 16538 <rects> 16539 <_>12 12 2 2 -1.</_> 16540 <_>13 12 1 1 2.</_> 16541 <_>12 13 1 1 2.</_></rects> 16542 <tilted>0</tilted></feature> 16543 <threshold>2.1055320394225419e-004</threshold> 16544 <left_val>0.4802047908306122</left_val> 16545 <right_val>0.5563852787017822</right_val></_></_> 16546 <_> 16547 <!-- tree 156 --> 16548 <_> 16549 <!-- root node --> 16550 <feature> 16551 <rects> 16552 <_>6 12 2 2 -1.</_> 16553 <_>6 12 1 1 2.</_> 16554 <_>7 13 1 1 2.</_></rects> 16555 <tilted>0</tilted></feature> 16556 <threshold>-2.4382730480283499e-003</threshold> 16557 <left_val>0.7387793064117432</left_val> 16558 <right_val>0.4773685038089752</right_val></_></_> 16559 <_> 16560 <!-- tree 157 --> 16561 <_> 16562 <!-- root node --> 16563 <feature> 16564 <rects> 16565 <_>8 9 4 2 -1.</_> 16566 <_>10 9 2 1 2.</_> 16567 <_>8 10 2 1 2.</_></rects> 16568 <tilted>0</tilted></feature> 16569 <threshold>3.2835570164024830e-003</threshold> 16570 <left_val>0.5288546085357666</left_val> 16571 <right_val>0.3171291947364807</right_val></_></_> 16572 <_> 16573 <!-- tree 158 --> 16574 <_> 16575 <!-- root node --> 16576 <feature> 16577 <rects> 16578 <_>3 6 2 2 -1.</_> 16579 <_>3 6 1 1 2.</_> 16580 <_>4 7 1 1 2.</_></rects> 16581 <tilted>0</tilted></feature> 16582 <threshold>2.3729570675641298e-003</threshold> 16583 <left_val>0.4750812947750092</left_val> 16584 <right_val>0.7060170769691467</right_val></_></_> 16585 <_> 16586 <!-- tree 159 --> 16587 <_> 16588 <!-- root node --> 16589 <feature> 16590 <rects> 16591 <_>16 6 3 2 -1.</_> 16592 <_>16 7 3 1 2.</_></rects> 16593 <tilted>0</tilted></feature> 16594 <threshold>-1.4541699783876538e-003</threshold> 16595 <left_val>0.3811730146408081</left_val> 16596 <right_val>0.5330739021301270</right_val></_></_></trees> 16597 <stage_threshold>79.2490768432617190</stage_threshold> 16598 <parent>16</parent> 16599 <next>-1</next></_> 16600 <_> 16601 <!-- stage 18 --> 16602 <trees> 16603 <_> 16604 <!-- tree 0 --> 16605 <_> 16606 <!-- root node --> 16607 <feature> 16608 <rects> 16609 <_>0 7 19 4 -1.</_> 16610 <_>0 9 19 2 2.</_></rects> 16611 <tilted>0</tilted></feature> 16612 <threshold>0.0557552389800549</threshold> 16613 <left_val>0.4019156992435455</left_val> 16614 <right_val>0.6806036829948425</right_val></_></_> 16615 <_> 16616 <!-- tree 1 --> 16617 <_> 16618 <!-- root node --> 16619 <feature> 16620 <rects> 16621 <_>10 2 10 1 -1.</_> 16622 <_>10 2 5 1 2.</_></rects> 16623 <tilted>0</tilted></feature> 16624 <threshold>2.4730248842388391e-003</threshold> 16625 <left_val>0.3351148962974548</left_val> 16626 <right_val>0.5965719819068909</right_val></_></_> 16627 <_> 16628 <!-- tree 2 --> 16629 <_> 16630 <!-- root node --> 16631 <feature> 16632 <rects> 16633 <_>9 4 2 12 -1.</_> 16634 <_>9 10 2 6 2.</_></rects> 16635 <tilted>0</tilted></feature> 16636 <threshold>-3.5031698644161224e-004</threshold> 16637 <left_val>0.5557708144187927</left_val> 16638 <right_val>0.3482286930084229</right_val></_></_> 16639 <_> 16640 <!-- tree 3 --> 16641 <_> 16642 <!-- root node --> 16643 <feature> 16644 <rects> 16645 <_>12 18 4 1 -1.</_> 16646 <_>12 18 2 1 2.</_></rects> 16647 <tilted>0</tilted></feature> 16648 <threshold>5.4167630150914192e-004</threshold> 16649 <left_val>0.4260858893394470</left_val> 16650 <right_val>0.5693380832672119</right_val></_></_> 16651 <_> 16652 <!-- tree 4 --> 16653 <_> 16654 <!-- root node --> 16655 <feature> 16656 <rects> 16657 <_>1 7 6 4 -1.</_> 16658 <_>1 7 3 2 2.</_> 16659 <_>4 9 3 2 2.</_></rects> 16660 <tilted>0</tilted></feature> 16661 <threshold>7.7193678589537740e-004</threshold> 16662 <left_val>0.3494240045547485</left_val> 16663 <right_val>0.5433688759803772</right_val></_></_> 16664 <_> 16665 <!-- tree 5 --> 16666 <_> 16667 <!-- root node --> 16668 <feature> 16669 <rects> 16670 <_>12 0 6 13 -1.</_> 16671 <_>14 0 2 13 3.</_></rects> 16672 <tilted>0</tilted></feature> 16673 <threshold>-1.5999219613149762e-003</threshold> 16674 <left_val>0.4028499126434326</left_val> 16675 <right_val>0.5484359264373779</right_val></_></_> 16676 <_> 16677 <!-- tree 6 --> 16678 <_> 16679 <!-- root node --> 16680 <feature> 16681 <rects> 16682 <_>2 0 6 13 -1.</_> 16683 <_>4 0 2 13 3.</_></rects> 16684 <tilted>0</tilted></feature> 16685 <threshold>-1.1832080053864047e-004</threshold> 16686 <left_val>0.3806901872158051</left_val> 16687 <right_val>0.5425465106964111</right_val></_></_> 16688 <_> 16689 <!-- tree 7 --> 16690 <_> 16691 <!-- root node --> 16692 <feature> 16693 <rects> 16694 <_>10 5 8 8 -1.</_> 16695 <_>10 9 8 4 2.</_></rects> 16696 <tilted>0</tilted></feature> 16697 <threshold>3.2909031142480671e-004</threshold> 16698 <left_val>0.2620100080966950</left_val> 16699 <right_val>0.5429521799087524</right_val></_></_> 16700 <_> 16701 <!-- tree 8 --> 16702 <_> 16703 <!-- root node --> 16704 <feature> 16705 <rects> 16706 <_>8 3 2 5 -1.</_> 16707 <_>9 3 1 5 2.</_></rects> 16708 <tilted>0</tilted></feature> 16709 <threshold>2.9518108931370080e-004</threshold> 16710 <left_val>0.3799768984317780</left_val> 16711 <right_val>0.5399264097213745</right_val></_></_> 16712 <_> 16713 <!-- tree 9 --> 16714 <_> 16715 <!-- root node --> 16716 <feature> 16717 <rects> 16718 <_>8 4 9 1 -1.</_> 16719 <_>11 4 3 1 3.</_></rects> 16720 <tilted>0</tilted></feature> 16721 <threshold>9.0466710389591753e-005</threshold> 16722 <left_val>0.4433645009994507</left_val> 16723 <right_val>0.5440226197242737</right_val></_></_> 16724 <_> 16725 <!-- tree 10 --> 16726 <_> 16727 <!-- root node --> 16728 <feature> 16729 <rects> 16730 <_>3 4 9 1 -1.</_> 16731 <_>6 4 3 1 3.</_></rects> 16732 <tilted>0</tilted></feature> 16733 <threshold>1.5007190086180344e-005</threshold> 16734 <left_val>0.3719654977321625</left_val> 16735 <right_val>0.5409119725227356</right_val></_></_> 16736 <_> 16737 <!-- tree 11 --> 16738 <_> 16739 <!-- root node --> 16740 <feature> 16741 <rects> 16742 <_>1 0 18 10 -1.</_> 16743 <_>7 0 6 10 3.</_></rects> 16744 <tilted>0</tilted></feature> 16745 <threshold>0.1393561065196991</threshold> 16746 <left_val>0.5525395870208740</left_val> 16747 <right_val>0.4479042887687683</right_val></_></_> 16748 <_> 16749 <!-- tree 12 --> 16750 <_> 16751 <!-- root node --> 16752 <feature> 16753 <rects> 16754 <_>7 17 5 3 -1.</_> 16755 <_>7 18 5 1 3.</_></rects> 16756 <tilted>0</tilted></feature> 16757 <threshold>1.6461990308016539e-003</threshold> 16758 <left_val>0.4264501035213471</left_val> 16759 <right_val>0.5772169828414917</right_val></_></_> 16760 <_> 16761 <!-- tree 13 --> 16762 <_> 16763 <!-- root node --> 16764 <feature> 16765 <rects> 16766 <_>7 11 6 1 -1.</_> 16767 <_>9 11 2 1 3.</_></rects> 16768 <tilted>0</tilted></feature> 16769 <threshold>4.9984431825578213e-004</threshold> 16770 <left_val>0.4359526038169861</left_val> 16771 <right_val>0.5685871243476868</right_val></_></_> 16772 <_> 16773 <!-- tree 14 --> 16774 <_> 16775 <!-- root node --> 16776 <feature> 16777 <rects> 16778 <_>2 2 3 2 -1.</_> 16779 <_>2 3 3 1 2.</_></rects> 16780 <tilted>0</tilted></feature> 16781 <threshold>-1.0971280280500650e-003</threshold> 16782 <left_val>0.3390136957168579</left_val> 16783 <right_val>0.5205408930778503</right_val></_></_> 16784 <_> 16785 <!-- tree 15 --> 16786 <_> 16787 <!-- root node --> 16788 <feature> 16789 <rects> 16790 <_>8 12 4 2 -1.</_> 16791 <_>8 13 4 1 2.</_></rects> 16792 <tilted>0</tilted></feature> 16793 <threshold>6.6919892560690641e-004</threshold> 16794 <left_val>0.4557456076145172</left_val> 16795 <right_val>0.5980659723281860</right_val></_></_> 16796 <_> 16797 <!-- tree 16 --> 16798 <_> 16799 <!-- root node --> 16800 <feature> 16801 <rects> 16802 <_>6 10 3 6 -1.</_> 16803 <_>6 13 3 3 2.</_></rects> 16804 <tilted>0</tilted></feature> 16805 <threshold>8.6471042595803738e-004</threshold> 16806 <left_val>0.5134841203689575</left_val> 16807 <right_val>0.2944033145904541</right_val></_></_> 16808 <_> 16809 <!-- tree 17 --> 16810 <_> 16811 <!-- root node --> 16812 <feature> 16813 <rects> 16814 <_>11 4 2 4 -1.</_> 16815 <_>11 4 1 4 2.</_></rects> 16816 <tilted>0</tilted></feature> 16817 <threshold>-2.7182599296793342e-004</threshold> 16818 <left_val>0.3906578123569489</left_val> 16819 <right_val>0.5377181172370911</right_val></_></_> 16820 <_> 16821 <!-- tree 18 --> 16822 <_> 16823 <!-- root node --> 16824 <feature> 16825 <rects> 16826 <_>7 4 2 4 -1.</_> 16827 <_>8 4 1 4 2.</_></rects> 16828 <tilted>0</tilted></feature> 16829 <threshold>3.0249499104684219e-005</threshold> 16830 <left_val>0.3679609894752502</left_val> 16831 <right_val>0.5225688815116882</right_val></_></_> 16832 <_> 16833 <!-- tree 19 --> 16834 <_> 16835 <!-- root node --> 16836 <feature> 16837 <rects> 16838 <_>9 6 2 4 -1.</_> 16839 <_>9 6 1 4 2.</_></rects> 16840 <tilted>0</tilted></feature> 16841 <threshold>-8.5225896909832954e-003</threshold> 16842 <left_val>0.7293102145195007</left_val> 16843 <right_val>0.4892365038394928</right_val></_></_> 16844 <_> 16845 <!-- tree 20 --> 16846 <_> 16847 <!-- root node --> 16848 <feature> 16849 <rects> 16850 <_>6 13 8 3 -1.</_> 16851 <_>6 14 8 1 3.</_></rects> 16852 <tilted>0</tilted></feature> 16853 <threshold>1.6705560265108943e-003</threshold> 16854 <left_val>0.4345324933528900</left_val> 16855 <right_val>0.5696138143539429</right_val></_></_> 16856 <_> 16857 <!-- tree 21 --> 16858 <_> 16859 <!-- root node --> 16860 <feature> 16861 <rects> 16862 <_>9 15 3 4 -1.</_> 16863 <_>10 15 1 4 3.</_></rects> 16864 <tilted>0</tilted></feature> 16865 <threshold>-7.1433838456869125e-003</threshold> 16866 <left_val>0.2591280043125153</left_val> 16867 <right_val>0.5225623846054077</right_val></_></_> 16868 <_> 16869 <!-- tree 22 --> 16870 <_> 16871 <!-- root node --> 16872 <feature> 16873 <rects> 16874 <_>9 2 2 17 -1.</_> 16875 <_>10 2 1 17 2.</_></rects> 16876 <tilted>0</tilted></feature> 16877 <threshold>-0.0163193698972464</threshold> 16878 <left_val>0.6922279000282288</left_val> 16879 <right_val>0.4651575982570648</right_val></_></_> 16880 <_> 16881 <!-- tree 23 --> 16882 <_> 16883 <!-- root node --> 16884 <feature> 16885 <rects> 16886 <_>7 0 6 1 -1.</_> 16887 <_>9 0 2 1 3.</_></rects> 16888 <tilted>0</tilted></feature> 16889 <threshold>4.8034260980784893e-003</threshold> 16890 <left_val>0.5352262854576111</left_val> 16891 <right_val>0.3286302983760834</right_val></_></_> 16892 <_> 16893 <!-- tree 24 --> 16894 <_> 16895 <!-- root node --> 16896 <feature> 16897 <rects> 16898 <_>8 15 3 4 -1.</_> 16899 <_>9 15 1 4 3.</_></rects> 16900 <tilted>0</tilted></feature> 16901 <threshold>-7.5421929359436035e-003</threshold> 16902 <left_val>0.2040544003248215</left_val> 16903 <right_val>0.5034546256065369</right_val></_></_> 16904 <_> 16905 <!-- tree 25 --> 16906 <_> 16907 <!-- root node --> 16908 <feature> 16909 <rects> 16910 <_>7 13 7 3 -1.</_> 16911 <_>7 14 7 1 3.</_></rects> 16912 <tilted>0</tilted></feature> 16913 <threshold>-0.0143631100654602</threshold> 16914 <left_val>0.6804888844490051</left_val> 16915 <right_val>0.4889059066772461</right_val></_></_> 16916 <_> 16917 <!-- tree 26 --> 16918 <_> 16919 <!-- root node --> 16920 <feature> 16921 <rects> 16922 <_>8 16 3 3 -1.</_> 16923 <_>9 16 1 3 3.</_></rects> 16924 <tilted>0</tilted></feature> 16925 <threshold>8.9063588529825211e-004</threshold> 16926 <left_val>0.5310695767402649</left_val> 16927 <right_val>0.3895480930805206</right_val></_></_> 16928 <_> 16929 <!-- tree 27 --> 16930 <_> 16931 <!-- root node --> 16932 <feature> 16933 <rects> 16934 <_>6 2 8 10 -1.</_> 16935 <_>6 7 8 5 2.</_></rects> 16936 <tilted>0</tilted></feature> 16937 <threshold>-4.4060191139578819e-003</threshold> 16938 <left_val>0.5741562843322754</left_val> 16939 <right_val>0.4372426867485046</right_val></_></_> 16940 <_> 16941 <!-- tree 28 --> 16942 <_> 16943 <!-- root node --> 16944 <feature> 16945 <rects> 16946 <_>2 5 8 8 -1.</_> 16947 <_>2 9 8 4 2.</_></rects> 16948 <tilted>0</tilted></feature> 16949 <threshold>-1.8862540309783071e-004</threshold> 16950 <left_val>0.2831785976886749</left_val> 16951 <right_val>0.5098205208778381</right_val></_></_> 16952 <_> 16953 <!-- tree 29 --> 16954 <_> 16955 <!-- root node --> 16956 <feature> 16957 <rects> 16958 <_>14 16 2 2 -1.</_> 16959 <_>14 17 2 1 2.</_></rects> 16960 <tilted>0</tilted></feature> 16961 <threshold>-3.7979281041771173e-003</threshold> 16962 <left_val>0.3372507989406586</left_val> 16963 <right_val>0.5246580243110657</right_val></_></_> 16964 <_> 16965 <!-- tree 30 --> 16966 <_> 16967 <!-- root node --> 16968 <feature> 16969 <rects> 16970 <_>4 16 2 2 -1.</_> 16971 <_>4 17 2 1 2.</_></rects> 16972 <tilted>0</tilted></feature> 16973 <threshold>1.4627049677073956e-004</threshold> 16974 <left_val>0.5306674242019653</left_val> 16975 <right_val>0.3911710083484650</right_val></_></_> 16976 <_> 16977 <!-- tree 31 --> 16978 <_> 16979 <!-- root node --> 16980 <feature> 16981 <rects> 16982 <_>10 11 4 6 -1.</_> 16983 <_>10 14 4 3 2.</_></rects> 16984 <tilted>0</tilted></feature> 16985 <threshold>-4.9164638767251745e-005</threshold> 16986 <left_val>0.5462496280670166</left_val> 16987 <right_val>0.3942720890045166</right_val></_></_> 16988 <_> 16989 <!-- tree 32 --> 16990 <_> 16991 <!-- root node --> 16992 <feature> 16993 <rects> 16994 <_>6 11 4 6 -1.</_> 16995 <_>6 14 4 3 2.</_></rects> 16996 <tilted>0</tilted></feature> 16997 <threshold>-0.0335825011134148</threshold> 16998 <left_val>0.2157824039459229</left_val> 16999 <right_val>0.5048211812973023</right_val></_></_> 17000 <_> 17001 <!-- tree 33 --> 17002 <_> 17003 <!-- root node --> 17004 <feature> 17005 <rects> 17006 <_>10 14 1 3 -1.</_> 17007 <_>10 15 1 1 3.</_></rects> 17008 <tilted>0</tilted></feature> 17009 <threshold>-3.5339309833943844e-003</threshold> 17010 <left_val>0.6465312242507935</left_val> 17011 <right_val>0.4872696995735169</right_val></_></_> 17012 <_> 17013 <!-- tree 34 --> 17014 <_> 17015 <!-- root node --> 17016 <feature> 17017 <rects> 17018 <_>8 14 4 3 -1.</_> 17019 <_>8 15 4 1 3.</_></rects> 17020 <tilted>0</tilted></feature> 17021 <threshold>5.0144111737608910e-003</threshold> 17022 <left_val>0.4617668092250824</left_val> 17023 <right_val>0.6248074769973755</right_val></_></_> 17024 <_> 17025 <!-- tree 35 --> 17026 <_> 17027 <!-- root node --> 17028 <feature> 17029 <rects> 17030 <_>10 0 4 6 -1.</_> 17031 <_>12 0 2 3 2.</_> 17032 <_>10 3 2 3 2.</_></rects> 17033 <tilted>0</tilted></feature> 17034 <threshold>0.0188173707574606</threshold> 17035 <left_val>0.5220689177513123</left_val> 17036 <right_val>0.2000052034854889</right_val></_></_> 17037 <_> 17038 <!-- tree 36 --> 17039 <_> 17040 <!-- root node --> 17041 <feature> 17042 <rects> 17043 <_>0 3 20 2 -1.</_> 17044 <_>0 4 20 1 2.</_></rects> 17045 <tilted>0</tilted></feature> 17046 <threshold>-1.3434339780360460e-003</threshold> 17047 <left_val>0.4014537930488586</left_val> 17048 <right_val>0.5301619768142700</right_val></_></_> 17049 <_> 17050 <!-- tree 37 --> 17051 <_> 17052 <!-- root node --> 17053 <feature> 17054 <rects> 17055 <_>12 0 8 2 -1.</_> 17056 <_>16 0 4 1 2.</_> 17057 <_>12 1 4 1 2.</_></rects> 17058 <tilted>0</tilted></feature> 17059 <threshold>1.7557960236445069e-003</threshold> 17060 <left_val>0.4794039130210877</left_val> 17061 <right_val>0.5653169751167297</right_val></_></_> 17062 <_> 17063 <!-- tree 38 --> 17064 <_> 17065 <!-- root node --> 17066 <feature> 17067 <rects> 17068 <_>2 12 10 8 -1.</_> 17069 <_>2 16 10 4 2.</_></rects> 17070 <tilted>0</tilted></feature> 17071 <threshold>-0.0956374630331993</threshold> 17072 <left_val>0.2034195065498352</left_val> 17073 <right_val>0.5006706714630127</right_val></_></_> 17074 <_> 17075 <!-- tree 39 --> 17076 <_> 17077 <!-- root node --> 17078 <feature> 17079 <rects> 17080 <_>17 7 2 10 -1.</_> 17081 <_>18 7 1 5 2.</_> 17082 <_>17 12 1 5 2.</_></rects> 17083 <tilted>0</tilted></feature> 17084 <threshold>-0.0222412291914225</threshold> 17085 <left_val>0.7672473192214966</left_val> 17086 <right_val>0.5046340227127075</right_val></_></_> 17087 <_> 17088 <!-- tree 40 --> 17089 <_> 17090 <!-- root node --> 17091 <feature> 17092 <rects> 17093 <_>1 7 2 10 -1.</_> 17094 <_>1 7 1 5 2.</_> 17095 <_>2 12 1 5 2.</_></rects> 17096 <tilted>0</tilted></feature> 17097 <threshold>-0.0155758196488023</threshold> 17098 <left_val>0.7490342259407044</left_val> 17099 <right_val>0.4755851030349731</right_val></_></_> 17100 <_> 17101 <!-- tree 41 --> 17102 <_> 17103 <!-- root node --> 17104 <feature> 17105 <rects> 17106 <_>15 10 3 6 -1.</_> 17107 <_>15 12 3 2 3.</_></rects> 17108 <tilted>0</tilted></feature> 17109 <threshold>5.3599118255078793e-003</threshold> 17110 <left_val>0.5365303754806519</left_val> 17111 <right_val>0.4004670977592468</right_val></_></_> 17112 <_> 17113 <!-- tree 42 --> 17114 <_> 17115 <!-- root node --> 17116 <feature> 17117 <rects> 17118 <_>4 4 6 2 -1.</_> 17119 <_>6 4 2 2 3.</_></rects> 17120 <tilted>0</tilted></feature> 17121 <threshold>-0.0217634998261929</threshold> 17122 <left_val>0.0740154981613159</left_val> 17123 <right_val>0.4964174926280975</right_val></_></_> 17124 <_> 17125 <!-- tree 43 --> 17126 <_> 17127 <!-- root node --> 17128 <feature> 17129 <rects> 17130 <_>0 5 20 6 -1.</_> 17131 <_>0 7 20 2 3.</_></rects> 17132 <tilted>0</tilted></feature> 17133 <threshold>-0.1656159013509750</threshold> 17134 <left_val>0.2859103083610535</left_val> 17135 <right_val>0.5218086242675781</right_val></_></_> 17136 <_> 17137 <!-- tree 44 --> 17138 <_> 17139 <!-- root node --> 17140 <feature> 17141 <rects> 17142 <_>0 0 8 2 -1.</_> 17143 <_>0 0 4 1 2.</_> 17144 <_>4 1 4 1 2.</_></rects> 17145 <tilted>0</tilted></feature> 17146 <threshold>1.6461320046801120e-004</threshold> 17147 <left_val>0.4191615879535675</left_val> 17148 <right_val>0.5380793213844299</right_val></_></_> 17149 <_> 17150 <!-- tree 45 --> 17151 <_> 17152 <!-- root node --> 17153 <feature> 17154 <rects> 17155 <_>1 0 18 4 -1.</_> 17156 <_>7 0 6 4 3.</_></rects> 17157 <tilted>0</tilted></feature> 17158 <threshold>-8.9077502489089966e-003</threshold> 17159 <left_val>0.6273192763328552</left_val> 17160 <right_val>0.4877404868602753</right_val></_></_> 17161 <_> 17162 <!-- tree 46 --> 17163 <_> 17164 <!-- root node --> 17165 <feature> 17166 <rects> 17167 <_>1 13 6 2 -1.</_> 17168 <_>1 14 6 1 2.</_></rects> 17169 <tilted>0</tilted></feature> 17170 <threshold>8.6346449097618461e-004</threshold> 17171 <left_val>0.5159940719604492</left_val> 17172 <right_val>0.3671025931835175</right_val></_></_> 17173 <_> 17174 <!-- tree 47 --> 17175 <_> 17176 <!-- root node --> 17177 <feature> 17178 <rects> 17179 <_>10 8 3 4 -1.</_> 17180 <_>11 8 1 4 3.</_></rects> 17181 <tilted>0</tilted></feature> 17182 <threshold>-1.3751760125160217e-003</threshold> 17183 <left_val>0.5884376764297485</left_val> 17184 <right_val>0.4579083919525147</right_val></_></_> 17185 <_> 17186 <!-- tree 48 --> 17187 <_> 17188 <!-- root node --> 17189 <feature> 17190 <rects> 17191 <_>6 1 6 1 -1.</_> 17192 <_>8 1 2 1 3.</_></rects> 17193 <tilted>0</tilted></feature> 17194 <threshold>-1.4081239933148026e-003</threshold> 17195 <left_val>0.3560509979724884</left_val> 17196 <right_val>0.5139945149421692</right_val></_></_> 17197 <_> 17198 <!-- tree 49 --> 17199 <_> 17200 <!-- root node --> 17201 <feature> 17202 <rects> 17203 <_>8 14 4 3 -1.</_> 17204 <_>8 15 4 1 3.</_></rects> 17205 <tilted>0</tilted></feature> 17206 <threshold>-3.9342888630926609e-003</threshold> 17207 <left_val>0.5994288921356201</left_val> 17208 <right_val>0.4664272069931030</right_val></_></_> 17209 <_> 17210 <!-- tree 50 --> 17211 <_> 17212 <!-- root node --> 17213 <feature> 17214 <rects> 17215 <_>1 6 18 2 -1.</_> 17216 <_>10 6 9 2 2.</_></rects> 17217 <tilted>0</tilted></feature> 17218 <threshold>-0.0319669283926487</threshold> 17219 <left_val>0.3345462083816528</left_val> 17220 <right_val>0.5144183039665222</right_val></_></_> 17221 <_> 17222 <!-- tree 51 --> 17223 <_> 17224 <!-- root node --> 17225 <feature> 17226 <rects> 17227 <_>15 11 1 2 -1.</_> 17228 <_>15 12 1 1 2.</_></rects> 17229 <tilted>0</tilted></feature> 17230 <threshold>-1.5089280168467667e-005</threshold> 17231 <left_val>0.5582656264305115</left_val> 17232 <right_val>0.4414057135581970</right_val></_></_> 17233 <_> 17234 <!-- tree 52 --> 17235 <_> 17236 <!-- root node --> 17237 <feature> 17238 <rects> 17239 <_>6 5 1 2 -1.</_> 17240 <_>6 6 1 1 2.</_></rects> 17241 <tilted>0</tilted></feature> 17242 <threshold>5.1994470413774252e-004</threshold> 17243 <left_val>0.4623680114746094</left_val> 17244 <right_val>0.6168993711471558</right_val></_></_> 17245 <_> 17246 <!-- tree 53 --> 17247 <_> 17248 <!-- root node --> 17249 <feature> 17250 <rects> 17251 <_>13 4 1 3 -1.</_> 17252 <_>13 5 1 1 3.</_></rects> 17253 <tilted>0</tilted></feature> 17254 <threshold>-3.4220460802316666e-003</threshold> 17255 <left_val>0.6557074785232544</left_val> 17256 <right_val>0.4974805116653442</right_val></_></_> 17257 <_> 17258 <!-- tree 54 --> 17259 <_> 17260 <!-- root node --> 17261 <feature> 17262 <rects> 17263 <_>2 15 1 2 -1.</_> 17264 <_>2 16 1 1 2.</_></rects> 17265 <tilted>0</tilted></feature> 17266 <threshold>1.7723299970384687e-004</threshold> 17267 <left_val>0.5269501805305481</left_val> 17268 <right_val>0.3901908099651337</right_val></_></_> 17269 <_> 17270 <!-- tree 55 --> 17271 <_> 17272 <!-- root node --> 17273 <feature> 17274 <rects> 17275 <_>12 4 4 3 -1.</_> 17276 <_>12 5 4 1 3.</_></rects> 17277 <tilted>0</tilted></feature> 17278 <threshold>1.5716759953647852e-003</threshold> 17279 <left_val>0.4633373022079468</left_val> 17280 <right_val>0.5790457725524902</right_val></_></_> 17281 <_> 17282 <!-- tree 56 --> 17283 <_> 17284 <!-- root node --> 17285 <feature> 17286 <rects> 17287 <_>0 0 7 3 -1.</_> 17288 <_>0 1 7 1 3.</_></rects> 17289 <tilted>0</tilted></feature> 17290 <threshold>-8.9041329920291901e-003</threshold> 17291 <left_val>0.2689608037471771</left_val> 17292 <right_val>0.5053591132164002</right_val></_></_> 17293 <_> 17294 <!-- tree 57 --> 17295 <_> 17296 <!-- root node --> 17297 <feature> 17298 <rects> 17299 <_>9 12 6 2 -1.</_> 17300 <_>9 12 3 2 2.</_></rects> 17301 <tilted>0</tilted></feature> 17302 <threshold>4.0677518700249493e-004</threshold> 17303 <left_val>0.5456603169441223</left_val> 17304 <right_val>0.4329898953437805</right_val></_></_> 17305 <_> 17306 <!-- tree 58 --> 17307 <_> 17308 <!-- root node --> 17309 <feature> 17310 <rects> 17311 <_>5 4 2 3 -1.</_> 17312 <_>5 5 2 1 3.</_></rects> 17313 <tilted>0</tilted></feature> 17314 <threshold>6.7604780197143555e-003</threshold> 17315 <left_val>0.4648993909358978</left_val> 17316 <right_val>0.6689761877059937</right_val></_></_> 17317 <_> 17318 <!-- tree 59 --> 17319 <_> 17320 <!-- root node --> 17321 <feature> 17322 <rects> 17323 <_>18 4 2 3 -1.</_> 17324 <_>18 5 2 1 3.</_></rects> 17325 <tilted>0</tilted></feature> 17326 <threshold>2.9100088868290186e-003</threshold> 17327 <left_val>0.5309703946113586</left_val> 17328 <right_val>0.3377839922904968</right_val></_></_> 17329 <_> 17330 <!-- tree 60 --> 17331 <_> 17332 <!-- root node --> 17333 <feature> 17334 <rects> 17335 <_>3 0 8 6 -1.</_> 17336 <_>3 2 8 2 3.</_></rects> 17337 <tilted>0</tilted></feature> 17338 <threshold>1.3885459629818797e-003</threshold> 17339 <left_val>0.4074738919734955</left_val> 17340 <right_val>0.5349133014678955</right_val></_></_> 17341 <_> 17342 <!-- tree 61 --> 17343 <_> 17344 <!-- root node --> 17345 <feature> 17346 <rects> 17347 <_>0 2 20 6 -1.</_> 17348 <_>10 2 10 3 2.</_> 17349 <_>0 5 10 3 2.</_></rects> 17350 <tilted>0</tilted></feature> 17351 <threshold>-0.0767642632126808</threshold> 17352 <left_val>0.1992176026105881</left_val> 17353 <right_val>0.5228242278099060</right_val></_></_> 17354 <_> 17355 <!-- tree 62 --> 17356 <_> 17357 <!-- root node --> 17358 <feature> 17359 <rects> 17360 <_>4 7 2 4 -1.</_> 17361 <_>5 7 1 4 2.</_></rects> 17362 <tilted>0</tilted></feature> 17363 <threshold>-2.2688310127705336e-004</threshold> 17364 <left_val>0.5438501834869385</left_val> 17365 <right_val>0.4253072142601013</right_val></_></_> 17366 <_> 17367 <!-- tree 63 --> 17368 <_> 17369 <!-- root node --> 17370 <feature> 17371 <rects> 17372 <_>3 10 15 2 -1.</_> 17373 <_>8 10 5 2 3.</_></rects> 17374 <tilted>0</tilted></feature> 17375 <threshold>-6.3094152137637138e-003</threshold> 17376 <left_val>0.4259178936481476</left_val> 17377 <right_val>0.5378909707069397</right_val></_></_> 17378 <_> 17379 <!-- tree 64 --> 17380 <_> 17381 <!-- root node --> 17382 <feature> 17383 <rects> 17384 <_>3 0 12 11 -1.</_> 17385 <_>9 0 6 11 2.</_></rects> 17386 <tilted>0</tilted></feature> 17387 <threshold>-0.1100727990269661</threshold> 17388 <left_val>0.6904156804084778</left_val> 17389 <right_val>0.4721749126911163</right_val></_></_> 17390 <_> 17391 <!-- tree 65 --> 17392 <_> 17393 <!-- root node --> 17394 <feature> 17395 <rects> 17396 <_>13 0 2 6 -1.</_> 17397 <_>13 0 1 6 2.</_></rects> 17398 <tilted>0</tilted></feature> 17399 <threshold>2.8619659133255482e-004</threshold> 17400 <left_val>0.4524914920330048</left_val> 17401 <right_val>0.5548306107521057</right_val></_></_> 17402 <_> 17403 <!-- tree 66 --> 17404 <_> 17405 <!-- root node --> 17406 <feature> 17407 <rects> 17408 <_>0 19 2 1 -1.</_> 17409 <_>1 19 1 1 2.</_></rects> 17410 <tilted>0</tilted></feature> 17411 <threshold>2.9425329557852820e-005</threshold> 17412 <left_val>0.5370373725891113</left_val> 17413 <right_val>0.4236463904380798</right_val></_></_> 17414 <_> 17415 <!-- tree 67 --> 17416 <_> 17417 <!-- root node --> 17418 <feature> 17419 <rects> 17420 <_>16 10 4 10 -1.</_> 17421 <_>18 10 2 5 2.</_> 17422 <_>16 15 2 5 2.</_></rects> 17423 <tilted>0</tilted></feature> 17424 <threshold>-0.0248865708708763</threshold> 17425 <left_val>0.6423557996749878</left_val> 17426 <right_val>0.4969303905963898</right_val></_></_> 17427 <_> 17428 <!-- tree 68 --> 17429 <_> 17430 <!-- root node --> 17431 <feature> 17432 <rects> 17433 <_>4 8 10 3 -1.</_> 17434 <_>4 9 10 1 3.</_></rects> 17435 <tilted>0</tilted></feature> 17436 <threshold>0.0331488512456417</threshold> 17437 <left_val>0.4988475143909454</left_val> 17438 <right_val>0.1613811999559403</right_val></_></_> 17439 <_> 17440 <!-- tree 69 --> 17441 <_> 17442 <!-- root node --> 17443 <feature> 17444 <rects> 17445 <_>14 12 3 3 -1.</_> 17446 <_>14 13 3 1 3.</_></rects> 17447 <tilted>0</tilted></feature> 17448 <threshold>7.8491691965609789e-004</threshold> 17449 <left_val>0.5416026115417481</left_val> 17450 <right_val>0.4223009049892426</right_val></_></_> 17451 <_> 17452 <!-- tree 70 --> 17453 <_> 17454 <!-- root node --> 17455 <feature> 17456 <rects> 17457 <_>0 10 4 10 -1.</_> 17458 <_>0 10 2 5 2.</_> 17459 <_>2 15 2 5 2.</_></rects> 17460 <tilted>0</tilted></feature> 17461 <threshold>4.7087189741432667e-003</threshold> 17462 <left_val>0.4576328992843628</left_val> 17463 <right_val>0.6027557849884033</right_val></_></_> 17464 <_> 17465 <!-- tree 71 --> 17466 <_> 17467 <!-- root node --> 17468 <feature> 17469 <rects> 17470 <_>18 3 2 6 -1.</_> 17471 <_>18 5 2 2 3.</_></rects> 17472 <tilted>0</tilted></feature> 17473 <threshold>2.4144479539245367e-003</threshold> 17474 <left_val>0.5308973193168640</left_val> 17475 <right_val>0.4422498941421509</right_val></_></_> 17476 <_> 17477 <!-- tree 72 --> 17478 <_> 17479 <!-- root node --> 17480 <feature> 17481 <rects> 17482 <_>6 6 1 3 -1.</_> 17483 <_>6 7 1 1 3.</_></rects> 17484 <tilted>0</tilted></feature> 17485 <threshold>1.9523180089890957e-003</threshold> 17486 <left_val>0.4705634117126465</left_val> 17487 <right_val>0.6663324832916260</right_val></_></_> 17488 <_> 17489 <!-- tree 73 --> 17490 <_> 17491 <!-- root node --> 17492 <feature> 17493 <rects> 17494 <_>7 7 7 2 -1.</_> 17495 <_>7 8 7 1 2.</_></rects> 17496 <tilted>0</tilted></feature> 17497 <threshold>1.3031980488449335e-003</threshold> 17498 <left_val>0.4406126141548157</left_val> 17499 <right_val>0.5526962280273438</right_val></_></_> 17500 <_> 17501 <!-- tree 74 --> 17502 <_> 17503 <!-- root node --> 17504 <feature> 17505 <rects> 17506 <_>0 3 2 6 -1.</_> 17507 <_>0 5 2 2 3.</_></rects> 17508 <tilted>0</tilted></feature> 17509 <threshold>4.4735497795045376e-003</threshold> 17510 <left_val>0.5129023790359497</left_val> 17511 <right_val>0.3301498889923096</right_val></_></_> 17512 <_> 17513 <!-- tree 75 --> 17514 <_> 17515 <!-- root node --> 17516 <feature> 17517 <rects> 17518 <_>11 1 3 1 -1.</_> 17519 <_>12 1 1 1 3.</_></rects> 17520 <tilted>0</tilted></feature> 17521 <threshold>-2.6652868837118149e-003</threshold> 17522 <left_val>0.3135471045970917</left_val> 17523 <right_val>0.5175036191940308</right_val></_></_> 17524 <_> 17525 <!-- tree 76 --> 17526 <_> 17527 <!-- root node --> 17528 <feature> 17529 <rects> 17530 <_>5 0 2 6 -1.</_> 17531 <_>6 0 1 6 2.</_></rects> 17532 <tilted>0</tilted></feature> 17533 <threshold>1.3666770246345550e-004</threshold> 17534 <left_val>0.4119370877742767</left_val> 17535 <right_val>0.5306876897811890</right_val></_></_> 17536 <_> 17537 <!-- tree 77 --> 17538 <_> 17539 <!-- root node --> 17540 <feature> 17541 <rects> 17542 <_>1 1 18 14 -1.</_> 17543 <_>7 1 6 14 3.</_></rects> 17544 <tilted>0</tilted></feature> 17545 <threshold>-0.0171264503151178</threshold> 17546 <left_val>0.6177806258201599</left_val> 17547 <right_val>0.4836578965187073</right_val></_></_> 17548 <_> 17549 <!-- tree 78 --> 17550 <_> 17551 <!-- root node --> 17552 <feature> 17553 <rects> 17554 <_>4 6 8 3 -1.</_> 17555 <_>8 6 4 3 2.</_></rects> 17556 <tilted>0</tilted></feature> 17557 <threshold>-2.6601430727168918e-004</threshold> 17558 <left_val>0.3654330968856812</left_val> 17559 <right_val>0.5169736742973328</right_val></_></_> 17560 <_> 17561 <!-- tree 79 --> 17562 <_> 17563 <!-- root node --> 17564 <feature> 17565 <rects> 17566 <_>9 12 6 2 -1.</_> 17567 <_>9 12 3 2 2.</_></rects> 17568 <tilted>0</tilted></feature> 17569 <threshold>-0.0229323804378510</threshold> 17570 <left_val>0.3490915000438690</left_val> 17571 <right_val>0.5163992047309876</right_val></_></_> 17572 <_> 17573 <!-- tree 80 --> 17574 <_> 17575 <!-- root node --> 17576 <feature> 17577 <rects> 17578 <_>5 12 6 2 -1.</_> 17579 <_>8 12 3 2 2.</_></rects> 17580 <tilted>0</tilted></feature> 17581 <threshold>2.3316550068557262e-003</threshold> 17582 <left_val>0.5166299939155579</left_val> 17583 <right_val>0.3709389865398407</right_val></_></_> 17584 <_> 17585 <!-- tree 81 --> 17586 <_> 17587 <!-- root node --> 17588 <feature> 17589 <rects> 17590 <_>10 7 3 5 -1.</_> 17591 <_>11 7 1 5 3.</_></rects> 17592 <tilted>0</tilted></feature> 17593 <threshold>0.0169256608933210</threshold> 17594 <left_val>0.5014736056327820</left_val> 17595 <right_val>0.8053988218307495</right_val></_></_> 17596 <_> 17597 <!-- tree 82 --> 17598 <_> 17599 <!-- root node --> 17600 <feature> 17601 <rects> 17602 <_>7 7 3 5 -1.</_> 17603 <_>8 7 1 5 3.</_></rects> 17604 <tilted>0</tilted></feature> 17605 <threshold>-8.9858826249837875e-003</threshold> 17606 <left_val>0.6470788717269898</left_val> 17607 <right_val>0.4657020866870880</right_val></_></_> 17608 <_> 17609 <!-- tree 83 --> 17610 <_> 17611 <!-- root node --> 17612 <feature> 17613 <rects> 17614 <_>13 0 3 10 -1.</_> 17615 <_>14 0 1 10 3.</_></rects> 17616 <tilted>0</tilted></feature> 17617 <threshold>-0.0118746999651194</threshold> 17618 <left_val>0.3246378898620606</left_val> 17619 <right_val>0.5258755087852478</right_val></_></_> 17620 <_> 17621 <!-- tree 84 --> 17622 <_> 17623 <!-- root node --> 17624 <feature> 17625 <rects> 17626 <_>4 11 3 2 -1.</_> 17627 <_>4 12 3 1 2.</_></rects> 17628 <tilted>0</tilted></feature> 17629 <threshold>1.9350569345988333e-004</threshold> 17630 <left_val>0.5191941857337952</left_val> 17631 <right_val>0.3839643895626068</right_val></_></_> 17632 <_> 17633 <!-- tree 85 --> 17634 <_> 17635 <!-- root node --> 17636 <feature> 17637 <rects> 17638 <_>17 3 3 6 -1.</_> 17639 <_>18 3 1 6 3.</_></rects> 17640 <tilted>0</tilted></feature> 17641 <threshold>5.8713490143418312e-003</threshold> 17642 <left_val>0.4918133914470673</left_val> 17643 <right_val>0.6187043190002441</right_val></_></_> 17644 <_> 17645 <!-- tree 86 --> 17646 <_> 17647 <!-- root node --> 17648 <feature> 17649 <rects> 17650 <_>1 8 18 10 -1.</_> 17651 <_>1 13 18 5 2.</_></rects> 17652 <tilted>0</tilted></feature> 17653 <threshold>-0.2483879029750824</threshold> 17654 <left_val>0.1836802959442139</left_val> 17655 <right_val>0.4988150000572205</right_val></_></_> 17656 <_> 17657 <!-- tree 87 --> 17658 <_> 17659 <!-- root node --> 17660 <feature> 17661 <rects> 17662 <_>13 0 3 10 -1.</_> 17663 <_>14 0 1 10 3.</_></rects> 17664 <tilted>0</tilted></feature> 17665 <threshold>0.0122560001909733</threshold> 17666 <left_val>0.5227053761482239</left_val> 17667 <right_val>0.3632029891014099</right_val></_></_> 17668 <_> 17669 <!-- tree 88 --> 17670 <_> 17671 <!-- root node --> 17672 <feature> 17673 <rects> 17674 <_>9 14 2 3 -1.</_> 17675 <_>9 15 2 1 3.</_></rects> 17676 <tilted>0</tilted></feature> 17677 <threshold>8.3990179700776935e-004</threshold> 17678 <left_val>0.4490250051021576</left_val> 17679 <right_val>0.5774148106575012</right_val></_></_> 17680 <_> 17681 <!-- tree 89 --> 17682 <_> 17683 <!-- root node --> 17684 <feature> 17685 <rects> 17686 <_>16 3 3 7 -1.</_> 17687 <_>17 3 1 7 3.</_></rects> 17688 <tilted>0</tilted></feature> 17689 <threshold>2.5407369248569012e-003</threshold> 17690 <left_val>0.4804787039756775</left_val> 17691 <right_val>0.5858299136161804</right_val></_></_> 17692 <_> 17693 <!-- tree 90 --> 17694 <_> 17695 <!-- root node --> 17696 <feature> 17697 <rects> 17698 <_>4 0 3 10 -1.</_> 17699 <_>5 0 1 10 3.</_></rects> 17700 <tilted>0</tilted></feature> 17701 <threshold>-0.0148224299773574</threshold> 17702 <left_val>0.2521049976348877</left_val> 17703 <right_val>0.5023537278175354</right_val></_></_> 17704 <_> 17705 <!-- tree 91 --> 17706 <_> 17707 <!-- root node --> 17708 <feature> 17709 <rects> 17710 <_>16 3 3 7 -1.</_> 17711 <_>17 3 1 7 3.</_></rects> 17712 <tilted>0</tilted></feature> 17713 <threshold>-5.7973959483206272e-003</threshold> 17714 <left_val>0.5996695756912231</left_val> 17715 <right_val>0.4853715002536774</right_val></_></_> 17716 <_> 17717 <!-- tree 92 --> 17718 <_> 17719 <!-- root node --> 17720 <feature> 17721 <rects> 17722 <_>0 9 1 2 -1.</_> 17723 <_>0 10 1 1 2.</_></rects> 17724 <tilted>0</tilted></feature> 17725 <threshold>7.2662148158997297e-004</threshold> 17726 <left_val>0.5153716802597046</left_val> 17727 <right_val>0.3671779930591583</right_val></_></_> 17728 <_> 17729 <!-- tree 93 --> 17730 <_> 17731 <!-- root node --> 17732 <feature> 17733 <rects> 17734 <_>18 1 2 10 -1.</_> 17735 <_>18 1 1 10 2.</_></rects> 17736 <tilted>0</tilted></feature> 17737 <threshold>-0.0172325801104307</threshold> 17738 <left_val>0.6621719002723694</left_val> 17739 <right_val>0.4994656145572662</right_val></_></_> 17740 <_> 17741 <!