1 <?xml version="1.0"?> 2 <!-- 3 Stump-based 24x24 discrete(?) adaboost frontal face detector. 4 Created by Rainer Lienhart. 5 6 //////////////////////////////////////////////////////////////////////////////////////// 7 8 IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 9 10 By downloading, copying, installing or using the software you agree to this license. 11 If you do not agree to this license, do not download, install, 12 copy or use the software. 13 14 15 Intel License Agreement 16 For Open Source Computer Vision Library 17 18 Copyright (C) 2000, Intel Corporation, all rights reserved. 19 Third party copyrights are property of their respective owners. 20 21 Redistribution and use in source and binary forms, with or without modification, 22 are permitted provided that the following conditions are met: 23 24 * Redistribution's of source code must retain the above copyright notice, 25 this list of conditions and the following disclaimer. 26 27 * Redistribution's in binary form must reproduce the above copyright notice, 28 this list of conditions and the following disclaimer in the documentation 29 and/or other materials provided with the distribution. 30 31 * The name of Intel Corporation may not be used to endorse or promote products 32 derived from this software without specific prior written permission. 33 34 This software is provided by the copyright holders and contributors "as is" and 35 any express or implied warranties, including, but not limited to, the implied 36 warranties of merchantability and fitness for a particular purpose are disclaimed. 37 In no event shall the Intel Corporation or contributors be liable for any direct, 38 indirect, incidental, special, exemplary, or consequential damages 39 (including, but not limited to, procurement of substitute goods or services; 40 loss of use, data, or profits; or business interruption) however caused 41 and on any theory of liability, whether in contract, strict liability, 42 or tort (including negligence or otherwise) arising in any way out of 43 the use of this software, even if advised of the possibility of such damage. 44 --> 45 <opencv_storage> 46 <haarcascade_frontalface_default type_id="opencv-haar-classifier"> 47 <size>24 24</size> 48 <stages> 49 <_> 50 <!-- stage 0 --> 51 <trees> 52 <_> 53 <!-- tree 0 --> 54 <_> 55 <!-- root node --> 56 <feature> 57 <rects> 58 <_>6 4 12 9 -1.</_> 59 <_>6 7 12 3 3.</_></rects> 60 <tilted>0</tilted></feature> 61 <threshold>-0.0315119996666908</threshold> 62 <left_val>2.0875380039215088</left_val> 63 <right_val>-2.2172100543975830</right_val></_></_> 64 <_> 65 <!-- tree 1 --> 66 <_> 67 <!-- root node --> 68 <feature> 69 <rects> 70 <_>6 4 12 7 -1.</_> 71 <_>10 4 4 7 3.</_></rects> 72 <tilted>0</tilted></feature> 73 <threshold>0.0123960003256798</threshold> 74 <left_val>-1.8633940219879150</left_val> 75 <right_val>1.3272049427032471</right_val></_></_> 76 <_> 77 <!-- tree 2 --> 78 <_> 79 <!-- root node --> 80 <feature> 81 <rects> 82 <_>3 9 18 9 -1.</_> 83 <_>3 12 18 3 3.</_></rects> 84 <tilted>0</tilted></feature> 85 <threshold>0.0219279993325472</threshold> 86 <left_val>-1.5105249881744385</left_val> 87 <right_val>1.0625729560852051</right_val></_></_> 88 <_> 89 <!-- tree 3 --> 90 <_> 91 <!-- root node --> 92 <feature> 93 <rects> 94 <_>8 18 9 6 -1.</_> 95 <_>8 20 9 2 3.</_></rects> 96 <tilted>0</tilted></feature> 97 <threshold>5.7529998011887074e-003</threshold> 98 <left_val>-0.8746389746665955</left_val> 99 <right_val>1.1760339736938477</right_val></_></_> 100 <_> 101 <!-- tree 4 --> 102 <_> 103 <!-- root node --> 104 <feature> 105 <rects> 106 <_>3 5 4 19 -1.</_> 107 <_>5 5 2 19 2.</_></rects> 108 <tilted>0</tilted></feature> 109 <threshold>0.0150140002369881</threshold> 110 <left_val>-0.7794569730758667</left_val> 111 <right_val>1.2608419656753540</right_val></_></_> 112 <_> 113 <!-- tree 5 --> 114 <_> 115 <!-- root node --> 116 <feature> 117 <rects> 118 <_>6 5 12 16 -1.</_> 119 <_>6 13 12 8 2.</_></rects> 120 <tilted>0</tilted></feature> 121 <threshold>0.0993710011243820</threshold> 122 <left_val>0.5575129985809326</left_val> 123 <right_val>-1.8743000030517578</right_val></_></_> 124 <_> 125 <!-- tree 6 --> 126 <_> 127 <!-- root node --> 128 <feature> 129 <rects> 130 <_>5 8 12 6 -1.</_> 131 <_>5 11 12 3 2.</_></rects> 132 <tilted>0</tilted></feature> 133 <threshold>2.7340000960975885e-003</threshold> 134 <left_val>-1.6911929845809937</left_val> 135 <right_val>0.4400970041751862</right_val></_></_> 136 <_> 137 <!-- tree 7 --> 138 <_> 139 <!-- root node --> 140 <feature> 141 <rects> 142 <_>11 14 4 10 -1.</_> 143 <_>11 19 4 5 2.</_></rects> 144 <tilted>0</tilted></feature> 145 <threshold>-0.0188590008765459</threshold> 146 <left_val>-1.4769539833068848</left_val> 147 <right_val>0.4435009956359863</right_val></_></_> 148 <_> 149 <!-- tree 8 --> 150 <_> 151 <!-- root node --> 152 <feature> 153 <rects> 154 <_>4 0 7 6 -1.</_> 155 <_>4 3 7 3 2.</_></rects> 156 <tilted>0</tilted></feature> 157 <threshold>5.9739998541772366e-003</threshold> 158 <left_val>-0.8590919971466065</left_val> 159 <right_val>0.8525559902191162</right_val></_></_></trees> 160 <stage_threshold>-5.0425500869750977</stage_threshold> 161 <parent>-1</parent> 162 <next>-1</next></_> 163 <_> 164 <!-- stage 1 --> 165 <trees> 166 <_> 167 <!-- tree 0 --> 168 <_> 169 <!-- root node --> 170 <feature> 171 <rects> 172 <_>6 6 12 6 -1.</_> 173 <_>6 8 12 2 3.</_></rects> 174 <tilted>0</tilted></feature> 175 <threshold>-0.0211100000888109</threshold> 176 <left_val>1.2435649633407593</left_val> 177 <right_val>-1.5713009834289551</right_val></_></_> 178 <_> 179 <!-- tree 1 --> 180 <_> 181 <!-- root node --> 182 <feature> 183 <rects> 184 <_>6 4 12 7 -1.</_> 185 <_>10 4 4 7 3.</_></rects> 186 <tilted>0</tilted></feature> 187 <threshold>0.0203559994697571</threshold> 188 <left_val>-1.6204780340194702</left_val> 189 <right_val>1.1817760467529297</right_val></_></_> 190 <_> 191 <!-- tree 2 --> 192 <_> 193 <!-- root node --> 194 <feature> 195 <rects> 196 <_>1 8 19 12 -1.</_> 197 <_>1 12 19 4 3.</_></rects> 198 <tilted>0</tilted></feature> 199 <threshold>0.0213089995086193</threshold> 200 <left_val>-1.9415930509567261</left_val> 201 <right_val>0.7006909847259522</right_val></_></_> 202 <_> 203 <!-- tree 3 --> 204 <_> 205 <!-- root node --> 206 <feature> 207 <rects> 208 <_>0 2 24 3 -1.</_> 209 <_>8 2 8 3 3.</_></rects> 210 <tilted>0</tilted></feature> 211 <threshold>0.0916600003838539</threshold> 212 <left_val>-0.5567010045051575</left_val> 213 <right_val>1.7284419536590576</right_val></_></_> 214 <_> 215 <!-- tree 4 --> 216 <_> 217 <!-- root node --> 218 <feature> 219 <rects> 220 <_>9 9 6 15 -1.</_> 221 <_>9 14 6 5 3.</_></rects> 222 <tilted>0</tilted></feature> 223 <threshold>0.0362880006432533</threshold> 224 <left_val>0.2676379978656769</left_val> 225 <right_val>-2.1831810474395752</right_val></_></_> 226 <_> 227 <!-- tree 5 --> 228 <_> 229 <!-- root node --> 230 <feature> 231 <rects> 232 <_>5 6 14 10 -1.</_> 233 <_>5 11 14 5 2.</_></rects> 234 <tilted>0</tilted></feature> 235 <threshold>-0.0191099997609854</threshold> 236 <left_val>-2.6730210781097412</left_val> 237 <right_val>0.4567080140113831</right_val></_></_> 238 <_> 239 <!-- tree 6 --> 240 <_> 241 <!-- root node --> 242 <feature> 243 <rects> 244 <_>5 0 14 9 -1.</_> 245 <_>5 3 14 3 3.</_></rects> 246 <tilted>0</tilted></feature> 247 <threshold>8.2539999857544899e-003</threshold> 248 <left_val>-1.0852910280227661</left_val> 249 <right_val>0.5356420278549194</right_val></_></_> 250 <_> 251 <!-- tree 7 --> 252 <_> 253 <!-- root node --> 254 <feature> 255 <rects> 256 <_>13 11 9 6 -1.</_> 257 <_>16 11 3 6 3.</_></rects> 258 <tilted>0</tilted></feature> 259 <threshold>0.0183550007641315</threshold> 260 <left_val>-0.3520019948482513</left_val> 261 <right_val>0.9333919882774353</right_val></_></_> 262 <_> 263 <!-- tree 8 --> 264 <_> 265 <!-- root node --> 266 <feature> 267 <rects> 268 <_>7 5 6 10 -1.</_> 269 <_>9 5 2 10 3.</_></rects> 270 <tilted>0</tilted></feature> 271 <threshold>-7.0569999516010284e-003</threshold> 272 <left_val>0.9278209805488586</left_val> 273 <right_val>-0.6634989976882935</right_val></_></_> 274 <_> 275 <!-- tree 9 --> 276 <_> 277 <!-- root node --> 278 <feature> 279 <rects> 280 <_>10 8 6 10 -1.</_> 281 <_>12 8 2 10 3.</_></rects> 282 <tilted>0</tilted></feature> 283 <threshold>-9.8770000040531158e-003</threshold> 284 <left_val>1.1577470302581787</left_val> 285 <right_val>-0.2977479994297028</right_val></_></_> 286 <_> 287 <!-- tree 10 --> 288 <_> 289 <!-- root node --> 290 <feature> 291 <rects> 292 <_>2 5 4 9 -1.</_> 293 <_>4 5 2 9 2.</_></rects> 294 <tilted>0</tilted></feature> 295 <threshold>0.0158140007406473</threshold> 296 <left_val>-0.4196060001850128</left_val> 297 <right_val>1.3576040267944336</right_val></_></_> 298 <_> 299 <!-- tree 11 --> 300 <_> 301 <!-- root node --> 302 <feature> 303 <rects> 304 <_>18 0 6 11 -1.</_> 305 <_>20 0 2 11 3.</_></rects> 306 <tilted>0</tilted></feature> 307 <threshold>-0.0207000002264977</threshold> 308 <left_val>1.4590020179748535</left_val> 309 <right_val>-0.1973939985036850</right_val></_></_> 310 <_> 311 <!-- tree 12 --> 312 <_> 313 <!-- root node --> 314 <feature> 315 <rects> 316 <_>0 6 24 13 -1.</_> 317 <_>8 6 8 13 3.</_></rects> 318 <tilted>0</tilted></feature> 319 <threshold>-0.1376080065965653</threshold> 320 <left_val>1.1186759471893311</left_val> 321 <right_val>-0.5291550159454346</right_val></_></_> 322 <_> 323 <!-- tree 13 --> 324 <_> 325 <!-- root node --> 326 <feature> 327 <rects> 328 <_>9 6 6 9 -1.</_> 329 <_>11 6 2 9 3.</_></rects> 330 <tilted>0</tilted></feature> 331 <threshold>0.0143189998343587</threshold> 332 <left_val>-0.3512719869613648</left_val> 333 <right_val>1.1440860033035278</right_val></_></_> 334 <_> 335 <!-- tree 14 --> 336 <_> 337 <!-- root node --> 338 <feature> 339 <rects> 340 <_>7 18 10 6 -1.</_> 341 <_>7 20 10 2 3.</_></rects> 342 <tilted>0</tilted></feature> 343 <threshold>0.0102530000731349</threshold> 344 <left_val>-0.6085060238838196</left_val> 345 <right_val>0.7709850072860718</right_val></_></_> 346 <_> 347 <!-- tree 15 --> 348 <_> 349 <!-- root node --> 350 <feature> 351 <rects> 352 <_>5 7 14 12 -1.</_> 353 <_>5 13 14 6 2.</_></rects> 354 <tilted>0</tilted></feature> 355 <threshold>0.0915080010890961</threshold> 356 <left_val>0.3881779909133911</left_val> 357 <right_val>-1.5122940540313721</right_val></_></_></trees> 358 <stage_threshold>-4.9842400550842285</stage_threshold> 359 <parent>0</parent> 360 <next>-1</next></_> 361 <_> 362 <!-- stage 2 --> 363 <trees> 364 <_> 365 <!-- tree 0 --> 366 <_> 367 <!-- root node --> 368 <feature> 369 <rects> 370 <_>0 3 24 3 -1.</_> 371 <_>8 3 8 3 3.</_></rects> 372 <tilted>0</tilted></feature> 373 <threshold>0.0697470009326935</threshold> 374 <left_val>-1.0130879878997803</left_val> 375 <right_val>1.4687349796295166</right_val></_></_> 376 <_> 377 <!-- tree 1 --> 378 <_> 379 <!-- root node --> 380 <feature> 381 <rects> 382 <_>5 8 15 6 -1.</_> 383 <_>5 11 15 3 2.</_></rects> 384 <tilted>0</tilted></feature> 385 <threshold>0.0315029993653297</threshold> 386 <left_val>-1.6463639736175537</left_val> 387 <right_val>1.0000629425048828</right_val></_></_> 388 <_> 389 <!-- tree 2 --> 390 <_> 391 <!-- root node --> 392 <feature> 393 <rects> 394 <_>9 6 5 14 -1.</_> 395 <_>9 13 5 7 2.</_></rects> 396 <tilted>0</tilted></feature> 397 <threshold>0.0142609998583794</threshold> 398 <left_val>0.4648030102252960</left_val> 399 <right_val>-1.5959889888763428</right_val></_></_> 400 <_> 401 <!-- tree 3 --> 402 <_> 403 <!-- root node --> 404 <feature> 405 <rects> 406 <_>9 5 6 10 -1.</_> 407 <_>11 5 2 10 3.</_></rects> 408 <tilted>0</tilted></feature> 409 <threshold>0.0144530003890395</threshold> 410 <left_val>-0.6551190018653870</left_val> 411 <right_val>0.8302180171012878</right_val></_></_> 412 <_> 413 <!-- tree 4 --> 414 <_> 415 <!-- root node --> 416 <feature> 417 <rects> 418 <_>6 6 3 12 -1.</_> 419 <_>6 12 3 6 2.</_></rects> 420 <tilted>0</tilted></feature> 421 <threshold>-3.0509999487549067e-003</threshold> 422 <left_val>-1.3982310295104980</left_val> 423 <right_val>0.4255059957504273</right_val></_></_> 424 <_> 425 <!-- tree 5 --> 426 <_> 427 <!-- root node --> 428 <feature> 429 <rects> 430 <_>3 21 18 3 -1.</_> 431 <_>9 21 6 3 3.</_></rects> 432 <tilted>0</tilted></feature> 433 <threshold>0.0327229984104633</threshold> 434 <left_val>-0.5070260167121887</left_val> 435 <right_val>1.0526109933853149</right_val></_></_> 436 <_> 437 <!-- tree 6 --> 438 <_> 439 <!-- root node --> 440 <feature> 441 <rects> 442 <_>5 6 13 6 -1.</_> 443 <_>5 8 13 2 3.</_></rects> 444 <tilted>0</tilted></feature> 445 <threshold>-7.2960001416504383e-003</threshold> 446 <left_val>0.3635689914226532</left_val> 447 <right_val>-1.3464889526367187</right_val></_></_> 448 <_> 449 <!-- tree 7 --> 450 <_> 451 <!-- root node --> 452 <feature> 453 <rects> 454 <_>18 1 6 15 -1.</_> 455 <_>18 1 3 15 2.</_></rects> 456 <tilted>0</tilted></feature> 457 <threshold>0.0504250004887581</threshold> 458 <left_val>-0.3046140074729919</left_val> 459 <right_val>1.4504129886627197</right_val></_></_> 460 <_> 461 <!-- tree 8 --> 462 <_> 463 <!-- root node --> 464 <feature> 465 <rects> 466 <_>1 1 6 15 -1.</_> 467 <_>4 1 3 15 2.</_></rects> 468 <tilted>0</tilted></feature> 469 <threshold>0.0468790009617805</threshold> 470 <left_val>-0.4028620123863220</left_val> 471 <right_val>1.2145609855651855</right_val></_></_> 472 <_> 473 <!-- tree 9 --> 474 <_> 475 <!-- root node --> 476 <feature> 477 <rects> 478 <_>0 8 24 15 -1.</_> 479 <_>8 8 8 15 3.</_></rects> 480 <tilted>0</tilted></feature> 481 <threshold>-0.0693589970469475</threshold> 482 <left_val>1.0539360046386719</left_val> 483 <right_val>-0.4571970105171204</right_val></_></_> 484 <_> 485 <!-- tree 10 --> 486 <_> 487 <!-- root node --> 488 <feature> 489 <rects> 490 <_>5 6 14 12 -1.</_> 491 <_>5 6 7 6 2.</_> 492 <_>12 12 7 6 2.</_></rects> 493 <tilted>0</tilted></feature> 494 <threshold>-0.0490339994430542</threshold> 495 <left_val>-1.6253089904785156</left_val> 496 <right_val>0.1537899971008301</right_val></_></_> 497 <_> 498 <!-- tree 11 --> 499 <_> 500 <!-- root node --> 501 <feature> 502 <rects> 503 <_>2 12 21 12 -1.</_> 504 <_>2 16 21 4 3.</_></rects> 505 <tilted>0</tilted></feature> 506 <threshold>0.0848279967904091</threshold> 507 <left_val>0.2840299904346466</left_val> 508 <right_val>-1.5662059783935547</right_val></_></_> 509 <_> 510 <!-- tree 12 --> 511 <_> 512 <!-- root node --> 513 <feature> 514 <rects> 515 <_>8 1 4 10 -1.</_> 516 <_>10 1 2 10 2.</_></rects> 517 <tilted>0</tilted></feature> 518 <threshold>-1.7229999648407102e-003</threshold> 519 <left_val>-1.0147459506988525</left_val> 520 <right_val>0.2329480051994324</right_val></_></_> 521 <_> 522 <!-- tree 13 --> 523 <_> 524 <!-- root node --> 525 <feature> 526 <rects> 527 <_>2 13 20 10 -1.</_> 528 <_>2 13 10 10 2.</_></rects> 529 <tilted>0</tilted></feature> 530 <threshold>0.1156219989061356</threshold> 531 <left_val>-0.1673289984464645</left_val> 532 <right_val>1.2804069519042969</right_val></_></_> 533 <_> 534 <!-- tree 14 --> 535 <_> 536 <!-- root node --> 537 <feature> 538 <rects> 539 <_>0 1 6 13 -1.</_> 540 <_>2 1 2 13 3.</_></rects> 541 <tilted>0</tilted></feature> 542 <threshold>-0.0512799993157387</threshold> 543 <left_val>1.5162390470504761</left_val> 544 <right_val>-0.3027110099792481</right_val></_></_> 545 <_> 546 <!-- tree 15 --> 547 <_> 548 <!-- root node --> 549 <feature> 550 <rects> 551 <_>20 2 4 13 -1.</_> 552 <_>20 2 2 13 2.</_></rects> 553 <tilted>0</tilted></feature> 554 <threshold>-0.0427069999277592</threshold> 555 <left_val>1.7631920576095581</left_val> 556 <right_val>-0.0518320016562939</right_val></_></_> 557 <_> 558 <!-- tree 16 --> 559 <_> 560 <!-- root node --> 561 <feature> 562 <rects> 563 <_>0 5 22 19 -1.</_> 564 <_>11 5 11 19 2.</_></rects> 565 <tilted>0</tilted></feature> 566 <threshold>0.3717809915542603</threshold> 567 <left_val>-0.3138920068740845</left_val> 568 <right_val>1.5357979536056519</right_val></_></_> 569 <_> 570 <!-- tree 17 --> 571 <_> 572 <!-- root node --> 573 <feature> 574 <rects> 575 <_>18 4 6 9 -1.</_> 576 <_>20 4 2 9 3.</_></rects> 577 <tilted>0</tilted></feature> 578 <threshold>0.0194129999727011</threshold> 579 <left_val>-0.1001759991049767</left_val> 580 <right_val>0.9365540146827698</right_val></_></_> 581 <_> 582 <!-- tree 18 --> 583 <_> 584 <!-- root node --> 585 <feature> 586 <rects> 587 <_>0 3 6 11 -1.</_> 588 <_>2 3 2 11 3.</_></rects> 589 <tilted>0</tilted></feature> 590 <threshold>0.0174390003085136</threshold> 591 <left_val>-0.4037989974021912</left_val> 592 <right_val>0.9629300236701965</right_val></_></_> 593 <_> 594 <!-- tree 19 --> 595 <_> 596 <!-- root node --> 597 <feature> 598 <rects> 599 <_>12 1 4 9 -1.</_> 600 <_>12 1 2 9 2.</_></rects> 601 <tilted>0</tilted></feature> 602 <threshold>0.0396389998495579</threshold> 603 <left_val>0.1703909933567047</left_val> 604 <right_val>-2.9602990150451660</right_val></_></_> 605 <_> 606 <!-- tree 20 --> 607 <_> 608 <!-- root node --> 609 <feature> 610 <rects> 611 <_>0 6 19 3 -1.</_> 612 <_>0 7 19 1 3.</_></rects> 613 <tilted>0</tilted></feature> 614 <threshold>-9.1469995677471161e-003</threshold> 615 <left_val>0.8878679871559143</left_val> 616 <right_val>-0.4381870031356812</right_val></_></_> 617 <_> 618 <!-- tree 21 --> 619 <_> 620 <!-- root node --> 621 <feature> 622 <rects> 623 <_>12 1 4 9 -1.</_> 624 <_>12 1 2 9 2.</_></rects> 625 <tilted>0</tilted></feature> 626 <threshold>1.7219999572262168e-003</threshold> 627 <left_val>-0.3721860051155090</left_val> 628 <right_val>0.4001890122890472</right_val></_></_> 629 <_> 630 <!-- tree 22 --> 631 <_> 632 <!-- root node --> 633 <feature> 634 <rects> 635 <_>8 1 4 9 -1.</_> 636 <_>10 1 2 9 2.</_></rects> 637 <tilted>0</tilted></feature> 638 <threshold>0.0302310008555651</threshold> 639 <left_val>0.0659240037202835</left_val> 640 <right_val>-2.6469180583953857</right_val></_></_> 641 <_> 642 <!-- tree 23 --> 643 <_> 644 <!-- root node --> 645 <feature> 646 <rects> 647 <_>5 5 14 14 -1.</_> 648 <_>12 5 7 7 2.</_> 649 <_>5 12 7 7 2.</_></rects> 650 <tilted>0</tilted></feature> 651 <threshold>-0.0787959992885590</threshold> 652 <left_val>-1.7491459846496582</left_val> 653 <right_val>0.2847529947757721</right_val></_></_> 654 <_> 655 <!-- tree 24 --> 656 <_> 657 <!-- root node --> 658 <feature> 659 <rects> 660 <_>1 10 18 2 -1.</_> 661 <_>1 11 18 1 2.</_></rects> 662 <tilted>0</tilted></feature> 663 <threshold>2.1110000088810921e-003</threshold> 664 <left_val>-0.9390810132026672</left_val> 665 <right_val>0.2320519983768463</right_val></_></_> 666 <_> 667 <!-- tree 25 --> 668 <_> 669 <!-- root node --> 670 <feature> 671 <rects> 672 <_>17 13 4 11 -1.</_> 673 <_>17 13 2 11 2.</_></rects> 674 <tilted>0</tilted></feature> 675 <threshold>0.0270910002291203</threshold> 676 <left_val>-0.0526640005409718</left_val> 677 <right_val>1.0756820440292358</right_val></_></_> 678 <_> 679 <!-- tree 26 --> 680 <_> 681 <!-- root node --> 682 <feature> 683 <rects> 684 <_>0 4 6 9 -1.</_> 685 <_>0 7 6 3 3.</_></rects> 686 <tilted>0</tilted></feature> 687 <threshold>-0.0449649989604950</threshold> 688 <left_val>-1.8294479846954346</left_val> 689 <right_val>0.0995619967579842</right_val></_></_></trees> 690 <stage_threshold>-4.6551899909973145</stage_threshold> 691 <parent>1</parent> 692 <next>-1</next></_> 693 <_> 694 <!-- stage 3 --> 695 <trees> 696 <_> 697 <!-- tree 0 --> 698 <_> 699 <!-- root node --> 700 <feature> 701 <rects> 702 <_>6 4 12 9 -1.</_> 703 <_>6 7 12 3 3.</_></rects> 704 <tilted>0</tilted></feature> 705 <threshold>-0.0657010003924370</threshold> 706 <left_val>1.1558510065078735</left_val> 707 <right_val>-1.0716359615325928</right_val></_></_> 708 <_> 709 <!-- tree 1 --> 710 <_> 711 <!-- root node --> 712 <feature> 713 <rects> 714 <_>6 5 12 6 -1.</_> 715 <_>10 5 4 6 3.</_></rects> 716 <tilted>0</tilted></feature> 717 <threshold>0.0158399995416403</threshold> 718 <left_val>-1.5634720325469971</left_val> 719 <right_val>0.7687709927558899</right_val></_></_> 720 <_> 721 <!-- tree 2 --> 722 <_> 723 <!-- root node --> 724 <feature> 725 <rects> 726 <_>0 1 24 5 -1.</_> 727 <_>8 1 8 5 3.</_></rects> 728 <tilted>0</tilted></feature> 729 <threshold>0.1457089930772781</threshold> 730 <left_val>-0.5745009779930115</left_val> 731 <right_val>1.3808720111846924</right_val></_></_> 732 <_> 733 <!-- tree 3 --> 734 <_> 735 <!-- root node --> 736 <feature> 737 <rects> 738 <_>4 10 18 6 -1.</_> 739 <_>4 12 18 2 3.</_></rects> 740 <tilted>0</tilted></feature> 741 <threshold>6.1389999464154243e-003</threshold> 742 <left_val>-1.4570560455322266</left_val> 743 <right_val>0.5161030292510986</right_val></_></_> 744 <_> 745 <!-- tree 4 --> 746 <_> 747 <!-- root node --> 748 <feature> 749 <rects> 750 <_>2 17 12 6 -1.</_> 751 <_>2 17 6 3 2.</_> 752 <_>8 20 6 3 2.</_></rects> 753 <tilted>0</tilted></feature> 754 <threshold>6.7179999314248562e-003</threshold> 755 <left_val>-0.8353360295295715</left_val> 756 <right_val>0.5852220058441162</right_val></_></_> 757 <_> 758 <!-- tree 5 --> 759 <_> 760 <!-- root node --> 761 <feature> 762 <rects> 763 <_>19 3 4 13 -1.</_> 764 <_>19 3 2 13 2.</_></rects> 765 <tilted>0</tilted></feature> 766 <threshold>0.0185180008411407</threshold> 767 <left_val>-0.3131209909915924</left_val> 768 <right_val>1.1696679592132568</right_val></_></_> 769 <_> 770 <!-- tree 6 --> 771 <_> 772 <!-- root node --> 773 <feature> 774 <rects> 775 <_>1 3 4 13 -1.</_> 776 <_>3 3 2 13 2.</_></rects> 777 <tilted>0</tilted></feature> 778 <threshold>0.0199580006301403</threshold> 779 <left_val>-0.4344260096549988</left_val> 780 <right_val>0.9544690251350403</right_val></_></_> 781 <_> 782 <!-- tree 7 --> 783 <_> 784 <!-- root node --> 785 <feature> 786 <rects> 787 <_>0 1 24 23 -1.</_> 788 <_>8 1 8 23 3.</_></rects> 789 <tilted>0</tilted></feature> 790 <threshold>-0.2775500118732452</threshold> 791 <left_val>1.4906179904937744</left_val> 792 <right_val>-0.1381590068340302</right_val></_></_> 793 <_> 794 <!-- tree 8 --> 795 <_> 796 <!-- root node --> 797 <feature> 798 <rects> 799 <_>1 7 8 12 -1.</_> 800 <_>1 11 8 4 3.</_></rects> 801 <tilted>0</tilted></feature> 802 <threshold>9.1859996318817139e-003</threshold> 803 <left_val>-0.9636150002479553</left_val> 804 <right_val>0.2766549885272980</right_val></_></_> 805 <_> 806 <!-- tree 9 --> 807 <_> 808 <!-- root node --> 809 <feature> 810 <rects> 811 <_>14 7 3 14 -1.</_> 812 <_>14 14 3 7 2.</_></rects> 813 <tilted>0</tilted></feature> 814 <threshold>-0.0377379991114140</threshold> 815 <left_val>-2.4464108943939209</left_val> 816 <right_val>0.2361959964036942</right_val></_></_> 817 <_> 818 <!-- tree 10 --> 819 <_> 820 <!-- root node --> 821 <feature> 822 <rects> 823 <_>3 12 16 6 -1.</_> 824 <_>3 12 8 3 2.</_> 825 <_>11 15 8 3 2.</_></rects> 826 <tilted>0</tilted></feature> 827 <threshold>0.0184630006551743</threshold> 828 <left_val>0.1753920018672943</left_val> 829 <right_val>-1.3423130512237549</right_val></_></_> 830 <_> 831 <!-- tree 11 --> 832 <_> 833 <!-- root node --> 834 <feature> 835 <rects> 836 <_>6 6 12 6 -1.</_> 837 <_>6 8 12 2 3.</_></rects> 838 <tilted>0</tilted></feature> 839 <threshold>-0.0111149996519089</threshold> 840 <left_val>0.4871079921722412</left_val> 841 <right_val>-0.8985189795494080</right_val></_></_> 842 <_> 843 <!-- tree 12 --> 844 <_> 845 <!-- root node --> 846 <feature> 847 <rects> 848 <_>8 7 6 12 -1.</_> 849 <_>8 13 6 6 2.</_></rects> 850 <tilted>0</tilted></feature> 851 <threshold>0.0339279994368553</threshold> 852 <left_val>0.1787420064210892</left_val> 853 <right_val>-1.6342279911041260</right_val></_></_> 854 <_> 855 <!-- tree 13 --> 856 <_> 857 <!-- root node --> 858 <feature> 859 <rects> 860 <_>15 15 9 6 -1.</_> 861 <_>15 17 9 2 3.</_></rects> 862 <tilted>0</tilted></feature> 863 <threshold>-0.0356490015983582</threshold> 864 <left_val>-1.9607399702072144</left_val> 865 <right_val>0.1810249984264374</right_val></_></_> 866 <_> 867 <!-- tree 14 --> 868 <_> 869 <!-- root node --> 870 <feature> 871 <rects> 872 <_>1 17 18 3 -1.</_> 873 <_>1 18 18 1 3.</_></rects> 874 <tilted>0</tilted></feature> 875 <threshold>-0.0114380000159144</threshold> 876 <left_val>0.9901069998741150</left_val> 877 <right_val>-0.3810319900512695</right_val></_></_> 878 <_> 879 <!-- tree 15 --> 880 <_> 881 <!-- root node --> 882 <feature> 883 <rects> 884 <_>4 4 16 12 -1.</_> 885 <_>4 10 16 6 2.</_></rects> 886 <tilted>0</tilted></feature> 887 <threshold>-0.0652360022068024</threshold> 888 <left_val>-2.5794160366058350</left_val> 889 <right_val>0.2475360035896301</right_val></_></_> 890 <_> 891 <!-- tree 16 --> 892 <_> 893 <!-- root node --> 894 <feature> 895 <rects> 896 <_>0 1 4 20 -1.</_> 897 <_>2 1 2 20 2.</_></rects> 898 <tilted>0</tilted></feature> 899 <threshold>-0.0422720015048981</threshold> 900 <left_val>1.4411840438842773</left_val> 901 <right_val>-0.2950829863548279</right_val></_></_> 902 <_> 903 <!-- tree 17 --> 904 <_> 905 <!-- root node --> 906 <feature> 907 <rects> 908 <_>3 0 18 2 -1.</_> 909 <_>3 1 18 1 2.</_></rects> 910 <tilted>0</tilted></feature> 911 <threshold>1.9219999667257071e-003</threshold> 912 <left_val>-0.4960860013961792</left_val> 913 <right_val>0.6317359805107117</right_val></_></_> 914 <_> 915 <!-- tree 18 --> 916 <_> 917 <!-- root node --> 918 <feature> 919 <rects> 920 <_>1 5 20 14 -1.</_> 921 <_>1 5 10 7 2.</_> 922 <_>11 12 10 7 2.</_></rects> 923 <tilted>0</tilted></feature> 924 <threshold>-0.1292179971933365</threshold> 925 <left_val>-2.3314270973205566</left_val> 926 <right_val>0.0544969998300076</right_val></_></_> 927 <_> 928 <!-- tree 19 --> 929 <_> 930 <!-- root node --> 931 <feature> 932 <rects> 933 <_>5 8 14 12 -1.</_> 934 <_>5 12 14 4 3.</_></rects> 935 <tilted>0</tilted></feature> 936 <threshold>0.0229310002177954</threshold> 937 <left_val>-0.8444709777832031</left_val> 938 <right_val>0.3873809874057770</right_val></_></_> 939 <_> 940 <!-- tree 20 --> 941 <_> 942 <!-- root node --> 943 <feature> 944 <rects> 945 <_>3 14 7 9 -1.</_> 946 <_>3 17 7 3 3.</_></rects> 947 <tilted>0</tilted></feature> 948 <threshold>-0.0341200008988380</threshold> 949 <left_val>-1.4431500434875488</left_val> 950 <right_val>0.0984229966998100</right_val></_></_> 951 <_> 952 <!-- tree 21 --> 953 <_> 954 <!-- root node --> 955 <feature> 956 <rects> 957 <_>14 15 9 6 -1.</_> 958 <_>14 17 9 2 3.</_></rects> 959 <tilted>0</tilted></feature> 960 <threshold>0.0262230001389980</threshold> 961 <left_val>0.1822309941053391</left_val> 962 <right_val>-1.2586519718170166</right_val></_></_> 963 <_> 964 <!-- tree 22 --> 965 <_> 966 <!-- root node --> 967 <feature> 968 <rects> 969 <_>1 15 9 6 -1.</_> 970 <_>1 17 9 2 3.</_></rects> 971 <tilted>0</tilted></feature> 972 <threshold>0.0222369991242886</threshold> 973 <left_val>0.0698079988360405</left_val> 974 <right_val>-2.3820950984954834</right_val></_></_> 975 <_> 976 <!-- tree 23 --> 977 <_> 978 <!-- root node --> 979 <feature> 980 <rects> 981 <_>11 6 8 10 -1.</_> 982 <_>15 6 4 5 2.</_> 983 <_>11 11 4 5 2.</_></rects> 984 <tilted>0</tilted></feature> 985 <threshold>-5.8240001089870930e-003</threshold> 986 <left_val>0.3933250010013580</left_val> 987 <right_val>-0.2754279971122742</right_val></_></_> 988 <_> 989 <!-- tree 24 --> 990 <_> 991 <!-- root node --> 992 <feature> 993 <rects> 994 <_>5 5 14 14 -1.</_> 995 <_>5 5 7 7 2.</_> 996 <_>12 12 7 7 2.</_></rects> 997 <tilted>0</tilted></feature> 998 <threshold>0.0436530001461506</threshold> 999 <left_val>0.1483269929885864</left_val> 1000 <right_val>-1.1368780136108398</right_val></_></_> 1001 <_> 1002 <!-- tree 25 --> 1003 <_> 1004 <!-- root node --> 1005 <feature> 1006 <rects> 1007 <_>6 0 12 5 -1.</_> 1008 <_>10 0 4 5 3.</_></rects> 1009 <tilted>0</tilted></feature> 1010 <threshold>0.0572669990360737</threshold> 1011 <left_val>0.2462809979915619</left_val> 1012 <right_val>-1.2687400579452515</right_val></_></_> 1013 <_> 1014 <!-- tree 26 --> 1015 <_> 1016 <!-- root node --> 1017 <feature> 1018 <rects> 1019 <_>9 0 6 9 -1.</_> 1020 <_>9 3 6 3 3.</_></rects> 1021 <tilted>0</tilted></feature> 1022 <threshold>2.3409998975694180e-003</threshold> 1023 <left_val>-0.7544890046119690</left_val> 1024 <right_val>0.2716380059719086</right_val></_></_> 1025 <_> 1026 <!-- tree 27 --> 1027 <_> 1028 <!-- root node --> 1029 <feature> 1030 <rects> 1031 <_>9 6 6 9 -1.</_> 1032 <_>11 6 2 9 3.</_></rects> 1033 <tilted>0</tilted></feature> 1034 <threshold>0.0129960002377629</threshold> 1035 <left_val>-0.3639490008354187</left_val> 1036 <right_val>0.7095919847488403</right_val></_></_> 1037 <_> 1038 <!-- tree 28 --> 1039 <_> 1040 <!-- root node --> 1041 <feature> 1042 <rects> 1043 <_>7 0 6 9 -1.</_> 1044 <_>9 0 2 9 3.</_></rects> 1045 <tilted>0</tilted></feature> 1046 <threshold>-0.0265170000493526</threshold> 1047 <left_val>-2.3221859931945801</left_val> 1048 <right_val>0.0357440002262592</right_val></_></_> 1049 <_> 1050 <!-- tree 29 --> 1051 <_> 1052 <!-- root node --> 1053 <feature> 1054 <rects> 1055 <_>10 6 6 9 -1.</_> 1056 <_>12 6 2 9 3.</_></rects> 1057 <tilted>0</tilted></feature> 1058 <threshold>-5.8400002308189869e-003</threshold> 1059 <left_val>0.4219430088996887</left_val> 1060 <right_val>-0.0481849983334541</right_val></_></_> 1061 <_> 1062 <!-- tree 30 --> 1063 <_> 1064 <!-- root node --> 1065 <feature> 1066 <rects> 1067 <_>8 6 6 9 -1.</_> 1068 <_>10 6 2 9 3.</_></rects> 1069 <tilted>0</tilted></feature> 1070 <threshold>-0.0165689997375011</threshold> 1071 <left_val>1.1099940538406372</left_val> 1072 <right_val>-0.3484970033168793</right_val></_></_> 1073 <_> 1074 <!-- tree 31 --> 1075 <_> 1076 <!-- root node --> 1077 <feature> 1078 <rects> 1079 <_>3 8 18 4 -1.</_> 1080 <_>9 8 6 4 3.</_></rects> 1081 <tilted>0</tilted></feature> 1082 <threshold>-0.0681570023298264</threshold> 1083 <left_val>-3.3269989490509033</left_val> 1084 <right_val>0.2129900008440018</right_val></_></_></trees> 1085 <stage_threshold>-4.4531588554382324</stage_threshold> 1086 <parent>2</parent> 1087 <next>-1</next></_> 1088 <_> 1089 <!-- stage 4 --> 1090 <trees> 1091 <_> 1092 <!-- tree 0 --> 1093 <_> 1094 <!-- root node --> 1095 <feature> 1096 <rects> 1097 <_>6 0 12 9 -1.</_> 1098 <_>6 3 12 3 3.</_></rects> 1099 <tilted>0</tilted></feature> 1100 <threshold>0.0399740003049374</threshold> 1101 <left_val>-1.2173449993133545</left_val> 1102 <right_val>1.0826710462570190</right_val></_></_> 1103 <_> 1104 <!-- tree 1 --> 1105 <_> 1106 <!-- root node --> 1107 <feature> 1108 <rects> 1109 <_>0 0 24 6 -1.</_> 1110 <_>8 0 8 6 3.</_></rects> 1111 <tilted>0</tilted></feature> 1112 <threshold>0.1881950050592423</threshold> 1113 <left_val>-0.4828940033912659</left_val> 1114 <right_val>1.4045250415802002</right_val></_></_> 1115 <_> 1116 <!-- tree 2 --> 1117 <_> 1118 <!-- root node --> 1119 <feature> 1120 <rects> 1121 <_>4 7 16 12 -1.</_> 1122 <_>4 11 16 4 3.</_></rects> 1123 <tilted>0</tilted></feature> 1124 <threshold>0.0780270025134087</threshold> 1125 <left_val>-1.0782150030136108</left_val> 1126 <right_val>0.7404029965400696</right_val></_></_> 1127 <_> 1128 <!-- tree 3 --> 1129 <_> 1130 <!-- root node --> 1131 <feature> 1132 <rects> 1133 <_>11 6 6 6 -1.</_> 1134 <_>11 6 3 6 2.</_></rects> 1135 <tilted>0</tilted></feature> 1136 <threshold>1.1899999663000926e-004</threshold> 1137 <left_val>-1.2019979953765869</left_val> 1138 <right_val>0.3774920105934143</right_val></_></_> 1139 <_> 1140 <!-- tree 4 --> 1141 <_> 1142 <!-- root node --> 1143 <feature> 1144 <rects> 1145 <_>0 20 24 3 -1.</_> 1146 <_>8 20 8 3 3.</_></rects> 1147 <tilted>0</tilted></feature> 1148 <threshold>0.0850569978356361</threshold> 1149 <left_val>-0.4393909871578217</left_val> 1150 <right_val>1.2647340297698975</right_val></_></_> 1151 <_> 1152 <!-- tree 5 --> 1153 <_> 1154 <!-- root node --> 1155 <feature> 1156 <rects> 1157 <_>11 6 4 9 -1.</_> 1158 <_>11 6 2 9 2.</_></rects> 1159 <tilted>0</tilted></feature> 1160 <threshold>8.9720003306865692e-003</threshold> 1161 <left_val>-0.1844049990177155</left_val> 1162 <right_val>0.4572640061378479</right_val></_></_> 1163 <_> 1164 <!-- tree 6 --> 1165 <_> 1166 <!-- root node --> 1167 <feature> 1168 <rects> 1169 <_>4 13 15 4 -1.</_> 1170 <_>9 13 5 4 3.</_></rects> 1171 <tilted>0</tilted></feature> 1172 <threshold>8.8120000436902046e-003</threshold> 1173 <left_val>0.3039669990539551</left_val> 1174 <right_val>-0.9599109888076782</right_val></_></_> 1175 <_> 1176 <!-- tree 7 --> 1177 <_> 1178 <!-- root node --> 1179 <feature> 1180 <rects> 1181 <_>11 6 4 9 -1.</_> 1182 <_>11 6 2 9 2.</_></rects> 1183 <tilted>0</tilted></feature> 1184 <threshold>-0.0235079992562532</threshold> 1185 <left_val>1.2487529516220093</left_val> 1186 <right_val>0.0462279990315437</right_val></_></_> 1187 <_> 1188 <!-- tree 8 --> 1189 <_> 1190 <!-- root node --> 1191 <feature> 1192 <rects> 1193 <_>9 6 4 9 -1.</_> 1194 <_>11 6 2 9 2.</_></rects> 1195 <tilted>0</tilted></feature> 1196 <threshold>7.0039997808635235e-003</threshold> 1197 <left_val>-0.5944210290908814</left_val> 1198 <right_val>0.5396329760551453</right_val></_></_> 1199 <_> 1200 <!-- tree 9 --> 1201 <_> 1202 <!-- root node --> 1203 <feature> 1204 <rects> 1205 <_>9 12 6 12 -1.</_> 1206 <_>9 18 6 6 2.</_></rects> 1207 <tilted>0</tilted></feature> 1208 <threshold>0.0338519997894764</threshold> 1209 <left_val>0.2849609851837158</left_val> 1210 <right_val>-1.4895249605178833</right_val></_></_> 1211 <_> 1212 <!-- tree 10 --> 1213 <_> 1214 <!-- root node --> 1215 <feature> 1216 <rects> 1217 <_>1 22 18 2 -1.</_> 1218 <_>1 23 18 1 2.</_></rects> 1219 <tilted>0</tilted></feature> 1220 <threshold>-3.2530000898987055e-003</threshold> 1221 <left_val>0.4812079966068268</left_val> 1222 <right_val>-0.5271239876747131</right_val></_></_> 1223 <_> 1224 <!-- tree 11 --> 1225 <_> 1226 <!-- root node --> 1227 <feature> 1228 <rects> 1229 <_>10 7 4 10 -1.</_> 1230 <_>10 12 4 5 2.</_></rects> 1231 <tilted>0</tilted></feature> 1232 <threshold>0.0290970001369715</threshold> 1233 <left_val>0.2674390077590942</left_val> 1234 <right_val>-1.6007850170135498</right_val></_></_> 1235 <_> 1236 <!-- tree 12 --> 1237 <_> 1238 <!-- root node --> 1239 <feature> 1240 <rects> 1241 <_>6 7 8 10 -1.</_> 1242 <_>6 12 8 5 2.</_></rects> 1243 <tilted>0</tilted></feature> 1244 <threshold>-8.4790000692009926e-003</threshold> 1245 <left_val>-1.3107639551162720</left_val> 1246 <right_val>0.1524309962987900</right_val></_></_> 1247 <_> 1248 <!-- tree 13 --> 1249 <_> 1250 <!-- root node --> 1251 <feature> 1252 <rects> 1253 <_>7 6 10 6 -1.</_> 1254 <_>7 8 10 2 3.</_></rects> 1255 <tilted>0</tilted></feature> 1256 <threshold>-0.0107950000092387</threshold> 1257 <left_val>0.4561359882354736</left_val> 1258 <right_val>-0.7205089926719666</right_val></_></_> 1259 <_> 1260 <!-- tree 14 --> 1261 <_> 1262 <!-- root node --> 1263 <feature> 1264 <rects> 1265 <_>0 14 10 4 -1.</_> 1266 <_>0 16 10 2 2.</_></rects> 1267 <tilted>0</tilted></feature> 1268 <threshold>-0.0246200002729893</threshold> 1269 <left_val>-1.7320619821548462</left_val> 1270 <right_val>0.0683630034327507</right_val></_></_> 1271 <_> 1272 <!-- tree 15 --> 1273 <_> 1274 <!-- root node --> 1275 <feature> 1276 <rects> 1277 <_>6 18 18 2 -1.</_> 1278 <_>6 19 18 1 2.</_></rects> 1279 <tilted>0</tilted></feature> 1280 <threshold>3.7380000576376915e-003</threshold> 1281 <left_val>-0.1930329948663712</left_val> 1282 <right_val>0.6824349761009216</right_val></_></_> 1283 <_> 1284 <!-- tree 16 --> 1285 <_> 1286 <!-- root node --> 1287 <feature> 1288 <rects> 1289 <_>1 1 22 3 -1.</_> 1290 <_>1 2 22 1 3.</_></rects> 1291 <tilted>0</tilted></feature> 1292 <threshold>-0.0122640002518892</threshold> 1293 <left_val>-1.6095290184020996</left_val> 1294 <right_val>0.0752680003643036</right_val></_></_> 1295 <_> 1296 <!-- tree 17 --> 1297 <_> 1298 <!-- root node --> 1299 <feature> 1300 <rects> 1301 <_>6 16 18 3 -1.</_> 1302 <_>6 17 18 1 3.</_></rects> 1303 <tilted>0</tilted></feature> 1304 <threshold>-4.8670000396668911e-003</threshold> 1305 <left_val>0.7428650259971619</left_val> 1306 <right_val>-0.2151020020246506</right_val></_></_> 1307 <_> 1308 <!-- tree 18 --> 1309 <_> 1310 <!-- root node --> 1311 <feature> 1312 <rects> 1313 <_>2 4 6 15 -1.</_> 1314 <_>5 4 3 15 2.</_></rects> 1315 <tilted>0</tilted></feature> 1316 <threshold>0.0767259970307350</threshold> 1317 <left_val>-0.2683509886264801</left_val> 1318 <right_val>1.3094140291213989</right_val></_></_> 1319 <_> 1320 <!-- tree 19 --> 1321 <_> 1322 <!-- root node --> 1323 <feature> 1324 <rects> 1325 <_>20 4 4 10 -1.</_> 1326 <_>20 4 2 10 2.</_></rects> 1327 <tilted>0</tilted></feature> 1328 <threshold>0.0285780001431704</threshold> 1329 <left_val>-0.0587930008769035</left_val> 1330 <right_val>1.2196329832077026</right_val></_></_> 1331 <_> 1332 <!-- tree 20 --> 1333 <_> 1334 <!-- root node --> 1335 <feature> 1336 <rects> 1337 <_>0 4 4 10 -1.</_> 1338 <_>2 4 2 10 2.</_></rects> 1339 <tilted>0</tilted></feature> 1340 <threshold>0.0196940004825592</threshold> 1341 <left_val>-0.3514289855957031</left_val> 1342 <right_val>0.8492699861526489</right_val></_></_> 1343 <_> 1344 <!-- tree 21 --> 1345 <_> 1346 <!-- root node --> 1347 <feature> 1348 <rects> 1349 <_>2 16 20 6 -1.</_> 1350 <_>12 16 10 3 2.</_> 1351 <_>2 19 10 3 2.</_></rects> 1352 <tilted>0</tilted></feature> 1353 <threshold>-0.0290939994156361</threshold> 1354 <left_val>-1.0507299900054932</left_val> 1355 <right_val>0.2980630099773407</right_val></_></_> 1356 <_> 1357 <!-- tree 22 --> 1358 <_> 1359 <!-- root node --> 1360 <feature> 1361 <rects> 1362 <_>0 12 8 9 -1.</_> 1363 <_>4 12 4 9 2.</_></rects> 1364 <tilted>0</tilted></feature> 1365 <threshold>-0.0291440002620220</threshold> 1366 <left_val>0.8254780173301697</left_val> 1367 <right_val>-0.3268719911575317</right_val></_></_> 1368 <_> 1369 <!-- tree 23 --> 1370 <_> 1371 <!-- root node --> 1372 <feature> 1373 <rects> 1374 <_>12 0 6 9 -1.</_> 1375 <_>14 0 2 9 3.</_></rects> 1376 <tilted>0</tilted></feature> 1377 <threshold>0.0197410006076097</threshold> 1378 <left_val>0.2045260071754456</left_val> 1379 <right_val>-0.8376020193099976</right_val></_></_> 1380 <_> 1381 <!-- tree 24 --> 1382 <_> 1383 <!-- root node --> 1384 <feature> 1385 <rects> 1386 <_>5 10 6 6 -1.</_> 1387 <_>8 10 3 6 2.</_></rects> 1388 <tilted>0</tilted></feature> 1389 <threshold>4.3299999088048935e-003</threshold> 1390 <left_val>0.2057790011167526</left_val> 1391 <right_val>-0.6682980060577393</right_val></_></_> 1392 <_> 1393 <!-- tree 25 --> 1394 <_> 1395 <!-- root node --> 1396 <feature> 1397 <rects> 1398 <_>11 8 12 6 -1.</_> 1399 <_>17 8 6 3 2.</_> 1400 <_>11 11 6 3 2.</_></rects> 1401 <tilted>0</tilted></feature> 1402 <threshold>-0.0355009995400906</threshold> 1403 <left_val>-1.2969900369644165</left_val> 1404 <right_val>0.1389749944210053</right_val></_></_> 1405 <_> 1406 <!-- tree 26 --> 1407 <_> 1408 <!-- root node --> 1409 <feature> 1410 <rects> 1411 <_>0 8 12 6 -1.</_> 1412 <_>0 8 6 3 2.</_> 1413 <_>6 11 6 3 2.</_></rects> 1414 <tilted>0</tilted></feature> 1415 <threshold>-0.0161729995161295</threshold> 1416 <left_val>-1.3110569715499878</left_val> 1417 <right_val>0.0757519975304604</right_val></_></_> 1418 <_> 1419 <!-- tree 27 --> 1420 <_> 1421 <!-- root node --> 1422 <feature> 1423 <rects> 1424 <_>12 0 6 9 -1.</_> 1425 <_>14 0 2 9 3.</_></rects> 1426 <tilted>0</tilted></feature> 1427 <threshold>-0.0221510007977486</threshold> 1428 <left_val>-1.0524389743804932</left_val> 1429 <right_val>0.1924110054969788</right_val></_></_> 1430 <_> 1431 <!-- tree 28 --> 1432 <_> 1433 <!-- root node --> 1434 <feature> 1435 <rects> 1436 <_>6 0 6 9 -1.</_> 1437 <_>8 0 2 9 3.</_></rects> 1438 <tilted>0</tilted></feature> 1439 <threshold>-0.0227070003747940</threshold> 1440 <left_val>-1.3735309839248657</left_val> 1441 <right_val>0.0667809993028641</right_val></_></_> 1442 <_> 1443 <!-- tree 29 --> 1444 <_> 1445 <!-- root node --> 1446 <feature> 1447 <rects> 1448 <_>8 14 9 6 -1.</_> 1449 <_>8 16 9 2 3.</_></rects> 1450 <tilted>0</tilted></feature> 1451 <threshold>0.0166079998016357</threshold> 1452 <left_val>-0.0371359996497631</left_val> 1453 <right_val>0.7784640192985535</right_val></_></_> 1454 <_> 1455 <!-- tree 30 --> 1456 <_> 1457 <!-- root node --> 1458 <feature> 1459 <rects> 1460 <_>0 16 9 6 -1.</_> 1461 <_>0 18 9 2 3.</_></rects> 1462 <tilted>0</tilted></feature> 1463 <threshold>-0.0133090000599623</threshold> 1464 <left_val>-0.9985070228576660</left_val> 1465 <right_val>0.1224810034036636</right_val></_></_> 1466 <_> 1467 <!-- tree 31 --> 1468 <_> 1469 <!-- root node --> 1470 <feature> 1471 <rects> 1472 <_>10 8 6 10 -1.</_> 1473 <_>12 8 2 10 3.</_></rects> 1474 <tilted>0</tilted></feature> 1475 <threshold>-0.0337320007383823</threshold> 1476 <left_val>1.4461359977722168</left_val> 1477 <right_val>0.0131519995629787</right_val></_></_> 1478 <_> 1479 <!-- tree 32 --> 1480 <_> 1481 <!-- root node --> 1482 <feature> 1483 <rects> 1484 <_>3 19 12 3 -1.</_> 1485 <_>9 19 6 3 2.</_></rects> 1486 <tilted>0</tilted></feature> 1487 <threshold>0.0169350001960993</threshold> 1488 <left_val>-0.3712129890918732</left_val> 1489 <right_val>0.5284219980239868</right_val></_></_> 1490 <_> 1491 <!-- tree 33 --> 1492 <_> 1493 <!-- root node --> 1494 <feature> 1495 <rects> 1496 <_>2 10 20 2 -1.</_> 1497 <_>2 11 20 1 2.</_></rects> 1498 <tilted>0</tilted></feature> 1499 <threshold>3.3259999472647905e-003</threshold> 1500 <left_val>-0.5756850242614746</left_val> 1501 <right_val>0.3926190137863159</right_val></_></_> 1502 <_> 1503 <!-- tree 34 --> 1504 <_> 1505 <!-- root node --> 1506 <feature> 1507 <rects> 1508 <_>2 9 18 12 -1.</_> 1509 <_>2 9 9 6 2.</_> 1510 <_>11 15 9 6 2.</_></rects> 1511 <tilted>0</tilted></feature> 1512 <threshold>0.0836440026760101</threshold> 1513 <left_val>0.0161160007119179</left_val> 1514 <right_val>-2.1173279285430908</right_val></_></_> 1515 <_> 1516 <!-- tree 35 --> 1517 <_> 1518 <!-- root node --> 1519 <feature> 1520 <rects> 1521 <_>3 0 18 24 -1.</_> 1522 <_>3 0 9 24 2.</_></rects> 1523 <tilted>0</tilted></feature> 1524 <threshold>0.2578519880771637</threshold> 1525 <left_val>-0.0816090032458305</left_val> 1526 <right_val>0.9878249764442444</right_val></_></_> 1527 <_> 1528 <!-- tree 36 --> 1529 <_> 1530 <!-- root node --> 1531 <feature> 1532 <rects> 1533 <_>5 6 14 10 -1.</_> 1534 <_>5 6 7 5 2.</_> 1535 <_>12 11 7 5 2.</_></rects> 1536 <tilted>0</tilted></feature> 1537 <threshold>-0.0365669988095760</threshold> 1538 <left_val>-1.1512110233306885</left_val> 1539 <right_val>0.0964590013027191</right_val></_></_> 1540 <_> 1541 <!-- tree 37 --> 1542 <_> 1543 <!-- root node --> 1544 <feature> 1545 <rects> 1546 <_>9 5 10 12 -1.</_> 1547 <_>14 5 5 6 2.</_> 1548 <_>9 11 5 6 2.</_></rects> 1549 <tilted>0</tilted></feature> 1550 <threshold>-0.0164459999650717</threshold> 1551 <left_val>0.3731549978256226</left_val> 1552 <right_val>-0.1458539962768555</right_val></_></_> 1553 <_> 1554 <!-- tree 38 --> 1555 <_> 1556 <!-- root node --> 1557 <feature> 1558 <rects> 1559 <_>4 5 12 12 -1.</_> 1560 <_>4 5 6 6 2.</_> 1561 <_>10 11 6 6 2.</_></rects> 1562 <tilted>0</tilted></feature> 1563 <threshold>-3.7519999314099550e-003</threshold> 1564 <left_val>0.2617929875850678</left_val> 1565 <right_val>-0.5815669894218445</right_val></_></_> 1566 <_> 1567 <!-- tree 39 --> 1568 <_> 1569 <!-- root node --> 1570 <feature> 1571 <rects> 1572 <_>4 14 18 3 -1.</_> 1573 <_>4 15 18 1 3.</_></rects> 1574 <tilted>0</tilted></feature> 1575 <threshold>-6.3660000450909138e-003</threshold> 1576 <left_val>0.7547739744186401</left_val> 1577 <right_val>-0.1705520004034042</right_val></_></_> 1578 <_> 1579 <!-- tree 40 --> 1580 <_> 1581 <!-- root node --> 1582 <feature> 1583 <rects> 1584 <_>6 13 8 8 -1.</_> 1585 <_>6 17 8 4 2.</_></rects> 1586 <tilted>0</tilted></feature> 1587 <threshold>-3.8499999791383743e-003</threshold> 1588 <left_val>0.2265399992465973</left_val> 1589 <right_val>-0.6387640237808228</right_val></_></_> 1590 <_> 1591 <!-- tree 41 --> 1592 <_> 1593 <!-- root node --> 1594 <feature> 1595 <rects> 1596 <_>3 16 18 6 -1.</_> 1597 <_>3 19 18 3 2.</_></rects> 1598 <tilted>0</tilted></feature> 1599 <threshold>-0.0454940013587475</threshold> 1600 <left_val>-1.2640299797058105</left_val> 1601 <right_val>0.2526069879531860</right_val></_></_> 1602 <_> 1603 <!-- tree 42 --> 1604 <_> 1605 <!-- root node --> 1606 <feature> 1607 <rects> 1608 <_>0 0 6 6 -1.</_> 1609 <_>3 0 3 6 2.</_></rects> 1610 <tilted>0</tilted></feature> 1611 <threshold>-0.0239410009235144</threshold> 1612 <left_val>0.8706840276718140</left_val> 1613 <right_val>-0.2710469961166382</right_val></_></_> 1614 <_> 1615 <!-- tree 43 --> 1616 <_> 1617 <!-- root node --> 1618 <feature> 1619 <rects> 1620 <_>6 6 12 18 -1.</_> 1621 <_>10 6 4 18 3.</_></rects> 1622 <tilted>0</tilted></feature> 1623 <threshold>-0.0775580033659935</threshold> 1624 <left_val>-1.3901610374450684</left_val> 1625 <right_val>0.2361229956150055</right_val></_></_> 1626 <_> 1627 <!-- tree 44 --> 1628 <_> 1629 <!-- root node --> 1630 <feature> 1631 <rects> 1632 <_>6 1 4 14 -1.</_> 1633 <_>8 1 2 14 2.</_></rects> 1634 <tilted>0</tilted></feature> 1635 <threshold>0.0236140005290508</threshold> 1636 <left_val>0.0661400035023689</left_val> 1637 <right_val>-1.2645419836044312</right_val></_></_> 1638 <_> 1639 <!-- tree 45 --> 1640 <_> 1641 <!-- root node --> 1642 <feature> 1643 <rects> 1644 <_>3 2 19 2 -1.</_> 1645 <_>3 3 19 1 2.</_></rects> 1646 <tilted>0</tilted></feature> 1647 <threshold>-2.5750000495463610e-003</threshold> 1648 <left_val>-0.5384169816970825</left_val> 1649 <right_val>0.3037909865379334</right_val></_></_> 1650 <_> 1651 <!-- tree 46 --> 1652 <_> 1653 <!-- root node --> 1654 <feature> 1655 <rects> 1656 <_>1 8 22 13 -1.</_> 1657 <_>12 8 11 13 2.</_></rects> 1658 <tilted>0</tilted></feature> 1659 <threshold>0.1201080009341240</threshold> 1660 <left_val>-0.3534300029277802</left_val> 1661 <right_val>0.5286620259284973</right_val></_></_> 1662 <_> 1663 <!-- tree 47 --> 1664 <_> 1665 <!-- root node --> 1666 <feature> 1667 <rects> 1668 <_>8 9 11 4 -1.</_> 1669 <_>8 11 11 2 2.</_></rects> 1670 <tilted>0</tilted></feature> 1671 <threshold>2.2899999748915434e-003</threshold> 1672 <left_val>-0.5870199799537659</left_val> 1673 <right_val>0.2406100034713745</right_val></_></_> 1674 <_> 1675 <!-- tree 48 --> 1676 <_> 1677 <!-- root node --> 1678 <feature> 1679 <rects> 1680 <_>0 12 15 10 -1.</_> 1681 <_>5 12 5 10 3.</_></rects> 1682 <tilted>0</tilted></feature> 1683 <threshold>0.0697169974446297</threshold> 1684 <left_val>-0.3334890007972717</left_val> 1685 <right_val>0.5191630125045776</right_val></_></_> 1686 <_> 1687 <!-- tree 49 --> 1688 <_> 1689 <!-- root node --> 1690 <feature> 1691 <rects> 1692 <_>12 16 12 6 -1.</_> 1693 <_>16 16 4 6 3.</_></rects> 1694 <tilted>0</tilted></feature> 1695 <threshold>-0.0466700010001659</threshold> 1696 <left_val>0.6979539990425110</left_val> 1697 <right_val>-0.0148959998041391</right_val></_></_> 1698 <_> 1699 <!-- tree 50 --> 1700 <_> 1701 <!-- root node --> 1702 <feature> 1703 <rects> 1704 <_>0 16 12 6 -1.</_> 1705 <_>4 16 4 6 3.</_></rects> 1706 <tilted>0</tilted></feature> 1707 <threshold>-0.0501290000975132</threshold> 1708 <left_val>0.8614619970321655</left_val> 1709 <right_val>-0.2598600089550018</right_val></_></_> 1710 <_> 1711 <!-- tree 51 --> 1712 <_> 1713 <!-- root node --> 1714 <feature> 1715 <rects> 1716 <_>19 1 5 12 -1.</_> 1717 <_>19 5 5 4 3.</_></rects> 1718 <tilted>0</tilted></feature> 1719 <threshold>0.0301479995250702</threshold> 1720 <left_val>0.1933279931545258</left_val> 1721 <right_val>-0.5913109779357910</right_val></_></_></trees> 1722 <stage_threshold>-4.3864588737487793</stage_threshold> 1723 <parent>3</parent> 1724 <next>-1</next></_> 1725 <_> 1726 <!-- stage 5 --> 1727 <trees> 1728 <_> 1729 <!-- tree 0 --> 1730 <_> 1731 <!-- root node --> 1732 <feature> 1733 <rects> 1734 <_>0 2 24 4 -1.</_> 1735 <_>8 2 8 4 3.</_></rects> 1736 <tilted>0</tilted></feature> 1737 <threshold>0.0910850018262863</threshold> 1738 <left_val>-0.8923310041427612</left_val> 1739 <right_val>1.0434230566024780</right_val></_></_> 1740 <_> 1741 <!-- tree 1 --> 1742 <_> 1743 <!-- root node --> 1744 <feature> 1745 <rects> 1746 <_>6 8 12 4 -1.</_> 1747 <_>6 10 12 2 2.</_></rects> 1748 <tilted>0</tilted></feature> 1749 <threshold>0.0128189995884895</threshold> 1750 <left_val>-1.2597670555114746</left_val> 1751 <right_val>0.5531709790229797</right_val></_></_> 1752 <_> 1753 <!-- tree 2 --> 1754 <_> 1755 <!-- root node --> 1756 <feature> 1757 <rects> 1758 <_>7 5 9 6 -1.</_> 1759 <_>10 5 3 6 3.</_></rects> 1760 <tilted>0</tilted></feature> 1761 <threshold>0.0159319993108511</threshold> 1762 <left_val>-0.8625440001487732</left_val> 1763 <right_val>0.6373180150985718</right_val></_></_> 1764 <_> 1765 <!-- tree 3 --> 1766 <_> 1767 <!-- root node --> 1768 <feature> 1769 <rects> 1770 <_>9 17 6 6 -1.</_> 1771 <_>9 20 6 3 2.</_></rects> 1772 <tilted>0</tilted></feature> 1773 <threshold>2.2780001163482666e-003</threshold> 1774 <left_val>-0.7463920116424561</left_val> 1775 <right_val>0.5315560102462769</right_val></_></_> 1776 <_> 1777 <!-- tree 4 --> 1778 <_> 1779 <!-- root node --> 1780 <feature> 1781 <rects> 1782 <_>0 7 22 15 -1.</_> 1783 <_>0 12 22 5 3.</_></rects> 1784 <tilted>0</tilted></feature> 1785 <threshold>0.0318409986793995</threshold> 1786 <left_val>-1.2650489807128906</left_val> 1787 <right_val>0.3615390062332153</right_val></_></_> 1788 <_> 1789 <!-- tree 5 --> 1790 <_> 1791 <!-- root node --> 1792 <feature> 1793 <rects> 1794 <_>4 1 17 9 -1.</_> 1795 <_>4 4 17 3 3.</_></rects> 1796 <tilted>0</tilted></feature> 1797 <threshold>2.6960000395774841e-003</threshold> 1798 <left_val>-0.9829040169715881</left_val> 1799 <right_val>0.3601300120353699</right_val></_></_> 1800 <_> 1801 <!-- tree 6 --> 1802 <_> 1803 <!-- root node --> 1804 <feature> 1805 <rects> 1806 <_>7 5 6 10 -1.</_> 1807 <_>9 5 2 10 3.</_></rects> 1808 <tilted>0</tilted></feature> 1809 <threshold>-0.0120550002902746</threshold> 1810 <left_val>0.6406840085983276</left_val> 1811 <right_val>-0.5012500286102295</right_val></_></_> 1812 <_> 1813 <!-- tree 7 --> 1814 <_> 1815 <!-- root node --> 1816 <feature> 1817 <rects> 1818 <_>18 1 6 8 -1.</_> 1819 <_>18 1 3 8 2.</_></rects> 1820 <tilted>0</tilted></feature> 1821 <threshold>0.0213249996304512</threshold> 1822 <left_val>-0.2403499931097031</left_val> 1823 <right_val>0.8544800281524658</right_val></_></_> 1824 <_> 1825 <!-- tree 8 --> 1826 <_> 1827 <!-- root node --> 1828 <feature> 1829 <rects> 1830 <_>0 1 6 7 -1.</_> 1831 <_>3 1 3 7 2.</_></rects> 1832 <tilted>0</tilted></feature> 1833 <threshold>0.0304860007017851</threshold> 1834 <left_val>-0.3427360057830811</left_val> 1835 <right_val>1.1428849697113037</right_val></_></_> 1836 <_> 1837 <!-- tree 9 --> 1838 <_> 1839 <!-- root node --> 1840 <feature> 1841 <rects> 1842 <_>18 0 6 22 -1.</_> 1843 <_>18 0 3 22 2.</_></rects> 1844 <tilted>0</tilted></feature> 1845 <threshold>-0.0450799986720085</threshold> 1846 <left_val>1.0976949930191040</left_val> 1847 <right_val>-0.1797460019588471</right_val></_></_> 1848 <_> 1849 <!-- tree 10 --> 1850 <_> 1851 <!-- root node --> 1852 <feature> 1853 <rects> 1854 <_>0 0 6 22 -1.</_> 1855 <_>3 0 3 22 2.</_></rects> 1856 <tilted>0</tilted></feature> 1857 <threshold>-0.0717009976506233</threshold> 1858 <left_val>1.5735000371932983</left_val> 1859 <right_val>-0.3143349885940552</right_val></_></_> 1860 <_> 1861 <!-- tree 11 --> 1862 <_> 1863 <!-- root node --> 1864 <feature> 1865 <rects> 1866 <_>16 7 8 16 -1.</_> 1867 <_>16 7 4 16 2.</_></rects> 1868 <tilted>0</tilted></feature> 1869 <threshold>0.0592180006206036</threshold> 1870 <left_val>-0.2758240103721619</left_val> 1871 <right_val>1.0448570251464844</right_val></_></_> 1872 <_> 1873 <!-- tree 12 --> 1874 <_> 1875 <!-- root node --> 1876 <feature> 1877 <rects> 1878 <_>2 10 19 6 -1.</_> 1879 <_>2 12 19 2 3.</_></rects> 1880 <tilted>0</tilted></feature> 1881 <threshold>6.7010000348091125e-003</threshold> 1882 <left_val>-1.0974019765853882</left_val> 1883 <right_val>0.1980119943618774</right_val></_></_> 1884 <_> 1885 <!-- tree 13 --> 1886 <_> 1887 <!-- root node --> 1888 <feature> 1889 <rects> 1890 <_>9 9 6 12 -1.</_> 1891 <_>9 13 6 4 3.</_></rects> 1892 <tilted>0</tilted></feature> 1893 <threshold>0.0410469993948936</threshold> 1894 <left_val>0.3054769933223724</left_val> 1895 <right_val>-1.3287999629974365</right_val></_></_> 1896 <_> 1897 <!-- tree 14 --> 1898 <_> 1899 <!-- root node --> 1900 <feature> 1901 <rects> 1902 <_>2 15 17 6 -1.</_> 1903 <_>2 17 17 2 3.</_></rects> 1904 <tilted>0</tilted></feature> 1905 <threshold>-8.5499999113380909e-004</threshold> 1906 <left_val>0.2580710053443909</left_val> 1907 <right_val>-0.7005289793014526</right_val></_></_> 1908 <_> 1909 <!-- tree 15 --> 1910 <_> 1911 <!-- root node --> 1912 <feature> 1913 <rects> 1914 <_>14 7 3 14 -1.</_> 1915 <_>14 14 3 7 2.</_></rects> 1916 <tilted>0</tilted></feature> 1917 <threshold>-0.0303600002080202</threshold> 1918 <left_val>-1.2306419610977173</left_val> 1919 <right_val>0.2260939925909042</right_val></_></_> 1920 <_> 1921 <!-- tree 16 --> 1922 <_> 1923 <!-- root node --> 1924 <feature> 1925 <rects> 1926 <_>5 6 8 10 -1.</_> 1927 <_>5 6 4 5 2.</_> 1928 <_>9 11 4 5 2.</_></rects> 1929 <tilted>0</tilted></feature> 1930 <threshold>-0.0129300002008677</threshold> 1931 <left_val>0.4075860083103180</left_val> 1932 <right_val>-0.5123450160026550</right_val></_></_> 1933 <_> 1934 <!-- tree 17 --> 1935 <_> 1936 <!-- root node --> 1937 <feature> 1938 <rects> 1939 <_>15 8 9 11 -1.</_> 1940 <_>18 8 3 11 3.</_></rects> 1941 <tilted>0</tilted></feature> 1942 <threshold>0.0373679995536804</threshold> 1943 <left_val>-0.0947550013661385</left_val> 1944 <right_val>0.6176509857177734</right_val></_></_> 1945 <_> 1946 <!-- tree 18 --> 1947 <_> 1948 <!-- root node --> 1949 <feature> 1950 <rects> 1951 <_>0 8 9 11 -1.</_> 1952 <_>3 8 3 11 3.</_></rects> 1953 <tilted>0</tilted></feature> 1954 <threshold>0.0244340002536774</threshold> 1955 <left_val>-0.4110060036182404</left_val> 1956 <right_val>0.4763050079345703</right_val></_></_> 1957 <_> 1958 <!-- tree 19 --> 1959 <_> 1960 <!-- root node --> 1961 <feature> 1962 <rects> 1963 <_>8 6 10 18 -1.</_> 1964 <_>8 15 10 9 2.</_></rects> 1965 <tilted>0</tilted></feature> 1966 <threshold>0.0570079982280731</threshold> 1967 <left_val>0.2524929940700531</left_val> 1968 <right_val>-0.6866980195045471</right_val></_></_> 1969 <_> 1970 <!-- tree 20 --> 1971 <_> 1972 <!-- root node --> 1973 <feature> 1974 <rects> 1975 <_>7 7 3 14 -1.</_> 1976 <_>7 14 3 7 2.</_></rects> 1977 <tilted>0</tilted></feature> 1978 <threshold>-0.0163139998912811</threshold> 1979 <left_val>-0.9392840266227722</left_val> 1980 <right_val>0.1144810020923615</right_val></_></_> 1981 <_> 1982 <!-- tree 21 --> 1983 <_> 1984 <!-- root node --> 1985 <feature> 1986 <rects> 1987 <_>0 14 24 8 -1.</_> 1988 <_>8 14 8 8 3.</_></rects> 1989 <tilted>0</tilted></feature> 1990 <threshold>-0.1764889955520630</threshold> 1991 <left_val>1.2451089620590210</left_val> 1992 <right_val>-0.0565190017223358</right_val></_></_> 1993 <_> 1994 <!-- tree 22 --> 1995 <_> 1996 <!-- root node --> 1997 <feature> 1998 <rects> 1999 <_>1 10 18 14 -1.</_> 2000 <_>10 10 9 14 2.</_></rects> 2001 <tilted>0</tilted></feature> 2002 <threshold>0.1761460006237030</threshold> 2003 <left_val>-0.3252820074558258</left_val> 2004 <right_val>0.8279150128364563</right_val></_></_> 2005 <_> 2006 <!-- tree 23 --> 2007 <_> 2008 <!-- root node --> 2009 <feature> 2010 <rects> 2011 <_>14 12 6 6 -1.</_> 2012 <_>14 15 6 3 2.</_></rects> 2013 <tilted>0</tilted></feature> 2014 <threshold>-7.3910001665353775e-003</threshold> 2015 <left_val>0.3478370010852814</left_val> 2016 <right_val>-0.1792909950017929</right_val></_></_> 2017 <_> 2018 <!-- tree 24 --> 2019 <_> 2020 <!-- root node --> 2021 <feature> 2022 <rects> 2023 <_>7 0 10 16 -1.</_> 2024 <_>7 0 5 8 2.</_> 2025 <_>12 8 5 8 2.</_></rects> 2026 <tilted>0</tilted></feature> 2027 <threshold>0.0608909986913204</threshold> 2028 <left_val>0.0550980009138584</left_val> 2029 <right_val>-1.5480779409408569</right_val></_></_> 2030 <_> 2031 <!-- tree 25 --> 2032 <_> 2033 <!-- root node --> 2034 <feature> 2035 <rects> 2036 <_>10 0 9 6 -1.</_> 2037 <_>13 0 3 6 3.</_></rects> 2038 <tilted>0</tilted></feature> 2039 <threshold>-0.0291230008006096</threshold> 2040 <left_val>-1.0255639553070068</left_val> 2041 <right_val>0.2410690039396286</right_val></_></_> 2042 <_> 2043 <!-- tree 26 --> 2044 <_> 2045 <!-- root node --> 2046 <feature> 2047 <rects> 2048 <_>4 3 16 4 -1.</_> 2049 <_>12 3 8 4 2.</_></rects> 2050 <tilted>0</tilted></feature> 2051 <threshold>-0.0456489995121956</threshold> 2052 <left_val>1.0301599502563477</left_val> 2053 <right_val>-0.3167209923267365</right_val></_></_> 2054 <_> 2055 <!-- tree 27 --> 2056 <_> 2057 <!-- root node --> 2058 <feature> 2059 <rects> 2060 <_>10 0 9 6 -1.</_> 2061 <_>13 0 3 6 3.</_></rects> 2062 <tilted>0</tilted></feature> 2063 <threshold>0.0373330004513264</threshold> 2064 <left_val>0.2162059992551804</left_val> 2065 <right_val>-0.8258990049362183</right_val></_></_> 2066 <_> 2067 <!-- tree 28 --> 2068 <_> 2069 <!-- root node --> 2070 <feature> 2071 <rects> 2072 <_>1 1 20 4 -1.</_> 2073 <_>1 1 10 2 2.</_> 2074 <_>11 3 10 2 2.</_></rects> 2075 <tilted>0</tilted></feature> 2076 <threshold>-0.0244110003113747</threshold> 2077 <left_val>-1.5957959890365601</left_val> 2078 <right_val>0.0511390008032322</right_val></_></_> 2079 <_> 2080 <!-- tree 29 --> 2081 <_> 2082 <!-- root node --> 2083 <feature> 2084 <rects> 2085 <_>10 0 9 6 -1.</_> 2086 <_>13 0 3 6 3.</_></rects> 2087 <tilted>0</tilted></feature> 2088 <threshold>-0.0598069988191128</threshold> 2089 <left_val>-1.0312290191650391</left_val> 2090 <right_val>0.1309230029582977</right_val></_></_> 2091 <_> 2092 <!-- tree 30 --> 2093 <_> 2094 <!-- root node --> 2095 <feature> 2096 <rects> 2097 <_>5 0 9 6 -1.</_> 2098 <_>8 0 3 6 3.</_></rects> 2099 <tilted>0</tilted></feature> 2100 <threshold>-0.0301060006022453</threshold> 2101 <left_val>-1.4781630039215088</left_val> 2102 <right_val>0.0372119992971420</right_val></_></_> 2103 <_> 2104 <!-- tree 31 --> 2105 <_> 2106 <!-- root node --> 2107 <feature> 2108 <rects> 2109 <_>8 18 10 6 -1.</_> 2110 <_>8 20 10 2 3.</_></rects> 2111 <tilted>0</tilted></feature> 2112 <threshold>7.4209999293088913e-003</threshold> 2113 <left_val>-0.2402410060167313</left_val> 2114 <right_val>0.4933399856090546</right_val></_></_> 2115 <_> 2116 <!-- tree 32 --> 2117 <_> 2118 <!-- root node --> 2119 <feature> 2120 <rects> 2121 <_>6 3 6 9 -1.</_> 2122 <_>8 3 2 9 3.</_></rects> 2123 <tilted>0</tilted></feature> 2124 <threshold>-2.1909999195486307e-003</threshold> 2125 <left_val>0.2894150018692017</left_val> 2126 <right_val>-0.5725960135459900</right_val></_></_> 2127 <_> 2128 <!-- tree 33 --> 2129 <_> 2130 <!-- root node --> 2131 <feature> 2132 <rects> 2133 <_>7 3 12 6 -1.</_> 2134 <_>7 5 12 2 3.</_></rects> 2135 <tilted>0</tilted></feature> 2136 <threshold>0.0208609998226166</threshold> 2137 <left_val>-0.2314839959144592</left_val> 2138 <right_val>0.6376590132713318</right_val></_></_> 2139 <_> 2140 <!-- tree 34 --> 2141 <_> 2142 <!-- root node --> 2143 <feature> 2144 <rects> 2145 <_>0 10 18 3 -1.</_> 2146 <_>0 11 18 1 3.</_></rects> 2147 <tilted>0</tilted></feature> 2148 <threshold>-6.6990000195801258e-003</threshold> 2149 <left_val>-1.2107750177383423</left_val> 2150 <right_val>0.0640180036425591</right_val></_></_> 2151 <_> 2152 <!-- tree 35 --> 2153 <_> 2154 <!-- root node --> 2155 <feature> 2156 <rects> 2157 <_>1 10 22 3 -1.</_> 2158 <_>1 11 22 1 3.</_></rects> 2159 <tilted>0</tilted></feature> 2160 <threshold>0.0187580008059740</threshold> 2161 <left_val>0.2446130067110062</left_val> 2162 <right_val>-0.9978669881820679</right_val></_></_> 2163 <_> 2164 <!-- tree 36 --> 2165 <_> 2166 <!-- root node --> 2167 <feature> 2168 <rects> 2169 <_>5 11 8 8 -1.</_> 2170 <_>9 11 4 8 2.</_></rects> 2171 <tilted>0</tilted></feature> 2172 <threshold>-0.0443230010569096</threshold> 2173 <left_val>-1.3699189424514771</left_val> 2174 <right_val>0.0360519997775555</right_val></_></_> 2175 <_> 2176 <!-- tree 37 --> 2177 <_> 2178 <!-- root node --> 2179 <feature> 2180 <rects> 2181 <_>12 11 6 6 -1.</_> 2182 <_>12 11 3 6 2.</_></rects> 2183 <tilted>0</tilted></feature> 2184 <threshold>0.0228599999099970</threshold> 2185 <left_val>0.2128839939832687</left_val> 2186 <right_val>-1.0397620201110840</right_val></_></_> 2187 <_> 2188 <!-- tree 38 --> 2189 <_> 2190 <!-- root node --> 2191 <feature> 2192 <rects> 2193 <_>6 11 6 6 -1.</_> 2194 <_>9 11 3 6 2.</_></rects> 2195 <tilted>0</tilted></feature> 2196 <threshold>-9.8600005730986595e-004</threshold> 2197 <left_val>0.3244360089302063</left_val> 2198 <right_val>-0.5429180264472961</right_val></_></_> 2199 <_> 2200 <!-- tree 39 --> 2201 <_> 2202 <!-- root node --> 2203 <feature> 2204 <rects> 2205 <_>7 10 11 6 -1.</_> 2206 <_>7 12 11 2 3.</_></rects> 2207 <tilted>0</tilted></feature> 2208 <threshold>0.0172390006482601</threshold> 2209 <left_val>-0.2832390069961548</left_val> 2210 <right_val>0.4446820020675659</right_val></_></_> 2211 <_> 2212 <!-- tree 40 --> 2213 <_> 2214 <!-- root node --> 2215 <feature> 2216 <rects> 2217 <_>0 13 24 4 -1.</_> 2218 <_>0 13 12 2 2.</_> 2219 <_>12 15 12 2 2.</_></rects> 2220 <tilted>0</tilted></feature> 2221 <threshold>-0.0345310010015965</threshold> 2222 <left_val>-2.3107020854949951</left_val> 2223 <right_val>-3.1399999279528856e-003</right_val></_></_> 2224 <_> 2225 <!-- tree 41 --> 2226 <_> 2227 <!-- root node --> 2228 <feature> 2229 <rects> 2230 <_>2 4 22 12 -1.</_> 2231 <_>13 4 11 6 2.</_> 2232 <_>2 10 11 6 2.</_></rects> 2233 <tilted>0</tilted></feature> 2234 <threshold>0.0670069977641106</threshold> 2235 <left_val>0.2871569991111755</left_val> 2236 <right_val>-0.6448100209236145</right_val></_></_> 2237 <_> 2238 <!-- tree 42 --> 2239 <_> 2240 <!-- root node --> 2241 <feature> 2242 <rects> 2243 <_>2 0 20 17 -1.</_> 2244 <_>12 0 10 17 2.</_></rects> 2245 <tilted>0</tilted></feature> 2246 <threshold>0.2377689927816391</threshold> 2247 <left_val>-0.2717480063438416</left_val> 2248 <right_val>0.8021910190582275</right_val></_></_> 2249 <_> 2250 <!-- tree 43 --> 2251 <_> 2252 <!-- root node --> 2253 <feature> 2254 <rects> 2255 <_>14 0 2 24 -1.</_> 2256 <_>14 0 1 24 2.</_></rects> 2257 <tilted>0</tilted></feature> 2258 <threshold>-0.0129030002281070</threshold> 2259 <left_val>-1.5317620038986206</left_val> 2260 <right_val>0.2142360061407089</right_val></_></_> 2261 <_> 2262 <!-- tree 44 --> 2263 <_> 2264 <!-- root node --> 2265 <feature> 2266 <rects> 2267 <_>8 0 2 24 -1.</_> 2268 <_>9 0 1 24 2.</_></rects> 2269 <tilted>0</tilted></feature> 2270 <threshold>0.0105149997398257</threshold> 2271 <left_val>0.0770379975438118</left_val> 2272 <right_val>-1.0581140518188477</right_val></_></_> 2273 <_> 2274 <!-- tree 45 --> 2275 <_> 2276 <!-- root node --> 2277 <feature> 2278 <rects> 2279 <_>14 1 2 22 -1.</_> 2280 <_>14 1 1 22 2.</_></rects> 2281 <tilted>0</tilted></feature> 2282 <threshold>0.0169690009206533</threshold> 2283 <left_val>0.1430670022964478</left_val> 2284 <right_val>-0.8582839965820313</right_val></_></_> 2285 <_> 2286 <!-- tree 46 --> 2287 <_> 2288 <!-- root node --> 2289 <feature> 2290 <rects> 2291 <_>8 1 2 22 -1.</_> 2292 <_>9 1 1 22 2.</_></rects> 2293 <tilted>0</tilted></feature> 2294 <threshold>-7.2460002265870571e-003</threshold> 2295 <left_val>-1.1020129919052124</left_val> 2296 <right_val>0.0649069994688034</right_val></_></_> 2297 <_> 2298 <!-- tree 47 --> 2299 <_> 2300 <!-- root node --> 2301 <feature> 2302 <rects> 2303 <_>17 6 3 18 -1.</_> 2304 <_>18 6 1 18 3.</_></rects> 2305 <tilted>0</tilted></feature> 2306 <threshold>0.0105569995939732</threshold> 2307 <left_val>0.0139640001580119</left_val> 2308 <right_val>0.6360149979591370</right_val></_></_> 2309 <_> 2310 <!-- tree 48 --> 2311 <_> 2312 <!-- root node --> 2313 <feature> 2314 <rects> 2315 <_>6 14 9 6 -1.</_> 2316 <_>6 16 9 2 3.</_></rects> 2317 <tilted>0</tilted></feature> 2318 <threshold>6.1380001716315746e-003</threshold> 2319 <left_val>-0.3454590141773224</left_val> 2320 <right_val>0.5629680156707764</right_val></_></_> 2321 <_> 2322 <!-- tree 49 --> 2323 <_> 2324 <!-- root node --> 2325 <feature> 2326 <rects> 2327 <_>13 14 9 4 -1.</_> 2328 <_>13 16 9 2 2.</_></rects> 2329 <tilted>0</tilted></feature> 2330 <threshold>0.0131580000743270</threshold> 2331 <left_val>0.1992730051279068</left_val> 2332 <right_val>-1.5040320158004761</right_val></_></_> 2333 <_> 2334 <!-- tree 50 --> 2335 <_> 2336 <!-- root node --> 2337 <feature> 2338 <rects> 2339 <_>3 18 18 3 -1.</_> 2340 <_>3 19 18 1 3.</_></rects> 2341 <tilted>0</tilted></feature> 2342 <threshold>3.1310000922530890e-003</threshold> 2343 <left_val>-0.4090369939804077</left_val> 2344 <right_val>0.3779639899730682</right_val></_></_> 2345 <_> 2346 <!-- tree 51 --> 2347 <_> 2348 <!-- root node --> 2349 <feature> 2350 <rects> 2351 <_>9 4 8 18 -1.</_> 2352 <_>13 4 4 9 2.</_> 2353 <_>9 13 4 9 2.</_></rects> 2354 <tilted>0</tilted></feature> 2355 <threshold>-0.1092069968581200</threshold> 2356 <left_val>-2.2227079868316650</left_val> 2357 <right_val>0.1217819973826408</right_val></_></_> 2358 <_> 2359 <!-- tree 52 --> 2360 <_> 2361 <!-- root node --> 2362 <feature> 2363 <rects> 2364 <_>0 17 18 3 -1.</_> 2365 <_>0 18 18 1 3.</_></rects> 2366 <tilted>0</tilted></feature> 2367 <threshold>8.1820003688335419e-003</threshold> 2368 <left_val>-0.2865200042724609</left_val> 2369 <right_val>0.6789079904556274</right_val></_></_></trees> 2370 <stage_threshold>-4.1299300193786621</stage_threshold> 2371 <parent>4</parent> 2372 <next>-1</next></_> 2373 <_> 2374 <!-- stage 6 --> 2375 <trees> 2376 <_> 2377 <!-- tree 0 --> 2378 <_> 2379 <!-- root node --> 2380 <feature> 2381 <rects> 2382 <_>0 2 12 4 -1.</_> 2383 <_>6 2 6 4 2.</_></rects> 2384 <tilted>0</tilted></feature> 2385 <threshold>0.0313469991087914</threshold> 2386 <left_val>-0.8888459801673889</left_val> 2387 <right_val>0.9493680000305176</right_val></_></_> 2388 <_> 2389 <!-- tree 1 --> 2390 <_> 2391 <!-- root node --> 2392 <feature> 2393 <rects> 2394 <_>6 8 14 6 -1.</_> 2395 <_>6 11 14 3 2.</_></rects> 2396 <tilted>0</tilted></feature> 2397 <threshold>0.0319180004298687</threshold> 2398 <left_val>-1.1146880388259888</left_val> 2399 <right_val>0.4888899922370911</right_val></_></_> 2400 <_> 2401 <!-- tree 2 --> 2402 <_> 2403 <!-- root node --> 2404 <feature> 2405 <rects> 2406 <_>7 5 6 6 -1.</_> 2407 <_>10 5 3 6 2.</_></rects> 2408 <tilted>0</tilted></feature> 2409 <threshold>6.5939999185502529e-003</threshold> 2410 <left_val>-1.0097689628601074</left_val> 2411 <right_val>0.4972380101680756</right_val></_></_> 2412 <_> 2413 <!-- tree 3 --> 2414 <_> 2415 <!-- root node --> 2416 <feature> 2417 <rects> 2418 <_>10 5 6 16 -1.</_> 2419 <_>10 13 6 8 2.</_></rects> 2420 <tilted>0</tilted></feature> 2421 <threshold>0.0261480007320642</threshold> 2422 <left_val>0.2599129974842072</left_val> 2423 <right_val>-1.2537480592727661</right_val></_></_> 2424 <_> 2425 <!-- tree 4 --> 2426 <_> 2427 <!-- root node --> 2428 <feature> 2429 <rects> 2430 <_>1 4 9 16 -1.</_> 2431 <_>4 4 3 16 3.</_></rects> 2432 <tilted>0</tilted></feature> 2433 <threshold>0.0128450002521276</threshold> 2434 <left_val>-0.5713859796524048</left_val> 2435 <right_val>0.5965949892997742</right_val></_></_> 2436 <_> 2437 <!-- tree 5 --> 2438 <_> 2439 <!-- root node --> 2440 <feature> 2441 <rects> 2442 <_>5 0 18 9 -1.</_> 2443 <_>5 3 18 3 3.</_></rects> 2444 <tilted>0</tilted></feature> 2445 <threshold>0.0263449996709824</threshold> 2446 <left_val>-0.5520319938659668</left_val> 2447 <right_val>0.3021740019321442</right_val></_></_> 2448 <_> 2449 <!-- tree 6 --> 2450 <_> 2451 <!-- root node --> 2452 <feature> 2453 <rects> 2454 <_>9 15 5 8 -1.</_> 2455 <_>9 19 5 4 2.</_></rects> 2456 <tilted>0</tilted></feature> 2457 <threshold>-0.0150830000638962</threshold> 2458 <left_val>-1.2871240377426147</left_val> 2459 <right_val>0.2235420048236847</right_val></_></_> 2460 <_> 2461 <!-- tree 7 --> 2462 <_> 2463 <!-- root node --> 2464 <feature> 2465 <rects> 2466 <_>20 0 4 9 -1.</_> 2467 <_>20 0 2 9 2.</_></rects> 2468 <tilted>0</tilted></feature> 2469 <threshold>-0.0388870015740395</threshold> 2470 <left_val>1.7425049543380737</left_val> 2471 <right_val>-0.0997470021247864</right_val></_></_> 2472 <_> 2473 <!-- tree 8 --> 2474 <_> 2475 <!-- root node --> 2476 <feature> 2477 <rects> 2478 <_>2 0 18 3 -1.</_> 2479 <_>2 1 18 1 3.</_></rects> 2480 <tilted>0</tilted></feature> 2481 <threshold>-5.7029998861253262e-003</threshold> 2482 <left_val>-1.0523240566253662</left_val> 2483 <right_val>0.1836259961128235</right_val></_></_> 2484 <_> 2485 <!-- tree 9 --> 2486 <_> 2487 <!-- root node --> 2488 <feature> 2489 <rects> 2490 <_>5 22 19 2 -1.</_> 2491 <_>5 23 19 1 2.</_></rects> 2492 <tilted>0</tilted></feature> 2493 <threshold>-1.4860000228509307e-003</threshold> 2494 <left_val>0.5678420066833496</left_val> 2495 <right_val>-0.4674200117588043</right_val></_></_> 2496 <_> 2497 <!-- tree 10 --> 2498 <_> 2499 <!-- root node --> 2500 <feature> 2501 <rects> 2502 <_>0 0 4 9 -1.</_> 2503 <_>2 0 2 9 2.</_></rects> 2504 <tilted>0</tilted></feature> 2505 <threshold>-0.0284860003739595</threshold> 2506 <left_val>1.3082909584045410</left_val> 2507 <right_val>-0.2646090090274811</right_val></_></_> 2508 <_> 2509 <!-- tree 11 --> 2510 <_> 2511 <!-- root node --> 2512 <feature> 2513 <rects> 2514 <_>5 6 19 18 -1.</_> 2515 <_>5 12 19 6 3.</_></rects> 2516 <tilted>0</tilted></feature> 2517 <threshold>0.0662249997258186</threshold> 2518 <left_val>-0.4621070027351379</left_val> 2519 <right_val>0.4174959957599640</right_val></_></_> 2520 <_> 2521 <!-- tree 12 --> 2522 <_> 2523 <!-- root node --> 2524 <feature> 2525 <rects> 2526 <_>0 1 6 9 -1.</_> 2527 <_>2 1 2 9 3.</_></rects> 2528 <tilted>0</tilted></feature> 2529 <threshold>8.8569996878504753e-003</threshold> 2530 <left_val>-0.4147489964962006</left_val> 2531 <right_val>0.5920479893684387</right_val></_></_> 2532 <_> 2533 <!-- tree 13 --> 2534 <_> 2535 <!-- root node --> 2536 <feature> 2537 <rects> 2538 <_>6 5 14 12 -1.</_> 2539 <_>13 5 7 6 2.</_> 2540 <_>6 11 7 6 2.</_></rects> 2541 <tilted>0</tilted></feature> 2542 <threshold>0.0113559998571873</threshold> 2543 <left_val>0.3610309958457947</left_val> 2544 <right_val>-0.4578120112419128</right_val></_></_> 2545 <_> 2546 <!-- tree 14 --> 2547 <_> 2548 <!-- root node --> 2549 <feature> 2550 <rects> 2551 <_>0 1 20 2 -1.</_> 2552 <_>0 2 20 1 2.</_></rects> 2553 <tilted>0</tilted></feature> 2554 <threshold>-2.7679998893290758e-003</threshold> 2555 <left_val>-0.8923889994621277</left_val> 2556 <right_val>0.1419900059700012</right_val></_></_> 2557 <_> 2558 <!-- tree 15 --> 2559 <_> 2560 <!-- root node --> 2561 <feature> 2562 <rects> 2563 <_>1 2 22 3 -1.</_> 2564 <_>1 3 22 1 3.</_></rects> 2565 <tilted>0</tilted></feature> 2566 <threshold>0.0112469997256994</threshold> 2567 <left_val>0.2935340106487274</left_val> 2568 <right_val>-0.9733060002326965</right_val></_></_> 2569 <_> 2570 <!-- tree 16 --> 2571 <_> 2572 <!-- root node --> 2573 <feature> 2574 <rects> 2575 <_>2 8 7 9 -1.</_> 2576 <_>2 11 7 3 3.</_></rects> 2577 <tilted>0</tilted></feature> 2578 <threshold>7.1970000863075256e-003</threshold> 2579 <left_val>-0.7933490276336670</left_val> 2580 <right_val>0.1831340044736862</right_val></_></_> 2581 <_> 2582 <!-- tree 17 --> 2583 <_> 2584 <!-- root node --> 2585 <feature> 2586 <rects> 2587 <_>2 12 22 4 -1.</_> 2588 <_>13 12 11 2 2.</_> 2589 <_>2 14 11 2 2.</_></rects> 2590 <tilted>0</tilted></feature> 2591 <threshold>0.0317689999938011</threshold> 2592 <left_val>0.1552309989929199</left_val> 2593 <right_val>-1.3245639801025391</right_val></_></_> 2594 <_> 2595 <!-- tree 18 --> 2596 <_> 2597 <!-- root node --> 2598 <feature> 2599 <rects> 2600 <_>0 12 22 4 -1.</_> 2601 <_>0 12 11 2 2.</_> 2602 <_>11 14 11 2 2.</_></rects> 2603 <tilted>0</tilted></feature> 2604 <threshold>0.0251739993691444</threshold> 2605 <left_val>0.0342149995267391</left_val> 2606 <right_val>-2.0948131084442139</right_val></_></_> 2607 <_> 2608 <!-- tree 19 --> 2609 <_> 2610 <!-- root node --> 2611 <feature> 2612 <rects> 2613 <_>9 7 6 11 -1.</_> 2614 <_>11 7 2 11 3.</_></rects> 2615 <tilted>0</tilted></feature> 2616 <threshold>7.5360001064836979e-003</threshold> 2617 <left_val>-0.3945060074329376</left_val> 2618 <right_val>0.5133399963378906</right_val></_></_> 2619 <_> 2620 <!-- tree 20 --> 2621 <_> 2622 <!-- root node --> 2623 <feature> 2624 <rects> 2625 <_>7 1 9 6 -1.</_> 2626 <_>10 1 3 6 3.</_></rects> 2627 <tilted>0</tilted></feature> 2628 <threshold>0.0328730009496212</threshold> 2629 <left_val>0.0883729979395866</left_val> 2630 <right_val>-1.2814120054244995</right_val></_></_> 2631 <_> 2632 <!-- tree 21 --> 2633 <_> 2634 <!-- root node --> 2635 <feature> 2636 <rects> 2637 <_>11 2 4 10 -1.</_> 2638 <_>11 7 4 5 2.</_></rects> 2639 <tilted>0</tilted></feature> 2640 <threshold>-2.7379998937249184e-003</threshold> 2641 <left_val>0.5528650283813477</left_val> 2642 <right_val>-0.4638499915599823</right_val></_></_> 2643 <_> 2644 <!-- tree 22 --> 2645 <_> 2646 <!-- root node --> 2647 <feature> 2648 <rects> 2649 <_>6 4 12 12 -1.</_> 2650 <_>6 10 12 6 2.</_></rects> 2651 <tilted>0</tilted></feature> 2652 <threshold>-0.0380750000476837</threshold> 2653 <left_val>-1.8497270345687866</left_val> 2654 <right_val>0.0459440015256405</right_val></_></_> 2655 <_> 2656 <!-- tree 23 --> 2657 <_> 2658 <!-- root node --> 2659 <feature> 2660 <rects> 2661 <_>18 1 6 15 -1.</_> 2662 <_>18 6 6 5 3.</_></rects> 2663 <tilted>0</tilted></feature> 2664 <threshold>-0.0389840006828308</threshold> 2665 <left_val>-0.4822370111942291</left_val> 2666 <right_val>0.3476060032844544</right_val></_></_> 2667 <_> 2668 <!-- tree 24 --> 2669 <_> 2670 <!-- root node --> 2671 <feature> 2672 <rects> 2673 <_>3 15 18 3 -1.</_> 2674 <_>3 16 18 1 3.</_></rects> 2675 <tilted>0</tilted></feature> 2676 <threshold>2.8029999230057001e-003</threshold> 2677 <left_val>-0.4515469968318939</left_val> 2678 <right_val>0.4280630052089691</right_val></_></_> 2679 <_> 2680 <!-- tree 25 --> 2681 <_> 2682 <!-- root node --> 2683 <feature> 2684 <rects> 2685 <_>18 5 6 9 -1.</_> 2686 <_>18 8 6 3 3.</_></rects> 2687 <tilted>0</tilted></feature> 2688 <threshold>-0.0541459992527962</threshold> 2689 <left_val>-0.8452079892158508</left_val> 2690 <right_val>0.1667490005493164</right_val></_></_> 2691 <_> 2692 <!-- tree 26 --> 2693 <_> 2694 <!-- root node --> 2695 <feature> 2696 <rects> 2697 <_>1 5 16 6 -1.</_> 2698 <_>1 5 8 3 2.</_> 2699 <_>9 8 8 3 2.</_></rects> 2700 <tilted>0</tilted></feature> 2701 <threshold>-8.3280000835657120e-003</threshold> 2702 <left_val>0.3534829914569855</left_val> 2703 <right_val>-0.4716320037841797</right_val></_></_> 2704 <_> 2705 <!-- tree 27 --> 2706 <_> 2707 <!-- root node --> 2708 <feature> 2709 <rects> 2710 <_>11 0 6 9 -1.</_> 2711 <_>13 0 2 9 3.</_></rects> 2712 <tilted>0</tilted></feature> 2713 <threshold>0.0337780006229877</threshold> 2714 <left_val>0.1846310049295425</left_val> 2715 <right_val>-1.6686669588088989</right_val></_></_> 2716 <_> 2717 <!-- tree 28 --> 2718 <_> 2719 <!-- root node --> 2720 <feature> 2721 <rects> 2722 <_>0 4 24 14 -1.</_> 2723 <_>0 4 12 7 2.</_> 2724 <_>12 11 12 7 2.</_></rects> 2725 <tilted>0</tilted></feature> 2726 <threshold>-0.1123809963464737</threshold> 2727 <left_val>-1.2521569728851318</left_val> 2728 <right_val>0.0359920002520084</right_val></_></_> 2729 <_> 2730 <!-- tree 29 --> 2731 <_> 2732 <!-- root node --> 2733 <feature> 2734 <rects> 2735 <_>13 0 4 13 -1.</_> 2736 <_>13 0 2 13 2.</_></rects> 2737 <tilted>0</tilted></feature> 2738 <threshold>-0.0104080000892282</threshold> 2739 <left_val>-0.8162040114402771</left_val> 2740 <right_val>0.2342859953641892</right_val></_></_> 2741 <_> 2742 <!-- tree 30 --> 2743 <_> 2744 <!-- root node --> 2745 <feature> 2746 <rects> 2747 <_>7 0 4 13 -1.</_> 2748 <_>9 0 2 13 2.</_></rects> 2749 <tilted>0</tilted></feature> 2750 <threshold>-4.9439999274909496e-003</threshold> 2751 <left_val>-0.9258469939231873</left_val> 2752 <right_val>0.1003480032086372</right_val></_></_> 2753 <_> 2754 <!-- tree 31 --> 2755 <_> 2756 <!-- root node --> 2757 <feature> 2758 <rects> 2759 <_>11 6 6 9 -1.</_> 2760 <_>13 6 2 9 3.</_></rects> 2761 <tilted>0</tilted></feature> 2762 <threshold>-9.3029998242855072e-003</threshold> 2763 <left_val>0.5649930238723755</left_val> 2764 <right_val>-0.1888190060853958</right_val></_></_> 2765 <_> 2766 <!-- tree 32 --> 2767 <_> 2768 <!-- root node --> 2769 <feature> 2770 <rects> 2771 <_>8 7 6 9 -1.</_> 2772 <_>10 7 2 9 3.</_></rects> 2773 <tilted>0</tilted></feature> 2774 <threshold>-0.0117499995976686</threshold> 2775 <left_val>0.8030239939689636</left_val> 2776 <right_val>-0.3827700018882752</right_val></_></_> 2777 <_> 2778 <!-- tree 33 --> 2779 <_> 2780 <!-- root node --> 2781 <feature> 2782 <rects> 2783 <_>13 17 9 6 -1.</_> 2784 <_>13 19 9 2 3.</_></rects> 2785 <tilted>0</tilted></feature> 2786 <threshold>-0.0232170000672340</threshold> 2787 <left_val>-0.8492699861526489</left_val> 2788 <right_val>0.1967120021581650</right_val></_></_> 2789 <_> 2790 <!-- tree 34 --> 2791 <_> 2792 <!-- root node --> 2793 <feature> 2794 <rects> 2795 <_>2 18 14 6 -1.</_> 2796 <_>2 18 7 3 2.</_> 2797 <_>9 21 7 3 2.</_></rects> 2798 <tilted>0</tilted></feature> 2799 <threshold>0.0168660003691912</threshold> 2800 <left_val>-0.4059189856052399</left_val> 2801 <right_val>0.5069530010223389</right_val></_></_> 2802 <_> 2803 <!-- tree 35 --> 2804 <_> 2805 <!-- root node --> 2806 <feature> 2807 <rects> 2808 <_>3 18 18 4 -1.</_> 2809 <_>12 18 9 2 2.</_> 2810 <_>3 20 9 2 2.</_></rects> 2811 <tilted>0</tilted></feature> 2812 <threshold>-0.0240310002118349</threshold> 2813 <left_val>-1.5297520160675049</left_val> 2814 <right_val>0.2334499955177307</right_val></_></_> 2815 <_> 2816 <!-- tree 36 --> 2817 <_> 2818 <!-- root node --> 2819 <feature> 2820 <rects> 2821 <_>0 20 15 4 -1.</_> 2822 <_>5 20 5 4 3.</_></rects> 2823 <tilted>0</tilted></feature> 2824 <threshold>-0.0369459986686707</threshold> 2825 <left_val>0.6300770044326782</left_val> 2826 <right_val>-0.3178040087223053</right_val></_></_> 2827 <_> 2828 <!-- tree 37 --> 2829 <_> 2830 <!-- root node --> 2831 <feature> 2832 <rects> 2833 <_>9 15 15 9 -1.</_> 2834 <_>14 15 5 9 3.</_></rects> 2835 <tilted>0</tilted></feature> 2836 <threshold>-0.0615639984607697</threshold> 2837 <left_val>0.5862789750099182</left_val> 2838 <right_val>-0.0121079999953508</right_val></_></_> 2839 <_> 2840 <!-- tree 38 --> 2841 <_> 2842 <!-- root node --> 2843 <feature> 2844 <rects> 2845 <_>4 4 16 4 -1.</_> 2846 <_>4 6 16 2 2.</_></rects> 2847 <tilted>0</tilted></feature> 2848 <threshold>0.0216610003262758</threshold> 2849 <left_val>-0.2562370002269745</left_val> 2850 <right_val>1.0409849882125854</right_val></_></_> 2851 <_> 2852 <!-- tree 39 --> 2853 <_> 2854 <!-- root node --> 2855 <feature> 2856 <rects> 2857 <_>7 6 10 6 -1.</_> 2858 <_>7 8 10 2 3.</_></rects> 2859 <tilted>0</tilted></feature> 2860 <threshold>-3.6710000131279230e-003</threshold> 2861 <left_val>0.2917110025882721</left_val> 2862 <right_val>-0.8328729867935181</right_val></_></_> 2863 <_> 2864 <!-- tree 40 --> 2865 <_> 2866 <!-- root node --> 2867 <feature> 2868 <rects> 2869 <_>0 14 15 10 -1.</_> 2870 <_>5 14 5 10 3.</_></rects> 2871 <tilted>0</tilted></feature> 2872 <threshold>0.0448490008711815</threshold> 2873 <left_val>-0.3963319957256317</left_val> 2874 <right_val>0.4566200077533722</right_val></_></_> 2875 <_> 2876 <!-- tree 41 --> 2877 <_> 2878 <!-- root node --> 2879 <feature> 2880 <rects> 2881 <_>7 9 10 14 -1.</_> 2882 <_>12 9 5 7 2.</_> 2883 <_>7 16 5 7 2.</_></rects> 2884 <tilted>0</tilted></feature> 2885 <threshold>0.0571950003504753</threshold> 2886 <left_val>0.2102389931678772</left_val> 2887 <right_val>-1.5004800558090210</right_val></_></_> 2888 <_> 2889 <!-- tree 42 --> 2890 <_> 2891 <!-- root node --> 2892 <feature> 2893 <rects> 2894 <_>7 6 6 9 -1.</_> 2895 <_>9 6 2 9 3.</_></rects> 2896 <tilted>0</tilted></feature> 2897 <threshold>-0.0113420002162457</threshold> 2898 <left_val>0.4407129883766174</left_val> 2899 <right_val>-0.3865379989147186</right_val></_></_> 2900 <_> 2901 <!-- tree 43 --> 2902 <_> 2903 <!-- root node --> 2904 <feature> 2905 <rects> 2906 <_>3 6 18 3 -1.</_> 2907 <_>3 7 18 1 3.</_></rects> 2908 <tilted>0</tilted></feature> 2909 <threshold>-0.0120040001347661</threshold> 2910 <left_val>0.9395459890365601</left_val> 2911 <right_val>-0.1058949977159500</right_val></_></_> 2912 <_> 2913 <!-- tree 44 --> 2914 <_> 2915 <!-- root node --> 2916 <feature> 2917 <rects> 2918 <_>0 10 18 3 -1.</_> 2919 <_>0 11 18 1 3.</_></rects> 2920 <tilted>0</tilted></feature> 2921 <threshold>0.0225159991532564</threshold> 2922 <left_val>9.4480002298951149e-003</left_val> 2923 <right_val>-1.6799509525299072</right_val></_></_> 2924 <_> 2925 <!-- tree 45 --> 2926 <_> 2927 <!-- root node --> 2928 <feature> 2929 <rects> 2930 <_>3 16 18 4 -1.</_> 2931 <_>12 16 9 2 2.</_> 2932 <_>3 18 9 2 2.</_></rects> 2933 <tilted>0</tilted></feature> 2934 <threshold>-0.0198090001940727</threshold> 2935 <left_val>-1.0133639574050903</left_val> 2936 <right_val>0.2414660006761551</right_val></_></_> 2937 <_> 2938 <!-- tree 46 --> 2939 <_> 2940 <!-- root node --> 2941 <feature> 2942 <rects> 2943 <_>4 6 14 6 -1.</_> 2944 <_>4 6 7 3 2.</_> 2945 <_>11 9 7 3 2.</_></rects> 2946 <tilted>0</tilted></feature> 2947 <threshold>0.0158910006284714</threshold> 2948 <left_val>-0.3750759959220886</left_val> 2949 <right_val>0.4661409854888916</right_val></_></_> 2950 <_> 2951 <!-- tree 47 --> 2952 <_> 2953 <!-- root node --> 2954 <feature> 2955 <rects> 2956 <_>13 0 2 18 -1.</_> 2957 <_>13 0 1 18 2.</_></rects> 2958 <tilted>0</tilted></feature> 2959 <threshold>-9.1420002281665802e-003</threshold> 2960 <left_val>-0.8048409819602966</left_val> 2961 <right_val>0.1781699955463409</right_val></_></_> 2962 <_> 2963 <!-- tree 48 --> 2964 <_> 2965 <!-- root node --> 2966 <feature> 2967 <rects> 2968 <_>9 0 2 18 -1.</_> 2969 <_>10 0 1 18 2.</_></rects> 2970 <tilted>0</tilted></feature> 2971 <threshold>-4.4740000739693642e-003</threshold> 2972 <left_val>-1.0562069416046143</left_val> 2973 <right_val>0.0733050033450127</right_val></_></_> 2974 <_> 2975 <!-- tree 49 --> 2976 <_> 2977 <!-- root node --> 2978 <feature> 2979 <rects> 2980 <_>5 7 15 10 -1.</_> 2981 <_>10 7 5 10 3.</_></rects> 2982 <tilted>0</tilted></feature> 2983 <threshold>0.1274250000715256</threshold> 2984 <left_val>0.2016559988260269</left_val> 2985 <right_val>-1.5467929840087891</right_val></_></_> 2986 <_> 2987 <!-- tree 50 --> 2988 <_> 2989 <!-- root node --> 2990 <feature> 2991 <rects> 2992 <_>1 20 21 4 -1.</_> 2993 <_>8 20 7 4 3.</_></rects> 2994 <tilted>0</tilted></feature> 2995 <threshold>0.0477030016481876</threshold> 2996 <left_val>-0.3793779909610748</left_val> 2997 <right_val>0.3788599967956543</right_val></_></_> 2998 <_> 2999 <!-- tree 51 --> 3000 <_> 3001 <!-- root node --> 3002 <feature> 3003 <rects> 3004 <_>10 5 5 18 -1.</_> 3005 <_>10 14 5 9 2.</_></rects> 3006 <tilted>0</tilted></feature> 3007 <threshold>0.0536080002784729</threshold> 3008 <left_val>0.2122049927711487</left_val> 3009 <right_val>-1.2399710416793823</right_val></_></_> 3010 <_> 3011 <!-- tree 52 --> 3012 <_> 3013 <!-- root node --> 3014 <feature> 3015 <rects> 3016 <_>0 2 24 6 -1.</_> 3017 <_>0 2 12 3 2.</_> 3018 <_>12 5 12 3 2.</_></rects> 3019 <tilted>0</tilted></feature> 3020 <threshold>-0.0396809987723827</threshold> 3021 <left_val>-1.0257550477981567</left_val> 3022 <right_val>0.0512829981744289</right_val></_></_> 3023 <_> 3024 <!-- tree 53 --> 3025 <_> 3026 <!-- root node --> 3027 <feature> 3028 <rects> 3029 <_>1 1 22 8 -1.</_> 3030 <_>12 1 11 4 2.</_> 3031 <_>1 5 11 4 2.</_></rects> 3032 <tilted>0</tilted></feature> 3033 <threshold>-0.0673270002007484</threshold> 3034 <left_val>-1.0304750204086304</left_val> 3035 <right_val>0.2300529927015305</right_val></_></_> 3036 <_> 3037 <!-- tree 54 --> 3038 <_> 3039 <!-- root node --> 3040 <feature> 3041 <rects> 3042 <_>4 0 15 9 -1.</_> 3043 <_>4 3 15 3 3.</_></rects> 3044 <tilted>0</tilted></feature> 3045 <threshold>0.1333760023117065</threshold> 3046 <left_val>-0.2086900025606155</left_val> 3047 <right_val>1.2272510528564453</right_val></_></_> 3048 <_> 3049 <!-- tree 55 --> 3050 <_> 3051 <!-- root node --> 3052 <feature> 3053 <rects> 3054 <_>0 0 24 19 -1.</_> 3055 <_>8 0 8 19 3.</_></rects> 3056 <tilted>0</tilted></feature> 3057 <threshold>-0.2091930061578751</threshold> 3058 <left_val>0.8792989850044251</left_val> 3059 <right_val>-0.0442549996078014</right_val></_></_> 3060 <_> 3061 <!-- tree 56 --> 3062 <_> 3063 <!-- root node --> 3064 <feature> 3065 <rects> 3066 <_>2 21 18 3 -1.</_> 3067 <_>11 21 9 3 2.</_></rects> 3068 <tilted>0</tilted></feature> 3069 <threshold>-0.0655890032649040</threshold> 3070 <left_val>1.0443429946899414</left_val> 3071 <right_val>-0.2168209999799728</right_val></_></_> 3072 <_> 3073 <!-- tree 57 --> 3074 <_> 3075 <!-- root node --> 3076 <feature> 3077 <rects> 3078 <_>9 7 10 4 -1.</_> 3079 <_>9 7 5 4 2.</_></rects> 3080 <tilted>0</tilted></feature> 3081 <threshold>0.0618829987943172</threshold> 3082 <left_val>0.1379819959402084</left_val> 3083 <right_val>-1.9009059667587280</right_val></_></_> 3084 <_> 3085 <!-- tree 58 --> 3086 <_> 3087 <!-- root node --> 3088 <feature> 3089 <rects> 3090 <_>5 7 10 4 -1.</_> 3091 <_>10 7 5 4 2.</_></rects> 3092 <tilted>0</tilted></feature> 3093 <threshold>-0.0255789998918772</threshold> 3094 <left_val>-1.6607600450515747</left_val> 3095 <right_val>5.8439997956156731e-003</right_val></_></_> 3096 <_> 3097 <!-- tree 59 --> 3098 <_> 3099 <!-- root node --> 3100 <feature> 3101 <rects> 3102 <_>17 8 6 16 -1.</_> 3103 <_>20 8 3 8 2.</_> 3104 <_>17 16 3 8 2.</_></rects> 3105 <tilted>0</tilted></feature> 3106 <threshold>-0.0348270013928413</threshold> 3107 <left_val>0.7994040250778198</left_val> 3108 <right_val>-0.0824069976806641</right_val></_></_> 3109 <_> 3110 <!-- tree 60 --> 3111 <_> 3112 <!-- root node --> 3113 <feature> 3114 <rects> 3115 <_>1 15 20 4 -1.</_> 3116 <_>1 15 10 2 2.</_> 3117 <_>11 17 10 2 2.