-- tree 94 --> 17742 <_> 17743 <!-- root node --> 17744 <feature> 17745 <rects> 17746 <_>0 1 2 10 -1.</_> 17747 <_>1 1 1 10 2.</_></rects> 17748 <tilted>0</tilted></feature> 17749 <threshold>7.8624086454510689e-003</threshold> 17750 <left_val>0.4633395075798035</left_val> 17751 <right_val>0.6256101727485657</right_val></_></_> 17752 <_> 17753 <!-- tree 95 --> 17754 <_> 17755 <!-- root node --> 17756 <feature> 17757 <rects> 17758 <_>10 16 3 4 -1.</_> 17759 <_>11 16 1 4 3.</_></rects> 17760 <tilted>0</tilted></feature> 17761 <threshold>-4.7343620099127293e-003</threshold> 17762 <left_val>0.3615573048591614</left_val> 17763 <right_val>0.5281885266304016</right_val></_></_> 17764 <_> 17765 <!-- tree 96 --> 17766 <_> 17767 <!-- root node --> 17768 <feature> 17769 <rects> 17770 <_>2 8 3 3 -1.</_> 17771 <_>3 8 1 3 3.</_></rects> 17772 <tilted>0</tilted></feature> 17773 <threshold>8.3048478700220585e-004</threshold> 17774 <left_val>0.4442889094352722</left_val> 17775 <right_val>0.5550957918167114</right_val></_></_> 17776 <_> 17777 <!-- tree 97 --> 17778 <_> 17779 <!-- root node --> 17780 <feature> 17781 <rects> 17782 <_>11 0 2 6 -1.</_> 17783 <_>12 0 1 3 2.</_> 17784 <_>11 3 1 3 2.</_></rects> 17785 <tilted>0</tilted></feature> 17786 <threshold>7.6602199114859104e-003</threshold> 17787 <left_val>0.5162935256958008</left_val> 17788 <right_val>0.2613354921340942</right_val></_></_> 17789 <_> 17790 <!-- tree 98 --> 17791 <_> 17792 <!-- root node --> 17793 <feature> 17794 <rects> 17795 <_>7 0 2 6 -1.</_> 17796 <_>7 0 1 3 2.</_> 17797 <_>8 3 1 3 2.</_></rects> 17798 <tilted>0</tilted></feature> 17799 <threshold>-4.1048377752304077e-003</threshold> 17800 <left_val>0.2789632081985474</left_val> 17801 <right_val>0.5019031763076782</right_val></_></_> 17802 <_> 17803 <!-- tree 99 --> 17804 <_> 17805 <!-- root node --> 17806 <feature> 17807 <rects> 17808 <_>16 3 3 7 -1.</_> 17809 <_>17 3 1 7 3.</_></rects> 17810 <tilted>0</tilted></feature> 17811 <threshold>4.8512578941881657e-003</threshold> 17812 <left_val>0.4968984127044678</left_val> 17813 <right_val>0.5661668181419373</right_val></_></_> 17814 <_> 17815 <!-- tree 100 --> 17816 <_> 17817 <!-- root node --> 17818 <feature> 17819 <rects> 17820 <_>1 3 3 7 -1.</_> 17821 <_>2 3 1 7 3.</_></rects> 17822 <tilted>0</tilted></feature> 17823 <threshold>9.9896453320980072e-004</threshold> 17824 <left_val>0.4445607960224152</left_val> 17825 <right_val>0.5551813244819641</right_val></_></_> 17826 <_> 17827 <!-- tree 101 --> 17828 <_> 17829 <!-- root node --> 17830 <feature> 17831 <rects> 17832 <_>14 1 6 16 -1.</_> 17833 <_>16 1 2 16 3.</_></rects> 17834 <tilted>0</tilted></feature> 17835 <threshold>-0.2702363133430481</threshold> 17836 <left_val>0.0293882098048925</left_val> 17837 <right_val>0.5151314139366150</right_val></_></_> 17838 <_> 17839 <!-- tree 102 --> 17840 <_> 17841 <!-- root node --> 17842 <feature> 17843 <rects> 17844 <_>0 1 6 16 -1.</_> 17845 <_>2 1 2 16 3.</_></rects> 17846 <tilted>0</tilted></feature> 17847 <threshold>-0.0130906803533435</threshold> 17848 <left_val>0.5699399709701538</left_val> 17849 <right_val>0.4447459876537323</right_val></_></_> 17850 <_> 17851 <!-- tree 103 --> 17852 <_> 17853 <!-- root node --> 17854 <feature> 17855 <rects> 17856 <_>2 0 16 8 -1.</_> 17857 <_>10 0 8 4 2.</_> 17858 <_>2 4 8 4 2.</_></rects> 17859 <tilted>0</tilted></feature> 17860 <threshold>-9.4342790544033051e-003</threshold> 17861 <left_val>0.4305466115474701</left_val> 17862 <right_val>0.5487895011901856</right_val></_></_> 17863 <_> 17864 <!-- tree 104 --> 17865 <_> 17866 <!-- root node --> 17867 <feature> 17868 <rects> 17869 <_>6 8 5 3 -1.</_> 17870 <_>6 9 5 1 3.</_></rects> 17871 <tilted>0</tilted></feature> 17872 <threshold>-1.5482039889320731e-003</threshold> 17873 <left_val>0.3680317103862763</left_val> 17874 <right_val>0.5128080844879150</right_val></_></_> 17875 <_> 17876 <!-- tree 105 --> 17877 <_> 17878 <!-- root node --> 17879 <feature> 17880 <rects> 17881 <_>9 7 3 3 -1.</_> 17882 <_>10 7 1 3 3.</_></rects> 17883 <tilted>0</tilted></feature> 17884 <threshold>5.3746132180094719e-003</threshold> 17885 <left_val>0.4838916957378388</left_val> 17886 <right_val>0.6101555824279785</right_val></_></_> 17887 <_> 17888 <!-- tree 106 --> 17889 <_> 17890 <!-- root node --> 17891 <feature> 17892 <rects> 17893 <_>8 8 4 3 -1.</_> 17894 <_>8 9 4 1 3.</_></rects> 17895 <tilted>0</tilted></feature> 17896 <threshold>1.5786769799888134e-003</threshold> 17897 <left_val>0.5325223207473755</left_val> 17898 <right_val>0.4118548035621643</right_val></_></_> 17899 <_> 17900 <!-- tree 107 --> 17901 <_> 17902 <!-- root node --> 17903 <feature> 17904 <rects> 17905 <_>9 6 2 4 -1.</_> 17906 <_>9 6 1 4 2.</_></rects> 17907 <tilted>0</tilted></feature> 17908 <threshold>3.6856050137430429e-003</threshold> 17909 <left_val>0.4810948073863983</left_val> 17910 <right_val>0.6252303123474121</right_val></_></_> 17911 <_> 17912 <!-- tree 108 --> 17913 <_> 17914 <!-- root node --> 17915 <feature> 17916 <rects> 17917 <_>0 7 15 1 -1.</_> 17918 <_>5 7 5 1 3.</_></rects> 17919 <tilted>0</tilted></feature> 17920 <threshold>9.3887019902467728e-003</threshold> 17921 <left_val>0.5200229883193970</left_val> 17922 <right_val>0.3629410862922669</right_val></_></_> 17923 <_> 17924 <!-- tree 109 --> 17925 <_> 17926 <!-- root node --> 17927 <feature> 17928 <rects> 17929 <_>8 2 7 9 -1.</_> 17930 <_>8 5 7 3 3.</_></rects> 17931 <tilted>0</tilted></feature> 17932 <threshold>0.0127926301211119</threshold> 17933 <left_val>0.4961709976196289</left_val> 17934 <right_val>0.6738016009330750</right_val></_></_> 17935 <_> 17936 <!-- tree 110 --> 17937 <_> 17938 <!-- root node --> 17939 <feature> 17940 <rects> 17941 <_>1 7 16 4 -1.</_> 17942 <_>1 7 8 2 2.</_> 17943 <_>9 9 8 2 2.</_></rects> 17944 <tilted>0</tilted></feature> 17945 <threshold>-3.3661040943115950e-003</threshold> 17946 <left_val>0.4060279130935669</left_val> 17947 <right_val>0.5283598899841309</right_val></_></_> 17948 <_> 17949 <!-- tree 111 --> 17950 <_> 17951 <!-- root node --> 17952 <feature> 17953 <rects> 17954 <_>6 12 8 2 -1.</_> 17955 <_>6 13 8 1 2.</_></rects> 17956 <tilted>0</tilted></feature> 17957 <threshold>3.9771420415490866e-004</threshold> 17958 <left_val>0.4674113988876343</left_val> 17959 <right_val>0.5900775194168091</right_val></_></_> 17960 <_> 17961 <!-- tree 112 --> 17962 <_> 17963 <!-- root node --> 17964 <feature> 17965 <rects> 17966 <_>8 11 3 3 -1.</_> 17967 <_>8 12 3 1 3.</_></rects> 17968 <tilted>0</tilted></feature> 17969 <threshold>1.4868030557408929e-003</threshold> 17970 <left_val>0.4519116878509522</left_val> 17971 <right_val>0.6082053780555725</right_val></_></_> 17972 <_> 17973 <!-- tree 113 --> 17974 <_> 17975 <!-- root node --> 17976 <feature> 17977 <rects> 17978 <_>4 5 14 10 -1.</_> 17979 <_>11 5 7 5 2.</_> 17980 <_>4 10 7 5 2.</_></rects> 17981 <tilted>0</tilted></feature> 17982 <threshold>-0.0886867493391037</threshold> 17983 <left_val>0.2807899117469788</left_val> 17984 <right_val>0.5180991888046265</right_val></_></_> 17985 <_> 17986 <!-- tree 114 --> 17987 <_> 17988 <!-- root node --> 17989 <feature> 17990 <rects> 17991 <_>4 12 3 2 -1.</_> 17992 <_>4 13 3 1 2.</_></rects> 17993 <tilted>0</tilted></feature> 17994 <threshold>-7.4296112870797515e-005</threshold> 17995 <left_val>0.5295584201812744</left_val> 17996 <right_val>0.4087625145912170</right_val></_></_> 17997 <_> 17998 <!-- tree 115 --> 17999 <_> 18000 <!-- root node --> 18001 <feature> 18002 <rects> 18003 <_>9 11 6 1 -1.</_> 18004 <_>11 11 2 1 3.</_></rects> 18005 <tilted>0</tilted></feature> 18006 <threshold>-1.4932939848222304e-005</threshold> 18007 <left_val>0.5461400151252747</left_val> 18008 <right_val>0.4538542926311493</right_val></_></_> 18009 <_> 18010 <!-- tree 116 --> 18011 <_> 18012 <!-- root node --> 18013 <feature> 18014 <rects> 18015 <_>4 9 7 6 -1.</_> 18016 <_>4 11 7 2 3.</_></rects> 18017 <tilted>0</tilted></feature> 18018 <threshold>5.9162238612771034e-003</threshold> 18019 <left_val>0.5329161286354065</left_val> 18020 <right_val>0.4192134141921997</right_val></_></_> 18021 <_> 18022 <!-- tree 117 --> 18023 <_> 18024 <!-- root node --> 18025 <feature> 18026 <rects> 18027 <_>7 10 6 3 -1.</_> 18028 <_>7 11 6 1 3.</_></rects> 18029 <tilted>0</tilted></feature> 18030 <threshold>1.1141640134155750e-003</threshold> 18031 <left_val>0.4512017965316773</left_val> 18032 <right_val>0.5706217288970947</right_val></_></_> 18033 <_> 18034 <!-- tree 118 --> 18035 <_> 18036 <!-- root node --> 18037 <feature> 18038 <rects> 18039 <_>9 11 2 2 -1.</_> 18040 <_>9 12 2 1 2.</_></rects> 18041 <tilted>0</tilted></feature> 18042 <threshold>8.9249362645205110e-005</threshold> 18043 <left_val>0.4577805995941162</left_val> 18044 <right_val>0.5897638201713562</right_val></_></_> 18045 <_> 18046 <!-- tree 119 --> 18047 <_> 18048 <!-- root node --> 18049 <feature> 18050 <rects> 18051 <_>0 5 20 6 -1.</_> 18052 <_>0 7 20 2 3.</_></rects> 18053 <tilted>0</tilted></feature> 18054 <threshold>2.5319510605186224e-003</threshold> 18055 <left_val>0.5299603939056397</left_val> 18056 <right_val>0.3357639014720917</right_val></_></_> 18057 <_> 18058 <!-- tree 120 --> 18059 <_> 18060 <!-- root node --> 18061 <feature> 18062 <rects> 18063 <_>6 4 6 1 -1.</_> 18064 <_>8 4 2 1 3.</_></rects> 18065 <tilted>0</tilted></feature> 18066 <threshold>0.0124262003228068</threshold> 18067 <left_val>0.4959059059619904</left_val> 18068 <right_val>0.1346601992845535</right_val></_></_> 18069 <_> 18070 <!-- tree 121 --> 18071 <_> 18072 <!-- root node --> 18073 <feature> 18074 <rects> 18075 <_>9 11 6 1 -1.</_> 18076 <_>11 11 2 1 3.</_></rects> 18077 <tilted>0</tilted></feature> 18078 <threshold>0.0283357501029968</threshold> 18079 <left_val>0.5117079019546509</left_val> 18080 <right_val>6.1043637106195092e-004</right_val></_></_> 18081 <_> 18082 <!-- tree 122 --> 18083 <_> 18084 <!-- root node --> 18085 <feature> 18086 <rects> 18087 <_>5 11 6 1 -1.</_> 18088 <_>7 11 2 1 3.</_></rects> 18089 <tilted>0</tilted></feature> 18090 <threshold>6.6165882162749767e-003</threshold> 18091 <left_val>0.4736349880695343</left_val> 18092 <right_val>0.7011628150939941</right_val></_></_> 18093 <_> 18094 <!-- tree 123 --> 18095 <_> 18096 <!-- root node --> 18097 <feature> 18098 <rects> 18099 <_>10 16 3 4 -1.</_> 18100 <_>11 16 1 4 3.</_></rects> 18101 <tilted>0</tilted></feature> 18102 <threshold>8.0468766391277313e-003</threshold> 18103 <left_val>0.5216417908668518</left_val> 18104 <right_val>0.3282819986343384</right_val></_></_> 18105 <_> 18106 <!-- tree 124 --> 18107 <_> 18108 <!-- root node --> 18109 <feature> 18110 <rects> 18111 <_>8 7 3 3 -1.</_> 18112 <_>9 7 1 3 3.</_></rects> 18113 <tilted>0</tilted></feature> 18114 <threshold>-1.1193980462849140e-003</threshold> 18115 <left_val>0.5809860825538635</left_val> 18116 <right_val>0.4563739001750946</right_val></_></_> 18117 <_> 18118 <!-- tree 125 --> 18119 <_> 18120 <!-- root node --> 18121 <feature> 18122 <rects> 18123 <_>2 12 16 8 -1.</_> 18124 <_>2 16 16 4 2.</_></rects> 18125 <tilted>0</tilted></feature> 18126 <threshold>0.0132775902748108</threshold> 18127 <left_val>0.5398362278938294</left_val> 18128 <right_val>0.4103901088237763</right_val></_></_> 18129 <_> 18130 <!-- tree 126 --> 18131 <_> 18132 <!-- root node --> 18133 <feature> 18134 <rects> 18135 <_>0 15 15 2 -1.</_> 18136 <_>0 16 15 1 2.</_></rects> 18137 <tilted>0</tilted></feature> 18138 <threshold>4.8794739996083081e-004</threshold> 18139 <left_val>0.4249286055564880</left_val> 18140 <right_val>0.5410590767860413</right_val></_></_> 18141 <_> 18142 <!-- tree 127 --> 18143 <_> 18144 <!-- root node --> 18145 <feature> 18146 <rects> 18147 <_>15 4 5 6 -1.</_> 18148 <_>15 6 5 2 3.</_></rects> 18149 <tilted>0</tilted></feature> 18150 <threshold>0.0112431701272726</threshold> 18151 <left_val>0.5269963741302490</left_val> 18152 <right_val>0.3438215851783752</right_val></_></_> 18153 <_> 18154 <!-- tree 128 --> 18155 <_> 18156 <!-- root node --> 18157 <feature> 18158 <rects> 18159 <_>9 5 2 4 -1.</_> 18160 <_>10 5 1 4 2.</_></rects> 18161 <tilted>0</tilted></feature> 18162 <threshold>-8.9896668214350939e-004</threshold> 18163 <left_val>0.5633075833320618</left_val> 18164 <right_val>0.4456613063812256</right_val></_></_> 18165 <_> 18166 <!-- tree 129 --> 18167 <_> 18168 <!-- root node --> 18169 <feature> 18170 <rects> 18171 <_>8 10 9 6 -1.</_> 18172 <_>8 12 9 2 3.</_></rects> 18173 <tilted>0</tilted></feature> 18174 <threshold>6.6677159629762173e-003</threshold> 18175 <left_val>0.5312889218330383</left_val> 18176 <right_val>0.4362679123878479</right_val></_></_> 18177 <_> 18178 <!-- tree 130 --> 18179 <_> 18180 <!-- root node --> 18181 <feature> 18182 <rects> 18183 <_>2 19 15 1 -1.</_> 18184 <_>7 19 5 1 3.</_></rects> 18185 <tilted>0</tilted></feature> 18186 <threshold>0.0289472993463278</threshold> 18187 <left_val>0.4701794981956482</left_val> 18188 <right_val>0.6575797796249390</right_val></_></_> 18189 <_> 18190 <!-- tree 131 --> 18191 <_> 18192 <!-- root node --> 18193 <feature> 18194 <rects> 18195 <_>10 16 3 4 -1.</_> 18196 <_>11 16 1 4 3.</_></rects> 18197 <tilted>0</tilted></feature> 18198 <threshold>-0.0234000496566296</threshold> 18199 <left_val>0.</left_val> 18200 <right_val>0.5137398838996887</right_val></_></_> 18201 <_> 18202 <!-- tree 132 --> 18203 <_> 18204 <!-- root node --> 18205 <feature> 18206 <rects> 18207 <_>0 15 20 4 -1.</_> 18208 <_>0 17 20 2 2.</_></rects> 18209 <tilted>0</tilted></feature> 18210 <threshold>-0.0891170501708984</threshold> 18211 <left_val>0.0237452797591686</left_val> 18212 <right_val>0.4942430853843689</right_val></_></_> 18213 <_> 18214 <!-- tree 133 --> 18215 <_> 18216 <!-- root node --> 18217 <feature> 18218 <rects> 18219 <_>10 16 3 4 -1.</_> 18220 <_>11 16 1 4 3.</_></rects> 18221 <tilted>0</tilted></feature> 18222 <threshold>-0.0140546001493931</threshold> 18223 <left_val>0.3127323091030121</left_val> 18224 <right_val>0.5117511153221130</right_val></_></_> 18225 <_> 18226 <!-- tree 134 --> 18227 <_> 18228 <!-- root node --> 18229 <feature> 18230 <rects> 18231 <_>7 16 3 4 -1.</_> 18232 <_>8 16 1 4 3.</_></rects> 18233 <tilted>0</tilted></feature> 18234 <threshold>8.1239398568868637e-003</threshold> 18235 <left_val>0.5009049177169800</left_val> 18236 <right_val>0.2520025968551636</right_val></_></_> 18237 <_> 18238 <!-- tree 135 --> 18239 <_> 18240 <!-- root node --> 18241 <feature> 18242 <rects> 18243 <_>9 16 3 3 -1.</_> 18244 <_>9 17 3 1 3.</_></rects> 18245 <tilted>0</tilted></feature> 18246 <threshold>-4.9964650534093380e-003</threshold> 18247 <left_val>0.6387143731117249</left_val> 18248 <right_val>0.4927811920642853</right_val></_></_> 18249 <_> 18250 <!-- tree 136 --> 18251 <_> 18252 <!-- root node --> 18253 <feature> 18254 <rects> 18255 <_>8 11 4 6 -1.</_> 18256 <_>8 14 4 3 2.</_></rects> 18257 <tilted>0</tilted></feature> 18258 <threshold>3.1253970228135586e-003</threshold> 18259 <left_val>0.5136849880218506</left_val> 18260 <right_val>0.3680452108383179</right_val></_></_> 18261 <_> 18262 <!-- tree 137 --> 18263 <_> 18264 <!-- root node --> 18265 <feature> 18266 <rects> 18267 <_>9 6 2 12 -1.</_> 18268 <_>9 10 2 4 3.</_></rects> 18269 <tilted>0</tilted></feature> 18270 <threshold>6.7669642157852650e-003</threshold> 18271 <left_val>0.5509843826293945</left_val> 18272 <right_val>0.4363631904125214</right_val></_></_> 18273 <_> 18274 <!-- tree 138 --> 18275 <_> 18276 <!-- root node --> 18277 <feature> 18278 <rects> 18279 <_>8 17 4 3 -1.</_> 18280 <_>8 18 4 1 3.</_></rects> 18281 <tilted>0</tilted></feature> 18282 <threshold>-2.3711440153419971e-003</threshold> 18283 <left_val>0.6162335276603699</left_val> 18284 <right_val>0.4586946964263916</right_val></_></_> 18285 <_> 18286 <!-- tree 139 --> 18287 <_> 18288 <!-- root node --> 18289 <feature> 18290 <rects> 18291 <_>9 18 8 2 -1.</_> 18292 <_>13 18 4 1 2.</_> 18293 <_>9 19 4 1 2.</_></rects> 18294 <tilted>0</tilted></feature> 18295 <threshold>-5.3522791713476181e-003</threshold> 18296 <left_val>0.6185457706451416</left_val> 18297 <right_val>0.4920490980148315</right_val></_></_> 18298 <_> 18299 <!-- tree 140 --> 18300 <_> 18301 <!-- root node --> 18302 <feature> 18303 <rects> 18304 <_>1 18 8 2 -1.</_> 18305 <_>1 19 8 1 2.</_></rects> 18306 <tilted>0</tilted></feature> 18307 <threshold>-0.0159688591957092</threshold> 18308 <left_val>0.1382617950439453</left_val> 18309 <right_val>0.4983252882957459</right_val></_></_> 18310 <_> 18311 <!-- tree 141 --> 18312 <_> 18313 <!-- root node --> 18314 <feature> 18315 <rects> 18316 <_>13 5 6 15 -1.</_> 18317 <_>15 5 2 15 3.</_></rects> 18318 <tilted>0</tilted></feature> 18319 <threshold>4.7676060348749161e-003</threshold> 18320 <left_val>0.4688057899475098</left_val> 18321 <right_val>0.5490046143531799</right_val></_></_> 18322 <_> 18323 <!-- tree 142 --> 18324 <_> 18325 <!-- root node --> 18326 <feature> 18327 <rects> 18328 <_>9 8 2 2 -1.</_> 18329 <_>9 9 2 1 2.</_></rects> 18330 <tilted>0</tilted></feature> 18331 <threshold>-2.4714691098779440e-003</threshold> 18332 <left_val>0.2368514984846115</left_val> 18333 <right_val>0.5003952980041504</right_val></_></_> 18334 <_> 18335 <!-- tree 143 --> 18336 <_> 18337 <!-- root node --> 18338 <feature> 18339 <rects> 18340 <_>9 5 2 3 -1.</_> 18341 <_>9 5 1 3 2.</_></rects> 18342 <tilted>0</tilted></feature> 18343 <threshold>-7.1033788844943047e-004</threshold> 18344 <left_val>0.5856394171714783</left_val> 18345 <right_val>0.4721533060073853</right_val></_></_> 18346 <_> 18347 <!-- tree 144 --> 18348 <_> 18349 <!-- root node --> 18350 <feature> 18351 <rects> 18352 <_>1 5 6 15 -1.</_> 18353 <_>3 5 2 15 3.</_></rects> 18354 <tilted>0</tilted></feature> 18355 <threshold>-0.1411755979061127</threshold> 18356 <left_val>0.0869000628590584</left_val> 18357 <right_val>0.4961591064929962</right_val></_></_> 18358 <_> 18359 <!-- tree 145 --> 18360 <_> 18361 <!-- root node --> 18362 <feature> 18363 <rects> 18364 <_>4 1 14 8 -1.</_> 18365 <_>11 1 7 4 2.</_> 18366 <_>4 5 7 4 2.</_></rects> 18367 <tilted>0</tilted></feature> 18368 <threshold>0.1065180972218514</threshold> 18369 <left_val>0.5138837099075317</left_val> 18370 <right_val>0.1741005033254623</right_val></_></_> 18371 <_> 18372 <!-- tree 146 --> 18373 <_> 18374 <!-- root node --> 18375 <feature> 18376 <rects> 18377 <_>2 4 4 16 -1.</_> 18378 <_>2 4 2 8 2.</_> 18379 <_>4 12 2 8 2.</_></rects> 18380 <tilted>0</tilted></feature> 18381 <threshold>-0.0527447499334812</threshold> 18382 <left_val>0.7353636026382446</left_val> 18383 <right_val>0.4772881865501404</right_val></_></_> 18384 <_> 18385 <!-- tree 147 --> 18386 <_> 18387 <!-- root node --> 18388 <feature> 18389 <rects> 18390 <_>12 4 3 12 -1.</_> 18391 <_>12 10 3 6 2.</_></rects> 18392 <tilted>0</tilted></feature> 18393 <threshold>-4.7431760467588902e-003</threshold> 18394 <left_val>0.3884406089782715</left_val> 18395 <right_val>0.5292701721191406</right_val></_></_> 18396 <_> 18397 <!-- tree 148 --> 18398 <_> 18399 <!-- root node --> 18400 <feature> 18401 <rects> 18402 <_>4 5 10 12 -1.</_> 18403 <_>4 5 5 6 2.</_> 18404 <_>9 11 5 6 2.</_></rects> 18405 <tilted>0</tilted></feature> 18406 <threshold>9.9676765967160463e-004</threshold> 18407 <left_val>0.5223492980003357</left_val> 18408 <right_val>0.4003424048423767</right_val></_></_> 18409 <_> 18410 <!-- tree 149 --> 18411 <_> 18412 <!-- root node --> 18413 <feature> 18414 <rects> 18415 <_>9 14 2 3 -1.</_> 18416 <_>9 15 2 1 3.</_></rects> 18417 <tilted>0</tilted></feature> 18418 <threshold>8.0284131690859795e-003</threshold> 18419 <left_val>0.4959106147289276</left_val> 18420 <right_val>0.7212964296340942</right_val></_></_> 18421 <_> 18422 <!-- tree 150 --> 18423 <_> 18424 <!-- root node --> 18425 <feature> 18426 <rects> 18427 <_>5 4 2 3 -1.</_> 18428 <_>5 5 2 1 3.</_></rects> 18429 <tilted>0</tilted></feature> 18430 <threshold>8.6025858763605356e-004</threshold> 18431 <left_val>0.4444884061813355</left_val> 18432 <right_val>0.5538476109504700</right_val></_></_> 18433 <_> 18434 <!-- tree 151 --> 18435 <_> 18436 <!-- root node --> 18437 <feature> 18438 <rects> 18439 <_>12 2 4 10 -1.</_> 18440 <_>14 2 2 5 2.</_> 18441 <_>12 7 2 5 2.</_></rects> 18442 <tilted>0</tilted></feature> 18443 <threshold>9.3191501218825579e-004</threshold> 18444 <left_val>0.5398371219635010</left_val> 18445 <right_val>0.4163244068622589</right_val></_></_> 18446 <_> 18447 <!-- tree 152 --> 18448 <_> 18449 <!-- root node --> 18450 <feature> 18451 <rects> 18452 <_>6 4 7 3 -1.</_> 18453 <_>6 5 7 1 3.</_></rects> 18454 <tilted>0</tilted></feature> 18455 <threshold>-2.5082060601562262e-003</threshold> 18456 <left_val>0.5854265093803406</left_val> 18457 <right_val>0.4562500119209290</right_val></_></_> 18458 <_> 18459 <!-- tree 153 --> 18460 <_> 18461 <!-- root node --> 18462 <feature> 18463 <rects> 18464 <_>2 0 18 2 -1.</_> 18465 <_>11 0 9 1 2.</_> 18466 <_>2 1 9 1 2.</_></rects> 18467 <tilted>0</tilted></feature> 18468 <threshold>-2.1378761157393456e-003</threshold> 18469 <left_val>0.4608069062232971</left_val> 18470 <right_val>0.5280259251594544</right_val></_></_> 18471 <_> 18472 <!-- tree 154 --> 18473 <_> 18474 <!-- root node --> 18475 <feature> 18476 <rects> 18477 <_>0 0 18 2 -1.</_> 18478 <_>0 0 9 1 2.</_> 18479 <_>9 1 9 1 2.</_></rects> 18480 <tilted>0</tilted></feature> 18481 <threshold>-2.1546049974858761e-003</threshold> 18482 <left_val>0.3791126906871796</left_val> 18483 <right_val>0.5255997180938721</right_val></_></_> 18484 <_> 18485 <!-- tree 155 --> 18486 <_> 18487 <!-- root node --> 18488 <feature> 18489 <rects> 18490 <_>13 13 4 6 -1.</_> 18491 <_>15 13 2 3 2.</_> 18492 <_>13 16 2 3 2.</_></rects> 18493 <tilted>0</tilted></feature> 18494 <threshold>-7.6214009895920753e-003</threshold> 18495 <left_val>0.5998609066009522</left_val> 18496 <right_val>0.4952073991298676</right_val></_></_> 18497 <_> 18498 <!-- tree 156 --> 18499 <_> 18500 <!-- root node --> 18501 <feature> 18502 <rects> 18503 <_>3 13 4 6 -1.</_> 18504 <_>3 13 2 3 2.</_> 18505 <_>5 16 2 3 2.</_></rects> 18506 <tilted>0</tilted></feature> 18507 <threshold>2.2055360022932291e-003</threshold> 18508 <left_val>0.4484206140041351</left_val> 18509 <right_val>0.5588530898094177</right_val></_></_> 18510 <_> 18511 <!-- tree 157 --> 18512 <_> 18513 <!-- root node --> 18514 <feature> 18515 <rects> 18516 <_>10 12 2 6 -1.</_> 18517 <_>10 15 2 3 2.</_></rects> 18518 <tilted>0</tilted></feature> 18519 <threshold>1.2586950324475765e-003</threshold> 18520 <left_val>0.5450747013092041</left_val> 18521 <right_val>0.4423840939998627</right_val></_></_> 18522 <_> 18523 <!-- tree 158 --> 18524 <_> 18525 <!-- root node --> 18526 <feature> 18527 <rects> 18528 <_>5 9 10 10 -1.</_> 18529 <_>5 9 5 5 2.</_> 18530 <_>10 14 5 5 2.</_></rects> 18531 <tilted>0</tilted></feature> 18532 <threshold>-5.0926720723509789e-003</threshold> 18533 <left_val>0.4118275046348572</left_val> 18534 <right_val>0.5263035893440247</right_val></_></_> 18535 <_> 18536 <!-- tree 159 --> 18537 <_> 18538 <!-- root node --> 18539 <feature> 18540 <rects> 18541 <_>11 4 4 2 -1.</_> 18542 <_>13 4 2 1 2.</_> 18543 <_>11 5 2 1 2.</_></rects> 18544 <tilted>0</tilted></feature> 18545 <threshold>-2.5095739401876926e-003</threshold> 18546 <left_val>0.5787907838821411</left_val> 18547 <right_val>0.4998494982719421</right_val></_></_> 18548 <_> 18549 <!-- tree 160 --> 18550 <_> 18551 <!-- root node --> 18552 <feature> 18553 <rects> 18554 <_>7 12 6 8 -1.</_> 18555 <_>10 12 3 8 2.</_></rects> 18556 <tilted>0</tilted></feature> 18557 <threshold>-0.0773275569081306</threshold> 18558 <left_val>0.8397865891456604</left_val> 18559 <right_val>0.4811120033264160</right_val></_></_> 18560 <_> 18561 <!-- tree 161 --> 18562 <_> 18563 <!-- root node --> 18564 <feature> 18565 <rects> 18566 <_>12 2 4 10 -1.</_> 18567 <_>14 2 2 5 2.</_> 18568 <_>12 7 2 5 2.</_></rects> 18569 <tilted>0</tilted></feature> 18570 <threshold>-0.0414858199656010</threshold> 18571 <left_val>0.2408611029386520</left_val> 18572 <right_val>0.5176993012428284</right_val></_></_> 18573 <_> 18574 <!-- tree 162 --> 18575 <_> 18576 <!-- root node --> 18577 <feature> 18578 <rects> 18579 <_>8 11 2 1 -1.</_> 18580 <_>9 11 1 1 2.</_></rects> 18581 <tilted>0</tilted></feature> 18582 <threshold>1.0355669655837119e-004</threshold> 18583 <left_val>0.4355360865592957</left_val> 18584 <right_val>0.5417054295539856</right_val></_></_> 18585 <_> 18586 <!-- tree 163 --> 18587 <_> 18588 <!-- root node --> 18589 <feature> 18590 <rects> 18591 <_>10 5 1 12 -1.</_> 18592 <_>10 9 1 4 3.</_></rects> 18593 <tilted>0</tilted></feature> 18594 <threshold>1.3255809899419546e-003</threshold> 18595 <left_val>0.5453971028327942</left_val> 18596 <right_val>0.4894095063209534</right_val></_></_> 18597 <_> 18598 <!-- tree 164 --> 18599 <_> 18600 <!-- root node --> 18601 <feature> 18602 <rects> 18603 <_>0 11 6 9 -1.</_> 18604 <_>3 11 3 9 2.</_></rects> 18605 <tilted>0</tilted></feature> 18606 <threshold>-8.0598732456564903e-003</threshold> 18607 <left_val>0.5771024227142334</left_val> 18608 <right_val>0.4577918946743012</right_val></_></_> 18609 <_> 18610 <!-- tree 165 --> 18611 <_> 18612 <!-- root node --> 18613 <feature> 18614 <rects> 18615 <_>12 2 4 10 -1.</_> 18616 <_>14 2 2 5 2.</_> 18617 <_>12 7 2 5 2.</_></rects> 18618 <tilted>0</tilted></feature> 18619 <threshold>0.0190586205571890</threshold> 18620 <left_val>0.5169867873191834</left_val> 18621 <right_val>0.3400475084781647</right_val></_></_> 18622 <_> 18623 <!-- tree 166 --> 18624 <_> 18625 <!-- root node --> 18626 <feature> 18627 <rects> 18628 <_>4 2 4 10 -1.</_> 18629 <_>4 2 2 5 2.</_> 18630 <_>6 7 2 5 2.</_></rects> 18631 <tilted>0</tilted></feature> 18632 <threshold>-0.0350578911602497</threshold> 18633 <left_val>0.2203243970870972</left_val> 18634 <right_val>0.5000503063201904</right_val></_></_> 18635 <_> 18636 <!-- tree 167 --> 18637 <_> 18638 <!-- root node --> 18639 <feature> 18640 <rects> 18641 <_>11 4 4 2 -1.</_> 18642 <_>13 4 2 1 2.</_> 18643 <_>11 5 2 1 2.</_></rects> 18644 <tilted>0</tilted></feature> 18645 <threshold>5.7296059094369411e-003</threshold> 18646 <left_val>0.5043408274650574</left_val> 18647 <right_val>0.6597570776939392</right_val></_></_> 18648 <_> 18649 <!-- tree 168 --> 18650 <_> 18651 <!-- root node --> 18652 <feature> 18653 <rects> 18654 <_>0 14 6 3 -1.</_> 18655 <_>0 15 6 1 3.</_></rects> 18656 <tilted>0</tilted></feature> 18657 <threshold>-0.0116483299061656</threshold> 18658 <left_val>0.2186284959316254</left_val> 18659 <right_val>0.4996652901172638</right_val></_></_> 18660 <_> 18661 <!-- tree 169 --> 18662 <_> 18663 <!-- root node --> 18664 <feature> 18665 <rects> 18666 <_>11 4 4 2 -1.</_> 18667 <_>13 4 2 1 2.</_> 18668 <_>11 5 2 1 2.</_></rects> 18669 <tilted>0</tilted></feature> 18670 <threshold>1.4544479781761765e-003</threshold> 18671 <left_val>0.5007681846618652</left_val> 18672 <right_val>0.5503727793693543</right_val></_></_> 18673 <_> 18674 <!-- tree 170 --> 18675 <_> 18676 <!-- root node --> 18677 <feature> 18678 <rects> 18679 <_>6 1 3 2 -1.</_> 18680 <_>7 1 1 2 3.</_></rects> 18681 <tilted>0</tilted></feature> 18682 <threshold>-2.5030909455381334e-004</threshold> 18683 <left_val>0.4129841029644013</left_val> 18684 <right_val>0.5241670012474060</right_val></_></_> 18685 <_> 18686 <!-- tree 171 --> 18687 <_> 18688 <!-- root node --> 18689 <feature> 18690 <rects> 18691 <_>11 4 4 2 -1.</_> 18692 <_>13 4 2 1 2.</_> 18693 <_>11 5 2 1 2.</_></rects> 18694 <tilted>0</tilted></feature> 18695 <threshold>-8.2907272735610604e-004</threshold> 18696 <left_val>0.5412868261337280</left_val> 18697 <right_val>0.4974496066570282</right_val></_></_> 18698 <_> 18699 <!-- tree 172 --> 18700 <_> 18701 <!-- root node --> 18702 <feature> 18703 <rects> 18704 <_>5 4 4 2 -1.</_> 18705 <_>5 4 2 1 2.</_> 18706 <_>7 5 2 1 2.</_></rects> 18707 <tilted>0</tilted></feature> 18708 <threshold>1.0862209601327777e-003</threshold> 18709 <left_val>0.4605529904365540</left_val> 18710 <right_val>0.5879228711128235</right_val></_></_> 18711 <_> 18712 <!-- tree 173 --> 18713 <_> 18714 <!-- root node --> 18715 <feature> 18716 <rects> 18717 <_>13 0 2 12 -1.</_> 18718 <_>14 0 1 6 2.</_> 18719 <_>13 6 1 6 2.</_></rects> 18720 <tilted>0</tilted></feature> 18721 <threshold>2.0000500080641359e-004</threshold> 18722 <left_val>0.5278854966163635</left_val> 18723 <right_val>0.4705209136009216</right_val></_></_> 18724 <_> 18725 <!-- tree 174 --> 18726 <_> 18727 <!-- root node --> 18728 <feature> 18729 <rects> 18730 <_>6 0 3 10 -1.</_> 18731 <_>7 0 1 10 3.</_></rects> 18732 <tilted>0</tilted></feature> 18733 <threshold>2.9212920926511288e-003</threshold> 18734 <left_val>0.5129609704017639</left_val> 18735 <right_val>0.3755536973476410</right_val></_></_> 18736 <_> 18737 <!-- tree 175 --> 18738 <_> 18739 <!-- root node --> 18740 <feature> 18741 <rects> 18742 <_>3 0 17 8 -1.</_> 18743 <_>3 4 17 4 2.</_></rects> 18744 <tilted>0</tilted></feature> 18745 <threshold>0.0253874007612467</threshold> 18746 <left_val>0.4822691977024078</left_val> 18747 <right_val>0.5790768265724182</right_val></_></_> 18748 <_> 18749 <!-- tree 176 --> 18750 <_> 18751 <!-- root node --> 18752 <feature> 18753 <rects> 18754 <_>0 4 20 4 -1.</_> 18755 <_>0 6 20 2 2.</_></rects> 18756 <tilted>0</tilted></feature> 18757 <threshold>-3.1968469265848398e-003</threshold> 18758 <left_val>0.5248395204544067</left_val> 18759 <right_val>0.3962840139865875</right_val></_></_></trees> 18760 <stage_threshold>87.6960296630859380</stage_threshold> 18761 <parent>17</parent> 18762 <next>-1</next></_> 18763 <_> 18764 <!-- stage 19 --> 18765 <trees> 18766 <_> 18767 <!-- tree 0 --> 18768 <_> 18769 <!-- root node --> 18770 <feature> 18771 <rects> 18772 <_>0 3 8 2 -1.</_> 18773 <_>4 3 4 2 2.</_></rects> 18774 <tilted>0</tilted></feature> 18775 <threshold>5.8031738735735416e-003</threshold> 18776 <left_val>0.3498983979225159</left_val> 18777 <right_val>0.5961983203887940</right_val></_></_> 18778 <_> 18779 <!-- tree 1 --> 18780 <_> 18781 <!-- root node --> 18782 <feature> 18783 <rects> 18784 <_>8 11 4 3 -1.</_> 18785 <_>8 12 4 1 3.</_></rects> 18786 <tilted>0</tilted></feature> 18787 <threshold>-9.0003069490194321e-003</threshold> 18788 <left_val>0.6816636919975281</left_val> 18789 <right_val>0.4478552043437958</right_val></_></_> 18790 <_> 18791 <!-- tree 2 --> 18792 <_> 18793 <!-- root node --> 18794 <feature> 18795 <rects> 18796 <_>5 7 6 4 -1.</_> 18797 <_>5 7 3 2 2.</_> 18798 <_>8 9 3 2 2.</_></rects> 18799 <tilted>0</tilted></feature> 18800 <threshold>-1.1549659539014101e-003</threshold> 18801 <left_val>0.5585706233978272</left_val> 18802 <right_val>0.3578251004219055</right_val></_></_> 18803 <_> 18804 <!-- tree 3 --> 18805 <_> 18806 <!-- root node --> 18807 <feature> 18808 <rects> 18809 <_>8 3 4 9 -1.</_> 18810 <_>8 6 4 3 3.</_></rects> 18811 <tilted>0</tilted></feature> 18812 <threshold>-1.1069850297644734e-003</threshold> 18813 <left_val>0.5365036129951477</left_val> 18814 <right_val>0.3050428032875061</right_val></_></_> 18815 <_> 18816 <!-- tree 4 --> 18817 <_> 18818 <!-- root node --> 18819 <feature> 18820 <rects> 18821 <_>8 15 1 4 -1.</_> 18822 <_>8 17 1 2 2.</_></rects> 18823 <tilted>0</tilted></feature> 18824 <threshold>1.0308309720130637e-004</threshold> 18825 <left_val>0.3639095127582550</left_val> 18826 <right_val>0.5344635844230652</right_val></_></_> 18827 <_> 18828 <!-- tree 5 --> 18829 <_> 18830 <!-- root node --> 18831 <feature> 18832 <rects> 18833 <_>4 5 12 7 -1.</_> 18834 <_>8 5 4 7 3.</_></rects> 18835 <tilted>0</tilted></feature> 18836 <threshold>-5.0984839908778667e-003</threshold> 18837 <left_val>0.2859157025814056</left_val> 18838 <right_val>0.5504264831542969</right_val></_></_> 18839 <_> 18840 <!-- tree 6 --> 18841 <_> 18842 <!-- root node --> 18843 <feature> 18844 <rects> 18845 <_>4 2 4 10 -1.</_> 18846 <_>4 2 2 5 2.</_> 18847 <_>6 7 2 5 2.</_></rects> 18848 <tilted>0</tilted></feature> 18849 <threshold>8.2572200335562229e-004</threshold> 18850 <left_val>0.5236523747444153</left_val> 18851 <right_val>0.3476041853427887</right_val></_></_> 18852 <_> 18853 <!-- tree 7 --> 18854 <_> 18855 <!-- root node --> 18856 <feature> 18857 <rects> 18858 <_>3 0 17 2 -1.</_> 18859 <_>3 1 17 1 2.</_></rects> 18860 <tilted>0</tilted></feature> 18861 <threshold>9.9783325567841530e-003</threshold> 18862 <left_val>0.4750322103500366</left_val> 18863 <right_val>0.6219646930694580</right_val></_></_> 18864 <_> 18865 <!-- tree 8 --> 18866 <_> 18867 <!-- root node --> 18868 <feature> 18869 <rects> 18870 <_>2 2 16 15 -1.</_> 18871 <_>2 7 16 5 3.</_></rects> 18872 <tilted>0</tilted></feature> 18873 <threshold>-0.0374025292694569</threshold> 18874 <left_val>0.3343375921249390</left_val> 18875 <right_val>0.5278062820434570</right_val></_></_> 18876 <_> 18877 <!-- tree 9 --> 18878 <_> 18879 <!-- root node --> 18880 <feature> 18881 <rects> 18882 <_>15 2 5 2 -1.</_> 18883 <_>15 3 5 1 2.</_></rects> 18884 <tilted>0</tilted></feature> 18885 <threshold>4.8548257909715176e-003</threshold> 18886 <left_val>0.5192180871963501</left_val> 18887 <right_val>0.3700444102287293</right_val></_></_> 18888 <_> 18889 <!-- tree 10 --> 18890 <_> 18891 <!-- root node --> 18892 <feature> 18893 <rects> 18894 <_>9 3 2 2 -1.</_> 18895 <_>10 3 1 2 2.</_></rects> 18896 <tilted>0</tilted></feature> 18897 <threshold>-1.8664470408111811e-003</threshold> 18898 <left_val>0.2929843962192535</left_val> 18899 <right_val>0.5091944932937622</right_val></_></_> 18900 <_> 18901 <!-- tree 11 --> 18902 <_> 18903 <!-- root node --> 18904 <feature> 18905 <rects> 18906 <_>4 5 16 15 -1.</_> 18907 <_>4 10 16 5 3.</_></rects> 18908 <tilted>0</tilted></feature> 18909 <threshold>0.0168888904154301</threshold> 18910 <left_val>0.3686845898628235</left_val> 18911 <right_val>0.5431225895881653</right_val></_></_> 18912 <_> 18913 <!-- tree 12 --> 18914 <_> 18915 <!-- root node --> 18916 <feature> 18917 <rects> 18918 <_>7 13 5 6 -1.</_> 18919 <_>7 16 5 3 2.</_></rects> 18920 <tilted>0</tilted></feature> 18921 <threshold>-5.8372621424496174e-003</threshold> 18922 <left_val>0.3632183969020844</left_val> 18923 <right_val>0.5221335887908936</right_val></_></_> 18924 <_> 18925 <!-- tree 13 --> 18926 <_> 18927 <!-- root node --> 18928 <feature> 18929 <rects> 18930 <_>10 7 3 2 -1.</_> 18931 <_>11 7 1 2 3.</_></rects> 18932 <tilted>0</tilted></feature> 18933 <threshold>-1.4713739510625601e-003</threshold> 18934 <left_val>0.5870683789253235</left_val> 18935 <right_val>0.4700650870800018</right_val></_></_> 18936 <_> 18937 <!-- tree 14 --> 18938 <_> 18939 <!-- root node --> 18940 <feature> 18941 <rects> 18942 <_>8 3 3 1 -1.</_> 18943 <_>9 3 1 1 3.