</_></rects> 3118 <tilted>0</tilted></feature> 3119 <threshold>-0.0182099994271994</threshold> 3120 <left_val>-0.9607399702072144</left_val> 3121 <right_val>0.0663200020790100</right_val></_></_> 3122 <_> 3123 <!-- tree 61 --> 3124 <_> 3125 <!-- root node --> 3126 <feature> 3127 <rects> 3128 <_>14 15 10 6 -1.</_> 3129 <_>14 17 10 2 3.</_></rects> 3130 <tilted>0</tilted></feature> 3131 <threshold>0.0150709999725223</threshold> 3132 <left_val>0.1989939957857132</left_val> 3133 <right_val>-0.7643300294876099</right_val></_></_></trees> 3134 <stage_threshold>-4.0218091011047363</stage_threshold> 3135 <parent>5</parent> 3136 <next>-1</next></_> 3137 <_> 3138 <!-- stage 7 --> 3139 <trees> 3140 <_> 3141 <!-- tree 0 --> 3142 <_> 3143 <!-- root node --> 3144 <feature> 3145 <rects> 3146 <_>3 0 16 9 -1.</_> 3147 <_>3 3 16 3 3.</_></rects> 3148 <tilted>0</tilted></feature> 3149 <threshold>0.0463249981403351</threshold> 3150 <left_val>-1.0362670421600342</left_val> 3151 <right_val>0.8220149874687195</right_val></_></_> 3152 <_> 3153 <!-- tree 1 --> 3154 <_> 3155 <!-- root node --> 3156 <feature> 3157 <rects> 3158 <_>15 6 7 15 -1.</_> 3159 <_>15 11 7 5 3.</_></rects> 3160 <tilted>0</tilted></feature> 3161 <threshold>0.0154069997370243</threshold> 3162 <left_val>-1.2327589988708496</left_val> 3163 <right_val>0.2964769899845123</right_val></_></_> 3164 <_> 3165 <!-- tree 2 --> 3166 <_> 3167 <!-- root node --> 3168 <feature> 3169 <rects> 3170 <_>9 1 6 13 -1.</_> 3171 <_>11 1 2 13 3.</_></rects> 3172 <tilted>0</tilted></feature> 3173 <threshold>0.0128089999780059</threshold> 3174 <left_val>-0.7585229873657227</left_val> 3175 <right_val>0.5798550248146057</right_val></_></_> 3176 <_> 3177 <!-- tree 3 --> 3178 <_> 3179 <!-- root node --> 3180 <feature> 3181 <rects> 3182 <_>17 2 6 14 -1.</_> 3183 <_>17 2 3 14 2.</_></rects> 3184 <tilted>0</tilted></feature> 3185 <threshold>0.0491509996354580</threshold> 3186 <left_val>-0.3898389935493469</left_val> 3187 <right_val>0.8968030214309692</right_val></_></_> 3188 <_> 3189 <!-- tree 4 --> 3190 <_> 3191 <!-- root node --> 3192 <feature> 3193 <rects> 3194 <_>3 14 12 10 -1.</_> 3195 <_>3 14 6 5 2.</_> 3196 <_>9 19 6 5 2.</_></rects> 3197 <tilted>0</tilted></feature> 3198 <threshold>0.0126210004091263</threshold> 3199 <left_val>-0.7179930210113525</left_val> 3200 <right_val>0.5044090151786804</right_val></_></_> 3201 <_> 3202 <!-- tree 5 --> 3203 <_> 3204 <!-- root node --> 3205 <feature> 3206 <rects> 3207 <_>7 6 10 6 -1.</_> 3208 <_>7 8 10 2 3.</_></rects> 3209 <tilted>0</tilted></feature> 3210 <threshold>-0.0187689997255802</threshold> 3211 <left_val>0.5514760017395020</left_val> 3212 <right_val>-0.7055540084838867</right_val></_></_> 3213 <_> 3214 <!-- tree 6 --> 3215 <_> 3216 <!-- root node --> 3217 <feature> 3218 <rects> 3219 <_>1 2 6 14 -1.</_> 3220 <_>4 2 3 14 2.</_></rects> 3221 <tilted>0</tilted></feature> 3222 <threshold>0.0419650003314018</threshold> 3223 <left_val>-0.4478209912776947</left_val> 3224 <right_val>0.7098550200462341</right_val></_></_> 3225 <_> 3226 <!-- tree 7 --> 3227 <_> 3228 <!-- root node --> 3229 <feature> 3230 <rects> 3231 <_>10 4 5 12 -1.</_> 3232 <_>10 8 5 4 3.</_></rects> 3233 <tilted>0</tilted></feature> 3234 <threshold>-0.0514019988477230</threshold> 3235 <left_val>-1.0932120084762573</left_val> 3236 <right_val>0.2670190036296845</right_val></_></_> 3237 <_> 3238 <!-- tree 8 --> 3239 <_> 3240 <!-- root node --> 3241 <feature> 3242 <rects> 3243 <_>0 17 24 5 -1.</_> 3244 <_>8 17 8 5 3.</_></rects> 3245 <tilted>0</tilted></feature> 3246 <threshold>-0.0709609985351563</threshold> 3247 <left_val>0.8361840248107910</left_val> 3248 <right_val>-0.3831810057163239</right_val></_></_> 3249 <_> 3250 <!-- tree 9 --> 3251 <_> 3252 <!-- root node --> 3253 <feature> 3254 <rects> 3255 <_>15 7 5 12 -1.</_> 3256 <_>15 11 5 4 3.</_></rects> 3257 <tilted>0</tilted></feature> 3258 <threshold>0.0167459994554520</threshold> 3259 <left_val>-0.2573310136795044</left_val> 3260 <right_val>0.2596650123596191</right_val></_></_> 3261 <_> 3262 <!-- tree 10 --> 3263 <_> 3264 <!-- root node --> 3265 <feature> 3266 <rects> 3267 <_>3 1 6 12 -1.</_> 3268 <_>3 1 3 6 2.</_> 3269 <_>6 7 3 6 2.</_></rects> 3270 <tilted>0</tilted></feature> 3271 <threshold>-6.2400000169873238e-003</threshold> 3272 <left_val>0.3163149952888489</left_val> 3273 <right_val>-0.5879690051078796</right_val></_></_> 3274 <_> 3275 <!-- tree 11 --> 3276 <_> 3277 <!-- root node --> 3278 <feature> 3279 <rects> 3280 <_>12 13 6 6 -1.</_> 3281 <_>12 16 6 3 2.</_></rects> 3282 <tilted>0</tilted></feature> 3283 <threshold>-0.0393979996442795</threshold> 3284 <left_val>-1.0491210222244263</left_val> 3285 <right_val>0.1682240068912506</right_val></_></_> 3286 <_> 3287 <!-- tree 12 --> 3288 <_> 3289 <!-- root node --> 3290 <feature> 3291 <rects> 3292 <_>6 13 6 6 -1.</_> 3293 <_>6 16 6 3 2.</_></rects> 3294 <tilted>0</tilted></feature> 3295 <threshold>0.</threshold> 3296 <left_val>0.1614419966936112</left_val> 3297 <right_val>-0.8787689805030823</right_val></_></_> 3298 <_> 3299 <!-- tree 13 --> 3300 <_> 3301 <!-- root node --> 3302 <feature> 3303 <rects> 3304 <_>14 6 3 16 -1.</_> 3305 <_>14 14 3 8 2.</_></rects> 3306 <tilted>0</tilted></feature> 3307 <threshold>-0.0223079994320869</threshold> 3308 <left_val>-0.6905350089073181</left_val> 3309 <right_val>0.2360700070858002</right_val></_></_> 3310 <_> 3311 <!-- tree 14 --> 3312 <_> 3313 <!-- root node --> 3314 <feature> 3315 <rects> 3316 <_>1 12 13 6 -1.</_> 3317 <_>1 14 13 2 3.</_></rects> 3318 <tilted>0</tilted></feature> 3319 <threshold>1.8919999711215496e-003</threshold> 3320 <left_val>0.2498919963836670</left_val> 3321 <right_val>-0.5658329725265503</right_val></_></_> 3322 <_> 3323 <!-- tree 15 --> 3324 <_> 3325 <!-- root node --> 3326 <feature> 3327 <rects> 3328 <_>13 1 4 9 -1.</_> 3329 <_>13 1 2 9 2.</_></rects> 3330 <tilted>0</tilted></feature> 3331 <threshold>1.0730000212788582e-003</threshold> 3332 <left_val>-0.5041580200195313</left_val> 3333 <right_val>0.3837450146675110</right_val></_></_> 3334 <_> 3335 <!-- tree 16 --> 3336 <_> 3337 <!-- root node --> 3338 <feature> 3339 <rects> 3340 <_>7 0 9 6 -1.</_> 3341 <_>10 0 3 6 3.</_></rects> 3342 <tilted>0</tilted></feature> 3343 <threshold>0.0392309986054897</threshold> 3344 <left_val>0.0426190011203289</left_val> 3345 <right_val>-1.3875889778137207</right_val></_></_> 3346 <_> 3347 <!-- tree 17 --> 3348 <_> 3349 <!-- root node --> 3350 <feature> 3351 <rects> 3352 <_>12 2 6 9 -1.</_> 3353 <_>12 2 3 9 2.</_></rects> 3354 <tilted>0</tilted></feature> 3355 <threshold>0.0622380003333092</threshold> 3356 <left_val>0.1411940008401871</left_val> 3357 <right_val>-1.0688860416412354</right_val></_></_> 3358 <_> 3359 <!-- tree 18 --> 3360 <_> 3361 <!-- root node --> 3362 <feature> 3363 <rects> 3364 <_>6 2 6 9 -1.</_> 3365 <_>9 2 3 9 2.</_></rects> 3366 <tilted>0</tilted></feature> 3367 <threshold>2.1399999968707561e-003</threshold> 3368 <left_val>-0.8962240219116211</left_val> 3369 <right_val>0.1979639977216721</right_val></_></_> 3370 <_> 3371 <!-- tree 19 --> 3372 <_> 3373 <!-- root node --> 3374 <feature> 3375 <rects> 3376 <_>6 18 12 6 -1.</_> 3377 <_>6 20 12 2 3.</_></rects> 3378 <tilted>0</tilted></feature> 3379 <threshold>9.1800000518560410e-004</threshold> 3380 <left_val>-0.4533729851245880</left_val> 3381 <right_val>0.4353269934654236</right_val></_></_> 3382 <_> 3383 <!-- tree 20 --> 3384 <_> 3385 <!-- root node --> 3386 <feature> 3387 <rects> 3388 <_>7 6 6 9 -1.</_> 3389 <_>9 6 2 9 3.</_></rects> 3390 <tilted>0</tilted></feature> 3391 <threshold>-6.9169998168945313e-003</threshold> 3392 <left_val>0.3382279872894287</left_val> 3393 <right_val>-0.4479300081729889</right_val></_></_> 3394 <_> 3395 <!-- tree 21 --> 3396 <_> 3397 <!-- root node --> 3398 <feature> 3399 <rects> 3400 <_>7 7 12 3 -1.</_> 3401 <_>7 7 6 3 2.</_></rects> 3402 <tilted>0</tilted></feature> 3403 <threshold>-0.0238669998943806</threshold> 3404 <left_val>-0.7890859842300415</left_val> 3405 <right_val>0.2251179963350296</right_val></_></_> 3406 <_> 3407 <!-- tree 22 --> 3408 <_> 3409 <!-- root node --> 3410 <feature> 3411 <rects> 3412 <_>8 3 8 21 -1.</_> 3413 <_>8 10 8 7 3.</_></rects> 3414 <tilted>0</tilted></feature> 3415 <threshold>-0.1026280000805855</threshold> 3416 <left_val>-2.2831439971923828</left_val> 3417 <right_val>-5.3960001096129417e-003</right_val></_></_> 3418 <_> 3419 <!-- tree 23 --> 3420 <_> 3421 <!-- root node --> 3422 <feature> 3423 <rects> 3424 <_>7 4 10 12 -1.</_> 3425 <_>7 8 10 4 3.</_></rects> 3426 <tilted>0</tilted></feature> 3427 <threshold>-9.5239998772740364e-003</threshold> 3428 <left_val>0.3934670090675354</left_val> 3429 <right_val>-0.5224220156669617</right_val></_></_> 3430 <_> 3431 <!-- tree 24 --> 3432 <_> 3433 <!-- root node --> 3434 <feature> 3435 <rects> 3436 <_>0 1 6 9 -1.</_> 3437 <_>0 4 6 3 3.</_></rects> 3438 <tilted>0</tilted></feature> 3439 <threshold>0.0398770011961460</threshold> 3440 <left_val>0.0327990017831326</left_val> 3441 <right_val>-1.5079489946365356</right_val></_></_> 3442 <_> 3443 <!-- tree 25 --> 3444 <_> 3445 <!-- root node --> 3446 <feature> 3447 <rects> 3448 <_>15 2 2 20 -1.</_> 3449 <_>15 2 1 20 2.</_></rects> 3450 <tilted>0</tilted></feature> 3451 <threshold>-0.0131449997425079</threshold> 3452 <left_val>-1.0839990377426147</left_val> 3453 <right_val>0.1848240047693253</right_val></_></_> 3454 <_> 3455 <!-- tree 26 --> 3456 <_> 3457 <!-- root node --> 3458 <feature> 3459 <rects> 3460 <_>0 3 6 9 -1.</_> 3461 <_>0 6 6 3 3.</_></rects> 3462 <tilted>0</tilted></feature> 3463 <threshold>-0.0505909994244576</threshold> 3464 <left_val>-1.8822289705276489</left_val> 3465 <right_val>-2.2199999075382948e-003</right_val></_></_> 3466 <_> 3467 <!-- tree 27 --> 3468 <_> 3469 <!-- root node --> 3470 <feature> 3471 <rects> 3472 <_>15 3 2 21 -1.</_> 3473 <_>15 3 1 21 2.</_></rects> 3474 <tilted>0</tilted></feature> 3475 <threshold>0.0249170009046793</threshold> 3476 <left_val>0.1459340006113052</left_val> 3477 <right_val>-2.2196519374847412</right_val></_></_> 3478 <_> 3479 <!-- tree 28 --> 3480 <_> 3481 <!-- root node --> 3482 <feature> 3483 <rects> 3484 <_>7 0 2 23 -1.</_> 3485 <_>8 0 1 23 2.</_></rects> 3486 <tilted>0</tilted></feature> 3487 <threshold>-7.6370001770555973e-003</threshold> 3488 <left_val>-1.0164569616317749</left_val> 3489 <right_val>0.0587970018386841</right_val></_></_> 3490 <_> 3491 <!-- tree 29 --> 3492 <_> 3493 <!-- root node --> 3494 <feature> 3495 <rects> 3496 <_>15 8 9 4 -1.</_> 3497 <_>15 10 9 2 2.</_></rects> 3498 <tilted>0</tilted></feature> 3499 <threshold>0.0429119989275932</threshold> 3500 <left_val>0.1544300019741058</left_val> 3501 <right_val>-1.1843889951705933</right_val></_></_> 3502 <_> 3503 <!-- tree 30 --> 3504 <_> 3505 <!-- root node --> 3506 <feature> 3507 <rects> 3508 <_>0 8 9 4 -1.</_> 3509 <_>0 10 9 2 2.</_></rects> 3510 <tilted>0</tilted></feature> 3511 <threshold>2.3000000510364771e-004</threshold> 3512 <left_val>-0.7730579972267151</left_val> 3513 <right_val>0.1218990013003349</right_val></_></_> 3514 <_> 3515 <!-- tree 31 --> 3516 <_> 3517 <!-- root node --> 3518 <feature> 3519 <rects> 3520 <_>8 14 9 6 -1.</_> 3521 <_>8 16 9 2 3.</_></rects> 3522 <tilted>0</tilted></feature> 3523 <threshold>9.0929996222257614e-003</threshold> 3524 <left_val>-0.1145009994506836</left_val> 3525 <right_val>0.7109130024909973</right_val></_></_> 3526 <_> 3527 <!-- tree 32 --> 3528 <_> 3529 <!-- root node --> 3530 <feature> 3531 <rects> 3532 <_>0 14 9 6 -1.</_> 3533 <_>0 16 9 2 3.</_></rects> 3534 <tilted>0</tilted></feature> 3535 <threshold>0.0111450003460050</threshold> 3536 <left_val>0.0700009986758232</left_val> 3537 <right_val>-1.0534820556640625</right_val></_></_> 3538 <_> 3539 <!-- tree 33 --> 3540 <_> 3541 <!-- root node --> 3542 <feature> 3543 <rects> 3544 <_>3 10 18 4 -1.</_> 3545 <_>9 10 6 4 3.</_></rects> 3546 <tilted>0</tilted></feature> 3547 <threshold>-0.0524530000984669</threshold> 3548 <left_val>-1.7594360113143921</left_val> 3549 <right_val>0.1952379941940308</right_val></_></_> 3550 <_> 3551 <!-- tree 34 --> 3552 <_> 3553 <!-- root node --> 3554 <feature> 3555 <rects> 3556 <_>0 0 24 19 -1.</_> 3557 <_>8 0 8 19 3.</_></rects> 3558 <tilted>0</tilted></feature> 3559 <threshold>-0.2302069962024689</threshold> 3560 <left_val>0.9584029912948608</left_val> 3561 <right_val>-0.2504569888114929</right_val></_></_> 3562 <_> 3563 <!-- tree 35 --> 3564 <_> 3565 <!-- root node --> 3566 <feature> 3567 <rects> 3568 <_>9 1 8 12 -1.</_> 3569 <_>9 7 8 6 2.</_></rects> 3570 <tilted>0</tilted></feature> 3571 <threshold>-0.0163659993559122</threshold> 3572 <left_val>0.4673190116882324</left_val> 3573 <right_val>-0.2110839933156967</right_val></_></_> 3574 <_> 3575 <!-- tree 36 --> 3576 <_> 3577 <!-- root node --> 3578 <feature> 3579 <rects> 3580 <_>10 6 4 10 -1.</_> 3581 <_>12 6 2 10 2.</_></rects> 3582 <tilted>0</tilted></feature> 3583 <threshold>-0.0172080006450415</threshold> 3584 <left_val>0.7083569765090942</left_val> 3585 <right_val>-0.2801829874515533</right_val></_></_> 3586 <_> 3587 <!-- tree 37 --> 3588 <_> 3589 <!-- root node --> 3590 <feature> 3591 <rects> 3592 <_>7 9 10 12 -1.</_> 3593 <_>12 9 5 6 2.</_> 3594 <_>7 15 5 6 2.</_></rects> 3595 <tilted>0</tilted></feature> 3596 <threshold>-0.0366480015218258</threshold> 3597 <left_val>-1.1013339757919312</left_val> 3598 <right_val>0.2434110045433044</right_val></_></_> 3599 <_> 3600 <!-- tree 38 --> 3601 <_> 3602 <!-- root node --> 3603 <feature> 3604 <rects> 3605 <_>5 0 3 19 -1.</_> 3606 <_>6 0 1 19 3.</_></rects> 3607 <tilted>0</tilted></feature> 3608 <threshold>-0.0103049995377660</threshold> 3609 <left_val>-1.0933129787445068</left_val> 3610 <right_val>0.0562589988112450</right_val></_></_> 3611 <_> 3612 <!-- tree 39 --> 3613 <_> 3614 <!-- root node --> 3615 <feature> 3616 <rects> 3617 <_>14 0 6 10 -1.</_> 3618 <_>16 0 2 10 3.</_></rects> 3619 <tilted>0</tilted></feature> 3620 <threshold>-0.0137130003422499</threshold> 3621 <left_val>-0.2643809914588928</left_val> 3622 <right_val>0.1982100009918213</right_val></_></_> 3623 <_> 3624 <!-- tree 40 --> 3625 <_> 3626 <!-- root node --> 3627 <feature> 3628 <rects> 3629 <_>2 0 6 12 -1.</_> 3630 <_>2 0 3 6 2.</_> 3631 <_>5 6 3 6 2.</_></rects> 3632 <tilted>0</tilted></feature> 3633 <threshold>0.0293080005794764</threshold> 3634 <left_val>-0.2214239984750748</left_val> 3635 <right_val>1.0525950193405151</right_val></_></_> 3636 <_> 3637 <!-- tree 41 --> 3638 <_> 3639 <!-- root node --> 3640 <feature> 3641 <rects> 3642 <_>0 11 24 2 -1.</_> 3643 <_>0 12 24 1 2.</_></rects> 3644 <tilted>0</tilted></feature> 3645 <threshold>0.0240770000964403</threshold> 3646 <left_val>0.1848569959402084</left_val> 3647 <right_val>-1.7203969955444336</right_val></_></_> 3648 <_> 3649 <!-- tree 42 --> 3650 <_> 3651 <!-- root node --> 3652 <feature> 3653 <rects> 3654 <_>4 9 13 4 -1.</_> 3655 <_>4 11 13 2 2.</_></rects> 3656 <tilted>0</tilted></feature> 3657 <threshold>6.1280000954866409e-003</threshold> 3658 <left_val>-0.9272149801254273</left_val> 3659 <right_val>0.0587529987096787</right_val></_></_> 3660 <_> 3661 <!-- tree 43 --> 3662 <_> 3663 <!-- root node --> 3664 <feature> 3665 <rects> 3666 <_>9 8 6 9 -1.</_> 3667 <_>9 11 6 3 3.</_></rects> 3668 <tilted>0</tilted></feature> 3669 <threshold>-0.0223779994994402</threshold> 3670 <left_val>1.9646559953689575</left_val> 3671 <right_val>0.0277859997004271</right_val></_></_> 3672 <_> 3673 <!-- tree 44 --> 3674 <_> 3675 <!-- root node --> 3676 <feature> 3677 <rects> 3678 <_>0 12 16 4 -1.</_> 3679 <_>0 14 16 2 2.</_></rects> 3680 <tilted>0</tilted></feature> 3681 <threshold>-7.0440000854432583e-003</threshold> 3682 <left_val>0.2142760008573532</left_val> 3683 <right_val>-0.4840759932994843</right_val></_></_> 3684 <_> 3685 <!-- tree 45 --> 3686 <_> 3687 <!-- root node --> 3688 <feature> 3689 <rects> 3690 <_>18 12 6 9 -1.</_> 3691 <_>18 15 6 3 3.</_></rects> 3692 <tilted>0</tilted></feature> 3693 <threshold>-0.0406030006706715</threshold> 3694 <left_val>-1.1754349470138550</left_val> 3695 <right_val>0.1606120020151138</right_val></_></_> 3696 <_> 3697 <!-- tree 46 --> 3698 <_> 3699 <!-- root node --> 3700 <feature> 3701 <rects> 3702 <_>0 12 6 9 -1.</_> 3703 <_>0 15 6 3 3.</_></rects> 3704 <tilted>0</tilted></feature> 3705 <threshold>-0.0244660004973412</threshold> 3706 <left_val>-1.1239900588989258</left_val> 3707 <right_val>0.0411100015044212</right_val></_></_> 3708 <_> 3709 <!-- tree 47 --> 3710 <_> 3711 <!-- root node --> 3712 <feature> 3713 <rects> 3714 <_>8 7 10 4 -1.</_> 3715 <_>8 7 5 4 2.</_></rects> 3716 <tilted>0</tilted></feature> 3717 <threshold>2.5309999473392963e-003</threshold> 3718 <left_val>-0.1716970056295395</left_val> 3719 <right_val>0.3217880129814148</right_val></_></_> 3720 <_> 3721 <!-- tree 48 --> 3722 <_> 3723 <!-- root node --> 3724 <feature> 3725 <rects> 3726 <_>8 7 6 9 -1.</_> 3727 <_>10 7 2 9 3.</_></rects> 3728 <tilted>0</tilted></feature> 3729 <threshold>-0.0195889994502068</threshold> 3730 <left_val>0.8272020220756531</left_val> 3731 <right_val>-0.2637670040130615</right_val></_></_> 3732 <_> 3733 <!-- tree 49 --> 3734 <_> 3735 <!-- root node --> 3736 <feature> 3737 <rects> 3738 <_>11 0 6 9 -1.</_> 3739 <_>13 0 2 9 3.</_></rects> 3740 <tilted>0</tilted></feature> 3741 <threshold>-0.0296359993517399</threshold> 3742 <left_val>-1.1524770259857178</left_val> 3743 <right_val>0.1499930024147034</right_val></_></_> 3744 <_> 3745 <!-- tree 50 --> 3746 <_> 3747 <!-- root node --> 3748 <feature> 3749 <rects> 3750 <_>7 0 6 9 -1.</_> 3751 <_>9 0 2 9 3.</_></rects> 3752 <tilted>0</tilted></feature> 3753 <threshold>-0.0150300003588200</threshold> 3754 <left_val>-1.0491830110549927</left_val> 3755 <right_val>0.0401609987020493</right_val></_></_> 3756 <_> 3757 <!-- tree 51 --> 3758 <_> 3759 <!-- root node --> 3760 <feature> 3761 <rects> 3762 <_>12 3 6 15 -1.</_> 3763 <_>14 3 2 15 3.</_></rects> 3764 <tilted>0</tilted></feature> 3765 <threshold>-0.0607150010764599</threshold> 3766 <left_val>-1.0903840065002441</left_val> 3767 <right_val>0.1533080041408539</right_val></_></_> 3768 <_> 3769 <!-- tree 52 --> 3770 <_> 3771 <!-- root node --> 3772 <feature> 3773 <rects> 3774 <_>6 3 6 15 -1.</_> 3775 <_>8 3 2 15 3.</_></rects> 3776 <tilted>0</tilted></feature> 3777 <threshold>-0.0127900000661612</threshold> 3778 <left_val>0.4224860072135925</left_val> 3779 <right_val>-0.4239920079708099</right_val></_></_> 3780 <_> 3781 <!-- tree 53 --> 3782 <_> 3783 <!-- root node --> 3784 <feature> 3785 <rects> 3786 <_>15 2 9 4 -1.</_> 3787 <_>15 4 9 2 2.</_></rects> 3788 <tilted>0</tilted></feature> 3789 <threshold>-0.0202479995787144</threshold> 3790 <left_val>-0.9186699986457825</left_val> 3791 <right_val>0.1848569959402084</right_val></_></_> 3792 <_> 3793 <!-- tree 54 --> 3794 <_> 3795 <!-- root node --> 3796 <feature> 3797 <rects> 3798 <_>5 10 6 7 -1.</_> 3799 <_>8 10 3 7 2.</_></rects> 3800 <tilted>0</tilted></feature> 3801 <threshold>-0.0306839998811483</threshold> 3802 <left_val>-1.5958670377731323</left_val> 3803 <right_val>2.5760000571608543e-003</right_val></_></_> 3804 <_> 3805 <!-- tree 55 --> 3806 <_> 3807 <!-- root node --> 3808 <feature> 3809 <rects> 3810 <_>9 14 6 10 -1.</_> 3811 <_>9 19 6 5 2.</_></rects> 3812 <tilted>0</tilted></feature> 3813 <threshold>-0.0207180008292198</threshold> 3814 <left_val>-0.6629999876022339</left_val> 3815 <right_val>0.3103719949722290</right_val></_></_> 3816 <_> 3817 <!-- tree 56 --> 3818 <_> 3819 <!-- root node --> 3820 <feature> 3821 <rects> 3822 <_>7 13 5 8 -1.</_> 3823 <_>7 17 5 4 2.</_></rects> 3824 <tilted>0</tilted></feature> 3825 <threshold>-1.7290000105276704e-003</threshold> 3826 <left_val>0.1918340027332306</left_val> 3827 <right_val>-0.6508499979972839</right_val></_></_> 3828 <_> 3829 <!-- tree 57 --> 3830 <_> 3831 <!-- root node --> 3832 <feature> 3833 <rects> 3834 <_>14 5 3 16 -1.</_> 3835 <_>14 13 3 8 2.</_></rects> 3836 <tilted>0</tilted></feature> 3837 <threshold>-0.0313940010964870</threshold> 3838 <left_val>-0.6364300251007080</left_val> 3839 <right_val>0.1540839970111847</right_val></_></_> 3840 <_> 3841 <!-- tree 58 --> 3842 <_> 3843 <!-- root node --> 3844 <feature> 3845 <rects> 3846 <_>2 17 18 3 -1.</_> 3847 <_>2 18 18 1 3.</_></rects> 3848 <tilted>0</tilted></feature> 3849 <threshold>0.0190030001103878</threshold> 3850 <left_val>-0.1891939938068390</left_val> 3851 <right_val>1.5294510126113892</right_val></_></_> 3852 <_> 3853 <!-- tree 59 --> 3854 <_> 3855 <!-- root node --> 3856 <feature> 3857 <rects> 3858 <_>5 18 19 3 -1.</_> 3859 <_>5 19 19 1 3.</_></rects> 3860 <tilted>0</tilted></feature> 3861 <threshold>6.1769997701048851e-003</threshold> 3862 <left_val>-0.1059790030121803</left_val> 3863 <right_val>0.6485959887504578</right_val></_></_> 3864 <_> 3865 <!-- tree 60 --> 3866 <_> 3867 <!-- root node --> 3868 <feature> 3869 <rects> 3870 <_>9 0 6 9 -1.</_> 3871 <_>11 0 2 9 3.</_></rects> 3872 <tilted>0</tilted></feature> 3873 <threshold>-0.0101659996435046</threshold> 3874 <left_val>-1.0802700519561768</left_val> 3875 <right_val>0.0371760018169880</right_val></_></_> 3876 <_> 3877 <!-- tree 61 --> 3878 <_> 3879 <!-- root node --> 3880 <feature> 3881 <rects> 3882 <_>12 4 3 18 -1.</_> 3883 <_>13 4 1 18 3.</_></rects> 3884 <tilted>0</tilted></feature> 3885 <threshold>-1.4169999631121755e-003</threshold> 3886 <left_val>0.3415749967098236</left_val> 3887 <right_val>-0.0977379977703094</right_val></_></_> 3888 <_> 3889 <!-- tree 62 --> 3890 <_> 3891 <!-- root node --> 3892 <feature> 3893 <rects> 3894 <_>9 4 3 18 -1.</_> 3895 <_>10 4 1 18 3.</_></rects> 3896 <tilted>0</tilted></feature> 3897 <threshold>-4.0799998678267002e-003</threshold> 3898 <left_val>0.4762459993362427</left_val> 3899 <right_val>-0.3436630070209503</right_val></_></_> 3900 <_> 3901 <!-- tree 63 --> 3902 <_> 3903 <!-- root node --> 3904 <feature> 3905 <rects> 3906 <_>3 3 18 9 -1.</_> 3907 <_>9 3 6 9 3.</_></rects> 3908 <tilted>0</tilted></feature> 3909 <threshold>-0.0440969988703728</threshold> 3910 <left_val>0.9763429760932922</left_val> 3911 <right_val>-0.0191730000078678</right_val></_></_> 3912 <_> 3913 <!-- tree 64 --> 3914 <_> 3915 <!-- root node --> 3916 <feature> 3917 <rects> 3918 <_>6 1 6 14 -1.</_> 3919 <_>8 1 2 14 3.</_></rects> 3920 <tilted>0</tilted></feature> 3921 <threshold>-0.0606699995696545</threshold> 3922 <left_val>-2.1752851009368896</left_val> 3923 <right_val>-0.0289259999990463</right_val></_></_> 3924 <_> 3925 <!-- tree 65 --> 3926 <_> 3927 <!-- root node --> 3928 <feature> 3929 <rects> 3930 <_>12 16 9 6 -1.</_> 3931 <_>12 19 9 3 2.</_></rects> 3932 <tilted>0</tilted></feature> 3933 <threshold>-0.0329319983720779</threshold> 3934 <left_val>-0.6438310146331787</left_val> 3935 <right_val>0.1649409979581833</right_val></_></_> 3936 <_> 3937 <!-- tree 66 --> 3938 <_> 3939 <!-- root node --> 3940 <feature> 3941 <rects> 3942 <_>1 3 20 16 -1.</_> 3943 <_>1 3 10 8 2.</_> 3944 <_>11 11 10 8 2.</_></rects> 3945 <tilted>0</tilted></feature> 3946 <threshold>-0.1472280025482178</threshold> 3947 <left_val>-1.4745830297470093</left_val> 3948 <right_val>2.5839998852461576e-003</right_val></_></_> 3949 <_> 3950 <!-- tree 67 --> 3951 <_> 3952 <!-- root node --> 3953 <feature> 3954 <rects> 3955 <_>12 5 6 12 -1.</_> 3956 <_>15 5 3 6 2.</_> 3957 <_>12 11 3 6 2.</_></rects> 3958 <tilted>0</tilted></feature> 3959 <threshold>-0.0119300000369549</threshold> 3960 <left_val>0.4244140088558197</left_val> 3961 <right_val>-0.1771260052919388</right_val></_></_> 3962 <_> 3963 <!-- tree 68 --> 3964 <_> 3965 <!-- root node --> 3966 <feature> 3967 <rects> 3968 <_>1 2 22 16 -1.</_> 3969 <_>1 2 11 8 2.</_> 3970 <_>12 10 11 8 2.</_></rects> 3971 <tilted>0</tilted></feature> 3972 <threshold>0.1451790034770966</threshold> 3973 <left_val>0.0254449993371964</left_val> 3974 <right_val>-1.2779400348663330</right_val></_></_> 3975 <_> 3976 <!-- tree 69 --> 3977 <_> 3978 <!-- root node --> 3979 <feature> 3980 <rects> 3981 <_>10 14 5 10 -1.</_> 3982 <_>10 19 5 5 2.</_></rects> 3983 <tilted>0</tilted></feature> 3984 <threshold>0.0514479987323284</threshold> 3985 <left_val>0.1567839980125427</left_val> 3986 <right_val>-1.5188430547714233</right_val></_></_> 3987 <_> 3988 <!-- tree 70 --> 3989 <_> 3990 <!-- root node --> 3991 <feature> 3992 <rects> 3993 <_>3 21 18 3 -1.</_> 3994 <_>3 22 18 1 3.</_></rects> 3995 <tilted>0</tilted></feature> 3996 <threshold>3.1479999888688326e-003</threshold> 3997 <left_val>-0.4042440056800842</left_val> 3998 <right_val>0.3242970108985901</right_val></_></_> 3999 <_> 4000 <!-- tree 71 --> 4001 <_> 4002 <!-- root node --> 4003 <feature> 4004 <rects> 4005 <_>10 14 6 10 -1.</_> 4006 <_>12 14 2 10 3.</_></rects> 4007 <tilted>0</tilted></feature> 4008 <threshold>-0.0436000004410744</threshold> 4009 <left_val>-1.9932260513305664</left_val> 4010 <right_val>0.1501860022544861</right_val></_></_></trees> 4011 <stage_threshold>-3.8832089900970459</stage_threshold> 4012 <parent>6</parent> 4013 <next>-1</next></_> 4014 <_> 4015 <!-- stage 8 --> 4016 <trees> 4017 <_> 4018 <!-- tree 0 --> 4019 <_> 4020 <!-- root node --> 4021 <feature> 4022 <rects> 4023 <_>0 2 24 4 -1.</_> 4024 <_>8 2 8 4 3.</_></rects> 4025 <tilted>0</tilted></feature> 4026 <threshold>0.1289959996938705</threshold> 4027 <left_val>-0.6216199994087219</left_val> 4028 <right_val>1.1116520166397095</right_val></_></_> 4029 <_> 4030 <!-- tree 1 --> 4031 <_> 4032 <!-- root node --> 4033 <feature> 4034 <rects> 4035 <_>6 4 12 9 -1.</_> 4036 <_>6 7 12 3 3.</_></rects> 4037 <tilted>0</tilted></feature> 4038 <threshold>-0.0912619978189468</threshold> 4039 <left_val>1.0143059492111206</left_val> 4040 <right_val>-0.6133520007133484</right_val></_></_> 4041 <_> 4042 <!-- tree 2 --> 4043 <_> 4044 <!-- root node --> 4045 <feature> 4046 <rects> 4047 <_>6 6 12 5 -1.</_> 4048 <_>10 6 4 5 3.</_></rects> 4049 <tilted>0</tilted></feature> 4050 <threshold>0.0142719997093081</threshold> 4051 <left_val>-1.0261659622192383</left_val> 4052 <right_val>0.3977999985218048</right_val></_></_> 4053 <_> 4054 <!-- tree 3 --> 4055 <_> 4056 <!-- root node --> 4057 <feature> 4058 <rects> 4059 <_>5 8 14 12 -1.</_> 4060 <_>5 12 14 4 3.</_></rects> 4061 <tilted>0</tilted></feature> 4062 <threshold>0.0328899994492531</threshold> 4063 <left_val>-1.1386079788208008</left_val> 4064 <right_val>0.2869080007076263</right_val></_></_> 4065 <_> 4066 <!-- tree 4 --> 4067 <_> 4068 <!-- root node --> 4069 <feature> 4070 <rects> 4071 <_>4 14 8 10 -1.</_> 4072 <_>4 14 4 5 2.</_> 4073 <_>8 19 4 5 2.</_></rects> 4074 <tilted>0</tilted></feature> 4075 <threshold>0.0125900004059076</threshold> 4076 <left_val>-0.5664560198783875</left_val> 4077 <right_val>0.4517239928245544</right_val></_></_> 4078 <_> 4079 <!-- tree 5 --> 4080 <_> 4081 <!-- root node --> 4082 <feature> 4083 <rects> 4084 <_>11 6 5 14 -1.</_> 4085 <_>11 13 5 7 2.</_></rects> 4086 <tilted>0</tilted></feature> 4087 <threshold>0.0146610001102090</threshold> 4088 <left_val>0.3050599992275238</left_val> 4089 <right_val>-0.6812959909439087</right_val></_></_> 4090 <_> 4091 <!-- tree 6 --> 4092 <_> 4093 <!-- root node --> 4094 <feature> 4095 <rects> 4096 <_>7 6 3 16 -1.</_> 4097 <_>7 14 3 8 2.</_></rects> 4098 <tilted>0</tilted></feature> 4099 <threshold>-0.0335559993982315</threshold> 4100 <left_val>-1.7208939790725708</left_val> 4101 <right_val>0.0614390000700951</right_val></_></_> 4102 <_> 4103 <!-- tree 7 --> 4104 <_> 4105 <!-- root node --> 4106 <feature> 4107 <rects> 4108 <_>3 7 18 8 -1.</_> 4109 <_>9 7 6 8 3.</_></rects> 4110 <tilted>0</tilted></feature> 4111 <threshold>0.1425269991159439</threshold> 4112 <left_val>0.2319220006465912</left_val> 4113 <right_val>-1.7297149896621704</right_val></_></_> 4114 <_> 4115 <!-- tree 8 --> 4116 <_> 4117 <!-- root node --> 4118 <feature> 4119 <rects> 4120 <_>2 3 20 2 -1.</_> 4121 <_>2 4 20 1 2.</_></rects> 4122 <tilted>0</tilted></feature> 4123 <threshold>-6.2079997733235359e-003</threshold> 4124 <left_val>-1.2163300514221191</left_val> 4125 <right_val>0.1216019988059998</right_val></_></_> 4126 <_> 4127 <!-- tree 9 --> 4128 <_> 4129 <!-- root node --> 4130 <feature> 4131 <rects> 4132 <_>3 12 19 6 -1.</_> 4133 <_>3 14 19 2 3.</_></rects> 4134 <tilted>0</tilted></feature> 4135 <threshold>0.0181789994239807</threshold> 4136 <left_val>0.3255369961261749</left_val> 4137 <right_val>-0.8100399971008301</right_val></_></_> 4138 <_> 4139 <!-- tree 10 --> 4140 <_> 4141 <!-- root node --> 4142 <feature> 4143 <rects> 4144 <_>8 6 6 9 -1.</_> 4145 <_>10 6 2 9 3.</_></rects> 4146 <tilted>0</tilted></feature> 4147 <threshold>0.0250369999557734</threshold> 4148 <left_val>-0.3169879913330078</left_val> 4149 <right_val>0.6736140251159668</right_val></_></_> 4150 <_> 4151 <!-- tree 11 --> 4152 <_> 4153 <!-- root node --> 4154 <feature> 4155 <rects> 4156 <_>16 6 6 14 -1.</_> 4157 <_>16 6 3 14 2.</_></rects> 4158 <tilted>0</tilted></feature> 4159 <threshold>0.0465609990060329</threshold> 4160 <left_val>-0.1108980029821396</left_val> 4161 <right_val>0.8408250212669373</right_val></_></_> 4162 <_> 4163 <!-- tree 12 --> 4164 <_> 4165 <!-- root node --> 4166 <feature> 4167 <rects> 4168 <_>7 9 6 12 -1.</_> 4169 <_>9 9 2 12 3.</_></rects> 4170 <tilted>0</tilted></feature> 4171 <threshold>-8.9999996125698090e-003</threshold> 4172 <left_val>0.3957450091838837</left_val> 4173 <right_val>-0.4762459993362427</right_val></_></_> 4174 <_> 4175 <!-- tree 13 --> 4176 <_> 4177 <!-- root node --> 4178 <feature> 4179 <rects> 4180 <_>18 6 6 18 -1.</_> 4181 <_>21 6 3 9 2.</_> 4182 <_>18 15 3 9 2.</_></rects> 4183 <tilted>0</tilted></feature> 4184 <threshold>0.0408059991896153</threshold> 4185 <left_val>-1.8000000272877514e-004</left_val> 4186 <right_val>0.9457070231437683</right_val></_></_> 4187 <_> 4188 <!-- tree 14 --> 4189 <_> 4190 <!-- root node --> 4191 <feature> 4192 <rects> 4193 <_>0 6 6 18 -1.</_> 4194 <_>0 6 3 9 2.</_> 4195 <_>3 15 3 9 2.</_></rects> 4196 <tilted>0</tilted></feature> 4197 <threshold>-0.0342219993472099</threshold> 4198 <left_val>0.7520629763603210</left_val> 4199 <right_val>-0.3153150081634522</right_val></_></_> 4200 <_> 4201 <!-- tree 15 --> 4202 <_> 4203 <!-- root node --> 4204 <feature> 4205 <rects> 4206 <_>18 2 6 9 -1.</_> 4207 <_>18 5 6 3 3.</_></rects> 4208 <tilted>0</tilted></feature> 4209 <threshold>-0.0397160016000271</threshold> 4210 <left_val>-0.8313959836959839</left_val> 4211 <right_val>0.1774439960718155</right_val></_></_> 4212 <_> 4213 <!-- tree 16 --> 4214 <_> 4215 <!-- root node --> 4216 <feature> 4217 <rects> 4218 <_>3 18 15 6 -1.</_> 4219 <_>3 20 15 2 3.</_></rects> 4220 <tilted>0</tilted></feature> 4221 <threshold>2.5170000735670328e-003</threshold> 4222 <left_val>-0.5937799811363220</left_val> 4223 <right_val>0.2465700060129166</right_val></_></_> 4224 <_> 4225 <!-- tree 17 --> 4226 <_> 4227 <!-- root node --> 4228 <feature> 4229 <rects> 4230 <_>18 2 6 9 -1.</_> 4231 <_>18 5 6 3 3.</_></rects> 4232 <tilted>0</tilted></feature> 4233 <threshold>0.0274289995431900</threshold> 4234 <left_val>0.1599839925765991</left_val> 4235 <right_val>-0.4278199970722199</right_val></_></_> 4236 <_> 4237 <!-- tree 18 --> 4238 <_> 4239 <!-- root node --> 4240 <feature> 4241 <rects> 4242 <_>0 2 6 9 -1.</_> 4243 <_>0 5 6 3 3.</_></rects> 4244 <tilted>0</tilted></feature> 4245 <threshold>0.0349860005080700</threshold> 4246 <left_val>0.0350559987127781</left_val> 4247 <right_val>-1.5988600254058838</right_val></_></_> 4248 <_> 4249 <!-- tree 19 --> 4250 <_> 4251 <!-- root node --> 4252 <feature> 4253 <rects> 4254 <_>5 10 18 2 -1.</_> 4255 <_>5 11 18 1 2.</_></rects> 4256 <tilted>0</tilted></feature> 4257 <threshold>4.4970000162720680e-003</threshold> 4258 <left_val>-0.5203430056571960</left_val> 4259 <right_val>0.3782829940319061</right_val></_></_> 4260 <_> 4261 <!-- tree 20 --> 4262 <_> 4263 <!-- root node --> 4264 <feature> 4265 <rects> 4266 <_>6 0 12 6 -1.</_> 4267 <_>6 2 12 2 3.</_></rects> 4268 <tilted>0</tilted></feature> 4269 <threshold>2.7699999045580626e-003</threshold> 4270 <left_val>-0.5318260192871094</left_val> 4271 <right_val>0.2495100051164627</right_val></_></_> 4272 <_> 4273 <!-- tree 21 --> 4274 <_> 4275 <!-- root node --> 4276 <feature> 4277 <rects> 4278 <_>10 0 6 9 -1.</_> 4279 <_>12 0 2 9 3.</_></rects> 4280 <tilted>0</tilted></feature> 4281 <threshold>0.0351740010082722</threshold> 4282 <left_val>0.1998340040445328</left_val> 4283 <right_val>-1.4446129798889160</right_val></_></_> 4284 <_> 4285 <!-- tree 22 --> 4286 <_> 4287 <!-- root node --> 4288 <feature> 4289 <rects> 4290 <_>8 0 6 9 -1.</_> 4291 <_>10 0 2 9 3.</_></rects> 4292 <tilted>0</tilted></feature> 4293 <threshold>0.0259709991514683</threshold> 4294 <left_val>0.0444269999861717</left_val> 4295 <right_val>-1.3622980117797852</right_val></_></_> 4296 <_> 4297 <!-- tree 23 --> 4298 <_> 4299 <!-- root node --> 4300 <feature> 4301 <rects> 4302 <_>15 12 9 6 -1.</_> 4303 <_>15 14 9 2 3.</_></rects> 4304 <tilted>0</tilted></feature> 4305 <threshold>-0.0157839991152287</threshold> 4306 <left_val>-0.9102039933204651</left_val> 4307 <right_val>0.2719030082225800</right_val></_></_> 4308 <_> 4309 <!-- tree 24 --> 4310 <_> 4311 <!-- root node --> 4312 <feature> 4313 <rects> 4314 <_>3 6 13 6 -1.</_> 4315 <_>3 8 13 2 3.</_></rects> 4316 <tilted>0</tilted></feature> 4317 <threshold>-7.5880000367760658e-003</threshold> 4318 <left_val>0.0920649990439415</left_val> 4319 <right_val>-0.8162890076637268</right_val></_></_> 4320 <_> 4321 <!-- tree 25 --> 4322 <_> 4323 <!-- root node --> 4324 <feature> 4325 <rects> 4326 <_>15 12 9 6 -1.</_> 4327 <_>15 14 9 2 3.</_></rects> 4328 <tilted>0</tilted></feature> 4329 <threshold>0.0207540001720190</threshold> 4330 <left_val>0.2118570059537888</left_val> 4331 <right_val>-0.7472900152206421</right_val></_></_> 4332 <_> 4333 <!-- tree 26 --> 4334 <_> 4335 <!-- root node --> 4336 <feature> 4337 <rects> 4338 <_>2 5 6 15 -1.</_> 4339 <_>5 5 3 15 2.</_></rects> 4340 <tilted>0</tilted></feature> 4341 <threshold>0.0598290003836155</threshold> 4342 <left_val>-0.2730109989643097</left_val> 4343 <right_val>0.8092330098152161</right_val></_></_> 4344 <_> 4345 <!-- tree 27 --> 4346 <_> 4347 <!-- root node --> 4348 <feature> 4349 <rects> 4350 <_>8 8 9 6 -1.</_> 4351 <_>11 8 3 6 3.</_></rects> 4352 <tilted>0</tilted></feature> 4353 <threshold>0.0390390008687973</threshold> 4354 <left_val>-0.1043229997158051</left_val> 4355 <right_val>0.8622620105743408</right_val></_></_> 4356 <_> 4357 <!-- tree 28 --> 4358 <_> 4359 <!-- root node --> 4360 <feature> 4361 <rects> 4362 <_>8 6 3 14 -1.</_> 4363 <_>8 13 3 7 2.</_></rects> 4364 <tilted>0</tilted></feature> 4365 <threshold>0.0216659996658564</threshold> 4366 <left_val>0.0627090036869049</left_val> 4367 <right_val>-0.9889429807662964</right_val></_></_> 4368 <_> 4369 <!-- tree 29 --> 4370 <_> 4371 <!-- root node --> 4372 <feature> 4373 <rects> 4374 <_>15 12 9 6 -1.</_> 4375 <_>15 14 9 2 3.</_></rects> 4376 <tilted>0</tilted></feature> 4377 <threshold>-0.0274969991296530</threshold> 4378 <left_val>-0.9269099831581116</left_val> 4379 <right_val>0.1558630019426346</right_val></_></_> 4380 <_> 4381 <!-- tree 30 --> 4382 <_> 4383 <!-- root node --> 4384 <feature> 4385 <rects> 4386 <_>4 12 10 4 -1.</_> 4387 <_>9 12 5 4 2.</_></rects> 4388 <tilted>0</tilted></feature> 4389 <threshold>0.0104620000347495</threshold> 4390 <left_val>0.1341809928417206</left_val> 4391 <right_val>-0.7038639783859253</right_val></_></_> 4392 <_> 4393 <!-- tree 31 --> 4394 <_> 4395 <!-- root node --> 4396 <feature> 4397 <rects> 4398 <_>13 1 4 19 -1.</_> 4399 <_>13 1 2 19 2.</_></rects> 4400 <tilted>0</tilted></feature> 4401 <threshold>0.0248709991574287</threshold> 4402 <left_val>0.1970670074224472</left_val> 4403 <right_val>-0.4026330113410950</right_val></_></_> 4404 <_> 4405 <!-- tree 32 --> 4406 <_> 4407 <!-- root node --> 4408 <feature> 4409 <rects> 4410 <_>7 1 4 19 -1.</_> 4411 <_>9 1 2 19 2.</_></rects> 4412 <tilted>0</tilted></feature> 4413 <threshold>-0.0160360001027584</threshold> 4414 <left_val>-1.1409829854965210</left_val> 4415 <right_val>0.0739979967474937</right_val></_></_> 4416 <_> 4417 <!-- tree 33 --> 4418 <_> 4419 <!-- root node --> 4420 <feature> 4421 <rects> 4422 <_>18 9 6 9 -1.</_> 4423 <_>18 12 6 3 3.</_></rects> 4424 <tilted>0</tilted></feature> 4425 <threshold>0.0486270003020763</threshold> 4426 <left_val>0.1699039936065674</left_val> 4427 <right_val>-0.7215219736099243</right_val></_></_> 4428 <_> 4429 <!-- tree 34 --> 4430 <_> 4431 <!-- root node --> 4432 <feature> 4433 <rects> 4434 <_>1 21 18 3 -1.</_> 4435 <_>1 22 18 1 3.</_></rects> 4436 <tilted>0</tilted></feature> 4437 <threshold>1.2619999470189214e-003</threshold> 4438 <left_val>-0.4738979935646057</left_val> 4439 <right_val>0.2625499963760376</right_val></_></_> 4440 <_> 4441 <!-- tree 35 --> 4442 <_> 4443 <!-- root node --> 4444 <feature> 4445 <rects> 4446 <_>14 13 10 9 -1.</_> 4447 <_>14 16 10 3 3.</_></rects> 4448 <tilted>0</tilted></feature> 4449 <threshold>-0.0880350023508072</threshold> 4450 <left_val>-2.1606519222259521</left_val> 4451 <right_val>0.1455480009317398</right_val></_></_> 4452 <_> 4453 <!-- tree 36 --> 4454 <_> 4455 <!-- root node --> 4456 <feature> 4457 <rects> 4458 <_>1 13 22 4 -1.</_> 4459 <_>1 13 11 2 2.</_> 4460 <_>12 15 11 2 2.</_></rects> 4461 <tilted>0</tilted></feature> 4462 <threshold>0.0183569993823767</threshold> 4463 <left_val>0.0447509996592999</left_val> 4464 <right_val>-1.0766370296478271</right_val></_></_> 4465 <_> 4466 <!-- tree 37 --> 4467 <_> 4468 <!-- root node --> 4469 <feature> 4470 <rects> 4471 <_>4 6 16 6 -1.</_> 4472 <_>12 6 8 3 2.</_> 4473 <_>4 9 8 3 2.</_></rects> 4474 <tilted>0</tilted></feature> 4475 <threshold>0.0352750010788441</threshold> 4476 <left_val>-0.0329190008342266</left_val> 4477 <right_val>1.2153890132904053</right_val></_></_> 4478 <_> 4479 <!-- tree 38 --> 4480 <_> 4481 <!-- root node --> 4482 <feature> 4483 <rects> 4484 <_>1 0 18 22 -1.</_> 4485 <_>1 0 9 11 2.</_> 4486 <_>10 11 9 11 2.</_></rects> 4487 <tilted>0</tilted></feature> 4488 <threshold>-0.2039290070533752</threshold> 4489 <left_val>-1.3187999725341797</left_val> 4490 <right_val>0.0155039997771382</right_val></_></_> 4491 <_> 4492 <!-- tree 39 --> 4493 <_> 4494 <!-- root node --> 4495 <feature> 4496 <rects> 4497 <_>10 7 8 14 -1.</_> 4498 <_>14 7 4 7 2.</_> 4499 <_>10 14 4 7 2.</_></rects> 4500 <tilted>0</tilted></feature> 4501 <threshold>-0.0166190005838871</threshold> 4502 <left_val>0.3685019910335541</left_val> 4503 <right_val>-0.1528369933366776</right_val></_></_> 4504 <_> 4505 <!-- tree 40 --> 4506 <_> 4507 <!-- root node --> 4508 <feature> 4509 <rects> 4510 <_>0 4 6 20 -1.</_> 4511 <_>0 4 3 10 2.</_> 4512 <_>3 14 3 10 2.</_></rects> 4513 <tilted>0</tilted></feature> 4514 <threshold>0.0377390012145042</threshold> 4515 <left_val>-0.2572779953479767</left_val> 4516 <right_val>0.7065529823303223</right_val></_></_> 4517 <_> 4518 <!-- tree 41 --> 4519 <_> 4520 <!-- root node --> 4521 <feature> 4522 <rects> 4523 <_>15 0 6 9 -1.</_> 4524 <_>17 0 2 9 3.</_></rects> 4525 <tilted>0</tilted></feature> 4526 <threshold>2.2720000706613064e-003</threshold> 4527 <left_val>-0.0776029974222183</left_val> 4528 <right_val>0.3336780071258545</right_val></_></_> 4529 <_> 4530 <!-- tree 42 --> 4531 <_> 4532 <!-- root node --> 4533 <feature> 4534 <rects> 4535 <_>3 0 6 9 -1.</_> 4536 <_>5 0 2 9 3.</_></rects> 4537 <tilted>0</tilted></feature> 4538 <threshold>-0.0148029997944832</threshold> 4539 <left_val>-0.7852479815483093</left_val> 4540 <right_val>0.0769340023398399</right_val></_></_> 4541 <_> 4542 <!-- tree 43 --> 4543 <_> 4544 <!-- root node --> 4545 <feature> 4546 <rects> 4547 <_>15 12 6 12 -1.</_> 4548 <_>18 12 3 6 2.</_> 4549 <_>15 18 3 6 2.</_></rects> 4550 <tilted>0</tilted></feature> 4551 <threshold>-0.0483190007507801</threshold> 4552 <left_val>1.7022320032119751</left_val> 4553 <right_val>0.0497220009565353</right_val></_></_> 4554 <_> 4555 <!-- tree 44 --> 4556 <_> 4557 <!-- root node --> 4558 <feature> 4559 <rects> 4560 <_>3 12 6 12 -1.</_> 4561 <_>3 12 3 6 2.</_> 4562 <_>6 18 3 6 2.</_></rects> 4563 <tilted>0</tilted></feature> 4564 <threshold>-0.0295390002429485</threshold> 4565 <left_val>0.7767069935798645</left_val> 4566 <right_val>-0.2453429996967316</right_val></_></_> 4567 <_> 4568 <!-- tree 45 --> 4569 <_> 4570 <!-- root node --> 4571 <feature> 4572 <rects> 4573 <_>15 12 9 6 -1.</_> 4574 <_>15 14 9 2 3.</_></rects> 4575 <tilted>0</tilted></feature> 4576 <threshold>-0.0461690016090870</threshold> 4577 <left_val>-1.4922779798507690</left_val> 4578 <right_val>0.1234000027179718</right_val></_></_> 4579 <_> 4580 <!-- tree 46 --> 4581 <_> 4582 <!-- root node --> 4583 <feature> 4584 <rects> 4585 <_>0 12 9 6 -1.</_> 4586 <_>0 14 9 2 3.</_></rects> 4587 <tilted>0</tilted></feature> 4588 <threshold>-0.0280649997293949</threshold> 4589 <left_val>-2.1345369815826416</left_val> 4590 <right_val>-0.0257970001548529</right_val></_></_> 4591 <_> 4592 <!-- tree 47 --> 4593 <_> 4594 <!-- root node --> 4595 <feature> 4596 <rects> 4597 <_>4 14 19 3 -1.</_> 4598 <_>4 15 19 1 3.</_></rects> 4599 <tilted>0</tilted></feature> 4600 <threshold>-5.7339998893439770e-003</threshold> 4601 <left_val>0.5698260068893433</left_val> 4602 <right_val>-0.1205660030245781</right_val></_></_> 4603 <_> 4604 <!-- tree 48 --> 4605 <_> 4606 <!-- root node --> 4607 <feature> 4608 <rects> 4609 <_>2 13 19 3 -1.</_> 4610 <_>2 14 19 1 3.</_></rects> 4611 <tilted>0</tilted></feature> 4612 <threshold>-0.0101110003888607</threshold> 4613 <left_val>0.6791139841079712</left_val> 4614 <right_val>-0.2663800120353699</right_val></_></_> 4615 <_> 4616 <!-- tree 49 --> 4617 <_> 4618 <!-- root node --> 4619 <feature> 4620 <rects> 4621 <_>14 15 10 6 -1.</_> 4622 <_>14 17 10 2 3.</_></rects> 4623 <tilted>0</tilted></feature> 4624 <threshold>0.0113599998876452</threshold> 4625 <left_val>0.2478979974985123</left_val> 4626 <right_val>-0.6449300050735474</right_val></_></_> 4627 <_> 4628 <!-- tree 50 --> 4629 <_> 4630 <!-- root node --> 4631 <feature> 4632 <rects> 4633 <_>6 0 10 12 -1.</_> 4634 <_>6 0 5 6 2.</_> 4635 <_>11 6 5 6 2.</_></rects> 4636 <tilted>0</tilted></feature> 4637 <threshold>0.0518090017139912</threshold> 4638 <left_val>0.0147160002961755</left_val> 4639 <right_val>-1.2395579814910889</right_val></_></_> 4640 <_> 4641 <!-- tree 51 --> 4642 <_> 4643 <!-- root node --> 4644 <feature> 4645 <rects> 4646 <_>17 1 6 12 -1.</_> 4647 <_>20 1 3 6 2.</_> 4648 <_>17 7 3 6 2.</_></rects> 4649 <tilted>0</tilted></feature> 4650 <threshold>0.0332919992506504</threshold> 4651 <left_val>-8.2559995353221893e-003</left_val> 4652 <right_val>1.0168470144271851</right_val></_></_> 4653 <_> 4654 <!-- tree 52 --> 4655 <_> 4656 <!-- root node --> 4657 <feature> 4658 <rects> 4659 <_>1 1 6 12 -1.</_> 4660 <_>1 1 3 6 2.</_> 4661 <_>4 7 3 6 2.</_></rects> 4662 <tilted>0</tilted></feature> 4663 <threshold>-0.0144940000027418</threshold> 4664 <left_val>0.4506680071353912</left_val> 4665 <right_val>-0.3625099956989288</right_val></_></_> 4666 <_> 4667 <!-- tree 53 --> 4668 <_> 4669 <!-- root node --> 4670 <feature> 4671 <rects> 4672 <_>16 14 6 9 -1.</_> 4673 <_>16 17 6 3 3.</_></rects> 4674 <tilted>0</tilted></feature> 4675 <threshold>-0.0342219993472099</threshold> 4676 <left_val>-0.9529250264167786</left_val> 4677 <right_val>0.2068459987640381</right_val></_></_> 4678 <_> 4679 <!-- tree 54 --> 4680 <_> 4681 <!-- root node --> 4682 <feature> 4683 <rects> 4684 <_>7 3 9 12 -1.</_> 4685 <_>7 9 9 6 2.</_></rects> 4686 <tilted>0</tilted></feature> 4687 <threshold>-0.0806540027260780</threshold> 4688 <left_val>-2.0139501094818115</left_val> 4689 <right_val>-0.0230849999934435</right_val></_></_> 4690 <_> 4691 <!-- tree 55 --> 4692 <_> 4693 <!-- root node --> 4694 <feature> 4695 <rects> 4696 <_>12 1 4 12 -1.</_> 4697 <_>12 7 4 6 2.</_></rects> 4698 <tilted>0</tilted></feature> 4699 <threshold>-8.9399999706074595e-004</threshold> 4700 <left_val>0.3957200050354004</left_val> 4701 <right_val>-0.2935130000114441</right_val></_></_> 4702 <_> 4703 <!-- tree 56 --> 4704 <_> 4705 <!-- root node --> 4706 <feature> 4707 <rects> 4708 <_>4 0 14 8 -1.</_> 4709 <_>4 4 14 4 2.</_></rects> 4710 <tilted>0</tilted></feature> 4711 <threshold>0.0971620008349419</threshold> 4712 <left_val>-0.2498030066490173</left_val> 4713 <right_val>1.0859220027923584</right_val></_></_> 4714 <_> 4715 <!-- tree 57 --> 4716 <_> 4717 <!-- root node --> 4718 <feature> 4719 <rects> 4720 <_>10 6 6 9 -1.</_> 4721 <_>12 6 2 9 3.</_></rects> 4722 <tilted>0</tilted></feature> 4723 <threshold>0.0366140007972717</threshold> 4724 <left_val>-0.0578440017998219</left_val> 4725 <right_val>1.2162159681320190</right_val></_></_> 4726 <_> 4727 <!-- tree 58 --> 4728 <_> 4729 <!-- root node --> 4730 <feature> 4731 <rects> 4732 <_>2 10 18 3 -1.</_> 4733 <_>8 10 6 3 3.</_></rects> 4734 <tilted>0</tilted></feature> 4735 <threshold>0.0516939982771873</threshold> 4736 <left_val>0.0430629998445511</left_val> 4737 <right_val>-1.0636160373687744</right_val></_></_> 4738 <_> 4739 <!-- tree 59 --> 4740 <_> 4741 <!-- root node --> 4742 <feature> 4743 <rects> 4744 <_>15 15 9 6 -1.</_> 4745 <_>15 17 9 2 3.</_></rects> 4746 <tilted>0</tilted></feature> 4747 <threshold>-0.0245570000261068</threshold> 4748 <left_val>-0.4894680082798004</left_val> 4749 <right_val>0.1718290001153946</right_val></_></_> 4750 <_> 4751 <!-- tree 60 --> 4752 <_> 4753 <!-- root node --> 4754 <feature> 4755 <rects> 4756 <_>0 1 21 23 -1.</_> 4757 <_>7 1 7 23 3.</_></rects> 4758 <tilted>0</tilted></feature> 4759 <threshold>0.3273679912090302</threshold> 4760 <left_val>-0.2968859970569611</left_val> 4761 <right_val>0.5179830193519592</right_val></_></_> 4762 <_> 4763 <!-- tree 61 --> 4764 <_> 4765 <!-- root node --> 4766 <feature> 4767 <rects> 4768 <_>6 9 17 4 -1.</_> 4769 <_>6 11 17 2 2.</_></rects> 4770 <tilted>0</tilted></feature> 4771 <threshold>7.6959999278187752e-003</threshold> 4772 <left_val>-0.5980589985847473</left_val> 4773 <right_val>0.2480320036411285</right_val></_></_> 4774 <_> 4775 <!-- tree 62 --> 4776 <_> 4777 <!-- root node --> 4778 <feature> 4779 <rects> 4780 <_>1 0 11 18 -1.</_> 4781 <_>1 6 11 6 3.</_></rects> 4782 <tilted>0</tilted></feature> 4783 <threshold>0.1617220044136047</threshold> 4784 <left_val>-0.0296139996498823</left_val> 4785 <right_val>-2.3162529468536377</right_val></_></_> 4786 <_> 4787 <!-- tree 63 --> 4788 <_> 4789 <!-- root node --> 4790 <feature> 4791 <rects> 4792 <_>6 15 13 6 -1.</_> 4793 <_>6 17 13 2 3.</_></rects> 4794 <tilted>0</tilted></feature> 4795 <threshold>-4.7889999113976955e-003</threshold> 4796 <left_val>0.3745790123939514</left_val> 4797 <right_val>-0.3277919888496399</right_val></_></_> 4798 <_> 4799 <!-- tree 64 --> 4800 <_> 4801 <!-- root node --> 4802 <feature> 4803 <rects> 4804 <_>0 15 9 6 -1.</_> 4805 <_>0 17 9 2 3.</_></rects> 4806 <tilted>0</tilted></feature> 4807 <threshold>-0.0184029992669821</threshold> 4808 <left_val>-0.9969270229339600</left_val> 4809 <right_val>0.0729480013251305</right_val></_></_> 4810 <_> 4811 <!-- tree 65 --> 4812 <_> 4813 <!-- root node --> 4814 <feature> 4815 <rects> 4816 <_>8 7 15 4 -1.</_> 4817 <_>13 7 5 4 3.</_></rects> 4818 <tilted>0</tilted></feature> 4819 <threshold>0.0776650011539459</threshold> 4820 <left_val>0.1417569965124130</left_val> 4821 <right_val>-1.7238730192184448</right_val></_></_> 4822 <_> 4823 <!-- tree 66 --> 4824 <_> 4825 <!-- root node --> 4826 <feature> 4827 <rects> 4828 <_>9 12 6 9 -1.</_> 4829 <_>9 15 6 3 3.</_></rects> 4830 <tilted>0</tilted></feature> 4831 <threshold>0.0189210008829832</threshold> 4832 <left_val>-0.2127310037612915</left_val> 4833 <right_val>1.0165189504623413</right_val></_></_> 4834 <_> 4835 <!-- tree 67 --> 4836 <_> 4837 <!-- root node --> 4838 <feature> 4839 <rects> 4840 <_>6 8 18 3 -1.</_> 4841 <_>12 8 6 3 3.</_></rects> 4842 <tilted>0</tilted></feature> 4843 <threshold>-0.0793979987502098</threshold> 4844 <left_val>-1.3164349794387817</left_val> 4845 <right_val>0.1498199999332428</right_val></_></_> 4846 <_> 4847 <!-- tree 68 --> 4848 <_> 4849 <!-- root node --> 4850 <feature> 4851 <rects> 4852 <_>0 14 24 4 -1.</_> 4853 <_>8 14 8 4 3.</_></rects> 4854 <tilted>0</tilted></feature> 4855 <threshold>-0.0680370032787323</threshold> 4856 <left_val>0.4942199885845184</left_val> 4857 <right_val>-0.2909100055694580</right_val></_></_> 4858 <_> 4859 <!-- tree 69 --> 4860 <_> 4861 <!-- root node --> 4862 <feature> 4863 <rects> 4864 <_>16 10 3 12 -1.</_> 4865 <_>16 16 3 6 2.</_></rects> 4866 <tilted>0</tilted></feature> 4867 <threshold>-6.1010001227259636e-003</threshold> 4868 <left_val>0.4243049919605255</left_val> 4869 <right_val>-0.3389930129051209</right_val></_></_> 4870 <_> 4871 <!-- tree 70 --> 4872 <_> 4873 <!-- root node --> 4874 <feature> 4875 <rects> 4876 <_>0 3 24 3 -1.</_> 4877 <_>0 4 24 1 3.</_></rects> 4878 <tilted>0</tilted></feature> 4879 <threshold>0.0319270007312298</threshold> 4880 <left_val>-0.0310469996184111</left_val> 4881 <right_val>-2.3459999561309814</right_val></_></_> 4882 <_> 4883 <!-- tree 71 --> 4884 <_> 4885 <!-- root node --> 4886 <feature> 4887 <rects> 4888 <_>14 17 10 6 -1.</_> 4889 <_>14 19 10 2 3.</_></rects> 4890 <tilted>0</tilted></feature> 4891 <threshold>-0.0298439990729094</threshold> 4892 <left_val>-0.7898960113525391</left_val> 4893 <right_val>0.1541769951581955</right_val></_></_> 4894 <_> 4895 <!-- tree 72 --> 4896 <_> 4897 <!-- root node --> 4898 <feature> 4899 <rects> 4900 <_>1 13 18 3 -1.</_> 4901 <_>7 13 6 3 3.</_></rects> 4902 <tilted>0</tilted></feature> 4903 <threshold>-0.0805419981479645</threshold> 4904 <left_val>-2.2509229183197021</left_val> 4905 <right_val>-0.0309069994837046</right_val></_></_> 4906 <_> 4907 <!-- tree 73 --> 4908 <_> 4909 <!-- root node --> 4910 <feature> 4911 <rects> 4912 <_>5 0 18 9 -1.</_> 4913 <_>5 3 18 3 3.</_></rects> 4914 <tilted>0</tilted></feature> 4915 <threshold>3.8109999150037766e-003</threshold> 4916 <left_val>-0.2557730078697205</left_val> 4917 <right_val>0.2378550022840500</right_val></_></_> 4918 <_> 4919 <!-- tree 74 --> 4920 <_> 4921 <!-- root node --> 4922 <feature> 4923 <rects> 4924 <_>4 3 16 9 -1.</_> 4925 <_>4 6 16 3 3.</_></rects> 4926 <tilted>0</tilted></feature> 4927 <threshold>0.0336470007896423</threshold> 4928 <left_val>-0.2254139930009842</left_val> 4929 <right_val>0.9230740070343018</right_val></_></_> 4930 <_> 4931 <!-- tree 75 --> 4932 <_> 4933 <!-- root node --> 4934 <feature> 4935 <rects> 4936 <_>16 5 3 12 -1.</_> 4937 <_>16 11 3 6 2.</_></rects> 4938 <tilted>0</tilted></feature> 4939 <threshold>8.2809999585151672e-003</threshold> 4940 <left_val>-0.2889620065689087</left_val> 4941 <right_val>0.3104619979858398</right_val></_></_> 4942 <_> 4943 <!-- tree 76 --> 4944 <_> 4945 <!-- root node --> 4946 <feature> 4947 <rects> 4948 <_>0 7 18 4 -1.</_> 4949 <_>6 7 6 4 3.</_></rects> 4950 <tilted>0</tilted></feature> 4951 <threshold>0.1010439991950989</threshold> 4952 <left_val>-0.0348640009760857</left_val> 4953 <right_val>-2.7102620601654053</right_val></_></_> 4954 <_> 4955 <!-- tree 77 --> 4956 <_> 4957 <!-- root node --> 4958 <feature> 4959 <rects> 4960 <_>10 6 6 9 -1.</_> 4961 <_>12 6 2 9 3.</_></rects> 4962 <tilted>0</tilted></feature> 4963 <threshold>-0.0100090000778437</threshold> 4964 <left_val>0.5971540212631226</left_val> 4965 <right_val>-0.0338310003280640</right_val></_></_> 4966 <_> 4967 <!-- tree 78 --> 4968 <_> 4969 <!-- root node --> 4970 <feature> 4971 <rects> 4972 <_>9 8 6 10 -1.</_> 4973 <_>11 8 2 10 3.</_></rects> 4974 <tilted>0</tilted></feature> 4975 <threshold>7.1919998154044151e-003</threshold> 4976 <left_val>-0.4773800075054169</left_val> 4977 <right_val>0.2268600016832352</right_val></_></_> 4978 <_> 4979 <!-- tree 79 --> 4980 <_> 4981 <!-- root node --> 4982 <feature> 4983 <rects> 4984 <_>9 15 6 9 -1.</_> 4985 <_>11 15 2 9 3.</_></rects> 4986 <tilted>0</tilted></feature> 4987 <threshold>0.0249690003693104</threshold> 4988 <left_val>0.2287770062685013</left_val> 4989 <right_val>-1.0435529947280884</right_val></_></_> 4990 <_> 4991 <!-- tree 80 --> 4992 <_> 4993 <!-- root node --> 4994 <feature> 4995 <rects> 4996 <_>3 1 18 21 -1.</_> 4997 <_>12 1 9 21 2.</_></rects> 4998 <tilted>0</tilted></feature> 4999 <threshold>0.2790800034999847</threshold> 5000 <left_val>-0.2581810057163239</left_val> 5001 <right_val>0.7678049802780151</right_val></_></_> 5002 <_> 5003 <!-- tree 81 --> 5004 <_> 5005 <!-- root node --> 5006 <feature> 5007 <rects> 5008 <_>6 8 12 7 -1.</_> 5009 <_>6 8 6 7 2.</_></rects> 5010 <tilted>0</tilted></feature> 5011 <threshold>-0.0442130006849766</threshold> 5012 <left_val>-0.5979800224304199</left_val> 5013 <right_val>0.2803989946842194</right_val></_></_> 5014 <_> 5015 <!-- tree 82 --> 5016 <_> 5017 <!-- root node --> 5018 <feature> 5019 <rects> 5020 <_>8 5 6 9 -1.</_> 5021 <_>10 5 2 9 3.</_></rects> 5022 <tilted>0</tilted></feature> 5023 <threshold>-0.0141369998455048</threshold> 5024 <left_val>0.7098730206489563</left_val> 5025 <right_val>-0.2564519941806793</right_val></_></_></trees> 5026 <stage_threshold>-3.8424909114837646</stage_threshold> 5027 <parent>7</parent> 5028 <next>-1</next></_> 5029 <_> 5030 <!-- stage 9 --> 5031 <trees> 5032 <_> 5033 <!-- tree 0 --> 5034 <_> 5035 <!-- root node --> 5036 <feature> 5037 <rects> 5038 <_>0 2 24 4 -1.</_> 5039 <_>8 2 8 4 3.</_></rects> 5040 <tilted>0</tilted></feature> 5041 <threshold>0.1377120018005371</threshold> 5042 <left_val>-0.5587059855461121</left_val> 5043 <right_val>1.0953769683837891</right_val></_></_> 5044 <_> 5045 <!-- tree 1 --> 5046 <_> 5047 <!-- root node --> 5048 <feature> 5049 <rects> 5050 <_>14 7 5 12 -1.</_> 5051 <_>14 11 5 4 3.</_></rects> 5052 <tilted>0</tilted></feature> 5053 <threshold>0.0344609990715981</threshold> 5054 <left_val>-0.7117189764976502</left_val> 5055 <right_val>0.5289959907531738</right_val></_></_> 5056 <_> 5057 <!-- tree 2 --> 5058 <_> 5059 <!-- root node --> 5060 <feature> 5061 <rects> 5062 <_>5 7 5 12 -1.</_> 5063 <_>5 11 5 4 3.</_></rects> 5064 <tilted>0</tilted></feature> 5065 <threshold>0.0185800008475780</threshold> 5066 <left_val>-1.1157519817352295</left_val> 5067 <right_val>0.4059399962425232</right_val></_></_> 5068 <_> 5069 <!-- tree 3 --> 5070 <_> 5071 <!-- root node --> 5072 <feature> 5073 <rects> 5074 <_>9 6 6 9 -1.</_> 5075 <_>11 6 2 9 3.</_></rects> 5076 <tilted>0</tilted></feature> 5077 <threshold>0.0250419992953539</threshold> 5078 <left_val>-0.4089249968528748</left_val> 5079 <right_val>0.7412999868392944</right_val></_></_> 5080 <_> 5081 <!-- tree 4 --> 5082 <_> 5083 <!-- root node --> 5084 <feature> 5085 <rects> 5086 <_>0 1 6 17 -1.</_> 5087 <_>3 1 3 17 2.</_></rects> 5088 <tilted>0</tilted></feature> 5089 <threshold>0.0571790002286434</threshold> 5090 <left_val>-0.3805429935455322</left_val> 5091 <right_val>0.7364770174026489</right_val></_></_> 5092 <_> 5093 <!-- tree 5 --> 5094 <_> 5095 <!-- root node --> 5096 <feature> 5097 <rects> 5098 <_>3 1 19 9 -1.</_> 5099 <_>3 4 19 3 3.</_></rects> 5100 <tilted>0</tilted></feature> 5101 <threshold>0.0149320000782609</threshold> 5102 <left_val>-0.6994550228118897</left_val> 5103 <right_val>0.3795099854469299</right_val></_></_> 5104 <_> 5105 <!-- tree 6 --> 5106 <_> 5107 <!-- root node --> 5108 <feature> 5109 <rects> 5110 <_>3 18 12 6 -1.</_> 5111 <_>3 18 6 3 2.</_> 5112 <_>9 21 6 3 2.</_></rects> 5113 <tilted>0</tilted></feature> 5114 <threshold>8.8900001719594002e-003</threshold> 5115 <left_val>-0.5455859899520874</left_val> 5116 <right_val>0.3633249998092651</right_val></_></_> 5117 <_> 5118 <!-- tree 7 --> 5119 <_> 5120 <!-- root node --> 5121 <feature> 5122 <rects> 5123 <_>20 4 4 19 -1.</_> 5124 <_>20 4 2 19 2.</_></rects> 5125 <tilted>0</tilted></feature> 5126 <threshold>0.0304359998553991</threshold> 5127 <left_val>-0.1012459993362427</left_val> 5128 <right_val>0.7958589792251587</right_val></_></_> 5129 <_> 5130 <!-- tree 8 --> 5131 <_> 5132 <!-- root node --> 5133 <feature> 5134 <rects> 5135 <_>0 16 10 7 -1.</_> 5136 <_>5 16 5 7 2.</_></rects> 5137 <tilted>0</tilted></feature> 5138 <threshold>-0.0441600009799004</threshold> 5139 <left_val>0.8441089987754822</left_val> 5140 <right_val>-0.3297640085220337</right_val></_></_> 5141 <_> 5142 <!-- tree 9 --> 5143 <_> 5144 <!-- root node --> 5145 <feature> 5146 <rects> 5147 <_>8 7 10 12 -1.</_> 5148 <_>13 7 5 6 2.</_> 5149 <_>8 13 5 6 2.</_></rects> 5150 <tilted>0</tilted></feature> 5151 <threshold>0.0184610001742840</threshold> 5152 <left_val>0.2632659971714020</left_val> 5153 <right_val>-0.9673650264739990</right_val></_></_> 5154 <_> 5155 <!-- tree 10 --> 5156 <_> 5157 <!-- root node --> 5158 <feature> 5159 <rects> 5160 <_>6 7 10 12 -1.</_> 5161 <_>6 7 5 6 2.</_> 5162 <_>11 13 5 6 2.</_></rects> 5163 <tilted>0</tilted></feature> 5164 <threshold>0.0106149995699525</threshold> 5165 <left_val>0.1525190025568008</left_val> 5166 <right_val>-1.0589870214462280</right_val></_></_> 5167 <_> 5168 <!-- tree 11 --> 5169 <_> 5170 <!-- root node --> 5171 <feature> 5172 <rects> 5173 <_>9 2 9 6 -1.</_> 5174 <_>12 2 3 6 3.</_></rects> 5175 <tilted>0</tilted></feature> 5176 <threshold>-0.0459740012884140</threshold> 5177 <left_val>-1.9918340444564819</left_val> 5178 <right_val>0.1362909972667694</right_val></_></_> 5179 <_> 5180 <!-- tree 12 --> 5181 <_> 5182 <!-- root node --> 5183 <feature> 5184 <rects> 5185 <_>1 20 21 4 -1.</_> 5186 <_>8 20 7 4 3.</_></rects> 5187 <tilted>0</tilted></feature> 5188 <threshold>0.0829000025987625</threshold> 5189 <left_val>-0.3203719854354858</left_val> 5190 <right_val>0.6030420064926148</right_val></_></_> 5191 <_> 5192 <!-- tree 13 --> 5193 <_> 5194 <!-- root node --> 5195 <feature> 5196 <rects> 5197 <_>9 12 9 6 -1.</_> 5198 <_>9 14 9 2 3.</_></rects> 5199 <tilted>0</tilted></feature> 5200 <threshold>-8.9130001142621040e-003</threshold> 5201 <left_val>0.5958660244941711</left_val> 5202 <right_val>-0.2113959938287735</right_val></_></_> 5203 <_> 5204 <!-- tree 14 --> 5205 <_> 5206 <!-- root node --> 5207 <feature> 5208 <rects> 5209 <_>7 2 9 6 -1.</_> 5210 <_>10 2 3 6 3.</_></rects> 5211 <tilted>0</tilted></feature> 5212 <threshold>0.0428140014410019</threshold> 5213 <left_val>0.0229250006377697</left_val> 5214 <right_val>-1.4679330587387085</right_val></_></_> 5215 <_> 5216 <!-- tree 15 --> 5217 <_> 5218 <!-- root node --> 5219 <feature> 5220 <rects> 5221 <_>13 0 4 14 -1.</_> 5222 <_>13 0 2 14 2.</_></rects> 5223 <tilted>0</tilted></feature> 5224 <threshold>-8.7139997631311417e-003</threshold> 5225 <left_val>-0.4398950040340424</left_val> 5226 <right_val>0.2043969929218292</right_val></_></_> 5227 <_> 5228 <!-- tree 16 --> 5229 <_> 5230 <!-- root node --> 5231 <feature> 5232 <rects> 5233 <_>7 0 4 14 -1.</_> 5234 <_>9 0 2 14 2.</_></rects> 5235 <tilted>0</tilted></feature> 5236 <threshold>-4.3390002101659775e-003</threshold> 5237 <left_val>-0.8906679749488831</left_val> 5238 <right_val>0.1046999990940094</right_val></_></_> 5239 <_> 5240 <!-- tree 17 --> 5241 <_> 5242 <!-- root node --> 5243 <feature> 5244 <rects> 5245 <_>14 15 9 6 -1.</_> 5246 <_>14 17 9 2 3.</_></rects> 5247 <tilted>0</tilted></feature> 5248 <threshold>8.0749997869133949e-003</threshold> 5249 <left_val>0.2116419970989227</left_val> 5250 <right_val>-0.4023160040378571</right_val></_></_> 5251 <_> 5252 <!-- tree 18 --> 5253 <_> 5254 <!-- root node --> 5255 <feature> 5256 <rects> 5257 <_>2 8 18 5 -1.</_> 5258 <_>8 8 6 5 3.</_></rects> 5259 <tilted>0</tilted></feature> 5260 <threshold>0.0967390015721321</threshold> 5261 <left_val>0.0133199999108911</left_val> 5262 <right_val>-1.6085360050201416</right_val></_></_> 5263 <_> 5264 <!-- tree 19 --> 5265 <_> 5266 <!-- root node --> 5267 <feature> 5268 <rects> 5269 <_>18 3 6 11 -1.</_> 5270 <_>20 3 2 11 3.</_></rects> 5271 <tilted>0</tilted></feature> 5272 <threshold>-0.0305369999259710</threshold> 5273 <left_val>1.0063740015029907</left_val> 5274 <right_val>-0.1341329962015152</right_val></_></_> 5275 <_> 5276 <!-- tree 20 --> 5277 <_> 5278 <!-- root node --> 5279 <feature> 5280 <rects> 5281 <_>6 5 11 14 -1.</_> 5282 <_>6 12 11 7 2.</_></rects> 5283 <tilted>0</tilted></feature> 5284 <threshold>-0.0608559995889664</threshold> 5285 <left_val>-1.4689979553222656</left_val> 5286 <right_val>9.4240000471472740e-003</right_val></_></_> 5287 <_> 5288 <!-- tree 21 --> 5289 <_> 5290 <!-- root node --> 5291 <feature> 5292 <rects> 5293 <_>18 4 6 9 -1.</_> 5294 <_>18 7 6 3 3.</_></rects> 5295 <tilted>0</tilted></feature> 5296 <threshold>-0.0381620004773140</threshold> 5297 <left_val>-0.8163639903068543</left_val> 5298 <right_val>0.2617120146751404</right_val></_></_> 5299 <_> 5300 <!-- tree 22 --> 5301 <_> 5302 <!-- root node --> 5303 <feature> 5304 <rects> 5305 <_>7 6 9 6 -1.</_> 5306 <_>7 8 9 2 3.</_></rects> 5307 <tilted>0</tilted></feature> 5308 <threshold>-9.6960002556443214e-003</threshold> 5309 <left_val>0.1156169995665550</left_val> 5310 <right_val>-0.7169319987297058</right_val></_></_> 5311 <_> 5312 <!-- tree 23 --> 5313 <_> 5314 <!-- root node --> 5315 <feature> 5316 <rects> 5317 <_>18 4 6 9 -1.</_> 5318 <_>18 7 6 3 3.</_></rects> 5319 <tilted>0</tilted></feature> 5320 <threshold>0.0489029996097088</threshold> 5321 <left_val>0.1305049955844879</left_val> 5322 <right_val>-1.6448370218276978</right_val></_></_> 5323 <_> 5324 <!-- tree 24 --> 5325 <_> 5326 <!-- root node --> 5327 <feature> 5328 <rects> 5329 <_>0 4 6 9 -1.</_> 5330 <_>0 7 6 3 3.</_></rects> 5331 <tilted>0</tilted></feature> 5332 <threshold>-0.0416119992733002</threshold> 5333 <left_val>-1.1795840263366699</left_val> 5334 <right_val>0.0250170007348061</right_val></_></_> 5335 <_> 5336 <!-- tree 25 --> 5337 <_> 5338 <!-- root node --> 5339 <feature> 5340 <rects> 5341 <_>9 4 9 4 -1.</_> 5342 <_>9 6 9 2 2.</_></rects> 5343 <tilted>0</tilted></feature> 5344 <threshold>-0.0201880000531673</threshold> 5345 <left_val>0.6318820118904114</left_val> 5346 <right_val>-0.1049040034413338</right_val></_></_> 5347 <_> 5348 <!-- tree 26 --> 5349 <_> 5350 <!-- root node --> 5351 <feature> 5352 <rects> 5353 <_>0 22 19 2 -1.</_> 5354 <_>0 23 19 1 2.</_></rects> 5355 <tilted>0</tilted></feature> 5356 <threshold>-9.7900000400841236e-004</threshold> 5357 <left_val>0.1850779950618744</left_val> 5358 <right_val>-0.5356590151786804</right_val></_></_> 5359 <_> 5360 <!-- tree 27 --> 5361 <_> 5362 <!-- root node --> 5363 <feature> 5364 <rects> 5365 <_>17 14 6 9 -1.</_> 5366 <_>17 17 6 3 3.</_></rects> 5367 <tilted>0</tilted></feature> 5368 <threshold>-0.0336220003664494</threshold> 5369 <left_val>-0.9312760233879089</left_val> 5370 <right_val>0.2007150053977966</right_val></_></_> 5371 <_> 5372 <!-- tree 28 --> 5373 <_> 5374 <!-- root node --> 5375 <feature> 5376 <rects> 5377 <_>1 14 6 9 -1.</_> 5378 <_>1 17 6 3 3.</_></rects> 5379 <tilted>0</tilted></feature> 5380 <threshold>0.0194559991359711</threshold> 5381 <left_val>0.0380290001630783</left_val> 5382 <right_val>-1.0112210512161255</right_val></_></_> 5383 <_> 5384 <!-- tree 29 --> 5385 <_> 5386 <!-- root node --> 5387 <feature> 5388 <rects> 5389 <_>14 11 4 9 -1.</_> 5390 <_>14 11 2 9 2.</_></rects> 5391 <tilted>0</tilted></feature> 5392 <threshold>-3.1800000579096377e-004</threshold> 5393 <left_val>0.3645769953727722</left_val> 5394 <right_val>-0.2761090099811554</right_val></_></_> 5395 <_> 5396 <!-- tree 30 --> 5397 <_> 5398 <!-- root node --> 5399 <feature> 5400 <rects> 5401 <_>6 11 4 9 -1.</_> 5402 <_>8 11 2 9 2.</_></rects> 5403 <tilted>0</tilted></feature> 5404 <threshold>-3.8899999344721437e-004</threshold> 5405 <left_val>0.1966589987277985</left_val> 5406 <right_val>-0.5341050028800964</right_val></_></_> 5407 <_> 5408 <!-- tree 31 --> 5409 <_> 5410 <!-- root node --> 5411 <feature> 5412 <rects> 5413 <_>3 9 18 7 -1.</_> 5414 <_>9 9 6 7 3.</_></rects> 5415 <tilted>0</tilted></feature> 5416 <threshold>-0.0934960022568703</threshold> 5417 <left_val>-1.6772350072860718</left_val> 5418 <right_val>0.2072709947824478</right_val></_></_> 5419 <_> 5420 <!-- tree 32 --> 5421 <_> 5422 <!-- root node --> 5423 <feature> 5424 <rects> 5425 <_>9 12 6 10 -1.</_> 5426 <_>9 17 6 5 2.</_></rects> 5427 <tilted>0</tilted></feature> 5428 <threshold>-0.0778779983520508</threshold> 5429 <left_val>-3.0760629177093506</left_val> 5430 <right_val>-0.0358039997518063</right_val></_></_> 5431 <_> 5432 <!-- tree 33 --> 5433 <_> 5434 <!-- root node --> 5435 <feature> 5436 <rects> 5437 <_>12 0 6 9 -1.</_> 5438 <_>14 0 2 9 3.</_></rects> 5439 <tilted>0</tilted></feature> 5440 <threshold>0.0169479995965958</threshold> 5441 <left_val>0.2144739925861359</left_val> 5442 <right_val>-0.7137629985809326</right_val></_></_> 5443 <_> 5444 <!-- tree 34 --> 5445 <_> 5446 <!-- root node --> 5447 <feature> 5448 <rects> 5449 <_>6 0 6 9 -1.</_> 5450 <_>8 0 2 9 3.</_></rects> 5451 <tilted>0</tilted></feature> 5452 <threshold>-0.0214590001851320</threshold> 5453 <left_val>-1.1468060016632080</left_val> 5454 <right_val>0.0158559996634722</right_val></_></_> 5455 <_> 5456 <!-- tree 35 --> 5457 <_> 5458 <!-- root node --> 5459 <feature> 5460 <rects> 5461 <_>6 17 18 3 -1.</_> 5462 <_>6 18 18 1 3.</_></rects> 5463 <tilted>0</tilted></feature> 5464 <threshold>-0.0128659997135401</threshold> 5465 <left_val>0.8381239771842957</left_val> 5466 <right_val>-0.0659440010786057</right_val></_></_> 5467 <_> 5468 <!-- tree 36 --> 5469 <_> 5470 <!-- root node --> 5471 <feature> 5472 <rects> 5473 <_>1 17 18 3 -1.</_> 5474 <_>1 18 18 1 3.</_></rects> 5475 <tilted>0</tilted></feature> 5476 <threshold>7.8220004215836525e-003</threshold> 5477 <left_val>-0.2802680134773254</left_val> 5478 <right_val>0.7937690019607544</right_val></_></_> 5479 <_> 5480 <!-- tree 37 --> 5481 <_> 5482 <!-- root node --> 5483 <feature> 5484 <rects> 5485 <_>10 6 11 12 -1.</_> 5486 <_>10 12 11 6 2.</_></rects> 5487 <tilted>0</tilted></feature> 5488 <threshold>0.1029440015554428</threshold> 5489 <left_val>0.1783230006694794</left_val> 5490 <right_val>-0.6841220259666443</right_val></_></_> 5491 <_> 5492 <!-- tree 38 --> 5493 <_> 5494 <!-- root node --> 5495 <feature> 5496 <rects> 5497 <_>5 6 14 6 -1.</_> 5498 <_>5 6 7 3 2.</_> 5499 <_>12 9 7 3 2.</_></rects> 5500 <tilted>0</tilted></feature> 5501 <threshold>-0.0374879986047745</threshold> 5502 <left_val>0.9618999958038330</left_val> 5503 <right_val>-0.2173559963703156</right_val></_></_> 5504 <_> 5505 <!-- tree 39 --> 5506 <_> 5507 <!-- root node --> 5508 <feature> 5509 <rects> 5510 <_>5 4 15 4 -1.</_> 5511 <_>5 6 15 2 2.</_></rects> 5512 <tilted>0</tilted></feature> 5513 <threshold>0.0255059991031885</threshold> 5514 <left_val>0.0101039996370673</left_val> 5515 <right_val>1.2461110353469849</right_val></_></_> 5516 <_> 5517 <!-- tree 40 --> 5518 <_> 5519 <!-- root node --> 5520 <feature> 5521 <rects> 5522 <_>0 0 22 2 -1.</_> 5523 <_>0 1 22 1 2.</_></rects> 5524 <tilted>0</tilted></feature> 5525 <threshold>6.6700001480057836e-004</threshold> 5526 <left_val>-0.5348820090293884</left_val> 5527 <right_val>0.1474629938602448</right_val></_></_> 5528 <_> 5529 <!-- tree 41 --> 5530 <_> 5531 <!-- root node --> 5532 <feature> 5533 <rects> 5534 <_>0 0 24 24 -1.</_> 5535 <_>8 0 8 24 3.</_></rects> 5536 <tilted>0</tilted></feature> 5537 <threshold>-0.2886790037155151</threshold> 5538 <left_val>0.8217279911041260</left_val> 5539 <right_val>-0.0149480002000928</right_val></_></_> 5540 <_> 5541 <!-- tree 42 --> 5542 <_> 5543 <!-- root node --> 5544 <feature> 5545 <rects> 5546 <_>1 15 18 4 -1.</_> 5547 <_>10 15 9 4 2.</_></rects> 5548 <tilted>0</tilted></feature> 5549 <threshold>0.0912949964404106</threshold> 5550 <left_val>-0.1960539966821671</left_val> 5551 <right_val>1.0803170204162598</right_val></_></_> 5552 <_> 5553 <!-- tree 43 --> 5554 <_> 5555 <!-- root node --> 5556 <feature> 5557 <rects> 5558 <_>6 8 12 9 -1.</_> 5559 <_>6 11 12 3 3.</_></rects> 5560 <tilted>0</tilted></feature> 5561 <threshold>0.1205660030245781</threshold> 5562 <left_val>-0.0238489992916584</left_val> 5563 <right_val>1.1392610073089600</right_val></_></_> 5564 <_> 5565 <!-- tree 44 --> 5566 <_> 5567 <!-- root node --> 5568 <feature> 5569 <rects> 5570 <_>4 12 7 12 -1.</_> 5571 <_>4 16 7 4 3.</_></rects> 5572 <tilted>0</tilted></feature> 5573 <threshold>-0.0737750008702278</threshold> 5574 <left_val>-1.3583840131759644</left_val> 5575 <right_val>-4.2039998807013035e-003</right_val></_></_> 5576 <_> 5577 <!-- tree 45 --> 5578 <_> 5579 <!-- root node --> 5580 <feature> 5581 <rects> 5582 <_>1 2 22 6 -1.</_> 5583 <_>12 2 11 3 2.</_> 5584 <_>1 5 11 3 2.</_></rects> 5585 <tilted>0</tilted></feature> 5586 <threshold>-0.0331280007958412</threshold> 5587 <left_val>-0.6448320150375366</left_val> 5588 <right_val>0.2414219975471497</right_val></_></_> 5589 <_> 5590 <!-- tree 46 --> 5591 <_> 5592 <!-- root node --> 5593 <feature> 5594 <rects> 5595 <_>5 20 14 3 -1.</_> 5596 <_>12 20 7 3 2.</_></rects> 5597 <tilted>0</tilted></feature> 5598 <threshold>-0.0439370013773441</threshold> 5599 <left_val>0.8428540229797363</left_val> 5600 <right_val>-0.2062480002641678</right_val></_></_> 5601 <_> 5602 <!-- tree 47 --> 5603 <_> 5604 <!-- root node --> 5605 <feature> 5606 <rects> 5607 <_>0 0 24 16 -1.</_> 5608 <_>12 0 12 8 2.</_> 5609 <_>0 8 12 8 2.</_></rects> 5610 <tilted>0</tilted></feature> 5611 <threshold>0.1811019927263260</threshold> 5612 <left_val>0.1921209990978241</left_val> 5613 <right_val>-1.2222139835357666</right_val></_></_> 5614 <_> 5615 <!-- tree 48 --> 5616 <_> 5617 <!-- root node --> 5618 <feature> 5619 <rects> 5620 <_>3 13 18 4 -1.</_> 5621 <_>3 13 9 2 2.</_> 5622 <_>12 15 9 2 2.</_></rects> 5623 <tilted>0</tilted></feature> 5624 <threshold>-0.0118509996682405</threshold> 5625 <left_val>-0.7267739772796631</left_val> 5626 <right_val>0.0526879988610744</right_val></_></_> 5627 <_> 5628 <!-- tree 49 --> 5629 <_> 5630 <!-- root node --> 5631 <feature> 5632 <rects> 5633 <_>2 10 22 2 -1.</_> 5634 <_>2 11 22 1 2.</_></rects> 5635 <tilted>0</tilted></feature> 5636 <threshold>4.5920000411570072e-003</threshold> 5637 <left_val>-0.3630520105361939</left_val> 5638 <right_val>0.2922379970550537</right_val></_></_> 5639 <_> 5640 <!-- tree 50 --> 5641 <_> 5642 <!-- root node --> 5643 <feature> 5644 <rects> 5645 <_>6 3 11 8 -1.</_> 5646 <_>6 7 11 4 2.</_></rects> 5647 <tilted>0</tilted></feature> 5648 <threshold>7.0620002225041389e-003</threshold> 5649 <left_val>0.0581160001456738</left_val> 5650 <right_val>-0.6716160178184509</right_val></_></_> 5651 <_> 5652 <!-- tree 51 --> 5653 <_> 5654 <!-- root node --> 5655 <feature> 5656 <rects> 5657 <_>14 5 6 6 -1.</_> 5658 <_>14 8 6 3 2.</_></rects> 5659 <tilted>0</tilted></feature> 5660 <threshold>-0.0237150005996227</threshold> 5661 <left_val>0.4714210033416748</left_val> 5662 <right_val>0.0185800008475780</right_val></_></_> 5663 <_> 5664 <!-- tree 52 --> 5665 <_> 5666 <!-- root node --> 5667 <feature> 5668 <rects> 5669 <_>0 7 24 6 -1.</_> 5670 <_>0 9 24 2 3.</_></rects> 5671 <tilted>0</tilted></feature> 5672 <threshold>-0.0671719983220100</threshold> 5673 <left_val>-1.1331889629364014</left_val> 5674 <right_val>0.0237809997051954</right_val></_></_> 5675 <_> 5676 <!-- tree 53 --> 5677 <_> 5678 <!-- root node --> 5679 <feature> 5680 <rects> 5681 <_>14 0 10 10 -1.</_> 5682 <_>19 0 5 5 2.</_> 5683 <_>14 5 5 5 2.</_></rects> 5684 <tilted>0</tilted></feature> 5685 <threshold>-0.0653100013732910</threshold> 5686 <left_val>0.9825350046157837</left_val> 5687 <right_val>0.0283620003610849</right_val></_></_> 5688 <_> 5689 <!-- tree 54 --> 5690 <_> 5691 <!-- root node --> 5692 <feature> 5693 <rects> 5694 <_>0 0 10 10 -1.</_> 5695 <_>0 0 5 5 2.</_> 5696 <_>5 5 5 5 2.</_></rects> 5697 <tilted>0</tilted></feature> 5698 <threshold>0.0227910000830889</threshold> 5699 <left_val>-0.2821370065212250</left_val> 5700 <right_val>0.5899339914321899</right_val></_></_> 5701 <_> 5702 <!-- tree 55 --> 5703 <_> 5704 <!-- root node --> 5705 <feature> 5706 <rects> 5707 <_>0 1 24 4 -1.</_> 5708 <_>12 1 12 2 2.</_> 5709 <_>0 3 12 2 2.</_></rects> 5710 <tilted>0</tilted></feature> 5711 <threshold>-0.0190379992127419</threshold> 5712 <left_val>-0.6371150016784668</left_val> 5713 <right_val>0.2651459872722626</right_val></_></_> 5714 <_> 5715 <!-- tree 56 --> 5716 <_> 5717 <!-- root node --> 5718 <feature> 5719 <rects> 5720 <_>0 17 18 3 -1.</_> 5721 <_>0 18 18 1 3.</_></rects> 5722 <tilted>0</tilted></feature> 5723 <threshold>-6.8689999170601368e-003</threshold> 5724 <left_val>0.3748730123043060</left_val> 5725 <right_val>-0.3323209881782532</right_val></_></_> 5726 <_> 5727 <!-- tree 57 --> 5728 <_> 5729 <!-- root node --> 5730 <feature> 5731 <rects> 5732 <_>5 15 16 6 -1.</_> 5733 <_>13 15 8 3 2.</_> 5734 <_>5 18 8 3 2.</_></rects> 5735 <tilted>0</tilted></feature> 5736 <threshold>-0.0401460006833076</threshold> 5737 <left_val>-1.3048729896545410</left_val> 5738 <right_val>0.1572429984807968</right_val></_></_> 5739 <_> 5740 <!-- tree 58 --> 5741 <_> 5742 <!-- root node --> 5743 <feature> 5744 <rects> 5745 <_>3 15 16 6 -1.</_> 5746 <_>3 15 8 3 2.</_> 5747 <_>11 18 8 3 2.</_></rects> 5748 <tilted>0</tilted></feature> 5749 <threshold>-0.0405309982597828</threshold> 5750 <left_val>-2.0458049774169922</left_val> 5751 <right_val>-0.0269259996712208</right_val></_></_> 5752 <_> 5753 <!-- tree 59 --> 5754 <_> 5755 <!-- root node --> 5756 <feature> 5757 <rects> 5758 <_>6 16 18 3 -1.</_> 5759 <_>6 17 18 1 3.</_></rects> 5760 <tilted>0</tilted></feature> 5761 <threshold>-0.0122539997100830</threshold> 5762 <left_val>0.7764940261840820</left_val> 5763 <right_val>-0.0429710000753403</right_val></_></_> 5764 <_> 5765 <!-- tree 60 --> 5766 <_> 5767 <!-- root node --> 5768 <feature> 5769 <rects> 5770 <_>0 13 21 10 -1.</_> 5771 <_>0 18 21 5 2.</_></rects> 5772 <tilted>0</tilted></feature> 5773 <threshold>-0.0272199995815754</threshold> 5774 <left_val>0.1742440015077591</left_val> 5775 <right_val>-0.4460090100765228</right_val></_></_> 5776 <_> 5777 <!-- tree 61 --> 5778 <_> 5779 <!-- root node --> 5780 <feature> 5781 <rects> 5782 <_>13 0 6 24 -1.</_> 5783 <_>15 0 2 24 3.</_></rects> 5784 <tilted>0</tilted></feature> 5785 <threshold>-0.0883660018444061</threshold> 5786 <left_val>-1.5036419630050659</left_val> 5787 <right_val>0.1428990066051483</right_val></_></_> 5788 <_> 5789 <!-- tree 62 --> 5790 <_> 5791 <!-- root node --> 5792 <feature> 5793 <rects> 5794 <_>7 4 6 11 -1.</_> 5795 <_>9 4 2 11 3.</_></rects> 5796 <tilted>0</tilted></feature> 5797 <threshold>-7.9159997403621674e-003</threshold> 5798 <left_val>0.2866669893264771</left_val> 5799 <right_val>-0.3792369961738586</right_val></_></_> 5800 <_> 5801 <!-- tree 63 --> 5802 <_> 5803 <!-- root node --> 5804 <feature> 5805 <rects> 5806 <_>9 5 9 6 -1.</_> 5807 <_>12 5 3 6 3.</_></rects> 5808 <tilted>0</tilted></feature> 5809 <threshold>-0.0419600009918213</threshold> 5810 <left_val>1.3846950531005859</left_val> 5811 <right_val>0.0650269985198975</right_val></_></_> 5812 <_> 5813 <!-- tree 64 --> 5814 <_> 5815 <!-- root node --> 5816 <feature> 5817 <rects> 5818 <_>1 4 2 20 -1.</_> 5819 <_>1 14 2 10 2.</_></rects> 5820 <tilted>0</tilted></feature> 5821 <threshold>0.0456629991531372</threshold> 5822 <left_val>-0.2245229929685593</left_val> 5823 <right_val>0.7952100038528442</right_val></_></_> 5824 <_> 5825 <!-- tree 65 --> 5826 <_> 5827 <!-- root node --> 5828 <feature> 5829 <rects> 5830 <_>13 0 6 24 -1.</_> 5831 <_>15 0 2 24 3.</_></rects> 5832 <tilted>0</tilted></feature> 5833 <threshold>-0.1409060060977936</threshold> 5834 <left_val>-1.5879319906234741</left_val> 5835 <right_val>0.1135900020599365</right_val></_></_> 5836 <_> 5837 <!-- tree 66 --> 5838 <_> 5839 <!-- root node --> 5840 <feature> 5841 <rects> 5842 <_>5 0 6 24 -1.</_> 5843 <_>7 0 2 24 3.</_></rects> 5844 <tilted>0</tilted></feature> 5845 <threshold>-0.0592160001397133</threshold> 5846 <left_val>-1.1945960521697998</left_val> 5847 <right_val>-7.1640000678598881e-003</right_val></_></_> 5848 <_> 5849 <!-- tree 67 --> 5850 <_> 5851 <!-- root node --> 5852 <feature> 5853 <rects> 5854 <_>16 7 6 14 -1.</_> 5855 <_>19 7 3 7 2.</_> 5856 <_>16 14 3 7 2.</_></rects> 5857 <tilted>0</tilted></feature> 5858 <threshold>4.3390002101659775e-003</threshold> 5859 <left_val>-0.1552869975566864</left_val> 5860 <right_val>0.4066449999809265</right_val></_></_> 5861 <_> 5862 <!-- tree 68 --> 5863 <_> 5864 <!-- root node --> 5865 <feature> 5866 <rects> 5867 <_>4 7 4 12 -1.</_> 5868 <_>6 7 2 12 2.</_></rects> 5869 <tilted>0</tilted></feature> 5870 <threshold>-2.0369999110698700e-003</threshold> 5871 <left_val>0.2592790126800537</left_val> 5872 <right_val>-0.3836829960346222</right_val></_></_> 5873 <_> 5874 <!-- tree 69 --> 5875 <_> 5876 <!-- root node --> 5877 <feature> 5878 <rects> 5879 <_>0 5 24 14 -1.</_> 5880 <_>8 5 8 14 3.</_></rects> 5881 <tilted>0</tilted></feature> 5882 <threshold>0.2751649916172028</threshold> 5883 <left_val>-0.0884979963302612</left_val> 5884 <right_val>0.7678750157356262</right_val></_></_> 5885 <_> 5886 <!-- tree 70 --> 5887 <_> 5888 <!-- root node --> 5889 <feature> 5890 <rects> 5891 <_>5 13 10 6 -1.</_> 5892 <_>5 15 10 2 3.</_></rects> 5893 <tilted>0</tilted></feature> 5894 <threshold>-0.0266019999980927</threshold> 5895 <left_val>0.7502449750900269</left_val> 5896 <right_val>-0.2262199968099594</right_val></_></_> 5897 <_> 5898 <!-- tree 71 --> 5899 <_> 5900 <!-- root node --> 5901 <feature> 5902 <rects> 5903 <_>12 0 6 9 -1.</_> 5904 <_>14 0 2 9 3.</_></rects> 5905 <tilted>0</tilted></feature> 5906 <threshold>0.0409060008823872</threshold> 5907 <left_val>0.1215860024094582</left_val> 5908 <right_val>-1.4566910266876221</right_val></_></_> 5909 <_> 5910 <!-- tree 72 --> 5911 <_> 5912 <!-- root node --> 5913 <feature> 5914 <rects> 5915 <_>2 7 6 14 -1.</_> 5916 <_>2 7 3 7 2.</_> 5917 <_>5 14 3 7 2.</_></rects> 5918 <tilted>0</tilted></feature> 5919 <threshold>5.5320002138614655e-003</threshold> 5920 <left_val>-0.3661150038242340</left_val> 5921 <right_val>0.2596859931945801</right_val></_></_> 5922 <_> 5923 <!-- tree 73 --> 5924 <_> 5925 <!-- root node --> 5926 <feature> 5927 <rects> 5928 <_>15 2 9 15 -1.</_> 5929 <_>18 2 3 15 3.</_></rects> 5930 <tilted>0</tilted></feature> 5931 <threshold>0.0318790003657341</threshold> 5932 <left_val>-0.0750190019607544</left_val> 5933 <right_val>0.4848479926586151</right_val></_></_> 5934 <_> 5935 <!-- tree 74 --> 5936 <_> 5937 <!-- root node --> 5938 <feature> 5939 <rects> 5940 <_>0 2 6 9 -1.</_> 5941 <_>2 2 2 9 3.</_></rects> 5942 <tilted>0</tilted></feature> 5943 <threshold>-0.0414820015430450</threshold> 5944 <left_val>0.7822039723396301</left_val> 5945 <right_val>-0.2199220061302185</right_val></_></_> 5946 <_> 5947 <!-- tree 75 --> 5948 <_> 5949 <!-- root node --> 5950 <feature> 5951 <rects> 5952 <_>12 2 10 14 -1.</_> 5953 <_>17 2 5 7 2.</_> 5954 <_>12 9 5 7 2.</_></rects> 5955 <tilted>0</tilted></feature> 5956 <threshold>-0.0961309969425201</threshold> 5957 <left_val>-0.8945630192756653</left_val> 5958 <right_val>0.1468070000410080</right_val></_></_> 5959 <_> 5960 <!-- tree 76 --> 5961 <_> 5962 <!-- root node --> 5963 <feature> 5964 <rects> 5965 <_>11 6 2 18 -1.</_> 5966 <_>12 6 1 18 2.</_></rects> 5967 <tilted>0</tilted></feature> 5968 <threshold>-0.0115689998492599</threshold> 5969 <left_val>0.8271409869194031</left_val> 5970 <right_val>-0.2027560025453568</right_val></_></_> 5971 <_> 5972 <!-- tree 77 --> 5973 <_> 5974 <!-- root node --> 5975 <feature> 5976 <rects> 5977 <_>9 5 15 6 -1.</_> 5978 <_>14 5 5 6 3.</_></rects> 5979 <tilted>0</tilted></feature> 5980 <threshold>0.0183129999786615</threshold> 5981 <left_val>0.0163679998368025</left_val> 5982 <right_val>0.2730680108070374</right_val></_></_> 5983 <_> 5984 <!-- tree 78 --> 5985 <_> 5986 <!-- root node --> 5987 <feature> 5988 <rects> 5989 <_>8 6 6 10 -1.</_> 5990 <_>10 6 2 10 3.</_></rects> 5991 <tilted>0</tilted></feature> 5992 <threshold>-0.0341660007834435</threshold> 5993 <left_val>1.1307320594787598</left_val> 5994 <right_val>-0.1881089955568314</right_val></_></_> 5995 <_> 5996 <!-- tree 79 --> 5997 <_> 5998 <!-- root node --> 5999 <feature> 6000 <rects> 6001 <_>12 0 6 9 -1.</_> 6002 <_>14 0 2 9 3.</_></rects> 6003 <tilted>0</tilted></feature> 6004 <threshold>-0.0244769994169474</threshold> 6005 <left_val>-0.5779129862785339</left_val> 6006 <right_val>0.1581249982118607</right_val></_></_> 6007 <_> 6008 <!-- tree 80 --> 6009 <_> 6010 <!-- root node --> 6011 <feature> 6012 <rects> 6013 <_>3 3 9 7 -1.</_> 6014 <_>6 3 3 7 3.</_></rects> 6015 <tilted>0</tilted></feature> 6016 <threshold>0.0489570014178753</threshold> 6017 <left_val>-0.0225649997591972</left_val> 6018 <right_val>-1.6373280286788940</right_val></_></_> 6019 <_> 6020 <!-- tree 81 --> 6021 <_> 6022 <!-- root node --> 6023 <feature> 6024 <rects> 6025 <_>6 7 14 3 -1.</_> 6026 <_>6 7 7 3 2.</_></rects> 6027 <tilted>0</tilted></feature> 6028 <threshold>-0.0207029990851879</threshold> 6029 <left_val>-0.5451210141181946</left_val> 6030 <right_val>0.2408699989318848</right_val></_></_> 6031 <_> 6032 <!-- tree 82 --> 6033 <_> 6034 <!-- root node --> 6035 <feature> 6036 <rects> 6037 <_>7 7 8 6 -1.</_> 6038 <_>11 7 4 6 2.</_></rects> 6039 <tilted>0</tilted></feature> 6040 <threshold>-0.0230020005255938</threshold> 6041 <left_val>-1.2236540317535400</left_val> 6042 <right_val>-7.3440000414848328e-003</right_val></_></_> 6043 <_> 6044 <!-- tree 83 --> 6045 <_> 6046 <!-- root node --> 6047 <feature> 6048 <rects> 6049 <_>12 7 7 12 -1.</_> 6050 <_>12 13 7 6 2.</_></rects> 6051 <tilted>0</tilted></feature> 6052 <threshold>0.0645850002765656</threshold> 6053 <left_val>0.1469559967517853</left_val> 6054 <right_val>-0.4496749937534332</right_val></_></_> 6055 <_> 6056 <!-- tree 84 --> 6057 <_> 6058 <!-- root node --> 6059 <feature> 6060 <rects> 6061 <_>10 6 4 18 -1.</_> 6062 <_>10 6 2 9 2.</_> 6063 <_>12 15 2 9 2.</_></rects> 6064 <tilted>0</tilted></feature> 6065 <threshold>0.0126660000532866</threshold> 6066 <left_val>-0.2787390053272247</left_val> 6067 <right_val>0.4387660026550293</right_val></_></_> 6068 <_> 6069 <!-- tree 85 --> 6070 <_> 6071 <!-- root node --> 6072 <feature> 6073 <rects> 6074 <_>16 14 6 9 -1.</_> 6075 <_>16 17 6 3 3.</_></rects> 6076 <tilted>0</tilted></feature> 6077 <threshold>-0.0120029998943210</threshold> 6078 <left_val>-0.2428909987211227</left_val> 6079 <right_val>0.2535009980201721</right_val></_></_> 6080 <_> 6081 <!-- tree 86 --> 6082 <_> 6083 <!-- root node --> 6084 <feature> 6085 <rects> 6086 <_>4 0 6 13 -1.</_> 6087 <_>6 0 2 13 3.</_></rects> 6088 <tilted>0</tilted></feature> 6089 <threshold>-0.0264439992606640</threshold> 6090 <left_val>-0.8586480021476746</left_val> 6091 <right_val>0.0260259993374348</right_val></_></_> 6092 <_> 6093 <!-- tree 87 --> 6094 <_> 6095 <!-- root node --> 6096 <feature> 6097 <rects> 6098 <_>2 2 21 3 -1.</_> 6099 <_>9 2 7 3 3.</_></rects> 6100 <tilted>0</tilted></feature> 6101 <threshold>-0.0255479998886585</threshold> 6102 <left_val>0.6928790211677551</left_val> 6103 <right_val>-2.1160000469535589e-003</right_val></_></_> 6104 <_> 6105 <!-- tree 88 --> 6106 <_> 6107 <!-- root node --> 6108 <feature> 6109 <rects> 6110 <_>5 4 5 12 -1.</_> 6111 <_>5 8 5 4 3.</_></rects> 6112 <tilted>0</tilted></feature> 6113 <threshold>0.0391150005161762</threshold> 6114 <left_val>-0.1658910065889359</left_val> 6115 <right_val>1.5209139585494995</right_val></_></_> 6116 <_> 6117 <!-- tree 89 --> 6118 <_> 6119 <!-- root node --> 6120 <feature> 6121 <rects> 6122 <_>10 3 4 10 -1.</_> 6123 <_>10 8 4 5 2.</_></rects> 6124 <tilted>0</tilted></feature> 6125 <threshold>-6.0330000706017017e-003</threshold> 6126 <left_val>0.4385690093040466</left_val> 6127 <right_val>-0.2161370068788528</right_val></_></_> 6128 <_> 6129 <!-- tree 90 --> 6130 <_> 6131 <!-- root node --> 6132 <feature> 6133 <rects> 6134 <_>8 4 5 8 -1.</_> 6135 <_>8 8 5 4 2.</_></rects> 6136 <tilted>0</tilted></feature> 6137 <threshold>-0.0339369997382164</threshold> 6138 <left_val>-0.9799839854240418</left_val> 6139 <right_val>0.0221330001950264</right_val></_></_></trees> 6140 <stage_threshold>-3.6478610038757324</stage_threshold> 6141 <parent>8</parent> 6142 <next>-1</next></_> 6143 <_> 6144 <!-- stage 10 --> 6145 <trees> 6146 <_> 6147 <!-- tree 0 --> 6148 <_> 6149 <!-- root node --> 6150 <feature> 6151 <rects> 6152 <_>6 0 11 9 -1.</_> 6153 <_>6 3 11 3 3.</_></rects> 6154 <tilted>0</tilted></feature> 6155 <threshold>0.0406729988753796</threshold> 6156 <left_val>-0.9047470092773438</left_val> 6157 <right_val>0.6441059708595276</right_val></_></_> 6158 <_> 6159 <!-- tree 1 --> 6160 <_> 6161 <!-- root node --> 6162 <feature> 6163 <rects> 6164 <_>6 6 12 5 -1.</_> 6165 <_>10 6 4 5 3.</_></rects> 6166 <tilted>0</tilted></feature> 6167 <threshold>0.0256099998950958</threshold> 6168 <left_val>-0.7921699881553650</left_val> 6169 <right_val>0.5748999714851379</right_val></_></_> 6170 <_> 6171 <!-- tree 2 --> 6172 <_> 6173 <!-- root node --> 6174 <feature> 6175 <rects> 6176 <_>0 0 24 5 -1.</_> 6177 <_>8 0 8 5 3.</_></rects> 6178 <tilted>0</tilted></feature> 6179 <threshold>0.1995950043201447</threshold> 6180 <left_val>-0.3009960055351257</left_val> 6181 <right_val>1.3143850564956665</right_val></_></_> 6182 <_> 6183 <!-- tree 3 --> 6184 <_> 6185 <!-- root node --> 6186 <feature> 6187 <rects> 6188 <_>1 10 23 6 -1.</_> 6189 <_>1 12 23 2 3.</_></rects> 6190 <tilted>0</tilted></feature> 6191 <threshold>0.0124049996957183</threshold> 6192 <left_val>-0.8988299965858460</left_val> 6193 <right_val>0.2920579910278320</right_val></_></_> 6194 <_> 6195 <!-- tree 4 --> 6196 <_> 6197 <!-- root node --> 6198 <feature> 6199 <rects> 6200 <_>3 21 18 3 -1.</_> 6201 <_>9 21 6 3 3.</_></rects> 6202 <tilted>0</tilted></feature> 6203 <threshold>0.0392079986631870</threshold> 6204 <left_val>-0.4195519983768463</left_val> 6205 <right_val>0.5346329808235169</right_val></_></_> 6206 <_> 6207 <!-- tree 5 --> 6208 <_> 6209 <!-- root node --> 6210 <feature> 6211 <rects> 6212 <_>3 6 21 6 -1.</_> 6213 <_>3 8 21 2 3.</_></rects> 6214 <tilted>0</tilted></feature> 6215 <threshold>-0.0308439992368221</threshold> 6216 <left_val>0.4579339921474457</left_val> 6217 <right_val>-0.4462909996509552</right_val></_></_> 6218 <_> 6219 <!-- tree 6 --> 6220 <_> 6221 <!-- root node --> 6222 <feature> 6223 <rects> 6224 <_>0 5 6 12 -1.</_> 6225 <_>2 5 2 12 3.</_></rects> 6226 <tilted>0</tilted></feature> 6227 <threshold>-0.0355230011045933</threshold> 6228 <left_val>0.9131050109863281</left_val> 6229 <right_val>-0.2737320065498352</right_val></_></_> 6230 <_> 6231 <!-- tree 7 --> 6232 <_> 6233 <!