</_></rects> 18944 <tilted>0</tilted></feature> 18945 <threshold>-1.1522950371727347e-003</threshold> 18946 <left_val>0.3195894956588745</left_val> 18947 <right_val>0.5140954256057739</right_val></_></_> 18948 <_> 18949 <!-- tree 15 --> 18950 <_> 18951 <!-- root node --> 18952 <feature> 18953 <rects> 18954 <_>9 16 3 3 -1.</_> 18955 <_>9 17 3 1 3.</_></rects> 18956 <tilted>0</tilted></feature> 18957 <threshold>-4.2560300789773464e-003</threshold> 18958 <left_val>0.6301859021186829</left_val> 18959 <right_val>0.4814921021461487</right_val></_></_> 18960 <_> 18961 <!-- tree 16 --> 18962 <_> 18963 <!-- root node --> 18964 <feature> 18965 <rects> 18966 <_>0 2 5 2 -1.</_> 18967 <_>0 3 5 1 2.</_></rects> 18968 <tilted>0</tilted></feature> 18969 <threshold>-6.7378291860222816e-003</threshold> 18970 <left_val>0.1977048069238663</left_val> 18971 <right_val>0.5025808215141296</right_val></_></_> 18972 <_> 18973 <!-- tree 17 --> 18974 <_> 18975 <!-- root node --> 18976 <feature> 18977 <rects> 18978 <_>12 5 4 3 -1.</_> 18979 <_>12 6 4 1 3.</_></rects> 18980 <tilted>0</tilted></feature> 18981 <threshold>0.0113826701417565</threshold> 18982 <left_val>0.4954132139682770</left_val> 18983 <right_val>0.6867045760154724</right_val></_></_> 18984 <_> 18985 <!-- tree 18 --> 18986 <_> 18987 <!-- root node --> 18988 <feature> 18989 <rects> 18990 <_>1 7 12 1 -1.</_> 18991 <_>5 7 4 1 3.</_></rects> 18992 <tilted>0</tilted></feature> 18993 <threshold>5.1794708706438541e-003</threshold> 18994 <left_val>0.5164427757263184</left_val> 18995 <right_val>0.3350647985935211</right_val></_></_> 18996 <_> 18997 <!-- tree 19 --> 18998 <_> 18999 <!-- root node --> 19000 <feature> 19001 <rects> 19002 <_>7 5 6 14 -1.</_> 19003 <_>7 12 6 7 2.</_></rects> 19004 <tilted>0</tilted></feature> 19005 <threshold>-0.1174378991127014</threshold> 19006 <left_val>0.2315246015787125</left_val> 19007 <right_val>0.5234413743019104</right_val></_></_> 19008 <_> 19009 <!-- tree 20 --> 19010 <_> 19011 <!-- root node --> 19012 <feature> 19013 <rects> 19014 <_>0 0 8 10 -1.</_> 19015 <_>0 0 4 5 2.</_> 19016 <_>4 5 4 5 2.</_></rects> 19017 <tilted>0</tilted></feature> 19018 <threshold>0.0287034492939711</threshold> 19019 <left_val>0.4664297103881836</left_val> 19020 <right_val>0.6722521185874939</right_val></_></_> 19021 <_> 19022 <!-- tree 21 --> 19023 <_> 19024 <!-- root node --> 19025 <feature> 19026 <rects> 19027 <_>9 1 3 2 -1.</_> 19028 <_>10 1 1 2 3.</_></rects> 19029 <tilted>0</tilted></feature> 19030 <threshold>4.8231030814349651e-003</threshold> 19031 <left_val>0.5220875144004822</left_val> 19032 <right_val>0.2723532915115356</right_val></_></_> 19033 <_> 19034 <!-- tree 22 --> 19035 <_> 19036 <!-- root node --> 19037 <feature> 19038 <rects> 19039 <_>8 1 3 2 -1.</_> 19040 <_>9 1 1 2 3.</_></rects> 19041 <tilted>0</tilted></feature> 19042 <threshold>2.6798530016094446e-003</threshold> 19043 <left_val>0.5079277157783508</left_val> 19044 <right_val>0.2906948924064636</right_val></_></_> 19045 <_> 19046 <!-- tree 23 --> 19047 <_> 19048 <!-- root node --> 19049 <feature> 19050 <rects> 19051 <_>12 4 3 3 -1.</_> 19052 <_>12 5 3 1 3.</_></rects> 19053 <tilted>0</tilted></feature> 19054 <threshold>8.0504082143306732e-003</threshold> 19055 <left_val>0.4885950982570648</left_val> 19056 <right_val>0.6395021080970764</right_val></_></_> 19057 <_> 19058 <!-- tree 24 --> 19059 <_> 19060 <!-- root node --> 19061 <feature> 19062 <rects> 19063 <_>7 4 6 16 -1.</_> 19064 <_>7 12 6 8 2.</_></rects> 19065 <tilted>0</tilted></feature> 19066 <threshold>4.8054959625005722e-003</threshold> 19067 <left_val>0.5197256803512573</left_val> 19068 <right_val>0.3656663894653320</right_val></_></_> 19069 <_> 19070 <!-- tree 25 --> 19071 <_> 19072 <!-- root node --> 19073 <feature> 19074 <rects> 19075 <_>12 4 3 3 -1.</_> 19076 <_>12 5 3 1 3.</_></rects> 19077 <tilted>0</tilted></feature> 19078 <threshold>-2.2420159075409174e-003</threshold> 19079 <left_val>0.6153467893600464</left_val> 19080 <right_val>0.4763701856136322</right_val></_></_> 19081 <_> 19082 <!-- tree 26 --> 19083 <_> 19084 <!-- root node --> 19085 <feature> 19086 <rects> 19087 <_>2 3 2 6 -1.</_> 19088 <_>2 5 2 2 3.</_></rects> 19089 <tilted>0</tilted></feature> 19090 <threshold>-0.0137577103450894</threshold> 19091 <left_val>0.2637344896793366</left_val> 19092 <right_val>0.5030903220176697</right_val></_></_> 19093 <_> 19094 <!-- tree 27 --> 19095 <_> 19096 <!-- root node --> 19097 <feature> 19098 <rects> 19099 <_>14 2 6 9 -1.</_> 19100 <_>14 5 6 3 3.</_></rects> 19101 <tilted>0</tilted></feature> 19102 <threshold>-0.1033829972147942</threshold> 19103 <left_val>0.2287521958351135</left_val> 19104 <right_val>0.5182461142539978</right_val></_></_> 19105 <_> 19106 <!-- tree 28 --> 19107 <_> 19108 <!-- root node --> 19109 <feature> 19110 <rects> 19111 <_>5 4 3 3 -1.</_> 19112 <_>5 5 3 1 3.</_></rects> 19113 <tilted>0</tilted></feature> 19114 <threshold>-9.4432085752487183e-003</threshold> 19115 <left_val>0.6953303813934326</left_val> 19116 <right_val>0.4694949090480804</right_val></_></_> 19117 <_> 19118 <!-- tree 29 --> 19119 <_> 19120 <!-- root node --> 19121 <feature> 19122 <rects> 19123 <_>9 17 3 2 -1.</_> 19124 <_>10 17 1 2 3.</_></rects> 19125 <tilted>0</tilted></feature> 19126 <threshold>8.0271181650459766e-004</threshold> 19127 <left_val>0.5450655221939087</left_val> 19128 <right_val>0.4268783926963806</right_val></_></_> 19129 <_> 19130 <!-- tree 30 --> 19131 <_> 19132 <!-- root node --> 19133 <feature> 19134 <rects> 19135 <_>5 5 2 3 -1.</_> 19136 <_>5 6 2 1 3.</_></rects> 19137 <tilted>0</tilted></feature> 19138 <threshold>-4.1945669800043106e-003</threshold> 19139 <left_val>0.6091387867927551</left_val> 19140 <right_val>0.4571642875671387</right_val></_></_> 19141 <_> 19142 <!-- tree 31 --> 19143 <_> 19144 <!-- root node --> 19145 <feature> 19146 <rects> 19147 <_>13 11 3 6 -1.</_> 19148 <_>13 13 3 2 3.</_></rects> 19149 <tilted>0</tilted></feature> 19150 <threshold>0.0109422104433179</threshold> 19151 <left_val>0.5241063237190247</left_val> 19152 <right_val>0.3284547030925751</right_val></_></_> 19153 <_> 19154 <!-- tree 32 --> 19155 <_> 19156 <!-- root node --> 19157 <feature> 19158 <rects> 19159 <_>3 14 2 6 -1.</_> 19160 <_>3 17 2 3 2.</_></rects> 19161 <tilted>0</tilted></feature> 19162 <threshold>-5.7841069065034389e-004</threshold> 19163 <left_val>0.5387929081916809</left_val> 19164 <right_val>0.4179368913173676</right_val></_></_> 19165 <_> 19166 <!-- tree 33 --> 19167 <_> 19168 <!-- root node --> 19169 <feature> 19170 <rects> 19171 <_>14 3 6 2 -1.</_> 19172 <_>14 4 6 1 2.</_></rects> 19173 <tilted>0</tilted></feature> 19174 <threshold>-2.0888620056211948e-003</threshold> 19175 <left_val>0.4292691051959992</left_val> 19176 <right_val>0.5301715731620789</right_val></_></_> 19177 <_> 19178 <!-- tree 34 --> 19179 <_> 19180 <!-- root node --> 19181 <feature> 19182 <rects> 19183 <_>0 8 16 2 -1.</_> 19184 <_>0 9 16 1 2.</_></rects> 19185 <tilted>0</tilted></feature> 19186 <threshold>3.2383969519287348e-003</threshold> 19187 <left_val>0.3792347908020020</left_val> 19188 <right_val>0.5220744013786316</right_val></_></_> 19189 <_> 19190 <!-- tree 35 --> 19191 <_> 19192 <!-- root node --> 19193 <feature> 19194 <rects> 19195 <_>14 3 6 2 -1.</_> 19196 <_>14 4 6 1 2.</_></rects> 19197 <tilted>0</tilted></feature> 19198 <threshold>4.9075027927756310e-003</threshold> 19199 <left_val>0.5237283110618591</left_val> 19200 <right_val>0.4126757979393005</right_val></_></_> 19201 <_> 19202 <!-- tree 36 --> 19203 <_> 19204 <!-- root node --> 19205 <feature> 19206 <rects> 19207 <_>0 0 5 6 -1.</_> 19208 <_>0 2 5 2 3.</_></rects> 19209 <tilted>0</tilted></feature> 19210 <threshold>-0.0322779417037964</threshold> 19211 <left_val>0.1947655975818634</left_val> 19212 <right_val>0.4994502067565918</right_val></_></_> 19213 <_> 19214 <!-- tree 37 --> 19215 <_> 19216 <!-- root node --> 19217 <feature> 19218 <rects> 19219 <_>12 5 4 3 -1.</_> 19220 <_>12 6 4 1 3.</_></rects> 19221 <tilted>0</tilted></feature> 19222 <threshold>-8.9711230248212814e-003</threshold> 19223 <left_val>0.6011285185813904</left_val> 19224 <right_val>0.4929032027721405</right_val></_></_> 19225 <_> 19226 <!-- tree 38 --> 19227 <_> 19228 <!-- root node --> 19229 <feature> 19230 <rects> 19231 <_>4 11 3 6 -1.</_> 19232 <_>4 13 3 2 3.</_></rects> 19233 <tilted>0</tilted></feature> 19234 <threshold>0.0153210898861289</threshold> 19235 <left_val>0.5009753704071045</left_val> 19236 <right_val>0.2039822041988373</right_val></_></_> 19237 <_> 19238 <!-- tree 39 --> 19239 <_> 19240 <!-- root node --> 19241 <feature> 19242 <rects> 19243 <_>12 5 4 3 -1.</_> 19244 <_>12 6 4 1 3.</_></rects> 19245 <tilted>0</tilted></feature> 19246 <threshold>2.0855569746345282e-003</threshold> 19247 <left_val>0.4862189888954163</left_val> 19248 <right_val>0.5721694827079773</right_val></_></_> 19249 <_> 19250 <!-- tree 40 --> 19251 <_> 19252 <!-- root node --> 19253 <feature> 19254 <rects> 19255 <_>9 5 1 3 -1.</_> 19256 <_>9 6 1 1 3.</_></rects> 19257 <tilted>0</tilted></feature> 19258 <threshold>5.0615021027624607e-003</threshold> 19259 <left_val>0.5000218749046326</left_val> 19260 <right_val>0.1801805943250656</right_val></_></_> 19261 <_> 19262 <!-- tree 41 --> 19263 <_> 19264 <!-- root node --> 19265 <feature> 19266 <rects> 19267 <_>12 5 4 3 -1.</_> 19268 <_>12 6 4 1 3.</_></rects> 19269 <tilted>0</tilted></feature> 19270 <threshold>-3.7174751050770283e-003</threshold> 19271 <left_val>0.5530117154121399</left_val> 19272 <right_val>0.4897592961788178</right_val></_></_> 19273 <_> 19274 <!-- tree 42 --> 19275 <_> 19276 <!-- root node --> 19277 <feature> 19278 <rects> 19279 <_>6 6 8 12 -1.</_> 19280 <_>6 12 8 6 2.</_></rects> 19281 <tilted>0</tilted></feature> 19282 <threshold>-0.0121705001220107</threshold> 19283 <left_val>0.4178605973720551</left_val> 19284 <right_val>0.5383723974227905</right_val></_></_> 19285 <_> 19286 <!-- tree 43 --> 19287 <_> 19288 <!-- root node --> 19289 <feature> 19290 <rects> 19291 <_>12 5 4 3 -1.</_> 19292 <_>12 6 4 1 3.</_></rects> 19293 <tilted>0</tilted></feature> 19294 <threshold>4.6248398721218109e-003</threshold> 19295 <left_val>0.4997169971466065</left_val> 19296 <right_val>0.5761327147483826</right_val></_></_> 19297 <_> 19298 <!-- tree 44 --> 19299 <_> 19300 <!-- root node --> 19301 <feature> 19302 <rects> 19303 <_>5 12 9 2 -1.</_> 19304 <_>8 12 3 2 3.</_></rects> 19305 <tilted>0</tilted></feature> 19306 <threshold>-2.1040429419372231e-004</threshold> 19307 <left_val>0.5331807136535645</left_val> 19308 <right_val>0.4097681045532227</right_val></_></_> 19309 <_> 19310 <!-- tree 45 --> 19311 <_> 19312 <!-- root node --> 19313 <feature> 19314 <rects> 19315 <_>12 5 4 3 -1.</_> 19316 <_>12 6 4 1 3.</_></rects> 19317 <tilted>0</tilted></feature> 19318 <threshold>-0.0146417804062366</threshold> 19319 <left_val>0.5755925178527832</left_val> 19320 <right_val>0.5051776170730591</right_val></_></_> 19321 <_> 19322 <!-- tree 46 --> 19323 <_> 19324 <!-- root node --> 19325 <feature> 19326 <rects> 19327 <_>4 5 4 3 -1.</_> 19328 <_>4 6 4 1 3.</_></rects> 19329 <tilted>0</tilted></feature> 19330 <threshold>3.3199489116668701e-003</threshold> 19331 <left_val>0.4576976895332336</left_val> 19332 <right_val>0.6031805872917175</right_val></_></_> 19333 <_> 19334 <!-- tree 47 --> 19335 <_> 19336 <!-- root node --> 19337 <feature> 19338 <rects> 19339 <_>6 6 9 2 -1.</_> 19340 <_>9 6 3 2 3.</_></rects> 19341 <tilted>0</tilted></feature> 19342 <threshold>3.7236879579722881e-003</threshold> 19343 <left_val>0.4380396902561188</left_val> 19344 <right_val>0.5415883064270020</right_val></_></_> 19345 <_> 19346 <!-- tree 48 --> 19347 <_> 19348 <!-- root node --> 19349 <feature> 19350 <rects> 19351 <_>4 11 1 3 -1.</_> 19352 <_>4 12 1 1 3.</_></rects> 19353 <tilted>0</tilted></feature> 19354 <threshold>8.2951161311939359e-004</threshold> 19355 <left_val>0.5163031816482544</left_val> 19356 <right_val>0.3702219128608704</right_val></_></_> 19357 <_> 19358 <!-- tree 49 --> 19359 <_> 19360 <!-- root node --> 19361 <feature> 19362 <rects> 19363 <_>14 12 6 6 -1.</_> 19364 <_>14 12 3 6 2.</_></rects> 19365 <tilted>0</tilted></feature> 19366 <threshold>-0.0114084901288152</threshold> 19367 <left_val>0.6072946786880493</left_val> 19368 <right_val>0.4862565100193024</right_val></_></_> 19369 <_> 19370 <!-- tree 50 --> 19371 <_> 19372 <!-- root node --> 19373 <feature> 19374 <rects> 19375 <_>7 0 3 7 -1.</_> 19376 <_>8 0 1 7 3.</_></rects> 19377 <tilted>0</tilted></feature> 19378 <threshold>-4.5320121571421623e-003</threshold> 19379 <left_val>0.3292475938796997</left_val> 19380 <right_val>0.5088962912559509</right_val></_></_> 19381 <_> 19382 <!-- tree 51 --> 19383 <_> 19384 <!-- root node --> 19385 <feature> 19386 <rects> 19387 <_>9 8 3 3 -1.</_> 19388 <_>10 8 1 3 3.</_></rects> 19389 <tilted>0</tilted></feature> 19390 <threshold>5.1276017911732197e-003</threshold> 19391 <left_val>0.4829767942428589</left_val> 19392 <right_val>0.6122708916664124</right_val></_></_> 19393 <_> 19394 <!-- tree 52 --> 19395 <_> 19396 <!-- root node --> 19397 <feature> 19398 <rects> 19399 <_>8 8 3 3 -1.</_> 19400 <_>9 8 1 3 3.</_></rects> 19401 <tilted>0</tilted></feature> 19402 <threshold>9.8583158105611801e-003</threshold> 19403 <left_val>0.4660679996013641</left_val> 19404 <right_val>0.6556177139282227</right_val></_></_> 19405 <_> 19406 <!-- tree 53 --> 19407 <_> 19408 <!-- root node --> 19409 <feature> 19410 <rects> 19411 <_>5 10 11 3 -1.</_> 19412 <_>5 11 11 1 3.</_></rects> 19413 <tilted>0</tilted></feature> 19414 <threshold>0.0369859188795090</threshold> 19415 <left_val>0.5204849243164063</left_val> 19416 <right_val>0.1690472066402435</right_val></_></_> 19417 <_> 19418 <!-- tree 54 --> 19419 <_> 19420 <!-- root node --> 19421 <feature> 19422 <rects> 19423 <_>5 7 10 1 -1.</_> 19424 <_>10 7 5 1 2.</_></rects> 19425 <tilted>0</tilted></feature> 19426 <threshold>4.6491161920130253e-003</threshold> 19427 <left_val>0.5167322158813477</left_val> 19428 <right_val>0.3725225031375885</right_val></_></_> 19429 <_> 19430 <!-- tree 55 --> 19431 <_> 19432 <!-- root node --> 19433 <feature> 19434 <rects> 19435 <_>9 7 3 2 -1.</_> 19436 <_>10 7 1 2 3.</_></rects> 19437 <tilted>0</tilted></feature> 19438 <threshold>-4.2664702050387859e-003</threshold> 19439 <left_val>0.6406493186950684</left_val> 19440 <right_val>0.4987342953681946</right_val></_></_> 19441 <_> 19442 <!-- tree 56 --> 19443 <_> 19444 <!-- root node --> 19445 <feature> 19446 <rects> 19447 <_>8 7 3 2 -1.</_> 19448 <_>9 7 1 2 3.</_></rects> 19449 <tilted>0</tilted></feature> 19450 <threshold>-4.7956590424291790e-004</threshold> 19451 <left_val>0.5897293090820313</left_val> 19452 <right_val>0.4464873969554901</right_val></_></_> 19453 <_> 19454 <!-- tree 57 --> 19455 <_> 19456 <!-- root node --> 19457 <feature> 19458 <rects> 19459 <_>11 9 4 2 -1.</_> 19460 <_>11 9 2 2 2.</_></rects> 19461 <tilted>0</tilted></feature> 19462 <threshold>3.6827160511165857e-003</threshold> 19463 <left_val>0.5441560745239258</left_val> 19464 <right_val>0.3472662866115570</right_val></_></_> 19465 <_> 19466 <!-- tree 58 --> 19467 <_> 19468 <!-- root node --> 19469 <feature> 19470 <rects> 19471 <_>5 9 4 2 -1.</_> 19472 <_>7 9 2 2 2.</_></rects> 19473 <tilted>0</tilted></feature> 19474 <threshold>-0.0100598800927401</threshold> 19475 <left_val>0.2143162935972214</left_val> 19476 <right_val>0.5004829764366150</right_val></_></_> 19477 <_> 19478 <!-- tree 59 --> 19479 <_> 19480 <!-- root node --> 19481 <feature> 19482 <rects> 19483 <_>14 10 2 4 -1.</_> 19484 <_>14 12 2 2 2.</_></rects> 19485 <tilted>0</tilted></feature> 19486 <threshold>-3.0361840617842972e-004</threshold> 19487 <left_val>0.5386424064636231</left_val> 19488 <right_val>0.4590323865413666</right_val></_></_> 19489 <_> 19490 <!-- tree 60 --> 19491 <_> 19492 <!-- root node --> 19493 <feature> 19494 <rects> 19495 <_>7 7 3 2 -1.</_> 19496 <_>8 7 1 2 3.</_></rects> 19497 <tilted>0</tilted></feature> 19498 <threshold>-1.4545479789376259e-003</threshold> 19499 <left_val>0.5751184225082398</left_val> 19500 <right_val>0.4497095048427582</right_val></_></_> 19501 <_> 19502 <!-- tree 61 --> 19503 <_> 19504 <!-- root node --> 19505 <feature> 19506 <rects> 19507 <_>14 17 6 3 -1.</_> 19508 <_>14 18 6 1 3.</_></rects> 19509 <tilted>0</tilted></feature> 19510 <threshold>1.6515209572389722e-003</threshold> 19511 <left_val>0.5421937704086304</left_val> 19512 <right_val>0.4238520860671997</right_val></_></_> 19513 <_> 19514 <!-- tree 62 --> 19515 <_> 19516 <!-- root node --> 19517 <feature> 19518 <rects> 19519 <_>4 5 12 12 -1.</_> 19520 <_>4 5 6 6 2.</_> 19521 <_>10 11 6 6 2.</_></rects> 19522 <tilted>0</tilted></feature> 19523 <threshold>-7.8468639403581619e-003</threshold> 19524 <left_val>0.4077920913696289</left_val> 19525 <right_val>0.5258157253265381</right_val></_></_> 19526 <_> 19527 <!-- tree 63 --> 19528 <_> 19529 <!-- root node --> 19530 <feature> 19531 <rects> 19532 <_>6 9 8 8 -1.</_> 19533 <_>10 9 4 4 2.</_> 19534 <_>6 13 4 4 2.</_></rects> 19535 <tilted>0</tilted></feature> 19536 <threshold>-5.1259850151836872e-003</threshold> 19537 <left_val>0.4229275882244110</left_val> 19538 <right_val>0.5479453206062317</right_val></_></_> 19539 <_> 19540 <!-- tree 64 --> 19541 <_> 19542 <!-- root node --> 19543 <feature> 19544 <rects> 19545 <_>0 4 15 4 -1.</_> 19546 <_>5 4 5 4 3.</_></rects> 19547 <tilted>0</tilted></feature> 19548 <threshold>-0.0368909612298012</threshold> 19549 <left_val>0.6596375703811646</left_val> 19550 <right_val>0.4674678146839142</right_val></_></_> 19551 <_> 19552 <!-- tree 65 --> 19553 <_> 19554 <!-- root node --> 19555 <feature> 19556 <rects> 19557 <_>13 2 4 1 -1.</_> 19558 <_>13 2 2 1 2.</_></rects> 19559 <tilted>0</tilted></feature> 19560 <threshold>2.4035639944486320e-004</threshold> 19561 <left_val>0.4251135885715485</left_val> 19562 <right_val>0.5573202967643738</right_val></_></_> 19563 <_> 19564 <!-- tree 66 --> 19565 <_> 19566 <!-- root node --> 19567 <feature> 19568 <rects> 19569 <_>4 12 2 2 -1.</_> 19570 <_>4 13 2 1 2.</_></rects> 19571 <tilted>0</tilted></feature> 19572 <threshold>-1.5150169929256663e-005</threshold> 19573 <left_val>0.5259246826171875</left_val> 19574 <right_val>0.4074114859104157</right_val></_></_> 19575 <_> 19576 <!-- tree 67 --> 19577 <_> 19578 <!-- root node --> 19579 <feature> 19580 <rects> 19581 <_>8 13 4 3 -1.</_> 19582 <_>8 14 4 1 3.</_></rects> 19583 <tilted>0</tilted></feature> 19584 <threshold>2.2108471021056175e-003</threshold> 19585 <left_val>0.4671722948551178</left_val> 19586 <right_val>0.5886352062225342</right_val></_></_> 19587 <_> 19588 <!-- tree 68 --> 19589 <_> 19590 <!-- root node --> 19591 <feature> 19592 <rects> 19593 <_>9 13 2 3 -1.</_> 19594 <_>9 14 2 1 3.</_></rects> 19595 <tilted>0</tilted></feature> 19596 <threshold>-1.1568620102480054e-003</threshold> 19597 <left_val>0.5711066126823425</left_val> 19598 <right_val>0.4487161934375763</right_val></_></_> 19599 <_> 19600 <!-- tree 69 --> 19601 <_> 19602 <!-- root node --> 19603 <feature> 19604 <rects> 19605 <_>13 11 2 3 -1.</_> 19606 <_>13 12 2 1 3.</_></rects> 19607 <tilted>0</tilted></feature> 19608 <threshold>4.9996292218565941e-003</threshold> 19609 <left_val>0.5264198184013367</left_val> 19610 <right_val>0.2898327112197876</right_val></_></_> 19611 <_> 19612 <!-- tree 70 --> 19613 <_> 19614 <!-- root node --> 19615 <feature> 19616 <rects> 19617 <_>7 12 4 4 -1.</_> 19618 <_>7 12 2 2 2.</_> 19619 <_>9 14 2 2 2.</_></rects> 19620 <tilted>0</tilted></feature> 19621 <threshold>-1.4656189596280456e-003</threshold> 19622 <left_val>0.3891738057136536</left_val> 19623 <right_val>0.5197871923446655</right_val></_></_> 19624 <_> 19625 <!-- tree 71 --> 19626 <_> 19627 <!-- root node --> 19628 <feature> 19629 <rects> 19630 <_>10 11 2 2 -1.</_> 19631 <_>11 11 1 1 2.</_> 19632 <_>10 12 1 1 2.</_></rects> 19633 <tilted>0</tilted></feature> 19634 <threshold>-1.1975039960816503e-003</threshold> 19635 <left_val>0.5795872807502747</left_val> 19636 <right_val>0.4927955865859985</right_val></_></_> 19637 <_> 19638 <!-- tree 72 --> 19639 <_> 19640 <!-- root node --> 19641 <feature> 19642 <rects> 19643 <_>8 17 3 2 -1.</_> 19644 <_>9 17 1 2 3.</_></rects> 19645 <tilted>0</tilted></feature> 19646 <threshold>-4.4954330660402775e-003</threshold> 19647 <left_val>0.2377603054046631</left_val> 19648 <right_val>0.5012555122375488</right_val></_></_> 19649 <_> 19650 <!-- tree 73 --> 19651 <_> 19652 <!-- root node --> 19653 <feature> 19654 <rects> 19655 <_>10 11 2 2 -1.</_> 19656 <_>11 11 1 1 2.</_> 19657 <_>10 12 1 1 2.</_></rects> 19658 <tilted>0</tilted></feature> 19659 <threshold>1.4997160178609192e-004</threshold> 19660 <left_val>0.4876626133918762</left_val> 19661 <right_val>0.5617607831954956</right_val></_></_> 19662 <_> 19663 <!-- tree 74 --> 19664 <_> 19665 <!-- root node --> 19666 <feature> 19667 <rects> 19668 <_>0 17 6 3 -1.</_> 19669 <_>0 18 6 1 3.</_></rects> 19670 <tilted>0</tilted></feature> 19671 <threshold>2.6391509454697371e-003</threshold> 19672 <left_val>0.5168088078498840</left_val> 19673 <right_val>0.3765509128570557</right_val></_></_> 19674 <_> 19675 <!-- tree 75 --> 19676 <_> 19677 <!-- root node --> 19678 <feature> 19679 <rects> 19680 <_>10 11 2 2 -1.</_> 19681 <_>11 11 1 1 2.</_> 19682 <_>10 12 1 1 2.</_></rects> 19683 <tilted>0</tilted></feature> 19684 <threshold>-2.9368131072260439e-004</threshold> 19685 <left_val>0.5446649193763733</left_val> 19686 <right_val>0.4874630868434906</right_val></_></_> 19687 <_> 19688 <!-- tree 76 --> 19689 <_> 19690 <!-- root node --> 19691 <feature> 19692 <rects> 19693 <_>8 11 2 2 -1.</_> 19694 <_>8 11 1 1 2.</_> 19695 <_>9 12 1 1 2.</_></rects> 19696 <tilted>0</tilted></feature> 19697 <threshold>1.4211760135367513e-003</threshold> 19698 <left_val>0.4687897861003876</left_val> 19699 <right_val>0.6691331863403320</right_val></_></_> 19700 <_> 19701 <!-- tree 77 --> 19702 <_> 19703 <!-- root node --> 19704 <feature> 19705 <rects> 19706 <_>12 5 8 4 -1.</_> 19707 <_>12 5 4 4 2.</_></rects> 19708 <tilted>0</tilted></feature> 19709 <threshold>0.0794276371598244</threshold> 19710 <left_val>0.5193443894386292</left_val> 19711 <right_val>0.2732945978641510</right_val></_></_> 19712 <_> 19713 <!-- tree 78 --> 19714 <_> 19715 <!-- root node --> 19716 <feature> 19717 <rects> 19718 <_>0 5 8 4 -1.</_> 19719 <_>4 5 4 4 2.</_></rects> 19720 <tilted>0</tilted></feature> 19721 <threshold>0.0799375027418137</threshold> 19722 <left_val>0.4971731007099152</left_val> 19723 <right_val>0.1782083958387375</right_val></_></_> 19724 <_> 19725 <!-- tree 79 --> 19726 <_> 19727 <!-- root node --> 19728 <feature> 19729 <rects> 19730 <_>13 2 4 1 -1.</_> 19731 <_>13 2 2 1 2.</_></rects> 19732 <tilted>0</tilted></feature> 19733 <threshold>0.0110892597585917</threshold> 19734 <left_val>0.5165994763374329</left_val> 19735 <right_val>0.3209475874900818</right_val></_></_> 19736 <_> 19737 <!-- tree 80 --> 19738 <_> 19739 <!-- root node --> 19740 <feature> 19741 <rects> 19742 <_>3 2 4 1 -1.</_> 19743 <_>5 2 2 1 2.</_></rects> 19744 <tilted>0</tilted></feature> 19745 <threshold>1.6560709627810866e-004</threshold> 19746 <left_val>0.4058471918106079</left_val> 19747 <right_val>0.5307276248931885</right_val></_></_> 19748 <_> 19749 <!-- tree 81 --> 19750 <_> 19751 <!-- root node --> 19752 <feature> 19753 <rects> 19754 <_>10 0 4 2 -1.</_> 19755 <_>12 0 2 1 2.</_> 19756 <_>10 1 2 1 2.</_></rects> 19757 <tilted>0</tilted></feature> 19758 <threshold>-5.3354292176663876e-003</threshold> 19759 <left_val>0.3445056974887848</left_val> 19760 <right_val>0.5158129930496216</right_val></_></_> 19761 <_> 19762 <!-- tree 82 --> 19763 <_> 19764 <!-- root node --> 19765 <feature> 19766 <rects> 19767 <_>7 12 3 1 -1.</_> 19768 <_>8 12 1 1 3.</_></rects> 19769 <tilted>0</tilted></feature> 19770 <threshold>1.1287260567769408e-003</threshold> 19771 <left_val>0.4594863057136536</left_val> 19772 <right_val>0.6075533032417297</right_val></_></_> 19773 <_> 19774 <!-- tree 83 --> 19775 <_> 19776 <!-- root node --> 19777 <feature> 19778 <rects> 19779 <_>8 11 4 8 -1.</_> 19780 <_>10 11 2 4 2.</_> 19781 <_>8 15 2 4 2.</_></rects> 19782 <tilted>0</tilted></feature> 19783 <threshold>-0.0219692196696997</threshold> 19784 <left_val>0.1680400967597961</left_val> 19785 <right_val>0.5228595733642578</right_val></_></_> 19786 <_> 19787 <!-- tree 84 --> 19788 <_> 19789 <!-- root node --> 19790 <feature> 19791 <rects> 19792 <_>9 9 2 2 -1.</_> 19793 <_>9 10 2 1 2.</_></rects> 19794 <tilted>0</tilted></feature> 19795 <threshold>-2.1775320055894554e-004</threshold> 19796 <left_val>0.3861596882343292</left_val> 19797 <right_val>0.5215672850608826</right_val></_></_> 19798 <_> 19799 <!-- tree 85 --> 19800 <_> 19801 <!-- root node --> 19802 <feature> 19803 <rects> 19804 <_>3 18 15 2 -1.</_> 19805 <_>3 19 15 1 2.</_></rects> 19806 <tilted>0</tilted></feature> 19807 <threshold>2.0200149447191507e-004</threshold> 19808 <left_val>0.5517979264259338</left_val> 19809 <right_val>0.4363039135932922</right_val></_></_> 19810 <_> 19811 <!-- tree 86 --> 19812 <_> 19813 <!-- root node --> 19814 <feature> 19815 <rects> 19816 <_>2 6 2 12 -1.</_> 19817 <_>2 6 1 6 2.</_> 19818 <_>3 12 1 6 2.</_></rects> 19819 <tilted>0</tilted></feature> 19820 <threshold>-0.0217331498861313</threshold> 19821 <left_val>0.7999460101127625</left_val> 19822 <right_val>0.4789851009845734</right_val></_></_> 19823 <_> 19824 <!-- tree 87 --> 19825 <_> 19826 <!-- root node --> 19827 <feature> 19828 <rects> 19829 <_>9 8 2 3 -1.</_> 19830 <_>9 9 2 1 3.</_></rects> 19831 <tilted>0</tilted></feature> 19832 <threshold>-8.4399932529777288e-004</threshold> 19833 <left_val>0.4085975885391235</left_val> 19834 <right_val>0.5374773144721985</right_val></_></_> 19835 <_> 19836 <!-- tree 88 --> 19837 <_> 19838 <!-- root node --> 19839 <feature> 19840 <rects> 19841 <_>7 10 3 2 -1.</_> 19842 <_>8 10 1 2 3.</_></rects> 19843 <tilted>0</tilted></feature> 19844 <threshold>-4.3895249837078154e-004</threshold> 19845 <left_val>0.5470405220985413</left_val> 19846 <right_val>0.4366143047809601</right_val></_></_> 19847 <_> 19848 <!-- tree 89 --> 19849 <_> 19850 <!-- root node --> 19851 <feature> 19852 <rects> 19853 <_>11 11 3 1 -1.</_> 19854 <_>12 11 1 1 3.</_></rects> 19855 <tilted>0</tilted></feature> 19856 <threshold>1.5092400135472417e-003</threshold> 19857 <left_val>0.4988996982574463</left_val> 19858 <right_val>0.5842149257659912</right_val></_></_> 19859 <_> 19860 <!-- tree 90 --> 19861 <_> 19862 <!-- root node --> 19863 <feature> 19864 <rects> 19865 <_>6 11 3 1 -1.</_> 19866 <_>7 11 1 1 3.</_></rects> 19867 <tilted>0</tilted></feature> 19868 <threshold>-3.5547839943319559e-003</threshold> 19869 <left_val>0.6753690242767334</left_val> 19870 <right_val>0.4721005856990814</right_val></_></_> 19871 <_> 19872 <!-- tree 91 --> 19873 <_> 19874 <!-- root node --> 19875 <feature> 19876 <rects> 19877 <_>9 2 4 2 -1.</_> 19878 <_>11 2 2 1 2.</_> 19879 <_>9 3 2 1 2.</_></rects> 19880 <tilted>0</tilted></feature> 19881 <threshold>4.8191400128416717e-004</threshold> 19882 <left_val>0.5415853857994080</left_val> 19883 <right_val>0.4357109069824219</right_val></_></_> 19884 <_> 19885 <!-- tree 92 --> 19886 <_> 19887 <!-- root node --> 19888 <feature> 19889 <rects> 19890 <_>4 12 2 3 -1.</_> 19891 <_>4 13 2 1 3.</_></rects> 19892 <tilted>0</tilted></feature> 19893 <threshold>-6.0264398343861103e-003</threshold> 19894 <left_val>0.2258509993553162</left_val> 19895 <right_val>0.4991880953311920</right_val></_></_> 19896 <_> 19897 <!-- tree 93 --> 19898 <_> 19899 <!-- root node --> 19900 <feature> 19901 <rects> 19902 <_>2 1 18 3 -1.</_> 19903 <_>8 1 6 3 3.</_></rects> 19904 <tilted>0</tilted></feature> 19905 <threshold>-0.0116681400686502</threshold> 19906 <left_val>0.6256554722785950</left_val> 19907 <right_val>0.4927498996257782</right_val></_></_> 19908 <_> 19909 <!-- tree 94 --> 19910 <_> 19911 <!-- root node --> 19912 <feature> 19913 <rects> 19914 <_>5 1 4 14 -1.</_> 19915 <_>7 1 2 14 2.</_></rects> 19916 <tilted>0</tilted></feature> 19917 <threshold>-2.8718370012938976e-003</threshold> 19918 <left_val>0.3947784900665283</left_val> 19919 <right_val>0.5245801806449890</right_val></_></_> 19920 <_> 19921 <!-- tree 95 --> 19922 <_> 19923 <!-- root node --> 19924 <feature> 19925 <rects> 19926 <_>8 16 12 3 -1.</_> 19927 <_>8 16 6 3 2.</_></rects> 19928 <tilted>0</tilted></feature> 19929 <threshold>0.0170511696487665</threshold> 19930 <left_val>0.4752511084079742</left_val> 19931 <right_val>0.5794224143028259</right_val></_></_> 19932 <_> 19933 <!-- tree 96 --> 19934 <_> 19935 <!-- root node --> 19936 <feature> 19937 <rects> 19938 <_>1 17 18 3 -1.</_> 19939 <_>7 17 6 3 3.</_></rects> 19940 <tilted>0</tilted></feature> 19941 <threshold>-0.0133520802482963</threshold> 19942 <left_val>0.6041104793548584</left_val> 19943 <right_val>0.4544535875320435</right_val></_></_> 19944 <_> 19945 <!-- tree 97 --> 19946 <_> 19947 <!-- root node --> 19948 <feature> 19949 <rects> 19950 <_>9 14 2 6 -1.</_> 19951 <_>9 17 2 3 2.</_></rects> 19952 <tilted>0</tilted></feature> 19953 <threshold>-3.9301801007241011e-004</threshold> 19954 <left_val>0.4258275926113129</left_val> 19955 <right_val>0.5544905066490173</right_val></_></_> 19956 <_> 19957 <!-- tree 98 --> 19958 <_> 19959 <!-- root node --> 19960 <feature> 19961 <rects> 19962 <_>9 12 1 8 -1.</_> 19963 <_>9 16 1 4 2.</_></rects> 19964 <tilted>0</tilted></feature> 19965 <threshold>3.0483349692076445e-003</threshold> 19966 <left_val>0.5233420133590698</left_val> 19967 <right_val>0.3780272901058197</right_val></_></_> 19968 <_> 19969 <!-- tree 99 --> 19970 <_> 19971 <!-- root node --> 19972 <feature> 19973 <rects> 19974 <_>9 14 2 3 -1.</_> 19975 <_>9 15 2 1 3.</_></rects> 19976 <tilted>0</tilted></feature> 19977 <threshold>-4.3579288758337498e-003</threshold> 19978 <left_val>0.6371889114379883</left_val> 19979 <right_val>0.4838674068450928</right_val></_></_> 19980 <_> 19981 <!-- tree 100 --> 19982 <_> 19983 <!-- root node --> 19984 <feature> 19985 <rects> 19986 <_>9 6 2 12 -1.</_> 19987 <_>9 10 2 4 3.</_></rects> 19988 <tilted>0</tilted></feature> 19989 <threshold>5.6661018170416355e-003</threshold> 19990 <left_val>0.5374705791473389</left_val> 19991 <right_val>0.4163666069507599</right_val></_></_> 19992 <_> 19993 <!-- tree 101 --> 19994 <_> 19995 <!-- root node --> 19996 <feature> 19997 <rects> 19998 <_>12 9 3 3 -1.</_> 19999 <_>12 10 3 1 3.</_></rects> 20000 <tilted>0</tilted></feature> 20001 <threshold>6.0677339206449687e-005</threshold> 20002 <left_val>0.4638795852661133</left_val> 20003 <right_val>0.5311625003814697</right_val></_></_> 20004 <_> 20005 <!-- tree 102 --> 20006 <_> 20007 <!-- root node --> 20008 <feature> 20009 <rects> 20010 <_>0 1 4 8 -1.</_> 20011 <_>2 1 2 8 2.</_></rects> 20012 <tilted>0</tilted></feature> 20013 <threshold>0.0367381609976292</threshold> 20014 <left_val>0.4688656032085419</left_val> 20015 <right_val>0.6466524004936218</right_val></_></_> 20016 <_> 20017 <!-- tree 103 --> 20018 <_> 20019 <!-- root node --> 20020 <feature> 20021 <rects> 20022 <_>9 1 6 2 -1.</_> 20023 <_>12 1 3 1 2.</_> 20024 <_>9 2 3 1 2.</_></rects> 20025 <tilted>0</tilted></feature> 20026 <threshold>8.6528137326240540e-003</threshold> 20027 <left_val>0.5204318761825562</left_val> 20028 <right_val>0.2188657969236374</right_val></_></_> 20029 <_> 20030 <!-- tree 104 --> 20031 <_> 20032 <!-- root node --> 20033 <feature> 20034 <rects> 20035 <_>1 3 12 14 -1.</_> 20036 <_>1 10 12 7 2.</_></rects> 20037 <tilted>0</tilted></feature> 20038 <threshold>-0.1537135988473892</threshold> 20039 <left_val>0.1630371958017349</left_val> 20040 <right_val>0.4958840012550354</right_val></_></_> 20041 <_> 20042 <!-- tree 105 --> 20043 <_> 20044 <!-- root node --> 20045 <feature> 20046 <rects> 20047 <_>8 12 4 2 -1.</_> 20048 <_>10 12 2 1 2.</_> 20049 <_>8 13 2 1 2.</_></rects> 20050 <tilted>0</tilted></feature> 20051 <threshold>-4.1560421232134104e-004</threshold> 20052 <left_val>0.5774459242820740</left_val> 20053 <right_val>0.4696458876132965</right_val></_></_> 20054 <_> 20055 <!-- tree 106 --> 20056 <_> 20057 <!-- root node --> 20058 <feature> 20059 <rects> 20060 <_>1 9 10 2 -1.</_> 20061 <_>1 9 5 1 2.</_> 20062 <_>6 10 5 1 2.</_></rects> 20063 <tilted>0</tilted></feature> 20064 <threshold>-1.2640169588848948e-003</threshold> 20065 <left_val>0.3977175951004028</left_val> 20066 <right_val>0.5217198133468628</right_val></_></_> 20067 <_> 20068 <!-- tree 107 --> 20069 <_> 20070 <!-- root node --> 20071 <feature> 20072 <rects> 20073 <_>8 15 4 3 -1.</_> 20074 <_>8 16 4 1 3.</_></rects> 20075 <tilted>0</tilted></feature> 20076 <threshold>-3.5473341122269630e-003</threshold> 20077 <left_val>0.6046528220176697</left_val> 20078 <right_val>0.4808315038681030</right_val></_></_> 20079 <_> 20080 <!-- tree 108 --> 20081 <_> 20082 <!-- root node --> 20083 <feature> 20084 <rects> 20085 <_>6 8 8 3 -1.</_> 20086 <_>6 9 8 1 3.</_></rects> 20087 <tilted>0</tilted></feature> 20088 <threshold>3.0019069527043030e-005</threshold> 20089 <left_val>0.3996723890304565</left_val> 20090 <right_val>0.5228201150894165</right_val></_></_> 20091 <_> 20092 <!-- tree 109 --> 20093 <_> 20094 <!-- root node --> 20095 <feature> 20096 <rects> 20097 <_>9 15 5 3 -1.</_> 20098 <_>9 16 5 1 3.</_></rects> 20099 <tilted>0</tilted></feature> 20100 <threshold>1.3113019522279501e-003</threshold> 20101 <left_val>0.4712158143520355</left_val> 20102 <right_val>0.5765997767448425</right_val></_></_> 20103 <_> 20104 <!-- tree 110 --> 20105 <_> 20106 <!-- root node --> 20107 <feature> 20108 <rects> 20109 <_>8 7 4 3 -1.</_> 20110 <_>8 8 4 1 3.</_></rects> 20111 <tilted>0</tilted></feature> 20112 <threshold>-1.3374709524214268e-003</threshold> 20113 <left_val>0.4109584987163544</left_val> 20114 <right_val>0.5253170132637024</right_val></_></_> 20115 <_> 20116 <!-- tree 111 --> 20117 <_> 20118 <!-- root node --> 20119 <feature> 20120 <rects> 20121 <_>7 7 6 2 -1.</_> 20122 <_>7 8 6 1 2.</_></rects> 20123 <tilted>0</tilted></feature> 20124 <threshold>0.0208767093718052</threshold> 20125 <left_val>0.5202993750572205</left_val> 20126 <right_val>0.1757981926202774</right_val></_></_> 20127 <_> 20128 <!-- tree 112 --> 20129 <_> 20130 <!-- root node --> 20131 <feature> 20132 <rects> 20133 <_>5 7 8 2 -1.</_> 20134 <_>5 7 4 1 2.</_> 20135 <_>9 8 4 1 2.</_></rects> 20136 <tilted>0</tilted></feature> 20137 <threshold>-7.5497948564589024e-003</threshold> 20138 <left_val>0.6566609740257263</left_val> 20139 <right_val>0.4694975018501282</right_val></_></_> 20140 <_> 20141 <!-- tree 113 --> 20142 <_> 20143 <!-- root node --> 20144 <feature> 20145 <rects> 20146 <_>12 9 3 3 -1.</_> 20147 <_>12 10 3 1 3.</_></rects> 20148 <tilted>0</tilted></feature> 20149 <threshold>0.0241885501891375</threshold> 20150 <left_val>0.5128673911094666</left_val> 20151 <right_val>0.3370220959186554</right_val></_></_> 20152 <_> 20153 <!-- tree 114 --> 20154 <_> 20155 <!-- root node --> 20156 <feature> 20157 <rects> 20158 <_>4 7 4 2 -1.</_> 20159 <_>4 8 4 1 2.</_></rects> 20160 <tilted>0</tilted></feature> 20161 <threshold>-2.9358828905969858e-003</threshold> 20162 <left_val>0.6580786705017090</left_val> 20163 <right_val>0.4694541096687317</right_val></_></_> 20164 <_> 20165 <!-- tree 115 --> 20166 <_> 20167 <!-- root node --> 20168 <feature> 20169 <rects> 20170 <_>14 2 6 9 -1.</_> 20171 <_>14 5 6 3 3.</_></rects> 20172 <tilted>0</tilted></feature> 20173 <threshold>0.0575579293072224</threshold> 20174 <left_val>0.5146445035934448</left_val> 20175 <right_val>0.2775259912014008</right_val></_></_> 20176 <_> 20177 <!-- tree 116 --> 20178 <_> 20179 <!-- root node --> 20180 <feature> 20181 <rects> 20182 <_>4 9 3 3 -1.</_> 20183 <_>5 9 1 3 3.</_></rects> 20184 <tilted>0</tilted></feature> 20185 <threshold>-1.1343370424583554e-003</threshold> 20186 <left_val>0.3836601972579956</left_val> 20187 <right_val>0.5192667245864868</right_val></_></_> 20188 <_> 20189 <!-- tree 117 --> 20190 <_> 20191 <!-- root node --> 20192 <feature> 20193 <rects> 20194 <_>12 9 3 3 -1.</_> 20195 <_>12 10 3 1 3.</_></rects> 20196 <tilted>0</tilted></feature> 20197 <threshold>0.0168169997632504</threshold> 20198 <left_val>0.5085592865943909</left_val> 20199 <right_val>0.6177260875701904</right_val></_></_> 20200 <_> 20201 <!-- tree 118 --> 20202 <_> 20203 <!-- root node --> 20204 <feature> 20205 <rects> 20206 <_>0 2 6 9 -1.</_> 20207 <_>0 5 6 3 3.</_></rects> 20208 <tilted>0</tilted></feature> 20209 <threshold>5.0535178743302822e-003</threshold> 20210 <left_val>0.5138763189315796</left_val> 20211 <right_val>0.3684791922569275</right_val></_></_> 20212 <_> 20213 <!-- tree 119 --> 20214 <_> 20215 <!-- root node --> 20216 <feature> 20217 <rects> 20218 <_>17 3 3 6 -1.</_> 20219 <_>18 3 1 6 3.</_></rects> 20220 <tilted>0</tilted></feature> 20221 <threshold>-4.5874710194766521e-003</threshold> 20222 <left_val>0.5989655256271362</left_val> 20223 <right_val>0.4835202097892761</right_val></_></_> 20224 <_> 20225 <!-- tree 120 --> 20226 <_> 20227 <!-- root node --> 20228 <feature> 20229 <rects> 20230 <_>0 3 3 6 -1.</_> 20231 <_>1 3 1 6 3.</_></rects> 20232 <tilted>0</tilted></feature> 20233 <threshold>1.6882460331544280e-003</threshold> 20234 <left_val>0.4509486854076386</left_val> 20235 <right_val>0.5723056793212891</right_val></_></_> 20236 <_> 20237 <!-- tree 121 --> 20238 <_> 20239 <!-- root node --> 20240 <feature> 20241 <rects> 20242 <_>17 14 1 2 -1.</_> 20243 <_>17 15 1 1 2.</_></rects> 20244 <tilted>0</tilted></feature> 20245 <threshold>-1.6554000321775675e-003</threshold> 20246 <left_val>0.3496770858764648</left_val> 20247 <right_val>0.5243319272994995</right_val></_></_> 20248 <_> 20249 <!-- tree 122 --> 20250 <_> 20251 <!-- root node --> 20252 <feature> 20253 <rects> 20254 <_>4 9 4 3 -1.</_> 20255 <_>6 9 2 3 2.</_></rects> 20256 <tilted>0</tilted></feature> 20257 <threshold>-0.0193738006055355</threshold> 20258 <left_val>0.1120536997914314</left_val> 20259 <right_val>0.4968712925910950</right_val></_></_> 20260 <_> 20261 <!-- tree 123 --> 20262 <_> 20263 <!-- root node --> 20264 <feature> 20265 <rects> 20266 <_>12 9 3 3 -1.</_> 20267 <_>12 10 3 1 3.</_></rects> 20268 <tilted>0</tilted></feature> 20269 <threshold>0.0103744501248002</threshold> 20270 <left_val>0.5148196816444397</left_val> 20271 <right_val>0.4395213127136231</right_val></_></_> 20272 <_> 20273 <!-- tree 124 --> 20274 <_> 20275 <!-- root node --> 20276 <feature> 20277 <rects> 20278 <_>5 9 3 3 -1.</_> 20279 <_>5 10 3 1 3.</_></rects> 20280 <tilted>0</tilted></feature> 20281 <threshold>1.4973050565458834e-004</threshold> 20282 <left_val>0.4084999859333038</left_val> 20283 <right_val>0.5269886851310730</right_val></_></_> 20284 <_> 20285 <!-- tree 125 --> 20286 <_> 20287 <!-- root node --> 20288 <feature> 20289 <rects> 20290 <_>9 5 6 8 -1.</_> 20291 <_>12 5 3 4 2.</_> 20292 <_>9 9 3 4 2.</_></rects> 20293 <tilted>0</tilted></feature> 20294 <threshold>-0.0429819300770760</threshold> 20295 <left_val>0.6394104957580566</left_val> 20296 <right_val>0.5018504261970520</right_val></_></_> 20297 <_> 20298 <!-- tree 126 --> 20299 <_> 20300 <!-- root node --> 20301 <feature> 20302 <rects> 20303 <_>5 5 6 8 -1.</_> 20304 <_>5 5 3 4 2.</_> 20305 <_>8 9 3 4 2.</_></rects> 20306 <tilted>0</tilted></feature> 20307 <threshold>8.3065936341881752e-003</threshold> 20308 <left_val>0.4707553982734680</left_val> 20309 <right_val>0.6698353290557861</right_val></_></_> 20310 <_> 20311 <!-- tree 127 --> 20312 <_> 20313 <!-- root node --> 20314 <feature> 20315 <rects> 20316 <_>16 1 4 6 -1.</_> 20317 <_>16 4 4 3 2.</_></rects> 20318 <tilted>0</tilted></feature> 20319 <threshold>-4.1285790503025055e-003</threshold> 20320 <left_val>0.4541369080543518</left_val> 20321 <right_val>0.5323647260665894</right_val></_></_> 20322 <_> 20323 <!-- tree 128 --> 20324 <_> 20325 <!-- root node --> 20326 <feature> 20327 <rects> 20328 <_>1 0 6 20 -1.</_> 20329 <_>3 0 2 20 3.</_></rects> 20330 <tilted>0</tilted></feature> 20331 <threshold>1.7399420030415058e-003</threshold> 20332 <left_val>0.4333961904048920</left_val> 20333 <right_val>0.5439866185188294</right_val></_></_> 20334 <_> 20335 <!-- tree 129 --> 20336 <_> 20337 <!-- root node --> 20338 <feature> 20339 <rects> 20340 <_>12 11 3 2 -1.</_> 20341 <_>13 11 1 2 3.</_></rects> 20342 <tilted>0</tilted></feature> 20343 <threshold>1.1739750334527344e-004</threshold> 20344 <left_val>0.4579687118530273</left_val> 20345 <right_val>0.5543426275253296</right_val></_></_> 20346 <_> 20347 <!-- tree 130 --> 20348 <_> 20349 <!-- root node --> 20350 <feature> 20351 <rects> 20352 <_>5 11 3 2 -1.</_> 20353 <_>6 11 1 2 3.</_></rects> 20354 <tilted>0</tilted></feature> 20355 <threshold>1.8585780344437808e-004</threshold> 20356 <left_val>0.4324643909931183</left_val> 20357 <right_val>0.5426754951477051</right_val></_></_> 20358 <_> 20359 <!-- tree 131 --> 20360 <_> 20361 <!-- root node --> 20362 <feature> 20363 <rects> 20364 <_>9 4 6 1 -1.</_> 20365 <_>11 4 2 1 3.</_></rects> 20366 <tilted>0</tilted></feature> 20367 <threshold>5.5587692186236382e-003</threshold> 20368 <left_val>0.5257220864295960</left_val> 20369 <right_val>0.3550611138343811</right_val></_></_> 20370 <_> 20371 <!-- tree 132 --> 20372 <_> 20373 <!-- root node --> 20374 <feature> 20375 <rects> 20376 <_>0 0 8 3 -1.</_> 20377 <_>4 0 4 3 2.</_></rects> 20378 <tilted>0</tilted></feature> 20379 <threshold>-7.9851560294628143e-003</threshold> 20380 <left_val>0.6043018102645874</left_val> 20381 <right_val>0.4630635976791382</right_val></_></_> 20382 <_> 20383 <!-- tree 133 --> 20384 <_> 20385 <!-- root node --> 20386 <feature> 20387 <rects> 20388 <_>15 0 2 5 -1.</_> 20389 <_>15 0 1 5 2.</_></rects> 20390 <tilted>0</tilted></feature> 20391 <threshold>6.0594122624024749e-004</threshold> 20392 <left_val>0.4598254859447479</left_val> 20393 <right_val>0.5533195137977600</right_val></_></_> 20394 <_> 20395 <!-- tree 134 --> 20396 <_> 20397 <!-- root node --> 20398 <feature> 20399 <rects> 20400 <_>4 1 3 2 -1.</_> 20401 <_>5 1 1 2 3.</_></rects> 20402 <tilted>0</tilted></feature> 20403 <threshold>-2.2983040253166109e-004</threshold> 20404 <left_val>0.4130752086639404</left_val> 20405 <right_val>0.5322461128234863</right_val></_></_> 20406 <_> 20407 <!-- tree 135 --> 20408 <_> 20409 <!-- root node --> 20410 <feature> 20411 <rects> 20412 <_>7 0 6 15 -1.</_> 20413 <_>9 0 2 15 3.</_></rects> 20414 <tilted>0</tilted></feature> 20415 <threshold>4.3740210821852088e-004</threshold> 20416 <left_val>0.4043039977550507</left_val> 20417 <right_val>0.5409289002418518</right_val></_></_> 20418 <_> 20419 <!-- tree 136 --> 20420 <_> 20421 <!-- root node --> 20422 <feature> 20423 <rects> 20424 <_>6 11 3 1 -1.</_> 20425 <_>7 11 1 1 3.</_></rects> 20426 <tilted>0</tilted></feature> 20427 <threshold>2.9482020181603730e-004</threshold> 20428 <left_val>0.4494963884353638</left_val> 20429 <right_val>0.5628852248191834</right_val></_></_> 20430 <_> 20431 <!-- tree 137 --> 20432 <_> 20433 <!-- root node --> 20434 <feature> 20435 <rects> 20436 <_>12 0 3 4 -1.</_> 20437 <_>13 0 1 4 3.</_></rects> 20438 <tilted>0</tilted></feature> 20439 <threshold>0.0103126596659422</threshold> 20440 <left_val>0.5177510976791382</left_val> 20441 <right_val>0.2704316973686218</right_val></_></_> 20442 <_> 20443 <!-- tree 138 --> 20444 <_> 20445 <!-- root node --> 20446 <feature> 20447 <rects> 20448 <_>5 4 6 1 -1.</_> 20449 <_>7 4 2 1 3.</_></rects> 20450 <tilted>0</tilted></feature> 20451 <threshold>-7.7241109684109688e-003</threshold> 20452 <left_val>0.1988019049167633</left_val> 20453 <right_val>0.4980553984642029</right_val></_></_> 20454 <_> 20455 <!-- tree 139 --> 20456 <_> 20457 <!-- root node --> 20458 <feature> 20459 <rects> 20460 <_>12 7 3 2 -1.</_> 20461 <_>12 8 3 1 2.</_></rects> 20462 <tilted>0</tilted></feature> 20463 <threshold>-4.6797208487987518e-003</threshold> 20464 <left_val>0.6644750237464905</left_val> 20465 <right_val>0.5018296241760254</right_val></_></_> 20466 <_> 20467 <!-- tree 140 --> 20468 <_> 20469 <!-- root node --> 20470 <feature> 20471 <rects> 20472 <_>0 1 4 6 -1.</_> 20473 <_>0 4 4 3 2.</_></rects> 20474 <tilted>0</tilted></feature> 20475 <threshold>-5.0755459815263748e-003</threshold> 20476 <left_val>0.3898304998874664</left_val> 20477 <right_val>0.5185269117355347</right_val></_></_> 20478 <_> 20479 <!-- tree 141 --> 20480 <_> 20481 <!-- root node --> 20482 <feature> 20483 <rects> 20484 <_>12 7 3 2 -1.</_> 20485 <_>12 8 3 1 2.</_></rects> 20486 <tilted>0</tilted></feature> 20487 <threshold>2.2479740437120199e-003</threshold> 20488 <left_val>0.4801808893680573</left_val> 20489 <right_val>0.5660336017608643</right_val></_></_> 20490 <_> 20491 <!-- tree 142 --> 20492 <_> 20493 <!-- root node --> 20494 <feature> 20495 <rects> 20496 <_>2 16 3 3 -1.</_> 20497 <_>2 17 3 1 3.</_></rects> 20498 <tilted>0</tilted></feature> 20499 <threshold>8.3327008178457618e-004</threshold> 20500 <left_val>0.5210919976234436</left_val> 20501 <right_val>0.3957188129425049</right_val></_></_> 20502 <_> 20503 <!-- tree 143 --> 20504 <_> 20505 <!-- root node --> 20506 <feature> 20507 <rects> 20508 <_>13 8 6 10 -1.</_> 20509 <_>16 8 3 5 2.</_> 20510 <_>13 13 3 5 2.</_></rects> 20511 <tilted>0</tilted></feature> 20512 <threshold>-0.0412793308496475</threshold> 20513 <left_val>0.6154541969299316</left_val> 20514 <right_val>0.5007054209709168</right_val></_></_> 20515 <_> 20516 <!-- tree 144 --> 20517 <_> 20518 <!-- root node --> 20519 <feature> 20520 <rects> 20521 <_>0 9 5 2 -1.</_> 20522 <_>0 10 5 1 2.</_></rects> 20523 <tilted>0</tilted></feature> 20524 <threshold>-5.0930189900100231e-004</threshold> 20525 <left_val>0.3975942134857178</left_val> 20526 <right_val>0.5228403806686401</right_val></_></_> 20527 <_> 20528 <!-- tree 145 --> 20529 <_> 20530 <!-- root node --> 20531 <feature> 20532 <rects> 20533 <_>12 11 2 2 -1.</_> 20534 <_>13 11 1 1 2.</_> 20535 <_>12 12 1 1 2.</_></rects> 20536 <tilted>0</tilted></feature> 20537 <threshold>1.2568780221045017e-003</threshold> 20538 <left_val>0.4979138076305389</left_val> 20539 <right_val>0.5939183235168457</right_val></_></_> 20540 <_> 20541 <!-- tree 146 --> 20542 <_> 20543 <!-- root node --> 20544 <feature> 20545 <rects> 20546 <_>3 15 3 3 -1.</_> 20547 <_>3 16 3 1 3.</_></rects> 20548 <tilted>0</tilted></feature> 20549 <threshold>8.0048497766256332e-003</threshold> 20550 <left_val>0.4984497129917145</left_val> 20551 <right_val>0.1633366048336029</right_val></_></_> 20552 <_> 20553 <!-- tree 147 --> 20554 <_> 20555 <!-- root node --> 20556 <feature> 20557 <rects> 20558 <_>12 7 3 2 -1.</_> 20559 <_>12 8 3 1 2.</_></rects> 20560 <tilted>0</tilted></feature> 20561 <threshold>-1.1879300000146031e-003</threshold> 20562 <left_val>0.5904964804649353</left_val> 20563 <right_val>0.4942624866962433</right_val></_></_> 20564 <_> 20565 <!-- tree 148 --> 20566 <_> 20567 <!-- root node --> 20568 <feature> 20569 <rects> 20570 <_>5 7 3 2 -1.</_> 20571 <_>5 8 3 1 2.</_></rects> 20572 <tilted>0</tilted></feature> 20573 <threshold>6.1948952497914433e-004</threshold> 20574 <left_val>0.4199557900428772</left_val> 20575 <right_val>0.5328726172447205</right_val></_></_> 20576 <_> 20577 <!-- tree 149 --> 20578 <_> 20579 <!-- root node --> 20580 <feature> 20581 <rects> 20582 <_>9 5 9 9 -1.</_> 20583 <_>9 8 9 3 3.</_></rects> 20584 <tilted>0</tilted></feature> 20585 <threshold>6.6829859279096127e-003</threshold> 20586 <left_val>0.5418602824211121</left_val> 20587 <right_val>0.4905889034271240</right_val></_></_> 20588 <_> 20589 <!-- tree 150 --> 20590 <_> 20591 <!-- root node --> 20592 <feature> 20593 <rects> 20594 <_>5 0 3 7 -1.</_> 20595 <_>6 0 1 7 3.</_></rects> 20596 <tilted>0</tilted></feature> 20597 <threshold>-3.7062340416014194e-003</threshold> 20598 <left_val>0.3725939095020294</left_val> 20599 <right_val>0.5138000249862671</right_val></_></_> 20600 <_> 20601 <!-- tree 151 --> 20602 <_> 20603 <!-- root node --> 20604 <feature> 20605 <rects> 20606 <_>5 2 12 5 -1.</_> 20607 <_>9 2 4 5 3.</_></rects> 20608 <tilted>0</tilted></feature> 20609 <threshold>-0.0397394113242626</threshold> 20610 <left_val>0.6478961110115051</left_val> 20611 <right_val>0.5050346851348877</right_val></_></_> 20612 <_> 20613 <!-- tree 152 --> 20614 <_> 20615 <!-- root node --> 20616 <feature> 20617 <rects> 20618 <_>6 11 2 2 -1.</_> 20619 <_>6 11 1 1 2.</_> 20620 <_>7 12 1 1 2.</_></rects> 20621 <tilted>0</tilted></feature> 20622 <threshold>1.4085009461268783e-003</threshold> 20623 <left_val>0.4682339131832123</left_val> 20624 <right_val>0.6377884149551392</right_val></_></_> 20625 <_> 20626 <!-- tree 153 --> 20627 <_> 20628 <!-- root node --> 20629 <feature> 20630 <rects> 20631 <_>15 15 3 2 -1.</_> 20632 <_>15 16 3 1 2.</_></rects> 20633 <tilted>0</tilted></feature> 20634 <threshold>3.9322688826359808e-004</threshold> 20635 <left_val>0.5458530187606812</left_val> 20636 <right_val>0.4150482118129730</right_val></_></_> 20637 <_> 20638 <!-- tree 154 --> 20639 <_> 20640 <!-- root node --> 20641 <feature> 20642 <rects> 20643 <_>2 15 3 2 -1.</_> 20644 <_>2 16 3 1 2.</_></rects> 20645 <tilted>0</tilted></feature> 20646 <threshold>-1.8979819724336267e-003</threshold> 20647 <left_val>0.3690159916877747</left_val> 20648 <right_val>0.5149704217910767</right_val></_></_> 20649 <_> 20650 <!-- tree 155 --> 20651 <_> 20652 <!-- root node --> 20653 <feature> 20654 <rects> 20655 <_>14 12 6 8 -1.</_> 20656 <_>17 12 3 4 2.</_> 20657 <_>14 16 3 4 2.</_></rects> 20658 <tilted>0</tilted></feature> 20659 <threshold>-0.0139704402536154</threshold> 20660 <left_val>0.6050562858581543</left_val> 20661 <right_val>0.4811357855796814</right_val></_></_> 20662 <_> 20663 <!-- tree 156 --> 20664 <_> 20665 <!-- root node --> 20666 <feature> 20667 <rects> 20668 <_>2 8 15 6 -1.</_> 20669 <_>7 8 5 6 3.</_></rects> 20670 <tilted>0</tilted></feature> 20671 <threshold>-0.1010081991553307</threshold> 20672 <left_val>0.2017080038785934</left_val> 20673 <right_val>0.4992361962795258</right_val></_></_> 20674 <_> 20675 <!-- tree 157 --> 20676 <_> 20677 <!-- root node --> 20678 <feature> 20679 <rects> 20680 <_>2 2 18 17 -1.</_> 20681 <_>8 2 6 17 3.</_></rects> 20682 <tilted>0</tilted></feature> 20683 <threshold>-0.0173469204455614</threshold> 20684 <left_val>0.5713148713111877</left_val> 20685 <right_val>0.4899486005306244</right_val></_></_> 20686 <_> 20687 <!-- tree 158 --> 20688 <_> 20689 <!-- root node --> 20690 <feature> 20691 <rects> 20692 <_>5 1 4 1 -1.</_> 20693 <_>7 1 2 1 2.</_></rects> 20694 <tilted>0</tilted></feature> 20695 <threshold>1.5619759506080300e-004</threshold> 20696 <left_val>0.4215388894081116</left_val> 20697 <right_val>0.5392642021179199</right_val></_></_> 20698 <_> 20699 <!-- tree 159 --> 20700 <_> 20701 <!-- root node --> 20702 <feature> 20703 <rects> 20704 <_>5 2 12 5 -1.</_> 20705 <_>9 2 4 5 3.</_></rects> 20706 <tilted>0</tilted></feature> 20707 <threshold>0.1343892961740494</threshold> 20708 <left_val>0.5136151909828186</left_val> 20709 <right_val>0.3767612874507904</right_val></_></_> 20710 <_> 20711 <!-- tree 160 --> 20712 <_> 20713 <!-- root node --> 20714 <feature> 20715 <rects> 20716 <_>3 2 12 5 -1.</_> 20717 <_>7 2 4 5 3.</_></rects> 20718 <tilted>0</tilted></feature> 20719 <threshold>-0.0245822407305241</threshold> 20720 <left_val>0.7027357816696167</left_val> 20721 <right_val>0.4747906923294067</right_val></_></_> 20722 <_> 20723 <!-- tree 161 --> 20724 <_> 20725 <!-- root node --> 20726 <feature> 20727 <rects> 20728 <_>4 9 12 4 -1.</_> 20729 <_>10 9 6 2 2.</_> 20730 <_>4 11 6 2 2.</_></rects> 20731 <tilted>0</tilted></feature> 20732 <threshold>-3.8553720805794001e-003</threshold> 20733 <left_val>0.4317409098148346</left_val> 20734 <right_val>0.5427716970443726</right_val></_></_> 20735 <_> 20736 <!-- tree 162 --> 20737 <_> 20738 <!-- root node --> 20739 <feature> 20740 <rects> 20741 <_>5 15 6 2 -1.</_> 20742 <_>5 15 3 1 2.</_> 20743 <_>8 16 3 1 2.</_></rects> 20744 <tilted>0</tilted></feature> 20745 <threshold>-2.3165249731391668e-003</threshold> 20746 <left_val>0.5942698717117310</left_val> 20747 <right_val>0.4618647992610931</right_val></_></_> 20748 <_> 20749 <!-- tree 163 --> 20750 <_> 20751 <!-- root node --> 20752 <feature> 20753 <rects> 20754 <_>10 14 2 3 -1.</_> 20755 <_>10 15 2 1 3.</_></rects> 20756 <tilted>0</tilted></feature> 20757 <threshold>-4.8518120311200619e-003</threshold> 20758 <left_val>0.6191568970680237</left_val> 20759 <right_val>0.4884895086288452</right_val></_></_> 20760 <_> 20761 <!-- tree 164 --> 20762 <_> 20763 <!-- root node --> 20764 <feature> 20765 <rects> 20766 <_>0 13 20 2 -1.</_> 20767 <_>0 13 10 1 2.</_> 20768 <_>10 14 10 1 2.</_></rects> 20769 <tilted>0</tilted></feature> 20770 <threshold>2.4699938949197531e-003</threshold> 20771 <left_val>0.5256664752960205</left_val> 20772 <right_val>0.4017199873924255</right_val></_></_> 20773 <_> 20774 <!-- tree 165 --> 20775 <_> 20776 <!-- root node --> 20777 <feature> 20778 <rects> 20779 <_>4 9 12 8 -1.</_> 20780 <_>10 9 6 4 2.</_> 20781 <_>4 13 6 4 2.</_></rects> 20782 <tilted>0</tilted></feature> 20783 <threshold>0.0454969592392445</threshold> 20784 <left_val>0.5237867832183838</left_val> 20785 <right_val>0.2685773968696594</right_val></_></_> 20786 <_> 20787 <!-- tree 166 --> 20788 <_> 20789 <!-- root node --> 20790 <feature> 20791 <rects> 20792 <_>8 13 3 6 -1.</_> 20793 <_>8 16 3 3 2.</_></rects> 20794 <tilted>0</tilted></feature> 20795 <threshold>-0.0203195996582508</threshold> 20796 <left_val>0.2130445986986160</left_val> 20797 <right_val>0.4979738891124725</right_val></_></_> 20798 <_> 20799 <!-- tree 167 --> 20800 <_> 20801 <!-- root node --> 20802 <feature> 20803 <rects> 20804 <_>10 12 2 2 -1.</_> 20805 <_>10 13 2 1 2.</_></rects> 20806 <tilted>0</tilted></feature> 20807 <threshold>2.6994998916052282e-004</threshold> 20808 <left_val>0.4814041852951050</left_val> 20809 <right_val>0.5543122291564941</right_val></_></_> 20810 <_> 20811 <!-- tree 168 --> 20812 <_> 20813 <!-- root node --> 20814 <feature> 20815 <rects> 20816 <_>9 12 2 2 -1.</_> 20817 <_>9 12 1 1 2.</_> 20818 <_>10 13 1 1 2.</_></rects> 20819 <tilted>0</tilted></feature> 20820 <threshold>-1.8232699949294329e-003</threshold> 20821 <left_val>0.6482579708099365</left_val> 20822 <right_val>0.4709989130496979</right_val></_></_> 20823 <_> 20824 <!-- tree 169 --> 20825 <_> 20826 <!-- root node --> 20827 <feature> 20828 <rects> 20829 <_>4 11 14 4 -1.</_> 20830 <_>11 11 7 2 2.</_> 20831 <_>4 13 7 2 2.</_></rects> 20832 <tilted>0</tilted></feature> 20833 <threshold>-6.3015790656208992e-003</threshold> 20834 <left_val>0.4581927955150604</left_val> 20835 <right_val>0.5306236147880554</right_val></_></_> 20836 <_> 20837 <!-- tree 170 --> 20838 <_> 20839 <!-- root node --> 20840 <feature> 20841 <rects> 20842 <_>8 5 4 2 -1.</_> 20843 <_>8 6 4 1 2.</_></rects> 20844 <tilted>0</tilted></feature> 20845 <threshold>-2.4139499873854220e-004</threshold> 20846 <left_val>0.5232086777687073</left_val> 20847 <right_val>0.4051763117313385</right_val></_></_> 20848 <_> 20849 <!-- tree 171 --> 20850 <_> 20851 <!-- root node --> 20852 <feature> 20853 <rects> 20854 <_>10 10 6 3 -1.</_> 20855 <_>12 10 2 3 3.</_></rects> 20856 <tilted>0</tilted></feature> 20857 <threshold>-1.0330369696021080e-003</threshold> 20858 <left_val>0.5556201934814453</left_val> 20859 <right_val>0.4789193868637085</right_val></_></_> 20860 <_> 20861 <!-- tree 172 --> 20862 <_> 20863 <!-- root node --> 20864 <feature> 20865 <rects> 20866 <_>2 14 1 2 -1.</_> 20867 <_>2 15 1 1 2.</_></rects> 20868 <tilted>0</tilted></feature> 20869 <threshold>1.8041160365100950e-004</threshold> 20870 <left_val>0.5229442715644836</left_val> 20871 <right_val>0.4011810123920441</right_val></_></_> 20872 <_> 20873 <!-- tree 173 --> 20874 <_> 20875 <!-- root node --> 20876 <feature> 20877 <rects> 20878 <_>13 8 6 12 -1.</_> 20879 <_>16 8 3 6 2.</_> 20880 <_>13 14 3 6 2.</_></rects> 20881 <tilted>0</tilted></feature> 20882 <threshold>-0.0614078603684902</threshold> 20883 <left_val>0.6298682093620300</left_val> 20884 <right_val>0.5010703206062317</right_val></_></_> 20885 <_> 20886 <!-- tree 174 --> 20887 <_> 20888 <!-- root node --> 20889 <feature> 20890 <rects> 20891 <_>1 8 6 12 -1.</_> 20892 <_>1 8 3 6 2.</_> 20893 <_>4 14 3 6 2.</_></rects> 20894 <tilted>0</tilted></feature> 20895 <threshold>-0.0695439130067825</threshold> 20896 <left_val>0.7228280901908875</left_val> 20897 <right_val>0.4773184061050415</right_val></_></_> 20898 <_> 20899 <!-- tree 175 --> 20900 <_> 20901 <!-- root node --> 20902 <feature> 20903 <rects> 20904 <_>10 0 6 10 -1.</_> 20905 <_>12 0 2 10 3.</_></rects> 20906 <tilted>0</tilted></feature> 20907 <threshold>-0.0705426633358002</threshold> 20908 <left_val>0.2269513010978699</left_val> 20909 <right_val>0.5182529091835022</right_val></_></_> 20910 <_> 20911 <!-- tree 176 --> 20912 <_> 20913 <!-- root node --> 20914 <feature> 20915 <rects> 20916 <_>5 11 8 4 -1.</_> 20917 <_>5 11 4 2 2.</_> 20918 <_>9 13 4 2 2.</_></rects> 20919 <tilted>0</tilted></feature> 20920 <threshold>2.4423799477517605e-003</threshold> 20921 <left_val>0.5237097144126892</left_val> 20922 <right_val>0.4098151028156281</right_val></_></_> 20923 <_> 20924 <!-- tree 177 --> 20925 <_> 20926 <!-- root node --> 20927 <feature> 20928 <rects> 20929 <_>10 16 8 4 -1.</_> 20930 <_>14 16 4 2 2.</_> 20931 <_>10 18 4 2 2.</_></rects> 20932 <tilted>0</tilted></feature> 20933 <threshold>1.5494349645450711e-003</threshold> 20934 <left_val>0.4773750901222229</left_val> 20935 <right_val>0.5468043088912964</right_val></_></_> 20936 <_> 20937 <!-- tree 178 --> 20938 <_> 20939 <!-- root node --> 20940 <feature> 20941 <rects> 20942 <_>7 7 6 6 -1.</_> 20943 <_>9 7 2 6 3.</_></rects> 20944 <tilted>0</tilted></feature> 20945 <threshold>-0.0239142198115587</threshold> 20946 <left_val>0.7146975994110107</left_val> 20947 <right_val>0.4783824980258942</right_val></_></_> 20948 <_> 20949 <!-- tree 179 --> 20950 <_> 20951 <!-- root node --> 20952 <feature> 20953 <rects> 20954 <_>10 2 4 10 -1.</_> 20955 <_>10 2 2 10 2.</_></rects> 20956 <tilted>0</tilted></feature> 20957 <threshold>-0.0124536901712418</threshold> 20958 <left_val>0.2635296881198883</left_val> 20959 <right_val>0.5241122841835022</right_val></_></_> 20960 <_> 20961 <!-- tree 180 --> 20962 <_> 20963 <!-- root node --> 20964 <feature> 20965 <rects> 20966 <_>6 1 4 9 -1.</_> 20967 <_>8 1 2 9 2.</_></rects> 20968 <tilted>0</tilted></feature> 20969 <threshold>-2.0760179904755205e-004</threshold> 20970 <left_val>0.3623757064342499</left_val> 20971 <right_val>0.5113608837127686</right_val></_></_> 20972 <_> 20973 <!-- tree 181 --> 20974 <_> 20975 <!-- root node --> 20976 <feature> 20977 <rects> 20978 <_>12 19 2 1 -1.</_> 20979 <_>12 19 1 1 2.</_></rects> 20980 <tilted>0</tilted></feature> 20981 <threshold>2.9781080229440704e-005</threshold> 20982 <left_val>0.4705932140350342</left_val> 20983 <right_val>0.5432801842689514</right_val></_></_></trees> 20984 <stage_threshold>90.2533493041992190</stage_threshold> 20985 <parent>18</parent> 20986 <next>-1</next></_> 20987 <_> 20988 <!-- stage 20 --> 20989 <trees> 20990 <_> 20991 <!-- tree 0 --> 20992 <_> 20993 <!-- root node --> 20994 <feature> 20995 <rects> 20996 <_>1 2 4 9 -1.</_> 20997 <_>3 2 2 9 2.</_></rects> 20998 <tilted>0</tilted></feature> 20999 <threshold>0.0117727499455214</threshold> 21000 <left_val>0.3860518932342529</left_val> 21001 <right_val>0.6421167254447937</right_val></_></_> 21002 <_> 21003 <!-- tree 1 --> 21004 <_> 21005 <!-- root node --> 21006 <feature> 21007 <rects> 21008 <_>7 5 6 4 -1.</_> 21009 <_>9 5 2 4 3.</_></rects> 21010 <tilted>0</tilted></feature> 21011 <threshold>0.0270375702530146</threshold> 21012 <left_val>0.4385654926300049</left_val> 21013 <right_val>0.6754038929939270</right_val></_></_> 21014 <_> 21015 <!-- tree 2 --> 21016 <_> 21017 <!-- root node --> 21018 <feature> 21019 <rects> 21020 <_>9 4 2 4 -1.</_> 21021 <_>9 6 2 2 2.</_></rects> 21022 <tilted>0</tilted></feature> 21023 <threshold>-3.6419500247575343e-005</threshold> 21024 <left_val>0.5487101078033447</left_val> 21025 <right_val>0.3423315882682800</right_val></_></_> 21026 <_> 21027 <!-- tree 3 --> 21028 <_> 21029 <!-- root node --> 21030 <feature> 21031 <rects> 21032 <_>14 5 2 8 -1.</_> 21033 <_>14 9 2 4 2.</_></rects> 21034 <tilted>0</tilted></feature> 21035 <threshold>1.9995409529656172e-003</threshold> 21036 <left_val>0.3230532109737396</left_val> 21037 <right_val>0.5400317907333374</right_val></_></_> 21038 <_> 21039 <!-- tree 4 --> 21040 <_> 21041 <!-- root node --> 21042 <feature> 21043 <rects> 21044 <_>7 6 5 12 -1.</_> 21045 <_>7 12 5 6 2.</_></rects> 21046 <tilted>0</tilted></feature> 21047 <threshold>4.5278300531208515e-003</threshold> 21048 <left_val>0.5091639757156372</left_val> 21049 <right_val>0.2935043871402741</right_val></_></_> 21050 <_> 21051 <!-- tree 5 --> 21052 <_> 21053 <!-- root node --> 21054 <feature> 21055 <rects> 21056 <_>14 6 2 6 -1.</_> 21057 <_>14 9 2 3 2.</_></rects> 21058 <tilted>0</tilted></feature> 21059 <threshold>4.7890920541249216e-004</threshold> 21060 <left_val>0.4178153872489929</left_val> 21061 <right_val>0.5344064235687256</right_val></_></_> 21062 <_> 21063 <!-- tree 6 --> 21064 <_> 21065 <!-- root node --> 21066 <feature> 21067 <rects> 21068 <_>4 6 2 6 -1.</_> 21069 <_>4 9 2 3 2.</_></rects> 21070 <tilted>0</tilted></feature> 21071 <threshold>1.1720920447260141e-003</threshold> 21072 <left_val>0.2899182140827179</left_val> 21073 <right_val>0.5132070779800415</right_val></_></_> 21074 <_> 21075 <!-- tree 7 --> 21076 <_> 21077 <!-- root node --> 21078 <feature> 21079 <rects> 21080 <_>8 15 10 4 -1.</_> 21081 <_>13 15 5 2 2.</_> 21082 <_>8 17 5 2 2.</_></rects> 21083 <tilted>0</tilted></feature> 21084 <threshold>9.5305702416226268e-004</threshold> 21085 <left_val>0.4280124902725220</left_val> 21086 <right_val>0.5560845136642456</right_val></_></_> 21087 <_> 21088 <!-- tree 8 --> 21089 <_> 21090 <!-- root node --> 21091 <feature> 21092 <rects> 21093 <_>6 18 2 2 -1.</_> 21094 <_>7 18 1 2 2.</_></rects> 21095 <tilted>0</tilted></feature> 21096 <threshold>1.5099150004971307e-005</threshold> 21097 <left_val>0.4044871926307678</left_val> 21098 <right_val>0.5404760241508484</right_val></_></_> 21099 <_> 21100 <!-- tree 9 --> 21101 <_> 21102 <!-- root node --> 21103 <feature> 21104 <rects> 21105 <_>11 3 6 2 -1.</_> 21106 <_>11 4 6 1 2.</_></rects> 21107 <tilted>0</tilted></feature> 21108 <threshold>-6.0817901976406574e-004</threshold> 21109 <left_val>0.4271768927574158</left_val> 21110 <right_val>0.5503466129302979</right_val></_></_> 21111 <_> 21112 <!-- tree 10 --> 21113 <_> 21114 <!-- root node --> 21115 <feature> 21116 <rects> 21117 <_>2 0 16 6 -1.</_> 21118 <_>2 2 16 2 3.</_></rects> 21119 <tilted>0</tilted></feature> 21120 <threshold>3.3224520739167929e-003</threshold> 21121 <left_val>0.3962723910808563</left_val> 21122 <right_val>0.5369734764099121</right_val></_></_> 21123 <_> 21124 <!-- tree 11 --> 21125 <_> 21126 <!-- root node --> 21127 <feature> 21128 <rects> 21129 <_>11 3 6 2 -1.</_> 21130 <_>11 4 6 1 2.</_></rects> 21131 <tilted>0</tilted></feature> 21132 <threshold>-1.1037490330636501e-003</threshold> 21133 <left_val>0.4727177917957306</left_val> 21134 <right_val>0.5237749814987183</right_val></_></_> 21135 <_> 21136 <!-- tree 12 --> 21137 <_> 21138 <!-- root node --> 21139 <feature> 21140 <rects> 21141 <_>4 11 10 3 -1.</_> 21142 <_>4 12 10 1 3.</_></rects> 21143 <tilted>0</tilted></feature> 21144 <threshold>-1.4350269921123981e-003</threshold> 21145 <left_val>0.5603008270263672</left_val> 21146 <right_val>0.4223509132862091</right_val></_></_> 21147 <_> 21148 <!-- tree 13 --> 21149 <_> 21150 <!-- root node --> 21151 <feature> 21152 <rects> 21153 <_>11 3 6 2 -1.</_> 21154 <_>11 4 6 1 2.</_></rects> 21155 <tilted>0</tilted></feature> 21156 <threshold>2.0767399109899998e-003</threshold> 21157 <left_val>0.5225917100906372</left_val> 21158 <right_val>0.4732725918292999</right_val></_></_> 21159 <_> 21160 <!-- tree 14 --> 21161 <_> 21162 <!-- root node --> 21163 <feature> 21164 <rects> 21165 <_>3 3 6 2 -1.</_> 21166 <_>3 4 6 1 2.</_></rects> 21167 <tilted>0</tilted></feature> 21168 <threshold>-1.6412809782195836e-004</threshold> 21169 <left_val>0.3999075889587402</left_val> 21170 <right_val>0.5432739853858948</right_val></_></_> 21171 <_> 21172 <!-- tree 15 --> 21173 <_> 21174 <!-- root node --> 21175 <feature> 21176 <rects> 21177 <_>16 0 4 7 -1.</_> 21178 <_>16 0 2 7 2.</_></rects> 21179 <tilted>0</tilted></feature> 21180 <threshold>8.8302437216043472e-003</threshold> 21181 <left_val>0.4678385853767395</left_val> 21182 <right_val>0.6027327179908752</right_val></_></_> 21183 <_> 21184 <!-- tree 16 --> 21185 <_> 21186 <!-- root node --> 21187 <feature> 21188 <rects> 21189 <_>0 14 9 6 -1.</_> 21190 <_>0 16 9 2 3.</_></rects> 21191 <tilted>0</tilted></feature> 21192 <threshold>-0.0105520701035857</threshold> 21193 <left_val>0.3493967056274414</left_val> 21194 <right_val>0.5213974714279175</right_val></_></_> 21195 <_> 21196 <!-- tree 17 --> 21197 <_> 21198 <!-- root node --> 21199 <feature> 21200 <rects> 21201 <_>9 16 3 3 -1.</_> 21202 <_>9 17 3 1 3.</_></rects> 21203 <tilted>0</tilted></feature> 21204 <threshold>-2.2731600329279900e-003</threshold> 21205 <left_val>0.6185818910598755</left_val> 21206 <right_val>0.4749062955379486</right_val></_></_> 21207 <_> 21208 <!-- tree 18 --> 21209 <_> 21210 <!-- root node --> 21211 <feature> 21212 <rects> 21213 <_>4 6 6 2 -1.</_> 21214 <_>6 6 2 2 3.</_></rects> 21215 <tilted>0</tilted></feature> 21216 <threshold>-8.4786332445219159e-004</threshold> 21217 <left_val>0.5285341143608093</left_val> 21218 <right_val>0.3843482136726379</right_val></_></_> 21219 <_> 21220 <!-- tree 19 --> 21221 <_> 21222 <!-- root node --> 21223 <feature> 21224 <rects> 21225 <_>15 11 1 3 -1.</_> 21226 <_>15 12 1 1 3.</_></rects> 21227 <tilted>0</tilted></feature> 21228 <threshold>1.2081359745934606e-003</threshold> 21229 <left_val>0.5360640883445740</left_val> 21230 <right_val>0.3447335958480835</right_val></_></_> 21231 <_> 21232 <!-- tree 20 --> 21233 <_> 21234 <!-- root node --> 21235 <feature> 21236 <rects> 21237 <_>5 5 2 3 -1.</_> 21238 <_>5 6 2 1 3.</_></rects> 21239 <tilted>0</tilted></feature> 21240 <threshold>2.6512730401009321e-003</threshold> 21241 <left_val>0.4558292031288147</left_val> 21242 <right_val>0.6193962097167969</right_val></_></_> 21243 <_> 21244 <!-- tree 21 --> 21245 <_> 21246 <!-- root node --> 21247 <feature> 21248 <rects> 21249 <_>10 9 2 2 -1.</_> 21250 <_>10 10 2 1 2.</_></rects> 21251 <tilted>0</tilted></feature> 21252 <threshold>-1.1012479662895203e-003</threshold> 21253 <left_val>0.3680230081081390</left_val> 21254 <right_val>0.5327628254890442</right_val></_></_> 21255 <_> 21256 <!-- tree 22 --> 21257 <_> 21258 <!-- root node --> 21259 <feature> 21260 <rects> 21261 <_>3 1 4 3 -1.</_> 21262 <_>5 1 2 3 2.</_></rects> 21263 <tilted>0</tilted></feature> 21264 <threshold>4.9561518244445324e-004</threshold> 21265 <left_val>0.3960595130920410</left_val> 21266 <right_val>0.5274940729141235</right_val></_></_> 21267 <_> 21268 <!-- tree 23 --> 21269 <_> 21270 <!-- root node --> 21271 <feature> 21272 <rects> 21273 <_>16 0 4 7 -1.</_> 21274 <_>16 0 2 7 2.</_></rects> 21275 <tilted>0</tilted></feature> 21276 <threshold>-0.0439017713069916</threshold> 21277 <left_val>0.7020444869995117</left_val> 21278 <right_val>0.4992839097976685</right_val></_></_> 21279 <_> 21280 <!-- tree 24 --> 21281 <_> 21282 <!-- root node --> 21283 <feature> 21284 <rects> 21285 <_>0 0 20 1 -1.</_> 21286 <_>10 0 10 1 2.</_></rects> 21287 <tilted>0</tilted></feature> 21288 <threshold>0.0346903502941132</threshold> 21289 <left_val>0.5049164295196533</left_val> 21290 <right_val>0.2766602933406830</right_val></_></_> 21291 <_> 21292 <!-- tree 25 --> 21293 <_> 21294 <!-- root node --> 21295 <feature> 21296 <rects> 21297 <_>15 11 1 3 -1.</_> 21298 <_>15 12 1 1 3.</_></rects> 21299 <tilted>0</tilted></feature> 21300 <threshold>-2.7442190330475569e-003</threshold> 21301 <left_val>0.2672632932662964</left_val> 21302 <right_val>0.5274971127510071</right_val></_></_> 21303 <_> 21304 <!-- tree 26 --> 21305 <_> 21306 <!-- root node --> 21307 <feature> 21308 <rects> 21309 <_>0 4 3 4 -1.</_> 21310 <_>1 4 1 4 3.</_></rects> 21311 <tilted>0</tilted></feature> 21312 <threshold>3.3316588960587978e-003</threshold> 21313 <left_val>0.4579482972621918</left_val> 21314 <right_val>0.6001101732254028</right_val></_></_> 21315 <_> 21316 <!-- tree 27 --> 21317 <_> 21318 <!-- root node --> 21319 <feature> 21320 <rects> 21321 <_>16 3 3 6 -1.</_> 21322 <_>16 5 3 2 3.</_></rects> 21323 <tilted>0</tilted></feature> 21324 <threshold>-0.0200445707887411</threshold> 21325 <left_val>0.3171594142913818</left_val> 21326 <right_val>0.5235717892646790</right_val></_></_> 21327 <_> 21328 <!-- tree 28 --> 21329 <_> 21330 <!-- root node --> 21331 <feature> 21332 <rects> 21333 <_>1 3 3 6 -1.</_> 21334 <_>1 5 3 2 3.</_></rects> 21335 <tilted>0</tilted></feature> 21336 <threshold>1.3492030557245016e-003</threshold> 21337 <left_val>0.5265362858772278</left_val> 21338 <right_val>0.4034324884414673</right_val></_></_> 21339 <_> 21340 <!-- tree 29 --> 21341 <_> 21342 <!-- root node --> 21343 <feature> 21344 <rects> 21345 <_>6 2 12 6 -1.</_> 21346 <_>12 2 6 3 2.</_> 21347 <_>6 5 6 3 2.</_></rects> 21348 <tilted>0</tilted></feature> 21349 <threshold>2.9702018946409225e-003</threshold> 21350 <left_val>0.5332456827163696</left_val> 21351 <right_val>0.4571984112262726</right_val></_></_> 21352 <_> 21353 <!