-- root node --> 6234 <feature> 6235 <rects> 6236 <_>10 2 4 15 -1.</_> 6237 <_>10 7 4 5 3.</_></rects> 6238 <tilted>0</tilted></feature> 6239 <threshold>-0.0616500005125999</threshold> 6240 <left_val>-1.4697799682617187</left_val> 6241 <right_val>0.2036409974098206</right_val></_></_> 6242 <_> 6243 <!-- tree 8 --> 6244 <_> 6245 <!-- root node --> 6246 <feature> 6247 <rects> 6248 <_>8 7 8 10 -1.</_> 6249 <_>8 12 8 5 2.</_></rects> 6250 <tilted>0</tilted></feature> 6251 <threshold>-0.0117399999871850</threshold> 6252 <left_val>-1.0482879877090454</left_val> 6253 <right_val>0.0678019970655441</right_val></_></_> 6254 <_> 6255 <!-- tree 9 --> 6256 <_> 6257 <!-- root node --> 6258 <feature> 6259 <rects> 6260 <_>5 7 15 12 -1.</_> 6261 <_>10 7 5 12 3.</_></rects> 6262 <tilted>0</tilted></feature> 6263 <threshold>0.0669339969754219</threshold> 6264 <left_val>0.2927449941635132</left_val> 6265 <right_val>-0.5228289961814880</right_val></_></_> 6266 <_> 6267 <!-- tree 10 --> 6268 <_> 6269 <!-- root node --> 6270 <feature> 6271 <rects> 6272 <_>0 17 10 6 -1.</_> 6273 <_>0 19 10 2 3.</_></rects> 6274 <tilted>0</tilted></feature> 6275 <threshold>-0.0206310003995895</threshold> 6276 <left_val>-1.2855139970779419</left_val> 6277 <right_val>0.0445509999990463</right_val></_></_> 6278 <_> 6279 <!-- tree 11 --> 6280 <_> 6281 <!-- root node --> 6282 <feature> 6283 <rects> 6284 <_>14 18 9 6 -1.</_> 6285 <_>14 20 9 2 3.</_></rects> 6286 <tilted>0</tilted></feature> 6287 <threshold>-0.0223570000380278</threshold> 6288 <left_val>-0.8575379848480225</left_val> 6289 <right_val>0.1843400001525879</right_val></_></_> 6290 <_> 6291 <!-- tree 12 --> 6292 <_> 6293 <!-- root node --> 6294 <feature> 6295 <rects> 6296 <_>9 6 6 16 -1.</_> 6297 <_>9 14 6 8 2.</_></rects> 6298 <tilted>0</tilted></feature> 6299 <threshold>1.1500000255182385e-003</threshold> 6300 <left_val>0.1640550047159195</left_val> 6301 <right_val>-0.6912500262260437</right_val></_></_> 6302 <_> 6303 <!-- tree 13 --> 6304 <_> 6305 <!-- root node --> 6306 <feature> 6307 <rects> 6308 <_>14 18 9 6 -1.</_> 6309 <_>14 20 9 2 3.</_></rects> 6310 <tilted>0</tilted></feature> 6311 <threshold>0.0358729995787144</threshold> 6312 <left_val>0.1575649976730347</left_val> 6313 <right_val>-0.8426259756088257</right_val></_></_> 6314 <_> 6315 <!-- tree 14 --> 6316 <_> 6317 <!-- root node --> 6318 <feature> 6319 <rects> 6320 <_>1 18 9 6 -1.</_> 6321 <_>1 20 9 2 3.</_></rects> 6322 <tilted>0</tilted></feature> 6323 <threshold>0.0306599996984005</threshold> 6324 <left_val>0.0216370001435280</left_val> 6325 <right_val>-1.3634690046310425</right_val></_></_> 6326 <_> 6327 <!-- tree 15 --> 6328 <_> 6329 <!-- root node --> 6330 <feature> 6331 <rects> 6332 <_>15 9 9 6 -1.</_> 6333 <_>15 11 9 2 3.</_></rects> 6334 <tilted>0</tilted></feature> 6335 <threshold>5.5559999309480190e-003</threshold> 6336 <left_val>-0.1673700064420700</left_val> 6337 <right_val>0.2588840126991272</right_val></_></_> 6338 <_> 6339 <!-- tree 16 --> 6340 <_> 6341 <!-- root node --> 6342 <feature> 6343 <rects> 6344 <_>0 9 9 6 -1.</_> 6345 <_>0 11 9 2 3.</_></rects> 6346 <tilted>0</tilted></feature> 6347 <threshold>-6.1160000041127205e-003</threshold> 6348 <left_val>-0.9727180004119873</left_val> 6349 <right_val>0.0661000013351440</right_val></_></_> 6350 <_> 6351 <!-- tree 17 --> 6352 <_> 6353 <!-- root node --> 6354 <feature> 6355 <rects> 6356 <_>17 3 6 9 -1.</_> 6357 <_>19 3 2 9 3.</_></rects> 6358 <tilted>0</tilted></feature> 6359 <threshold>-0.0303169991821051</threshold> 6360 <left_val>0.9847419857978821</left_val> 6361 <right_val>-0.0164480004459620</right_val></_></_> 6362 <_> 6363 <!-- tree 18 --> 6364 <_> 6365 <!-- root node --> 6366 <feature> 6367 <rects> 6368 <_>2 17 18 3 -1.</_> 6369 <_>2 18 18 1 3.</_></rects> 6370 <tilted>0</tilted></feature> 6371 <threshold>-9.7200004383921623e-003</threshold> 6372 <left_val>0.4760470092296600</left_val> 6373 <right_val>-0.3251670002937317</right_val></_></_> 6374 <_> 6375 <!-- tree 19 --> 6376 <_> 6377 <!-- root node --> 6378 <feature> 6379 <rects> 6380 <_>3 15 21 6 -1.</_> 6381 <_>3 17 21 2 3.</_></rects> 6382 <tilted>0</tilted></feature> 6383 <threshold>-0.0571269989013672</threshold> 6384 <left_val>-0.9592069983482361</left_val> 6385 <right_val>0.1993820071220398</right_val></_></_> 6386 <_> 6387 <!-- tree 20 --> 6388 <_> 6389 <!-- root node --> 6390 <feature> 6391 <rects> 6392 <_>9 17 6 6 -1.</_> 6393 <_>9 20 6 3 2.</_></rects> 6394 <tilted>0</tilted></feature> 6395 <threshold>4.0059997700154781e-003</threshold> 6396 <left_val>-0.5261250138282776</left_val> 6397 <right_val>0.2242870032787323</right_val></_></_> 6398 <_> 6399 <!-- tree 21 --> 6400 <_> 6401 <!-- root node --> 6402 <feature> 6403 <rects> 6404 <_>18 3 6 9 -1.</_> 6405 <_>18 6 6 3 3.</_></rects> 6406 <tilted>0</tilted></feature> 6407 <threshold>0.0337340012192726</threshold> 6408 <left_val>0.1707009971141815</left_val> 6409 <right_val>-1.0737580060958862</right_val></_></_> 6410 <_> 6411 <!-- tree 22 --> 6412 <_> 6413 <!-- root node --> 6414 <feature> 6415 <rects> 6416 <_>0 3 6 9 -1.</_> 6417 <_>0 6 6 3 3.</_></rects> 6418 <tilted>0</tilted></feature> 6419 <threshold>-0.0346419997513294</threshold> 6420 <left_val>-1.1343129873275757</left_val> 6421 <right_val>0.0365400016307831</right_val></_></_> 6422 <_> 6423 <!-- tree 23 --> 6424 <_> 6425 <!-- root node --> 6426 <feature> 6427 <rects> 6428 <_>4 0 16 10 -1.</_> 6429 <_>12 0 8 5 2.</_> 6430 <_>4 5 8 5 2.</_></rects> 6431 <tilted>0</tilted></feature> 6432 <threshold>0.0469230003654957</threshold> 6433 <left_val>0.2583230137825012</left_val> 6434 <right_val>-0.7153580188751221</right_val></_></_> 6435 <_> 6436 <!-- tree 24 --> 6437 <_> 6438 <!-- root node --> 6439 <feature> 6440 <rects> 6441 <_>2 0 10 16 -1.</_> 6442 <_>2 0 5 8 2.</_> 6443 <_>7 8 5 8 2.</_></rects> 6444 <tilted>0</tilted></feature> 6445 <threshold>-8.7660001590847969e-003</threshold> 6446 <left_val>0.1964090019464493</left_val> 6447 <right_val>-0.5335509777069092</right_val></_></_> 6448 <_> 6449 <!-- tree 25 --> 6450 <_> 6451 <!-- root node --> 6452 <feature> 6453 <rects> 6454 <_>14 0 10 5 -1.</_> 6455 <_>14 0 5 5 2.</_></rects> 6456 <tilted>0</tilted></feature> 6457 <threshold>0.0656279996037483</threshold> 6458 <left_val>-0.0511949993669987</left_val> 6459 <right_val>0.9761070013046265</right_val></_></_> 6460 <_> 6461 <!-- tree 26 --> 6462 <_> 6463 <!-- root node --> 6464 <feature> 6465 <rects> 6466 <_>0 0 10 5 -1.</_> 6467 <_>5 0 5 5 2.</_></rects> 6468 <tilted>0</tilted></feature> 6469 <threshold>-0.0441650003194809</threshold> 6470 <left_val>1.0631920099258423</left_val> 6471 <right_val>-0.2346259951591492</right_val></_></_> 6472 <_> 6473 <!-- tree 27 --> 6474 <_> 6475 <!-- root node --> 6476 <feature> 6477 <rects> 6478 <_>18 3 6 10 -1.</_> 6479 <_>18 3 3 10 2.</_></rects> 6480 <tilted>0</tilted></feature> 6481 <threshold>0.0173049997538328</threshold> 6482 <left_val>-0.1858289986848831</left_val> 6483 <right_val>0.4588989913463593</right_val></_></_> 6484 <_> 6485 <!-- tree 28 --> 6486 <_> 6487 <!-- root node --> 6488 <feature> 6489 <rects> 6490 <_>5 11 12 6 -1.</_> 6491 <_>5 11 6 3 2.</_> 6492 <_>11 14 6 3 2.</_></rects> 6493 <tilted>0</tilted></feature> 6494 <threshold>0.0331359989941120</threshold> 6495 <left_val>-0.0293819997459650</left_val> 6496 <right_val>-2.6651329994201660</right_val></_></_> 6497 <_> 6498 <!-- tree 29 --> 6499 <_> 6500 <!-- root node --> 6501 <feature> 6502 <rects> 6503 <_>21 0 3 18 -1.</_> 6504 <_>22 0 1 18 3.</_></rects> 6505 <tilted>0</tilted></feature> 6506 <threshold>-0.0210299994796515</threshold> 6507 <left_val>0.9997990131378174</left_val> 6508 <right_val>0.0249370001256466</right_val></_></_> 6509 <_> 6510 <!-- tree 30 --> 6511 <_> 6512 <!-- root node --> 6513 <feature> 6514 <rects> 6515 <_>6 0 6 9 -1.</_> 6516 <_>8 0 2 9 3.</_></rects> 6517 <tilted>0</tilted></feature> 6518 <threshold>0.0297839995473623</threshold> 6519 <left_val>-0.0296059995889664</left_val> 6520 <right_val>-2.1695868968963623</right_val></_></_> 6521 <_> 6522 <!-- tree 31 --> 6523 <_> 6524 <!-- root node --> 6525 <feature> 6526 <rects> 6527 <_>8 8 9 7 -1.</_> 6528 <_>11 8 3 7 3.</_></rects> 6529 <tilted>0</tilted></feature> 6530 <threshold>0.0552919991314411</threshold> 6531 <left_val>-7.5599999399855733e-004</left_val> 6532 <right_val>0.7465199828147888</right_val></_></_> 6533 <_> 6534 <!-- tree 32 --> 6535 <_> 6536 <!-- root node --> 6537 <feature> 6538 <rects> 6539 <_>7 12 8 10 -1.</_> 6540 <_>7 12 4 5 2.</_> 6541 <_>11 17 4 5 2.</_></rects> 6542 <tilted>0</tilted></feature> 6543 <threshold>-0.0335979983210564</threshold> 6544 <left_val>-1.5274159908294678</left_val> 6545 <right_val>0.0110600003972650</right_val></_></_> 6546 <_> 6547 <!-- tree 33 --> 6548 <_> 6549 <!-- root node --> 6550 <feature> 6551 <rects> 6552 <_>21 0 3 18 -1.</_> 6553 <_>22 0 1 18 3.</_></rects> 6554 <tilted>0</tilted></feature> 6555 <threshold>0.0196029990911484</threshold> 6556 <left_val>0.0335749983787537</left_val> 6557 <right_val>0.9952620267868042</right_val></_></_> 6558 <_> 6559 <!-- tree 34 --> 6560 <_> 6561 <!-- root node --> 6562 <feature> 6563 <rects> 6564 <_>10 6 4 9 -1.</_> 6565 <_>12 6 2 9 2.</_></rects> 6566 <tilted>0</tilted></feature> 6567 <threshold>-0.0207870006561279</threshold> 6568 <left_val>0.7661290168762207</left_val> 6569 <right_val>-0.2467080056667328</right_val></_></_> 6570 <_> 6571 <!-- tree 35 --> 6572 <_> 6573 <!-- root node --> 6574 <feature> 6575 <rects> 6576 <_>15 0 9 6 -1.</_> 6577 <_>15 2 9 2 3.</_></rects> 6578 <tilted>0</tilted></feature> 6579 <threshold>0.0325360000133514</threshold> 6580 <left_val>0.1626340001821518</left_val> 6581 <right_val>-0.6113430261611939</right_val></_></_> 6582 <_> 6583 <!-- tree 36 --> 6584 <_> 6585 <!-- root node --> 6586 <feature> 6587 <rects> 6588 <_>0 2 24 3 -1.</_> 6589 <_>0 3 24 1 3.</_></rects> 6590 <tilted>0</tilted></feature> 6591 <threshold>-0.0107880001887679</threshold> 6592 <left_val>-0.9783970117568970</left_val> 6593 <right_val>0.0289699994027615</right_val></_></_> 6594 <_> 6595 <!-- tree 37 --> 6596 <_> 6597 <!-- root node --> 6598 <feature> 6599 <rects> 6600 <_>11 7 6 9 -1.</_> 6601 <_>13 7 2 9 3.</_></rects> 6602 <tilted>0</tilted></feature> 6603 <threshold>-9.9560003727674484e-003</threshold> 6604 <left_val>0.4614579975605011</left_val> 6605 <right_val>-0.1351049989461899</right_val></_></_> 6606 <_> 6607 <!-- tree 38 --> 6608 <_> 6609 <!-- root node --> 6610 <feature> 6611 <rects> 6612 <_>7 6 6 10 -1.</_> 6613 <_>9 6 2 10 3.</_></rects> 6614 <tilted>0</tilted></feature> 6615 <threshold>-3.7489999085664749e-003</threshold> 6616 <left_val>0.2545819878578186</left_val> 6617 <right_val>-0.5195559859275818</right_val></_></_> 6618 <_> 6619 <!-- tree 39 --> 6620 <_> 6621 <!-- root node --> 6622 <feature> 6623 <rects> 6624 <_>12 1 6 12 -1.</_> 6625 <_>14 1 2 12 3.</_></rects> 6626 <tilted>0</tilted></feature> 6627 <threshold>-0.0417799986898899</threshold> 6628 <left_val>-0.8056510090827942</left_val> 6629 <right_val>0.1520850062370300</right_val></_></_> 6630 <_> 6631 <!-- tree 40 --> 6632 <_> 6633 <!-- root node --> 6634 <feature> 6635 <rects> 6636 <_>6 4 12 12 -1.</_> 6637 <_>6 10 12 6 2.</_></rects> 6638 <tilted>0</tilted></feature> 6639 <threshold>-0.0342210009694099</threshold> 6640 <left_val>-1.3137799501419067</left_val> 6641 <right_val>-3.5800000187009573e-003</right_val></_></_> 6642 <_> 6643 <!-- tree 41 --> 6644 <_> 6645 <!-- root node --> 6646 <feature> 6647 <rects> 6648 <_>14 3 2 21 -1.</_> 6649 <_>14 3 1 21 2.</_></rects> 6650 <tilted>0</tilted></feature> 6651 <threshold>0.0101300003007054</threshold> 6652 <left_val>0.2017579972743988</left_val> 6653 <right_val>-0.6133959889411926</right_val></_></_> 6654 <_> 6655 <!-- tree 42 --> 6656 <_> 6657 <!-- root node --> 6658 <feature> 6659 <rects> 6660 <_>6 1 12 8 -1.</_> 6661 <_>6 5 12 4 2.</_></rects> 6662 <tilted>0</tilted></feature> 6663 <threshold>-0.0898490026593208</threshold> 6664 <left_val>0.9763280153274536</left_val> 6665 <right_val>-0.2088479995727539</right_val></_></_> 6666 <_> 6667 <!-- tree 43 --> 6668 <_> 6669 <!-- root node --> 6670 <feature> 6671 <rects> 6672 <_>3 0 18 8 -1.</_> 6673 <_>3 4 18 4 2.</_></rects> 6674 <tilted>0</tilted></feature> 6675 <threshold>0.0260979998856783</threshold> 6676 <left_val>-0.1880799978971481</left_val> 6677 <right_val>0.4770579934120178</right_val></_></_> 6678 <_> 6679 <!-- tree 44 --> 6680 <_> 6681 <!-- root node --> 6682 <feature> 6683 <rects> 6684 <_>3 0 18 3 -1.</_> 6685 <_>3 1 18 1 3.</_></rects> 6686 <tilted>0</tilted></feature> 6687 <threshold>-3.7539999466389418e-003</threshold> 6688 <left_val>-0.6798040270805359</left_val> 6689 <right_val>0.1128880009055138</right_val></_></_> 6690 <_> 6691 <!-- tree 45 --> 6692 <_> 6693 <!-- root node --> 6694 <feature> 6695 <rects> 6696 <_>0 13 24 4 -1.</_> 6697 <_>12 13 12 2 2.</_> 6698 <_>0 15 12 2 2.</_></rects> 6699 <tilted>0</tilted></feature> 6700 <threshold>0.0319730006158352</threshold> 6701 <left_val>0.1895170062780380</left_val> 6702 <right_val>-1.4967479705810547</right_val></_></_> 6703 <_> 6704 <!-- tree 46 --> 6705 <_> 6706 <!-- root node --> 6707 <feature> 6708 <rects> 6709 <_>10 5 4 9 -1.</_> 6710 <_>12 5 2 9 2.</_></rects> 6711 <tilted>0</tilted></feature> 6712 <threshold>0.0193329993635416</threshold> 6713 <left_val>-0.2360990047454834</left_val> 6714 <right_val>0.8132050037384033</right_val></_></_> 6715 <_> 6716 <!-- tree 47 --> 6717 <_> 6718 <!-- root node --> 6719 <feature> 6720 <rects> 6721 <_>11 1 6 9 -1.</_> 6722 <_>13 1 2 9 3.</_></rects> 6723 <tilted>0</tilted></feature> 6724 <threshold>1.9490000559017062e-003</threshold> 6725 <left_val>0.2483039945363998</left_val> 6726 <right_val>-0.0692119970917702</right_val></_></_> 6727 <_> 6728 <!-- tree 48 --> 6729 <_> 6730 <!-- root node --> 6731 <feature> 6732 <rects> 6733 <_>6 2 6 22 -1.</_> 6734 <_>8 2 2 22 3.</_></rects> 6735 <tilted>0</tilted></feature> 6736 <threshold>-0.0441469997167587</threshold> 6737 <left_val>-1.0418920516967773</left_val> 6738 <right_val>0.0480530001223087</right_val></_></_> 6739 <_> 6740 <!-- tree 49 --> 6741 <_> 6742 <!-- root node --> 6743 <feature> 6744 <rects> 6745 <_>16 10 8 14 -1.</_> 6746 <_>20 10 4 7 2.</_> 6747 <_>16 17 4 7 2.</_></rects> 6748 <tilted>0</tilted></feature> 6749 <threshold>-0.0446819998323917</threshold> 6750 <left_val>0.5134630203247070</left_val> 6751 <right_val>-7.3799998499453068e-003</right_val></_></_> 6752 <_> 6753 <!-- tree 50 --> 6754 <_> 6755 <!-- root node --> 6756 <feature> 6757 <rects> 6758 <_>3 4 16 15 -1.</_> 6759 <_>3 9 16 5 3.</_></rects> 6760 <tilted>0</tilted></feature> 6761 <threshold>-0.1075749993324280</threshold> 6762 <left_val>1.6202019453048706</left_val> 6763 <right_val>-0.1866759955883026</right_val></_></_> 6764 <_> 6765 <!-- tree 51 --> 6766 <_> 6767 <!-- root node --> 6768 <feature> 6769 <rects> 6770 <_>16 10 8 14 -1.</_> 6771 <_>20 10 4 7 2.</_> 6772 <_>16 17 4 7 2.</_></rects> 6773 <tilted>0</tilted></feature> 6774 <threshold>-0.1284680068492889</threshold> 6775 <left_val>2.9869480133056641</left_val> 6776 <right_val>0.0954279974102974</right_val></_></_> 6777 <_> 6778 <!-- tree 52 --> 6779 <_> 6780 <!-- root node --> 6781 <feature> 6782 <rects> 6783 <_>0 10 8 14 -1.</_> 6784 <_>0 10 4 7 2.</_> 6785 <_>4 17 4 7 2.</_></rects> 6786 <tilted>0</tilted></feature> 6787 <threshold>-0.0447579994797707</threshold> 6788 <left_val>0.6040530204772949</left_val> 6789 <right_val>-0.2705869972705841</right_val></_></_> 6790 <_> 6791 <!-- tree 53 --> 6792 <_> 6793 <!-- root node --> 6794 <feature> 6795 <rects> 6796 <_>10 14 11 6 -1.</_> 6797 <_>10 17 11 3 2.</_></rects> 6798 <tilted>0</tilted></feature> 6799 <threshold>-0.0439909994602203</threshold> 6800 <left_val>-0.6179050207138062</left_val> 6801 <right_val>0.1599719971418381</right_val></_></_> 6802 <_> 6803 <!-- tree 54 --> 6804 <_> 6805 <!-- root node --> 6806 <feature> 6807 <rects> 6808 <_>0 7 24 9 -1.</_> 6809 <_>8 7 8 9 3.</_></rects> 6810 <tilted>0</tilted></feature> 6811 <threshold>-0.1226899996399880</threshold> 6812 <left_val>0.6632720232009888</left_val> 6813 <right_val>-0.2363699972629547</right_val></_></_> 6814 <_> 6815 <!-- tree 55 --> 6816 <_> 6817 <!-- root node --> 6818 <feature> 6819 <rects> 6820 <_>13 1 4 16 -1.</_> 6821 <_>13 1 2 16 2.</_></rects> 6822 <tilted>0</tilted></feature> 6823 <threshold>-0.0199829991906881</threshold> 6824 <left_val>-1.1228660345077515</left_val> 6825 <right_val>0.1961670070886612</right_val></_></_> 6826 <_> 6827 <!-- tree 56 --> 6828 <_> 6829 <!-- root node --> 6830 <feature> 6831 <rects> 6832 <_>7 1 4 16 -1.</_> 6833 <_>9 1 2 16 2.</_></rects> 6834 <tilted>0</tilted></feature> 6835 <threshold>-0.0155279999598861</threshold> 6836 <left_val>-1.0770269632339478</left_val> 6837 <right_val>0.0206930004060268</right_val></_></_> 6838 <_> 6839 <!-- tree 57 --> 6840 <_> 6841 <!-- root node --> 6842 <feature> 6843 <rects> 6844 <_>5 5 16 8 -1.</_> 6845 <_>13 5 8 4 2.</_> 6846 <_>5 9 8 4 2.</_></rects> 6847 <tilted>0</tilted></feature> 6848 <threshold>-0.0489710010588169</threshold> 6849 <left_val>0.8116829991340637</left_val> 6850 <right_val>-0.0172520000487566</right_val></_></_> 6851 <_> 6852 <!-- tree 58 --> 6853 <_> 6854 <!-- root node --> 6855 <feature> 6856 <rects> 6857 <_>0 9 6 9 -1.</_> 6858 <_>0 12 6 3 3.</_></rects> 6859 <tilted>0</tilted></feature> 6860 <threshold>0.0559759996831417</threshold> 6861 <left_val>-0.0225290004163980</left_val> 6862 <right_val>-1.7356760501861572</right_val></_></_> 6863 <_> 6864 <!-- tree 59 --> 6865 <_> 6866 <!-- root node --> 6867 <feature> 6868 <rects> 6869 <_>6 16 18 3 -1.</_> 6870 <_>6 17 18 1 3.</_></rects> 6871 <tilted>0</tilted></feature> 6872 <threshold>-9.8580000922083855e-003</threshold> 6873 <left_val>0.6788139939308167</left_val> 6874 <right_val>-0.0581800006330013</right_val></_></_> 6875 <_> 6876 <!-- tree 60 --> 6877 <_> 6878 <!-- root node --> 6879 <feature> 6880 <rects> 6881 <_>3 12 6 9 -1.</_> 6882 <_>3 15 6 3 3.</_></rects> 6883 <tilted>0</tilted></feature> 6884 <threshold>0.0134810004383326</threshold> 6885 <left_val>0.0578479990363121</left_val> 6886 <right_val>-0.7725530266761780</right_val></_></_> 6887 <_> 6888 <!-- tree 61 --> 6889 <_> 6890 <!-- root node --> 6891 <feature> 6892 <rects> 6893 <_>8 14 9 6 -1.</_> 6894 <_>8 16 9 2 3.</_></rects> 6895 <tilted>0</tilted></feature> 6896 <threshold>6.5609999001026154e-003</threshold> 6897 <left_val>-0.1314689964056015</left_val> 6898 <right_val>0.6705579757690430</right_val></_></_> 6899 <_> 6900 <!-- tree 62 --> 6901 <_> 6902 <!-- root node --> 6903 <feature> 6904 <rects> 6905 <_>2 13 8 10 -1.</_> 6906 <_>2 13 4 5 2.</_> 6907 <_>6 18 4 5 2.</_></rects> 6908 <tilted>0</tilted></feature> 6909 <threshold>7.1149999275803566e-003</threshold> 6910 <left_val>-0.3788059949874878</left_val> 6911 <right_val>0.3097899854183197</right_val></_></_> 6912 <_> 6913 <!-- tree 63 --> 6914 <_> 6915 <!-- root node --> 6916 <feature> 6917 <rects> 6918 <_>15 5 3 18 -1.</_> 6919 <_>15 11 3 6 3.</_></rects> 6920 <tilted>0</tilted></feature> 6921 <threshold>4.8159998841583729e-003</threshold> 6922 <left_val>-0.5847039818763733</left_val> 6923 <right_val>0.2560209929943085</right_val></_></_> 6924 <_> 6925 <!-- tree 64 --> 6926 <_> 6927 <!-- root node --> 6928 <feature> 6929 <rects> 6930 <_>3 5 18 3 -1.</_> 6931 <_>3 6 18 1 3.</_></rects> 6932 <tilted>0</tilted></feature> 6933 <threshold>9.5319999381899834e-003</threshold> 6934 <left_val>-0.3021700084209442</left_val> 6935 <right_val>0.4125329852104187</right_val></_></_> 6936 <_> 6937 <!-- tree 65 --> 6938 <_> 6939 <!-- root node --> 6940 <feature> 6941 <rects> 6942 <_>17 5 6 11 -1.</_> 6943 <_>19 5 2 11 3.</_></rects> 6944 <tilted>0</tilted></feature> 6945 <threshold>-0.0274749994277954</threshold> 6946 <left_val>0.5915470123291016</left_val> 6947 <right_val>0.0179639998823404</right_val></_></_> 6948 <_> 6949 <!-- tree 66 --> 6950 <_> 6951 <!-- root node --> 6952 <feature> 6953 <rects> 6954 <_>1 5 6 11 -1.</_> 6955 <_>3 5 2 11 3.</_></rects> 6956 <tilted>0</tilted></feature> 6957 <threshold>-0.0395199991762638</threshold> 6958 <left_val>0.9691349864006043</left_val> 6959 <right_val>-0.2102030068635941</right_val></_></_> 6960 <_> 6961 <!-- tree 67 --> 6962 <_> 6963 <!-- root node --> 6964 <feature> 6965 <rects> 6966 <_>19 1 4 9 -1.</_> 6967 <_>19 1 2 9 2.</_></rects> 6968 <tilted>0</tilted></feature> 6969 <threshold>-0.0306589994579554</threshold> 6970 <left_val>0.9115589857101440</left_val> 6971 <right_val>0.0405500009655952</right_val></_></_> 6972 <_> 6973 <!-- tree 68 --> 6974 <_> 6975 <!-- root node --> 6976 <feature> 6977 <rects> 6978 <_>1 1 4 9 -1.</_> 6979 <_>3 1 2 9 2.</_></rects> 6980 <tilted>0</tilted></feature> 6981 <threshold>-1.4680000022053719e-003</threshold> 6982 <left_val>-0.6048979759216309</left_val> 6983 <right_val>0.1696089953184128</right_val></_></_> 6984 <_> 6985 <!-- tree 69 --> 6986 <_> 6987 <!-- root node --> 6988 <feature> 6989 <rects> 6990 <_>4 15 18 9 -1.</_> 6991 <_>4 15 9 9 2.</_></rects> 6992 <tilted>0</tilted></feature> 6993 <threshold>0.1907760053873062</threshold> 6994 <left_val>0.0435150004923344</left_val> 6995 <right_val>0.8189290165901184</right_val></_></_> 6996 <_> 6997 <!-- tree 70 --> 6998 <_> 6999 <!-- root node --> 7000 <feature> 7001 <rects> 7002 <_>6 9 12 4 -1.</_> 7003 <_>6 11 12 2 2.</_></rects> 7004 <tilted>0</tilted></feature> 7005 <threshold>5.1790000870823860e-003</threshold> 7006 <left_val>-0.9361730217933655</left_val> 7007 <right_val>0.0249370001256466</right_val></_></_> 7008 <_> 7009 <!-- tree 71 --> 7010 <_> 7011 <!-- root node --> 7012 <feature> 7013 <rects> 7014 <_>15 2 9 6 -1.</_> 7015 <_>15 4 9 2 3.</_></rects> 7016 <tilted>0</tilted></feature> 7017 <threshold>0.0241260007023811</threshold> 7018 <left_val>0.1817550063133240</left_val> 7019 <right_val>-0.3418590128421783</right_val></_></_> 7020 <_> 7021 <!-- tree 72 --> 7022 <_> 7023 <!-- root node --> 7024 <feature> 7025 <rects> 7026 <_>0 2 9 6 -1.</_> 7027 <_>0 4 9 2 3.</_></rects> 7028 <tilted>0</tilted></feature> 7029 <threshold>-0.0263839997351170</threshold> 7030 <left_val>-1.2912579774856567</left_val> 7031 <right_val>-3.4280000254511833e-003</right_val></_></_> 7032 <_> 7033 <!-- tree 73 --> 7034 <_> 7035 <!-- root node --> 7036 <feature> 7037 <rects> 7038 <_>15 0 6 17 -1.</_> 7039 <_>17 0 2 17 3.</_></rects> 7040 <tilted>0</tilted></feature> 7041 <threshold>5.4139997810125351e-003</threshold> 7042 <left_val>-0.0462919995188713</left_val> 7043 <right_val>0.2526960074901581</right_val></_></_> 7044 <_> 7045 <!-- tree 74 --> 7046 <_> 7047 <!-- root node --> 7048 <feature> 7049 <rects> 7050 <_>3 0 6 17 -1.</_> 7051 <_>5 0 2 17 3.</_></rects> 7052 <tilted>0</tilted></feature> 7053 <threshold>0.0542160011827946</threshold> 7054 <left_val>-0.0128480000421405</left_val> 7055 <right_val>-1.4304540157318115</right_val></_></_> 7056 <_> 7057 <!-- tree 75 --> 7058 <_> 7059 <!-- root node --> 7060 <feature> 7061 <rects> 7062 <_>8 17 9 4 -1.</_> 7063 <_>8 19 9 2 2.</_></rects> 7064 <tilted>0</tilted></feature> 7065 <threshold>2.3799999326001853e-004</threshold> 7066 <left_val>-0.2667669951915741</left_val> 7067 <right_val>0.3358829915523529</right_val></_></_> 7068 <_> 7069 <!-- tree 76 --> 7070 <_> 7071 <!-- root node --> 7072 <feature> 7073 <rects> 7074 <_>6 5 3 18 -1.</_> 7075 <_>6 11 3 6 3.</_></rects> 7076 <tilted>0</tilted></feature> 7077 <threshold>0.0152169996872544</threshold> 7078 <left_val>-0.5136730074882507</left_val> 7079 <right_val>0.1300510019063950</right_val></_></_> 7080 <_> 7081 <!-- tree 77 --> 7082 <_> 7083 <!-- root node --> 7084 <feature> 7085 <rects> 7086 <_>5 2 14 12 -1.</_> 7087 <_>5 8 14 6 2.</_></rects> 7088 <tilted>0</tilted></feature> 7089 <threshold>0.0170079991221428</threshold> 7090 <left_val>0.4157589972019196</left_val> 7091 <right_val>-0.3124119937419891</right_val></_></_> 7092 <_> 7093 <!-- tree 78 --> 7094 <_> 7095 <!-- root node --> 7096 <feature> 7097 <rects> 7098 <_>10 2 3 12 -1.</_> 7099 <_>10 8 3 6 2.</_></rects> 7100 <tilted>0</tilted></feature> 7101 <threshold>0.0304969996213913</threshold> 7102 <left_val>-0.2482099980115891</left_val> 7103 <right_val>0.7082849740982056</right_val></_></_> 7104 <_> 7105 <!-- tree 79 --> 7106 <_> 7107 <!-- root node --> 7108 <feature> 7109 <rects> 7110 <_>10 7 14 15 -1.</_> 7111 <_>10 12 14 5 3.</_></rects> 7112 <tilted>0</tilted></feature> 7113 <threshold>6.5430002287030220e-003</threshold> 7114 <left_val>-0.2263700067996979</left_val> 7115 <right_val>0.1918459981679916</right_val></_></_> 7116 <_> 7117 <!-- tree 80 --> 7118 <_> 7119 <!-- root node --> 7120 <feature> 7121 <rects> 7122 <_>0 7 14 15 -1.</_> 7123 <_>0 12 14 5 3.</_></rects> 7124 <tilted>0</tilted></feature> 7125 <threshold>0.1416399925947189</threshold> 7126 <left_val>0.0652270019054413</left_val> 7127 <right_val>-0.8880950212478638</right_val></_></_> 7128 <_> 7129 <!-- tree 81 --> 7130 <_> 7131 <!-- root node --> 7132 <feature> 7133 <rects> 7134 <_>15 0 9 6 -1.</_> 7135 <_>15 2 9 2 3.</_></rects> 7136 <tilted>0</tilted></feature> 7137 <threshold>0.0193380005657673</threshold> 7138 <left_val>0.1889120042324066</left_val> 7139 <right_val>-0.2739770114421845</right_val></_></_> 7140 <_> 7141 <!-- tree 82 --> 7142 <_> 7143 <!-- root node --> 7144 <feature> 7145 <rects> 7146 <_>0 0 9 6 -1.</_> 7147 <_>0 2 9 2 3.</_></rects> 7148 <tilted>0</tilted></feature> 7149 <threshold>-0.0173240005970001</threshold> 7150 <left_val>-0.9486669898033142</left_val> 7151 <right_val>0.0241969991475344</right_val></_></_> 7152 <_> 7153 <!-- tree 83 --> 7154 <_> 7155 <!-- root node --> 7156 <feature> 7157 <rects> 7158 <_>12 6 6 14 -1.</_> 7159 <_>14 6 2 14 3.</_></rects> 7160 <tilted>0</tilted></feature> 7161 <threshold>-6.2069999985396862e-003</threshold> 7162 <left_val>0.3693839907646179</left_val> 7163 <right_val>-0.1749490052461624</right_val></_></_> 7164 <_> 7165 <!-- tree 84 --> 7166 <_> 7167 <!-- root node --> 7168 <feature> 7169 <rects> 7170 <_>9 7 6 9 -1.</_> 7171 <_>11 7 2 9 3.</_></rects> 7172 <tilted>0</tilted></feature> 7173 <threshold>-0.0161090008914471</threshold> 7174 <left_val>0.9615949988365173</left_val> 7175 <right_val>-0.2000530064105988</right_val></_></_> 7176 <_> 7177 <!-- tree 85 --> 7178 <_> 7179 <!-- root node --> 7180 <feature> 7181 <rects> 7182 <_>12 6 6 15 -1.</_> 7183 <_>14 6 2 15 3.</_></rects> 7184 <tilted>0</tilted></feature> 7185 <threshold>-0.1012250036001205</threshold> 7186 <left_val>-3.0699110031127930</left_val> 7187 <right_val>0.1136379987001419</right_val></_></_> 7188 <_> 7189 <!-- tree 86 --> 7190 <_> 7191 <!-- root node --> 7192 <feature> 7193 <rects> 7194 <_>6 6 6 15 -1.</_> 7195 <_>8 6 2 15 3.</_></rects> 7196 <tilted>0</tilted></feature> 7197 <threshold>-7.5509999878704548e-003</threshold> 7198 <left_val>0.2292100042104721</left_val> 7199 <right_val>-0.4564509987831116</right_val></_></_> 7200 <_> 7201 <!-- tree 87 --> 7202 <_> 7203 <!-- root node --> 7204 <feature> 7205 <rects> 7206 <_>15 3 8 9 -1.</_> 7207 <_>15 3 4 9 2.</_></rects> 7208 <tilted>0</tilted></feature> 7209 <threshold>0.0442479997873306</threshold> 7210 <left_val>-3.1599999056197703e-004</left_val> 7211 <right_val>0.3922530114650726</right_val></_></_> 7212 <_> 7213 <!-- tree 88 --> 7214 <_> 7215 <!-- root node --> 7216 <feature> 7217 <rects> 7218 <_>0 0 9 21 -1.</_> 7219 <_>3 0 3 21 3.</_></rects> 7220 <tilted>0</tilted></feature> 7221 <threshold>-0.1163600012660027</threshold> 7222 <left_val>0.9523370265960693</left_val> 7223 <right_val>-0.2020159959793091</right_val></_></_> 7224 <_> 7225 <!-- tree 89 --> 7226 <_> 7227 <!-- root node --> 7228 <feature> 7229 <rects> 7230 <_>11 9 8 12 -1.</_> 7231 <_>11 13 8 4 3.</_></rects> 7232 <tilted>0</tilted></feature> 7233 <threshold>4.7360002063214779e-003</threshold> 7234 <left_val>-0.0991770029067993</left_val> 7235 <right_val>0.2037049978971481</right_val></_></_> 7236 <_> 7237 <!-- tree 90 --> 7238 <_> 7239 <!-- root node --> 7240 <feature> 7241 <rects> 7242 <_>6 7 10 12 -1.</_> 7243 <_>6 7 5 6 2.</_> 7244 <_>11 13 5 6 2.</_></rects> 7245 <tilted>0</tilted></feature> 7246 <threshold>0.0224590003490448</threshold> 7247 <left_val>8.7280003353953362e-003</left_val> 7248 <right_val>-1.0217070579528809</right_val></_></_> 7249 <_> 7250 <!-- tree 91 --> 7251 <_> 7252 <!-- root node --> 7253 <feature> 7254 <rects> 7255 <_>10 6 4 18 -1.</_> 7256 <_>12 6 2 9 2.</_> 7257 <_>10 15 2 9 2.</_></rects> 7258 <tilted>0</tilted></feature> 7259 <threshold>-0.0121090002357960</threshold> 7260 <left_val>0.6481260061264038</left_val> 7261 <right_val>-0.0901490002870560</right_val></_></_> 7262 <_> 7263 <!-- tree 92 --> 7264 <_> 7265 <!-- root node --> 7266 <feature> 7267 <rects> 7268 <_>0 0 6 9 -1.</_> 7269 <_>0 3 6 3 3.</_></rects> 7270 <tilted>0</tilted></feature> 7271 <threshold>0.0561200007796288</threshold> 7272 <left_val>-0.0367599986493587</left_val> 7273 <right_val>-1.9275590181350708</right_val></_></_> 7274 <_> 7275 <!-- tree 93 --> 7276 <_> 7277 <!-- root node --> 7278 <feature> 7279 <rects> 7280 <_>3 14 18 3 -1.</_> 7281 <_>3 15 18 1 3.</_></rects> 7282 <tilted>0</tilted></feature> 7283 <threshold>-8.7379999458789825e-003</threshold> 7284 <left_val>0.6926130056381226</left_val> 7285 <right_val>-0.0683749988675117</right_val></_></_> 7286 <_> 7287 <!-- tree 94 --> 7288 <_> 7289 <!-- root node --> 7290 <feature> 7291 <rects> 7292 <_>3 14 8 10 -1.</_> 7293 <_>3 14 4 5 2.</_> 7294 <_>7 19 4 5 2.</_></rects> 7295 <tilted>0</tilted></feature> 7296 <threshold>6.6399998031556606e-003</threshold> 7297 <left_val>-0.4056980013847351</left_val> 7298 <right_val>0.1862570047378540</right_val></_></_> 7299 <_> 7300 <!-- tree 95 --> 7301 <_> 7302 <!-- root node --> 7303 <feature> 7304 <rects> 7305 <_>0 12 24 4 -1.</_> 7306 <_>12 12 12 2 2.</_> 7307 <_>0 14 12 2 2.</_></rects> 7308 <tilted>0</tilted></feature> 7309 <threshold>-0.0181319992989302</threshold> 7310 <left_val>-0.6451820135116577</left_val> 7311 <right_val>0.2197639942169190</right_val></_></_> 7312 <_> 7313 <!-- tree 96 --> 7314 <_> 7315 <!-- root node --> 7316 <feature> 7317 <rects> 7318 <_>0 2 3 20 -1.</_> 7319 <_>1 2 1 20 3.</_></rects> 7320 <tilted>0</tilted></feature> 7321 <threshold>-0.0227189995348454</threshold> 7322 <left_val>0.9777619838714600</left_val> 7323 <right_val>-0.1865430027246475</right_val></_></_> 7324 <_> 7325 <!-- tree 97 --> 7326 <_> 7327 <!-- root node --> 7328 <feature> 7329 <rects> 7330 <_>12 16 10 8 -1.</_> 7331 <_>17 16 5 4 2.</_> 7332 <_>12 20 5 4 2.</_></rects> 7333 <tilted>0</tilted></feature> 7334 <threshold>0.0127050001174212</threshold> 7335 <left_val>-0.1054660007357597</left_val> 7336 <right_val>0.3740409910678864</right_val></_></_> 7337 <_> 7338 <!-- tree 98 --> 7339 <_> 7340 <!-- root node --> 7341 <feature> 7342 <rects> 7343 <_>2 16 10 8 -1.</_> 7344 <_>2 16 5 4 2.</_> 7345 <_>7 20 5 4 2.</_></rects> 7346 <tilted>0</tilted></feature> 7347 <threshold>-0.0136829996481538</threshold> 7348 <left_val>0.6106410026550293</left_val> 7349 <right_val>-0.2688109874725342</right_val></_></_></trees> 7350 <stage_threshold>-3.8700489997863770</stage_threshold> 7351 <parent>9</parent> 7352 <next>-1</next></_> 7353 <_> 7354 <!-- stage 11 --> 7355 <trees> 7356 <_> 7357 <!-- tree 0 --> 7358 <_> 7359 <!-- root node --> 7360 <feature> 7361 <rects> 7362 <_>7 0 10 9 -1.</_> 7363 <_>7 3 10 3 3.</_></rects> 7364 <tilted>0</tilted></feature> 7365 <threshold>0.0313579998910427</threshold> 7366 <left_val>-1.0183910131454468</left_val> 7367 <right_val>0.5752859711647034</right_val></_></_> 7368 <_> 7369 <!-- tree 1 --> 7370 <_> 7371 <!-- root node --> 7372 <feature> 7373 <rects> 7374 <_>0 0 24 3 -1.</_> 7375 <_>8 0 8 3 3.</_></rects> 7376 <tilted>0</tilted></feature> 7377 <threshold>0.0930500030517578</threshold> 7378 <left_val>-0.4129750132560730</left_val> 7379 <right_val>1.0091199874877930</right_val></_></_> 7380 <_> 7381 <!-- tree 2 --> 7382 <_> 7383 <!-- root node --> 7384 <feature> 7385 <rects> 7386 <_>3 8 15 4 -1.</_> 7387 <_>3 10 15 2 2.</_></rects> 7388 <tilted>0</tilted></feature> 7389 <threshold>0.0259499996900558</threshold> 7390 <left_val>-0.5858790278434753</left_val> 7391 <right_val>0.5660619735717773</right_val></_></_> 7392 <_> 7393 <!-- tree 3 --> 7394 <_> 7395 <!-- root node --> 7396 <feature> 7397 <rects> 7398 <_>6 5 12 6 -1.</_> 7399 <_>10 5 4 6 3.</_></rects> 7400 <tilted>0</tilted></feature> 7401 <threshold>0.0164720006287098</threshold> 7402 <left_val>-0.9285749793052673</left_val> 7403 <right_val>0.3092449903488159</right_val></_></_> 7404 <_> 7405 <!-- tree 4 --> 7406 <_> 7407 <!-- root node --> 7408 <feature> 7409 <rects> 7410 <_>5 13 14 6 -1.</_> 7411 <_>5 16 14 3 2.</_></rects> 7412 <tilted>0</tilted></feature> 7413 <threshold>-1.8779999809339643e-003</threshold> 7414 <left_val>0.1195100024342537</left_val> 7415 <right_val>-1.1180130243301392</right_val></_></_> 7416 <_> 7417 <!-- tree 5 --> 7418 <_> 7419 <!-- root node --> 7420 <feature> 7421 <rects> 7422 <_>11 14 4 10 -1.</_> 7423 <_>11 19 4 5 2.</_></rects> 7424 <tilted>0</tilted></feature> 7425 <threshold>-9.0129999443888664e-003</threshold> 7426 <left_val>-0.5784950256347656</left_val> 7427 <right_val>0.3315440118312836</right_val></_></_> 7428 <_> 7429 <!-- tree 6 --> 7430 <_> 7431 <!-- root node --> 7432 <feature> 7433 <rects> 7434 <_>0 6 6 7 -1.</_> 7435 <_>3 6 3 7 2.</_></rects> 7436 <tilted>0</tilted></feature> 7437 <threshold>0.0225479993969202</threshold> 7438 <left_val>-0.3832510113716126</left_val> 7439 <right_val>0.5246220231056213</right_val></_></_> 7440 <_> 7441 <!-- tree 7 --> 7442 <_> 7443 <!-- root node --> 7444 <feature> 7445 <rects> 7446 <_>18 0 6 6 -1.</_> 7447 <_>18 0 3 6 2.</_></rects> 7448 <tilted>0</tilted></feature> 7449 <threshold>-0.0377800017595291</threshold> 7450 <left_val>1.1790670156478882</left_val> 7451 <right_val>-0.0341669991612434</right_val></_></_> 7452 <_> 7453 <!-- tree 8 --> 7454 <_> 7455 <!-- root node --> 7456 <feature> 7457 <rects> 7458 <_>3 1 18 3 -1.</_> 7459 <_>3 2 18 1 3.</_></rects> 7460 <tilted>0</tilted></feature> 7461 <threshold>-5.3799999877810478e-003</threshold> 7462 <left_val>-0.8626589775085449</left_val> 7463 <right_val>0.1186790019273758</right_val></_></_> 7464 <_> 7465 <!-- tree 9 --> 7466 <_> 7467 <!-- root node --> 7468 <feature> 7469 <rects> 7470 <_>9 6 14 18 -1.</_> 7471 <_>9 12 14 6 3.</_></rects> 7472 <tilted>0</tilted></feature> 7473 <threshold>-0.0238930005580187</threshold> 7474 <left_val>-0.7495059967041016</left_val> 7475 <right_val>0.2101140022277832</right_val></_></_> 7476 <_> 7477 <!-- tree 10 --> 7478 <_> 7479 <!-- root node --> 7480 <feature> 7481 <rects> 7482 <_>0 0 6 6 -1.</_> 7483 <_>3 0 3 6 2.</_></rects> 7484 <tilted>0</tilted></feature> 7485 <threshold>-0.0265219993889332</threshold> 7486 <left_val>0.9212859869003296</left_val> 7487 <right_val>-0.2825280129909515</right_val></_></_> 7488 <_> 7489 <!-- tree 11 --> 7490 <_> 7491 <!-- root node --> 7492 <feature> 7493 <rects> 7494 <_>13 11 6 6 -1.</_> 7495 <_>13 11 3 6 2.</_></rects> 7496 <tilted>0</tilted></feature> 7497 <threshold>0.0122800003737211</threshold> 7498 <left_val>0.2666279971599579</left_val> 7499 <right_val>-0.7001360058784485</right_val></_></_> 7500 <_> 7501 <!-- tree 12 --> 7502 <_> 7503 <!-- root node --> 7504 <feature> 7505 <rects> 7506 <_>0 20 24 3 -1.</_> 7507 <_>8 20 8 3 3.</_></rects> 7508 <tilted>0</tilted></feature> 7509 <threshold>0.0965949967503548</threshold> 7510 <left_val>-0.2845399975776672</left_val> 7511 <right_val>0.7316899895668030</right_val></_></_> 7512 <_> 7513 <!-- tree 13 --> 7514 <_> 7515 <!-- root node --> 7516 <feature> 7517 <rects> 7518 <_>13 11 6 7 -1.</_> 7519 <_>13 11 3 7 2.</_></rects> 7520 <tilted>0</tilted></feature> 7521 <threshold>-0.0274149999022484</threshold> 7522 <left_val>-0.6149269938468933</left_val> 7523 <right_val>0.1557620018720627</right_val></_></_> 7524 <_> 7525 <!-- tree 14 --> 7526 <_> 7527 <!-- root node --> 7528 <feature> 7529 <rects> 7530 <_>4 12 10 6 -1.</_> 7531 <_>4 14 10 2 3.</_></rects> 7532 <tilted>0</tilted></feature> 7533 <threshold>-0.0157670006155968</threshold> 7534 <left_val>0.5755119919776917</left_val> 7535 <right_val>-0.3436219990253449</right_val></_></_> 7536 <_> 7537 <!-- tree 15 --> 7538 <_> 7539 <!-- root node --> 7540 <feature> 7541 <rects> 7542 <_>13 11 6 6 -1.</_> 7543 <_>13 11 3 6 2.</_></rects> 7544 <tilted>0</tilted></feature> 7545 <threshold>-2.1100000012665987e-003</threshold> 7546 <left_val>0.3259969949722290</left_val> 7547 <right_val>-0.1300829946994782</right_val></_></_> 7548 <_> 7549 <!-- tree 16 --> 7550 <_> 7551 <!-- root node --> 7552 <feature> 7553 <rects> 7554 <_>5 11 6 7 -1.</_> 7555 <_>8 11 3 7 2.</_></rects> 7556 <tilted>0</tilted></feature> 7557 <threshold>0.0120069999247789</threshold> 7558 <left_val>0.0893229991197586</left_val> 7559 <right_val>-0.9602559804916382</right_val></_></_> 7560 <_> 7561 <!-- tree 17 --> 7562 <_> 7563 <!-- root node --> 7564 <feature> 7565 <rects> 7566 <_>7 4 11 12 -1.</_> 7567 <_>7 8 11 4 3.</_></rects> 7568 <tilted>0</tilted></feature> 7569 <threshold>-0.0154219996184111</threshold> 7570 <left_val>0.3444949984550476</left_val> 7571 <right_val>-0.4671199917793274</right_val></_></_> 7572 <_> 7573 <!-- tree 18 --> 7574 <_> 7575 <!-- root node --> 7576 <feature> 7577 <rects> 7578 <_>6 15 10 4 -1.</_> 7579 <_>6 17 10 2 2.</_></rects> 7580 <tilted>0</tilted></feature> 7581 <threshold>-4.1579999960958958e-003</threshold> 7582 <left_val>0.2369630038738251</left_val> 7583 <right_val>-0.5256329774856567</right_val></_></_> 7584 <_> 7585 <!-- tree 19 --> 7586 <_> 7587 <!-- root node --> 7588 <feature> 7589 <rects> 7590 <_>14 0 6 9 -1.</_> 7591 <_>16 0 2 9 3.</_></rects> 7592 <tilted>0</tilted></feature> 7593 <threshold>-0.0211859997361898</threshold> 7594 <left_val>-0.7426769733428955</left_val> 7595 <right_val>0.2170200049877167</right_val></_></_> 7596 <_> 7597 <!-- tree 20 --> 7598 <_> 7599 <!-- root node --> 7600 <feature> 7601 <rects> 7602 <_>4 0 6 9 -1.</_> 7603 <_>6 0 2 9 3.</_></rects> 7604 <tilted>0</tilted></feature> 7605 <threshold>-0.0170770008116961</threshold> 7606 <left_val>-0.9047179818153381</left_val> 7607 <right_val>0.0660120025277138</right_val></_></_> 7608 <_> 7609 <!-- tree 21 --> 7610 <_> 7611 <!-- root node --> 7612 <feature> 7613 <rects> 7614 <_>11 2 4 15 -1.</_> 7615 <_>11 7 4 5 3.</_></rects> 7616 <tilted>0</tilted></feature> 7617 <threshold>-0.0408499985933304</threshold> 7618 <left_val>-0.3444660007953644</left_val> 7619 <right_val>0.2150370031595230</right_val></_></_> 7620 <_> 7621 <!-- tree 22 --> 7622 <_> 7623 <!-- root node --> 7624 <feature> 7625 <rects> 7626 <_>0 0 20 3 -1.</_> 7627 <_>0 1 20 1 3.</_></rects> 7628 <tilted>0</tilted></feature> 7629 <threshold>-8.1930002197623253e-003</threshold> 7630 <left_val>-0.9338859915733337</left_val> 7631 <right_val>0.0504710003733635</right_val></_></_> 7632 <_> 7633 <!-- tree 23 --> 7634 <_> 7635 <!-- root node --> 7636 <feature> 7637 <rects> 7638 <_>13 18 10 6 -1.</_> 7639 <_>13 20 10 2 3.</_></rects> 7640 <tilted>0</tilted></feature> 7641 <threshold>-0.0192380007356405</threshold> 7642 <left_val>-0.5320370197296143</left_val> 7643 <right_val>0.1724060028791428</right_val></_></_> 7644 <_> 7645 <!-- tree 24 --> 7646 <_> 7647 <!-- root node --> 7648 <feature> 7649 <rects> 7650 <_>2 7 6 11 -1.</_> 7651 <_>5 7 3 11 2.</_></rects> 7652 <tilted>0</tilted></feature> 7653 <threshold>-0.0441920012235641</threshold> 7654 <left_val>0.9207500219345093</left_val> 7655 <right_val>-0.2214850038290024</right_val></_></_> 7656 <_> 7657 <!-- tree 25 --> 7658 <_> 7659 <!-- root node --> 7660 <feature> 7661 <rects> 7662 <_>10 14 10 9 -1.</_> 7663 <_>10 17 10 3 3.</_></rects> 7664 <tilted>0</tilted></feature> 7665 <threshold>-0.0623920001089573</threshold> 7666 <left_val>-0.7105380296707153</left_val> 7667 <right_val>0.1832389980554581</right_val></_></_> 7668 <_> 7669 <!-- tree 26 --> 7670 <_> 7671 <!-- root node --> 7672 <feature> 7673 <rects> 7674 <_>8 2 4 9 -1.</_> 7675 <_>10 2 2 9 2.</_></rects> 7676 <tilted>0</tilted></feature> 7677 <threshold>-1.0079999919980764e-003</threshold> 7678 <left_val>-0.8706309795379639</left_val> 7679 <right_val>0.0553300008177757</right_val></_></_> 7680 <_> 7681 <!-- tree 27 --> 7682 <_> 7683 <!-- root node --> 7684 <feature> 7685 <rects> 7686 <_>14 3 10 4 -1.</_> 7687 <_>14 3 5 4 2.</_></rects> 7688 <tilted>0</tilted></feature> 7689 <threshold>0.0238700006157160</threshold> 7690 <left_val>-0.2285420000553131</left_val> 7691 <right_val>0.5241559743881226</right_val></_></_> 7692 <_> 7693 <!-- tree 28 --> 7694 <_> 7695 <!-- root node --> 7696 <feature> 7697 <rects> 7698 <_>6 6 12 6 -1.</_> 7699 <_>6 6 6 3 2.</_> 7700 <_>12 9 6 3 2.</_></rects> 7701 <tilted>0</tilted></feature> 7702 <threshold>0.0213910005986691</threshold> 7703 <left_val>-0.3032589852809906</left_val> 7704 <right_val>0.5586060285568237</right_val></_></_> 7705 <_> 7706 <!-- tree 29 --> 7707 <_> 7708 <!-- root node --> 7709 <feature> 7710 <rects> 7711 <_>8 8 8 10 -1.</_> 7712 <_>12 8 4 5 2.</_> 7713 <_>8 13 4 5 2.</_></rects> 7714 <tilted>0</tilted></feature> 7715 <threshold>0.0202549993991852</threshold> 7716 <left_val>0.2690150141716003</left_val> 7717 <right_val>-0.7026180028915405</right_val></_></_> 7718 <_> 7719 <!-- tree 30 --> 7720 <_> 7721 <!-- root node --> 7722 <feature> 7723 <rects> 7724 <_>7 4 4 16 -1.</_> 7725 <_>7 12 4 8 2.</_></rects> 7726 <tilted>0</tilted></feature> 7727 <threshold>-0.0287720002233982</threshold> 7728 <left_val>-1.1835030317306519</left_val> 7729 <right_val>0.0465120002627373</right_val></_></_> 7730 <_> 7731 <!-- tree 31 --> 7732 <_> 7733 <!-- root node --> 7734 <feature> 7735 <rects> 7736 <_>8 8 9 4 -1.</_> 7737 <_>8 10 9 2 2.</_></rects> 7738 <tilted>0</tilted></feature> 7739 <threshold>3.4199999645352364e-003</threshold> 7740 <left_val>-0.5465210080146790</left_val> 7741 <right_val>0.2596249878406525</right_val></_></_> 7742 <_> 7743 <!-- tree 32 --> 7744 <_> 7745 <!-- root node --> 7746 <feature> 7747 <rects> 7748 <_>5 2 14 9 -1.</_> 7749 <_>5 5 14 3 3.</_></rects> 7750 <tilted>0</tilted></feature> 7751 <threshold>0.0569830015301704</threshold> 7752 <left_val>-0.2698290050029755</left_val> 7753 <right_val>0.5817070007324219</right_val></_></_> 7754 <_> 7755 <!-- tree 33 --> 7756 <_> 7757 <!-- root node --> 7758 <feature> 7759 <rects> 7760 <_>3 16 19 8 -1.</_> 7761 <_>3 20 19 4 2.</_></rects> 7762 <tilted>0</tilted></feature> 7763 <threshold>-0.0938920006155968</threshold> 7764 <left_val>-0.9104639887809753</left_val> 7765 <right_val>0.1967770010232925</right_val></_></_> 7766 <_> 7767 <!-- tree 34 --> 7768 <_> 7769 <!-- root node --> 7770 <feature> 7771 <rects> 7772 <_>0 0 10 8 -1.</_> 7773 <_>5 0 5 8 2.</_></rects> 7774 <tilted>0</tilted></feature> 7775 <threshold>0.0176999997347593</threshold> 7776 <left_val>-0.4400329887866974</left_val> 7777 <right_val>0.2134950011968613</right_val></_></_> 7778 <_> 7779 <!-- tree 35 --> 7780 <_> 7781 <!-- root node --> 7782 <feature> 7783 <rects> 7784 <_>5 2 16 18 -1.</_> 7785 <_>5 2 8 18 2.