-- tree 30 --> 21354 <_> 21355 <!-- root node --> 21356 <feature> 21357 <rects> 21358 <_>8 10 4 3 -1.</_> 21359 <_>8 11 4 1 3.</_></rects> 21360 <tilted>0</tilted></feature> 21361 <threshold>6.3039981760084629e-003</threshold> 21362 <left_val>0.4593310952186585</left_val> 21363 <right_val>0.6034635901451111</right_val></_></_> 21364 <_> 21365 <!-- tree 31 --> 21366 <_> 21367 <!-- root node --> 21368 <feature> 21369 <rects> 21370 <_>4 2 14 6 -1.</_> 21371 <_>11 2 7 3 2.</_> 21372 <_>4 5 7 3 2.</_></rects> 21373 <tilted>0</tilted></feature> 21374 <threshold>-0.0129365902394056</threshold> 21375 <left_val>0.4437963962554932</left_val> 21376 <right_val>0.5372971296310425</right_val></_></_> 21377 <_> 21378 <!-- tree 32 --> 21379 <_> 21380 <!-- root node --> 21381 <feature> 21382 <rects> 21383 <_>9 11 2 3 -1.</_> 21384 <_>9 12 2 1 3.</_></rects> 21385 <tilted>0</tilted></feature> 21386 <threshold>4.0148729458451271e-003</threshold> 21387 <left_val>0.4680323898792267</left_val> 21388 <right_val>0.6437833905220032</right_val></_></_> 21389 <_> 21390 <!-- tree 33 --> 21391 <_> 21392 <!-- root node --> 21393 <feature> 21394 <rects> 21395 <_>15 13 2 3 -1.</_> 21396 <_>15 14 2 1 3.</_></rects> 21397 <tilted>0</tilted></feature> 21398 <threshold>-2.6401679497212172e-003</threshold> 21399 <left_val>0.3709631860256195</left_val> 21400 <right_val>0.5314332842826843</right_val></_></_> 21401 <_> 21402 <!-- tree 34 --> 21403 <_> 21404 <!-- root node --> 21405 <feature> 21406 <rects> 21407 <_>8 12 4 3 -1.</_> 21408 <_>8 13 4 1 3.</_></rects> 21409 <tilted>0</tilted></feature> 21410 <threshold>0.0139184398576617</threshold> 21411 <left_val>0.4723555147647858</left_val> 21412 <right_val>0.7130808830261231</right_val></_></_> 21413 <_> 21414 <!-- tree 35 --> 21415 <_> 21416 <!-- root node --> 21417 <feature> 21418 <rects> 21419 <_>15 11 1 3 -1.</_> 21420 <_>15 12 1 1 3.</_></rects> 21421 <tilted>0</tilted></feature> 21422 <threshold>-4.5087869511917233e-004</threshold> 21423 <left_val>0.4492394030094147</left_val> 21424 <right_val>0.5370404124259949</right_val></_></_> 21425 <_> 21426 <!-- tree 36 --> 21427 <_> 21428 <!-- root node --> 21429 <feature> 21430 <rects> 21431 <_>7 13 5 2 -1.</_> 21432 <_>7 14 5 1 2.</_></rects> 21433 <tilted>0</tilted></feature> 21434 <threshold>2.5384349282830954e-004</threshold> 21435 <left_val>0.4406864047050476</left_val> 21436 <right_val>0.5514402985572815</right_val></_></_> 21437 <_> 21438 <!-- tree 37 --> 21439 <_> 21440 <!-- root node --> 21441 <feature> 21442 <rects> 21443 <_>7 12 6 3 -1.</_> 21444 <_>7 13 6 1 3.</_></rects> 21445 <tilted>0</tilted></feature> 21446 <threshold>2.2710000630468130e-003</threshold> 21447 <left_val>0.4682416915893555</left_val> 21448 <right_val>0.5967984199523926</right_val></_></_> 21449 <_> 21450 <!-- tree 38 --> 21451 <_> 21452 <!-- root node --> 21453 <feature> 21454 <rects> 21455 <_>5 11 4 4 -1.</_> 21456 <_>5 13 4 2 2.</_></rects> 21457 <tilted>0</tilted></feature> 21458 <threshold>2.4120779708027840e-003</threshold> 21459 <left_val>0.5079392194747925</left_val> 21460 <right_val>0.3018598854541779</right_val></_></_> 21461 <_> 21462 <!-- tree 39 --> 21463 <_> 21464 <!-- root node --> 21465 <feature> 21466 <rects> 21467 <_>11 4 3 3 -1.</_> 21468 <_>12 4 1 3 3.</_></rects> 21469 <tilted>0</tilted></feature> 21470 <threshold>-3.6025670851813629e-005</threshold> 21471 <left_val>0.5601037144660950</left_val> 21472 <right_val>0.4471096992492676</right_val></_></_> 21473 <_> 21474 <!-- tree 40 --> 21475 <_> 21476 <!-- root node --> 21477 <feature> 21478 <rects> 21479 <_>6 4 3 3 -1.</_> 21480 <_>7 4 1 3 3.</_></rects> 21481 <tilted>0</tilted></feature> 21482 <threshold>-7.4905529618263245e-003</threshold> 21483 <left_val>0.2207535058259964</left_val> 21484 <right_val>0.4989944100379944</right_val></_></_> 21485 <_> 21486 <!-- tree 41 --> 21487 <_> 21488 <!-- root node --> 21489 <feature> 21490 <rects> 21491 <_>16 5 3 6 -1.</_> 21492 <_>17 5 1 6 3.</_></rects> 21493 <tilted>0</tilted></feature> 21494 <threshold>-0.0175131205469370</threshold> 21495 <left_val>0.6531215906143189</left_val> 21496 <right_val>0.5017648935317993</right_val></_></_> 21497 <_> 21498 <!-- tree 42 --> 21499 <_> 21500 <!-- root node --> 21501 <feature> 21502 <rects> 21503 <_>3 6 12 7 -1.</_> 21504 <_>7 6 4 7 3.</_></rects> 21505 <tilted>0</tilted></feature> 21506 <threshold>0.1428163051605225</threshold> 21507 <left_val>0.4967963099479675</left_val> 21508 <right_val>0.1482062041759491</right_val></_></_> 21509 <_> 21510 <!-- tree 43 --> 21511 <_> 21512 <!-- root node --> 21513 <feature> 21514 <rects> 21515 <_>16 5 3 6 -1.</_> 21516 <_>17 5 1 6 3.</_></rects> 21517 <tilted>0</tilted></feature> 21518 <threshold>5.5345268920063972e-003</threshold> 21519 <left_val>0.4898946881294251</left_val> 21520 <right_val>0.5954223871231079</right_val></_></_> 21521 <_> 21522 <!-- tree 44 --> 21523 <_> 21524 <!-- root node --> 21525 <feature> 21526 <rects> 21527 <_>3 13 2 3 -1.</_> 21528 <_>3 14 2 1 3.</_></rects> 21529 <tilted>0</tilted></feature> 21530 <threshold>-9.6323591424152255e-004</threshold> 21531 <left_val>0.3927116990089417</left_val> 21532 <right_val>0.5196074247360230</right_val></_></_> 21533 <_> 21534 <!-- tree 45 --> 21535 <_> 21536 <!-- root node --> 21537 <feature> 21538 <rects> 21539 <_>16 5 3 6 -1.</_> 21540 <_>17 5 1 6 3.</_></rects> 21541 <tilted>0</tilted></feature> 21542 <threshold>-2.0370010752230883e-003</threshold> 21543 <left_val>0.5613325238227844</left_val> 21544 <right_val>0.4884858131408691</right_val></_></_> 21545 <_> 21546 <!-- tree 46 --> 21547 <_> 21548 <!-- root node --> 21549 <feature> 21550 <rects> 21551 <_>1 5 3 6 -1.</_> 21552 <_>2 5 1 6 3.</_></rects> 21553 <tilted>0</tilted></feature> 21554 <threshold>1.6614829655736685e-003</threshold> 21555 <left_val>0.4472880065441132</left_val> 21556 <right_val>0.5578880906105042</right_val></_></_> 21557 <_> 21558 <!-- tree 47 --> 21559 <_> 21560 <!-- root node --> 21561 <feature> 21562 <rects> 21563 <_>1 9 18 1 -1.</_> 21564 <_>7 9 6 1 3.</_></rects> 21565 <tilted>0</tilted></feature> 21566 <threshold>-3.1188090797513723e-003</threshold> 21567 <left_val>0.3840532898902893</left_val> 21568 <right_val>0.5397477746009827</right_val></_></_> 21569 <_> 21570 <!-- tree 48 --> 21571 <_> 21572 <!-- root node --> 21573 <feature> 21574 <rects> 21575 <_>0 9 8 7 -1.</_> 21576 <_>4 9 4 7 2.</_></rects> 21577 <tilted>0</tilted></feature> 21578 <threshold>-6.4000617712736130e-003</threshold> 21579 <left_val>0.5843983888626099</left_val> 21580 <right_val>0.4533218145370483</right_val></_></_> 21581 <_> 21582 <!-- tree 49 --> 21583 <_> 21584 <!-- root node --> 21585 <feature> 21586 <rects> 21587 <_>12 11 8 2 -1.</_> 21588 <_>12 12 8 1 2.</_></rects> 21589 <tilted>0</tilted></feature> 21590 <threshold>3.1319601112045348e-004</threshold> 21591 <left_val>0.5439221858978272</left_val> 21592 <right_val>0.4234727919101715</right_val></_></_> 21593 <_> 21594 <!-- tree 50 --> 21595 <_> 21596 <!-- root node --> 21597 <feature> 21598 <rects> 21599 <_>0 11 8 2 -1.</_> 21600 <_>0 12 8 1 2.</_></rects> 21601 <tilted>0</tilted></feature> 21602 <threshold>-0.0182220991700888</threshold> 21603 <left_val>0.1288464963436127</left_val> 21604 <right_val>0.4958404898643494</right_val></_></_> 21605 <_> 21606 <!-- tree 51 --> 21607 <_> 21608 <!-- root node --> 21609 <feature> 21610 <rects> 21611 <_>9 13 2 3 -1.</_> 21612 <_>9 14 2 1 3.</_></rects> 21613 <tilted>0</tilted></feature> 21614 <threshold>8.7969247251749039e-003</threshold> 21615 <left_val>0.4951297938823700</left_val> 21616 <right_val>0.7153480052947998</right_val></_></_> 21617 <_> 21618 <!-- tree 52 --> 21619 <_> 21620 <!-- root node --> 21621 <feature> 21622 <rects> 21623 <_>4 10 12 4 -1.</_> 21624 <_>4 10 6 2 2.</_> 21625 <_>10 12 6 2 2.</_></rects> 21626 <tilted>0</tilted></feature> 21627 <threshold>-4.2395070195198059e-003</threshold> 21628 <left_val>0.3946599960327148</left_val> 21629 <right_val>0.5194936990737915</right_val></_></_> 21630 <_> 21631 <!-- tree 53 --> 21632 <_> 21633 <!-- root node --> 21634 <feature> 21635 <rects> 21636 <_>9 3 3 7 -1.</_> 21637 <_>10 3 1 7 3.</_></rects> 21638 <tilted>0</tilted></feature> 21639 <threshold>9.7086271271109581e-003</threshold> 21640 <left_val>0.4897503852844238</left_val> 21641 <right_val>0.6064900159835815</right_val></_></_> 21642 <_> 21643 <!-- tree 54 --> 21644 <_> 21645 <!-- root node --> 21646 <feature> 21647 <rects> 21648 <_>7 2 3 5 -1.</_> 21649 <_>8 2 1 5 3.</_></rects> 21650 <tilted>0</tilted></feature> 21651 <threshold>-3.9934171363711357e-003</threshold> 21652 <left_val>0.3245440125465393</left_val> 21653 <right_val>0.5060828924179077</right_val></_></_> 21654 <_> 21655 <!-- tree 55 --> 21656 <_> 21657 <!-- root node --> 21658 <feature> 21659 <rects> 21660 <_>9 12 4 6 -1.</_> 21661 <_>11 12 2 3 2.</_> 21662 <_>9 15 2 3 2.</_></rects> 21663 <tilted>0</tilted></feature> 21664 <threshold>-0.0167850591242313</threshold> 21665 <left_val>0.1581953018903732</left_val> 21666 <right_val>0.5203778743743897</right_val></_></_> 21667 <_> 21668 <!-- tree 56 --> 21669 <_> 21670 <!-- root node --> 21671 <feature> 21672 <rects> 21673 <_>8 7 3 6 -1.</_> 21674 <_>9 7 1 6 3.</_></rects> 21675 <tilted>0</tilted></feature> 21676 <threshold>0.0182720907032490</threshold> 21677 <left_val>0.4680935144424439</left_val> 21678 <right_val>0.6626979112625122</right_val></_></_> 21679 <_> 21680 <!-- tree 57 --> 21681 <_> 21682 <!-- root node --> 21683 <feature> 21684 <rects> 21685 <_>15 4 4 2 -1.</_> 21686 <_>15 5 4 1 2.</_></rects> 21687 <tilted>0</tilted></feature> 21688 <threshold>5.6872838176786900e-003</threshold> 21689 <left_val>0.5211697816848755</left_val> 21690 <right_val>0.3512184917926788</right_val></_></_> 21691 <_> 21692 <!-- tree 58 --> 21693 <_> 21694 <!-- root node --> 21695 <feature> 21696 <rects> 21697 <_>8 7 3 3 -1.</_> 21698 <_>9 7 1 3 3.</_></rects> 21699 <tilted>0</tilted></feature> 21700 <threshold>-1.0739039862528443e-003</threshold> 21701 <left_val>0.5768386125564575</left_val> 21702 <right_val>0.4529845118522644</right_val></_></_> 21703 <_> 21704 <!-- tree 59 --> 21705 <_> 21706 <!-- root node --> 21707 <feature> 21708 <rects> 21709 <_>14 2 6 4 -1.</_> 21710 <_>14 4 6 2 2.</_></rects> 21711 <tilted>0</tilted></feature> 21712 <threshold>-3.7093870341777802e-003</threshold> 21713 <left_val>0.4507763087749481</left_val> 21714 <right_val>0.5313581228256226</right_val></_></_> 21715 <_> 21716 <!-- tree 60 --> 21717 <_> 21718 <!-- root node --> 21719 <feature> 21720 <rects> 21721 <_>7 16 6 1 -1.</_> 21722 <_>9 16 2 1 3.</_></rects> 21723 <tilted>0</tilted></feature> 21724 <threshold>-2.1110709349159151e-004</threshold> 21725 <left_val>0.5460820198059082</left_val> 21726 <right_val>0.4333376884460449</right_val></_></_> 21727 <_> 21728 <!-- tree 61 --> 21729 <_> 21730 <!-- root node --> 21731 <feature> 21732 <rects> 21733 <_>15 13 2 3 -1.</_> 21734 <_>15 14 2 1 3.</_></rects> 21735 <tilted>0</tilted></feature> 21736 <threshold>1.0670139454305172e-003</threshold> 21737 <left_val>0.5371856093406677</left_val> 21738 <right_val>0.4078390896320343</right_val></_></_> 21739 <_> 21740 <!-- tree 62 --> 21741 <_> 21742 <!-- root node --> 21743 <feature> 21744 <rects> 21745 <_>8 7 3 10 -1.</_> 21746 <_>9 7 1 10 3.</_></rects> 21747 <tilted>0</tilted></feature> 21748 <threshold>3.5943021066486835e-003</threshold> 21749 <left_val>0.4471287131309509</left_val> 21750 <right_val>0.5643836259841919</right_val></_></_> 21751 <_> 21752 <!-- tree 63 --> 21753 <_> 21754 <!-- root node --> 21755 <feature> 21756 <rects> 21757 <_>11 10 2 6 -1.</_> 21758 <_>11 12 2 2 3.</_></rects> 21759 <tilted>0</tilted></feature> 21760 <threshold>-5.1776031032204628e-003</threshold> 21761 <left_val>0.4499393105506897</left_val> 21762 <right_val>0.5280330181121826</right_val></_></_> 21763 <_> 21764 <!-- tree 64 --> 21765 <_> 21766 <!-- root node --> 21767 <feature> 21768 <rects> 21769 <_>6 10 4 1 -1.</_> 21770 <_>8 10 2 1 2.</_></rects> 21771 <tilted>0</tilted></feature> 21772 <threshold>-2.5414369883947074e-004</threshold> 21773 <left_val>0.5516173243522644</left_val> 21774 <right_val>0.4407708048820496</right_val></_></_> 21775 <_> 21776 <!-- tree 65 --> 21777 <_> 21778 <!-- root node --> 21779 <feature> 21780 <rects> 21781 <_>10 9 2 2 -1.</_> 21782 <_>10 10 2 1 2.</_></rects> 21783 <tilted>0</tilted></feature> 21784 <threshold>6.3522560521960258e-003</threshold> 21785 <left_val>0.5194190144538879</left_val> 21786 <right_val>0.2465227991342545</right_val></_></_> 21787 <_> 21788 <!-- tree 66 --> 21789 <_> 21790 <!-- root node --> 21791 <feature> 21792 <rects> 21793 <_>8 9 2 2 -1.</_> 21794 <_>8 10 2 1 2.</_></rects> 21795 <tilted>0</tilted></feature> 21796 <threshold>-4.4205080484971404e-004</threshold> 21797 <left_val>0.3830705881118774</left_val> 21798 <right_val>0.5139682292938232</right_val></_></_> 21799 <_> 21800 <!-- tree 67 --> 21801 <_> 21802 <!-- root node --> 21803 <feature> 21804 <rects> 21805 <_>12 7 2 2 -1.</_> 21806 <_>13 7 1 1 2.</_> 21807 <_>12 8 1 1 2.</_></rects> 21808 <tilted>0</tilted></feature> 21809 <threshold>7.4488727841526270e-004</threshold> 21810 <left_val>0.4891090989112854</left_val> 21811 <right_val>0.5974786877632141</right_val></_></_> 21812 <_> 21813 <!-- tree 68 --> 21814 <_> 21815 <!-- root node --> 21816 <feature> 21817 <rects> 21818 <_>5 7 2 2 -1.</_> 21819 <_>5 7 1 1 2.</_> 21820 <_>6 8 1 1 2.</_></rects> 21821 <tilted>0</tilted></feature> 21822 <threshold>-3.5116379149258137e-003</threshold> 21823 <left_val>0.7413681745529175</left_val> 21824 <right_val>0.4768764972686768</right_val></_></_> 21825 <_> 21826 <!-- tree 69 --> 21827 <_> 21828 <!-- root node --> 21829 <feature> 21830 <rects> 21831 <_>13 0 3 14 -1.</_> 21832 <_>14 0 1 14 3.</_></rects> 21833 <tilted>0</tilted></feature> 21834 <threshold>-0.0125409103929996</threshold> 21835 <left_val>0.3648819029331207</left_val> 21836 <right_val>0.5252826809883118</right_val></_></_> 21837 <_> 21838 <!-- tree 70 --> 21839 <_> 21840 <!-- root node --> 21841 <feature> 21842 <rects> 21843 <_>4 0 3 14 -1.</_> 21844 <_>5 0 1 14 3.</_></rects> 21845 <tilted>0</tilted></feature> 21846 <threshold>9.4931852072477341e-003</threshold> 21847 <left_val>0.5100492835044861</left_val> 21848 <right_val>0.3629586994647980</right_val></_></_> 21849 <_> 21850 <!-- tree 71 --> 21851 <_> 21852 <!-- root node --> 21853 <feature> 21854 <rects> 21855 <_>13 4 3 14 -1.</_> 21856 <_>14 4 1 14 3.</_></rects> 21857 <tilted>0</tilted></feature> 21858 <threshold>0.0129611501470208</threshold> 21859 <left_val>0.5232442021369934</left_val> 21860 <right_val>0.4333561062812805</right_val></_></_> 21861 <_> 21862 <!-- tree 72 --> 21863 <_> 21864 <!-- root node --> 21865 <feature> 21866 <rects> 21867 <_>9 14 2 3 -1.</_> 21868 <_>9 15 2 1 3.</_></rects> 21869 <tilted>0</tilted></feature> 21870 <threshold>4.7209449112415314e-003</threshold> 21871 <left_val>0.4648149013519287</left_val> 21872 <right_val>0.6331052780151367</right_val></_></_> 21873 <_> 21874 <!-- tree 73 --> 21875 <_> 21876 <!-- root node --> 21877 <feature> 21878 <rects> 21879 <_>8 14 4 3 -1.</_> 21880 <_>8 15 4 1 3.</_></rects> 21881 <tilted>0</tilted></feature> 21882 <threshold>-2.3119079414755106e-003</threshold> 21883 <left_val>0.5930309891700745</left_val> 21884 <right_val>0.4531058073043823</right_val></_></_> 21885 <_> 21886 <!-- tree 74 --> 21887 <_> 21888 <!-- root node --> 21889 <feature> 21890 <rects> 21891 <_>4 2 3 16 -1.</_> 21892 <_>5 2 1 16 3.</_></rects> 21893 <tilted>0</tilted></feature> 21894 <threshold>-2.8262299019843340e-003</threshold> 21895 <left_val>0.3870477974414825</left_val> 21896 <right_val>0.5257101058959961</right_val></_></_> 21897 <_> 21898 <!-- tree 75 --> 21899 <_> 21900 <!-- root node --> 21901 <feature> 21902 <rects> 21903 <_>7 2 8 10 -1.</_> 21904 <_>7 7 8 5 2.</_></rects> 21905 <tilted>0</tilted></feature> 21906 <threshold>-1.4311339473351836e-003</threshold> 21907 <left_val>0.5522503256797791</left_val> 21908 <right_val>0.4561854898929596</right_val></_></_> 21909 <_> 21910 <!-- tree 76 --> 21911 <_> 21912 <!-- root node --> 21913 <feature> 21914 <rects> 21915 <_>6 14 7 3 -1.</_> 21916 <_>6 15 7 1 3.</_></rects> 21917 <tilted>0</tilted></feature> 21918 <threshold>1.9378310535103083e-003</threshold> 21919 <left_val>0.4546220898628235</left_val> 21920 <right_val>0.5736966729164124</right_val></_></_> 21921 <_> 21922 <!-- tree 77 --> 21923 <_> 21924 <!-- root node --> 21925 <feature> 21926 <rects> 21927 <_>9 2 10 12 -1.</_> 21928 <_>14 2 5 6 2.</_> 21929 <_>9 8 5 6 2.</_></rects> 21930 <tilted>0</tilted></feature> 21931 <threshold>2.6343559147790074e-004</threshold> 21932 <left_val>0.5345739126205444</left_val> 21933 <right_val>0.4571875035762787</right_val></_></_> 21934 <_> 21935 <!-- tree 78 --> 21936 <_> 21937 <!-- root node --> 21938 <feature> 21939 <rects> 21940 <_>6 7 8 2 -1.</_> 21941 <_>6 8 8 1 2.</_></rects> 21942 <tilted>0</tilted></feature> 21943 <threshold>7.8257522545754910e-004</threshold> 21944 <left_val>0.3967815935611725</left_val> 21945 <right_val>0.5220187902450562</right_val></_></_> 21946 <_> 21947 <!-- tree 79 --> 21948 <_> 21949 <!-- root node --> 21950 <feature> 21951 <rects> 21952 <_>8 13 4 6 -1.</_> 21953 <_>8 16 4 3 2.</_></rects> 21954 <tilted>0</tilted></feature> 21955 <threshold>-0.0195504408329725</threshold> 21956 <left_val>0.2829642891883850</left_val> 21957 <right_val>0.5243508219718933</right_val></_></_> 21958 <_> 21959 <!-- tree 80 --> 21960 <_> 21961 <!-- root node --> 21962 <feature> 21963 <rects> 21964 <_>6 6 1 3 -1.</_> 21965 <_>6 7 1 1 3.</_></rects> 21966 <tilted>0</tilted></feature> 21967 <threshold>4.3914958951063454e-004</threshold> 21968 <left_val>0.4590066969394684</left_val> 21969 <right_val>0.5899090170860291</right_val></_></_> 21970 <_> 21971 <!-- tree 81 --> 21972 <_> 21973 <!-- root node --> 21974 <feature> 21975 <rects> 21976 <_>16 2 4 6 -1.</_> 21977 <_>16 4 4 2 3.</_></rects> 21978 <tilted>0</tilted></feature> 21979 <threshold>0.0214520003646612</threshold> 21980 <left_val>0.5231410861015320</left_val> 21981 <right_val>0.2855378985404968</right_val></_></_> 21982 <_> 21983 <!-- tree 82 --> 21984 <_> 21985 <!-- root node --> 21986 <feature> 21987 <rects> 21988 <_>6 6 4 2 -1.</_> 21989 <_>6 6 2 1 2.</_> 21990 <_>8 7 2 1 2.</_></rects> 21991 <tilted>0</tilted></feature> 21992 <threshold>5.8973580598831177e-004</threshold> 21993 <left_val>0.4397256970405579</left_val> 21994 <right_val>0.5506421923637390</right_val></_></_> 21995 <_> 21996 <!-- tree 83 --> 21997 <_> 21998 <!-- root node --> 21999 <feature> 22000 <rects> 22001 <_>16 2 4 6 -1.</_> 22002 <_>16 4 4 2 3.</_></rects> 22003 <tilted>0</tilted></feature> 22004 <threshold>-0.0261576101183891</threshold> 22005 <left_val>0.3135079145431519</left_val> 22006 <right_val>0.5189175009727478</right_val></_></_> 22007 <_> 22008 <!-- tree 84 --> 22009 <_> 22010 <!-- root node --> 22011 <feature> 22012 <rects> 22013 <_>0 2 4 6 -1.</_> 22014 <_>0 4 4 2 3.</_></rects> 22015 <tilted>0</tilted></feature> 22016 <threshold>-0.0139598604291677</threshold> 22017 <left_val>0.3213272988796234</left_val> 22018 <right_val>0.5040717720985413</right_val></_></_> 22019 <_> 22020 <!-- tree 85 --> 22021 <_> 22022 <!-- root node --> 22023 <feature> 22024 <rects> 22025 <_>9 6 2 6 -1.</_> 22026 <_>9 6 1 6 2.</_></rects> 22027 <tilted>0</tilted></feature> 22028 <threshold>-6.3699018210172653e-003</threshold> 22029 <left_val>0.6387544870376587</left_val> 22030 <right_val>0.4849506914615631</right_val></_></_> 22031 <_> 22032 <!-- tree 86 --> 22033 <_> 22034 <!-- root node --> 22035 <feature> 22036 <rects> 22037 <_>3 4 6 10 -1.</_> 22038 <_>3 9 6 5 2.</_></rects> 22039 <tilted>0</tilted></feature> 22040 <threshold>-8.5613820701837540e-003</threshold> 22041 <left_val>0.2759132087230682</left_val> 22042 <right_val>0.5032019019126892</right_val></_></_> 22043 <_> 22044 <!-- tree 87 --> 22045 <_> 22046 <!-- root node --> 22047 <feature> 22048 <rects> 22049 <_>9 5 2 6 -1.</_> 22050 <_>9 5 1 6 2.</_></rects> 22051 <tilted>0</tilted></feature> 22052 <threshold>9.6622901037335396e-004</threshold> 22053 <left_val>0.4685640931129456</left_val> 22054 <right_val>0.5834879279136658</right_val></_></_> 22055 <_> 22056 <!-- tree 88 --> 22057 <_> 22058 <!-- root node --> 22059 <feature> 22060 <rects> 22061 <_>3 13 2 3 -1.</_> 22062 <_>3 14 2 1 3.</_></rects> 22063 <tilted>0</tilted></feature> 22064 <threshold>7.6550268568098545e-004</threshold> 22065 <left_val>0.5175207257270813</left_val> 22066 <right_val>0.3896422088146210</right_val></_></_> 22067 <_> 22068 <!-- tree 89 --> 22069 <_> 22070 <!-- root node --> 22071 <feature> 22072 <rects> 22073 <_>13 13 3 2 -1.</_> 22074 <_>13 14 3 1 2.</_></rects> 22075 <tilted>0</tilted></feature> 22076 <threshold>-8.1833340227603912e-003</threshold> 22077 <left_val>0.2069136947393417</left_val> 22078 <right_val>0.5208122134208679</right_val></_></_> 22079 <_> 22080 <!-- tree 90 --> 22081 <_> 22082 <!-- root node --> 22083 <feature> 22084 <rects> 22085 <_>2 16 10 4 -1.</_> 22086 <_>2 16 5 2 2.</_> 22087 <_>7 18 5 2 2.</_></rects> 22088 <tilted>0</tilted></feature> 22089 <threshold>-9.3976939097046852e-003</threshold> 22090 <left_val>0.6134091019630432</left_val> 22091 <right_val>0.4641222953796387</right_val></_></_> 22092 <_> 22093 <!-- tree 91 --> 22094 <_> 22095 <!-- root node --> 22096 <feature> 22097 <rects> 22098 <_>5 6 10 6 -1.</_> 22099 <_>10 6 5 3 2.</_> 22100 <_>5 9 5 3 2.</_></rects> 22101 <tilted>0</tilted></feature> 22102 <threshold>4.8028980381786823e-003</threshold> 22103 <left_val>0.5454108119010925</left_val> 22104 <right_val>0.4395219981670380</right_val></_></_> 22105 <_> 22106 <!-- tree 92 --> 22107 <_> 22108 <!-- root node --> 22109 <feature> 22110 <rects> 22111 <_>7 14 1 3 -1.</_> 22112 <_>7 15 1 1 3.</_></rects> 22113 <tilted>0</tilted></feature> 22114 <threshold>-3.5680569708347321e-003</threshold> 22115 <left_val>0.6344485282897949</left_val> 22116 <right_val>0.4681093990802765</right_val></_></_> 22117 <_> 22118 <!-- tree 93 --> 22119 <_> 22120 <!-- root node --> 22121 <feature> 22122 <rects> 22123 <_>14 16 6 3 -1.</_> 22124 <_>14 17 6 1 3.</_></rects> 22125 <tilted>0</tilted></feature> 22126 <threshold>4.0733120404183865e-003</threshold> 22127 <left_val>0.5292683243751526</left_val> 22128 <right_val>0.4015620052814484</right_val></_></_> 22129 <_> 22130 <!-- tree 94 --> 22131 <_> 22132 <!-- root node --> 22133 <feature> 22134 <rects> 22135 <_>5 4 3 3 -1.</_> 22136 <_>5 5 3 1 3.</_></rects> 22137 <tilted>0</tilted></feature> 22138 <threshold>1.2568129459396005e-003</threshold> 22139 <left_val>0.4392988085746765</left_val> 22140 <right_val>0.5452824831008911</right_val></_></_> 22141 <_> 22142 <!-- tree 95 --> 22143 <_> 22144 <!-- root node --> 22145 <feature> 22146 <rects> 22147 <_>7 4 10 3 -1.</_> 22148 <_>7 5 10 1 3.</_></rects> 22149 <tilted>0</tilted></feature> 22150 <threshold>-2.9065010603517294e-003</threshold> 22151 <left_val>0.5898832082748413</left_val> 22152 <right_val>0.4863379895687103</right_val></_></_> 22153 <_> 22154 <!-- tree 96 --> 22155 <_> 22156 <!-- root node --> 22157 <feature> 22158 <rects> 22159 <_>0 4 5 4 -1.</_> 22160 <_>0 6 5 2 2.</_></rects> 22161 <tilted>0</tilted></feature> 22162 <threshold>-2.4409340694546700e-003</threshold> 22163 <left_val>0.4069364964962006</left_val> 22164 <right_val>0.5247421860694885</right_val></_></_> 22165 <_> 22166 <!-- tree 97 --> 22167 <_> 22168 <!-- root node --> 22169 <feature> 22170 <rects> 22171 <_>13 11 3 9 -1.</_> 22172 <_>13 14 3 3 3.</_></rects> 22173 <tilted>0</tilted></feature> 22174 <threshold>0.0248307008296251</threshold> 22175 <left_val>0.5182725787162781</left_val> 22176 <right_val>0.3682524859905243</right_val></_></_> 22177 <_> 22178 <!-- tree 98 --> 22179 <_> 22180 <!-- root node --> 22181 <feature> 22182 <rects> 22183 <_>4 11 3 9 -1.</_> 22184 <_>4 14 3 3 3.</_></rects> 22185 <tilted>0</tilted></feature> 22186 <threshold>-0.0488540083169937</threshold> 22187 <left_val>0.1307577937841415</left_val> 22188 <right_val>0.4961281120777130</right_val></_></_> 22189 <_> 22190 <!-- tree 99 --> 22191 <_> 22192 <!-- root node --> 22193 <feature> 22194 <rects> 22195 <_>9 7 2 1 -1.</_> 22196 <_>9 7 1 1 2.</_></rects> 22197 <tilted>0</tilted></feature> 22198 <threshold>-1.6110379947349429e-003</threshold> 22199 <left_val>0.6421005725860596</left_val> 22200 <right_val>0.4872662127017975</right_val></_></_> 22201 <_> 22202 <!-- tree 100 --> 22203 <_> 22204 <!-- root node --> 22205 <feature> 22206 <rects> 22207 <_>5 0 6 17 -1.</_> 22208 <_>7 0 2 17 3.</_></rects> 22209 <tilted>0</tilted></feature> 22210 <threshold>-0.0970094799995422</threshold> 22211 <left_val>0.0477693490684032</left_val> 22212 <right_val>0.4950988888740540</right_val></_></_> 22213 <_> 22214 <!-- tree 101 --> 22215 <_> 22216 <!-- root node --> 22217 <feature> 22218 <rects> 22219 <_>10 3 6 3 -1.</_> 22220 <_>10 3 3 3 2.</_></rects> 22221 <tilted>0</tilted></feature> 22222 <threshold>1.1209240183234215e-003</threshold> 22223 <left_val>0.4616267085075378</left_val> 22224 <right_val>0.5354745984077454</right_val></_></_> 22225 <_> 22226 <!-- tree 102 --> 22227 <_> 22228 <!-- root node --> 22229 <feature> 22230 <rects> 22231 <_>2 2 15 4 -1.</_> 22232 <_>7 2 5 4 3.</_></rects> 22233 <tilted>0</tilted></feature> 22234 <threshold>-1.3064090162515640e-003</threshold> 22235 <left_val>0.6261854171752930</left_val> 22236 <right_val>0.4638805985450745</right_val></_></_> 22237 <_> 22238 <!-- tree 103 --> 22239 <_> 22240 <!-- root node --> 22241 <feature> 22242 <rects> 22243 <_>8 2 8 2 -1.</_> 22244 <_>12 2 4 1 2.</_> 22245 <_>8 3 4 1 2.</_></rects> 22246 <tilted>0</tilted></feature> 22247 <threshold>4.5771620352752507e-004</threshold> 22248 <left_val>0.5384417772293091</left_val> 22249 <right_val>0.4646640121936798</right_val></_></_> 22250 <_> 22251 <!-- tree 104 --> 22252 <_> 22253 <!-- root node --> 22254 <feature> 22255 <rects> 22256 <_>8 1 3 6 -1.</_> 22257 <_>8 3 3 2 3.</_></rects> 22258 <tilted>0</tilted></feature> 22259 <threshold>-6.3149951165542006e-004</threshold> 22260 <left_val>0.3804047107696533</left_val> 22261 <right_val>0.5130257010459900</right_val></_></_> 22262 <_> 22263 <!-- tree 105 --> 22264 <_> 22265 <!-- root node --> 22266 <feature> 22267 <rects> 22268 <_>9 17 2 2 -1.</_> 22269 <_>9 18 2 1 2.</_></rects> 22270 <tilted>0</tilted></feature> 22271 <threshold>1.4505970466416329e-004</threshold> 22272 <left_val>0.4554310142993927</left_val> 22273 <right_val>0.5664461851119995</right_val></_></_> 22274 <_> 22275 <!-- tree 106 --> 22276 <_> 22277 <!-- root node --> 22278 <feature> 22279 <rects> 22280 <_>0 0 2 14 -1.</_> 22281 <_>1 0 1 14 2.</_></rects> 22282 <tilted>0</tilted></feature> 22283 <threshold>-0.0164745505899191</threshold> 22284 <left_val>0.6596958041191101</left_val> 22285 <right_val>0.4715859889984131</right_val></_></_> 22286 <_> 22287 <!-- tree 107 --> 22288 <_> 22289 <!-- root node --> 22290 <feature> 22291 <rects> 22292 <_>12 0 7 3 -1.</_> 22293 <_>12 1 7 1 3.</_></rects> 22294 <tilted>0</tilted></feature> 22295 <threshold>0.0133695797994733</threshold> 22296 <left_val>0.5195466279983521</left_val> 22297 <right_val>0.3035964965820313</right_val></_></_> 22298 <_> 22299 <!-- tree 108 --> 22300 <_> 22301 <!-- root node --> 22302 <feature> 22303 <rects> 22304 <_>1 14 1 2 -1.</_> 22305 <_>1 15 1 1 2.</_></rects> 22306 <tilted>0</tilted></feature> 22307 <threshold>1.0271780047332868e-004</threshold> 22308 <left_val>0.5229176282882690</left_val> 22309 <right_val>0.4107066094875336</right_val></_></_> 22310 <_> 22311 <!-- tree 109 --> 22312 <_> 22313 <!-- root node --> 22314 <feature> 22315 <rects> 22316 <_>14 12 2 8 -1.</_> 22317 <_>15 12 1 4 2.</_> 22318 <_>14 16 1 4 2.</_></rects> 22319 <tilted>0</tilted></feature> 22320 <threshold>-5.5311559699475765e-003</threshold> 22321 <left_val>0.6352887749671936</left_val> 22322 <right_val>0.4960907101631165</right_val></_></_> 22323 <_> 22324 <!-- tree 110 --> 22325 <_> 22326 <!-- root node --> 22327 <feature> 22328 <rects> 22329 <_>1 0 7 3 -1.</_> 22330 <_>1 1 7 1 3.</_></rects> 22331 <tilted>0</tilted></feature> 22332 <threshold>-2.6187049224972725e-003</threshold> 22333 <left_val>0.3824546039104462</left_val> 22334 <right_val>0.5140984058380127</right_val></_></_> 22335 <_> 22336 <!-- tree 111 --> 22337 <_> 22338 <!-- root node --> 22339 <feature> 22340 <rects> 22341 <_>14 12 2 8 -1.</_> 22342 <_>15 12 1 4 2.</_> 22343 <_>14 16 1 4 2.</_></rects> 22344 <tilted>0</tilted></feature> 22345 <threshold>5.0834268331527710e-003</threshold> 22346 <left_val>0.4950439929962158</left_val> 22347 <right_val>0.6220818758010864</right_val></_></_> 22348 <_> 22349 <!-- tree 112 --> 22350 <_> 22351 <!-- root node --> 22352 <feature> 22353 <rects> 22354 <_>6 0 8 12 -1.</_> 22355 <_>6 0 4 6 2.</_> 22356 <_>10 6 4 6 2.</_></rects> 22357 <tilted>0</tilted></feature> 22358 <threshold>0.0798181593418121</threshold> 22359 <left_val>0.4952335953712463</left_val> 22360 <right_val>0.1322475969791412</right_val></_></_> 22361 <_> 22362 <!-- tree 113 --> 22363 <_> 22364 <!-- root node --> 22365 <feature> 22366 <rects> 22367 <_>6 1 8 9 -1.</_> 22368 <_>6 4 8 3 3.</_></rects> 22369 <tilted>0</tilted></feature> 22370 <threshold>-0.0992265865206718</threshold> 22371 <left_val>0.7542728781700134</left_val> 22372 <right_val>0.5008416771888733</right_val></_></_> 22373 <_> 22374 <!-- tree 114 --> 22375 <_> 22376 <!-- root node --> 22377 <feature> 22378 <rects> 22379 <_>5 2 2 2 -1.</_> 22380 <_>5 3 2 1 2.</_></rects> 22381 <tilted>0</tilted></feature> 22382 <threshold>-6.5174017800018191e-004</threshold> 22383 <left_val>0.3699302971363068</left_val> 22384 <right_val>0.5130121111869812</right_val></_></_> 22385 <_> 22386 <!-- tree 115 --> 22387 <_> 22388 <!-- root node --> 22389 <feature> 22390 <rects> 22391 <_>13 14 6 6 -1.</_> 22392 <_>16 14 3 3 2.</_> 22393 <_>13 17 3 3 2.</_></rects> 22394 <tilted>0</tilted></feature> 22395 <threshold>-0.0189968496561050</threshold> 22396 <left_val>0.6689178943634033</left_val> 22397 <right_val>0.4921202957630158</right_val></_></_> 22398 <_> 22399 <!-- tree 116 --> 22400 <_> 22401 <!-- root node --> 22402 <feature> 22403 <rects> 22404 <_>0 17 20 2 -1.</_> 22405 <_>0 17 10 1 2.</_> 22406 <_>10 18 10 1 2.</_></rects> 22407 <tilted>0</tilted></feature> 22408 <threshold>0.0173468999564648</threshold> 22409 <left_val>0.4983300864696503</left_val> 22410 <right_val>0.1859198063611984</right_val></_></_> 22411 <_> 22412 <!-- tree 117 --> 22413 <_> 22414 <!-- root node --> 22415 <feature> 22416 <rects> 22417 <_>10 3 2 6 -1.</_> 22418 <_>11 3 1 3 2.</_> 22419 <_>10 6 1 3 2.</_></rects> 22420 <tilted>0</tilted></feature> 22421 <threshold>5.5082101607695222e-004</threshold> 22422 <left_val>0.4574424028396606</left_val> 22423 <right_val>0.5522121787071228</right_val></_></_> 22424 <_> 22425 <!-- tree 118 --> 22426 <_> 22427 <!-- root node --> 22428 <feature> 22429 <rects> 22430 <_>5 12 6 2 -1.</_> 22431 <_>8 12 3 2 2.</_></rects> 22432 <tilted>0</tilted></feature> 22433 <threshold>2.0056050270795822e-003</threshold> 22434 <left_val>0.5131744742393494</left_val> 22435 <right_val>0.3856469988822937</right_val></_></_> 22436 <_> 22437 <!-- tree 119 --> 22438 <_> 22439 <!-- root node --> 22440 <feature> 22441 <rects> 22442 <_>10 7 6 13 -1.</_> 22443 <_>10 7 3 13 2.</_></rects> 22444 <tilted>0</tilted></feature> 22445 <threshold>-7.7688191086053848e-003</threshold> 22446 <left_val>0.4361700117588043</left_val> 22447 <right_val>0.5434309244155884</right_val></_></_> 22448 <_> 22449 <!-- tree 120 --> 22450 <_> 22451 <!-- root node --> 22452 <feature> 22453 <rects> 22454 <_>5 15 10 5 -1.</_> 22455 <_>10 15 5 5 2.</_></rects> 22456 <tilted>0</tilted></feature> 22457 <threshold>0.0508782789111137</threshold> 22458 <left_val>0.4682720899581909</left_val> 22459 <right_val>0.6840639710426331</right_val></_></_> 22460 <_> 22461 <!-- tree 121 --> 22462 <_> 22463 <!-- root node --> 22464 <feature> 22465 <rects> 22466 <_>10 4 4 10 -1.</_> 22467 <_>10 4 2 10 2.</_></rects> 22468 <tilted>0</tilted></feature> 22469 <threshold>-2.2901780903339386e-003</threshold> 22470 <left_val>0.4329245090484619</left_val> 22471 <right_val>0.5306099057197571</right_val></_></_> 22472 <_> 22473 <!-- tree 122 --> 22474 <_> 22475 <!-- root node --> 22476 <feature> 22477 <rects> 22478 <_>5 7 2 1 -1.</_> 22479 <_>6 7 1 1 2.</_></rects> 22480 <tilted>0</tilted></feature> 22481 <threshold>-1.5715380141045898e-004</threshold> 22482 <left_val>0.5370057225227356</left_val> 22483 <right_val>0.4378164112567902</right_val></_></_> 22484 <_> 22485 <!-- tree 123 --> 22486 <_> 22487 <!-- root node --> 22488 <feature> 22489 <rects> 22490 <_>10 3 6 7 -1.</_> 22491 <_>10 3 3 7 2.</_></rects> 22492 <tilted>0</tilted></feature> 22493 <threshold>0.1051924005150795</threshold> 22494 <left_val>0.5137274265289307</left_val> 22495 <right_val>0.0673614665865898</right_val></_></_> 22496 <_> 22497 <!-- tree 124 --> 22498 <_> 22499 <!-- root node --> 22500 <feature> 22501 <rects> 22502 <_>4 3 6 7 -1.</_> 22503 <_>7 3 3 7 2.</_></rects> 22504 <tilted>0</tilted></feature> 22505 <threshold>2.7198919560760260e-003</threshold> 22506 <left_val>0.4112060964107513</left_val> 22507 <right_val>0.5255665183067322</right_val></_></_> 22508 <_> 22509 <!-- tree 125 --> 22510 <_> 22511 <!-- root node --> 22512 <feature> 22513 <rects> 22514 <_>1 7 18 5 -1.</_> 22515 <_>7 7 6 5 3.</_></rects> 22516 <tilted>0</tilted></feature> 22517 <threshold>0.0483377799391747</threshold> 22518 <left_val>0.5404623746871948</left_val> 22519 <right_val>0.4438967108726502</right_val></_></_> 22520 <_> 22521 <!-- tree 126 --> 22522 <_> 22523 <!-- root node --> 22524 <feature> 22525 <rects> 22526 <_>3 17 4 3 -1.</_> 22527 <_>5 17 2 3 2.</_></rects> 22528 <tilted>0</tilted></feature> 22529 <threshold>9.5703761326149106e-004</threshold> 22530 <left_val>0.4355969130992889</left_val> 22531 <right_val>0.5399510860443115</right_val></_></_> 22532 <_> 22533 <!-- tree 127 --> 22534 <_> 22535 <!-- root node --> 22536 <feature> 22537 <rects> 22538 <_>8 14 12 6 -1.</_> 22539 <_>14 14 6 3 2.</_> 22540 <_>8 17 6 3 2.</_></rects> 22541 <tilted>0</tilted></feature> 22542 <threshold>-0.0253712590783834</threshold> 22543 <left_val>0.5995175242424011</left_val> 22544 <right_val>0.5031024813652039</right_val></_></_> 22545 <_> 22546 <!-- tree 128 --> 22547 <_> 22548 <!-- root node --> 22549 <feature> 22550 <rects> 22551 <_>0 13 20 4 -1.</_> 22552 <_>0 13 10 2 2.</_> 22553 <_>10 15 10 2 2.</_></rects> 22554 <tilted>0</tilted></feature> 22555 <threshold>0.0524579510092735</threshold> 22556 <left_val>0.4950287938117981</left_val> 22557 <right_val>0.1398351043462753</right_val></_></_> 22558 <_> 22559 <!-- tree 129 --> 22560 <_> 22561 <!-- root node --> 22562 <feature> 22563 <rects> 22564 <_>4 5 14 2 -1.</_> 22565 <_>11 5 7 1 2.</_> 22566 <_>4 6 7 1 2.</_></rects> 22567 <tilted>0</tilted></feature> 22568 <threshold>-0.0123656298965216</threshold> 22569 <left_val>0.6397299170494080</left_val> 22570 <right_val>0.4964106082916260</right_val></_></_> 22571 <_> 22572 <!-- tree 130 --> 22573 <_> 22574 <!-- root node --> 22575 <feature> 22576 <rects> 22577 <_>1 2 10 12 -1.</_> 22578 <_>1 2 5 6 2.</_> 22579 <_>6 8 5 6 2.</_></rects> 22580 <tilted>0</tilted></feature> 22581 <threshold>-0.1458971947431564</threshold> 22582 <left_val>0.1001669988036156</left_val> 22583 <right_val>0.4946322143077850</right_val></_></_> 22584 <_> 22585 <!-- tree 131 --> 22586 <_> 22587 <!-- root node --> 22588 <feature> 22589 <rects> 22590 <_>6 1 14 3 -1.</_> 22591 <_>6 2 14 1 3.</_></rects> 22592 <tilted>0</tilted></feature> 22593 <threshold>-0.0159086007624865</threshold> 22594 <left_val>0.3312329947948456</left_val> 22595 <right_val>0.5208340883255005</right_val></_></_> 22596 <_> 22597 <!-- tree 132 --> 22598 <_> 22599 <!-- root node --> 22600 <feature> 22601 <rects> 22602 <_>8 16 2 3 -1.</_> 22603 <_>8 17 2 1 3.</_></rects> 22604 <tilted>0</tilted></feature> 22605 <threshold>3.9486068999394774e-004</threshold> 22606 <left_val>0.4406363964080811</left_val> 22607 <right_val>0.5426102876663208</right_val></_></_> 22608 <_> 22609 <!-- tree 133 --> 22610 <_> 22611 <!-- root node --> 22612 <feature> 22613 <rects> 22614 <_>9 17 3 2 -1.</_> 22615 <_>10 17 1 2 3.</_></rects> 22616 <tilted>0</tilted></feature> 22617 <threshold>-5.2454001270234585e-003</threshold> 22618 <left_val>0.2799589931964874</left_val> 22619 <right_val>0.5189967155456543</right_val></_></_> 22620 <_> 22621 <!-- tree 134 --> 22622 <_> 22623 <!-- root node --> 22624 <feature> 22625 <rects> 22626 <_>5 15 4 2 -1.</_> 22627 <_>5 15 2 1 2.</_> 22628 <_>7 16 2 1 2.</_></rects> 22629 <tilted>0</tilted></feature> 22630 <threshold>-5.0421799533069134e-003</threshold> 22631 <left_val>0.6987580060958862</left_val> 22632 <right_val>0.4752142131328583</right_val></_></_> 22633 <_> 22634 <!-- tree 135 --> 22635 <_> 22636 <!-- root node --> 22637 <feature> 22638 <rects> 22639 <_>10 15 1 3 -1.</_> 22640 <_>10 16 1 1 3.</_></rects> 22641 <tilted>0</tilted></feature> 22642 <threshold>2.9812189750373363e-003</threshold> 22643 <left_val>0.4983288943767548</left_val> 22644 <right_val>0.6307479739189148</right_val></_></_> 22645 <_> 22646 <!-- tree 136 --> 22647 <_> 22648 <!-- root node --> 22649 <feature> 22650 <rects> 22651 <_>8 16 4 4 -1.</_> 22652 <_>8 16 2 2 2.</_> 22653 <_>10 18 2 2 2.</_></rects> 22654 <tilted>0</tilted></feature> 22655 <threshold>-7.2884308174252510e-003</threshold> 22656 <left_val>0.2982333004474640</left_val> 22657 <right_val>0.5026869773864746</right_val></_></_> 22658 <_> 22659 <!-- tree 137 --> 22660 <_> 22661 <!-- root node --> 22662 <feature> 22663 <rects> 22664 <_>6 11 8 6 -1.</_> 22665 <_>6 14 8 3 2.</_></rects> 22666 <tilted>0</tilted></feature> 22667 <threshold>1.5094350092113018e-003</threshold> 22668 <left_val>0.5308442115783691</left_val> 22669 <right_val>0.3832970857620239</right_val></_></_> 22670 <_> 22671 <!-- tree 138 --> 22672 <_> 22673 <!-- root node --> 22674 <feature> 22675 <rects> 22676 <_>2 13 5 2 -1.</_> 22677 <_>2 14 5 1 2.</_></rects> 22678 <tilted>0</tilted></feature> 22679 <threshold>-9.3340799212455750e-003</threshold> 22680 <left_val>0.2037964016199112</left_val> 22681 <right_val>0.4969817101955414</right_val></_></_> 22682 <_> 22683 <!-- tree 139 --> 22684 <_> 22685 <!-- root node --> 22686 <feature> 22687 <rects> 22688 <_>13 14 6 6 -1.</_> 22689 <_>16 14 3 3 2.</_> 22690 <_>13 17 3 3 2.</_></rects> 22691 <tilted>0</tilted></feature> 22692 <threshold>0.0286671407520771</threshold> 22693 <left_val>0.5025696754455566</left_val> 22694 <right_val>0.6928027272224426</right_val></_></_> 22695 <_> 22696 <!-- tree 140 --> 22697 <_> 22698 <!-- root node --> 22699 <feature> 22700 <rects> 22701 <_>1 9 18 4 -1.</_> 22702 <_>7 9 6 4 3.</_></rects> 22703 <tilted>0</tilted></feature> 22704 <threshold>0.1701968014240265</threshold> 22705 <left_val>0.4960052967071533</left_val> 22706 <right_val>0.1476442962884903</right_val></_></_> 22707 <_> 22708 <!-- tree 141 --> 22709 <_> 22710 <!-- root node --> 22711 <feature> 22712 <rects> 22713 <_>13 14 6 6 -1.</_> 22714 <_>16 14 3 3 2.</_> 22715 <_>13 17 3 3 2.</_></rects> 22716 <tilted>0</tilted></feature> 22717 <threshold>-3.2614478841423988e-003</threshold> 22718 <left_val>0.5603063702583313</left_val> 22719 <right_val>0.4826056063175201</right_val></_></_> 22720 <_> 22721 <!-- tree 142 --> 22722 <_> 22723 <!-- root node --> 22724 <feature> 22725 <rects> 22726 <_>0 2 1 6 -1.</_> 22727 <_>0 4 1 2 3.</_></rects> 22728 <tilted>0</tilted></feature> 22729 <threshold>5.5769277969375253e-004</threshold> 22730 <left_val>0.5205562114715576</left_val> 22731 <right_val>0.4129633009433746</right_val></_></_> 22732 <_> 22733 <!-- tree 143 --> 22734 <_> 22735 <!-- root node --> 22736 <feature> 22737 <rects> 22738 <_>5 0 15 20 -1.</_> 22739 <_>5 10 15 10 2.</_></rects> 22740 <tilted>0</tilted></feature> 22741 <threshold>0.3625833988189697</threshold> 22742 <left_val>0.5221652984619141</left_val> 22743 <right_val>0.3768612146377564</right_val></_></_> 22744 <_> 22745 <!-- tree 144 --> 22746 <_> 22747 <!-- root node --> 22748 <feature> 22749 <rects> 22750 <_>1 14 6 6 -1.</_> 22751 <_>1 14 3 3 2.</_> 22752 <_>4 17 3 3 2.</_></rects> 22753 <tilted>0</tilted></feature> 22754 <threshold>-0.0116151301190257</threshold> 22755 <left_val>0.6022682785987854</left_val> 22756 <right_val>0.4637489914894104</right_val></_></_> 22757 <_> 22758 <!-- tree 145 --> 22759 <_> 22760 <!-- root node --> 22761 <feature> 22762 <rects> 22763 <_>8 14 4 6 -1.</_> 22764 <_>10 14 2 3 2.</_> 22765 <_>8 17 2 3 2.</_></rects> 22766 <tilted>0</tilted></feature> 22767 <threshold>-4.0795197710394859e-003</threshold> 22768 <left_val>0.4070447087287903</left_val> 22769 <right_val>0.5337479114532471</right_val></_></_> 22770 <_> 22771 <!-- tree 146 --> 22772 <_> 22773 <!-- root node --> 22774 <feature> 22775 <rects> 22776 <_>7 11 2 1 -1.</_> 22777 <_>8 11 1 1 2.</_></rects> 22778 <tilted>0</tilted></feature> 22779 <threshold>5.7204300537705421e-004</threshold> 22780 <left_val>0.4601835012435913</left_val> 22781 <right_val>0.5900393128395081</right_val></_></_> 22782 <_> 22783 <!-- tree 147 --> 22784 <_> 22785 <!-- root node --> 22786 <feature> 22787 <rects> 22788 <_>9 17 3 2 -1.</_> 22789 <_>10 17 1 2 3.</_></rects> 22790 <tilted>0</tilted></feature> 22791 <threshold>6.7543348995968699e-004</threshold> 22792 <left_val>0.5398252010345459</left_val> 22793 <right_val>0.4345428943634033</right_val></_></_> 22794 <_> 22795 <!-- tree 148 --> 22796 <_> 22797 <!-- root node --> 22798 <feature> 22799 <rects> 22800 <_>8 17 3 2 -1.</_> 22801 <_>9 17 1 2 3.</_></rects> 22802 <tilted>0</tilted></feature> 22803 <threshold>6.3295697327703238e-004</threshold> 22804 <left_val>0.5201563239097595</left_val> 22805 <right_val>0.4051358997821808</right_val></_></_> 22806 <_> 22807 <!-- tree 149 --> 22808 <_> 22809 <!-- root node --> 22810 <feature> 22811 <rects> 22812 <_>12 14 4 6 -1.</_> 22813 <_>14 14 2 3 2.</_> 22814 <_>12 17 2 3 2.</_></rects> 22815 <tilted>0</tilted></feature> 22816 <threshold>1.2435320531949401e-003</threshold> 22817 <left_val>0.4642387926578522</left_val> 22818 <right_val>0.5547441244125366</right_val></_></_> 22819 <_> 22820 <!-- tree 150 --> 22821 <_> 22822 <!-- root node --> 22823 <feature> 22824 <rects> 22825 <_>4 14 4 6 -1.</_> 22826 <_>4 14 2 3 2.</_> 22827 <_>6 17 2 3 2.</_></rects> 22828 <tilted>0</tilted></feature> 22829 <threshold>-4.7363857738673687e-003</threshold> 22830 <left_val>0.6198567152023315</left_val> 22831 <right_val>0.4672552049160004</right_val></_></_> 22832 <_> 22833 <!-- tree 151 --> 22834 <_> 22835 <!-- root node --> 22836 <feature> 22837 <rects> 22838 <_>13 14 2 6 -1.</_> 22839 <_>14 14 1 3 2.</_> 22840 <_>13 17 1 3 2.</_></rects> 22841 <tilted>0</tilted></feature> 22842 <threshold>-6.4658462069928646e-003</threshold> 22843 <left_val>0.6837332844734192</left_val> 22844 <right_val>0.5019000768661499</right_val></_></_> 22845 <_> 22846 <!-- tree 152 --> 22847 <_> 22848 <!-- root node --> 22849 <feature> 22850 <rects> 22851 <_>5 14 2 6 -1.</_> 22852 <_>5 14 1 3 2.</_> 22853 <_>6 17 1 3 2.</_></rects> 22854 <tilted>0</tilted></feature> 22855 <threshold>3.5017321351915598e-004</threshold> 22856 <left_val>0.4344803094863892</left_val> 22857 <right_val>0.5363622903823853</right_val></_></_> 22858 <_> 22859 <!-- tree 153 --> 22860 <_> 22861 <!-- root node --> 22862 <feature> 22863 <rects> 22864 <_>7 0 6 12 -1.</_> 22865 <_>7 4 6 4 3.</_></rects> 22866 <tilted>0</tilted></feature> 22867 <threshold>1.5754920605104417e-004</threshold> 22868 <left_val>0.4760079085826874</left_val> 22869 <right_val>0.5732020735740662</right_val></_></_> 22870 <_> 22871 <!-- tree 154 --> 22872 <_> 22873 <!-- root node --> 22874 <feature> 22875 <rects> 22876 <_>0 7 12 2 -1.</_> 22877 <_>4 7 4 2 3.</_></rects> 22878 <tilted>0</tilted></feature> 22879 <threshold>9.9774366244673729e-003</threshold> 22880 <left_val>0.5090985894203186</left_val> 22881 <right_val>0.3635039925575256</right_val></_></_> 22882 <_> 22883 <!-- tree 155 --> 22884 <_> 22885 <!-- root node --> 22886 <feature> 22887 <rects> 22888 <_>10 3 3 13 -1.</_> 22889 <_>11 3 1 13 3.</_></rects> 22890 <tilted>0</tilted></feature> 22891 <threshold>-4.1464529931545258e-004</threshold> 22892 <left_val>0.5570064783096314</left_val> 22893 <right_val>0.4593802094459534</right_val></_></_> 22894 <_> 22895 <!-- tree 156 --> 22896 <_> 22897 <!-- root node --> 22898 <feature> 22899 <rects> 22900 <_>7 3 3 13 -1.</_> 22901 <_>8 3 1 13 3.</_></rects> 22902 <tilted>0</tilted></feature> 22903 <threshold>-3.5888899583369493e-004</threshold> 22904 <left_val>0.5356845855712891</left_val> 22905 <right_val>0.4339134991168976</right_val></_></_> 22906 <_> 22907 <!-- tree 157 --> 22908 <_> 22909 <!-- root node --> 22910 <feature> 22911 <rects> 22912 <_>10 8 6 3 -1.</_> 22913 <_>10 9 6 1 3.</_></rects> 22914 <tilted>0</tilted></feature> 22915 <threshold>4.0463250479660928e-004</threshold> 22916 <left_val>0.4439803063869476</left_val> 22917 <right_val>0.5436776876449585</right_val></_></_> 22918 <_> 22919 <!-- tree 158 --> 22920 <_> 22921 <!-- root node --> 22922 <feature> 22923 <rects> 22924 <_>3 11 3 2 -1.</_> 22925 <_>4 11 1 2 3.</_></rects> 22926 <tilted>0</tilted></feature> 22927 <threshold>-8.2184787606820464e-004</threshold> 22928 <left_val>0.4042294919490814</left_val> 22929 <right_val>0.5176299214363098</right_val></_></_> 22930 <_> 22931 <!-- tree 159 --> 22932 <_> 22933 <!-- root node --> 22934 <feature> 22935 <rects> 22936 <_>13 12 6 8 -1.</_> 22937 <_>16 12 3 4 2.</_> 22938 <_>13 16 3 4 2.</_></rects> 22939 <tilted>0</tilted></feature> 22940 <threshold>5.9467419050633907e-003</threshold> 22941 <left_val>0.4927651882171631</left_val> 22942 <right_val>0.5633779764175415</right_val></_></_> 22943 <_> 22944 <!-- tree 160 --> 22945 <_> 22946 <!-- root node --> 22947 <feature> 22948 <rects> 22949 <_>7 6 6 5 -1.</_> 22950 <_>9 6 2 5 3.</_></rects> 22951 <tilted>0</tilted></feature> 22952 <threshold>-0.0217533893883228</threshold> 22953 <left_val>0.8006293773651123</left_val> 22954 <right_val>0.4800840914249420</right_val></_></_> 22955 <_> 22956 <!-- tree 161 --> 22957 <_> 22958 <!-- root node --> 22959 <feature> 22960 <rects> 22961 <_>17 11 2 7 -1.</_> 22962 <_>17 11 1 7 2.</_></rects> 22963 <tilted>0</tilted></feature> 22964 <threshold>-0.0145403798669577</threshold> 22965 <left_val>0.3946054875850678</left_val> 22966 <right_val>0.5182222723960877</right_val></_></_> 22967 <_> 22968 <!-- tree 162 --> 22969 <_> 22970 <!-- root node --> 22971 <feature> 22972 <rects> 22973 <_>3 13 8 2 -1.</_> 22974 <_>7 13 4 2 2.</_></rects> 22975 <tilted>0</tilted></feature> 22976 <threshold>-0.0405107699334621</threshold> 22977 <left_val>0.0213249903172255</left_val> 22978 <right_val>0.4935792982578278</right_val></_></_> 22979 <_> 22980 <!-- tree 163 --> 22981 <_> 22982 <!-- root node --> 22983 <feature> 22984 <rects> 22985 <_>6 9 8 3 -1.</_> 22986 <_>6 10 8 1 3.</_></rects> 22987 <tilted>0</tilted></feature> 22988 <threshold>-5.8458268176764250e-004</threshold> 22989 <left_val>0.4012795984745026</left_val> 22990 <right_val>0.5314025282859802</right_val></_></_> 22991 <_> 22992 <!-- tree 164 --> 22993 <_> 22994 <!-- root node --> 22995 <feature> 22996 <rects> 22997 <_>4 3 4 3 -1.</_> 22998 <_>4 4 4 1 3.</_></rects> 22999 <tilted>0</tilted></feature> 23000 <threshold>5.5151800625026226e-003</threshold> 23001 <left_val>0.4642418920993805</left_val> 23002 <right_val>0.5896260738372803</right_val></_></_> 23003 <_> 23004 <!-- tree 165 --> 23005 <_> 23006 <!-- root node --> 23007 <feature> 23008 <rects> 23009 <_>11 3 4 3 -1.</_> 23010 <_>11 4 4 1 3.</_></rects> 23011 <tilted>0</tilted></feature> 23012 <threshold>-6.0626221820712090e-003</threshold> 23013 <left_val>0.6502159237861633</left_val> 23014 <right_val>0.5016477704048157</right_val></_></_> 23015 <_> 23016 <!-- tree 166 --> 23017 <_> 23018 <!-- root node --> 23019 <feature> 23020 <rects> 23021 <_>1 4 17 12 -1.</_> 23022 <_>1 8 17 4 3.</_></rects> 23023 <tilted>0</tilted></feature> 23024 <threshold>0.0945358425378799</threshold> 23025 <left_val>0.5264708995819092</left_val> 23026 <right_val>0.4126827120780945</right_val></_></_> 23027 <_> 23028 <!-- tree 167 --> 23029 <_> 23030 <!-- root node --> 23031 <feature> 23032 <rects> 23033 <_>11 3 4 3 -1.</_> 23034 <_>11 4 4 1 3.</_></rects> 23035 <tilted>0</tilted></feature> 23036 <threshold>4.7315051779150963e-003</threshold> 23037 <left_val>0.4879199862480164</left_val> 23038 <right_val>0.5892447829246521</right_val></_></_> 23039 <_> 23040 <!-- tree 168 --> 23041 <_> 23042 <!-- root node --> 23043 <feature> 23044 <rects> 23045 <_>4 8 6 3 -1.</_> 23046 <_>4 9 6 1 3.</_></rects> 23047 <tilted>0</tilted></feature> 23048 <threshold>-5.2571471314877272e-004</threshold> 23049 <left_val>0.3917280137538910</left_val> 23050 <right_val>0.5189412832260132</right_val></_></_> 23051 <_> 23052 <!-- tree 169 --> 23053 <_> 23054 <!-- root node --> 23055 <feature> 23056 <rects> 23057 <_>12 3 5 3 -1.</_> 23058 <_>12 4 5 1 3.</_></rects> 23059 <tilted>0</tilted></feature> 23060 <threshold>-2.5464049540460110e-003</threshold> 23061 <left_val>0.5837599039077759</left_val> 23062 <right_val>0.4985705912113190</right_val></_></_> 23063 <_> 23064 <!-- tree 170 --> 23065 <_> 23066 <!-- root node --> 23067 <feature> 23068 <rects> 23069 <_>1 11 2 7 -1.</_> 23070 <_>2 11 1 7 2.</_></rects> 23071 <tilted>0</tilted></feature> 23072 <threshold>-0.0260756891220808</threshold> 23073 <left_val>0.1261983960866928</left_val> 23074 <right_val>0.4955821931362152</right_val></_></_> 23075 <_> 23076 <!-- tree 171 --> 23077 <_> 23078 <!-- root node --> 23079 <feature> 23080 <rects> 23081 <_>15 12 2 8 -1.</_> 23082 <_>16 12 1 4 2.</_> 23083 <_>15 16 1 4 2.</_></rects> 23084 <tilted>0</tilted></feature> 23085 <threshold>-5.4779709316790104e-003</threshold> 23086 <left_val>0.5722513794898987</left_val> 23087 <right_val>0.5010265707969666</right_val></_></_> 23088 <_> 23089 <!-- tree 172 --> 23090 <_> 23091 <!-- root node --> 23092 <feature> 23093 <rects> 23094 <_>4 8 11 3 -1.</_> 23095 <_>4 9 11 1 3.</_></rects> 23096 <tilted>0</tilted></feature> 23097 <threshold>5.1337741315364838e-003</threshold> 23098 <left_val>0.5273262262344360</left_val> 23099 <right_val>0.4226376116275787</right_val></_></_> 23100 <_> 23101 <!-- tree 173 --> 23102 <_> 23103 <!-- root node --> 23104 <feature> 23105 <rects> 23106 <_>9 13 6 2 -1.</_> 23107 <_>12 13 3 1 2.</_> 23108 <_>9 14 3 1 2.</_></rects> 23109 <tilted>0</tilted></feature> 23110 <threshold>4.7944980906322598e-004</threshold> 23111 <left_val>0.4450066983699799</left_val> 23112 <right_val>0.5819587111473084</right_val></_></_> 23113 <_> 23114 <!-- tree 174 --> 23115 <_> 23116 <!-- root node --> 23117 <feature> 23118 <rects> 23119 <_>6 13 4 3 -1.</_> 23120 <_>6 14 4 1 3.</_></rects> 23121 <tilted>0</tilted></feature> 23122 <threshold>-2.1114079281687737e-003</threshold> 23123 <left_val>0.5757653117179871</left_val> 23124 <right_val>0.4511714875698090</right_val></_></_> 23125 <_> 23126 <!-- tree 175 --> 23127 <_> 23128 <!-- root node --> 23129 <feature> 23130 <rects> 23131 <_>9 12 3 3 -1.</_> 23132 <_>10 12 1 3 3.</_></rects> 23133 <tilted>0</tilted></feature> 23134 <threshold>-0.0131799904629588</threshold> 23135 <left_val>0.1884381026029587</left_val> 23136 <right_val>0.5160734057426453</right_val></_></_> 23137 <_> 23138 <!-- tree 176 --> 23139 <_> 23140 <!-- root node --> 23141 <feature> 23142 <rects> 23143 <_>5 3 3 3 -1.</_> 23144 <_>5 4 3 1 3.</_></rects> 23145 <tilted>0</tilted></feature> 23146 <threshold>-4.7968099825084209e-003</threshold> 23147 <left_val>0.6589789986610413</left_val> 23148 <right_val>0.4736118912696838</right_val></_></_> 23149 <_> 23150 <!-- tree 177 --> 23151 <_> 23152 <!-- root node --> 23153 <feature> 23154 <rects> 23155 <_>9 4 2 3 -1.</_> 23156 <_>9 5 2 1 3.</_></rects> 23157 <tilted>0</tilted></feature> 23158 <threshold>6.7483168095350266e-003</threshold> 23159 <left_val>0.5259429812431335</left_val> 23160 <right_val>0.3356395065784454</right_val></_></_> 23161 <_> 23162 <!-- tree 178 --> 23163 <_> 23164 <!-- root node --> 23165 <feature> 23166 <rects> 23167 <_>0 2 16 3 -1.</_> 23168 <_>0 3 16 1 3.</_></rects> 23169 <tilted>0</tilted></feature> 23170 <threshold>1.4623369788751006e-003</threshold> 23171 <left_val>0.5355271100997925</left_val> 23172 <right_val>0.4264092147350311</right_val></_></_> 23173 <_> 23174 <!-- tree 179 --> 23175 <_> 23176 <!-- root node --> 23177 <feature> 23178 <rects> 23179 <_>15 12 2 8 -1.</_> 23180 <_>16 12 1 4 2.</_> 23181 <_>15 16 1 4 2.</_></rects> 23182 <tilted>0</tilted></feature> 23183 <threshold>4.7645159065723419e-003</threshold> 23184 <left_val>0.5034406781196594</left_val> 23185 <right_val>0.5786827802658081</right_val></_></_> 23186 <_> 23187 <!-- tree 180 --> 23188 <_> 23189 <!-- root node --> 23190 <feature> 23191 <rects> 23192 <_>3 12 2 8 -1.</_> 23193 <_>3 12 1 4 2.</_> 23194 <_>4 16 1 4 2.</_></rects> 23195 <tilted>0</tilted></feature> 23196 <threshold>6.8066660314798355e-003</threshold> 23197 <left_val>0.4756605029106140</left_val> 23198 <right_val>0.6677829027175903</right_val></_></_> 23199 <_> 23200 <!-- tree 181 --> 23201 <_> 23202 <!-- root node --> 23203 <feature> 23204 <rects> 23205 <_>14 13 3 6 -1.</_> 23206 <_>14 15 3 2 3.</_></rects> 23207 <tilted>0</tilted></feature> 23208 <threshold>3.6608621012419462e-003</threshold> 23209 <left_val>0.5369611978530884</left_val> 23210 <right_val>0.4311546981334686</right_val></_></_> 23211 <_> 23212 <!-- tree 182 --> 23213 <_> 23214 <!-- root node --> 23215 <feature> 23216 <rects> 23217 <_>3 13 3 6 -1.</_> 23218 <_>3 15 3 2 3.</_></rects> 23219 <tilted>0</tilted></feature> 23220 <threshold>0.0214496403932571</threshold> 23221 <left_val>0.4968641996383667</left_val> 23222 <right_val>0.1888816058635712</right_val></_></_> 23223 <_> 23224 <!-- tree 183 --> 23225 <_> 23226 <!-- root node --> 23227 <feature> 23228 <rects> 23229 <_>6 5 10 2 -1.</_> 23230 <_>11 5 5 1 2.</_> 23231 <_>6 6 5 1 2.</_></rects> 23232 <tilted>0</tilted></feature> 23233 <threshold>4.1678901761770248e-003</threshold> 23234 <left_val>0.4930733144283295</left_val> 23235 <right_val>0.5815368890762329</right_val></_></_> 23236 <_> 23237 <!-- tree 184 --> 23238 <_> 23239 <!-- root node --> 23240 <feature> 23241 <rects> 23242 <_>2 14 14 6 -1.</_> 23243 <_>2 17 14 3 2.</_></rects> 23244 <tilted>0</tilted></feature> 23245 <threshold>8.6467564105987549e-003</threshold> 23246 <left_val>0.5205205082893372</left_val> 23247 <right_val>0.4132595062255859</right_val></_></_> 23248 <_> 23249 <!-- tree 185 --> 23250 <_> 23251 <!-- root node --> 23252 <feature> 23253 <rects> 23254 <_>10 14 1 3 -1.</_> 23255 <_>10 15 1 1 3.</_></rects> 23256 <tilted>0</tilted></feature> 23257 <threshold>-3.6114078829996288e-004</threshold> 23258 <left_val>0.5483555197715759</left_val> 23259 <right_val>0.4800927937030792</right_val></_></_> 23260 <_> 23261 <!-- tree 186 --> 23262 <_> 23263 <!-- root node --> 23264 <feature> 23265 <rects> 23266 <_>4 16 2 2 -1.</_> 23267 <_>4 16 1 1 2.</_> 23268 <_>5 17 1 1 2.</_></rects> 23269 <tilted>0</tilted></feature> 23270 <threshold>1.0808729566633701e-003</threshold> 23271 <left_val>0.4689902067184448</left_val> 23272 <right_val>0.6041421294212341</right_val></_></_> 23273 <_> 23274 <!-- tree 187 --> 23275 <_> 23276 <!-- root node --> 23277 <feature> 23278 <rects> 23279 <_>10 6 2 3 -1.</_> 23280 <_>10 7 2 1 3.</_></rects> 23281 <tilted>0</tilted></feature> 23282 <threshold>5.7719959877431393e-003</threshold> 23283 <left_val>0.5171142220497131</left_val> 23284 <right_val>0.3053277134895325</right_val></_></_> 23285 <_> 23286 <!-- tree 188 --> 23287 <_> 23288 <!-- root node --> 23289 <feature> 23290 <rects> 23291 <_>0 17 20 2 -1.</_> 23292 <_>0 17 10 1 2.</_> 23293 <_>10 18 10 1 2.</_></rects> 23294 <tilted>0</tilted></feature> 23295 <threshold>1.5720770461484790e-003</threshold> 23296 <left_val>0.5219978094100952</left_val> 23297 <right_val>0.4178803861141205</right_val></_></_> 23298 <_> 23299 <!-- tree 189 --> 23300 <_> 23301 <!-- root node --> 23302 <feature> 23303 <rects> 23304 <_>13 6 1 3 -1.</_> 23305 <_>13 7 1 1 3.</_></rects> 23306 <tilted>0</tilted></feature> 23307 <threshold>-1.9307859474793077e-003</threshold> 23308 <left_val>0.5860369801521301</left_val> 23309 <right_val>0.4812920093536377</right_val></_></_> 23310 <_> 23311 <!-- tree 190 --> 23312 <_> 23313 <!-- root node --> 23314 <feature> 23315 <rects> 23316 <_>8 13 3 2 -1.</_> 23317 <_>9 13 1 2 3.</_></rects> 23318 <tilted>0</tilted></feature> 23319 <threshold>-7.8926272690296173e-003</threshold> 23320 <left_val>0.1749276965856552</left_val> 23321 <right_val>0.4971733987331390</right_val></_></_> 23322 <_> 23323 <!-- tree 191 --> 23324 <_> 23325 <!-- root node --> 23326 <feature> 23327 <rects> 23328 <_>12 2 3 3 -1.</_> 23329 <_>13 2 1 3 3.</_></rects> 23330 <tilted>0</tilted></feature> 23331 <threshold>-2.2224679123610258e-003</threshold> 23332 <left_val>0.4342589080333710</left_val> 23333 <right_val>0.5212848186492920</right_val></_></_> 23334 <_> 23335 <!-- tree 192 --> 23336 <_> 23337 <!-- root node --> 23338 <feature> 23339 <rects> 23340 <_>3 18 2 2 -1.</_> 23341 <_>3 18 1 1 2.</_> 23342 <_>4 19 1 1 2.</_></rects> 23343 <tilted>0</tilted></feature> 23344 <threshold>1.9011989934369922e-003</threshold> 23345 <left_val>0.4765186905860901</left_val> 23346 <right_val>0.6892055273056030</right_val></_></_> 23347 <_> 23348 <!-- tree 193 --> 23349 <_> 23350 <!-- root node --> 23351 <feature> 23352 <rects> 23353 <_>9 16 3 4 -1.</_> 23354 <_>10 16 1 4 3.</_></rects> 23355 <tilted>0</tilted></feature> 23356 <threshold>2.7576119173318148e-003</threshold> 23357 <left_val>0.5262191295623779</left_val> 23358 <right_val>0.4337486028671265</right_val></_></_> 23359 <_> 23360 <!-- tree 194 --> 23361 <_> 23362 <!-- root node --> 23363 <feature> 23364 <rects> 23365 <_>6 6 1 3 -1.</_> 23366 <_>6 7 1 1 3.</_></rects> 23367 <tilted>0</tilted></feature> 23368 <threshold>5.1787449046969414e-003</threshold> 23369 <left_val>0.4804069101810455</left_val> 23370 <right_val>0.7843729257583618</right_val></_></_> 23371 <_> 23372 <!-- tree 195 --> 23373 <_> 23374 <!-- root node --> 23375 <feature> 23376 <rects> 23377 <_>13 1 5 2 -1.</_> 23378 <_>13 2 5 1 2.</_></rects> 23379 <tilted>0</tilted></feature> 23380 <threshold>-9.0273341629654169e-004</threshold> 23381 <left_val>0.4120846986770630</left_val> 23382 <right_val>0.5353423953056335</right_val></_></_> 23383 <_> 23384 <!-- tree 196 --> 23385 <_> 23386 <!-- root node --> 23387 <feature> 23388 <rects> 23389 <_>7 14 6 2 -1.</_> 23390 <_>7 14 3 1 2.</_> 23391 <_>10 15 3 1 2.</_></rects> 23392 <tilted>0</tilted></feature> 23393 <threshold>5.1797959022223949e-003</threshold> 23394 <left_val>0.4740372896194458</left_val> 23395 <right_val>0.6425960063934326</right_val></_></_> 23396 <_> 23397 <!-- tree 197 --> 23398 <_> 23399 <!-- root node --> 23400 <feature> 23401 <rects> 23402 <_>11 3 3 4 -1.</_> 23403 <_>12 3 1 4 3.</_></rects> 23404 <tilted>0</tilted></feature> 23405 <threshold>-0.0101140001788735</threshold> 23406 <left_val>0.2468792051076889</left_val> 23407 <right_val>0.5175017714500427</right_val></_></_> 23408 <_> 23409 <!-- tree 198 --> 23410 <_> 23411 <!-- root node --> 23412 <feature> 23413 <rects> 23414 <_>1 13 12 6 -1.</_> 23415 <_>5 13 4 6 3.</_></rects> 23416 <tilted>0</tilted></feature> 23417 <threshold>-0.0186170600354671</threshold> 23418 <left_val>0.5756294131278992</left_val> 23419 <right_val>0.4628978967666626</right_val></_></_> 23420 <_> 23421 <!-- tree 199 --> 23422 <_> 23423 <!-- root node --> 23424 <feature> 23425 <rects> 23426 <_>14 11 5 2 -1.</_> 23427 <_>14 12 5 1 2.</_></rects> 23428 <tilted>0</tilted></feature> 23429 <threshold>5.9225959703326225e-003</threshold> 23430 <left_val>0.5169625878334045</left_val> 23431 <right_val>0.3214271068572998</right_val></_></_> 23432 <_> 23433 <!-- tree 200 --> 23434 <_> 23435 <!-- root node --> 23436 <feature> 23437 <rects> 23438 <_>2 15 14 4 -1.</_> 23439 <_>2 15 7 2 2.</_> 23440 <_>9 17 7 2 2.</_></rects> 23441 <tilted>0</tilted></feature> 23442 <threshold>-6.2945079989731312e-003</threshold> 23443 <left_val>0.3872014880180359</left_val> 23444 <right_val>0.5141636729240418</right_val></_></_> 23445 <_> 23446 <!-- tree 201 --> 23447 <_> 23448 <!-- root node --> 23449 <feature> 23450 <rects> 23451 <_>3 7 14 2 -1.</_> 23452 <_>10 7 7 1 2.</_> 23453 <_>3 8 7 1 2.</_></rects> 23454 <tilted>0</tilted></feature> 23455 <threshold>6.5353019163012505e-003</threshold> 23456 <left_val>0.4853048920631409</left_val> 23457 <right_val>0.6310489773750305</right_val></_></_> 23458 <_> 23459 <!-- tree 202 --> 23460 <_> 23461 <!-- root node --> 23462 <feature> 23463 <rects> 23464 <_>1 11 4 2 -1.</_> 23465 <_>1 12 4 1 2.</_></rects> 23466 <tilted>0</tilted></feature> 23467 <threshold>1.0878399480134249e-003</threshold> 23468 <left_val>0.5117315053939819</left_val> 23469 <right_val>0.3723258972167969</right_val></_></_> 23470 <_> 23471 <!-- tree 203 --> 23472 <_> 23473 <!-- root node --> 23474 <feature> 23475 <rects> 23476 <_>14 0 6 14 -1.</_> 23477 <_>16 0 2 14 3.</_></rects> 23478 <tilted>0</tilted></feature> 23479 <threshold>-0.0225422400981188</threshold> 23480 <left_val>0.5692740082740784</left_val> 23481 <right_val>0.4887112975120544</right_val></_></_> 23482 <_> 23483 <!-- tree 204 --> 23484 <_> 23485 <!-- root node --> 23486 <feature> 23487 <rects> 23488 <_>4 11 1 3 -1.</_> 23489 <_>4 12 1 1 3.</_></rects> 23490 <tilted>0</tilted></feature> 23491 <threshold>-3.0065660830587149e-003</threshold> 23492 <left_val>0.2556012868881226</left_val> 23493 <right_val>0.5003992915153503</right_val></_></_> 23494 <_> 23495 <!-- tree 205 --> 23496 <_> 23497 <!-- root node --> 23498 <feature> 23499 <rects> 23500 <_>14 0 6 14 -1.</_> 23501 <_>16 0 2 14 3.</_></rects> 23502 <tilted>0</tilted></feature> 23503 <threshold>7.4741272255778313e-003</threshold> 23504 <left_val>0.4810872972011566</left_val> 23505 <right_val>0.5675926804542542</right_val></_></_> 23506 <_> 23507 <!-- tree 206 --> 23508 <_> 23509 <!-- root node --> 23510 <feature> 23511 <rects> 23512 <_>1 10 3 7 -1.</_> 23513 <_>2 10 1 7 3.</_></rects> 23514 <tilted>0</tilted></feature> 23515 <threshold>0.0261623207479715</threshold> 23516 <left_val>0.4971194863319397</left_val> 23517 <right_val>0.1777237057685852</right_val></_></_> 23518 <_> 23519 <!-- tree 207 --> 23520 <_> 23521 <!-- root node --> 23522 <feature> 23523 <rects> 23524 <_>8 12 9 2 -1.</_> 23525 <_>8 13 9 1 2.</_></rects> 23526 <tilted>0</tilted></feature> 23527 <threshold>9.4352738233283162e-004</threshold> 23528 <left_val>0.4940010905265808</left_val> 23529 <right_val>0.5491250753402710</right_val></_></_> 23530 <_> 23531 <!-- tree 208 --> 23532 <_> 23533 <!-- root node --> 23534 <feature> 23535 <rects> 23536 <_>0 6 20 1 -1.</_> 23537 <_>10 6 10 1 2.</_></rects> 23538 <tilted>0</tilted></feature> 23539 <threshold>0.0333632417023182</threshold> 23540 <left_val>0.5007612109184265</left_val> 23541 <right_val>0.2790724039077759</right_val></_></_> 23542 <_> 23543 <!-- tree 209 --> 23544 <_> 23545 <!-- root node --> 23546 <feature> 23547 <rects> 23548 <_>8 4 4 4 -1.</_> 23549 <_>8 4 2 4 2.</_></rects> 23550 <tilted>0</tilted></feature> 23551 <threshold>-0.0151186501607299</threshold> 23552 <left_val>0.7059578895568848</left_val> 23553 <right_val>0.4973031878471375</right_val></_></_> 23554 <_> 23555 <!-- tree 210 --> 23556 <_> 23557 <!-- root node --> 23558 <feature> 23559 <rects> 23560 <_>0 0 2 2 -1.</_> 23561 <_>0 1 2 1 2.</_></rects> 23562 <tilted>0</tilted></feature> 23563 <threshold>9.8648946732282639e-004</threshold> 23564 <left_val>0.5128620266914368</left_val> 23565 <right_val>0.3776761889457703</right_val></_></_></trees> 23566 <stage_threshold>104.7491989135742200</stage_threshold> 23567 <parent>19</parent> 23568 <next>-1</next></_> 23569 <_> 23570 <!-- stage 21 --> 23571 <trees> 23572 <_> 23573 <!-- tree 0 --> 23574 <_> 23575 <!-- root node --> 23576 <feature> 23577 <rects> 23578 <_>5 3 10 9 -1.</_> 23579 <_>5 6 10 3 3.</_></rects> 23580 <tilted>0</tilted></feature> 23581 <threshold>-0.0951507985591888</threshold> 23582 <left_val>0.6470757126808167</left_val> 23583 <right_val>0.4017286896705627</right_val></_></_> 23584 <_> 23585 <!-- tree 1 --> 23586 <_> 23587 <!-- root node --> 23588 <feature> 23589 <rects> 23590 <_>15 2 4 10 -1.</_> 23591 <_>15 2 2 10 2.</_></rects> 23592 <tilted>0</tilted></feature> 23593 <threshold>6.2702340073883533e-003</threshold> 23594 <left_val>0.3999822139739990</left_val> 23595 <right_val>0.5746449232101440</right_val></_></_> 23596 <_> 23597 <!-- tree 2 --> 23598 <_> 23599 <!-- root node --> 23600 <feature> 23601 <rects> 23602 <_>8 2 2 7 -1.</_> 23603 <_>9 2 1 7 2.</_></rects> 23604 <tilted>0</tilted></feature> 23605 <threshold>3.0018089455552399e-004</threshold> 23606 <left_val>0.3558770120143890</left_val> 23607 <right_val>0.5538809895515442</right_val></_></_> 23608 <_> 23609 <!-- tree 3 --> 23610 <_> 23611 <!-- root node --> 23612 <feature> 23613 <rects> 23614 <_>7 4 12 1 -1.</_> 23615 <_>11 4 4 1 3.</_></rects> 23616 <tilted>0</tilted></feature> 23617 <threshold>1.1757409665733576e-003</threshold> 23618 <left_val>0.4256534874439240</left_val> 23619 <right_val>0.5382617712020874</right_val></_></_> 23620 <_> 23621 <!-- tree 4 --> 23622 <_> 23623 <!-- root node --> 23624 <feature> 23625 <rects> 23626 <_>3 4 9 1 -1.</_> 23627 <_>6 4 3 1 3.</_></rects> 23628 <tilted>0</tilted></feature> 23629 <threshold>4.4235268433112651e-005</threshold> 23630 <left_val>0.3682908117771149</left_val> 23631 <right_val>0.5589926838874817</right_val></_></_> 23632 <_> 23633 <!-- tree 5 --> 23634 <_> 23635 <!-- root node --> 23636 <feature> 23637 <rects> 23638 <_>15 10 1 4 -1.</_> 23639 <_>15 12 1 2 2.</_></rects> 23640 <tilted>0</tilted></feature> 23641 <threshold>-2.9936920327600092e-005</threshold> 23642 <left_val>0.5452470183372498</left_val> 23643 <right_val>0.4020367860794067</right_val></_></_> 23644 <_> 23645 <!-- tree 6 --> 23646 <_> 23647 <!-- root node --> 23648 <feature> 23649 <rects> 23650 <_>4 10 6 4 -1.</_> 23651 <_>7 10 3 4 2.</_></rects> 23652 <tilted>0</tilted></feature> 23653 <threshold>3.0073199886828661e-003</threshold> 23654 <left_val>0.5239058136940002</left_val> 23655 <right_val>0.3317843973636627</right_val></_></_> 23656 <_> 23657 <!-- tree 7 --> 23658 <_> 23659 <!-- root node --> 23660 <feature> 23661 <rects> 23662 <_>15 9 1 6 -1.</_> 23663 <_>15 12 1 3 2.</_></rects> 23664 <tilted>0</tilted></feature> 23665 <threshold>-0.0105138896033168</threshold> 23666 <left_val>0.4320689141750336</left_val> 23667 <right_val>0.5307983756065369</right_val></_></_> 23668 <_> 23669 <!-- tree 8 --> 23670 <_> 23671 <!-- root node --> 23672 <feature> 23673 <rects> 23674 <_>7 17 6 3 -1.</_> 23675 <_>7 18 6 1 3.</_></rects> 23676 <tilted>0</tilted></feature> 23677 <threshold>8.3476826548576355e-003</threshold> 23678 <left_val>0.4504637122154236</left_val> 23679 <right_val>0.6453298926353455</right_val></_></_> 23680 <_> 23681 <!-- tree 9 --> 23682 <_> 23683 <!-- root node --> 23684 <feature> 23685 <rects> 23686 <_>14 3 2 16 -1.</_> 23687 <_>15 3 1 8 2.</_> 23688 <_>14 11 1 8 2.</_></rects> 23689 <tilted>0</tilted></feature> 23690 <threshold>-3.1492270063608885e-003</threshold> 23691 <left_val>0.4313425123691559</left_val> 23692 <right_val>0.5370525121688843</right_val></_></_> 23693 <_> 23694 <!-- tree 10 --> 23695 <_> 23696 <!-- root node --> 23697 <feature> 23698 <rects> 23699 <_>4 9 1 6 -1.</_> 23700 <_>4 12 1 3 2.</_></rects> 23701 <tilted>0</tilted></feature> 23702 <threshold>-1.4435649973165710e-005</threshold> 23703 <left_val>0.5326603055000305</left_val> 23704 <right_val>0.3817971944808960</right_val></_></_> 23705 <_> 23706 <!-- tree 11 --> 23707 <_> 23708 <!-- root node --> 23709 <feature> 23710 <rects> 23711 <_>12 1 5 2 -1.</_> 23712 <_>12 2 5 1 2.</_></rects> 23713 <tilted>0</tilted></feature> 23714 <threshold>-4.2855090578086674e-004</threshold> 23715 <left_val>0.4305163919925690</left_val> 23716 <right_val>0.5382009744644165</right_val></_></_> 23717 <_> 23718 <!-- tree 12 --> 23719 <_> 23720 <!-- root node --> 23721 <feature> 23722 <rects> 23723 <_>6 18 4 2 -1.</_> 23724 <_>6 18 2 1 2.</_> 23725 <_>8 19 2 1 2.</_></rects> 23726 <tilted>0</tilted></feature> 23727 <threshold>1.5062429883982986e-004</threshold> 23728 <left_val>0.4235970973968506</left_val> 23729 <right_val>0.5544965267181397</right_val></_></_> 23730 <_> 23731 <!-- tree 13 --> 23732 <_> 23733 <!-- root node --> 23734 <feature> 23735 <rects> 23736 <_>2 4 16 10 -1.</_> 23737 <_>10 4 8 5 2.</_> 23738 <_>2 9 8 5 2.</_></rects> 23739 <tilted>0</tilted></feature> 23740 <threshold>0.0715598315000534</threshold> 23741 <left_val>0.5303059816360474</left_val> 23742 <right_val>0.2678802907466888</right_val></_></_> 23743 <_> 23744 <!-- tree 14 --> 23745 <_> 23746 <!-- root node --> 23747 <feature> 23748 <rects> 23749 <_>6 5 1 10 -1.</_> 23750 <_>6 10 1 5 2.</_></rects> 23751 <tilted>0</tilted></feature> 23752 <threshold>8.4095180500298738e-004</threshold> 23753 <left_val>0.3557108938694000</left_val> 23754 <right_val>0.5205433964729309</right_val></_></_> 23755 <_> 23756 <!-- tree 15 --> 23757 <_> 23758 <!-- root node --> 23759 <feature> 23760 <rects> 23761 <_>4 8 15 2 -1.