</_></rects> 7786 <tilted>0</tilted></feature> 7787 <threshold>0.2284419983625412</threshold> 7788 <left_val>0.0236050002276897</left_val> 7789 <right_val>0.7717159986495972</right_val></_></_> 7790 <_> 7791 <!-- tree 36 --> 7792 <_> 7793 <!-- root node --> 7794 <feature> 7795 <rects> 7796 <_>0 11 24 11 -1.</_> 7797 <_>8 11 8 11 3.</_></rects> 7798 <tilted>0</tilted></feature> 7799 <threshold>-0.1828750073909760</threshold> 7800 <left_val>0.7922859787940979</left_val> 7801 <right_val>-0.2464479953050613</right_val></_></_> 7802 <_> 7803 <!-- tree 37 --> 7804 <_> 7805 <!-- root node --> 7806 <feature> 7807 <rects> 7808 <_>3 3 18 5 -1.</_> 7809 <_>3 3 9 5 2.</_></rects> 7810 <tilted>0</tilted></feature> 7811 <threshold>-0.0698919966816902</threshold> 7812 <left_val>0.8026779890060425</left_val> 7813 <right_val>-0.0360720008611679</right_val></_></_> 7814 <_> 7815 <!-- tree 38 --> 7816 <_> 7817 <!-- root node --> 7818 <feature> 7819 <rects> 7820 <_>1 16 18 3 -1.</_> 7821 <_>1 17 18 1 3.</_></rects> 7822 <tilted>0</tilted></feature> 7823 <threshold>0.0152970002964139</threshold> 7824 <left_val>-0.2007230073213577</left_val> 7825 <right_val>1.1030600070953369</right_val></_></_> 7826 <_> 7827 <!-- tree 39 --> 7828 <_> 7829 <!-- root node --> 7830 <feature> 7831 <rects> 7832 <_>5 17 18 3 -1.</_> 7833 <_>5 18 18 1 3.</_></rects> 7834 <tilted>0</tilted></feature> 7835 <threshold>6.7500001750886440e-003</threshold> 7836 <left_val>-0.0459679998457432</left_val> 7837 <right_val>0.7209450006484985</right_val></_></_> 7838 <_> 7839 <!-- tree 40 --> 7840 <_> 7841 <!-- root node --> 7842 <feature> 7843 <rects> 7844 <_>1 13 9 6 -1.</_> 7845 <_>1 15 9 2 3.</_></rects> 7846 <tilted>0</tilted></feature> 7847 <threshold>-0.0159830003976822</threshold> 7848 <left_val>-0.9035720229148865</left_val> 7849 <right_val>0.0449879989027977</right_val></_></_> 7850 <_> 7851 <!-- tree 41 --> 7852 <_> 7853 <!-- root node --> 7854 <feature> 7855 <rects> 7856 <_>1 9 23 10 -1.</_> 7857 <_>1 14 23 5 2.</_></rects> 7858 <tilted>0</tilted></feature> 7859 <threshold>0.0130880000069737</threshold> 7860 <left_val>0.3529709875583649</left_val> 7861 <right_val>-0.3771060109138489</right_val></_></_> 7862 <_> 7863 <!-- tree 42 --> 7864 <_> 7865 <!-- root node --> 7866 <feature> 7867 <rects> 7868 <_>3 7 18 3 -1.</_> 7869 <_>3 8 18 1 3.</_></rects> 7870 <tilted>0</tilted></feature> 7871 <threshold>0.0130610000342131</threshold> 7872 <left_val>-0.1958359926939011</left_val> 7873 <right_val>1.1198940277099609</right_val></_></_> 7874 <_> 7875 <!-- tree 43 --> 7876 <_> 7877 <!-- root node --> 7878 <feature> 7879 <rects> 7880 <_>6 8 12 3 -1.</_> 7881 <_>6 8 6 3 2.</_></rects> 7882 <tilted>0</tilted></feature> 7883 <threshold>-0.0399070009589195</threshold> 7884 <left_val>-1.3998429775238037</left_val> 7885 <right_val>0.1914509981870651</right_val></_></_> 7886 <_> 7887 <!-- tree 44 --> 7888 <_> 7889 <!-- root node --> 7890 <feature> 7891 <rects> 7892 <_>6 2 3 22 -1.</_> 7893 <_>7 2 1 22 3.</_></rects> 7894 <tilted>0</tilted></feature> 7895 <threshold>0.0150269996374846</threshold> 7896 <left_val>2.3600000422447920e-003</left_val> 7897 <right_val>-1.1611249446868896</right_val></_></_> 7898 <_> 7899 <!-- tree 45 --> 7900 <_> 7901 <!-- root node --> 7902 <feature> 7903 <rects> 7904 <_>14 17 10 6 -1.</_> 7905 <_>14 19 10 2 3.</_></rects> 7906 <tilted>0</tilted></feature> 7907 <threshold>-0.0205179993063211</threshold> 7908 <left_val>-0.4890809953212738</left_val> 7909 <right_val>0.1674340069293976</right_val></_></_> 7910 <_> 7911 <!-- tree 46 --> 7912 <_> 7913 <!-- root node --> 7914 <feature> 7915 <rects> 7916 <_>1 18 10 6 -1.</_> 7917 <_>1 20 10 2 3.</_></rects> 7918 <tilted>0</tilted></feature> 7919 <threshold>-0.0223590005189180</threshold> 7920 <left_val>-1.2202980518341064</left_val> 7921 <right_val>-0.0119759999215603</right_val></_></_> 7922 <_> 7923 <!-- tree 47 --> 7924 <_> 7925 <!-- root node --> 7926 <feature> 7927 <rects> 7928 <_>11 3 6 12 -1.</_> 7929 <_>13 3 2 12 3.</_></rects> 7930 <tilted>0</tilted></feature> 7931 <threshold>-7.9150004312396049e-003</threshold> 7932 <left_val>0.3722809851169586</left_val> 7933 <right_val>-0.0850630030035973</right_val></_></_> 7934 <_> 7935 <!-- tree 48 --> 7936 <_> 7937 <!-- root node --> 7938 <feature> 7939 <rects> 7940 <_>10 6 4 9 -1.</_> 7941 <_>12 6 2 9 2.</_></rects> 7942 <tilted>0</tilted></feature> 7943 <threshold>0.0152580002322793</threshold> 7944 <left_val>-0.2941260039806366</left_val> 7945 <right_val>0.5940639972686768</right_val></_></_> 7946 <_> 7947 <!-- tree 49 --> 7948 <_> 7949 <!-- root node --> 7950 <feature> 7951 <rects> 7952 <_>11 0 6 9 -1.</_> 7953 <_>13 0 2 9 3.</_></rects> 7954 <tilted>0</tilted></feature> 7955 <threshold>-0.0316659994423389</threshold> 7956 <left_val>-1.4395569562911987</left_val> 7957 <right_val>0.1357879936695099</right_val></_></_> 7958 <_> 7959 <!-- tree 50 --> 7960 <_> 7961 <!-- root node --> 7962 <feature> 7963 <rects> 7964 <_>7 0 6 9 -1.</_> 7965 <_>9 0 2 9 3.</_></rects> 7966 <tilted>0</tilted></feature> 7967 <threshold>-0.0307739991694689</threshold> 7968 <left_val>-2.2545371055603027</left_val> 7969 <right_val>-0.0339710004627705</right_val></_></_> 7970 <_> 7971 <!-- tree 51 --> 7972 <_> 7973 <!-- root node --> 7974 <feature> 7975 <rects> 7976 <_>12 10 9 6 -1.</_> 7977 <_>15 10 3 6 3.</_></rects> 7978 <tilted>0</tilted></feature> 7979 <threshold>-0.0154830003157258</threshold> 7980 <left_val>0.3770070075988770</left_val> 7981 <right_val>0.0158479996025562</right_val></_></_> 7982 <_> 7983 <!-- tree 52 --> 7984 <_> 7985 <!-- root node --> 7986 <feature> 7987 <rects> 7988 <_>2 11 6 9 -1.</_> 7989 <_>5 11 3 9 2.</_></rects> 7990 <tilted>0</tilted></feature> 7991 <threshold>0.0351670011878014</threshold> 7992 <left_val>-0.2944610118865967</left_val> 7993 <right_val>0.5315909981727600</right_val></_></_> 7994 <_> 7995 <!-- tree 53 --> 7996 <_> 7997 <!-- root node --> 7998 <feature> 7999 <rects> 8000 <_>14 5 3 19 -1.</_> 8001 <_>15 5 1 19 3.</_></rects> 8002 <tilted>0</tilted></feature> 8003 <threshold>-0.0179060008376837</threshold> 8004 <left_val>-0.9978820085525513</left_val> 8005 <right_val>0.1623599976301193</right_val></_></_> 8006 <_> 8007 <!-- tree 54 --> 8008 <_> 8009 <!-- root node --> 8010 <feature> 8011 <rects> 8012 <_>6 6 9 6 -1.</_> 8013 <_>6 8 9 2 3.</_></rects> 8014 <tilted>0</tilted></feature> 8015 <threshold>-3.1799999997019768e-003</threshold> 8016 <left_val>0.0476570017635822</left_val> 8017 <right_val>-0.7524989843368530</right_val></_></_> 8018 <_> 8019 <!-- tree 55 --> 8020 <_> 8021 <!-- root node --> 8022 <feature> 8023 <rects> 8024 <_>14 5 3 19 -1.</_> 8025 <_>15 5 1 19 3.</_></rects> 8026 <tilted>0</tilted></feature> 8027 <threshold>0.0157200004905462</threshold> 8028 <left_val>0.1487379968166351</left_val> 8029 <right_val>-0.6537539958953857</right_val></_></_> 8030 <_> 8031 <!-- tree 56 --> 8032 <_> 8033 <!-- root node --> 8034 <feature> 8035 <rects> 8036 <_>0 3 6 9 -1.</_> 8037 <_>0 6 6 3 3.</_></rects> 8038 <tilted>0</tilted></feature> 8039 <threshold>0.0298640001565218</threshold> 8040 <left_val>-0.0149520002305508</left_val> 8041 <right_val>-1.2275190353393555</right_val></_></_> 8042 <_> 8043 <!-- tree 57 --> 8044 <_> 8045 <!-- root node --> 8046 <feature> 8047 <rects> 8048 <_>5 21 18 3 -1.</_> 8049 <_>5 22 18 1 3.</_></rects> 8050 <tilted>0</tilted></feature> 8051 <threshold>2.9899999499320984e-003</threshold> 8052 <left_val>-0.1426369994878769</left_val> 8053 <right_val>0.4327279925346375</right_val></_></_> 8054 <_> 8055 <!-- tree 58 --> 8056 <_> 8057 <!-- root node --> 8058 <feature> 8059 <rects> 8060 <_>1 10 18 4 -1.</_> 8061 <_>7 10 6 4 3.</_></rects> 8062 <tilted>0</tilted></feature> 8063 <threshold>0.0847499966621399</threshold> 8064 <left_val>-0.0192809998989105</left_val> 8065 <right_val>-1.1946409940719604</right_val></_></_> 8066 <_> 8067 <!-- tree 59 --> 8068 <_> 8069 <!-- root node --> 8070 <feature> 8071 <rects> 8072 <_>13 4 8 10 -1.</_> 8073 <_>17 4 4 5 2.</_> 8074 <_>13 9 4 5 2.</_></rects> 8075 <tilted>0</tilted></feature> 8076 <threshold>-0.0587249994277954</threshold> 8077 <left_val>-1.7328219413757324</left_val> 8078 <right_val>0.1437470018863678</right_val></_></_> 8079 <_> 8080 <!-- tree 60 --> 8081 <_> 8082 <!-- root node --> 8083 <feature> 8084 <rects> 8085 <_>7 8 9 6 -1.</_> 8086 <_>10 8 3 6 3.</_></rects> 8087 <tilted>0</tilted></feature> 8088 <threshold>0.0447559989988804</threshold> 8089 <left_val>-0.2414059937000275</left_val> 8090 <right_val>0.5401999950408936</right_val></_></_> 8091 <_> 8092 <!-- tree 61 --> 8093 <_> 8094 <!-- root node --> 8095 <feature> 8096 <rects> 8097 <_>12 9 9 8 -1.</_> 8098 <_>15 9 3 8 3.</_></rects> 8099 <tilted>0</tilted></feature> 8100 <threshold>0.0403690002858639</threshold> 8101 <left_val>5.7680001482367516e-003</left_val> 8102 <right_val>0.5657809972763062</right_val></_></_> 8103 <_> 8104 <!-- tree 62 --> 8105 <_> 8106 <!-- root node --> 8107 <feature> 8108 <rects> 8109 <_>0 6 5 12 -1.</_> 8110 <_>0 10 5 4 3.</_></rects> 8111 <tilted>0</tilted></feature> 8112 <threshold>0.0377359986305237</threshold> 8113 <left_val>0.0381809994578362</left_val> 8114 <right_val>-0.7937039732933044</right_val></_></_> 8115 <_> 8116 <!-- tree 63 --> 8117 <_> 8118 <!-- root node --> 8119 <feature> 8120 <rects> 8121 <_>7 6 14 6 -1.</_> 8122 <_>14 6 7 3 2.</_> 8123 <_>7 9 7 3 2.</_></rects> 8124 <tilted>0</tilted></feature> 8125 <threshold>0.0607529990375042</threshold> 8126 <left_val>0.0764530003070831</left_val> 8127 <right_val>1.4813209772109985</right_val></_></_> 8128 <_> 8129 <!-- tree 64 --> 8130 <_> 8131 <!-- root node --> 8132 <feature> 8133 <rects> 8134 <_>7 5 3 19 -1.</_> 8135 <_>8 5 1 19 3.</_></rects> 8136 <tilted>0</tilted></feature> 8137 <threshold>-0.0198320001363754</threshold> 8138 <left_val>-1.6971720457077026</left_val> 8139 <right_val>-0.0273700002580881</right_val></_></_> 8140 <_> 8141 <!-- tree 65 --> 8142 <_> 8143 <!-- root node --> 8144 <feature> 8145 <rects> 8146 <_>8 4 15 20 -1.</_> 8147 <_>13 4 5 20 3.</_></rects> 8148 <tilted>0</tilted></feature> 8149 <threshold>-0.1659269928932190</threshold> 8150 <left_val>0.6297600269317627</left_val> 8151 <right_val>0.0317629985511303</right_val></_></_> 8152 <_> 8153 <!-- tree 66 --> 8154 <_> 8155 <!-- root node --> 8156 <feature> 8157 <rects> 8158 <_>1 4 15 20 -1.</_> 8159 <_>6 4 5 20 3.</_></rects> 8160 <tilted>0</tilted></feature> 8161 <threshold>0.0690149962902069</threshold> 8162 <left_val>-0.3346320092678070</left_val> 8163 <right_val>0.3007670044898987</right_val></_></_> 8164 <_> 8165 <!-- tree 67 --> 8166 <_> 8167 <!-- root node --> 8168 <feature> 8169 <rects> 8170 <_>13 10 6 6 -1.</_> 8171 <_>13 10 3 6 2.</_></rects> 8172 <tilted>0</tilted></feature> 8173 <threshold>0.0113580003380775</threshold> 8174 <left_val>0.2274149954319000</left_val> 8175 <right_val>-0.3822470009326935</right_val></_></_> 8176 <_> 8177 <!-- tree 68 --> 8178 <_> 8179 <!-- root node --> 8180 <feature> 8181 <rects> 8182 <_>5 10 6 6 -1.</_> 8183 <_>8 10 3 6 2.</_></rects> 8184 <tilted>0</tilted></feature> 8185 <threshold>1.7000000225380063e-003</threshold> 8186 <left_val>0.1922380030155182</left_val> 8187 <right_val>-0.5273510217666626</right_val></_></_> 8188 <_> 8189 <!-- tree 69 --> 8190 <_> 8191 <!-- root node --> 8192 <feature> 8193 <rects> 8194 <_>14 2 6 14 -1.</_> 8195 <_>17 2 3 7 2.</_> 8196 <_>14 9 3 7 2.</_></rects> 8197 <tilted>0</tilted></feature> 8198 <threshold>0.0797690004110336</threshold> 8199 <left_val>0.0914919972419739</left_val> 8200 <right_val>2.1049048900604248</right_val></_></_> 8201 <_> 8202 <!-- tree 70 --> 8203 <_> 8204 <!-- root node --> 8205 <feature> 8206 <rects> 8207 <_>4 2 6 14 -1.</_> 8208 <_>4 2 3 7 2.</_> 8209 <_>7 9 3 7 2.</_></rects> 8210 <tilted>0</tilted></feature> 8211 <threshold>-0.0571440011262894</threshold> 8212 <left_val>-1.7452130317687988</left_val> 8213 <right_val>-0.0409100018441677</right_val></_></_> 8214 <_> 8215 <!-- tree 71 --> 8216 <_> 8217 <!-- root node --> 8218 <feature> 8219 <rects> 8220 <_>12 4 6 7 -1.</_> 8221 <_>12 4 3 7 2.</_></rects> 8222 <tilted>0</tilted></feature> 8223 <threshold>7.3830001056194305e-003</threshold> 8224 <left_val>-0.2421479970216751</left_val> 8225 <right_val>0.3557780086994171</right_val></_></_> 8226 <_> 8227 <!-- tree 72 --> 8228 <_> 8229 <!-- root node --> 8230 <feature> 8231 <rects> 8232 <_>9 4 6 9 -1.</_> 8233 <_>11 4 2 9 3.</_></rects> 8234 <tilted>0</tilted></feature> 8235 <threshold>-0.0180409997701645</threshold> 8236 <left_val>1.1779999732971191</left_val> 8237 <right_val>-0.1767670065164566</right_val></_></_> 8238 <_> 8239 <!-- tree 73 --> 8240 <_> 8241 <!-- root node --> 8242 <feature> 8243 <rects> 8244 <_>11 4 8 10 -1.</_> 8245 <_>11 4 4 10 2.</_></rects> 8246 <tilted>0</tilted></feature> 8247 <threshold>0.0945030003786087</threshold> 8248 <left_val>0.1393609941005707</left_val> 8249 <right_val>-1.2993700504302979</right_val></_></_> 8250 <_> 8251 <!-- tree 74 --> 8252 <_> 8253 <!-- root node --> 8254 <feature> 8255 <rects> 8256 <_>5 4 8 10 -1.</_> 8257 <_>9 4 4 10 2.</_></rects> 8258 <tilted>0</tilted></feature> 8259 <threshold>5.4210000671446323e-003</threshold> 8260 <left_val>-0.5460860133171082</left_val> 8261 <right_val>0.1391640007495880</right_val></_></_> 8262 <_> 8263 <!-- tree 75 --> 8264 <_> 8265 <!-- root node --> 8266 <feature> 8267 <rects> 8268 <_>8 18 10 6 -1.</_> 8269 <_>8 20 10 2 3.</_></rects> 8270 <tilted>0</tilted></feature> 8271 <threshold>7.0290002040565014e-003</threshold> 8272 <left_val>-0.2159720063209534</left_val> 8273 <right_val>0.3925809860229492</right_val></_></_> 8274 <_> 8275 <!-- tree 76 --> 8276 <_> 8277 <!-- root node --> 8278 <feature> 8279 <rects> 8280 <_>1 18 21 6 -1.</_> 8281 <_>1 20 21 2 3.</_></rects> 8282 <tilted>0</tilted></feature> 8283 <threshold>0.0345159992575645</threshold> 8284 <left_val>0.0631889998912811</left_val> 8285 <right_val>-0.7210810184478760</right_val></_></_> 8286 <_> 8287 <!-- tree 77 --> 8288 <_> 8289 <!-- root node --> 8290 <feature> 8291 <rects> 8292 <_>9 2 12 6 -1.</_> 8293 <_>9 2 6 6 2.</_></rects> 8294 <tilted>0</tilted></feature> 8295 <threshold>-0.0519249998033047</threshold> 8296 <left_val>0.6866760253906250</left_val> 8297 <right_val>0.0632729977369308</right_val></_></_> 8298 <_> 8299 <!-- tree 78 --> 8300 <_> 8301 <!-- root node --> 8302 <feature> 8303 <rects> 8304 <_>3 2 12 6 -1.</_> 8305 <_>9 2 6 6 2.</_></rects> 8306 <tilted>0</tilted></feature> 8307 <threshold>-0.0691620036959648</threshold> 8308 <left_val>1.7411810159683228</left_val> 8309 <right_val>-0.1661929935216904</right_val></_></_> 8310 <_> 8311 <!-- tree 79 --> 8312 <_> 8313 <!-- root node --> 8314 <feature> 8315 <rects> 8316 <_>12 5 12 6 -1.</_> 8317 <_>18 5 6 3 2.</_> 8318 <_>12 8 6 3 2.</_></rects> 8319 <tilted>0</tilted></feature> 8320 <threshold>-5.5229999125003815e-003</threshold> 8321 <left_val>0.3069469928741455</left_val> 8322 <right_val>-0.1666290014982224</right_val></_></_> 8323 <_> 8324 <!-- tree 80 --> 8325 <_> 8326 <!-- root node --> 8327 <feature> 8328 <rects> 8329 <_>8 8 6 9 -1.</_> 8330 <_>8 11 6 3 3.</_></rects> 8331 <tilted>0</tilted></feature> 8332 <threshold>0.0685999989509583</threshold> 8333 <left_val>-0.2140540033578873</left_val> 8334 <right_val>0.7318500280380249</right_val></_></_> 8335 <_> 8336 <!-- tree 81 --> 8337 <_> 8338 <!-- root node --> 8339 <feature> 8340 <rects> 8341 <_>2 7 20 6 -1.</_> 8342 <_>2 9 20 2 3.</_></rects> 8343 <tilted>0</tilted></feature> 8344 <threshold>-0.0670389980077744</threshold> 8345 <left_val>-0.7936059832572937</left_val> 8346 <right_val>0.2052579969167709</right_val></_></_> 8347 <_> 8348 <!-- tree 82 --> 8349 <_> 8350 <!-- root node --> 8351 <feature> 8352 <rects> 8353 <_>0 5 12 6 -1.</_> 8354 <_>0 5 6 3 2.</_> 8355 <_>6 8 6 3 2.</_></rects> 8356 <tilted>0</tilted></feature> 8357 <threshold>-0.0210050009191036</threshold> 8358 <left_val>0.3734439909458160</left_val> 8359 <right_val>-0.2961860001087189</right_val></_></_> 8360 <_> 8361 <!-- tree 83 --> 8362 <_> 8363 <!-- root node --> 8364 <feature> 8365 <rects> 8366 <_>14 14 8 10 -1.</_> 8367 <_>18 14 4 5 2.</_> 8368 <_>14 19 4 5 2.</_></rects> 8369 <tilted>0</tilted></feature> 8370 <threshold>0.0202789995819330</threshold> 8371 <left_val>-0.0152000002563000</left_val> 8372 <right_val>0.4055530130863190</right_val></_></_> 8373 <_> 8374 <!-- tree 84 --> 8375 <_> 8376 <!-- root node --> 8377 <feature> 8378 <rects> 8379 <_>2 14 8 10 -1.</_> 8380 <_>2 14 4 5 2.</_> 8381 <_>6 19 4 5 2.</_></rects> 8382 <tilted>0</tilted></feature> 8383 <threshold>-0.0471079982817173</threshold> 8384 <left_val>1.2116849422454834</left_val> 8385 <right_val>-0.1746429949998856</right_val></_></_> 8386 <_> 8387 <!-- tree 85 --> 8388 <_> 8389 <!-- root node --> 8390 <feature> 8391 <rects> 8392 <_>2 11 20 13 -1.</_> 8393 <_>2 11 10 13 2.</_></rects> 8394 <tilted>0</tilted></feature> 8395 <threshold>0.1876849979162216</threshold> 8396 <left_val>-0.0229090005159378</left_val> 8397 <right_val>0.6964579820632935</right_val></_></_> 8398 <_> 8399 <!-- tree 86 --> 8400 <_> 8401 <!-- root node --> 8402 <feature> 8403 <rects> 8404 <_>6 9 12 5 -1.</_> 8405 <_>12 9 6 5 2.</_></rects> 8406 <tilted>0</tilted></feature> 8407 <threshold>-0.0432289987802505</threshold> 8408 <left_val>-1.0602480173110962</left_val> 8409 <right_val>-5.5599998449906707e-004</right_val></_></_> 8410 <_> 8411 <!-- tree 87 --> 8412 <_> 8413 <!-- root node --> 8414 <feature> 8415 <rects> 8416 <_>5 6 16 6 -1.</_> 8417 <_>13 6 8 3 2.</_> 8418 <_>5 9 8 3 2.</_></rects> 8419 <tilted>0</tilted></feature> 8420 <threshold>0.0200040005147457</threshold> 8421 <left_val>-0.0327510014176369</left_val> 8422 <right_val>0.5380510091781616</right_val></_></_> 8423 <_> 8424 <!-- tree 88 --> 8425 <_> 8426 <!-- root node --> 8427 <feature> 8428 <rects> 8429 <_>1 19 9 4 -1.</_> 8430 <_>1 21 9 2 2.</_></rects> 8431 <tilted>0</tilted></feature> 8432 <threshold>8.0880001187324524e-003</threshold> 8433 <left_val>0.0375480018556118</left_val> 8434 <right_val>-0.7476890087127686</right_val></_></_> 8435 <_> 8436 <!-- tree 89 --> 8437 <_> 8438 <!-- root node --> 8439 <feature> 8440 <rects> 8441 <_>7 5 12 5 -1.</_> 8442 <_>11 5 4 5 3.</_></rects> 8443 <tilted>0</tilted></feature> 8444 <threshold>0.0271010007709265</threshold> 8445 <left_val>-0.0817900002002716</left_val> 8446 <right_val>0.3338710069656372</right_val></_></_> 8447 <_> 8448 <!-- tree 90 --> 8449 <_> 8450 <!-- root node --> 8451 <feature> 8452 <rects> 8453 <_>3 5 14 12 -1.</_> 8454 <_>3 5 7 6 2.</_> 8455 <_>10 11 7 6 2.</_></rects> 8456 <tilted>0</tilted></feature> 8457 <threshold>-0.0917460024356842</threshold> 8458 <left_val>-1.9213509559631348</left_val> 8459 <right_val>-0.0389529988169670</right_val></_></_> 8460 <_> 8461 <!-- tree 91 --> 8462 <_> 8463 <!-- root node --> 8464 <feature> 8465 <rects> 8466 <_>9 4 9 6 -1.</_> 8467 <_>12 4 3 6 3.</_></rects> 8468 <tilted>0</tilted></feature> 8469 <threshold>-0.0124549996107817</threshold> 8470 <left_val>0.4836060106754303</left_val> 8471 <right_val>0.0181680005043745</right_val></_></_> 8472 <_> 8473 <!-- tree 92 --> 8474 <_> 8475 <!-- root node --> 8476 <feature> 8477 <rects> 8478 <_>2 6 19 3 -1.</_> 8479 <_>2 7 19 1 3.</_></rects> 8480 <tilted>0</tilted></feature> 8481 <threshold>0.0146490000188351</threshold> 8482 <left_val>-0.1990669965744019</left_val> 8483 <right_val>0.7281540036201477</right_val></_></_> 8484 <_> 8485 <!-- tree 93 --> 8486 <_> 8487 <!-- root node --> 8488 <feature> 8489 <rects> 8490 <_>18 10 6 9 -1.</_> 8491 <_>18 13 6 3 3.</_></rects> 8492 <tilted>0</tilted></feature> 8493 <threshold>0.0291019994765520</threshold> 8494 <left_val>0.1987109929323196</left_val> 8495 <right_val>-0.4921680092811585</right_val></_></_> 8496 <_> 8497 <!-- tree 94 --> 8498 <_> 8499 <!-- root node --> 8500 <feature> 8501 <rects> 8502 <_>3 7 18 2 -1.</_> 8503 <_>3 8 18 1 2.</_></rects> 8504 <tilted>0</tilted></feature> 8505 <threshold>8.7799998000264168e-003</threshold> 8506 <left_val>-0.1949959993362427</left_val> 8507 <right_val>0.7731739878654480</right_val></_></_> 8508 <_> 8509 <!-- tree 95 --> 8510 <_> 8511 <!-- root node --> 8512 <feature> 8513 <rects> 8514 <_>20 2 4 18 -1.</_> 8515 <_>22 2 2 9 2.</_> 8516 <_>20 11 2 9 2.</_></rects> 8517 <tilted>0</tilted></feature> 8518 <threshold>-0.0547400005161762</threshold> 8519 <left_val>1.8087190389633179</left_val> 8520 <right_val>0.0683230012655258</right_val></_></_> 8521 <_> 8522 <!-- tree 96 --> 8523 <_> 8524 <!-- root node --> 8525 <feature> 8526 <rects> 8527 <_>2 18 20 3 -1.</_> 8528 <_>2 19 20 1 3.</_></rects> 8529 <tilted>0</tilted></feature> 8530 <threshold>-0.0147980004549026</threshold> 8531 <left_val>0.7806490063667297</left_val> 8532 <right_val>-0.1870959997177124</right_val></_></_> 8533 <_> 8534 <!-- tree 97 --> 8535 <_> 8536 <!-- root node --> 8537 <feature> 8538 <rects> 8539 <_>1 9 22 3 -1.</_> 8540 <_>1 10 22 1 3.</_></rects> 8541 <tilted>0</tilted></feature> 8542 <threshold>0.0250129997730255</threshold> 8543 <left_val>0.1528529971837997</left_val> 8544 <right_val>-1.6021020412445068</right_val></_></_> 8545 <_> 8546 <!-- tree 98 --> 8547 <_> 8548 <!-- root node --> 8549 <feature> 8550 <rects> 8551 <_>0 2 4 18 -1.</_> 8552 <_>0 2 2 9 2.</_> 8553 <_>2 11 2 9 2.</_></rects> 8554 <tilted>0</tilted></feature> 8555 <threshold>0.0465480014681816</threshold> 8556 <left_val>-0.1673820018768311</left_val> 8557 <right_val>1.1902060508728027</right_val></_></_> 8558 <_> 8559 <!-- tree 99 --> 8560 <_> 8561 <!-- root node --> 8562 <feature> 8563 <rects> 8564 <_>19 0 4 23 -1.</_> 8565 <_>19 0 2 23 2.</_></rects> 8566 <tilted>0</tilted></feature> 8567 <threshold>0.0176240000873804</threshold> 8568 <left_val>-0.1028549969196320</left_val> 8569 <right_val>0.3917590081691742</right_val></_></_> 8570 <_> 8571 <!-- tree 100 --> 8572 <_> 8573 <!-- root node --> 8574 <feature> 8575 <rects> 8576 <_>0 3 6 19 -1.</_> 8577 <_>3 3 3 19 2.</_></rects> 8578 <tilted>0</tilted></feature> 8579 <threshold>0.1631959974765778</threshold> 8580 <left_val>-0.0356240011751652</left_val> 8581 <right_val>-1.6098170280456543</right_val></_></_> 8582 <_> 8583 <!-- tree 101 --> 8584 <_> 8585 <!-- root node --> 8586 <feature> 8587 <rects> 8588 <_>18 2 6 9 -1.</_> 8589 <_>20 2 2 9 3.</_></rects> 8590 <tilted>0</tilted></feature> 8591 <threshold>0.0131379999220371</threshold> 8592 <left_val>-0.0563590005040169</left_val> 8593 <right_val>0.5415890216827393</right_val></_></_> 8594 <_> 8595 <!-- tree 102 --> 8596 <_> 8597 <!-- root node --> 8598 <feature> 8599 <rects> 8600 <_>0 5 10 6 -1.</_> 8601 <_>0 7 10 2 3.</_></rects> 8602 <tilted>0</tilted></feature> 8603 <threshold>-0.0156650003045797</threshold> 8604 <left_val>0.2806310057640076</left_val> 8605 <right_val>-0.3170860111713409</right_val></_></_> 8606 <_> 8607 <!-- tree 103 --> 8608 <_> 8609 <!-- root node --> 8610 <feature> 8611 <rects> 8612 <_>7 0 12 12 -1.</_> 8613 <_>13 0 6 6 2.</_> 8614 <_>7 6 6 6 2.</_></rects> 8615 <tilted>0</tilted></feature> 8616 <threshold>0.0805540010333061</threshold> 8617 <left_val>0.1264040023088455</left_val> 8618 <right_val>-1.0297529697418213</right_val></_></_> 8619 <_> 8620 <!-- tree 104 --> 8621 <_> 8622 <!-- root node --> 8623 <feature> 8624 <rects> 8625 <_>0 3 24 6 -1.</_> 8626 <_>0 3 12 3 2.</_> 8627 <_>12 6 12 3 2.</_></rects> 8628 <tilted>0</tilted></feature> 8629 <threshold>0.0353639982640743</threshold> 8630 <left_val>0.0207529999315739</left_val> 8631 <right_val>-0.7910559773445129</right_val></_></_> 8632 <_> 8633 <!-- tree 105 --> 8634 <_> 8635 <!-- root node --> 8636 <feature> 8637 <rects> 8638 <_>10 14 4 10 -1.</_> 8639 <_>10 19 4 5 2.</_></rects> 8640 <tilted>0</tilted></feature> 8641 <threshold>0.0329869985580444</threshold> 8642 <left_val>0.1905709952116013</left_val> 8643 <right_val>-0.8383989930152893</right_val></_></_> 8644 <_> 8645 <!-- tree 106 --> 8646 <_> 8647 <!-- root node --> 8648 <feature> 8649 <rects> 8650 <_>8 9 4 15 -1.</_> 8651 <_>8 14 4 5 3.</_></rects> 8652 <tilted>0</tilted></feature> 8653 <threshold>0.0121950004249811</threshold> 8654 <left_val>0.0737290009856224</left_val> 8655 <right_val>-0.6278070211410523</right_val></_></_> 8656 <_> 8657 <!-- tree 107 --> 8658 <_> 8659 <!-- root node --> 8660 <feature> 8661 <rects> 8662 <_>4 11 17 6 -1.</_> 8663 <_>4 14 17 3 2.</_></rects> 8664 <tilted>0</tilted></feature> 8665 <threshold>0.0430659987032413</threshold> 8666 <left_val>0.0473849996924400</left_val> 8667 <right_val>1.5712939500808716</right_val></_></_> 8668 <_> 8669 <!-- tree 108 --> 8670 <_> 8671 <!-- root node --> 8672 <feature> 8673 <rects> 8674 <_>2 5 18 8 -1.</_> 8675 <_>2 5 9 4 2.</_> 8676 <_>11 9 9 4 2.</_></rects> 8677 <tilted>0</tilted></feature> 8678 <threshold>0.0303269997239113</threshold> 8679 <left_val>-0.2731460034847260</left_val> 8680 <right_val>0.3857200145721436</right_val></_></_> 8681 <_> 8682 <!-- tree 109 --> 8683 <_> 8684 <!-- root node --> 8685 <feature> 8686 <rects> 8687 <_>7 6 14 6 -1.</_> 8688 <_>14 6 7 3 2.</_> 8689 <_>7 9 7 3 2.</_></rects> 8690 <tilted>0</tilted></feature> 8691 <threshold>0.0354930013418198</threshold> 8692 <left_val>0.0545939989387989</left_val> 8693 <right_val>0.5258340239524841</right_val></_></_> 8694 <_> 8695 <!-- tree 110 --> 8696 <_> 8697 <!-- root node --> 8698 <feature> 8699 <rects> 8700 <_>3 6 14 6 -1.</_> 8701 <_>3 6 7 3 2.</_> 8702 <_>10 9 7 3 2.</_></rects> 8703 <tilted>0</tilted></feature> 8704 <threshold>-0.0145969996228814</threshold> 8705 <left_val>0.3815259933471680</left_val> 8706 <right_val>-0.2833240032196045</right_val></_></_> 8707 <_> 8708 <!-- tree 111 --> 8709 <_> 8710 <!-- root node --> 8711 <feature> 8712 <rects> 8713 <_>16 5 3 18 -1.</_> 8714 <_>17 5 1 18 3.</_></rects> 8715 <tilted>0</tilted></feature> 8716 <threshold>0.0126069998368621</threshold> 8717 <left_val>0.1545509994029999</left_val> 8718 <right_val>-0.3050149977207184</right_val></_></_> 8719 <_> 8720 <!-- tree 112 --> 8721 <_> 8722 <!-- root node --> 8723 <feature> 8724 <rects> 8725 <_>5 5 3 18 -1.</_> 8726 <_>6 5 1 18 3.</_></rects> 8727 <tilted>0</tilted></feature> 8728 <threshold>0.0101720001548529</threshold> 8729 <left_val>0.0236370004713535</left_val> 8730 <right_val>-0.8721789717674255</right_val></_></_> 8731 <_> 8732 <!-- tree 113 --> 8733 <_> 8734 <!-- root node --> 8735 <feature> 8736 <rects> 8737 <_>10 10 14 4 -1.</_> 8738 <_>10 12 14 2 2.</_></rects> 8739 <tilted>0</tilted></feature> 8740 <threshold>0.0288430005311966</threshold> 8741 <left_val>0.1609099954366684</left_val> 8742 <right_val>-0.2027759999036789</right_val></_></_> 8743 <_> 8744 <!-- tree 114 --> 8745 <_> 8746 <!-- root node --> 8747 <feature> 8748 <rects> 8749 <_>4 10 9 4 -1.</_> 8750 <_>4 12 9 2 2.</_></rects> 8751 <tilted>0</tilted></feature> 8752 <threshold>5.5100000463426113e-004</threshold> 8753 <left_val>-0.6154540181159973</left_val> 8754 <right_val>0.0809359997510910</right_val></_></_></trees> 8755 <stage_threshold>-3.7160909175872803</stage_threshold> 8756 <parent>10</parent> 8757 <next>-1</next></_> 8758 <_> 8759 <!-- stage 12 --> 8760 <trees> 8761 <_> 8762 <!-- tree 0 --> 8763 <_> 8764 <!-- root node --> 8765 <feature> 8766 <rects> 8767 <_>2 0 18 9 -1.</_> 8768 <_>2 3 18 3 3.</_></rects> 8769 <tilted>0</tilted></feature> 8770 <threshold>0.0483440011739731</threshold> 8771 <left_val>-0.8490459918975830</left_val> 8772 <right_val>0.5697439908981323</right_val></_></_> 8773 <_> 8774 <!-- tree 1 --> 8775 <_> 8776 <!-- root node --> 8777 <feature> 8778 <rects> 8779 <_>6 3 12 8 -1.</_> 8780 <_>10 3 4 8 3.</_></rects> 8781 <tilted>0</tilted></feature> 8782 <threshold>0.0324600003659725</threshold> 8783 <left_val>-0.8141729831695557</left_val> 8784 <right_val>0.4478169977664948</right_val></_></_> 8785 <_> 8786 <!-- tree 2 --> 8787 <_> 8788 <!-- root node --> 8789 <feature> 8790 <rects> 8791 <_>1 1 8 5 -1.</_> 8792 <_>5 1 4 5 2.</_></rects> 8793 <tilted>0</tilted></feature> 8794 <threshold>0.0333399996161461</threshold> 8795 <left_val>-0.3642379939556122</left_val> 8796 <right_val>0.6793739795684815</right_val></_></_> 8797 <_> 8798 <!-- tree 3 --> 8799 <_> 8800 <!-- root node --> 8801 <feature> 8802 <rects> 8803 <_>12 7 7 8 -1.</_> 8804 <_>12 11 7 4 2.</_></rects> 8805 <tilted>0</tilted></feature> 8806 <threshold>6.4019998535513878e-003</threshold> 8807 <left_val>-1.1885459423065186</left_val> 8808 <right_val>0.1923869997262955</right_val></_></_> 8809 <_> 8810 <!-- tree 4 --> 8811 <_> 8812 <!-- root node --> 8813 <feature> 8814 <rects> 8815 <_>0 12 22 4 -1.</_> 8816 <_>0 14 22 2 2.</_></rects> 8817 <tilted>0</tilted></feature> 8818 <threshold>-5.6889997795224190e-003</threshold> 8819 <left_val>0.3308529853820801</left_val> 8820 <right_val>-0.7133409976959229</right_val></_></_> 8821 <_> 8822 <!-- tree 5 --> 8823 <_> 8824 <!-- root node --> 8825 <feature> 8826 <rects> 8827 <_>15 6 4 15 -1.</_> 8828 <_>15 11 4 5 3.</_></rects> 8829 <tilted>0</tilted></feature> 8830 <threshold>0.0126980002969503</threshold> 8831 <left_val>-0.5099080204963684</left_val> 8832 <right_val>0.1137629970908165</right_val></_></_> 8833 <_> 8834 <!-- tree 6 --> 8835 <_> 8836 <!-- root node --> 8837 <feature> 8838 <rects> 8839 <_>5 7 7 8 -1.</_> 8840 <_>5 11 7 4 2.</_></rects> 8841 <tilted>0</tilted></feature> 8842 <threshold>6.0549997724592686e-003</threshold> 8843 <left_val>-1.0470550060272217</left_val> 8844 <right_val>0.2022259980440140</right_val></_></_> 8845 <_> 8846 <!-- tree 7 --> 8847 <_> 8848 <!-- root node --> 8849 <feature> 8850 <rects> 8851 <_>8 18 9 4 -1.</_> 8852 <_>8 20 9 2 2.</_></rects> 8853 <tilted>0</tilted></feature> 8854 <threshold>2.6420000940561295e-003</threshold> 8855 <left_val>-0.5055940151214600</left_val> 8856 <right_val>0.3644120097160339</right_val></_></_> 8857 <_> 8858 <!-- tree 8 --> 8859 <_> 8860 <!-- root node --> 8861 <feature> 8862 <rects> 8863 <_>1 2 22 4 -1.</_> 8864 <_>1 4 22 2 2.</_></rects> 8865 <tilted>0</tilted></feature> 8866 <threshold>-0.0169259998947382</threshold> 8867 <left_val>-0.9954190254211426</left_val> 8868 <right_val>0.1260219961404800</right_val></_></_> 8869 <_> 8870 <!-- tree 9 --> 8871 <_> 8872 <!-- root node --> 8873 <feature> 8874 <rects> 8875 <_>17 3 6 17 -1.</_> 8876 <_>19 3 2 17 3.</_></rects> 8877 <tilted>0</tilted></feature> 8878 <threshold>0.0282359998673201</threshold> 8879 <left_val>-0.0941379964351654</left_val> 8880 <right_val>0.5778040289878845</right_val></_></_> 8881 <_> 8882 <!-- tree 10 --> 8883 <_> 8884 <!-- root node --> 8885 <feature> 8886 <rects> 8887 <_>8 2 8 18 -1.</_> 8888 <_>8 11 8 9 2.</_></rects> 8889 <tilted>0</tilted></feature> 8890 <threshold>0.0104289995506406</threshold> 8891 <left_val>0.2327290028333664</left_val> 8892 <right_val>-0.5256969928741455</right_val></_></_> 8893 <_> 8894 <!-- tree 11 --> 8895 <_> 8896 <!-- root node --> 8897 <feature> 8898 <rects> 8899 <_>17 0 6 12 -1.</_> 8900 <_>20 0 3 6 2.</_> 8901 <_>17 6 3 6 2.</_></rects> 8902 <tilted>0</tilted></feature> 8903 <threshold>9.8860003054141998e-003</threshold> 8904 <left_val>-0.1031629964709282</left_val> 8905 <right_val>0.4765760004520416</right_val></_></_> 8906 <_> 8907 <!-- tree 12 --> 8908 <_> 8909 <!-- root node --> 8910 <feature> 8911 <rects> 8912 <_>7 0 6 9 -1.</_> 8913 <_>9 0 2 9 3.</_></rects> 8914 <tilted>0</tilted></feature> 8915 <threshold>0.0260150004178286</threshold> 8916 <left_val>-1.0920000495389104e-003</left_val> 8917 <right_val>-1.5581729412078857</right_val></_></_> 8918 <_> 8919 <!-- tree 13 --> 8920 <_> 8921 <!-- root node --> 8922 <feature> 8923 <rects> 8924 <_>15 5 9 12 -1.</_> 8925 <_>15 11 9 6 2.</_></rects> 8926 <tilted>0</tilted></feature> 8927 <threshold>-0.0255379993468523</threshold> 8928 <left_val>-0.6545140147209168</left_val> 8929 <right_val>0.1884319931268692</right_val></_></_> 8930 <_> 8931 <!-- tree 14 --> 8932 <_> 8933 <!-- root node --> 8934 <feature> 8935 <rects> 8936 <_>2 22 18 2 -1.</_> 8937 <_>2 23 18 1 2.</_></rects> 8938 <tilted>0</tilted></feature> 8939 <threshold>-3.5310001112520695e-003</threshold> 8940 <left_val>0.2814059853553772</left_val> 8941 <right_val>-0.4457530081272125</right_val></_></_> 8942 <_> 8943 <!-- tree 15 --> 8944 <_> 8945 <!-- root node --> 8946 <feature> 8947 <rects> 8948 <_>10 10 12 6 -1.</_> 8949 <_>16 10 6 3 2.</_> 8950 <_>10 13 6 3 2.</_></rects> 8951 <tilted>0</tilted></feature> 8952 <threshold>9.2449998483061790e-003</threshold> 8953 <left_val>0.1561200022697449</left_val> 8954 <right_val>-0.2137099951505661</right_val></_></_> 8955 <_> 8956 <!-- tree 16 --> 8957 <_> 8958 <!-- root node --> 8959 <feature> 8960 <rects> 8961 <_>0 1 4 11 -1.</_> 8962 <_>2 1 2 11 2.</_></rects> 8963 <tilted>0</tilted></feature> 8964 <threshold>0.0210309997200966</threshold> 8965 <left_val>-0.2917029857635498</left_val> 8966 <right_val>0.5223410129547119</right_val></_></_> 8967 <_> 8968 <!-- tree 17 --> 8969 <_> 8970 <!-- root node --> 8971 <feature> 8972 <rects> 8973 <_>20 0 4 10 -1.</_> 8974 <_>20 0 2 10 2.</_></rects> 8975 <tilted>0</tilted></feature> 8976 <threshold>-0.0510630011558533</threshold> 8977 <left_val>1.3661290407180786</left_val> 8978 <right_val>0.0304659996181726</right_val></_></_> 8979 <_> 8980 <!-- tree 18 --> 8981 <_> 8982 <!-- root node --> 8983 <feature> 8984 <rects> 8985 <_>1 3 6 17 -1.</_> 8986 <_>3 3 2 17 3.</_></rects> 8987 <tilted>0</tilted></feature> 8988 <threshold>-0.0623300001025200</threshold> 8989 <left_val>1.2207020521163940</left_val> 8990 <right_val>-0.2243440002202988</right_val></_></_> 8991 <_> 8992 <!-- tree 19 --> 8993 <_> 8994 <!-- root node --> 8995 <feature> 8996 <rects> 8997 <_>15 15 9 6 -1.</_> 8998 <_>15 17 9 2 3.</_></rects> 8999 <tilted>0</tilted></feature> 9000 <threshold>-0.0329630002379417</threshold> 9001 <left_val>-0.8201680183410645</left_val> 9002 <right_val>0.1453189998865128</right_val></_></_> 9003 <_> 9004 <!-- tree 20 --> 9005 <_> 9006 <!-- root node --> 9007 <feature> 9008 <rects> 9009 <_>0 13 8 9 -1.</_> 9010 <_>0 16 8 3 3.</_></rects> 9011 <tilted>0</tilted></feature> 9012 <threshold>-0.0374180004000664</threshold> 9013 <left_val>-1.2218099832534790</left_val> 9014 <right_val>0.0194489993155003</right_val></_></_> 9015 <_> 9016 <!-- tree 21 --> 9017 <_> 9018 <!-- root node --> 9019 <feature> 9020 <rects> 9021 <_>16 8 6 12 -1.</_> 9022 <_>16 12 6 4 3.</_></rects> 9023 <tilted>0</tilted></feature> 9024 <threshold>0.1240279972553253</threshold> 9025 <left_val>0.1208230033516884</left_val> 9026 <right_val>-0.9872930049896240</right_val></_></_> 9027 <_> 9028 <!-- tree 22 --> 9029 <_> 9030 <!-- root node --> 9031 <feature> 9032 <rects> 9033 <_>2 8 6 12 -1.</_> 9034 <_>2 12 6 4 3.</_></rects> 9035 <tilted>0</tilted></feature> 9036 <threshold>-8.9229997247457504e-003</threshold> 9037 <left_val>-1.1688489913940430</left_val> 9038 <right_val>0.0211050007492304</right_val></_></_> 9039 <_> 9040 <!-- tree 23 --> 9041 <_> 9042 <!-- root node --> 9043 <feature> 9044 <rects> 9045 <_>10 2 4 15 -1.</_> 9046 <_>10 7 4 5 3.</_></rects> 9047 <tilted>0</tilted></feature> 9048 <threshold>-0.0598799996078014</threshold> 9049 <left_val>-1.0689330101013184</left_val> 9050 <right_val>0.1986020058393478</right_val></_></_> 9051 <_> 9052 <!-- tree 24 --> 9053 <_> 9054 <!-- root node --> 9055 <feature> 9056 <rects> 9057 <_>1 5 19 3 -1.</_> 9058 <_>1 6 19 1 3.</_></rects> 9059 <tilted>0</tilted></feature> 9060 <threshold>6.2620001845061779e-003</threshold> 9061 <left_val>-0.3622959852218628</left_val> 9062 <right_val>0.3800080120563507</right_val></_></_> 9063 <_> 9064 <!-- tree 25 --> 9065 <_> 9066 <!-- root node --> 9067 <feature> 9068 <rects> 9069 <_>11 8 9 7 -1.</_> 9070 <_>14 8 3 7 3.</_></rects> 9071 <tilted>0</tilted></feature> 9072 <threshold>-0.0176730006933212</threshold> 9073 <left_val>0.4909409880638123</left_val> 9074 <right_val>-0.1460669934749603</right_val></_></_> 9075 <_> 9076 <!-- tree 26 --> 9077 <_> 9078 <!-- root node --> 9079 <feature> 9080 <rects> 9081 <_>3 8 12 9 -1.</_> 9082 <_>3 11 12 3 3.</_></rects> 9083 <tilted>0</tilted></feature> 9084 <threshold>0.0175790004432201</threshold> 9085 <left_val>0.5872809886932373</left_val> 9086 <right_val>-0.2777439951896668</right_val></_></_> 9087 <_> 9088 <!-- tree 27 --> 9089 <_> 9090 <!-- root node --> 9091 <feature> 9092 <rects> 9093 <_>3 6 18 3 -1.</_> 9094 <_>3 7 18 1 3.</_></rects> 9095 <tilted>0</tilted></feature> 9096 <threshold>5.1560001447796822e-003</threshold> 9097 <left_val>-0.0751949995756149</left_val> 9098 <right_val>0.6019309759140015</right_val></_></_> 9099 <_> 9100 <!-- tree 28 --> 9101 <_> 9102 <!-- root node --> 9103 <feature> 9104 <rects> 9105 <_>10 0 4 12 -1.</_> 9106 <_>10 6 4 6 2.</_></rects> 9107 <tilted>0</tilted></feature> 9108 <threshold>-0.0105999996885657</threshold> 9109 <left_val>0.2763740122318268</left_val> 9110 <right_val>-0.3779430091381073</right_val></_></_> 9111 <_> 9112 <!-- tree 29 --> 9113 <_> 9114 <!-- root node --> 9115 <feature> 9116 <rects> 9117 <_>3 9 18 14 -1.</_> 9118 <_>3 9 9 14 2.</_></rects> 9119 <tilted>0</tilted></feature> 9120 <threshold>0.2088409960269928</threshold> 9121 <left_val>-5.3599998354911804e-003</left_val> 9122 <right_val>1.0317809581756592</right_val></_></_> 9123 <_> 9124 <!-- tree 30 --> 9125 <_> 9126 <!-- root node --> 9127 <feature> 9128 <rects> 9129 <_>0 0 4 9 -1.</_> 9130 <_>2 0 2 9 2.</_></rects> 9131 <tilted>0</tilted></feature> 9132 <threshold>-0.0264129992574453</threshold> 9133 <left_val>0.8233640193939209</left_val> 9134 <right_val>-0.2248059958219528</right_val></_></_> 9135 <_> 9136 <!-- tree 31 --> 9137 <_> 9138 <!-- root node --> 9139 <feature> 9140 <rects> 9141 <_>12 5 4 18 -1.</_> 9142 <_>12 5 2 18 2.</_></rects> 9143 <tilted>0</tilted></feature> 9144 <threshold>0.0588920004665852</threshold> 9145 <left_val>0.1309829950332642</left_val> 9146 <right_val>-1.1853699684143066</right_val></_></_> 9147 <_> 9148 <!-- tree 32 --> 9149 <_> 9150 <!-- root node --> 9151 <feature> 9152 <rects> 9153 <_>8 5 4 18 -1.</_> 9154 <_>10 5 2 18 2.</_></rects> 9155 <tilted>0</tilted></feature> 9156 <threshold>-0.0115790003910661</threshold> 9157 <left_val>-0.9066780209541321</left_val> 9158 <right_val>0.0441269986331463</right_val></_></_> 9159 <_> 9160 <!-- tree 33 --> 9161 <_> 9162 <!-- root node --> 9163 <feature> 9164 <rects> 9165 <_>10 5 6 10 -1.</_> 9166 <_>12 5 2 10 3.</_></rects> 9167 <tilted>0</tilted></feature> 9168 <threshold>0.0459880009293556</threshold> 9169 <left_val>0.0101439999416471</left_val> 9170 <right_val>1.0740900039672852</right_val></_></_> 9171 <_> 9172 <!-- tree 34 --> 9173 <_> 9174 <!-- root node --> 9175 <feature> 9176 <rects> 9177 <_>9 4 4 11 -1.</_> 9178 <_>11 4 2 11 2.</_></rects> 9179 <tilted>0</tilted></feature> 9180 <threshold>-0.0228380002081394</threshold> 9181 <left_val>1.7791990041732788</left_val> 9182 <right_val>-0.1731549948453903</right_val></_></_> 9183 <_> 9184 <!-- tree 35 --> 9185 <_> 9186 <!-- root node --> 9187 <feature> 9188 <rects> 9189 <_>4 16 18 3 -1.</_> 9190 <_>4 17 18 1 3.</_></rects> 9191 <tilted>0</tilted></feature> 9192 <threshold>-8.1709995865821838e-003</threshold> 9193 <left_val>0.5738630294799805</left_val> 9194 <right_val>-0.0741060003638268</right_val></_></_> 9195 <_> 9196 <!-- tree 36 --> 9197 <_> 9198 <!-- root node --> 9199 <feature> 9200 <rects> 9201 <_>0 16 20 3 -1.</_> 9202 <_>0 17 20 1 3.</_></rects> 9203 <tilted>0</tilted></feature> 9204 <threshold>3.5359999164938927e-003</threshold> 9205 <left_val>-0.3207289874553680</left_val> 9206 <right_val>0.4018250107765198</right_val></_></_> 9207 <_> 9208 <!-- tree 37 --> 9209 <_> 9210 <!-- root node --> 9211 <feature> 9212 <rects> 9213 <_>9 9 6 12 -1.</_> 9214 <_>9 13 6 4 3.</_></rects> 9215 <tilted>0</tilted></feature> 9216 <threshold>0.0494449995458126</threshold> 9217 <left_val>0.1928800046443939</left_val> 9218 <right_val>-1.2166700363159180</right_val></_></_> 9219 <_> 9220 <!-- tree 38 --> 9221 <_> 9222 <!-- root node --> 9223 <feature> 9224 <rects> 9225 <_>8 13 8 8 -1.</_> 9226 <_>8 17 8 4 2.</_></rects> 9227 <tilted>0</tilted></feature> 9228 <threshold>3.5139999818056822e-003</threshold> 9229 <left_val>0.0695680007338524</left_val> 9230 <right_val>-0.7132369875907898</right_val></_></_> 9231 <_> 9232 <!-- tree 39 --> 9233 <_> 9234 <!-- root node --> 9235 <feature> 9236 <rects> 9237 <_>13 10 3 12 -1.</_> 9238 <_>13 16 3 6 2.</_></rects> 9239 <tilted>0</tilted></feature> 9240 <threshold>-0.0309960003942251</threshold> 9241 <left_val>-0.3886219859123230</left_val> 9242 <right_val>0.1809879988431931</right_val></_></_> 9243 <_> 9244 <!-- tree 40 --> 9245 <_> 9246 <!-- root node --> 9247 <feature> 9248 <rects> 9249 <_>5 9 14 14 -1.</_> 9250 <_>5 9 7 7 2.</_> 9251 <_>12 16 7 7 2.</_></rects> 9252 <tilted>0</tilted></feature> 9253 <threshold>0.0864529982209206</threshold> 9254 <left_val>-0.0257929991930723</left_val> 9255 <right_val>-1.5453219413757324</right_val></_></_> 9256 <_> 9257 <!-- tree 41 --> 9258 <_> 9259 <!-- root node --> 9260 <feature> 9261 <rects> 9262 <_>0 0 24 10 -1.</_> 9263 <_>12 0 12 5 2.</_> 9264 <_>0 5 12 5 2.</_></rects> 9265 <tilted>0</tilted></feature> 9266 <threshold>-0.1365260034799576</threshold> 9267 <left_val>-1.9199420213699341</left_val> 9268 <right_val>0.1661330014467239</right_val></_></_> 9269 <_> 9270 <!-- tree 42 --> 9271 <_> 9272 <!-- root node --> 9273 <feature> 9274 <rects> 9275 <_>1 11 18 2 -1.</_> 9276 <_>1 12 18 1 2.</_></rects> 9277 <tilted>0</tilted></feature> 9278 <threshold>-5.7689999230206013e-003</threshold> 9279 <left_val>-1.2822589874267578</left_val> 9280 <right_val>-0.0159079991281033</right_val></_></_> 9281 <_> 9282 <!-- tree 43 --> 9283 <_> 9284 <!-- root node --> 9285 <feature> 9286 <rects> 9287 <_>19 5 5 12 -1.</_> 9288 <_>19 9 5 4 3.</_></rects> 9289 <tilted>0</tilted></feature> 9290 <threshold>-0.0178999993950129</threshold> 9291 <left_val>-0.4040989875793457</left_val> 9292 <right_val>0.2359160035848618</right_val></_></_> 9293 <_> 9294 <!-- tree 44 --> 9295 <_> 9296 <!-- root node --> 9297 <feature> 9298 <rects> 9299 <_>0 5 5 12 -1.</_> 9300 <_>0 9 5 4 3.</_></rects> 9301 <tilted>0</tilted></feature> 9302 <threshold>-0.0199699997901917</threshold> 9303 <left_val>-0.7289190292358398</left_val> 9304 <right_val>0.0562350004911423</right_val></_></_> 9305 <_> 9306 <!-- tree 45 --> 9307 <_> 9308 <!-- root node --> 9309 <feature> 9310 <rects> 9311 <_>16 6 8 18 -1.</_> 9312 <_>20 6 4 9 2.</_> 9313 <_>16 15 4 9 2.</_></rects> 9314 <tilted>0</tilted></feature> 9315 <threshold>-0.0574930012226105</threshold> 9316 <left_val>0.5783079862594605</left_val> 9317 <right_val>-0.0157960001379251</right_val></_></_> 9318 <_> 9319 <!-- tree 46 --> 9320 <_> 9321 <!-- root node --> 9322 <feature> 9323 <rects> 9324 <_>0 6 8 18 -1.</_> 9325 <_>0 6 4 9 2.</_> 9326 <_>4 15 4 9 2.</_></rects> 9327 <tilted>0</tilted></feature> 9328 <threshold>-0.0830560028553009</threshold> 9329 <left_val>0.9151160120964050</left_val> 9330 <right_val>-0.2112140059471130</right_val></_></_> 9331 <_> 9332 <!-- tree 47 --> 9333 <_> 9334 <!-- root node --> 9335 <feature> 9336 <rects> 9337 <_>12 5 12 12 -1.</_> 9338 <_>18 5 6 6 2.</_> 9339 <_>12 11 6 6 2.</_></rects> 9340 <tilted>0</tilted></feature> 9341 <threshold>-0.0537710003554821</threshold> 9342 <left_val>-0.5193129777908325</left_val> 9343 <right_val>0.1857600063085556</right_val></_></_> 9344 <_> 9345 <!