</_> 23762 <_>9 8 5 2 3.</_></rects> 23763 <tilted>0</tilted></feature> 23764 <threshold>0.0629865005612373</threshold> 23765 <left_val>0.5225362777709961</left_val> 23766 <right_val>0.2861376106739044</right_val></_></_> 23767 <_> 23768 <!-- tree 16 --> 23769 <_> 23770 <!-- root node --> 23771 <feature> 23772 <rects> 23773 <_>1 8 15 2 -1.</_> 23774 <_>6 8 5 2 3.</_></rects> 23775 <tilted>0</tilted></feature> 23776 <threshold>-3.3798629883676767e-003</threshold> 23777 <left_val>0.3624185919761658</left_val> 23778 <right_val>0.5201697945594788</right_val></_></_> 23779 <_> 23780 <!-- tree 17 --> 23781 <_> 23782 <!-- root node --> 23783 <feature> 23784 <rects> 23785 <_>9 5 3 6 -1.</_> 23786 <_>9 7 3 2 3.</_></rects> 23787 <tilted>0</tilted></feature> 23788 <threshold>-1.1810739670181647e-004</threshold> 23789 <left_val>0.5474476814270020</left_val> 23790 <right_val>0.3959893882274628</right_val></_></_> 23791 <_> 23792 <!-- tree 18 --> 23793 <_> 23794 <!-- root node --> 23795 <feature> 23796 <rects> 23797 <_>5 7 8 2 -1.</_> 23798 <_>9 7 4 2 2.</_></rects> 23799 <tilted>0</tilted></feature> 23800 <threshold>-5.4505601292476058e-004</threshold> 23801 <left_val>0.3740422129631043</left_val> 23802 <right_val>0.5215715765953064</right_val></_></_> 23803 <_> 23804 <!-- tree 19 --> 23805 <_> 23806 <!-- root node --> 23807 <feature> 23808 <rects> 23809 <_>9 11 2 3 -1.</_> 23810 <_>9 12 2 1 3.</_></rects> 23811 <tilted>0</tilted></feature> 23812 <threshold>-1.8454910023137927e-003</threshold> 23813 <left_val>0.5893052220344544</left_val> 23814 <right_val>0.4584448933601379</right_val></_></_> 23815 <_> 23816 <!-- tree 20 --> 23817 <_> 23818 <!-- root node --> 23819 <feature> 23820 <rects> 23821 <_>1 0 16 3 -1.</_> 23822 <_>1 1 16 1 3.</_></rects> 23823 <tilted>0</tilted></feature> 23824 <threshold>-4.3832371011376381e-004</threshold> 23825 <left_val>0.4084582030773163</left_val> 23826 <right_val>0.5385351181030273</right_val></_></_> 23827 <_> 23828 <!-- tree 21 --> 23829 <_> 23830 <!-- root node --> 23831 <feature> 23832 <rects> 23833 <_>11 2 7 2 -1.</_> 23834 <_>11 3 7 1 2.</_></rects> 23835 <tilted>0</tilted></feature> 23836 <threshold>-2.4000830017030239e-003</threshold> 23837 <left_val>0.3777455091476440</left_val> 23838 <right_val>0.5293580293655396</right_val></_></_> 23839 <_> 23840 <!-- tree 22 --> 23841 <_> 23842 <!-- root node --> 23843 <feature> 23844 <rects> 23845 <_>5 1 10 18 -1.</_> 23846 <_>5 7 10 6 3.</_></rects> 23847 <tilted>0</tilted></feature> 23848 <threshold>-0.0987957417964935</threshold> 23849 <left_val>0.2963612079620361</left_val> 23850 <right_val>0.5070089101791382</right_val></_></_> 23851 <_> 23852 <!-- tree 23 --> 23853 <_> 23854 <!-- root node --> 23855 <feature> 23856 <rects> 23857 <_>17 4 3 2 -1.</_> 23858 <_>18 4 1 2 3.</_></rects> 23859 <tilted>0</tilted></feature> 23860 <threshold>3.1798239797353745e-003</threshold> 23861 <left_val>0.4877632856369019</left_val> 23862 <right_val>0.6726443767547607</right_val></_></_> 23863 <_> 23864 <!-- tree 24 --> 23865 <_> 23866 <!-- root node --> 23867 <feature> 23868 <rects> 23869 <_>8 13 1 3 -1.</_> 23870 <_>8 14 1 1 3.</_></rects> 23871 <tilted>0</tilted></feature> 23872 <threshold>3.2406419632025063e-004</threshold> 23873 <left_val>0.4366911053657532</left_val> 23874 <right_val>0.5561109781265259</right_val></_></_> 23875 <_> 23876 <!-- tree 25 --> 23877 <_> 23878 <!-- root node --> 23879 <feature> 23880 <rects> 23881 <_>3 14 14 6 -1.</_> 23882 <_>3 16 14 2 3.</_></rects> 23883 <tilted>0</tilted></feature> 23884 <threshold>-0.0325472503900528</threshold> 23885 <left_val>0.3128157854080200</left_val> 23886 <right_val>0.5308616161346436</right_val></_></_> 23887 <_> 23888 <!-- tree 26 --> 23889 <_> 23890 <!-- root node --> 23891 <feature> 23892 <rects> 23893 <_>0 2 3 4 -1.</_> 23894 <_>1 2 1 4 3.</_></rects> 23895 <tilted>0</tilted></feature> 23896 <threshold>-7.7561130747199059e-003</threshold> 23897 <left_val>0.6560224890708923</left_val> 23898 <right_val>0.4639872014522553</right_val></_></_> 23899 <_> 23900 <!-- tree 27 --> 23901 <_> 23902 <!-- root node --> 23903 <feature> 23904 <rects> 23905 <_>12 1 5 2 -1.</_> 23906 <_>12 2 5 1 2.</_></rects> 23907 <tilted>0</tilted></feature> 23908 <threshold>0.0160272493958473</threshold> 23909 <left_val>0.5172680020332336</left_val> 23910 <right_val>0.3141897916793823</right_val></_></_> 23911 <_> 23912 <!-- tree 28 --> 23913 <_> 23914 <!-- root node --> 23915 <feature> 23916 <rects> 23917 <_>3 1 5 2 -1.</_> 23918 <_>3 2 5 1 2.</_></rects> 23919 <tilted>0</tilted></feature> 23920 <threshold>7.1002350523485802e-006</threshold> 23921 <left_val>0.4084446132183075</left_val> 23922 <right_val>0.5336294770240784</right_val></_></_> 23923 <_> 23924 <!-- tree 29 --> 23925 <_> 23926 <!-- root node --> 23927 <feature> 23928 <rects> 23929 <_>10 13 2 3 -1.</_> 23930 <_>10 14 2 1 3.</_></rects> 23931 <tilted>0</tilted></feature> 23932 <threshold>7.3422808200120926e-003</threshold> 23933 <left_val>0.4966922104358673</left_val> 23934 <right_val>0.6603465080261231</right_val></_></_> 23935 <_> 23936 <!-- tree 30 --> 23937 <_> 23938 <!-- root node --> 23939 <feature> 23940 <rects> 23941 <_>8 13 2 3 -1.</_> 23942 <_>8 14 2 1 3.</_></rects> 23943 <tilted>0</tilted></feature> 23944 <threshold>-1.6970280557870865e-003</threshold> 23945 <left_val>0.5908237099647522</left_val> 23946 <right_val>0.4500182867050171</right_val></_></_> 23947 <_> 23948 <!-- tree 31 --> 23949 <_> 23950 <!-- root node --> 23951 <feature> 23952 <rects> 23953 <_>14 12 2 3 -1.</_> 23954 <_>14 13 2 1 3.</_></rects> 23955 <tilted>0</tilted></feature> 23956 <threshold>2.4118260480463505e-003</threshold> 23957 <left_val>0.5315160751342773</left_val> 23958 <right_val>0.3599720895290375</right_val></_></_> 23959 <_> 23960 <!-- tree 32 --> 23961 <_> 23962 <!-- root node --> 23963 <feature> 23964 <rects> 23965 <_>7 2 2 3 -1.</_> 23966 <_>7 3 2 1 3.</_></rects> 23967 <tilted>0</tilted></feature> 23968 <threshold>-5.5300937965512276e-003</threshold> 23969 <left_val>0.2334040999412537</left_val> 23970 <right_val>0.4996814131736755</right_val></_></_> 23971 <_> 23972 <!-- tree 33 --> 23973 <_> 23974 <!-- root node --> 23975 <feature> 23976 <rects> 23977 <_>5 6 10 4 -1.</_> 23978 <_>10 6 5 2 2.</_> 23979 <_>5 8 5 2 2.</_></rects> 23980 <tilted>0</tilted></feature> 23981 <threshold>-2.6478730142116547e-003</threshold> 23982 <left_val>0.5880935788154602</left_val> 23983 <right_val>0.4684734046459198</right_val></_></_> 23984 <_> 23985 <!-- tree 34 --> 23986 <_> 23987 <!-- root node --> 23988 <feature> 23989 <rects> 23990 <_>9 13 1 6 -1.</_> 23991 <_>9 16 1 3 2.</_></rects> 23992 <tilted>0</tilted></feature> 23993 <threshold>0.0112956296652555</threshold> 23994 <left_val>0.4983777105808258</left_val> 23995 <right_val>0.1884590983390808</right_val></_></_> 23996 <_> 23997 <!-- tree 35 --> 23998 <_> 23999 <!-- root node --> 24000 <feature> 24001 <rects> 24002 <_>10 12 2 2 -1.</_> 24003 <_>11 12 1 1 2.</_> 24004 <_>10 13 1 1 2.</_></rects> 24005 <tilted>0</tilted></feature> 24006 <threshold>-6.6952878842130303e-004</threshold> 24007 <left_val>0.5872138142585754</left_val> 24008 <right_val>0.4799019992351532</right_val></_></_> 24009 <_> 24010 <!-- tree 36 --> 24011 <_> 24012 <!-- root node --> 24013 <feature> 24014 <rects> 24015 <_>4 12 2 3 -1.</_> 24016 <_>4 13 2 1 3.</_></rects> 24017 <tilted>0</tilted></feature> 24018 <threshold>1.4410680159926414e-003</threshold> 24019 <left_val>0.5131189227104187</left_val> 24020 <right_val>0.3501011133193970</right_val></_></_> 24021 <_> 24022 <!-- tree 37 --> 24023 <_> 24024 <!-- root node --> 24025 <feature> 24026 <rects> 24027 <_>14 4 6 6 -1.</_> 24028 <_>14 6 6 2 3.</_></rects> 24029 <tilted>0</tilted></feature> 24030 <threshold>2.4637870956212282e-003</threshold> 24031 <left_val>0.5339372158050537</left_val> 24032 <right_val>0.4117639064788818</right_val></_></_> 24033 <_> 24034 <!-- tree 38 --> 24035 <_> 24036 <!-- root node --> 24037 <feature> 24038 <rects> 24039 <_>8 17 2 3 -1.</_> 24040 <_>8 18 2 1 3.</_></rects> 24041 <tilted>0</tilted></feature> 24042 <threshold>3.3114518737420440e-004</threshold> 24043 <left_val>0.4313383102416992</left_val> 24044 <right_val>0.5398246049880981</right_val></_></_> 24045 <_> 24046 <!-- tree 39 --> 24047 <_> 24048 <!-- root node --> 24049 <feature> 24050 <rects> 24051 <_>16 4 4 6 -1.</_> 24052 <_>16 6 4 2 3.</_></rects> 24053 <tilted>0</tilted></feature> 24054 <threshold>-0.0335572697222233</threshold> 24055 <left_val>0.2675336897373200</left_val> 24056 <right_val>0.5179154872894287</right_val></_></_> 24057 <_> 24058 <!-- tree 40 --> 24059 <_> 24060 <!-- root node --> 24061 <feature> 24062 <rects> 24063 <_>0 4 4 6 -1.</_> 24064 <_>0 6 4 2 3.</_></rects> 24065 <tilted>0</tilted></feature> 24066 <threshold>0.0185394193977118</threshold> 24067 <left_val>0.4973869919776917</left_val> 24068 <right_val>0.2317177057266235</right_val></_></_> 24069 <_> 24070 <!-- tree 41 --> 24071 <_> 24072 <!-- root node --> 24073 <feature> 24074 <rects> 24075 <_>14 6 2 3 -1.</_> 24076 <_>14 6 1 3 2.</_></rects> 24077 <tilted>0</tilted></feature> 24078 <threshold>-2.9698139405809343e-004</threshold> 24079 <left_val>0.5529708266258240</left_val> 24080 <right_val>0.4643664062023163</right_val></_></_> 24081 <_> 24082 <!-- tree 42 --> 24083 <_> 24084 <!-- root node --> 24085 <feature> 24086 <rects> 24087 <_>4 9 8 1 -1.</_> 24088 <_>8 9 4 1 2.</_></rects> 24089 <tilted>0</tilted></feature> 24090 <threshold>-4.5577259152196348e-004</threshold> 24091 <left_val>0.5629584193229675</left_val> 24092 <right_val>0.4469191133975983</right_val></_></_> 24093 <_> 24094 <!-- tree 43 --> 24095 <_> 24096 <!-- root node --> 24097 <feature> 24098 <rects> 24099 <_>8 12 4 3 -1.</_> 24100 <_>8 13 4 1 3.</_></rects> 24101 <tilted>0</tilted></feature> 24102 <threshold>-0.0101589802652597</threshold> 24103 <left_val>0.6706212759017944</left_val> 24104 <right_val>0.4925918877124786</right_val></_></_> 24105 <_> 24106 <!-- tree 44 --> 24107 <_> 24108 <!-- root node --> 24109 <feature> 24110 <rects> 24111 <_>5 12 10 6 -1.</_> 24112 <_>5 14 10 2 3.</_></rects> 24113 <tilted>0</tilted></feature> 24114 <threshold>-2.2413829356082715e-005</threshold> 24115 <left_val>0.5239421725273132</left_val> 24116 <right_val>0.3912901878356934</right_val></_></_> 24117 <_> 24118 <!-- tree 45 --> 24119 <_> 24120 <!-- root node --> 24121 <feature> 24122 <rects> 24123 <_>11 12 1 2 -1.</_> 24124 <_>11 13 1 1 2.</_></rects> 24125 <tilted>0</tilted></feature> 24126 <threshold>7.2034963523037732e-005</threshold> 24127 <left_val>0.4799438118934631</left_val> 24128 <right_val>0.5501788854598999</right_val></_></_> 24129 <_> 24130 <!-- tree 46 --> 24131 <_> 24132 <!-- root node --> 24133 <feature> 24134 <rects> 24135 <_>8 15 4 2 -1.</_> 24136 <_>8 16 4 1 2.</_></rects> 24137 <tilted>0</tilted></feature> 24138 <threshold>-6.9267209619283676e-003</threshold> 24139 <left_val>0.6930009722709656</left_val> 24140 <right_val>0.4698084890842438</right_val></_></_> 24141 <_> 24142 <!-- tree 47 --> 24143 <_> 24144 <!-- root node --> 24145 <feature> 24146 <rects> 24147 <_>6 9 8 8 -1.</_> 24148 <_>10 9 4 4 2.</_> 24149 <_>6 13 4 4 2.</_></rects> 24150 <tilted>0</tilted></feature> 24151 <threshold>-7.6997838914394379e-003</threshold> 24152 <left_val>0.4099623858928680</left_val> 24153 <right_val>0.5480883121490479</right_val></_></_> 24154 <_> 24155 <!-- tree 48 --> 24156 <_> 24157 <!-- root node --> 24158 <feature> 24159 <rects> 24160 <_>7 12 4 6 -1.</_> 24161 <_>7 12 2 3 2.</_> 24162 <_>9 15 2 3 2.</_></rects> 24163 <tilted>0</tilted></feature> 24164 <threshold>-7.3130549862980843e-003</threshold> 24165 <left_val>0.3283475935459137</left_val> 24166 <right_val>0.5057886242866516</right_val></_></_> 24167 <_> 24168 <!-- tree 49 --> 24169 <_> 24170 <!-- root node --> 24171 <feature> 24172 <rects> 24173 <_>10 11 3 1 -1.</_> 24174 <_>11 11 1 1 3.</_></rects> 24175 <tilted>0</tilted></feature> 24176 <threshold>1.9650589674711227e-003</threshold> 24177 <left_val>0.4978047013282776</left_val> 24178 <right_val>0.6398249864578247</right_val></_></_> 24179 <_> 24180 <!-- tree 50 --> 24181 <_> 24182 <!-- root node --> 24183 <feature> 24184 <rects> 24185 <_>9 7 2 10 -1.</_> 24186 <_>9 7 1 5 2.</_> 24187 <_>10 12 1 5 2.</_></rects> 24188 <tilted>0</tilted></feature> 24189 <threshold>7.1647600270807743e-003</threshold> 24190 <left_val>0.4661160111427307</left_val> 24191 <right_val>0.6222137212753296</right_val></_></_> 24192 <_> 24193 <!-- tree 51 --> 24194 <_> 24195 <!-- root node --> 24196 <feature> 24197 <rects> 24198 <_>8 0 6 6 -1.</_> 24199 <_>10 0 2 6 3.</_></rects> 24200 <tilted>0</tilted></feature> 24201 <threshold>-0.0240786392241716</threshold> 24202 <left_val>0.2334644943475723</left_val> 24203 <right_val>0.5222162008285523</right_val></_></_> 24204 <_> 24205 <!-- tree 52 --> 24206 <_> 24207 <!-- root node --> 24208 <feature> 24209 <rects> 24210 <_>3 11 2 6 -1.</_> 24211 <_>3 13 2 2 3.</_></rects> 24212 <tilted>0</tilted></feature> 24213 <threshold>-0.0210279691964388</threshold> 24214 <left_val>0.1183653995394707</left_val> 24215 <right_val>0.4938226044178009</right_val></_></_> 24216 <_> 24217 <!-- tree 53 --> 24218 <_> 24219 <!-- root node --> 24220 <feature> 24221 <rects> 24222 <_>16 12 1 2 -1.</_> 24223 <_>16 13 1 1 2.</_></rects> 24224 <tilted>0</tilted></feature> 24225 <threshold>3.6017020465806127e-004</threshold> 24226 <left_val>0.5325019955635071</left_val> 24227 <right_val>0.4116711020469666</right_val></_></_> 24228 <_> 24229 <!-- tree 54 --> 24230 <_> 24231 <!-- root node --> 24232 <feature> 24233 <rects> 24234 <_>1 14 6 6 -1.</_> 24235 <_>1 14 3 3 2.</_> 24236 <_>4 17 3 3 2.</_></rects> 24237 <tilted>0</tilted></feature> 24238 <threshold>-0.0172197297215462</threshold> 24239 <left_val>0.6278762221336365</left_val> 24240 <right_val>0.4664269089698792</right_val></_></_> 24241 <_> 24242 <!-- tree 55 --> 24243 <_> 24244 <!-- root node --> 24245 <feature> 24246 <rects> 24247 <_>13 1 3 6 -1.</_> 24248 <_>14 1 1 6 3.</_></rects> 24249 <tilted>0</tilted></feature> 24250 <threshold>-7.8672142699360847e-003</threshold> 24251 <left_val>0.3403415083885193</left_val> 24252 <right_val>0.5249736905097961</right_val></_></_> 24253 <_> 24254 <!-- tree 56 --> 24255 <_> 24256 <!-- root node --> 24257 <feature> 24258 <rects> 24259 <_>8 8 2 2 -1.</_> 24260 <_>8 9 2 1 2.</_></rects> 24261 <tilted>0</tilted></feature> 24262 <threshold>-4.4777389848604798e-004</threshold> 24263 <left_val>0.3610411882400513</left_val> 24264 <right_val>0.5086259245872498</right_val></_></_> 24265 <_> 24266 <!-- tree 57 --> 24267 <_> 24268 <!-- root node --> 24269 <feature> 24270 <rects> 24271 <_>9 9 3 3 -1.</_> 24272 <_>10 9 1 3 3.</_></rects> 24273 <tilted>0</tilted></feature> 24274 <threshold>5.5486010387539864e-003</threshold> 24275 <left_val>0.4884265959262848</left_val> 24276 <right_val>0.6203498244285584</right_val></_></_> 24277 <_> 24278 <!-- tree 58 --> 24279 <_> 24280 <!-- root node --> 24281 <feature> 24282 <rects> 24283 <_>8 7 3 3 -1.</_> 24284 <_>8 8 3 1 3.</_></rects> 24285 <tilted>0</tilted></feature> 24286 <threshold>-6.9461148232221603e-003</threshold> 24287 <left_val>0.2625930011272430</left_val> 24288 <right_val>0.5011097192764282</right_val></_></_> 24289 <_> 24290 <!-- tree 59 --> 24291 <_> 24292 <!-- root node --> 24293 <feature> 24294 <rects> 24295 <_>14 0 2 3 -1.</_> 24296 <_>14 0 1 3 2.</_></rects> 24297 <tilted>0</tilted></feature> 24298 <threshold>1.3569870498031378e-004</threshold> 24299 <left_val>0.4340794980525971</left_val> 24300 <right_val>0.5628312230110169</right_val></_></_> 24301 <_> 24302 <!-- tree 60 --> 24303 <_> 24304 <!-- root node --> 24305 <feature> 24306 <rects> 24307 <_>1 0 18 9 -1.</_> 24308 <_>7 0 6 9 3.</_></rects> 24309 <tilted>0</tilted></feature> 24310 <threshold>-0.0458802506327629</threshold> 24311 <left_val>0.6507998704910278</left_val> 24312 <right_val>0.4696274995803833</right_val></_></_> 24313 <_> 24314 <!-- tree 61 --> 24315 <_> 24316 <!-- root node --> 24317 <feature> 24318 <rects> 24319 <_>11 5 4 15 -1.</_> 24320 <_>11 5 2 15 2.</_></rects> 24321 <tilted>0</tilted></feature> 24322 <threshold>-0.0215825606137514</threshold> 24323 <left_val>0.3826502859592438</left_val> 24324 <right_val>0.5287616848945618</right_val></_></_> 24325 <_> 24326 <!-- tree 62 --> 24327 <_> 24328 <!-- root node --> 24329 <feature> 24330 <rects> 24331 <_>5 5 4 15 -1.</_> 24332 <_>7 5 2 15 2.</_></rects> 24333 <tilted>0</tilted></feature> 24334 <threshold>-0.0202095396816731</threshold> 24335 <left_val>0.3233368098735809</left_val> 24336 <right_val>0.5074477195739746</right_val></_></_> 24337 <_> 24338 <!-- tree 63 --> 24339 <_> 24340 <!-- root node --> 24341 <feature> 24342 <rects> 24343 <_>14 0 2 3 -1.</_> 24344 <_>14 0 1 3 2.</_></rects> 24345 <tilted>0</tilted></feature> 24346 <threshold>5.8496710844337940e-003</threshold> 24347 <left_val>0.5177603960037231</left_val> 24348 <right_val>0.4489670991897583</right_val></_></_> 24349 <_> 24350 <!-- tree 64 --> 24351 <_> 24352 <!-- root node --> 24353 <feature> 24354 <rects> 24355 <_>4 0 2 3 -1.</_> 24356 <_>5 0 1 3 2.</_></rects> 24357 <tilted>0</tilted></feature> 24358 <threshold>-5.7476379879517481e-005</threshold> 24359 <left_val>0.4020850956439972</left_val> 24360 <right_val>0.5246363878250122</right_val></_></_> 24361 <_> 24362 <!-- tree 65 --> 24363 <_> 24364 <!-- root node --> 24365 <feature> 24366 <rects> 24367 <_>11 12 2 2 -1.</_> 24368 <_>12 12 1 1 2.</_> 24369 <_>11 13 1 1 2.</_></rects> 24370 <tilted>0</tilted></feature> 24371 <threshold>-1.1513100471347570e-003</threshold> 24372 <left_val>0.6315072178840637</left_val> 24373 <right_val>0.4905154109001160</right_val></_></_> 24374 <_> 24375 <!-- tree 66 --> 24376 <_> 24377 <!-- root node --> 24378 <feature> 24379 <rects> 24380 <_>7 12 2 2 -1.</_> 24381 <_>7 12 1 1 2.</_> 24382 <_>8 13 1 1 2.</_></rects> 24383 <tilted>0</tilted></feature> 24384 <threshold>1.9862831104546785e-003</threshold> 24385 <left_val>0.4702459871768951</left_val> 24386 <right_val>0.6497151255607605</right_val></_></_> 24387 <_> 24388 <!-- tree 67 --> 24389 <_> 24390 <!-- root node --> 24391 <feature> 24392 <rects> 24393 <_>12 0 3 4 -1.</_> 24394 <_>13 0 1 4 3.</_></rects> 24395 <tilted>0</tilted></feature> 24396 <threshold>-5.2719512023031712e-003</threshold> 24397 <left_val>0.3650383949279785</left_val> 24398 <right_val>0.5227652788162231</right_val></_></_> 24399 <_> 24400 <!-- tree 68 --> 24401 <_> 24402 <!-- root node --> 24403 <feature> 24404 <rects> 24405 <_>4 11 3 3 -1.</_> 24406 <_>4 12 3 1 3.</_></rects> 24407 <tilted>0</tilted></feature> 24408 <threshold>1.2662699446082115e-003</threshold> 24409 <left_val>0.5166100859642029</left_val> 24410 <right_val>0.3877618014812470</right_val></_></_> 24411 <_> 24412 <!-- tree 69 --> 24413 <_> 24414 <!-- root node --> 24415 <feature> 24416 <rects> 24417 <_>12 7 4 2 -1.</_> 24418 <_>12 8 4 1 2.</_></rects> 24419 <tilted>0</tilted></feature> 24420 <threshold>-6.2919440679252148e-003</threshold> 24421 <left_val>0.7375894188880920</left_val> 24422 <right_val>0.5023847818374634</right_val></_></_> 24423 <_> 24424 <!-- tree 70 --> 24425 <_> 24426 <!-- root node --> 24427 <feature> 24428 <rects> 24429 <_>8 10 3 2 -1.</_> 24430 <_>9 10 1 2 3.</_></rects> 24431 <tilted>0</tilted></feature> 24432 <threshold>6.7360111279413104e-004</threshold> 24433 <left_val>0.4423226118087769</left_val> 24434 <right_val>0.5495585799217224</right_val></_></_> 24435 <_> 24436 <!-- tree 71 --> 24437 <_> 24438 <!-- root node --> 24439 <feature> 24440 <rects> 24441 <_>9 9 3 2 -1.</_> 24442 <_>10 9 1 2 3.</_></rects> 24443 <tilted>0</tilted></feature> 24444 <threshold>-1.0523450328037143e-003</threshold> 24445 <left_val>0.5976396203041077</left_val> 24446 <right_val>0.4859583079814911</right_val></_></_> 24447 <_> 24448 <!-- tree 72 --> 24449 <_> 24450 <!-- root node --> 24451 <feature> 24452 <rects> 24453 <_>8 9 3 2 -1.</_> 24454 <_>9 9 1 2 3.</_></rects> 24455 <tilted>0</tilted></feature> 24456 <threshold>-4.4216238893568516e-004</threshold> 24457 <left_val>0.5955939292907715</left_val> 24458 <right_val>0.4398930966854096</right_val></_></_> 24459 <_> 24460 <!-- tree 73 --> 24461 <_> 24462 <!-- root node --> 24463 <feature> 24464 <rects> 24465 <_>12 0 3 4 -1.</_> 24466 <_>13 0 1 4 3.</_></rects> 24467 <tilted>0</tilted></feature> 24468 <threshold>1.1747940443456173e-003</threshold> 24469 <left_val>0.5349888205528259</left_val> 24470 <right_val>0.4605058133602142</right_val></_></_> 24471 <_> 24472 <!-- tree 74 --> 24473 <_> 24474 <!-- root node --> 24475 <feature> 24476 <rects> 24477 <_>5 0 3 4 -1.</_> 24478 <_>6 0 1 4 3.</_></rects> 24479 <tilted>0</tilted></feature> 24480 <threshold>5.2457437850534916e-003</threshold> 24481 <left_val>0.5049191117286682</left_val> 24482 <right_val>0.2941577136516571</right_val></_></_> 24483 <_> 24484 <!-- tree 75 --> 24485 <_> 24486 <!-- root node --> 24487 <feature> 24488 <rects> 24489 <_>4 14 12 4 -1.</_> 24490 <_>10 14 6 2 2.</_> 24491 <_>4 16 6 2 2.</_></rects> 24492 <tilted>0</tilted></feature> 24493 <threshold>-0.0245397202670574</threshold> 24494 <left_val>0.2550177872180939</left_val> 24495 <right_val>0.5218586921691895</right_val></_></_> 24496 <_> 24497 <!-- tree 76 --> 24498 <_> 24499 <!-- root node --> 24500 <feature> 24501 <rects> 24502 <_>8 13 2 3 -1.</_> 24503 <_>8 14 2 1 3.</_></rects> 24504 <tilted>0</tilted></feature> 24505 <threshold>7.3793041519820690e-004</threshold> 24506 <left_val>0.4424861073493958</left_val> 24507 <right_val>0.5490816235542297</right_val></_></_> 24508 <_> 24509 <!-- tree 77 --> 24510 <_> 24511 <!-- root node --> 24512 <feature> 24513 <rects> 24514 <_>10 10 3 8 -1.</_> 24515 <_>10 14 3 4 2.</_></rects> 24516 <tilted>0</tilted></feature> 24517 <threshold>1.4233799884095788e-003</threshold> 24518 <left_val>0.5319514274597168</left_val> 24519 <right_val>0.4081355929374695</right_val></_></_> 24520 <_> 24521 <!-- tree 78 --> 24522 <_> 24523 <!-- root node --> 24524 <feature> 24525 <rects> 24526 <_>8 10 4 8 -1.</_> 24527 <_>8 10 2 4 2.</_> 24528 <_>10 14 2 4 2.</_></rects> 24529 <tilted>0</tilted></feature> 24530 <threshold>-2.4149110540747643e-003</threshold> 24531 <left_val>0.4087659120559692</left_val> 24532 <right_val>0.5238950252532959</right_val></_></_> 24533 <_> 24534 <!-- tree 79 --> 24535 <_> 24536 <!-- root node --> 24537 <feature> 24538 <rects> 24539 <_>10 8 3 1 -1.</_> 24540 <_>11 8 1 1 3.</_></rects> 24541 <tilted>0</tilted></feature> 24542 <threshold>-1.2165299849584699e-003</threshold> 24543 <left_val>0.5674579143524170</left_val> 24544 <right_val>0.4908052980899811</right_val></_></_> 24545 <_> 24546 <!-- tree 80 --> 24547 <_> 24548 <!-- root node --> 24549 <feature> 24550 <rects> 24551 <_>9 12 1 6 -1.</_> 24552 <_>9 15 1 3 2.</_></rects> 24553 <tilted>0</tilted></feature> 24554 <threshold>-1.2438809499144554e-003</threshold> 24555 <left_val>0.4129425883293152</left_val> 24556 <right_val>0.5256118178367615</right_val></_></_> 24557 <_> 24558 <!-- tree 81 --> 24559 <_> 24560 <!-- root node --> 24561 <feature> 24562 <rects> 24563 <_>10 8 3 1 -1.</_> 24564 <_>11 8 1 1 3.</_></rects> 24565 <tilted>0</tilted></feature> 24566 <threshold>6.1942739412188530e-003</threshold> 24567 <left_val>0.5060194134712219</left_val> 24568 <right_val>0.7313653230667114</right_val></_></_> 24569 <_> 24570 <!-- tree 82 --> 24571 <_> 24572 <!-- root node --> 24573 <feature> 24574 <rects> 24575 <_>7 8 3 1 -1.</_> 24576 <_>8 8 1 1 3.</_></rects> 24577 <tilted>0</tilted></feature> 24578 <threshold>-1.6607169527560472e-003</threshold> 24579 <left_val>0.5979632139205933</left_val> 24580 <right_val>0.4596369862556458</right_val></_></_> 24581 <_> 24582 <!-- tree 83 --> 24583 <_> 24584 <!-- root node --> 24585 <feature> 24586 <rects> 24587 <_>5 2 15 14 -1.</_> 24588 <_>5 9 15 7 2.</_></rects> 24589 <tilted>0</tilted></feature> 24590 <threshold>-0.0273162592202425</threshold> 24591 <left_val>0.4174365103244782</left_val> 24592 <right_val>0.5308842062950134</right_val></_></_> 24593 <_> 24594 <!-- tree 84 --> 24595 <_> 24596 <!-- root node --> 24597 <feature> 24598 <rects> 24599 <_>2 1 2 10 -1.</_> 24600 <_>2 1 1 5 2.</_> 24601 <_>3 6 1 5 2.</_></rects> 24602 <tilted>0</tilted></feature> 24603 <threshold>-1.5845570014789701e-003</threshold> 24604 <left_val>0.5615804791450501</left_val> 24605 <right_val>0.4519486129283905</right_val></_></_> 24606 <_> 24607 <!-- tree 85 --> 24608 <_> 24609 <!-- root node --> 24610 <feature> 24611 <rects> 24612 <_>14 14 2 3 -1.</_> 24613 <_>14 15 2 1 3.</_></rects> 24614 <tilted>0</tilted></feature> 24615 <threshold>-1.5514739789068699e-003</threshold> 24616 <left_val>0.4076187014579773</left_val> 24617 <right_val>0.5360785126686096</right_val></_></_> 24618 <_> 24619 <!-- tree 86 --> 24620 <_> 24621 <!-- root node --> 24622 <feature> 24623 <rects> 24624 <_>2 7 3 3 -1.</_> 24625 <_>3 7 1 3 3.</_></rects> 24626 <tilted>0</tilted></feature> 24627 <threshold>3.8446558755822480e-004</threshold> 24628 <left_val>0.4347293972969055</left_val> 24629 <right_val>0.5430442094802856</right_val></_></_> 24630 <_> 24631 <!-- tree 87 --> 24632 <_> 24633 <!-- root node --> 24634 <feature> 24635 <rects> 24636 <_>17 4 3 3 -1.</_> 24637 <_>17 5 3 1 3.</_></rects> 24638 <tilted>0</tilted></feature> 24639 <threshold>-0.0146722598001361</threshold> 24640 <left_val>0.1659304946660996</left_val> 24641 <right_val>0.5146093964576721</right_val></_></_> 24642 <_> 24643 <!-- tree 88 --> 24644 <_> 24645 <!-- root node --> 24646 <feature> 24647 <rects> 24648 <_>0 4 3 3 -1.</_> 24649 <_>0 5 3 1 3.</_></rects> 24650 <tilted>0</tilted></feature> 24651 <threshold>8.1608882173895836e-003</threshold> 24652 <left_val>0.4961819052696228</left_val> 24653 <right_val>0.1884745955467224</right_val></_></_> 24654 <_> 24655 <!-- tree 89 --> 24656 <_> 24657 <!-- root node --> 24658 <feature> 24659 <rects> 24660 <_>13 5 6 2 -1.</_> 24661 <_>16 5 3 1 2.</_> 24662 <_>13 6 3 1 2.</_></rects> 24663 <tilted>0</tilted></feature> 24664 <threshold>1.1121659772470593e-003</threshold> 24665 <left_val>0.4868263900279999</left_val> 24666 <right_val>0.6093816161155701</right_val></_></_> 24667 <_> 24668 <!-- tree 90 --> 24669 <_> 24670 <!-- root node --> 24671 <feature> 24672 <rects> 24673 <_>4 19 12 1 -1.</_> 24674 <_>8 19 4 1 3.</_></rects> 24675 <tilted>0</tilted></feature> 24676 <threshold>-7.2603770531713963e-003</threshold> 24677 <left_val>0.6284325122833252</left_val> 24678 <right_val>0.4690375924110413</right_val></_></_> 24679 <_> 24680 <!-- tree 91 --> 24681 <_> 24682 <!-- root node --> 24683 <feature> 24684 <rects> 24685 <_>12 12 2 4 -1.</_> 24686 <_>12 14 2 2 2.</_></rects> 24687 <tilted>0</tilted></feature> 24688 <threshold>-2.4046430189628154e-004</threshold> 24689 <left_val>0.5575000047683716</left_val> 24690 <right_val>0.4046044051647186</right_val></_></_> 24691 <_> 24692 <!-- tree 92 --> 24693 <_> 24694 <!-- root node --> 24695 <feature> 24696 <rects> 24697 <_>3 15 1 3 -1.</_> 24698 <_>3 16 1 1 3.</_></rects> 24699 <tilted>0</tilted></feature> 24700 <threshold>-2.3348190006799996e-004</threshold> 24701 <left_val>0.4115762114524841</left_val> 24702 <right_val>0.5252848267555237</right_val></_></_> 24703 <_> 24704 <!-- tree 93 --> 24705 <_> 24706 <!-- root node --> 24707 <feature> 24708 <rects> 24709 <_>11 16 6 4 -1.</_> 24710 <_>11 16 3 4 2.</_></rects> 24711 <tilted>0</tilted></feature> 24712 <threshold>5.5736480280756950e-003</threshold> 24713 <left_val>0.4730072915554047</left_val> 24714 <right_val>0.5690100789070129</right_val></_></_> 24715 <_> 24716 <!-- tree 94 --> 24717 <_> 24718 <!-- root node --> 24719 <feature> 24720 <rects> 24721 <_>2 10 3 10 -1.</_> 24722 <_>3 10 1 10 3.</_></rects> 24723 <tilted>0</tilted></feature> 24724 <threshold>0.0306237693876028</threshold> 24725 <left_val>0.4971886873245239</left_val> 24726 <right_val>0.1740095019340515</right_val></_></_> 24727 <_> 24728 <!-- tree 95 --> 24729 <_> 24730 <!-- root node --> 24731 <feature> 24732 <rects> 24733 <_>12 8 2 4 -1.</_> 24734 <_>12 8 1 4 2.</_></rects> 24735 <tilted>0</tilted></feature> 24736 <threshold>9.2074798885732889e-004</threshold> 24737 <left_val>0.5372117757797241</left_val> 24738 <right_val>0.4354872107505798</right_val></_></_> 24739 <_> 24740 <!-- tree 96 --> 24741 <_> 24742 <!-- root node --> 24743 <feature> 24744 <rects> 24745 <_>6 8 2 4 -1.</_> 24746 <_>7 8 1 4 2.</_></rects> 24747 <tilted>0</tilted></feature> 24748 <threshold>-4.3550739064812660e-005</threshold> 24749 <left_val>0.5366883873939514</left_val> 24750 <right_val>0.4347316920757294</right_val></_></_> 24751 <_> 24752 <!-- tree 97 --> 24753 <_> 24754 <!-- root node --> 24755 <feature> 24756 <rects> 24757 <_>10 14 2 3 -1.</_> 24758 <_>10 14 1 3 2.</_></rects> 24759 <tilted>0</tilted></feature> 24760 <threshold>-6.6452710889279842e-003</threshold> 24761 <left_val>0.3435518145561218</left_val> 24762 <right_val>0.5160533189773560</right_val></_></_> 24763 <_> 24764 <!-- tree 98 --> 24765 <_> 24766 <!-- root node --> 24767 <feature> 24768 <rects> 24769 <_>5 1 10 3 -1.</_> 24770 <_>10 1 5 3 2.</_></rects> 24771 <tilted>0</tilted></feature> 24772 <threshold>0.0432219989597797</threshold> 24773 <left_val>0.4766792058944702</left_val> 24774 <right_val>0.7293652892112732</right_val></_></_> 24775 <_> 24776 <!-- tree 99 --> 24777 <_> 24778 <!-- root node --> 24779 <feature> 24780 <rects> 24781 <_>10 7 3 2 -1.</_> 24782 <_>11 7 1 2 3.</_></rects> 24783 <tilted>0</tilted></feature> 24784 <threshold>2.2331769578158855e-003</threshold> 24785 <left_val>0.5029315948486328</left_val> 24786 <right_val>0.5633171200752258</right_val></_></_> 24787 <_> 24788 <!-- tree 100 --> 24789 <_> 24790 <!-- root node --> 24791 <feature> 24792 <rects> 24793 <_>5 6 9 2 -1.</_> 24794 <_>8 6 3 2 3.</_></rects> 24795 <tilted>0</tilted></feature> 24796 <threshold>3.1829739455133677e-003</threshold> 24797 <left_val>0.4016092121601105</left_val> 24798 <right_val>0.5192136764526367</right_val></_></_> 24799 <_> 24800 <!-- tree 101 --> 24801 <_> 24802 <!-- root node --> 24803 <feature> 24804 <rects> 24805 <_>9 8 2 2 -1.</_> 24806 <_>9 9 2 1 2.</_></rects> 24807 <tilted>0</tilted></feature> 24808 <threshold>-1.8027749320026487e-004</threshold> 24809 <left_val>0.4088315963745117</left_val> 24810 <right_val>0.5417919754981995</right_val></_></_> 24811 <_> 24812 <!-- tree 102 --> 24813 <_> 24814 <!-- root node --> 24815 <feature> 24816 <rects> 24817 <_>2 11 16 6 -1.</_> 24818 <_>2 11 8 3 2.</_> 24819 <_>10 14 8 3 2.</_></rects> 24820 <tilted>0</tilted></feature> 24821 <threshold>-5.2934689447283745e-003</threshold> 24822 <left_val>0.4075677096843720</left_val> 24823 <right_val>0.5243561863899231</right_val></_></_> 24824 <_> 24825 <!-- tree 103 --> 24826 <_> 24827 <!-- root node --> 24828 <feature> 24829 <rects> 24830 <_>12 7 2 2 -1.</_> 24831 <_>13 7 1 1 2.</_> 24832 <_>12 8 1 1 2.</_></rects> 24833 <tilted>0</tilted></feature> 24834 <threshold>1.2750959722325206e-003</threshold> 24835 <left_val>0.4913282990455627</left_val> 24836 <right_val>0.6387010812759399</right_val></_></_> 24837 <_> 24838 <!-- tree 104 --> 24839 <_> 24840 <!-- root node --> 24841 <feature> 24842 <rects> 24843 <_>9 5 2 3 -1.</_> 24844 <_>9 6 2 1 3.</_></rects> 24845 <tilted>0</tilted></feature> 24846 <threshold>4.3385322205722332e-003</threshold> 24847 <left_val>0.5031672120094299</left_val> 24848 <right_val>0.2947346866130829</right_val></_></_> 24849 <_> 24850 <!-- tree 105 --> 24851 <_> 24852 <!-- root node --> 24853 <feature> 24854 <rects> 24855 <_>9 7 3 2 -1.</_> 24856 <_>10 7 1 2 3.</_></rects> 24857 <tilted>0</tilted></feature> 24858 <threshold>8.5250744596123695e-003</threshold> 24859 <left_val>0.4949789047241211</left_val> 24860 <right_val>0.6308869123458862</right_val></_></_> 24861 <_> 24862 <!-- tree 106 --> 24863 <_> 24864 <!-- root node --> 24865 <feature> 24866 <rects> 24867 <_>5 1 8 12 -1.</_> 24868 <_>5 7 8 6 2.</_></rects> 24869 <tilted>0</tilted></feature> 24870 <threshold>-9.4266352243721485e-004</threshold> 24871 <left_val>0.5328366756439209</left_val> 24872 <right_val>0.4285649955272675</right_val></_></_> 24873 <_> 24874 <!-- tree 107 --> 24875 <_> 24876 <!-- root node --> 24877 <feature> 24878 <rects> 24879 <_>13 5 2 2 -1.</_> 24880 <_>13 6 2 1 2.</_></rects> 24881 <tilted>0</tilted></feature> 24882 <threshold>1.3609660090878606e-003</threshold> 24883 <left_val>0.4991525113582611</left_val> 24884 <right_val>0.5941501259803772</right_val></_></_> 24885 <_> 24886 <!-- tree 108 --> 24887 <_> 24888 <!-- root node --> 24889 <feature> 24890 <rects> 24891 <_>5 5 2 2 -1.</_> 24892 <_>5 6 2 1 2.</_></rects> 24893 <tilted>0</tilted></feature> 24894 <threshold>4.4782509212382138e-004</threshold> 24895 <left_val>0.4573504030704498</left_val> 24896 <right_val>0.5854480862617493</right_val></_></_> 24897 <_> 24898 <!-- tree 109 --> 24899 <_> 24900 <!-- root node --> 24901 <feature> 24902 <rects> 24903 <_>12 4 3 3 -1.</_> 24904 <_>12 5 3 1 3.</_></rects> 24905 <tilted>0</tilted></feature> 24906 <threshold>1.3360050506889820e-003</threshold> 24907 <left_val>0.4604358971118927</left_val> 24908 <right_val>0.5849052071571350</right_val></_></_> 24909 <_> 24910 <!-- tree 110 --> 24911 <_> 24912 <!-- root node --> 24913 <feature> 24914 <rects> 24915 <_>4 14 2 3 -1.</_> 24916 <_>4 15 2 1 3.</_></rects> 24917 <tilted>0</tilted></feature> 24918 <threshold>-6.0967548051849008e-004</threshold> 24919 <left_val>0.3969388902187347</left_val> 24920 <right_val>0.5229423046112061</right_val></_></_> 24921 <_> 24922 <!-- tree 111 --> 24923 <_> 24924 <!-- root node --> 24925 <feature> 24926 <rects> 24927 <_>12 4 3 3 -1.</_> 24928 <_>12 5 3 1 3.</_></rects> 24929 <tilted>0</tilted></feature> 24930 <threshold>-2.3656780831515789e-003</threshold> 24931 <left_val>0.5808320045471191</left_val> 24932 <right_val>0.4898357093334198</right_val></_></_> 24933 <_> 24934 <!-- tree 112 --> 24935 <_> 24936 <!-- root node --> 24937 <feature> 24938 <rects> 24939 <_>5 4 3 3 -1.</_> 24940 <_>5 5 3 1 3.</_></rects> 24941 <tilted>0</tilted></feature> 24942 <threshold>1.0734340175986290e-003</threshold> 24943 <left_val>0.4351210892200470</left_val> 24944 <right_val>0.5470039248466492</right_val></_></_> 24945 <_> 24946 <!-- tree 113 --> 24947 <_> 24948 <!-- root node --> 24949 <feature> 24950 <rects> 24951 <_>9 14 2 6 -1.</_> 24952 <_>10 14 1 3 2.</_> 24953 <_>9 17 1 3 2.</_></rects> 24954 <tilted>0</tilted></feature> 24955 <threshold>2.1923359017819166e-003</threshold> 24956 <left_val>0.5355060100555420</left_val> 24957 <right_val>0.3842903971672058</right_val></_></_> 24958 <_> 24959 <!-- tree 114 --> 24960 <_> 24961 <!-- root node --> 24962 <feature> 24963 <rects> 24964 <_>8 14 3 2 -1.</_> 24965 <_>9 14 1 2 3.</_></rects> 24966 <tilted>0</tilted></feature> 24967 <threshold>5.4968618787825108e-003</threshold> 24968 <left_val>0.5018138885498047</left_val> 24969 <right_val>0.2827191948890686</right_val></_></_> 24970 <_> 24971 <!-- tree 115 --> 24972 <_> 24973 <!-- root node --> 24974 <feature> 24975 <rects> 24976 <_>9 5 6 6 -1.</_> 24977 <_>11 5 2 6 3.</_></rects> 24978 <tilted>0</tilted></feature> 24979 <threshold>-0.0753688216209412</threshold> 24980 <left_val>0.1225076019763947</left_val> 24981 <right_val>0.5148826837539673</right_val></_></_> 24982 <_> 24983 <!-- tree 116 --> 24984 <_> 24985 <!-- root node --> 24986 <feature> 24987 <rects> 24988 <_>5 5 6 6 -1.</_> 24989 <_>7 5 2 6 3.</_></rects> 24990 <tilted>0</tilted></feature> 24991 <threshold>0.0251344703137875</threshold> 24992 <left_val>0.4731766879558563</left_val> 24993 <right_val>0.7025446295738220</right_val></_></_> 24994 <_> 24995 <!-- tree 117 --> 24996 <_> 24997 <!-- root node --> 24998 <feature> 24999 <rects> 25000 <_>13 13 1 2 -1.</_> 25001 <_>13 14 1 1 2.</_></rects> 25002 <tilted>0</tilted></feature> 25003 <threshold>-2.9358599931583740e-005</threshold> 25004 <left_val>0.5430532097816467</left_val> 25005 <right_val>0.4656086862087250</right_val></_></_> 25006 <_> 25007 <!-- tree 118 --> 25008 <_> 25009 <!-- root node --> 25010 <feature> 25011 <rects> 25012 <_>0 2 10 2 -1.</_> 25013 <_>0 3 10 1 2.</_></rects> 25014 <tilted>0</tilted></feature> 25015 <threshold>-5.8355910005047917e-004</threshold> 25016 <left_val>0.4031040072441101</left_val> 25017 <right_val>0.5190119743347168</right_val></_></_> 25018 <_> 25019 <!-- tree 119 --> 25020 <_> 25021 <!-- root node --> 25022 <feature> 25023 <rects> 25024 <_>13 13 1 2 -1.</_> 25025 <_>13 14 1 1 2.</_></rects> 25026 <tilted>0</tilted></feature> 25027 <threshold>-2.6639450807124376e-003</threshold> 25028 <left_val>0.4308126866817474</left_val> 25029 <right_val>0.5161771178245544</right_val></_></_> 25030 <_> 25031 <!-- tree 120 --> 25032 <_> 25033 <!-- root node --> 25034 <feature> 25035 <rects> 25036 <_>5 7 2 2 -1.</_> 25037 <_>5 7 1 1 2.</_> 25038 <_>6 8 1 1 2.</_></rects> 25039 <tilted>0</tilted></feature> 25040 <threshold>-1.3804089976474643e-003</threshold> 25041 <left_val>0.6219829916954041</left_val> 25042 <right_val>0.4695515930652618</right_val></_></_> 25043 <_> 25044 <!-- tree 121 --> 25045 <_> 25046 <!-- root node --> 25047 <feature> 25048 <rects> 25049 <_>13 5 2 7 -1.</_> 25050 <_>13 5 1 7 2.</_></rects> 25051 <tilted>0</tilted></feature> 25052 <threshold>1.2313219485804439e-003</threshold> 25053 <left_val>0.5379363894462585</left_val> 25054 <right_val>0.4425831139087677</right_val></_></_> 25055 <_> 25056 <!-- tree 122 --> 25057 <_> 25058 <!-- root node --> 25059 <feature> 25060 <rects> 25061 <_>6 13 1 2 -1.</_> 25062 <_>6 14 1 1 2.</_></rects> 25063 <tilted>0</tilted></feature> 25064 <threshold>-1.4644179827882908e-005</threshold> 25065 <left_val>0.5281640291213989</left_val> 25066 <right_val>0.4222503006458283</right_val></_></_> 25067 <_> 25068 <!-- tree 123 --> 25069 <_> 25070 <!-- root node --> 25071 <feature> 25072 <rects> 25073 <_>11 0 3 7 -1.</_> 25074 <_>12 0 1 7 3.</_></rects> 25075 <tilted>0</tilted></feature> 25076 <threshold>-0.0128188095986843</threshold> 25077 <left_val>0.2582092881202698</left_val> 25078 <right_val>0.5179932713508606</right_val></_></_> 25079 <_> 25080 <!-- tree 124 --> 25081 <_> 25082 <!-- root node --> 25083 <feature> 25084 <rects> 25085 <_>0 3 2 16 -1.</_> 25086 <_>0 3 1 8 2.</_> 25087 <_>1 11 1 8 2.</_></rects> 25088 <tilted>0</tilted></feature> 25089 <threshold>0.0228521898388863</threshold> 25090 <left_val>0.4778693020343781</left_val> 25091 <right_val>0.7609264254570007</right_val></_></_> 25092 <_> 25093 <!-- tree 125 --> 25094 <_> 25095 <!-- root node --> 25096 <feature> 25097 <rects> 25098 <_>11 0 3 7 -1.</_> 25099 <_>12 0 1 7 3.</_></rects> 25100 <tilted>0</tilted></feature> 25101 <threshold>8.2305970136076212e-004</threshold> 25102 <left_val>0.5340992212295532</left_val> 25103 <right_val>0.4671724140644074</right_val></_></_> 25104 <_> 25105 <!-- tree 126 --> 25106 <_> 25107 <!-- root node --> 25108 <feature> 25109 <rects> 25110 <_>6 0 3 7 -1.</_> 25111 <_>7 0 1 7 3.</_></rects> 25112 <tilted>0</tilted></feature> 25113 <threshold>0.0127701200544834</threshold> 25114 <left_val>0.4965761005878449</left_val> 25115 <right_val>0.1472366005182266</right_val></_></_> 25116 <_> 25117 <!-- tree 127 --> 25118 <_> 25119 <!-- root node --> 25120 <feature> 25121 <rects> 25122 <_>11 16 8 4 -1.</_> 25123 <_>11 16 4 4 2.</_></rects> 25124 <tilted>0</tilted></feature> 25125 <threshold>-0.0500515103340149</threshold> 25126 <left_val>0.6414994001388550</left_val> 25127 <right_val>0.5016592144966126</right_val></_></_> 25128 <_> 25129 <!-- tree 128 --> 25130 <_> 25131 <!-- root node --> 25132 <feature> 25133 <rects> 25134 <_>1 16 8 4 -1.</_> 25135 <_>5 16 4 4 2.</_></rects> 25136 <tilted>0</tilted></feature> 25137 <threshold>0.0157752707600594</threshold> 25138 <left_val>0.4522320032119751</left_val> 25139 <right_val>0.5685362219810486</right_val></_></_> 25140 <_> 25141 <!-- tree 129 --> 25142 <_> 25143 <!-- root node --> 25144 <feature> 25145 <rects> 25146 <_>13 5 2 7 -1.</_> 25147 <_>13 5 1 7 2.</_></rects> 25148 <tilted>0</tilted></feature> 25149 <threshold>-0.0185016207396984</threshold> 25150 <left_val>0.2764748930931091</left_val> 25151 <right_val>0.5137959122657776</right_val></_></_> 25152 <_> 25153 <!-- tree 130 --> 25154 <_> 25155 <!-- root node --> 25156 <feature> 25157 <rects> 25158 <_>5 5 2 7 -1.</_> 25159 <_>6 5 1 7 2.</_></rects> 25160 <tilted>0</tilted></feature> 25161 <threshold>2.4626250378787518e-003</threshold> 25162 <left_val>0.5141941905021668</left_val> 25163 <right_val>0.3795408010482788</right_val></_></_> 25164 <_> 25165 <!-- tree 131 --> 25166 <_> 25167 <!-- root node --> 25168 <feature> 25169 <rects> 25170 <_>18 6 2 14 -1.</_> 25171 <_>18 13 2 7 2.</_></rects> 25172 <tilted>0</tilted></feature> 25173 <threshold>0.0629161670804024</threshold> 25174 <left_val>0.5060648918151856</left_val> 25175 <right_val>0.6580433845520020</right_val></_></_> 25176 <_> 25177 <!-- tree 132 --> 25178 <_> 25179 <!-- root node --> 25180 <feature> 25181 <rects> 25182 <_>6 10 3 4 -1.</_> 25183 <_>6 12 3 2 2.</_></rects> 25184 <tilted>0</tilted></feature> 25185 <threshold>-2.1648500478477217e-005</threshold> 25186 <left_val>0.5195388197898865</left_val> 25187 <right_val>0.4019886851310730</right_val></_></_> 25188 <_> 25189 <!-- tree 133 --> 25190 <_> 25191 <!-- root node --> 25192 <feature> 25193 <rects> 25194 <_>14 7 1 2 -1.</_> 25195 <_>14 8 1 1 2.</_></rects> 25196 <tilted>0</tilted></feature> 25197 <threshold>2.1180990152060986e-003</threshold> 25198 <left_val>0.4962365031242371</left_val> 25199 <right_val>0.5954458713531494</right_val></_></_> 25200 <_> 25201 <!-- tree 134 --> 25202 <_> 25203 <!-- root node --> 25204 <feature> 25205 <rects> 25206 <_>0 1 18 6 -1.</_> 25207 <_>0 1 9 3 2.</_> 25208 <_>9 4 9 3 2.</_></rects> 25209 <tilted>0</tilted></feature> 25210 <threshold>-0.0166348908096552</threshold> 25211 <left_val>0.3757933080196381</left_val> 25212 <right_val>0.5175446867942810</right_val></_></_> 25213 <_> 25214 <!-- tree 135 --> 25215 <_> 25216 <!-- root node --> 25217 <feature> 25218 <rects> 25219 <_>14 7 1 2 -1.</_> 25220 <_>14 8 1 1 2.</_></rects> 25221 <tilted>0</tilted></feature> 25222 <threshold>-2.8899470344185829e-003</threshold> 25223 <left_val>0.6624013781547546</left_val> 25224 <right_val>0.5057178735733032</right_val></_></_> 25225 <_> 25226 <!-- tree 136 --> 25227 <_> 25228 <!-- root node --> 25229 <feature> 25230 <rects> 25231 <_>0 6 2 14 -1.</_> 25232 <_>0 13 2 7 2.</_></rects> 25233 <tilted>0</tilted></feature> 25234 <threshold>0.0767832621932030</threshold> 25235 <left_val>0.4795796871185303</left_val> 25236 <right_val>0.8047714829444885</right_val></_></_> 25237 <_> 25238 <!-- tree 137 --> 25239 <_> 25240 <!-- root node --> 25241 <feature> 25242 <rects> 25243 <_>17 0 3 12 -1.</_> 25244 <_>18 0 1 12 3.</_></rects> 25245 <tilted>0</tilted></feature> 25246 <threshold>3.9170677773654461e-003</threshold> 25247 <left_val>0.4937882125377655</left_val> 25248 <right_val>0.5719941854476929</right_val></_></_> 25249 <_> 25250 <!-- tree 138 --> 25251 <_> 25252 <!-- root node --> 25253 <feature> 25254 <rects> 25255 <_>0 6 18 3 -1.</_> 25256 <_>0 7 18 1 3.</_></rects> 25257 <tilted>0</tilted></feature> 25258 <threshold>-0.0726706013083458</threshold> 25259 <left_val>0.0538945607841015</left_val> 25260 <right_val>0.4943903982639313</right_val></_></_> 25261 <_> 25262 <!-- tree 139 --> 25263 <_> 25264 <!-- root node --> 25265 <feature> 25266 <rects> 25267 <_>6 0 14 16 -1.</_> 25268 <_>6 8 14 8 2.</_></rects> 25269 <tilted>0</tilted></feature> 25270 <threshold>0.5403950214385986</threshold> 25271 <left_val>0.5129774212837219</left_val> 25272 <right_val>0.1143338978290558</right_val></_></_> 25273 <_> 25274 <!-- tree 140 --> 25275 <_> 25276 <!-- root node --> 25277 <feature> 25278 <rects> 25279 <_>0 0 3 12 -1.</_> 25280 <_>1 0 1 12 3.</_></rects> 25281 <tilted>0</tilted></feature> 25282 <threshold>2.9510019812732935e-003</threshold> 25283 <left_val>0.4528343975543976</left_val> 25284 <right_val>0.5698574185371399</right_val></_></_> 25285 <_> 25286 <!-- tree 141 --> 25287 <_> 25288 <!-- root node --> 25289 <feature> 25290 <rects> 25291 <_>13 0 3 7 -1.</_> 25292 <_>14 0 1 7 3.</_></rects> 25293 <tilted>0</tilted></feature> 25294 <threshold>3.4508369863033295e-003</threshold> 25295 <left_val>0.5357726812362671</left_val> 25296 <right_val>0.4218730926513672</right_val></_></_> 25297 <_> 25298 <!-- tree 142 --> 25299 <_> 25300 <!-- root node --> 25301 <feature> 25302 <rects> 25303 <_>5 7 1 2 -1.</_> 25304 <_>5 8 1 1 2.</_></rects> 25305 <tilted>0</tilted></feature> 25306 <threshold>-4.2077939724549651e-004</threshold> 25307 <left_val>0.5916172862052918</left_val> 25308 <right_val>0.4637925922870636</right_val></_></_> 25309 <_> 25310 <!-- tree 143 --> 25311 <_> 25312 <!-- root node --> 25313 <feature> 25314 <rects> 25315 <_>14 4 6 6 -1.</_> 25316 <_>14 6 6 2 3.</_></rects> 25317 <tilted>0</tilted></feature> 25318 <threshold>3.3051050268113613e-003</threshold> 25319 <left_val>0.5273385047912598</left_val> 25320 <right_val>0.4382042884826660</right_val></_></_> 25321 <_> 25322 <!-- tree 144 --> 25323 <_> 25324 <!-- root node --> 25325 <feature> 25326 <rects> 25327 <_>5 7 7 2 -1.</_> 25328 <_>5 8 7 1 2.</_></rects> 25329 <tilted>0</tilted></feature> 25330 <threshold>4.7735060798004270e-004</threshold> 25331 <left_val>0.4046528041362763</left_val> 25332 <right_val>0.5181884765625000</right_val></_></_> 25333 <_> 25334 <!-- tree 145 --> 25335 <_> 25336 <!-- root node --> 25337 <feature> 25338 <rects> 25339 <_>8 6 6 9 -1.</_> 25340 <_>8 9 6 3 3.</_></rects> 25341 <tilted>0</tilted></feature> 25342 <threshold>-0.0259285103529692</threshold> 25343 <left_val>0.7452235817909241</left_val> 25344 <right_val>0.5089386105537415</right_val></_></_> 25345 <_> 25346 <!-- tree 146 --> 25347 <_> 25348 <!-- root node --> 25349 <feature> 25350 <rects> 25351 <_>5 4 6 1 -1.</_> 25352 <_>7 4 2 1 3.</_></rects> 25353 <tilted>0</tilted></feature> 25354 <threshold>-2.9729790985584259e-003</threshold> 25355 <left_val>0.3295435905456543</left_val> 25356 <right_val>0.5058795213699341</right_val></_></_> 25357 <_> 25358 <!-- tree 147 --> 25359 <_> 25360 <!-- root node --> 25361 <feature> 25362 <rects> 25363 <_>13 0 6 4 -1.</_> 25364 <_>16 0 3 2 2.</_> 25365 <_>13 2 3 2 2.</_></rects> 25366 <tilted>0</tilted></feature> 25367 <threshold>5.8508329093456268e-003</threshold> 25368 <left_val>0.4857144057750702</left_val> 25369 <right_val>0.5793024897575378</right_val></_></_> 25370 <_> 25371 <!-- tree 148 --> 25372 <_> 25373 <!-- root node --> 25374 <feature> 25375 <rects> 25376 <_>1 2 18 12 -1.</_> 25377 <_>1 6 18 4 3.</_></rects> 25378 <tilted>0</tilted></feature> 25379 <threshold>-0.0459675192832947</threshold> 25380 <left_val>0.4312731027603149</left_val> 25381 <right_val>0.5380653142929077</right_val></_></_> 25382 <_> 25383 <!-- tree 149 --> 25384 <_> 25385 <!-- root node --> 25386 <feature> 25387 <rects> 25388 <_>3 2 17 12 -1.</_> 25389 <_>3 6 17 4 3.</_></rects> 25390 <tilted>0</tilted></feature> 25391 <threshold>0.1558596044778824</threshold> 25392 <left_val>0.5196170210838318</left_val> 25393 <right_val>0.1684713959693909</right_val></_></_> 25394 <_> 25395 <!-- tree 150 --> 25396 <_> 25397 <!-- root node --> 25398 <feature> 25399 <rects> 25400 <_>5 14 7 3 -1.</_> 25401 <_>5 15 7 1 3.</_></rects> 25402 <tilted>0</tilted></feature> 25403 <threshold>0.0151648297905922</threshold> 25404 <left_val>0.4735757112503052</left_val> 25405 <right_val>0.6735026836395264</right_val></_></_> 25406 <_> 25407 <!-- tree 151 --> 25408 <_> 25409 <!-- root node --> 25410 <feature> 25411 <rects> 25412 <_>10 14 1 3 -1.</_> 25413 <_>10 15 1 1 3.</_></rects> 25414 <tilted>0</tilted></feature> 25415 <threshold>-1.0604249546304345e-003</threshold> 25416 <left_val>0.5822926759719849</left_val> 25417 <right_val>0.4775702953338623</right_val></_></_> 25418 <_> 25419 <!-- tree 152 --> 25420 <_> 25421 <!-- root node --> 25422 <feature> 25423 <rects> 25424 <_>3 14 3 3 -1.</_> 25425 <_>3 15 3 1 3.</_></rects> 25426 <tilted>0</tilted></feature> 25427 <threshold>6.6476291976869106e-003</threshold> 25428 <left_val>0.4999198913574219</left_val> 25429 <right_val>0.2319535017013550</right_val></_></_> 25430 <_> 25431 <!-- tree 153 --> 25432 <_> 25433 <!-- root node --> 25434 <feature> 25435 <rects> 25436 <_>14 4 6 6 -1.</_> 25437 <_>14 6 6 2 3.</_></rects> 25438 <tilted>0</tilted></feature> 25439 <threshold>-0.0122311301529408</threshold> 25440 <left_val>0.4750893115997315</left_val> 25441 <right_val>0.5262982249259949</right_val></_></_> 25442 <_> 25443 <!-- tree 154 --> 25444 <_> 25445 <!-- root node --> 25446 <feature> 25447 <rects> 25448 <_>0 4 6 6 -1.</_> 25449 <_>0 6 6 2 3.</_></rects> 25450 <tilted>0</tilted></feature> 25451 <threshold>5.6528882123529911e-003</threshold> 25452 <left_val>0.5069767832756043</left_val> 25453 <right_val>0.3561818897724152</right_val></_></_> 25454 <_> 25455 <!-- tree 155 --> 25456 <_> 25457 <!-- root node --> 25458 <feature> 25459 <rects> 25460 <_>12 5 4 3 -1.</_> 25461 <_>12 6 4 1 3.</_></rects> 25462 <tilted>0</tilted></feature> 25463 <threshold>1.2977829901501536e-003</threshold> 25464 <left_val>0.4875693917274475</left_val> 25465 <right_val>0.5619062781333923</right_val></_></_> 25466 <_> 25467 <!-- tree 156 --> 25468 <_> 25469 <!-- root node --> 25470 <feature> 25471 <rects> 25472 <_>4 5 4 3 -1.</_> 25473 <_>4 6 4 1 3.</_></rects> 25474 <tilted>0</tilted></feature> 25475 <threshold>0.0107815898954868</threshold> 25476 <left_val>0.4750770032405853</left_val> 25477 <right_val>0.6782308220863342</right_val></_></_> 25478 <_> 25479 <!-- tree 157 --> 25480 <_> 25481 <!-- root node --> 25482 <feature> 25483 <rects> 25484 <_>18 0 2 6 -1.</_> 25485 <_>18 2 2 2 3.</_></rects> 25486 <tilted>0</tilted></feature> 25487 <threshold>2.8654779307544231e-003</threshold> 25488 <left_val>0.5305461883544922</left_val> 25489 <right_val>0.4290736019611359</right_val></_></_> 25490 <_> 25491 <!-- tree 158 --> 25492 <_> 25493 <!-- root node --> 25494 <feature> 25495 <rects> 25496 <_>8 1 4 9 -1.</_> 25497 <_>10 1 2 9 2.</_></rects> 25498 <tilted>0</tilted></feature> 25499 <threshold>2.8663428965955973e-003</threshold> 25500 <left_val>0.4518479108810425</left_val> 25501 <right_val>0.5539351105690002</right_val></_></_> 25502 <_> 25503 <!-- tree 159 --> 25504 <_> 25505 <!-- root node --> 25506 <feature> 25507 <rects> 25508 <_>6 6 8 2 -1.</_> 25509 <_>6 6 4 2 2.</_></rects> 25510 <tilted>0</tilted></feature> 25511 <threshold>-5.1983320154249668e-003</threshold> 25512 <left_val>0.4149119853973389</left_val> 25513 <right_val>0.5434188842773438</right_val></_></_> 25514 <_> 25515 <!-- tree 160 --> 25516 <_> 25517 <!-- root node --> 25518 <feature> 25519 <rects> 25520 <_>6 5 4 2 -1.</_> 25521 <_>6 5 2 1 2.</_> 25522 <_>8 6 2 1 2.</_></rects> 25523 <tilted>0</tilted></feature> 25524 <threshold>5.3739990107715130e-003</threshold> 25525 <left_val>0.4717896878719330</left_val> 25526 <right_val>0.6507657170295715</right_val></_></_> 25527 <_> 25528 <!-- tree 161 --> 25529 <_> 25530 <!-- root node --> 25531 <feature> 25532 <rects> 25533 <_>10 5 2 3 -1.</_> 25534 <_>10 6 2 1 3.</_></rects> 25535 <tilted>0</tilted></feature> 25536 <threshold>-0.0146415298804641</threshold> 25537 <left_val>0.2172164022922516</left_val> 25538 <right_val>0.5161777138710022</right_val></_></_> 25539 <_> 25540 <!-- tree 162 --> 25541 <_> 25542 <!-- root node --> 25543 <feature> 25544 <rects> 25545 <_>9 5 1 3 -1.</_> 25546 <_>9 6 1 1 3.</_></rects> 25547 <tilted>0</tilted></feature> 25548 <threshold>-1.5042580344015732e-005</threshold> 25549 <left_val>0.5337383747100830</left_val> 25550 <right_val>0.4298836886882782</right_val></_></_> 25551 <_> 25552 <!-- tree 163 --> 25553 <_> 25554 <!-- root node --> 25555 <feature> 25556 <rects> 25557 <_>9 10 2 2 -1.</_> 25558 <_>9 11 2 1 2.</_></rects> 25559 <tilted>0</tilted></feature> 25560 <threshold>-1.1875660129589960e-004</threshold> 25561 <left_val>0.4604594111442566</left_val> 25562 <right_val>0.5582447052001953</right_val></_></_> 25563 <_> 25564 <!-- tree 164 --> 25565 <_> 25566 <!-- root node --> 25567 <feature> 25568 <rects> 25569 <_>0 8 4 3 -1.</_> 25570 <_>0 9 4 1 3.</_></rects> 25571 <tilted>0</tilted></feature> 25572 <threshold>0.0169955305755138</threshold> 25573 <left_val>0.4945895075798035</left_val> 25574 <right_val>0.0738800764083862</right_val></_></_> 25575 <_> 25576 <!-- tree 165 --> 25577 <_> 25578 <!-- root node --> 25579 <feature> 25580 <rects> 25581 <_>6 0 8 6 -1.</_> 25582 <_>6 3 8 3 2.</_></rects> 25583 <tilted>0</tilted></feature> 25584 <threshold>-0.0350959412753582</threshold> 25585 <left_val>0.7005509138107300</left_val> 25586 <right_val>0.4977591037750244</right_val></_></_> 25587 <_> 25588 <!-- tree 166 --> 25589 <_> 25590 <!-- root node --> 25591 <feature> 25592 <rects> 25593 <_>1 0 6 4 -1.</_> 25594 <_>1 0 3 2 2.</_> 25595 <_>4 2 3 2 2.</_></rects> 25596 <tilted>0</tilted></feature> 25597 <threshold>2.4217350874096155e-003</threshold> 25598 <left_val>0.4466265141963959</left_val> 25599 <right_val>0.5477694272994995</right_val></_></_> 25600 <_> 25601 <!-- tree 167 --> 25602 <_> 25603 <!-- root node --> 25604 <feature> 25605 <rects> 25606 <_>13 0 3 7 -1.</_> 25607 <_>14 0 1 7 3.</_></rects> 25608 <tilted>0</tilted></feature> 25609 <threshold>-9.6340337768197060e-004</threshold> 25610 <left_val>0.4714098870754242</left_val> 25611 <right_val>0.5313338041305542</right_val></_></_> 25612 <_> 25613 <!-- tree 168 --> 25614 <_> 25615 <!-- root node --> 25616 <feature> 25617 <rects> 25618 <_>9 16 2 2 -1.</_> 25619 <_>9 17 2 1 2.</_></rects> 25620 <tilted>0</tilted></feature> 25621 <threshold>1.6391130338888615e-004</threshold> 25622 <left_val>0.4331546127796173</left_val> 25623 <right_val>0.5342242121696472</right_val></_></_> 25624 <_> 25625 <!-- tree 169 --> 25626 <_> 25627 <!-- root node --> 25628 <feature> 25629 <rects> 25630 <_>11 4 6 10 -1.</_> 25631 <_>11 9 6 5 2.</_></rects> 25632 <tilted>0</tilted></feature> 25633 <threshold>-0.0211414601653814</threshold> 25634 <left_val>0.2644700109958649</left_val> 25635 <right_val>0.5204498767852783</right_val></_></_> 25636 <_> 25637 <!-- tree 170 --> 25638 <_> 25639 <!-- root node --> 25640 <feature> 25641 <rects> 25642 <_>0 10 19 2 -1.</_> 25643 <_>0 11 19 1 2.</_></rects> 25644 <tilted>0</tilted></feature> 25645 <threshold>8.7775202700868249e-004</threshold> 25646 <left_val>0.5208349823951721</left_val> 25647 <right_val>0.4152742922306061</right_val></_></_> 25648 <_> 25649 <!-- tree 171 --> 25650 <_> 25651 <!-- root node --> 25652 <feature> 25653 <rects> 25654 <_>9 5 8 9 -1.</_> 25655 <_>9 8 8 3 3.</_></rects> 25656 <tilted>0</tilted></feature> 25657 <threshold>-0.0279439203441143</threshold> 25658 <left_val>0.6344125270843506</left_val> 25659 <right_val>0.5018811821937561</right_val></_></_> 25660 <_> 25661 <!-- tree 172 --> 25662 <_> 25663 <!-- root node --> 25664 <feature> 25665 <rects> 25666 <_>4 0 3 7 -1.</_> 25667 <_>5 0 1 7 3.</_></rects> 25668 <tilted>0</tilted></feature> 25669 <threshold>6.7297378554940224e-003</threshold> 25670 <left_val>0.5050438046455383</left_val> 25671 <right_val>0.3500863909721375</right_val></_></_> 25672 <_> 25673 <!-- tree 173 --> 25674 <_> 25675 <!-- root node --> 25676 <feature> 25677 <rects> 25678 <_>8 6 4 12 -1.</_> 25679 <_>10 6 2 6 2.</_> 25680 <_>8 12 2 6 2.</_></rects> 25681 <tilted>0</tilted></feature> 25682 <threshold>0.0232810396701097</threshold> 25683 <left_val>0.4966318011283875</left_val> 25684 <right_val>0.6968677043914795</right_val></_></_> 25685 <_> 25686 <!-- tree 174 --> 25687 <_> 25688 <!-- root node --> 25689 <feature> 25690 <rects> 25691 <_>0 2 6 4 -1.</_> 25692 <_>0 4 6 2 2.</_></rects> 25693 <tilted>0</tilted></feature> 25694 <threshold>-0.0116449799388647</threshold> 25695 <left_val>0.3300260007381439</left_val> 25696 <right_val>0.5049629807472229</right_val></_></_> 25697 <_> 25698 <!-- tree 175 --> 25699 <_> 25700 <!-- root node --> 25701 <feature> 25702 <rects> 25703 <_>8 15 4 3 -1.</_> 25704 <_>8 16 4 1 3.</_></rects> 25705 <tilted>0</tilted></feature> 25706 <threshold>0.0157643090933561</threshold> 25707 <left_val>0.4991598129272461</left_val> 25708 <right_val>0.7321153879165649</right_val></_></_> 25709 <_> 25710 <!-- tree 176 --> 25711 <_> 25712 <!-- root node --> 25713 <feature> 25714 <rects> 25715 <_>8 0 3 7 -1.</_> 25716 <_>9 0 1 7 3.</_></rects> 25717 <tilted>0</tilted></feature> 25718 <threshold>-1.3611479662358761e-003</threshold> 25719 <left_val>0.3911735117435455</left_val> 25720 <right_val>0.5160670876502991</right_val></_></_> 25721 <_> 25722 <!-- tree 177 --> 25723 <_> 25724 <!-- root node --> 25725 <feature> 25726 <rects> 25727 <_>9 5 3 4 -1.</_> 25728 <_>10 5 1 4 3.</_></rects> 25729 <tilted>0</tilted></feature> 25730 <threshold>-8.1522337859496474e-004</threshold> 25731 <left_val>0.5628911256790161</left_val> 25732 <right_val>0.4949719011783600</right_val></_></_> 25733 <_> 25734 <!-- tree 178 --> 25735 <_> 25736 <!-- root node --> 25737 <feature> 25738 <rects> 25739 <_>8 5 3 4 -1.</_> 25740 <_>9 5 1 4 3.</_></rects> 25741 <tilted>0</tilted></feature> 25742 <threshold>-6.0066272271797061e-004</threshold> 25743 <left_val>0.5853595137596130</left_val> 25744 <right_val>0.4550595879554749</right_val></_></_> 25745 <_> 25746 <!-- tree 179 --> 25747 <_> 25748 <!-- root node --> 25749 <feature> 25750 <rects> 25751 <_>7 6 6 1 -1.</_> 25752 <_>9 6 2 1 3.</_></rects> 25753 <tilted>0</tilted></feature> 25754 <threshold>4.9715518252924085e-004</threshold> 25755 <left_val>0.4271470010280609</left_val> 25756 <right_val>0.5443599224090576</right_val></_></_> 25757 <_> 25758 <!-- tree 180 --> 25759 <_> 25760 <!-- root node --> 25761 <feature> 25762 <rects> 25763 <_>7 14 4 4 -1.</_> 25764 <_>7 14 2 2 2.</_> 25765 <_>9 16 2 2 2.</_></rects> 25766 <tilted>0</tilted></feature> 25767 <threshold>2.3475370835512877e-003</threshold> 25768 <left_val>0.5143110752105713</left_val> 25769 <right_val>0.3887656927108765</right_val></_></_> 25770 <_> 25771 <!-- tree 181 --> 25772 <_> 25773 <!-- root node --> 25774 <feature> 25775 <rects> 25776 <_>13 14 4 6 -1.</_> 25777 <_>15 14 2 3 2.</_> 25778 <_>13 17 2 3 2.</_></rects> 25779 <tilted>0</tilted></feature> 25780 <threshold>-8.9261569082736969e-003</threshold> 25781 <left_val>0.6044502258300781</left_val> 25782 <right_val>0.4971720874309540</right_val></_></_> 25783 <_> 25784 <!-- tree 182 --> 25785 <_> 25786 <!-- root node --> 25787 <feature> 25788 <rects> 25789 <_>7 8 1 8 -1.</_> 25790 <_>7 12 1 4 2.</_></rects> 25791 <tilted>0</tilted></feature> 25792 <threshold>-0.0139199104160070</threshold> 25793 <left_val>0.2583160996437073</left_val> 25794 <right_val>0.5000367760658264</right_val></_></_> 25795 <_> 25796 <!-- tree 183 --> 25797 <_> 25798 <!-- root node --> 25799 <feature> 25800 <rects> 25801 <_>16 0 2 8 -1.</_> 25802 <_>17 0 1 4 2.</_> 25803 <_>16 4 1 4 2.</_></rects> 25804 <tilted>0</tilted></feature> 25805 <threshold>1.0209949687123299e-003</threshold> 25806 <left_val>0.4857374131679535</left_val> 25807 <right_val>0.5560358166694641</right_val></_></_> 25808 <_> 25809 <!-- tree 184 --> 25810 <_> 25811 <!-- root node --> 25812 <feature> 25813 <rects> 25814 <_>2 0 2 8 -1.</_> 25815 <_>2 0 1 4 2.</_> 25816 <_>3 4 1 4 2.</_></rects> 25817 <tilted>0</tilted></feature> 25818 <threshold>-2.7441629208624363e-003</threshold> 25819 <left_val>0.5936884880065918</left_val> 25820 <right_val>0.4645777046680450</right_val></_></_> 25821 <_> 25822 <!-- tree 185 --> 25823 <_> 25824 <!-- root node --> 25825 <feature> 25826 <rects> 25827 <_>6 1 14 3 -1.</_> 25828 <_>6 2 14 1 3.</_></rects> 25829 <tilted>0</tilted></feature> 25830 <threshold>-0.0162001308053732</threshold> 25831 <left_val>0.3163014948368073</left_val> 25832 <right_val>0.5193495154380798</right_val></_></_> 25833 <_> 25834 <!-- tree 186 --> 25835 <_> 25836 <!-- root node --> 25837 <feature> 25838 <rects> 25839 <_>7 9 3 10 -1.</_> 25840 <_>7 14 3 5 2.</_></rects> 25841 <tilted>0</tilted></feature> 25842 <threshold>4.3331980705261230e-003</threshold> 25843 <left_val>0.5061224102973938</left_val> 25844 <right_val>0.3458878993988037</right_val></_></_> 25845 <_> 25846 <!-- tree 187 --> 25847 <_> 25848 <!-- root node --> 25849 <feature> 25850 <rects> 25851 <_>9 14 2 2 -1.</_> 25852 <_>9 15 2 1 2.</_></rects> 25853 <tilted>0</tilted></feature> 25854 <threshold>5.8497930876910686e-004</threshold> 25855 <left_val>0.4779017865657806</left_val> 25856 <right_val>0.5870177745819092</right_val></_></_> 25857 <_> 25858 <!-- tree 188 --> 25859 <_> 25860 <!-- root node --> 25861 <feature> 25862 <rects> 25863 <_>7 7 6 8 -1.</_> 25864 <_>7 11 6 4 2.</_></rects> 25865 <tilted>0</tilted></feature> 25866 <threshold>-2.2466450463980436e-003</threshold> 25867 <left_val>0.4297851026058197</left_val> 25868 <right_val>0.5374773144721985</right_val></_></_> 25869 <_> 25870 <!-- tree 189 --> 25871 <_> 25872 <!-- root node --> 25873 <feature> 25874 <rects> 25875 <_>9 7 3 6 -1.</_> 25876 <_>9 10 3 3 2.</_></rects> 25877 <tilted>0</tilted></feature> 25878 <threshold>2.3146099410951138e-003</threshold> 25879 <left_val>0.5438671708106995</left_val> 25880 <right_val>0.4640969932079315</right_val></_></_> 25881 <_> 25882 <!-- tree 190 --> 25883 <_> 25884 <!-- root node --> 25885 <feature> 25886 <rects> 25887 <_>7 13 3 3 -1.</_> 25888 <_>7 14 3 1 3.</_></rects> 25889 <tilted>0</tilted></feature> 25890 <threshold>8.7679121643304825e-003</threshold> 25891 <left_val>0.4726893007755280</left_val> 25892 <right_val>0.6771789789199829</right_val></_></_> 25893 <_> 25894 <!-- tree 191 --> 25895 <_> 25896 <!-- root node --> 25897 <feature> 25898 <rects> 25899 <_>9 9 2 2 -1.</_> 25900 <_>9 10 2 1 2.</_></rects> 25901 <tilted>0</tilted></feature> 25902 <threshold>-2.2448020172305405e-004</threshold> 25903 <left_val>0.4229173064231873</left_val> 25904 <right_val>0.5428048968315125</right_val></_></_> 25905 <_> 25906 <!-- tree 192 --> 25907 <_> 25908 <!-- root node --> 25909 <feature> 25910 <rects> 25911 <_>0 1 18 2 -1.</_> 25912 <_>6 1 6 2 3.</_></rects> 25913 <tilted>0</tilted></feature> 25914 <threshold>-7.4336021207273006e-003</threshold> 25915 <left_val>0.6098880767822266</left_val> 25916 <right_val>0.4683673977851868</right_val></_></_> 25917 <_> 25918 <!-- tree 193 --> 25919 <_> 25920 <!-- root node --> 25921 <feature> 25922 <rects> 25923 <_>7 1 6 14 -1.</_> 25924 <_>7 8 6 7 2.</_></rects> 25925 <tilted>0</tilted></feature> 25926 <threshold>-2.3189240600913763e-003</threshold> 25927 <left_val>0.5689436793327332</left_val> 25928 <right_val>0.4424242079257965</right_val></_></_> 25929 <_> 25930 <!-- tree 194 --> 25931 <_> 25932 <!-- root node --> 25933 <feature> 25934 <rects> 25935 <_>1 9 18 1 -1.</_> 25936 <_>7 9 6 1 3.</_></rects> 25937 <tilted>0</tilted></feature> 25938 <threshold>-2.1042178850620985e-003</threshold> 25939 <left_val>0.3762221038341522</left_val> 25940 <right_val>0.5187087059020996</right_val></_></_> 25941 <_> 25942 <!-- tree 195 --> 25943 <_> 25944 <!-- root node --> 25945 <feature> 25946 <rects> 25947 <_>9 7 2 2 -1.</_> 25948 <_>9 7 1 2 2.</_></rects> 25949 <tilted>0</tilted></feature> 25950 <threshold>4.6034841216169298e-004</threshold> 25951 <left_val>0.4699405133724213</left_val> 25952 <right_val>0.5771207213401794</right_val></_></_> 25953 <_> 25954 <!-- tree 196 --> 25955 <_> 25956 <!-- root node --> 25957 <feature> 25958 <rects> 25959 <_>9 3 2 9 -1.</_> 25960 <_>10 3 1 9 2.</_></rects> 25961 <tilted>0</tilted></feature> 25962 <threshold>1.0547629790380597e-003</threshold> 25963 <left_val>0.4465216994285584</left_val> 25964 <right_val>0.5601701736450195</right_val></_></_> 25965 <_> 25966 <!-- tree 197 --> 25967 <_> 25968 <!-- root node --> 25969 <feature> 25970 <rects> 25971 <_>18 14 2 3 -1.</_> 25972 <_>18 15 2 1 3.</_></rects> 25973 <tilted>0</tilted></feature> 25974 <threshold>8.7148818420246243e-004</threshold> 25975 <left_val>0.5449805259704590</left_val> 25976 <right_val>0.3914709091186523</right_val></_></_> 25977 <_> 25978 <!-- tree 198 --> 25979 <_> 25980 <!-- root node --> 25981 <feature> 25982 <rects> 25983 <_>7 11 3 1 -1.</_> 25984 <_>8 11 1 1 3.</_></rects> 25985 <tilted>0</tilted></feature> 25986 <threshold>3.3364820410497487e-004</threshold> 25987 <left_val>0.4564009010791779</left_val> 25988 <right_val>0.5645738840103149</right_val></_></_> 25989 <_> 25990 <!-- tree 199 --> 25991 <_> 25992 <!-- root node --> 25993 <feature> 25994 <rects> 25995 <_>10 8 3 4 -1.</_> 25996 <_>11 8 1 4 3.</_></rects> 25997 <tilted>0</tilted></feature> 25998 <threshold>-1.4853250468149781e-003</threshold> 25999 <left_val>0.5747377872467041</left_val> 26000 <right_val>0.4692778885364533</right_val></_></_> 26001 <_> 26002 <!-- tree 200 --> 26003 <_> 26004 <!-- root node --> 26005 <feature> 26006 <rects> 26007 <_>7 14 3 6 -1.</_> 26008 <_>8 14 1 6 3.</_></rects> 26009 <tilted>0</tilted></feature> 26010 <threshold>3.0251620337367058e-003</threshold> 26011 <left_val>0.5166196823120117</left_val> 26012 <right_val>0.3762814104557037</right_val></_></_> 26013 <_> 26014 <!-- tree 201 --> 26015 <_> 26016 <!-- root node --> 26017 <feature> 26018 <rects> 26019 <_>10 8 3 4 -1.</_> 26020 <_>11 8 1 4 3.</_></rects> 26021 <tilted>0</tilted></feature> 26022 <threshold>5.0280741415917873e-003</threshold> 26023 <left_val>0.5002111792564392</left_val> 26024 <right_val>0.6151527166366577</right_val></_></_> 26025 <_> 26026 <!-- tree 202 --> 26027 <_> 26028 <!-- root node --> 26029 <feature> 26030 <rects> 26031 <_>7 8 3 4 -1.</_> 26032 <_>8 8 1 4 3.</_></rects> 26033 <tilted>0</tilted></feature> 26034 <threshold>-5.8164511574432254e-004</threshold> 26035 <left_val>0.5394598245620728</left_val> 26036 <right_val>0.4390751123428345</right_val></_></_> 26037 <_> 26038 <!-- tree 203 --> 26039 <_> 26040 <!-- root node --> 26041 <feature> 26042 <rects> 26043 <_>7 9 6 9 -1.</_> 26044 <_>7 12 6 3 3.</_></rects> 26045 <tilted>0</tilted></feature> 26046 <threshold>0.0451415292918682</threshold> 26047 <left_val>0.5188326835632324</left_val> 26048 <right_val>0.2063035964965820</right_val></_></_> 26049 <_> 26050 <!-- tree 204 --> 26051 <_> 26052 <!-- root node --> 26053 <feature> 26054 <rects> 26055 <_>0 14 2 3 -1.</_> 26056 <_>0 15 2 1 3.</_></rects> 26057 <tilted>0</tilted></feature> 26058 <threshold>-1.0795620037242770e-003</threshold> 26059 <left_val>0.3904685080051422</left_val> 26060 <right_val>0.5137907266616821</right_val></_></_> 26061 <_> 26062 <!-- tree 205 --> 26063 <_> 26064 <!-- root node --> 26065 <feature> 26066 <rects> 26067 <_>11 12 1 2 -1.</_> 26068 <_>11 13 1 1 2.</_></rects> 26069 <tilted>0</tilted></feature> 26070 <threshold>1.5995999274309725e-004</threshold> 26071 <left_val>0.4895322918891907</left_val> 26072 <right_val>0.5427504181861877</right_val></_></_> 26073 <_> 26074 <!-- tree 206 --> 26075 <_> 26076 <!-- root node --> 26077 <feature> 26078 <rects> 26079 <_>4 3 8 3 -1.</_> 26080 <_>8 3 4 3 2.</_></rects> 26081 <tilted>0</tilted></feature> 26082 <threshold>-0.0193592701107264</threshold> 26083 <left_val>0.6975228786468506</left_val> 26084 <right_val>0.4773507118225098</right_val></_></_> 26085 <_> 26086 <!-- tree 207 --> 26087 <_> 26088 <!-- root node --> 26089 <feature> 26090 <rects> 26091 <_>0 4 20 6 -1.</_> 26092 <_>0 4 10 6 2.</_></rects> 26093 <tilted>0</tilted></feature> 26094 <threshold>0.2072550952434540</threshold> 26095 <left_val>0.5233635902404785</left_val> 26096 <right_val>0.3034991919994354</right_val></_></_> 26097 <_> 26098 <!-- tree 208 --> 26099 <_> 26100 <!-- root node --> 26101 <feature> 26102 <rects> 26103 <_>9 14 1 3 -1.</_> 26104 <_>9 15 1 1 3.</_></rects> 26105 <tilted>0</tilted></feature> 26106 <threshold>-4.1953290929086506e-004</threshold> 26107 <left_val>0.5419396758079529</left_val> 26108 <right_val>0.4460186064243317</right_val></_></_> 26109 <_> 26110 <!-- tree 209 --> 26111 <_> 26112 <!-- root node --> 26113 <feature> 26114 <rects> 26115 <_>8 14 4 3 -1.</_> 26116 <_>8 15 4 1 3.</_></rects> 26117 <tilted>0</tilted></feature> 26118 <threshold>2.2582069505006075e-003</threshold> 26119 <left_val>0.4815764129161835</left_val> 26120 <right_val>0.6027408838272095</right_val></_></_> 26121 <_> 26122 <!-- tree 210 --> 26123 <_> 26124 <!-- root node --> 26125 <feature> 26126 <rects> 26127 <_>0 15 14 4 -1.</_> 26128 <_>0 17 14 2 2.</_></rects> 26129 <tilted>0</tilted></feature> 26130 <threshold>-6.7811207845807076e-003</threshold> 26131 <left_val>0.3980278968811035</left_val> 26132 <right_val>0.5183305740356445</right_val></_></_> 26133 <_> 26134 <!-- tree 211 --> 26135 <_> 26136 <!-- root node --> 26137 <feature> 26138 <rects> 26139 <_>1 14 18 6 -1.</_> 26140 <_>1 17 18 3 2.</_></rects> 26141 <tilted>0</tilted></feature> 26142 <threshold>0.0111543098464608</threshold> 26143 <left_val>0.5431231856346130</left_val> 26144 <right_val>0.4188759922981262</right_val></_></_> 26145 <_> 26146 <!-- tree 212 --> 26147 <_> 26148 <!-- root node --> 26149 <feature> 26150 <rects> 26151 <_>0 0 10 6 -1.</_> 26152 <_>0 0 5 3 2.</_> 26153 <_>5 3 5 3 2.</_></rects> 26154 <tilted>0</tilted></feature> 26155 <threshold>0.0431624315679073</threshold> 26156 <left_val>0.4738228023052216</left_val> 26157 <right_val>0.6522961258888245</right_val></_></_></trees> 26158 <stage_threshold>105.7611007690429700</stage_threshold> 26159 <parent>20</parent> 26160 <next>-1</next></_></stages></haarcascade_frontalface_alt> 26161 </opencv_storage> 26162