-- tree 48 --> 9346 <_> 9347 <!-- root node --> 9348 <feature> 9349 <rects> 9350 <_>7 6 6 9 -1.</_> 9351 <_>9 6 2 9 3.</_></rects> 9352 <tilted>0</tilted></feature> 9353 <threshold>-8.3670001477003098e-003</threshold> 9354 <left_val>0.2410970032215118</left_val> 9355 <right_val>-0.3964860141277313</right_val></_></_> 9356 <_> 9357 <!-- tree 49 --> 9358 <_> 9359 <!-- root node --> 9360 <feature> 9361 <rects> 9362 <_>9 13 6 11 -1.</_> 9363 <_>11 13 2 11 3.</_></rects> 9364 <tilted>0</tilted></feature> 9365 <threshold>0.0554069988429546</threshold> 9366 <left_val>0.1677120029926300</left_val> 9367 <right_val>-2.5664970874786377</right_val></_></_> 9368 <_> 9369 <!-- tree 50 --> 9370 <_> 9371 <!-- root node --> 9372 <feature> 9373 <rects> 9374 <_>0 5 12 12 -1.</_> 9375 <_>0 5 6 6 2.</_> 9376 <_>6 11 6 6 2.</_></rects> 9377 <tilted>0</tilted></feature> 9378 <threshold>-0.0671809986233711</threshold> 9379 <left_val>-1.3658570051193237</left_val> 9380 <right_val>-0.0142320003360510</right_val></_></_> 9381 <_> 9382 <!-- tree 51 --> 9383 <_> 9384 <!-- root node --> 9385 <feature> 9386 <rects> 9387 <_>1 2 23 3 -1.</_> 9388 <_>1 3 23 1 3.</_></rects> 9389 <tilted>0</tilted></feature> 9390 <threshold>-0.0239000003784895</threshold> 9391 <left_val>-1.7084569931030273</left_val> 9392 <right_val>0.1650779992341995</right_val></_></_> 9393 <_> 9394 <!-- tree 52 --> 9395 <_> 9396 <!-- root node --> 9397 <feature> 9398 <rects> 9399 <_>1 15 19 3 -1.</_> 9400 <_>1 16 19 1 3.</_></rects> 9401 <tilted>0</tilted></feature> 9402 <threshold>5.5949999950826168e-003</threshold> 9403 <left_val>-0.3137399852275848</left_val> 9404 <right_val>0.3283790051937103</right_val></_></_> 9405 <_> 9406 <!-- tree 53 --> 9407 <_> 9408 <!-- root node --> 9409 <feature> 9410 <rects> 9411 <_>13 17 11 4 -1.</_> 9412 <_>13 19 11 2 2.</_></rects> 9413 <tilted>0</tilted></feature> 9414 <threshold>0.0212949998676777</threshold> 9415 <left_val>0.1495340019464493</left_val> 9416 <right_val>-0.4857980012893677</right_val></_></_> 9417 <_> 9418 <!-- tree 54 --> 9419 <_> 9420 <!-- root node --> 9421 <feature> 9422 <rects> 9423 <_>0 13 8 5 -1.</_> 9424 <_>4 13 4 5 2.</_></rects> 9425 <tilted>0</tilted></feature> 9426 <threshold>-0.0246130004525185</threshold> 9427 <left_val>0.7434639930725098</left_val> 9428 <right_val>-0.2230519950389862</right_val></_></_> 9429 <_> 9430 <!-- tree 55 --> 9431 <_> 9432 <!-- root node --> 9433 <feature> 9434 <rects> 9435 <_>12 10 10 4 -1.</_> 9436 <_>12 10 5 4 2.</_></rects> 9437 <tilted>0</tilted></feature> 9438 <threshold>-0.0196260008960962</threshold> 9439 <left_val>-0.4091829955577850</left_val> 9440 <right_val>0.1889320015907288</right_val></_></_> 9441 <_> 9442 <!-- tree 56 --> 9443 <_> 9444 <!-- root node --> 9445 <feature> 9446 <rects> 9447 <_>4 6 9 9 -1.</_> 9448 <_>4 9 9 3 3.</_></rects> 9449 <tilted>0</tilted></feature> 9450 <threshold>-0.0532660000026226</threshold> 9451 <left_val>0.8138160109519959</left_val> 9452 <right_val>-0.2085369974374771</right_val></_></_> 9453 <_> 9454 <!-- tree 57 --> 9455 <_> 9456 <!-- root node --> 9457 <feature> 9458 <rects> 9459 <_>15 14 9 6 -1.</_> 9460 <_>15 16 9 2 3.</_></rects> 9461 <tilted>0</tilted></feature> 9462 <threshold>7.1290000341832638e-003</threshold> 9463 <left_val>0.3299610018730164</left_val> 9464 <right_val>-0.5993739962577820</right_val></_></_> 9465 <_> 9466 <!-- tree 58 --> 9467 <_> 9468 <!-- root node --> 9469 <feature> 9470 <rects> 9471 <_>1 12 9 6 -1.</_> 9472 <_>1 14 9 2 3.</_></rects> 9473 <tilted>0</tilted></feature> 9474 <threshold>-0.0224869996309280</threshold> 9475 <left_val>-1.2551610469818115</left_val> 9476 <right_val>-0.0204130001366138</right_val></_></_> 9477 <_> 9478 <!-- tree 59 --> 9479 <_> 9480 <!-- root node --> 9481 <feature> 9482 <rects> 9483 <_>3 10 20 8 -1.</_> 9484 <_>13 10 10 4 2.</_> 9485 <_>3 14 10 4 2.</_></rects> 9486 <tilted>0</tilted></feature> 9487 <threshold>-0.0823109969496727</threshold> 9488 <left_val>1.3821430206298828</left_val> 9489 <right_val>0.0593089982867241</right_val></_></_> 9490 <_> 9491 <!-- tree 60 --> 9492 <_> 9493 <!-- root node --> 9494 <feature> 9495 <rects> 9496 <_>2 0 9 18 -1.</_> 9497 <_>5 0 3 18 3.</_></rects> 9498 <tilted>0</tilted></feature> 9499 <threshold>0.1309700012207031</threshold> 9500 <left_val>-0.0358439981937408</left_val> 9501 <right_val>-1.5396369695663452</right_val></_></_> 9502 <_> 9503 <!-- tree 61 --> 9504 <_> 9505 <!-- root node --> 9506 <feature> 9507 <rects> 9508 <_>13 11 9 10 -1.</_> 9509 <_>16 11 3 10 3.</_></rects> 9510 <tilted>0</tilted></feature> 9511 <threshold>0.0142930001020432</threshold> 9512 <left_val>-0.1847520023584366</left_val> 9513 <right_val>0.3745500147342682</right_val></_></_> 9514 <_> 9515 <!-- tree 62 --> 9516 <_> 9517 <!-- root node --> 9518 <feature> 9519 <rects> 9520 <_>1 2 8 5 -1.</_> 9521 <_>5 2 4 5 2.</_></rects> 9522 <tilted>0</tilted></feature> 9523 <threshold>6.3479999080300331e-003</threshold> 9524 <left_val>-0.4490109980106354</left_val> 9525 <right_val>0.1387699991464615</right_val></_></_> 9526 <_> 9527 <!-- tree 63 --> 9528 <_> 9529 <!-- root node --> 9530 <feature> 9531 <rects> 9532 <_>3 4 21 6 -1.</_> 9533 <_>10 4 7 6 3.</_></rects> 9534 <tilted>0</tilted></feature> 9535 <threshold>-0.0460550002753735</threshold> 9536 <left_val>0.6783260107040405</left_val> 9537 <right_val>-0.0170719996094704</right_val></_></_> 9538 <_> 9539 <!-- tree 64 --> 9540 <_> 9541 <!-- root node --> 9542 <feature> 9543 <rects> 9544 <_>7 0 10 14 -1.</_> 9545 <_>7 0 5 7 2.</_> 9546 <_>12 7 5 7 2.</_></rects> 9547 <tilted>0</tilted></feature> 9548 <threshold>0.0576939992606640</threshold> 9549 <left_val>-0.0119559997692704</left_val> 9550 <right_val>-1.2261159420013428</right_val></_></_> 9551 <_> 9552 <!-- tree 65 --> 9553 <_> 9554 <!-- root node --> 9555 <feature> 9556 <rects> 9557 <_>12 17 12 4 -1.</_> 9558 <_>12 19 12 2 2.</_></rects> 9559 <tilted>0</tilted></feature> 9560 <threshold>-6.0609998181462288e-003</threshold> 9561 <left_val>0.3395859897136688</left_val> 9562 <right_val>6.2800000887364149e-004</right_val></_></_> 9563 <_> 9564 <!-- tree 66 --> 9565 <_> 9566 <!-- root node --> 9567 <feature> 9568 <rects> 9569 <_>0 6 23 4 -1.</_> 9570 <_>0 8 23 2 2.</_></rects> 9571 <tilted>0</tilted></feature> 9572 <threshold>-0.0521630011498928</threshold> 9573 <left_val>-1.0621069669723511</left_val> 9574 <right_val>-0.0137799996882677</right_val></_></_> 9575 <_> 9576 <!-- tree 67 --> 9577 <_> 9578 <!-- root node --> 9579 <feature> 9580 <rects> 9581 <_>13 10 8 10 -1.</_> 9582 <_>17 10 4 5 2.</_> 9583 <_>13 15 4 5 2.</_></rects> 9584 <tilted>0</tilted></feature> 9585 <threshold>0.0465729981660843</threshold> 9586 <left_val>0.1453880071640015</left_val> 9587 <right_val>-1.2384550571441650</right_val></_></_> 9588 <_> 9589 <!-- tree 68 --> 9590 <_> 9591 <!-- root node --> 9592 <feature> 9593 <rects> 9594 <_>0 16 18 3 -1.</_> 9595 <_>0 17 18 1 3.</_></rects> 9596 <tilted>0</tilted></feature> 9597 <threshold>7.5309998355805874e-003</threshold> 9598 <left_val>-0.2446770071983337</left_val> 9599 <right_val>0.5137709975242615</right_val></_></_> 9600 <_> 9601 <!-- tree 69 --> 9602 <_> 9603 <!-- root node --> 9604 <feature> 9605 <rects> 9606 <_>15 16 9 4 -1.</_> 9607 <_>15 18 9 2 2.</_></rects> 9608 <tilted>0</tilted></feature> 9609 <threshold>0.0216150004416704</threshold> 9610 <left_val>0.1307259947061539</left_val> 9611 <right_val>-0.7099679708480835</right_val></_></_> 9612 <_> 9613 <!-- tree 70 --> 9614 <_> 9615 <!-- root node --> 9616 <feature> 9617 <rects> 9618 <_>0 16 9 4 -1.</_> 9619 <_>0 18 9 2 2.</_></rects> 9620 <tilted>0</tilted></feature> 9621 <threshold>-0.0178640000522137</threshold> 9622 <left_val>-1.0474660396575928</left_val> 9623 <right_val>4.9599999329075217e-004</right_val></_></_> 9624 <_> 9625 <!-- tree 71 --> 9626 <_> 9627 <!-- root node --> 9628 <feature> 9629 <rects> 9630 <_>13 11 6 6 -1.</_> 9631 <_>13 11 3 6 2.</_></rects> 9632 <tilted>0</tilted></feature> 9633 <threshold>-0.0371950007975101</threshold> 9634 <left_val>-1.5126730203628540</left_val> 9635 <right_val>0.1480139940977097</right_val></_></_> 9636 <_> 9637 <!-- tree 72 --> 9638 <_> 9639 <!-- root node --> 9640 <feature> 9641 <rects> 9642 <_>5 11 6 6 -1.</_> 9643 <_>8 11 3 6 2.</_></rects> 9644 <tilted>0</tilted></feature> 9645 <threshold>-3.1100001069717109e-004</threshold> 9646 <left_val>0.1397150009870529</left_val> 9647 <right_val>-0.4686749875545502</right_val></_></_> 9648 <_> 9649 <!-- tree 73 --> 9650 <_> 9651 <!-- root node --> 9652 <feature> 9653 <rects> 9654 <_>0 3 24 6 -1.</_> 9655 <_>12 3 12 3 2.</_> 9656 <_>0 6 12 3 2.</_></rects> 9657 <tilted>0</tilted></feature> 9658 <threshold>0.0250429995357990</threshold> 9659 <left_val>0.2863200008869171</left_val> 9660 <right_val>-0.4179469943046570</right_val></_></_> 9661 <_> 9662 <!-- tree 74 --> 9663 <_> 9664 <!-- root node --> 9665 <feature> 9666 <rects> 9667 <_>2 4 18 3 -1.</_> 9668 <_>2 5 18 1 3.</_></rects> 9669 <tilted>0</tilted></feature> 9670 <threshold>9.3449996784329414e-003</threshold> 9671 <left_val>-0.2733620107173920</left_val> 9672 <right_val>0.4344469904899597</right_val></_></_> 9673 <_> 9674 <!-- tree 75 --> 9675 <_> 9676 <!-- root node --> 9677 <feature> 9678 <rects> 9679 <_>0 0 24 4 -1.</_> 9680 <_>12 0 12 2 2.</_> 9681 <_>0 2 12 2 2.</_></rects> 9682 <tilted>0</tilted></feature> 9683 <threshold>0.0323639996349812</threshold> 9684 <left_val>0.1843889951705933</left_val> 9685 <right_val>-0.9501929879188538</right_val></_></_> 9686 <_> 9687 <!-- tree 76 --> 9688 <_> 9689 <!-- root node --> 9690 <feature> 9691 <rects> 9692 <_>1 16 18 3 -1.</_> 9693 <_>1 17 18 1 3.</_></rects> 9694 <tilted>0</tilted></feature> 9695 <threshold>-6.2299999408423901e-003</threshold> 9696 <left_val>0.3258199989795685</left_val> 9697 <right_val>-0.3081560134887695</right_val></_></_> 9698 <_> 9699 <!-- tree 77 --> 9700 <_> 9701 <!-- root node --> 9702 <feature> 9703 <rects> 9704 <_>15 15 9 6 -1.</_> 9705 <_>15 17 9 2 3.</_></rects> 9706 <tilted>0</tilted></feature> 9707 <threshold>0.0514889992773533</threshold> 9708 <left_val>0.1141600012779236</left_val> 9709 <right_val>-1.9795479774475098</right_val></_></_> 9710 <_> 9711 <!-- tree 78 --> 9712 <_> 9713 <!-- root node --> 9714 <feature> 9715 <rects> 9716 <_>0 15 9 6 -1.</_> 9717 <_>0 17 9 2 3.</_></rects> 9718 <tilted>0</tilted></feature> 9719 <threshold>-0.0264490004628897</threshold> 9720 <left_val>-1.1067299842834473</left_val> 9721 <right_val>-8.5519999265670776e-003</right_val></_></_> 9722 <_> 9723 <!-- tree 79 --> 9724 <_> 9725 <!-- root node --> 9726 <feature> 9727 <rects> 9728 <_>6 17 18 3 -1.</_> 9729 <_>6 18 18 1 3.</_></rects> 9730 <tilted>0</tilted></feature> 9731 <threshold>-0.0154200000688434</threshold> 9732 <left_val>0.8013870120048523</left_val> 9733 <right_val>-0.0320350006222725</right_val></_></_> 9734 <_> 9735 <!-- tree 80 --> 9736 <_> 9737 <!-- root node --> 9738 <feature> 9739 <rects> 9740 <_>8 8 6 10 -1.</_> 9741 <_>10 8 2 10 3.</_></rects> 9742 <tilted>0</tilted></feature> 9743 <threshold>0.0194569993764162</threshold> 9744 <left_val>-0.2644949853420258</left_val> 9745 <right_val>0.3875389993190765</right_val></_></_> 9746 <_> 9747 <!-- tree 81 --> 9748 <_> 9749 <!-- root node --> 9750 <feature> 9751 <rects> 9752 <_>10 6 6 9 -1.</_> 9753 <_>12 6 2 9 3.</_></rects> 9754 <tilted>0</tilted></feature> 9755 <threshold>0.0336209982633591</threshold> 9756 <left_val>0.0160520002245903</left_val> 9757 <right_val>0.5884090065956116</right_val></_></_> 9758 <_> 9759 <!-- tree 82 --> 9760 <_> 9761 <!-- root node --> 9762 <feature> 9763 <rects> 9764 <_>8 8 5 8 -1.</_> 9765 <_>8 12 5 4 2.</_></rects> 9766 <tilted>0</tilted></feature> 9767 <threshold>0.0289060007780790</threshold> 9768 <left_val>0.0152160003781319</left_val> 9769 <right_val>-0.9472360014915466</right_val></_></_> 9770 <_> 9771 <!-- tree 83 --> 9772 <_> 9773 <!-- root node --> 9774 <feature> 9775 <rects> 9776 <_>12 8 6 8 -1.</_> 9777 <_>12 12 6 4 2.</_></rects> 9778 <tilted>0</tilted></feature> 9779 <threshold>2.0300000323913991e-004</threshold> 9780 <left_val>-0.3076600134372711</left_val> 9781 <right_val>0.2123589962720871</right_val></_></_> 9782 <_> 9783 <!-- tree 84 --> 9784 <_> 9785 <!-- root node --> 9786 <feature> 9787 <rects> 9788 <_>6 5 6 11 -1.</_> 9789 <_>8 5 2 11 3.</_></rects> 9790 <tilted>0</tilted></feature> 9791 <threshold>-0.0491419993340969</threshold> 9792 <left_val>-1.6058609485626221</left_val> 9793 <right_val>-0.0310949999839067</right_val></_></_> 9794 <_> 9795 <!-- tree 85 --> 9796 <_> 9797 <!-- root node --> 9798 <feature> 9799 <rects> 9800 <_>13 6 8 9 -1.</_> 9801 <_>13 9 8 3 3.</_></rects> 9802 <tilted>0</tilted></feature> 9803 <threshold>0.0764259994029999</threshold> 9804 <left_val>0.0747589990496635</left_val> 9805 <right_val>1.1639410257339478</right_val></_></_> 9806 <_> 9807 <!-- tree 86 --> 9808 <_> 9809 <!-- root node --> 9810 <feature> 9811 <rects> 9812 <_>1 7 21 6 -1.</_> 9813 <_>1 9 21 2 3.</_></rects> 9814 <tilted>0</tilted></feature> 9815 <threshold>0.0238979998975992</threshold> 9816 <left_val>-6.4320000819861889e-003</left_val> 9817 <right_val>-1.1150749921798706</right_val></_></_> 9818 <_> 9819 <!-- tree 87 --> 9820 <_> 9821 <!-- root node --> 9822 <feature> 9823 <rects> 9824 <_>15 5 3 12 -1.</_> 9825 <_>15 11 3 6 2.</_></rects> 9826 <tilted>0</tilted></feature> 9827 <threshold>3.8970001041889191e-003</threshold> 9828 <left_val>-0.2410569936037064</left_val> 9829 <right_val>0.2085890024900436</right_val></_></_> 9830 <_> 9831 <!-- tree 88 --> 9832 <_> 9833 <!-- root node --> 9834 <feature> 9835 <rects> 9836 <_>6 9 11 12 -1.</_> 9837 <_>6 13 11 4 3.</_></rects> 9838 <tilted>0</tilted></feature> 9839 <threshold>-0.0894450023770332</threshold> 9840 <left_val>1.9157789945602417</left_val> 9841 <right_val>-0.1572110056877136</right_val></_></_> 9842 <_> 9843 <!-- tree 89 --> 9844 <_> 9845 <!-- root node --> 9846 <feature> 9847 <rects> 9848 <_>13 8 10 8 -1.</_> 9849 <_>18 8 5 4 2.</_> 9850 <_>13 12 5 4 2.</_></rects> 9851 <tilted>0</tilted></feature> 9852 <threshold>-0.0150089999660850</threshold> 9853 <left_val>-0.2517409920692444</left_val> 9854 <right_val>0.1817989945411682</right_val></_></_> 9855 <_> 9856 <!-- tree 90 --> 9857 <_> 9858 <!-- root node --> 9859 <feature> 9860 <rects> 9861 <_>5 8 12 3 -1.</_> 9862 <_>11 8 6 3 2.</_></rects> 9863 <tilted>0</tilted></feature> 9864 <threshold>-0.0111459996551275</threshold> 9865 <left_val>-0.6934949755668640</left_val> 9866 <right_val>0.0449279993772507</right_val></_></_> 9867 <_> 9868 <!-- tree 91 --> 9869 <_> 9870 <!-- root node --> 9871 <feature> 9872 <rects> 9873 <_>6 11 18 4 -1.</_> 9874 <_>12 11 6 4 3.</_></rects> 9875 <tilted>0</tilted></feature> 9876 <threshold>0.0945789963006973</threshold> 9877 <left_val>0.1810210049152374</left_val> 9878 <right_val>-0.7497860193252564</right_val></_></_> 9879 <_> 9880 <!-- tree 92 --> 9881 <_> 9882 <!-- root node --> 9883 <feature> 9884 <rects> 9885 <_>0 0 22 22 -1.</_> 9886 <_>0 11 22 11 2.</_></rects> 9887 <tilted>0</tilted></feature> 9888 <threshold>0.5503889918327332</threshold> 9889 <left_val>-0.0309740006923676</left_val> 9890 <right_val>-1.6746139526367188</right_val></_></_> 9891 <_> 9892 <!-- tree 93 --> 9893 <_> 9894 <!-- root node --> 9895 <feature> 9896 <rects> 9897 <_>11 2 6 8 -1.</_> 9898 <_>11 6 6 4 2.</_></rects> 9899 <tilted>0</tilted></feature> 9900 <threshold>0.0413810014724731</threshold> 9901 <left_val>0.0639100000262260</left_val> 9902 <right_val>0.7656120061874390</right_val></_></_> 9903 <_> 9904 <!-- tree 94 --> 9905 <_> 9906 <!-- root node --> 9907 <feature> 9908 <rects> 9909 <_>9 0 6 9 -1.</_> 9910 <_>11 0 2 9 3.</_></rects> 9911 <tilted>0</tilted></feature> 9912 <threshold>0.0247719995677471</threshold> 9913 <left_val>0.0113800000399351</left_val> 9914 <right_val>-0.8855940103530884</right_val></_></_> 9915 <_> 9916 <!-- tree 95 --> 9917 <_> 9918 <!-- root node --> 9919 <feature> 9920 <rects> 9921 <_>10 0 6 9 -1.</_> 9922 <_>12 0 2 9 3.</_></rects> 9923 <tilted>0</tilted></feature> 9924 <threshold>0.0509990006685257</threshold> 9925 <left_val>0.1489029973745346</left_val> 9926 <right_val>-2.4634211063385010</right_val></_></_> 9927 <_> 9928 <!-- tree 96 --> 9929 <_> 9930 <!-- root node --> 9931 <feature> 9932 <rects> 9933 <_>8 3 6 14 -1.</_> 9934 <_>8 3 3 7 2.</_> 9935 <_>11 10 3 7 2.</_></rects> 9936 <tilted>0</tilted></feature> 9937 <threshold>-0.0168939996510744</threshold> 9938 <left_val>0.3887099921703339</left_val> 9939 <right_val>-0.2988030016422272</right_val></_></_> 9940 <_> 9941 <!-- tree 97 --> 9942 <_> 9943 <!-- root node --> 9944 <feature> 9945 <rects> 9946 <_>3 10 18 8 -1.</_> 9947 <_>9 10 6 8 3.</_></rects> 9948 <tilted>0</tilted></feature> 9949 <threshold>-0.1216230019927025</threshold> 9950 <left_val>-1.5542800426483154</left_val> 9951 <right_val>0.1630080044269562</right_val></_></_> 9952 <_> 9953 <!-- tree 98 --> 9954 <_> 9955 <!-- root node --> 9956 <feature> 9957 <rects> 9958 <_>10 0 3 14 -1.</_> 9959 <_>10 7 3 7 2.</_></rects> 9960 <tilted>0</tilted></feature> 9961 <threshold>-3.6049999762326479e-003</threshold> 9962 <left_val>0.2184280008077622</left_val> 9963 <right_val>-0.3731209933757782</right_val></_></_> 9964 <_> 9965 <!-- tree 99 --> 9966 <_> 9967 <!-- root node --> 9968 <feature> 9969 <rects> 9970 <_>4 3 16 20 -1.</_> 9971 <_>4 13 16 10 2.</_></rects> 9972 <tilted>0</tilted></feature> 9973 <threshold>0.1157540008425713</threshold> 9974 <left_val>-0.0470610000193119</left_val> 9975 <right_val>0.5940369963645935</right_val></_></_> 9976 <_> 9977 <!-- tree 100 --> 9978 <_> 9979 <!-- root node --> 9980 <feature> 9981 <rects> 9982 <_>9 4 6 10 -1.</_> 9983 <_>11 4 2 10 3.</_></rects> 9984 <tilted>0</tilted></feature> 9985 <threshold>0.0369039997458458</threshold> 9986 <left_val>-0.2550860047340393</left_val> 9987 <right_val>0.5539730191230774</right_val></_></_> 9988 <_> 9989 <!-- tree 101 --> 9990 <_> 9991 <!-- root node --> 9992 <feature> 9993 <rects> 9994 <_>5 0 16 4 -1.</_> 9995 <_>5 2 16 2 2.</_></rects> 9996 <tilted>0</tilted></feature> 9997 <threshold>0.0114839999005198</threshold> 9998 <left_val>-0.1812949925661087</left_val> 9999 <right_val>0.4068279862403870</right_val></_></_> 10000 <_> 10001 <!-- tree 102 --> 10002 <_> 10003 <!-- root node --> 10004 <feature> 10005 <rects> 10006 <_>2 5 18 4 -1.</_> 10007 <_>8 5 6 4 3.</_></rects> 10008 <tilted>0</tilted></feature> 10009 <threshold>-0.0202339999377728</threshold> 10010 <left_val>0.5431119799613953</left_val> 10011 <right_val>-0.2382239997386932</right_val></_></_> 10012 <_> 10013 <!-- tree 103 --> 10014 <_> 10015 <!-- root node --> 10016 <feature> 10017 <rects> 10018 <_>13 0 6 9 -1.</_> 10019 <_>15 0 2 9 3.</_></rects> 10020 <tilted>0</tilted></feature> 10021 <threshold>-0.0287650004029274</threshold> 10022 <left_val>-0.6917229890823364</left_val> 10023 <right_val>0.1594330072402954</right_val></_></_> 10024 <_> 10025 <!-- tree 104 --> 10026 <_> 10027 <!-- root node --> 10028 <feature> 10029 <rects> 10030 <_>8 4 8 5 -1.</_> 10031 <_>12 4 4 5 2.</_></rects> 10032 <tilted>0</tilted></feature> 10033 <threshold>-5.8320001699030399e-003</threshold> 10034 <left_val>0.2944779992103577</left_val> 10035 <right_val>-0.3400599956512451</right_val></_></_> 10036 <_> 10037 <!-- tree 105 --> 10038 <_> 10039 <!-- root node --> 10040 <feature> 10041 <rects> 10042 <_>12 10 10 4 -1.</_> 10043 <_>12 10 5 4 2.</_></rects> 10044 <tilted>0</tilted></feature> 10045 <threshold>-0.0554689988493919</threshold> 10046 <left_val>0.9220079779624939</left_val> 10047 <right_val>0.0940930023789406</right_val></_></_> 10048 <_> 10049 <!-- tree 106 --> 10050 <_> 10051 <!-- root node --> 10052 <feature> 10053 <rects> 10054 <_>2 10 10 4 -1.</_> 10055 <_>7 10 5 4 2.</_></rects> 10056 <tilted>0</tilted></feature> 10057 <threshold>-0.0148010002449155</threshold> 10058 <left_val>-0.7953969836235046</left_val> 10059 <right_val>0.0315219983458519</right_val></_></_> 10060 <_> 10061 <!-- tree 107 --> 10062 <_> 10063 <!-- root node --> 10064 <feature> 10065 <rects> 10066 <_>7 11 12 5 -1.</_> 10067 <_>11 11 4 5 3.</_></rects> 10068 <tilted>0</tilted></feature> 10069 <threshold>-7.0940000005066395e-003</threshold> 10070 <left_val>0.3309600055217743</left_val> 10071 <right_val>-0.0508869998157024</right_val></_></_> 10072 <_> 10073 <!-- tree 108 --> 10074 <_> 10075 <!-- root node --> 10076 <feature> 10077 <rects> 10078 <_>3 10 8 10 -1.</_> 10079 <_>3 10 4 5 2.</_> 10080 <_>7 15 4 5 2.</_></rects> 10081 <tilted>0</tilted></feature> 10082 <threshold>-0.0451240018010139</threshold> 10083 <left_val>-1.3719749450683594</left_val> 10084 <right_val>-0.0214089993387461</right_val></_></_> 10085 <_> 10086 <!-- tree 109 --> 10087 <_> 10088 <!-- root node --> 10089 <feature> 10090 <rects> 10091 <_>11 12 9 8 -1.</_> 10092 <_>14 12 3 8 3.</_></rects> 10093 <tilted>0</tilted></feature> 10094 <threshold>0.0643770024180412</threshold> 10095 <left_val>0.0639019981026649</left_val> 10096 <right_val>0.9147830009460449</right_val></_></_> 10097 <_> 10098 <!-- tree 110 --> 10099 <_> 10100 <!-- root node --> 10101 <feature> 10102 <rects> 10103 <_>0 21 24 3 -1.</_> 10104 <_>8 21 8 3 3.</_></rects> 10105 <tilted>0</tilted></feature> 10106 <threshold>-0.0147270001471043</threshold> 10107 <left_val>0.3605059981346130</left_val> 10108 <right_val>-0.2861450016498566</right_val></_></_> 10109 <_> 10110 <!-- tree 111 --> 10111 <_> 10112 <!-- root node --> 10113 <feature> 10114 <rects> 10115 <_>3 20 18 4 -1.</_> 10116 <_>9 20 6 4 3.</_></rects> 10117 <tilted>0</tilted></feature> 10118 <threshold>0.0450070016086102</threshold> 10119 <left_val>-0.1561969965696335</left_val> 10120 <right_val>0.5316029787063599</right_val></_></_> 10121 <_> 10122 <!-- tree 112 --> 10123 <_> 10124 <!-- root node --> 10125 <feature> 10126 <rects> 10127 <_>1 15 9 6 -1.</_> 10128 <_>1 17 9 2 3.</_></rects> 10129 <tilted>0</tilted></feature> 10130 <threshold>-1.1330000124871731e-003</threshold> 10131 <left_val>0.1342290043830872</left_val> 10132 <right_val>-0.4435890018939972</right_val></_></_> 10133 <_> 10134 <!-- tree 113 --> 10135 <_> 10136 <!-- root node --> 10137 <feature> 10138 <rects> 10139 <_>11 17 10 4 -1.</_> 10140 <_>11 19 10 2 2.</_></rects> 10141 <tilted>0</tilted></feature> 10142 <threshold>0.0494510009884834</threshold> 10143 <left_val>0.1057180017232895</left_val> 10144 <right_val>-2.5589139461517334</right_val></_></_> 10145 <_> 10146 <!-- tree 114 --> 10147 <_> 10148 <!-- root node --> 10149 <feature> 10150 <rects> 10151 <_>9 12 4 12 -1.</_> 10152 <_>9 18 4 6 2.</_></rects> 10153 <tilted>0</tilted></feature> 10154 <threshold>0.0291029997169971</threshold> 10155 <left_val>-0.0100880004465580</left_val> 10156 <right_val>-1.1073939800262451</right_val></_></_> 10157 <_> 10158 <!-- tree 115 --> 10159 <_> 10160 <!-- root node --> 10161 <feature> 10162 <rects> 10163 <_>9 6 9 6 -1.</_> 10164 <_>12 6 3 6 3.</_></rects> 10165 <tilted>0</tilted></feature> 10166 <threshold>0.0347860008478165</threshold> 10167 <left_val>-2.7719999197870493e-003</left_val> 10168 <right_val>0.5670099854469299</right_val></_></_> 10169 <_> 10170 <!-- tree 116 --> 10171 <_> 10172 <!-- root node --> 10173 <feature> 10174 <rects> 10175 <_>1 13 6 9 -1.</_> 10176 <_>1 16 6 3 3.</_></rects> 10177 <tilted>0</tilted></feature> 10178 <threshold>-6.1309998854994774e-003</threshold> 10179 <left_val>-0.4688940048217773</left_val> 10180 <right_val>0.1263639926910400</right_val></_></_> 10181 <_> 10182 <!-- tree 117 --> 10183 <_> 10184 <!-- root node --> 10185 <feature> 10186 <rects> 10187 <_>6 16 12 4 -1.</_> 10188 <_>6 18 12 2 2.</_></rects> 10189 <tilted>0</tilted></feature> 10190 <threshold>0.0155250001698732</threshold> 10191 <left_val>-8.4279999136924744e-003</left_val> 10192 <right_val>0.8746920228004456</right_val></_></_> 10193 <_> 10194 <!-- tree 118 --> 10195 <_> 10196 <!-- root node --> 10197 <feature> 10198 <rects> 10199 <_>1 5 20 3 -1.</_> 10200 <_>1 6 20 1 3.</_></rects> 10201 <tilted>0</tilted></feature> 10202 <threshold>2.9249999206513166e-003</threshold> 10203 <left_val>-0.3443430066108704</left_val> 10204 <right_val>0.2085160017013550</right_val></_></_> 10205 <_> 10206 <!-- tree 119 --> 10207 <_> 10208 <!-- root node --> 10209 <feature> 10210 <rects> 10211 <_>8 1 9 9 -1.</_> 10212 <_>8 4 9 3 3.</_></rects> 10213 <tilted>0</tilted></feature> 10214 <threshold>-0.0535710006952286</threshold> 10215 <left_val>1.4982949495315552</left_val> 10216 <right_val>0.0573280006647110</right_val></_></_> 10217 <_> 10218 <!-- tree 120 --> 10219 <_> 10220 <!-- root node --> 10221 <feature> 10222 <rects> 10223 <_>2 19 9 4 -1.</_> 10224 <_>2 21 9 2 2.</_></rects> 10225 <tilted>0</tilted></feature> 10226 <threshold>-0.0192179996520281</threshold> 10227 <left_val>-0.9923409819602966</left_val> 10228 <right_val>-9.3919998034834862e-003</right_val></_></_> 10229 <_> 10230 <!-- tree 121 --> 10231 <_> 10232 <!-- root node --> 10233 <feature> 10234 <rects> 10235 <_>11 1 4 18 -1.</_> 10236 <_>11 7 4 6 3.</_></rects> 10237 <tilted>0</tilted></feature> 10238 <threshold>-0.0552829988300800</threshold> 10239 <left_val>-0.5768229961395264</left_val> 10240 <right_val>0.1686059981584549</right_val></_></_> 10241 <_> 10242 <!-- tree 122 --> 10243 <_> 10244 <!-- root node --> 10245 <feature> 10246 <rects> 10247 <_>7 2 8 12 -1.</_> 10248 <_>7 2 4 6 2.</_> 10249 <_>11 8 4 6 2.</_></rects> 10250 <tilted>0</tilted></feature> 10251 <threshold>0.0563360005617142</threshold> 10252 <left_val>-0.0337750017642975</left_val> 10253 <right_val>-1.3889650106430054</right_val></_></_> 10254 <_> 10255 <!-- tree 123 --> 10256 <_> 10257 <!-- root node --> 10258 <feature> 10259 <rects> 10260 <_>11 10 9 8 -1.</_> 10261 <_>14 10 3 8 3.</_></rects> 10262 <tilted>0</tilted></feature> 10263 <threshold>-0.0238240007311106</threshold> 10264 <left_val>0.4018209874629974</left_val> 10265 <right_val>1.8360000103712082e-003</right_val></_></_> 10266 <_> 10267 <!-- tree 124 --> 10268 <_> 10269 <!-- root node --> 10270 <feature> 10271 <rects> 10272 <_>5 11 12 5 -1.</_> 10273 <_>9 11 4 5 3.</_></rects> 10274 <tilted>0</tilted></feature> 10275 <threshold>1.7810000572353601e-003</threshold> 10276 <left_val>0.1814599931240082</left_val> 10277 <right_val>-0.4174340069293976</right_val></_></_> 10278 <_> 10279 <!-- tree 125 --> 10280 <_> 10281 <!-- root node --> 10282 <feature> 10283 <rects> 10284 <_>11 9 9 6 -1.</_> 10285 <_>14 9 3 6 3.</_></rects> 10286 <tilted>0</tilted></feature> 10287 <threshold>-0.0376890003681183</threshold> 10288 <left_val>0.5468310117721558</left_val> 10289 <right_val>0.0182199999690056</right_val></_></_> 10290 <_> 10291 <!-- tree 126 --> 10292 <_> 10293 <!-- root node --> 10294 <feature> 10295 <rects> 10296 <_>5 10 6 9 -1.</_> 10297 <_>7 10 2 9 3.</_></rects> 10298 <tilted>0</tilted></feature> 10299 <threshold>-0.0241449996829033</threshold> 10300 <left_val>0.6835209727287293</left_val> 10301 <right_val>-0.1965020000934601</right_val></_></_></trees> 10302 <stage_threshold>-3.5645289421081543</stage_threshold> 10303 <parent>11</parent> 10304 <next>-1</next></_> 10305 <_> 10306 <!-- stage 13 --> 10307 <trees> 10308 <_> 10309 <!-- tree 0 --> 10310 <_> 10311 <!-- root node --> 10312 <feature> 10313 <rects> 10314 <_>4 7 5 12 -1.</_> 10315 <_>4 11 5 4 3.</_></rects> 10316 <tilted>0</tilted></feature> 10317 <threshold>0.0274449996650219</threshold> 10318 <left_val>-0.8998420238494873</left_val> 10319 <right_val>0.5187649726867676</right_val></_></_> 10320 <_> 10321 <!-- tree 1 --> 10322 <_> 10323 <!-- root node --> 10324 <feature> 10325 <rects> 10326 <_>2 0 21 6 -1.</_> 10327 <_>9 0 7 6 3.</_></rects> 10328 <tilted>0</tilted></feature> 10329 <threshold>0.1155410036444664</threshold> 10330 <left_val>-0.5652440190315247</left_val> 10331 <right_val>0.7055130004882813</right_val></_></_> 10332 <_> 10333 <!-- tree 2 --> 10334 <_> 10335 <!-- root node --> 10336 <feature> 10337 <rects> 10338 <_>7 6 10 6 -1.</_> 10339 <_>7 8 10 2 3.</_></rects> 10340 <tilted>0</tilted></feature> 10341 <threshold>-0.0222970005124807</threshold> 10342 <left_val>0.3607999980449677</left_val> 10343 <right_val>-0.6686459779739380</right_val></_></_> 10344 <_> 10345 <!-- tree 3 --> 10346 <_> 10347 <!-- root node --> 10348 <feature> 10349 <rects> 10350 <_>9 0 6 15 -1.</_> 10351 <_>11 0 2 15 3.</_></rects> 10352 <tilted>0</tilted></feature> 10353 <threshold>0.0133250001817942</threshold> 10354 <left_val>-0.5557339787483215</left_val> 10355 <right_val>0.3578999936580658</right_val></_></_> 10356 <_> 10357 <!-- tree 4 --> 10358 <_> 10359 <!-- root node --> 10360 <feature> 10361 <rects> 10362 <_>2 2 18 2 -1.</_> 10363 <_>2 3 18 1 2.</_></rects> 10364 <tilted>0</tilted></feature> 10365 <threshold>-3.8060001097619534e-003</threshold> 10366 <left_val>-1.0713000297546387</left_val> 10367 <right_val>0.1885000020265579</right_val></_></_> 10368 <_> 10369 <!-- tree 5 --> 10370 <_> 10371 <!-- root node --> 10372 <feature> 10373 <rects> 10374 <_>8 17 8 6 -1.</_> 10375 <_>8 20 8 3 2.</_></rects> 10376 <tilted>0</tilted></feature> 10377 <threshold>-2.6819999329745770e-003</threshold> 10378 <left_val>-0.7158430218696594</left_val> 10379 <right_val>0.2634449899196625</right_val></_></_> 10380 <_> 10381 <!-- tree 6 --> 10382 <_> 10383 <!-- root node --> 10384 <feature> 10385 <rects> 10386 <_>3 0 18 2 -1.</_> 10387 <_>3 1 18 1 2.</_></rects> 10388 <tilted>0</tilted></feature> 10389 <threshold>3.3819999080151320e-003</threshold> 10390 <left_val>-0.4693079888820648</left_val> 10391 <right_val>0.2665840089321137</right_val></_></_> 10392 <_> 10393 <!-- tree 7 --> 10394 <_> 10395 <!-- root node --> 10396 <feature> 10397 <rects> 10398 <_>8 0 9 6 -1.</_> 10399 <_>11 0 3 6 3.</_></rects> 10400 <tilted>0</tilted></feature> 10401 <threshold>0.0376430004835129</threshold> 10402 <left_val>0.2109870016574860</left_val> 10403 <right_val>-1.0804339647293091</right_val></_></_> 10404 <_> 10405 <!-- tree 8 --> 10406 <_> 10407 <!-- root node --> 10408 <feature> 10409 <rects> 10410 <_>0 17 18 3 -1.</_> 10411 <_>0 18 18 1 3.</_></rects> 10412 <tilted>0</tilted></feature> 10413 <threshold>-0.0138619998469949</threshold> 10414 <left_val>0.6691200137138367</left_val> 10415 <right_val>-0.2794280052185059</right_val></_></_> 10416 <_> 10417 <!-- tree 9 --> 10418 <_> 10419 <!-- root node --> 10420 <feature> 10421 <rects> 10422 <_>6 7 12 5 -1.</_> 10423 <_>10 7 4 5 3.</_></rects> 10424 <tilted>0</tilted></feature> 10425 <threshold>-2.7350001037120819e-003</threshold> 10426 <left_val>-0.9533230066299439</left_val> 10427 <right_val>0.2405129969120026</right_val></_></_> 10428 <_> 10429 <!-- tree 10 --> 10430 <_> 10431 <!-- root node --> 10432 <feature> 10433 <rects> 10434 <_>0 3 6 9 -1.</_> 10435 <_>2 3 2 9 3.</_></rects> 10436 <tilted>0</tilted></feature> 10437 <threshold>-0.0383369997143745</threshold> 10438 <left_val>0.8143280148506165</left_val> 10439 <right_val>-0.2491939961910248</right_val></_></_> 10440 <_> 10441 <!-- tree 11 --> 10442 <_> 10443 <!-- root node --> 10444 <feature> 10445 <rects> 10446 <_>20 2 4 9 -1.</_> 10447 <_>20 2 2 9 2.</_></rects> 10448 <tilted>0</tilted></feature> 10449 <threshold>-0.0346979983150959</threshold> 10450 <left_val>1.2330100536346436</left_val> 10451 <right_val>6.8600000813603401e-003</right_val></_></_> 10452 <_> 10453 <!-- tree 12 --> 10454 <_> 10455 <!-- root node --> 10456 <feature> 10457 <rects> 10458 <_>0 2 4 9 -1.</_> 10459 <_>2 2 2 9 2.</_></rects> 10460 <tilted>0</tilted></feature> 10461 <threshold>0.0233609993010759</threshold> 10462 <left_val>-0.3079470098018646</left_val> 10463 <right_val>0.7071449756622315</right_val></_></_> 10464 <_> 10465 <!-- tree 13 --> 10466 <_> 10467 <!-- root node --> 10468 <feature> 10469 <rects> 10470 <_>0 1 24 4 -1.</_> 10471 <_>12 1 12 2 2.</_> 10472 <_>0 3 12 2 2.</_></rects> 10473 <tilted>0</tilted></feature> 10474 <threshold>0.0350579991936684</threshold> 10475 <left_val>0.2120590060949326</left_val> 10476 <right_val>-1.4399830102920532</right_val></_></_> 10477 <_> 10478 <!-- tree 14 --> 10479 <_> 10480 <!-- root node --> 10481 <feature> 10482 <rects> 10483 <_>0 16 9 6 -1.</_> 10484 <_>0 18 9 2 3.</_></rects> 10485 <tilted>0</tilted></feature> 10486 <threshold>-0.0132569996640086</threshold> 10487 <left_val>-0.9026070237159729</left_val> 10488 <right_val>0.0486100018024445</right_val></_></_> 10489 <_> 10490 <!-- tree 15 --> 10491 <_> 10492 <!-- root node --> 10493 <feature> 10494 <rects> 10495 <_>14 13 9 6 -1.</_> 10496 <_>14 15 9 2 3.</_></rects> 10497 <tilted>0</tilted></feature> 10498 <threshold>0.0127400001510978</threshold> 10499 <left_val>0.2265519946813583</left_val> 10500 <right_val>-0.4464380145072937</right_val></_></_> 10501 <_> 10502 <!-- tree 16 --> 10503 <_> 10504 <!-- root node --> 10505 <feature> 10506 <rects> 10507 <_>0 15 19 3 -1.</_> 10508 <_>0 16 19 1 3.</_></rects> 10509 <tilted>0</tilted></feature> 10510 <threshold>3.6400000099092722e-003</threshold> 10511 <left_val>-0.3981789946556091</left_val> 10512 <right_val>0.3466539978981018</right_val></_></_> 10513 <_> 10514 <!-- tree 17 --> 10515 <_> 10516 <!-- root node --> 10517 <feature> 10518 <rects> 10519 <_>1 5 22 12 -1.</_> 10520 <_>12 5 11 6 2.</_> 10521 <_>1 11 11 6 2.</_></rects> 10522 <tilted>0</tilted></feature> 10523 <threshold>0.1006470024585724</threshold> 10524 <left_val>0.1838359981775284</left_val> 10525 <right_val>-1.3410769701004028</right_val></_></_> 10526 <_> 10527 <!-- tree 18 --> 10528 <_> 10529 <!-- root node --> 10530 <feature> 10531 <rects> 10532 <_>5 13 6 6 -1.</_> 10533 <_>8 13 3 6 2.</_></rects> 10534 <tilted>0</tilted></feature> 10535 <threshold>0.</threshold> 10536 <left_val>0.1553640067577362</left_val> 10537 <right_val>-0.5158249735832214</right_val></_></_> 10538 <_> 10539 <!-- tree 19 --> 10540 <_> 10541 <!-- root node --> 10542 <feature> 10543 <rects> 10544 <_>4 2 20 3 -1.</_> 10545 <_>4 3 20 1 3.</_></rects> 10546 <tilted>0</tilted></feature> 10547 <threshold>0.0117089999839664</threshold> 10548 <left_val>0.2165140062570572</left_val> 10549 <right_val>-0.7270519733428955</right_val></_></_> 10550 <_> 10551 <!-- tree 20 --> 10552 <_> 10553 <!-- root node --> 10554 <feature> 10555 <rects> 10556 <_>8 14 6 10 -1.</_> 10557 <_>10 14 2 10 3.</_></rects> 10558 <tilted>0</tilted></feature> 10559 <threshold>-0.0359649993479252</threshold> 10560 <left_val>-1.4789500236511230</left_val> 10561 <right_val>-0.0243170000612736</right_val></_></_> 10562 <_> 10563 <!-- tree 21 --> 10564 <_> 10565 <!-- root node --> 10566 <feature> 10567 <rects> 10568 <_>6 12 16 6 -1.</_> 10569 <_>14 12 8 3 2.</_> 10570 <_>6 15 8 3 2.</_></rects> 10571 <tilted>0</tilted></feature> 10572 <threshold>-0.0212360005825758</threshold> 10573 <left_val>-0.1684409976005554</left_val> 10574 <right_val>0.1952659934759140</right_val></_></_> 10575 <_> 10576 <!-- tree 22 --> 10577 <_> 10578 <!-- root node --> 10579 <feature> 10580 <rects> 10581 <_>2 13 8 9 -1.</_> 10582 <_>2 16 8 3 3.</_></rects> 10583 <tilted>0</tilted></feature> 10584 <threshold>0.0148740001022816</threshold> 10585 <left_val>0.0373359993100166</left_val> 10586 <right_val>-0.8755729794502258</right_val></_></_> 10587 <_> 10588 <!-- tree 23 --> 10589 <_> 10590 <!-- root node --> 10591 <feature> 10592 <rects> 10593 <_>11 8 6 14 -1.</_> 10594 <_>14 8 3 7 2.</_> 10595 <_>11 15 3 7 2.</_></rects> 10596 <tilted>0</tilted></feature> 10597 <threshold>-5.1409997977316380e-003</threshold> 10598 <left_val>0.3346650004386902</left_val> 10599 <right_val>-0.2410970032215118</right_val></_></_> 10600 <_> 10601 <!-- tree 24 --> 10602 <_> 10603 <!-- root node --> 10604 <feature> 10605 <rects> 10606 <_>2 12 16 6 -1.</_> 10607 <_>2 12 8 3 2.</_> 10608 <_>10 15 8 3 2.</_></rects> 10609 <tilted>0</tilted></feature> 10610 <threshold>0.0234500002115965</threshold> 10611 <left_val>5.5320002138614655e-003</left_val> 10612 <right_val>-1.2509720325469971</right_val></_></_> 10613 <_> 10614 <!-- tree 25 --> 10615 <_> 10616 <!-- root node --> 10617 <feature> 10618 <rects> 10619 <_>5 16 16 8 -1.</_> 10620 <_>5 20 16 4 2.</_></rects> 10621 <tilted>0</tilted></feature> 10622 <threshold>-0.0250620003789663</threshold> 10623 <left_val>0.4521239995956421</left_val> 10624 <right_val>-0.0844699963927269</right_val></_></_> 10625 <_> 10626 <!-- tree 26 --> 10627 <_> 10628 <!-- root node --> 10629 <feature> 10630 <rects> 10631 <_>9 1 4 12 -1.</_> 10632 <_>9 7 4 6 2.</_></rects> 10633 <tilted>0</tilted></feature> 10634 <threshold>-7.7400001464411616e-004</threshold> 10635 <left_val>0.1524990051984787</left_val> 10636 <right_val>-0.4848650097846985</right_val></_></_> 10637 <_> 10638 <!-- tree 27 --> 10639 <_> 10640 <!-- root node --> 10641 <feature> 10642 <rects> 10643 <_>8 2 8 10 -1.</_> 10644 <_>12 2 4 5 2.</_> 10645 <_>8 7 4 5 2.</_></rects> 10646 <tilted>0</tilted></feature> 10647 <threshold>-0.0404839999973774</threshold> 10648 <left_val>-1.3024920225143433</left_val> 10649 <right_val>0.1798350065946579</right_val></_></_> 10650 <_> 10651 <!-- tree 28 --> 10652 <_> 10653 <!-- root node --> 10654 <feature> 10655 <rects> 10656 <_>6 6 12 6 -1.</_> 10657 <_>6 6 6 3 2.</_> 10658 <_>12 9 6 3 2.</_></rects> 10659 <tilted>0</tilted></feature> 10660 <threshold>0.0281709991395473</threshold> 10661 <left_val>-0.2441090047359467</left_val> 10662 <right_val>0.6227110028266907</right_val></_></_> 10663 <_> 10664 <!-- tree 29 --> 10665 <_> 10666 <!-- root node --> 10667 <feature> 10668 <rects> 10669 <_>10 7 6 9 -1.</_> 10670 <_>12 7 2 9 3.</_></rects> 10671 <tilted>0</tilted></feature> 10672 <threshold>0.0456929989159107</threshold> 10673 <left_val>0.0281220003962517</left_val> 10674 <right_val>0.9239439964294434</right_val></_></_> 10675 <_> 10676 <!-- tree 30 --> 10677 <_> 10678 <!-- root node --> 10679 <feature> 10680 <rects> 10681 <_>0 0 8 12 -1.</_> 10682 <_>0 0 4 6 2.</_> 10683 <_>4 6 4 6 2.</_></rects> 10684 <tilted>0</tilted></feature> 10685 <threshold>0.0397070012986660</threshold> 10686 <left_val>-0.2233279943466187</left_val> 10687 <right_val>0.7767400145530701</right_val></_></_> 10688 <_> 10689 <!-- tree 31 --> 10690 <_> 10691 <!-- root node --> 10692 <feature> 10693 <rects> 10694 <_>18 8 6 9 -1.</_> 10695 <_>18 11 6 3 3.</_></rects> 10696 <tilted>0</tilted></feature> 10697 <threshold>0.0505170002579689</threshold> 10698 <left_val>0.2031999975442886</left_val> 10699 <right_val>-1.0895930528640747</right_val></_></_> 10700 <_> 10701 <!-- tree 32 --> 10702 <_> 10703 <!-- root node --> 10704 <feature> 10705 <rects> 10706 <_>2 12 6 6 -1.</_> 10707 <_>5 12 3 6 2.</_></rects> 10708 <tilted>0</tilted></feature> 10709 <threshold>-0.0172669999301434</threshold> 10710 <left_val>0.6859840154647827</left_val> 10711 <right_val>-0.2330449968576431</right_val></_></_> 10712 <_> 10713 <!-- tree 33 --> 10714 <_> 10715 <!-- root node --> 10716 <feature> 10717 <rects> 10718 <_>3 21 21 3 -1.</_> 10719 <_>10 21 7 3 3.</_></rects> 10720 <tilted>0</tilted></feature> 10721 <threshold>0.0801860019564629</threshold> 10722 <left_val>-0.0102920001372695</left_val> 10723 <right_val>0.6188110113143921</right_val></_></_> 10724 <_> 10725 <!-- tree 34 --> 10726 <_> 10727 <!-- root node --> 10728 <feature> 10729 <rects> 10730 <_>2 0 16 6 -1.</_> 10731 <_>2 3 16 3 2.</_></rects> 10732 <tilted>0</tilted></feature> 10733 <threshold>0.0976760014891624</threshold> 10734 <left_val>-0.2007029950618744</left_val> 10735 <right_val>1.0088349580764771</right_val></_></_> 10736 <_> 10737 <!-- tree 35 --> 10738 <_> 10739 <!-- root node --> 10740 <feature> 10741 <rects> 10742 <_>13 6 7 6 -1.</_> 10743 <_>13 9 7 3 2.</_></rects> 10744 <tilted>0</tilted></feature> 10745 <threshold>-0.0155720002949238</threshold> 10746 <left_val>0.4761529862880707</left_val> 10747 <right_val>0.0456239990890026</right_val></_></_> 10748 <_> 10749 <!-- tree 36 --> 10750 <_> 10751 <!-- root node --> 10752 <feature> 10753 <rects> 10754 <_>6 4 4 14 -1.</_> 10755 <_>6 11 4 7 2.</_></rects> 10756 <tilted>0</tilted></feature> 10757 <threshold>-0.0153050003573298</threshold> 10758 <left_val>-1.1077369451522827</left_val> 10759 <right_val>4.5239999890327454e-003</right_val></_></_> 10760 <_> 10761 <!-- tree 37 --> 10762 <_> 10763 <!-- root node --> 10764 <feature> 10765 <rects> 10766 <_>9 7 6 9 -1.</_> 10767 <_>11 7 2 9 3.</_></rects> 10768 <tilted>0</tilted></feature> 10769 <threshold>-0.0164850000292063</threshold> 10770 <left_val>1.0152939558029175</left_val> 10771 <right_val>0.0163279995322227</right_val></_></_> 10772 <_> 10773 <!-- tree 38 --> 10774 <_> 10775 <!-- root node --> 10776 <feature> 10777 <rects> 10778 <_>7 8 6 14 -1.</_> 10779 <_>7 8 3 7 2.</_> 10780 <_>10 15 3 7 2.</_></rects> 10781 <tilted>0</tilted></feature> 10782 <threshold>-0.0261419992893934</threshold> 10783 <left_val>0.4172329902648926</left_val> 10784 <right_val>-0.2864550054073334</right_val></_></_> 10785 <_> 10786 <!-- tree 39 --> 10787 <_> 10788 <!-- root node --> 10789 <feature> 10790 <rects> 10791 <_>18 8 4 16 -1.</_> 10792 <_>18 16 4 8 2.</_></rects> 10793 <tilted>0</tilted></feature> 10794 <threshold>8.8679995387792587e-003</threshold> 10795 <left_val>0.2140499949455261</left_val> 10796 <right_val>-0.1677280068397522</right_val></_></_> 10797 <_> 10798 <!-- tree 40 --> 10799 <_> 10800 <!-- root node --> 10801 <feature> 10802 <rects> 10803 <_>9 14 6 10 -1.</_> 10804 <_>11 14 2 10 3.</_></rects> 10805 <tilted>0</tilted></feature> 10806 <threshold>-0.0268869996070862</threshold> 10807 <left_val>-1.1564220190048218</left_val> 10808 <right_val>-0.0103240003809333</right_val></_></_> 10809 <_> 10810 <!-- tree 41 --> 10811 <_> 10812 <!-- root node --> 10813 <feature> 10814 <rects> 10815 <_>6 11 12 5 -1.</_> 10816 <_>10 11 4 5 3.</_></rects> 10817 <tilted>0</tilted></feature> 10818 <threshold>7.7789998613297939e-003</threshold> 10819 <left_val>0.3535949885845184</left_val> 10820 <right_val>-0.2961130142211914</right_val></_></_> 10821 <_> 10822 <!-- tree 42 --> 10823 <_> 10824 <!-- root node --> 10825 <feature> 10826 <rects> 10827 <_>0 12 23 3 -1.</_> 10828 <_>0 13 23 1 3.</_></rects> 10829 <tilted>0</tilted></feature> 10830 <threshold>-0.0159740000963211</threshold> 10831 <left_val>-1.5374109745025635</left_val> 10832 <right_val>-0.0299580004066229</right_val></_></_> 10833 <_> 10834 <!-- tree 43 --> 10835 <_> 10836 <!-- root node --> 10837 <feature> 10838 <rects> 10839 <_>13 0 6 12 -1.</_> 10840 <_>15 0 2 12 3.</_></rects> 10841 <tilted>0</tilted></feature> 10842 <threshold>0.0208669994026423</threshold> 10843 <left_val>0.2024410068988800</left_val> 10844 <right_val>-0.7127019762992859</right_val></_></_> 10845 <_> 10846 <!-- tree 44 --> 10847 <_> 10848 <!-- root node --> 10849 <feature> 10850 <rects> 10851 <_>0 10 12 5 -1.</_> 10852 <_>4 10 4 5 3.</_></rects> 10853 <tilted>0</tilted></feature> 10854 <threshold>0.0854820013046265</threshold> 10855 <left_val>-0.0259329993277788</left_val> 10856 <right_val>-1.5156569480895996</right_val></_></_> 10857 <_> 10858 <!-- tree 45 --> 10859 <_> 10860 <!-- root node --> 10861 <feature> 10862 <rects> 10863 <_>13 2 10 4 -1.</_> 10864 <_>13 4 10 2 2.</_></rects> 10865 <tilted>0</tilted></feature> 10866 <threshold>0.0238729994744062</threshold> 10867 <left_val>0.1680340021848679</left_val> 10868 <right_val>-0.3880620002746582</right_val></_></_> 10869 <_> 10870 <!-- tree 46 --> 10871 <_> 10872 <!-- root node --> 10873 <feature> 10874 <rects> 10875 <_>5 0 6 12 -1.</_> 10876 <_>7 0 2 12 3.</_></rects> 10877 <tilted>0</tilted></feature> 10878 <threshold>-0.0391050018370152</threshold> 10879 <left_val>-1.1958349943161011</left_val> 10880 <right_val>-0.0203610006719828</right_val></_></_> 10881 <_> 10882 <!-- tree 47 --> 10883 <_> 10884 <!-- root node --> 10885 <feature> 10886 <rects> 10887 <_>11 6 9 6 -1.</_> 10888 <_>14 6 3 6 3.</_></rects> 10889 <tilted>0</tilted></feature> 10890 <threshold>-0.0779469981789589</threshold> 10891 <left_val>-1.0898950099945068</left_val> 10892 <right_val>0.1453029960393906</right_val></_></_> 10893 <_> 10894 <!-- tree 48 --> 10895 <_> 10896 <!-- root node --> 10897 <feature> 10898 <rects> 10899 <_>4 6 9 6 -1.</_> 10900 <_>7 6 3 6 3.</_></rects> 10901 <tilted>0</tilted></feature> 10902 <threshold>-0.0168760009109974</threshold> 10903 <left_val>0.2804970145225525</left_val> 10904 <right_val>-0.4133630096912384</right_val></_></_> 10905 <_> 10906 <!-- tree 49 --> 10907 <_> 10908 <!-- root node --> 10909 <feature> 10910 <rects> 10911 <_>6 11 18 13 -1.</_> 10912 <_>12 11 6 13 3.</_></rects> 10913 <tilted>0</tilted></feature> 10914 <threshold>0.1187560036778450</threshold> 10915 <left_val>-0.0434909984469414</left_val> 10916 <right_val>0.4126369953155518</right_val></_></_> 10917 <_> 10918 <!-- tree 50 --> 10919 <_> 10920 <!-- root node --> 10921 <feature> 10922 <rects> 10923 <_>0 11 18 13 -1.</_> 10924 <_>6 11 6 13 3.</_></rects> 10925 <tilted>0</tilted></feature> 10926 <threshold>0.1562419980764389</threshold> 10927 <left_val>-0.2642959952354431</left_val> 10928 <right_val>0.5512779951095581</right_val></_></_> 10929 <_> 10930 <!-- tree 51 --> 10931 <_> 10932 <!-- root node --> 10933 <feature> 10934 <rects> 10935 <_>12 16 12 6 -1.</_> 10936 <_>16 16 4 6 3.</_></rects> 10937 <tilted>0</tilted></feature> 10938 <threshold>-0.0459080003201962</threshold> 10939 <left_val>0.6018919944763184</left_val> 10940 <right_val>0.0189210008829832</right_val></_></_> 10941 <_> 10942 <!-- tree 52 --> 10943 <_> 10944 <!-- root node --> 10945 <feature> 10946 <rects> 10947 <_>0 6 21 3 -1.</_> 10948 <_>0 7 21 1 3.</_></rects> 10949 <tilted>0</tilted></feature> 10950 <threshold>-0.0103099998086691</threshold> 10951 <left_val>0.3815299868583679</left_val> 10952 <right_val>-0.2950789928436279</right_val></_></_> 10953 <_> 10954 <!-- tree 53 --> 10955 <_> 10956 <!-- root node --> 10957 <feature> 10958 <rects> 10959 <_>12 16 12 6 -1.</_> 10960 <_>16 16 4 6 3.</_></rects> 10961 <tilted>0</tilted></feature> 10962 <threshold>0.0957690030336380</threshold> 10963 <left_val>0.1324650049209595</left_val> 10964 <right_val>-0.4626680016517639</right_val></_></_> 10965 <_> 10966 <!-- tree 54 --> 10967 <_> 10968 <!-- root node --> 10969 <feature> 10970 <rects> 10971 <_>5 7 6 14 -1.</_> 10972 <_>5 14 6 7 2.</_></rects> 10973 <tilted>0</tilted></feature> 10974 <threshold>0.0136869996786118</threshold> 10975 <left_val>0.1173869967460632</left_val> 10976 <right_val>-0.5166410207748413</right_val></_></_> 10977 <_> 10978 <!-- tree 55 --> 10979 <_> 10980 <!-- root node --> 10981 <feature> 10982 <rects> 10983 <_>5 10 19 2 -1.</_> 10984 <_>5 11 19 1 2.</_></rects> 10985 <tilted>0</tilted></feature> 10986 <threshold>2.3990001063793898e-003</threshold> 10987 <left_val>-0.3400759994983673</left_val> 10988 <right_val>0.2095350027084351</right_val></_></_> 10989 <_> 10990 <!-- tree 56 --> 10991 <_> 10992 <!-- root node --> 10993 <feature> 10994 <rects> 10995 <_>5 4 14 4 -1.</_> 10996 <_>5 6 14 2 2.</_></rects> 10997 <tilted>0</tilted></feature> 10998 <threshold>0.0332649983465672</threshold> 10999 <left_val>-0.1705279946327210</left_val> 11000 <right_val>1.4366799592971802</right_val></_></_> 11001 <_> 11002 <!-- tree 57 --> 11003 <_> 11004 <!-- root node --> 11005 <feature> 11006 <rects> 11007 <_>3 18 18 4 -1.</_> 11008 <_>9 18 6 4 3.</_></rects> 11009 <tilted>0</tilted></feature> 11010 <threshold>-0.0332060009241104</threshold> 11011 <left_val>0.6129570007324219</left_val> 11012 <right_val>-0.0415499992668629</right_val></_></_> 11013 <_> 11014 <!-- tree 58 --> 11015 <_> 11016 <!-- root node --> 11017 <feature> 11018 <rects> 11019 <_>7 0 4 9 -1.</_> 11020 <_>9 0 2 9 2.</_></rects> 11021 <tilted>0</tilted></feature> 11022 <threshold>2.7979998849332333e-003</threshold> 11023 <left_val>-0.4855430126190186</left_val> 11024 <right_val>0.1337269991636276</right_val></_></_> 11025 <_> 11026 <!-- tree 59 --> 11027 <_> 11028 <!-- root node --> 11029 <feature> 11030 <rects> 11031 <_>13 3 11 4 -1.</_> 11032 <_>13 5 11 2 2.</_></rects> 11033 <tilted>0</tilted></feature> 11034 <threshold>-0.0657920017838478</threshold> 11035 <left_val>-4.0257668495178223</left_val> 11036 <right_val>0.1087670028209686</right_val></_></_> 11037 <_> 11038 <!-- tree 60 --> 11039 <_> 11040 <!-- root node --> 11041 <feature> 11042 <rects> 11043 <_>2 0 9 6 -1.</_> 11044 <_>5 0 3 6 3.</_></rects> 11045 <tilted>0</tilted></feature> 11046 <threshold>2.1430000197142363e-003</threshold> 11047 <left_val>-0.3917999863624573</left_val> 11048 <right_val>0.2242709994316101</right_val></_></_> 11049 <_> 11050 <!-- tree 61 --> 11051 <_> 11052 <!-- root node --> 11053 <feature> 11054 <rects> 11055 <_>19 1 4 23 -1.</_> 11056 <_>19 1 2 23 2.</_></rects> 11057 <tilted>0</tilted></feature> 11058 <threshold>0.0223639998584986</threshold> 11059 <left_val>-0.0864299982786179</left_val> 11060 <right_val>0.3778519928455353</right_val></_></_> 11061 <_> 11062 <!-- tree 62 --> 11063 <_> 11064 <!-- root node --> 11065 <feature> 11066 <rects> 11067 <_>1 1 4 23 -1.</_> 11068 <_>3 1 2 23 2.</_></rects> 11069 <tilted>0</tilted></feature> 11070 <threshold>-0.0574100017547607</threshold> 11071 <left_val>1.1454069614410400</left_val> 11072 <right_val>-0.1973659992218018</right_val></_></_> 11073 <_> 11074 <!-- tree 63 --> 11075 <_> 11076 <!-- root node --> 11077 <feature> 11078 <rects> 11079 <_>5 16 18 3 -1.</_> 11080 <_>5 17 18 1 3.</_></rects> 11081 <tilted>0</tilted></feature> 11082 <threshold>6.6550001502037048e-003</threshold> 11083 <left_val>-0.0211050007492304</left_val> 11084 <right_val>0.5845339894294739</right_val></_></_> 11085 <_> 11086 <!-- tree 64 --> 11087 <_> 11088 <!-- root node --> 11089 <feature> 11090 <rects> 11091 <_>0 3 11 4 -1.</_> 11092 <_>0 5 11 2 2.</_></rects> 11093 <tilted>0</tilted></feature> 11094 <threshold>0.0123269995674491</threshold> 11095 <left_val>0.0378170013427734</left_val> 11096 <right_val>-0.6698700189590454</right_val></_></_> 11097 <_> 11098 <!-- tree 65 --> 11099 <_> 11100 <!-- root node --> 11101 <feature> 11102 <rects> 11103 <_>2 16 20 3 -1.</_> 11104 <_>2 17 20 1 3.</_></rects> 11105 <tilted>0</tilted></feature> 11106 <threshold>-8.1869997084140778e-003</threshold> 11107 <left_val>0.5636600255966187</left_val> 11108 <right_val>-0.0768779963254929</right_val></_></_> 11109 <_> 11110 <!-- tree 66 --> 11111 <_> 11112 <!-- root node --> 11113 <feature> 11114 <rects> 11115 <_>5 3 13 4 -1.</_> 11116 <_>5 5 13 2 2.</_></rects> 11117 <tilted>0</tilted></feature> 11118 <threshold>0.0366810001432896</threshold> 11119 <left_val>-0.1734330058097839</left_val> 11120 <right_val>1.1670149564743042</right_val></_></_> 11121 <_> 11122 <!-- tree 67 --> 11123 <_> 11124 <!-- root node --> 11125 <feature> 11126 <rects> 11127 <_>1 9 22 15 -1.</_> 11128 <_>1 9 11 15 2.</_></rects> 11129 <tilted>0</tilted></feature> 11130 <threshold>-0.4022040069103241</threshold> 11131 <left_val>1.2640819549560547</left_val> 11132 <right_val>0.0433989986777306</right_val></_></_> 11133 <_> 11134 <!-- tree 68 --> 11135 <_> 11136 <!-- root node --> 11137 <feature> 11138 <rects> 11139 <_>3 4 14 3 -1.</_> 11140 <_>10 4 7 3 2.</_></rects> 11141 <tilted>0</tilted></feature> 11142 <threshold>-0.0221260003745556</threshold> 11143 <left_val>0.6697810292243958</left_val> 11144 <right_val>-0.2160529941320419</right_val></_></_> 11145 <_> 11146 <!-- tree 69 --> 11147 <_> 11148 <!-- root node --> 11149 <feature> 11150 <rects> 11151 <_>8 7 10 4 -1.</_> 11152 <_>8 7 5 4 2.</_></rects> 11153 <tilted>0</tilted></feature> 11154 <threshold>-0.0131569998338819</threshold> 11155 <left_val>-0.4119859933853149</left_val> 11156 <right_val>0.2021500021219254</right_val></_></_> 11157 <_> 11158 <!-- tree 70 --> 11159 <_> 11160 <!-- root node --> 11161 <feature> 11162 <rects> 11163 <_>6 7 10 4 -1.</_> 11164 <_>11 7 5 4 2.</_></rects> 11165 <tilted>0</tilted></feature> 11166 <threshold>-0.0128600001335144</threshold> 11167 <left_val>-0.9158269762992859</left_val> 11168 <right_val>0.0392329990863800</right_val></_></_> 11169 <_> 11170 <!-- tree 71 --> 11171 <_> 11172 <!-- root node --> 11173 <feature> 11174 <rects> 11175 <_>10 4 6 9 -1.</_> 11176 <_>12 4 2 9 3.</_></rects> 11177 <tilted>0</tilted></feature> 11178 <threshold>0.0216279998421669</threshold> 11179 <left_val>3.8719999138265848e-003</left_val> 11180 <right_val>0.3566820025444031</right_val></_></_> 11181 <_> 11182 <!-- tree 72 --> 11183 <_> 11184 <!-- root node --> 11185 <feature> 11186 <rects> 11187 <_>1 12 9 6 -1.</_> 11188 <_>4 12 3 6 3.</_></rects> 11189 <tilted>0</tilted></feature> 11190 <threshold>0.0118960002437234</threshold> 11191 <left_val>-0.3730390071868897</left_val> 11192 <right_val>0.1923509985208511</right_val></_></_> 11193 <_> 11194 <!-- tree 73 --> 11195 <_> 11196 <!-- root node --> 11197 <feature> 11198 <rects> 11199 <_>8 3 8 10 -1.</_> 11200 <_>12 3 4 5 2.</_> 11201 <_>8 8 4 5 2.</_></rects> 11202 <tilted>0</tilted></feature> 11203 <threshold>-0.0195489991456270</threshold> 11204 <left_val>-0.4237489998340607</left_val> 11205 <right_val>0.2442959994077683</right_val></_></_> 11206 <_> 11207 <!-- tree 74 --> 11208 <_> 11209 <!-- root node --> 11210 <feature> 11211 <rects> 11212 <_>3 6 16 6 -1.</_> 11213 <_>3 6 8 3 2.</_> 11214 <_>11 9 8 3 2.</_></rects> 11215 <tilted>0</tilted></feature> 11216 <threshold>0.0644449964165688</threshold> 11217 <left_val>-0.1655890047550201</left_val> 11218 <right_val>1.2697030305862427</right_val></_></_> 11219 <_> 11220 <!-- tree 75 --> 11221 <_> 11222 <!-- root node --> 11223 <feature> 11224 <rects> 11225 <_>5 6 14 6 -1.</_> 11226 <_>5 9 14 3 2.</_></rects> 11227 <tilted>0</tilted></feature> 11228 <threshold>0.1089849993586540</threshold> 11229 <left_val>0.1489430069923401</left_val> 11230 <right_val>-2.1534640789031982</right_val></_></_> 11231 <_> 11232 <!-- tree 76 --> 11233 <_> 11234 <!-- root node --> 11235 <feature> 11236 <rects> 11237 <_>4 3 9 6 -1.</_> 11238 <_>4 5 9 2 3.</_></rects> 11239 <tilted>0</tilted></feature> 11240 <threshold>-0.0340779982507229</threshold> 11241 <left_val>1.3779460191726685</left_val> 11242 <right_val>-0.1619849950075150</right_val></_></_> 11243 <_> 11244 <!-- tree 77 --> 11245 <_> 11246 <!-- root node --> 11247 <feature> 11248 <rects> 11249 <_>6 3 18 2 -1.</_> 11250 <_>6 4 18 1 2.</_></rects> 11251 <tilted>0</tilted></feature> 11252 <threshold>-3.7489999085664749e-003</threshold> 11253 <left_val>-0.3382860124111176</left_val> 11254 <right_val>0.2115290015935898</right_val></_></_> 11255 <_> 11256 <!-- tree 78 --> 11257 <_> 11258 <!-- root node --> 11259 <feature> 11260 <rects> 11261 <_>7 6 9 6 -1.</_> 11262 <_>10 6 3 6 3.</_></rects> 11263 <tilted>0</tilted></feature> 11264 <threshold>-0.0109719997271895</threshold> 11265 <left_val>0.7651789784431458</left_val> 11266 <right_val>-0.1969259977340698</right_val></_></_> 11267 <_> 11268 <!-- tree 79 --> 11269 <_> 11270 <!-- root node --> 11271 <feature> 11272 <rects> 11273 <_>0 1 24 3 -1.</_> 11274 <_>0 2 24 1 3.</_></rects> 11275 <tilted>0</tilted></feature> 11276 <threshold>-0.0114850001409650</threshold> 11277 <left_val>-0.6927120089530945</left_val> 11278 <right_val>0.2165710031986237</right_val></_></_> 11279 <_> 11280 <!-- tree 80 --> 11281 <_> 11282 <!-- root node --> 11283 <feature> 11284 <rects> 11285 <_>0 17 10 6 -1.</_> 11286 <_>0 19 10 2 3.</_></rects> 11287 <tilted>0</tilted></feature> 11288 <threshold>0.0259840004146099</threshold> 11289 <left_val>-0.0119839999824762</left_val> 11290 <right_val>-0.9969729781150818</right_val></_></_> 11291 <_> 11292 <!-- tree 81 --> 11293 <_> 11294 <!-- root node --> 11295 <feature> 11296 <rects> 11297 <_>3 18 18 3 -1.</_> 11298 <_>3 19 18 1 3.</_></rects> 11299 <tilted>0</tilted></feature> 11300 <threshold>4.2159999720752239e-003</threshold> 11301 <left_val>-0.1020570024847984</left_val> 11302 <right_val>0.4888440072536469</right_val></_></_> 11303 <_> 11304 <!-- tree 82 --> 11305 <_> 11306 <!-- root node --> 11307 <feature> 11308 <rects> 11309 <_>2 5 6 16 -1.</_> 11310 <_>2 5 3 8 2.</_> 11311 <_>5 13 3 8 2.</_></rects> 11312 <tilted>0</tilted></feature> 11313 <threshold>-0.0476970002055168</threshold> 11314 <left_val>1.0666010379791260</left_val> 11315 <right_val>-0.1757629960775375</right_val></_></_> 11316 <_> 11317 <!-- tree 83 --> 11318 <_> 11319 <!-- root node --> 11320 <feature> 11321 <rects> 11322 <_>7 6 11 6 -1.</_> 11323 <_>7 8 11 2 3.</_></rects> 11324 <tilted>0</tilted></feature> 11325 <threshold>4.0300001273863018e-004</threshold> 11326 <left_val>0.1852480024099350</left_val> 11327 <right_val>-0.7479000091552734</right_val></_></_> 11328 <_> 11329 <!-- tree 84 --> 11330 <_> 11331 <!-- root node --> 11332 <feature> 11333 <rects> 11334 <_>5 2 12 22 -1.</_> 11335 <_>5 13 12 11 2.</_></rects> 11336 <tilted>0</tilted></feature> 11337 <threshold>0.1153960004448891</threshold> 11338 <left_val>-0.2201970070600510</left_val> 11339 <right_val>0.5450999736785889</right_val></_></_> 11340 <_> 11341 <!-- tree 85 --> 11342 <_> 11343 <!-- root node --> 11344 <feature> 11345 <rects> 11346 <_>10 7 4 10 -1.</_> 11347 <_>10 12 4 5 2.</_></rects> 11348 <tilted>0</tilted></feature> 11349 <threshold>0.0160210002213717</threshold> 11350 <left_val>0.2548750042915344</left_val> 11351 <right_val>-0.5074009895324707</right_val></_></_> 11352 <_> 11353 <!-- tree 86 --> 11354 <_> 11355 <!-- root node --> 11356 <feature> 11357 <rects> 11358 <_>9 0 4 18 -1.</_> 11359 <_>9 6 4 6 3.</_></rects> 11360 <tilted>0</tilted></feature> 11361 <threshold>0.0566320009529591</threshold> 11362 <left_val>-0.0112560000270605</left_val> 11363 <right_val>-0.9596809744834900</right_val></_></_> 11364 <_> 11365 <!-- tree 87 --> 11366 <_> 11367 <!-- root node --> 11368 <feature> 11369 <rects> 11370 <_>18 8 6 9 -1.</_> 11371 <_>18 11 6 3 3.</_></rects> 11372 <tilted>0</tilted></feature> 11373 <threshold>-0.0107260001823306</threshold> 11374 <left_val>-0.2854470014572144</left_val> 11375 <right_val>0.1699479967355728</right_val></_></_> 11376 <_> 11377 <!-- tree 88 --> 11378 <_> 11379 <!-- root node --> 11380 <feature> 11381 <rects> 11382 <_>4 7 15 10 -1.</_> 11383 <_>9 7 5 10 3.</_></rects> 11384 <tilted>0</tilted></feature> 11385 <threshold>0.1242000013589859</threshold> 11386 <left_val>-0.0361399985849857</left_val> 11387 <right_val>-1.3132710456848145</right_val></_></_> 11388 <_> 11389 <!-- tree 89 --> 11390 <_> 11391 <!-- root node --> 11392 <feature> 11393 <rects> 11394 <_>10 5 6 9 -1.</_> 11395 <_>12 5 2 9 3.</_></rects> 11396 <tilted>0</tilted></feature> 11397 <threshold>-5.3799999877810478e-003</threshold> 11398 <left_val>0.3309270143508911</left_val> 11399 <right_val>0.0133079998195171</right_val></_></_> 11400 <_> 11401 <!-- tree 90 --> 11402 <_> 11403 <!-- root node --> 11404 <feature> 11405 <rects> 11406 <_>9 9 6 10 -1.</_> 11407 <_>11 9 2 10 3.</_></rects> 11408 <tilted>0</tilted></feature> 11409 <threshold>0.0119080003350973</threshold> 11410 <left_val>-0.3483029901981354</left_val> 11411 <right_val>0.2404190003871918</right_val></_></_> 11412 <_> 11413 <!-- tree 91 --> 11414 <_> 11415 <!-- root node --> 11416 <feature> 11417 <rects> 11418 <_>11 14 6 10 -1.</_> 11419 <_>13 14 2 10 3.</_></rects> 11420 <tilted>0</tilted></feature> 11421 <threshold>-0.0430079996585846</threshold> 11422 <left_val>-1.4390469789505005</left_val> 11423 <right_val>0.1559959948062897</right_val></_></_> 11424 <_> 11425 <!-- tree 92 --> 11426 <_> 11427 <!-- root node --> 11428 <feature> 11429 <rects> 11430 <_>7 14 6 10 -1.</_> 11431 <_>9 14 2 10 3.</_></rects> 11432 <tilted>0</tilted></feature> 11433 <threshold>-0.0331499986350536</threshold> 11434 <left_val>-1.1805850267410278</left_val> 11435 <right_val>-0.0123479999601841</right_val></_></_> 11436 <_> 11437 <!-- tree 93 --> 11438 <_> 11439 <!-- root node --> 11440 <feature> 11441 <rects> 11442 <_>4 8 16 9 -1.</_> 11443 <_>4 11 16 3 3.</_></rects> 11444 <tilted>0</tilted></feature> 11445 <threshold>-0.0213419999927282</threshold> 11446 <left_val>2.2119441032409668</left_val> 11447 <right_val>0.0627370029687881</right_val></_></_> 11448 <_> 11449 <!-- tree 94 --> 11450 <_> 11451 <!-- root node --> 11452 <feature> 11453 <rects> 11454 <_>2 11 20 3 -1.</_> 11455 <_>2 12 20 1 3.</_></rects> 11456 <tilted>0</tilted></feature> 11457 <threshold>-0.0122189996764064</threshold> 11458 <left_val>-1.8709750175476074</left_val> 11459 <right_val>-0.0454999990761280</right_val></_></_> 11460 <_> 11461 <!-- tree 95 --> 11462 <_> 11463 <!-- root node --> 11464 <feature> 11465 <rects> 11466 <_>13 0 4 13 -1.</_> 11467 <_>13 0 2 13 2.</_></rects> 11468 <tilted>0</tilted></feature> 11469 <threshold>-0.0168609991669655</threshold> 11470 <left_val>-0.7691270112991333</left_val> 11471 <right_val>0.1533000022172928</right_val></_></_> 11472 <_> 11473 <!-- tree 96 --> 11474 <_> 11475 <!-- root node --> 11476 <feature> 11477 <rects> 11478 <_>7 0 4 13 -1.</_> 11479 <_>9 0 2 13 2.</_></rects> 11480 <tilted>0</tilted></feature> 11481 <threshold>-2.4999999441206455e-003</threshold> 11482 <left_val>-0.6298739910125732</left_val> 11483 <right_val>0.0516000017523766</right_val></_></_> 11484 <_> 11485 <!-- tree 97 --> 11486 <_> 11487 <!-- root node --> 11488 <feature> 11489 <rects> 11490 <_>3 1 18 7 -1.</_> 11491 <_>9 1 6 7 3.</_></rects> 11492 <tilted>0</tilted></feature> 11493 <threshold>-0.0450379997491837</threshold> 11494 <left_val>0.8542889952659607</left_val> 11495 <right_val>6.2600001692771912e-003</right_val></_></_> 11496 <_> 11497 <!-- tree 98 --> 11498 <_> 11499 <!-- root node --> 11500 <feature> 11501 <rects> 11502 <_>1 11 6 9 -1.</_> 11503 <_>1 14 6 3 3.</_></rects> 11504 <tilted>0</tilted></feature> 11505 <threshold>0.0390579998493195</threshold> 11506 <left_val>-0.0324589982628822</left_val> 11507 <right_val>-1.3325669765472412</right_val></_></_> 11508 <_> 11509 <!-- tree 99 --> 11510 <_> 11511 <!-- root node --> 11512 <feature> 11513 <rects> 11514 <_>8 18 9 6 -1.</_> 11515 <_>8 20 9 2 3.</_></rects> 11516 <tilted>0</tilted></feature> 11517 <threshold>6.6720000468194485e-003</threshold> 11518 <left_val>-0.1942359954118729</left_val> 11519 <right_val>0.3732869923114777</right_val></_></_> 11520 <_> 11521 <!-- tree 100 --> 11522 <_> 11523 <!-- root node --> 11524 <feature> 11525 <rects> 11526 <_>3 9 15 6 -1.</_> 11527 <_>3 11 15 2 3.</_></rects> 11528 <tilted>0</tilted></feature> 11529 <threshold>-0.0163610000163317</threshold> 11530 <left_val>2.0605869293212891</left_val> 11531 <right_val>-0.1504269987344742</right_val></_></_> 11532 <_> 11533 <!-- tree 101 --> 11534 <_> 11535 <!-- root node --> 11536 <feature> 11537 <rects> 11538 <_>5 10 19 2 -1.</_> 11539 <_>5 11 19 1 2.</_></rects> 11540 <tilted>0</tilted></feature> 11541 <threshold>6.1719999648630619e-003</threshold> 11542 <left_val>-0.1161099970340729</left_val> 11543 <right_val>0.2545540034770966</right_val></_></_> 11544 <_> 11545 <!-- tree 102 --> 11546 <_> 11547 <!-- root node --> 11548 <feature> 11549 <rects> 11550 <_>8 6 7 16 -1.</_> 11551 <_>8 14 7 8 2.</_></rects> 11552 <tilted>0</tilted></feature> 11553 <threshold>0.0457220003008842</threshold> 11554 <left_val>-0.0163400005549192</left_val> 11555 <right_val>-1.0449140071868896</right_val></_></_> 11556 <_> 11557 <!-- tree 103 --> 11558 <_> 11559 <!-- root node --> 11560 <feature> 11561 <rects> 11562 <_>9 14 9 6 -1.</_> 11563 <_>9 16 9 2 3.</_></rects> 11564 <tilted>0</tilted></feature> 11565 <threshold>4.1209999471902847e-003</threshold> 11566 <left_val>-0.0419979989528656</left_val> 11567 <right_val>0.3968099951744080</right_val></_></_> 11568 <_> 11569 <!-- tree 104 --> 11570 <_> 11571 <!-- root node --> 11572 <feature> 11573 <rects> 11574 <_>0 7 8 12 -1.</_> 11575 <_>0 11 8 4 3.</_></rects> 11576 <tilted>0</tilted></feature> 11577 <threshold>-1.7800000205170363e-004</threshold> 11578 <left_val>-0.6642259955406189</left_val> 11579 <right_val>0.0334430001676083</right_val></_></_> 11580 <_> 11581 <!-- tree 105 --> 11582 <_> 11583 <!-- root node --> 11584 <feature> 11585 <rects> 11586 <_>6 4 18 3 -1.</_> 11587 <_>6 5 18 1 3.</_></rects> 11588 <tilted>0</tilted></feature> 11589 <threshold>7.1109998971223831e-003</threshold> 11590 <left_val>-0.0582319982349873</left_val> 11591 <right_val>0.3785730004310608</right_val></_></_> 11592 <_> 11593 <!-- tree 106 --> 11594 <_> 11595 <!-- root node --> 11596 <feature> 11597 <rects> 11598 <_>0 16 12 6 -1.</_> 11599 <_>4 16 4 6 3.</_></rects> 11600 <tilted>0</tilted></feature> 11601 <threshold>-0.0498640015721321</threshold> 11602 <left_val>0.6101940274238586</left_val> 11603 <right_val>-0.2100570052862167</right_val></_></_> 11604 <_> 11605 <!-- tree 107 --> 11606 <_> 11607 <!-- root node --> 11608 <feature> 11609 <rects> 11610 <_>13 13 9 4 -1.</_> 11611 <_>13 15 9 2 2.</_></rects> 11612 <tilted>0</tilted></feature> 11613 <threshold>-0.0250119995325804</threshold> 11614 <left_val>-0.5710009932518005</left_val> 11615 <right_val>0.1784839928150177</right_val></_></_> 11616 <_> 11617 <!-- tree 108 --> 11618 <_> 11619 <!-- root node --> 11620 <feature> 11621 <rects> 11622 <_>5 8 14 14 -1.</_> 11623 <_>5 8 7 7 2.</_> 11624 <_>12 15 7 7 2.</_></rects> 11625 <tilted>0</tilted></feature> 11626 <threshold>0.0309399999678135</threshold> 11627 <left_val>0.0563630014657974</left_val> 11628 <right_val>-0.6473100185394287</right_val></_></_> 11629 <_> 11630 <!-- tree 109 --> 11631 <_> 11632 <!-- root node --> 11633 <feature> 11634 <rects> 11635 <_>1 16 22 6 -1.</_> 11636 <_>12 16 11 3 2.</_> 11637 <_>1 19 11 3 2.</_></rects> 11638 <tilted>0</tilted></feature> 11639 <threshold>0.0462710000574589</threshold> 11640 <left_val>0.1748239994049072</left_val> 11641 <right_val>-0.9890940189361572</right_val></_></_> 11642 <_> 11643 <!-- tree 110 --> 11644 <_> 11645 <!-- root node --> 11646 <feature> 11647 <rects> 11648 <_>9 0 6 9 -1.</_> 11649 <_>11 0 2 9 3.</_></rects> 11650 <tilted>0</tilted></feature> 11651 <threshold>-3.1870000530034304e-003</threshold> 11652 <left_val>-0.6680480241775513</left_val> 11653 <right_val>0.0322670005261898</right_val></_></_> 11654 <_> 11655 <!-- tree 111 --> 11656 <_> 11657 <!-- root node --> 11658 <feature> 11659 <rects> 11660 <_>9 5 10 10 -1.</_> 11661 <_>14 5 5 5 2.</_> 11662 <_>9 10 5 5 2.</_></rects> 11663 <tilted>0</tilted></feature> 11664 <threshold>-0.0243519991636276</threshold> 11665 <left_val>0.2944490015506744</left_val> 11666 <right_val>-1.3599999947473407e-003</right_val></_></_> 11667 <_> 11668 <!-- tree 112 --> 11669 <_> 11670 <!-- root node --> 11671 <feature> 11672 <rects> 11673 <_>5 5 10 10 -1.</_> 11674 <_>5 5 5 5 2.</_> 11675 <_>10 10 5 5 2.</_></rects> 11676 <tilted>0</tilted></feature> 11677 <threshold>0.0119740003719926</threshold> 11678 <left_val>-0.2834509909152985</left_val> 11679 <right_val>0.4717119932174683</right_val></_></_> 11680 <_> 11681 <!-- tree 113 --> 11682 <_> 11683 <!-- root node --> 11684 <feature> 11685 <rects> 11686 <_>4 6 16 6 -1.</_> 11687 <_>12 6 8 3 2.</_> 11688 <_>4 9 8 3 2.</_></rects> 11689 <tilted>0</tilted></feature> 11690 <threshold>0.0130700003355742</threshold> 11691 <left_val>-0.1083460003137589</left_val> 11692 <right_val>0.5719329714775085</right_val></_></_> 11693 <_> 11694 <!-- tree 114 --> 11695 <_> 11696 <!-- root node --> 11697 <feature> 11698 <rects> 11699 <_>0 7 6 9 -1.</_> 11700 <_>0 10 6 3 3.</_></rects> 11701 <tilted>0</tilted></feature> 11702 <threshold>0.0591630004346371</threshold> 11703 <left_val>-0.0509390011429787</left_val> 11704 <right_val>-1.9059720039367676</right_val></_></_> 11705 <_> 11706 <!-- tree 115 --> 11707 <_> 11708 <!-- root node --> 11709 <feature> 11710 <rects> 11711 <_>16 10 8 14 -1.</_> 11712 <_>20 10 4 7 2.</_> 11713 <_>16 17 4 7 2.</_></rects> 11714 <tilted>0</tilted></feature> 11715 <threshold>-0.0410949997603893</threshold> 11716 <left_val>0.4510459899902344</left_val> 11717 <right_val>-9.7599998116493225e-003</right_val></_></_> 11718 <_> 11719 <!-- tree 116 --> 11720 <_> 11721 <!-- root node --> 11722 <feature> 11723 <rects> 11724 <_>9 12 6 12 -1.</_> 11725 <_>9 18 6 6 2.</_></rects> 11726 <tilted>0</tilted></feature> 11727 <threshold>-0.0839890018105507</threshold> 11728 <left_val>-2.0349199771881104</left_val> 11729 <right_val>-0.0510190017521381</right_val></_></_> 11730 <_> 11731 <!-- tree 117 --> 11732 <_> 11733 <!-- root node --> 11734 <feature> 11735 <rects> 11736 <_>8 10 8 12 -1.</_> 11737 <_>12 10 4 6 2.</_> 11738 <_>8 16 4 6 2.</_></rects> 11739 <tilted>0</tilted></feature> 11740 <threshold>0.0446190014481544</threshold> 11741 <left_val>0.1704110056161881</left_val> 11742 <right_val>-1.2278720140457153</right_val></_></_> 11743 <_> 11744 <!-- tree 118 --> 11745 <_> 11746 <!-- root node --> 11747 <feature> 11748 <rects> 11749 <_>8 0 4 9 -1.</_> 11750 <_>10 0 2 9 2.</_></rects> 11751 <tilted>0</tilted></feature> 11752 <threshold>0.0244190003722906</threshold> 11753 <left_val>-0.0217969994992018</left_val> 11754 <right_val>-1.0822949409484863</right_val></_></_> 11755 <_> 11756 <!-- tree 119 --> 11757 <_> 11758 <!-- root node --> 11759 <feature> 11760 <rects> 11761 <_>10 4 8 16 -1.</_> 11762 <_>14 4 4 8 2.</_> 11763 <_>10 12 4 8 2.</_></rects> 11764 <tilted>0</tilted></feature> 11765 <threshold>-4.3870001100003719e-003</threshold> 11766 <left_val>0.3046669960021973</left_val> 11767 <right_val>-0.3706659972667694</right_val></_></_> 11768 <_> 11769 <!-- tree 120 --> 11770 <_> 11771 <!-- root node --> 11772 <feature> 11773 <rects> 11774 <_>7 10 10 6 -1.</_> 11775 <_>7 12 10 2 3.</_></rects> 11776 <tilted>0</tilted></feature> 11777 <threshold>0.0246079992502928</threshold> 11778 <left_val>-0.3116950094699860</left_val> 11779 <right_val>0.2365729957818985</right_val></_></_> 11780 <_> 11781 <!-- tree 121 --> 11782 <_> 11783 <!-- root node --> 11784 <feature> 11785 <rects> 11786 <_>5 6 14 14 -1.</_> 11787 <_>12 6 7 7 2.</_> 11788 <_>5 13 7 7 2.</_></rects> 11789 <tilted>0</tilted></feature> 11790 <threshold>-0.0851820036768913</threshold> 11791 <left_val>-1.7982350587844849</left_val> 11792 <right_val>0.1525429934263229</right_val></_></_> 11793 <_> 11794 <!-- tree 122 --> 11795 <_> 11796 <!-- root node --> 11797 <feature> 11798 <rects> 11799 <_>2 11 20 2 -1.</_> 11800 <_>2 12 20 1 2.</_></rects> 11801 <tilted>0</tilted></feature> 11802 <threshold>0.0218449998646975</threshold> 11803 <left_val>-0.0518880002200603</left_val> 11804 <right_val>-1.9017189741134644</right_val></_></_> 11805 <_> 11806 <!-- tree 123 --> 11807 <_> 11808 <!-- root node --> 11809 <feature> 11810 <rects> 11811 <_>18 8 4 16 -1.</_> 11812 <_>18 16 4 8 2.</_></rects> 11813 <tilted>0</tilted></feature> 11814 <threshold>-0.0168290007859468</threshold> 11815 <left_val>0.2102590054273605</left_val> 11816 <right_val>0.0216569993644953</right_val></_></_> 11817 <_> 11818 <!-- tree 124 --> 11819 <_> 11820 <!-- root node --> 11821 <feature> 11822 <rects> 11823 <_>1 11 12 10 -1.</_> 11824 <_>1 11 6 5 2.</_> 11825 <_>7 16 6 5 2.</_></rects> 11826 <tilted>0</tilted></feature> 11827 <threshold>0.0325479991734028</threshold> 11828 <left_val>-0.2029259949922562</left_val> 11829 <right_val>0.6094400286674500</right_val></_></_> 11830 <_> 11831 <!-- tree 125 --> 11832 <_> 11833 <!-- root node --> 11834 <feature> 11835 <rects> 11836 <_>6 9 12 4 -1.</_> 11837 <_>6 11 12 2 2.</_></rects> 11838 <tilted>0</tilted></feature> 11839 <threshold>2.4709999561309814e-003</threshold> 11840 <left_val>-0.9537119865417481</left_val> 11841 <right_val>0.1856839954853058</right_val></_></_> 11842 <_> 11843 <!-- tree 126 --> 11844 <_> 11845 <!-- root node --> 11846 <feature> 11847 <rects> 11848 <_>9 12 6 7 -1.</_> 11849 <_>12 12 3 7 2.</_></rects> 11850 <tilted>0</tilted></feature> 11851 <threshold>0.0554159991443157</threshold> 11852 <left_val>-0.1440529972314835</left_val> 11853 <right_val>2.1506340503692627</right_val></_></_> 11854 <_> 11855 <!-- tree 127 --> 11856 <_> 11857 <!-- root node --> 11858 <feature> 11859 <rects> 11860 <_>10 4 8 16 -1.</_> 11861 <_>14 4 4 8 2.</_> 11862 <_>10 12 4 8 2.</_></rects> 11863 <tilted>0</tilted></feature> 11864 <threshold>-0.1063549965620041</threshold> 11865 <left_val>-1.0911970138549805</left_val> 11866 <right_val>0.1322800070047379</right_val></_></_> 11867 <_> 11868 <!-- tree 128 --> 11869 <_> 11870 <!-- root node --> 11871 <feature> 11872 <rects> 11873 <_>6 4 8 16 -1.</_> 11874 <_>6 4 4 8 2.</_> 11875 <_>10 12 4 8 2.</_></rects> 11876 <tilted>0</tilted></feature> 11877 <threshold>-7.9889995977282524e-003</threshold> 11878 <left_val>0.1025340035557747</left_val> 11879 <right_val>-0.5174490213394165</right_val></_></_> 11880 <_> 11881 <!-- tree 129 --> 11882 <_> 11883 <!-- root node --> 11884 <feature> 11885 <rects> 11886 <_>8 9 9 6 -1.</_> 11887 <_>11 9 3 6 3.</_></rects> 11888 <tilted>0</tilted></feature> 11889 <threshold>0.0755679979920387</threshold> 11890 <left_val>0.0589650012552738</left_val> 11891 <right_val>1.2354209423065186</right_val></_></_> 11892 <_> 11893 <!-- tree 130 --> 11894 <_> 11895 <!-- root node --> 11896 <feature> 11897 <rects> 11898 <_>1 5 16 12 -1.</_> 11899 <_>1 5 8 6 2.</_> 11900 <_>9 11 8 6 2.</_></rects> 11901 <tilted>0</tilted></feature> 11902 <threshold>-0.0928059965372086</threshold> 11903 <left_val>-1.3431650400161743</left_val> 11904 <right_val>-0.0344629995524883</right_val></_></_> 11905 <_> 11906 <!-- tree 131 --> 11907 <_> 11908 <!-- root node --> 11909 <feature> 11910 <rects> 11911 <_>9 9 6 8 -1.</_> 11912 <_>9 9 3 8 2.</_></rects> 11913 <tilted>0</tilted></feature> 11914 <threshold>0.0494319982826710</threshold> 11915 <left_val>0.0496019981801510</left_val> 11916 <right_val>1.6054730415344238</right_val></_></_> 11917 <_> 11918 <!-- tree 132 --> 11919 <_> 11920 <!-- root node --> 11921 <feature> 11922 <rects> 11923 <_>6 0 3 18 -1.</_> 11924 <_>7 0 1 18 3.</_></rects> 11925 <tilted>0</tilted></feature> 11926 <threshold>-0.0117729995399714</threshold> 11927 <left_val>-1.0261050462722778</left_val> 11928 <right_val>-4.1559999808669090e-003</right_val></_></_> 11929 <_> 11930 <!-- tree 133 --> 11931 <_> 11932 <!-- root node --> 11933 <feature> 11934 <rects> 11935 <_>17 9 5 14 -1.</_> 11936 <_>17 16 5 7 2.</_></rects> 11937 <tilted>0</tilted></feature> 11938 <threshold>0.0858860015869141</threshold> 11939 <left_val>0.0846429988741875</left_val> 11940 <right_val>0.9522079825401306</right_val></_></_> 11941 <_> 11942 <!-- tree 134 --> 11943 <_> 11944 <!-- root node --> 11945 <feature> 11946 <rects> 11947 <_>2 9 5 14 -1.</_> 11948 <_>2 16 5 7 2.</_></rects> 11949 <tilted>0</tilted></feature> 11950 <threshold>0.0810310021042824</threshold> 11951 <left_val>-0.1468710005283356</left_val> 11952 <right_val>1.9359990358352661</right_val></_></_></trees> 11953 <stage_threshold>-3.7025990486145020</stage_threshold> 11954 <parent>12</parent> 11955 <next>-1</next></_> 11956 <_> 11957 <!-- stage 14 --> 11958 <trees> 11959 <_> 11960 <!-- tree 0 --> 11961 <_> 11962 <!-- root node --> 11963 <feature> 11964 <rects> 11965 <_>7 4 10 6 -1.</_> 11966 <_>7 7 10 3 2.</_></rects> 11967 <tilted>0</tilted></feature> 11968 <threshold>-0.0338409990072250</threshold> 11969 <left_val>0.6588950157165527</left_val> 11970 <right_val>-0.6975529789924622</right_val></_></_> 11971 <_> 11972 <!-- tree 1 --> 11973 <_> 11974 <!-- root node --> 11975 <feature> 11976 <rects> 11977 <_>1 3 23 18 -1.</_> 11978 <_>1 9 23 6 3.</_></rects> 11979 <tilted>0</tilted></feature> 11980 <threshold>0.0154100004583597</threshold> 11981 <left_val>-0.9072840213775635</left_val> 11982 <right_val>0.3047859966754913</right_val></_></_> 11983 <_> 11984 <!-- tree 2 --> 11985 <_> 11986 <!-- root node --> 11987 <feature> 11988 <rects> 11989 <_>1 1 21 3 -1.</_> 11990 <_>8 1 7 3 3.</_></rects> 11991 <tilted>0</tilted></feature> 11992 <threshold>0.0549059994518757</threshold> 11993 <left_val>-0.4977479875087738</left_val> 11994 <right_val>0.5713260173797607</right_val></_></_> 11995 <_> 11996 <!-- tree 3 --> 11997 <_> 11998 <!-- root node --> 11999 <feature> 12000 <rects> 12001 <_>9 6 6 9 -1.</_> 12002 <_>11 6 2 9 3.</_></rects> 12003 <tilted>0</tilted></feature> 12004 <threshold>0.0213900003582239</threshold> 12005 <left_val>-0.4256519973278046</left_val> 12006 <right_val>0.5809680223464966</right_val></_></_> 12007 <_> 12008 <!-- tree 4 --> 12009 <_> 12010 <!-- root node --> 12011 <feature> 12012 <rects> 12013 <_>3 18 12 6 -1.</_> 12014 <_>3 18 6 3 2.</_> 12015 <_>9 21 6 3 2.</_></rects> 12016 <tilted>0</tilted></feature> 12017 <threshold>7.8849997371435165e-003</threshold> 12018 <left_val>-0.4790599942207336</left_val> 12019 <right_val>0.4301649928092957</right_val></_></_> 12020 <_> 12021 <!-- tree 5 --> 12022 <_> 12023 <!-- root node --> 12024 <feature> 12025 <rects> 12026 <_>16 8 8 16 -1.</_> 12027 <_>20 8 4 8 2.</_> 12028 <_>16 16 4 8 2.</_></rects> 12029 <tilted>0</tilted></feature> 12030 <threshold>-0.0375449992716312</threshold> 12031 <left_val>0.5086159706115723</left_val> 12032 <right_val>-0.1998589932918549</right_val></_></_> 12033 <_> 12034 <!-- tree 6 --> 12035 <_> 12036 <!-- root node --> 12037 <feature> 12038 <rects> 12039 <_>0 19 24 4 -1.</_> 12040 <_>8 19 8 4 3.</_></rects> 12041 <tilted>0</tilted></feature> 12042 <threshold>0.1592579931020737</threshold> 12043 <left_val>-0.2326360046863556</left_val> 12044 <right_val>1.0993319749832153</right_val></_></_> 12045 <_> 12046 <!-- tree 7 --> 12047 <_> 12048 <!-- root node --> 12049 <feature> 12050 <rects> 12051 <_>16 8 8 16 -1.</_> 12052 <_>20 8 4 8 2.</_> 12053 <_>16 16 4 8 2.</_></rects> 12054 <tilted>0</tilted></feature> 12055 <threshold>-0.0689399987459183</threshold> 12056 <left_val>0.4056900143623352</left_val> 12057 <right_val>0.0568550005555153</right_val></_></_> 12058 <_> 12059 <!-- tree 8 --> 12060 <_> 12061 <!-- root node --> 12062 <feature> 12063 <rects> 12064 <_>0 8 8 16 -1.</_> 12065 <_>0 8 4 8 2.</_> 12066 <_>4 16 4 8 2.</_></rects> 12067 <tilted>0</tilted></feature> 12068 <threshold>-0.0336950011551380</threshold> 12069 <left_val>0.4513280093669891</left_val> 12070 <right_val>-0.3333280086517334</right_val></_></_> 12071 <_> 12072 <!-- tree 9 --> 12073 <_> 12074 <!-- root node --> 12075 <feature> 12076 <rects> 12077 <_>8 12 8 10 -1.</_> 12078 <_>8 17 8 5 2.</_></rects> 12079 <tilted>0</tilted></feature> 12080 <threshold>-0.0633149966597557</threshold> 12081 <left_val>-0.8501570224761963</left_val> 12082 <right_val>0.2234169989824295</right_val></_></_> 12083 <_> 12084 <!-- tree 10 --> 12085 <_> 12086 <!-- root node --> 12087 <feature> 12088 <rects> 12089 <_>5 7 5 8 -1.</_> 12090 <_>5 11 5 4 2.</_></rects> 12091 <tilted>0</tilted></feature> 12092 <threshold>7.3699997738003731e-003</threshold> 12093 <left_val>-0.9308220148086548</left_val> 12094 <right_val>0.0592169985175133</right_val></_></_> 12095 <_> 12096 <!-- tree 11 --> 12097 <_> 12098 <!-- root node --> 12099 <feature> 12100 <rects> 12101 <_>4 1 19 2 -1.</_> 12102 <_>4 2 19 1 2.</_></rects> 12103 <tilted>0</tilted></feature> 12104 <threshold>-9.5969997346401215e-003</threshold> 12105 <left_val>-1.2794899940490723</left_val> 12106 <right_val>0.1844729930162430</right_val></_></_> 12107 <_> 12108 <!-- tree 12 --> 12109 <_> 12110 <!-- root node --> 12111 <feature> 12112 <rects> 12113 <_>0 12 24 9 -1.</_> 12114 <_>8 12 8 9 3.</_></rects> 12115 <tilted>0</tilted></feature> 12116 <threshold>-0.1306799948215485</threshold> 12117 <left_val>0.5842689871788025</left_val> 12118 <right_val>-0.2600719928741455</right_val></_></_> 12119 <_> 12120 <!-- tree 13 --> 12121 <_> 12122 <!-- root node --> 12123 <feature> 12124 <rects> 12125 <_>6 0 13 8 -1.</_> 12126 <_>6 4 13 4 2.</_></rects> 12127 <tilted>0</tilted></feature> 12128 <threshold>0.0574029982089996</threshold> 12129 <left_val>-0.0537890009582043</left_val> 12130 <right_val>0.7117559909820557</right_val></_></_> 12131 <_> 12132 <!-- tree 14 --> 12133 <_> 12134 <!-- root node --> 12135 <feature> 12136 <rects> 12137 <_>0 0 24 3 -1.</_> 12138 <_>0 1 24 1 3.</_></rects> 12139 <tilted>0</tilted></feature> 12140 <threshold>-7.2340001352131367e-003</threshold> 12141 <left_val>-0.8696219921112061</left_val> 12142 <right_val>0.0752149969339371</right_val></_></_> 12143 <_> 12144 <!-- tree 15 --> 12145 <_> 12146 <!-- root node --> 12147 <feature> 12148 <rects> 12149 <_>20 3 4 11 -1.</_> 12150 <_>20 3 2 11 2.</_></rects> 12151 <tilted>0</tilted></feature> 12152 <threshold>0.0310989990830421</threshold> 12153 <left_val>-0.0750069990754128</left_val> 12154 <right_val>0.9078159928321838</right_val></_></_> 12155 <_> 12156 <!-- tree 16 --> 12157 <_> 12158 <!-- root node --> 12159 <feature> 12160 <rects> 12161 <_>8 6 6 9 -1.</_> 12162 <_>10 6 2 9 3.</_></rects> 12163 <tilted>0</tilted></feature> 12164 <threshold>0.0358540005981922</threshold> 12165 <left_val>-0.2479549944400787</left_val> 12166 <right_val>0.7227209806442261</right_val></_></_> 12167 <_> 12168 <!-- tree 17 --> 12169 <_> 12170 <!-- root node --> 12171 <feature> 12172 <rects> 12173 <_>6 11 12 8 -1.</_> 12174 <_>12 11 6 4 2.</_> 12175 <_>6 15 6 4 2.</_></rects> 12176 <tilted>0</tilted></feature> 12177 <threshold>-0.0315349996089935</threshold> 12178 <left_val>-1.1238329410552979</left_val> 12179 <right_val>0.2098830044269562</right_val></_></_> 12180 <_> 12181 <!-- tree 18 --> 12182 <_> 12183 <!-- root node --> 12184 <feature> 12185 <rects> 12186 <_>0 8 12 6 -1.</_> 12187 <_>0 8 6 3 2.</_> 12188 <_>6 11 6 3 2.</_></rects> 12189 <tilted>0</tilted></feature> 12190 <threshold>-0.0194370001554489</threshold> 12191 <left_val>-1.4499390125274658</left_val> 12192 <right_val>-0.0151000004261732</right_val></_></_> 12193 <_> 12194 <!-- tree 19 --> 12195 <_> 12196 <!-- root node --> 12197 <feature> 12198 <rects> 12199 <_>6 17 18 3 -1.</_> 12200 <_>6 18 18 1 3.</_></rects> 12201 <tilted>0</tilted></feature> 12202 <threshold>-7.2420001961290836e-003</threshold> 12203 <left_val>0.5386490225791931</left_val> 12204 <right_val>-0.1137539967894554</right_val></_></_> 12205 <_> 12206 <!-- tree 20 --> 12207 <_> 12208 <!-- root node --> 12209 <feature> 12210 <rects> 12211 <_>0 14 9 6 -1.</_> 12212 <_>0 16 9 2 3.</_></rects> 12213 <tilted>0</tilted></feature> 12214 <threshold>8.1639997661113739e-003</threshold> 12215 <left_val>0.0668890029191971</left_val> 12216 <right_val>-0.7687289714813232</right_val></_></_> 12217 <_> 12218 <!-- tree 21 --> 12219 <_> 12220 <!-- root node --> 12221 <feature> 12222 <rects> 12223 <_>20 3 4 9 -1.</_> 12224 <_>20 3 2 9 2.</_></rects> 12225 <tilted>0</tilted></feature> 12226 <threshold>-0.0436530001461506</threshold> 12227 <left_val>1.1413530111312866</left_val> 12228 <right_val>0.0402170009911060</right_val></_></_> 12229 <_> 12230 <!-- tree 22 --> 12231 <_> 12232 <!-- root node --> 12233 <feature> 12234 <rects> 12235 <_>0 3 4 9 -1.</_> 12236 <_>2 3 2 9 2.</_></rects> 12237 <tilted>0</tilted></feature> 12238 <threshold>0.0265699997544289</threshold> 12239 <left_val>-0.2471909970045090</left_val> 12240 <right_val>0.5929509997367859</right_val></_></_> 12241 <_> 12242 <!-- tree 23 --> 12243 <_> 12244 <!-- root node --> 12245 <feature> 12246 <rects> 12247 <_>15 0 9 19 -1.</_> 12248 <_>18 0 3 19 3.</_></rects> 12249 <tilted>0</tilted></feature> 12250 <threshold>0.0322169996798038</threshold> 12251 <left_val>-0.0400249995291233</left_val> 12252 <right_val>0.3268800079822540</right_val></_></_> 12253 <_> 12254 <!-- tree 24 --> 12255 <_> 12256 <!-- root node --> 12257 <feature> 12258 <rects> 12259 <_>0 0 9 19 -1.</_> 12260 <_>3 0 3 19 3.</_></rects> 12261 <tilted>0</tilted></feature> 12262 <threshold>-0.0722360014915466</threshold> 12263 <left_val>0.5872939825057983</left_val> 12264 <right_val>-0.2539600133895874</right_val></_></_> 12265 <_> 12266 <!-- tree 25 --> 12267 <_> 12268 <!-- root node --> 12269 <feature> 12270 <rects> 12271 <_>13 11 6 8 -1.</_> 12272 <_>13 11 3 8 2.</_></rects> 12273 <tilted>0</tilted></feature> 12274 <threshold>0.0314249992370605</threshold> 12275 <left_val>0.1531510055065155</left_val> 12276 <right_val>-0.5604209899902344</right_val></_></_> 12277 <_> 12278 <!-- tree 26 --> 12279 <_> 12280 <!-- root node --> 12281 <feature> 12282 <rects> 12283 <_>5 11 6 8 -1.</_> 12284 <_>8 11 3 8 2.</_></rects> 12285 <tilted>0</tilted></feature> 12286 <threshold>-4.7699999413453043e-004</threshold> 12287 <left_val>0.1695889979600906</left_val> 12288 <right_val>-0.5262669920921326</right_val></_></_> 12289 <_> 12290 <!-- tree 27 --> 12291 <_> 12292 <!-- root node --> 12293 <feature> 12294 <rects> 12295 <_>5 11 19 3 -1.</_> 12296 <_>5 12 19 1 3.</_></rects> 12297 <tilted>0</tilted></feature> 12298 <threshold>2.7189999818801880e-003</threshold> 12299 <left_val>-0.1494459956884384</left_val> 12300 <right_val>0.2965869903564453</right_val></_></_> 12301 <_> 12302 <!-- tree 28 --> 12303 <_> 12304 <!-- root node --> 12305 <feature> 12306 <rects> 12307 <_>3 20 18 4 -1.</_> 12308 <_>9 20 6 4 3.</_></rects> 12309 <tilted>0</tilted></feature> 12310 <threshold>0.0328750014305115</threshold> 12311 <left_val>-0.3994350135326386</left_val> 12312 <right_val>0.2515659928321838</right_val></_></_> 12313 <_> 12314 <!-- tree 29 --> 12315 <_> 12316 <!-- root node --> 12317 <feature> 12318 <rects> 12319 <_>6 6 16 6 -1.</_> 12320 <_>6 8 16 2 3.</_></rects> 12321 <tilted>0</tilted></feature> 12322 <threshold>-0.0145530002191663</threshold> 12323 <left_val>0.2797259986400604</left_val> 12324 <right_val>-0.4720380008220673</right_val></_></_> 12325 <_> 12326 <!-- tree 30 --> 12327 <_> 12328 <!-- root node --> 12329 <feature> 12330 <rects> 12331 <_>6 0 9 6 -1.</_> 12332 <_>9 0 3 6 3.</_></rects> 12333 <tilted>0</tilted></feature> 12334 <threshold>0.0380179993808270</threshold> 12335 <left_val>-2.9200001154094934e-003</left_val> 12336 <right_val>-1.1300059556961060</right_val></_></_> 12337 <_> 12338 <!-- tree 31 --> 12339 <_> 12340 <!-- root node --> 12341 <feature> 12342 <rects> 12343 <_>10 3 4 14 -1.</_> 12344 <_>10 10 4 7 2.</_></rects> 12345 <tilted>0</tilted></feature> 12346 <threshold>2.8659999370574951e-003</threshold> 12347 <left_val>0.4111180007457733</left_val> 12348 <right_val>-0.2622080147266388</right_val></_></_> 12349 <_> 12350 <!-- tree 32 --> 12351 <_> 12352 <!-- root node --> 12353 <feature> 12354 <rects> 12355 <_>1 5 15 12 -1.</_> 12356 <_>1 11 15 6 2.</_></rects> 12357 <tilted>0</tilted></feature> 12358 <threshold>-0.0416069999337196</threshold> 12359 <left_val>-1.4293819665908813</left_val> 12360 <right_val>-0.0191329997032881</right_val></_></_> 12361 <_> 12362 <!-- tree 33 --> 12363 <_> 12364 <!-- root node --> 12365 <feature> 12366 <rects> 12367 <_>11 12 8 5 -1.</_> 12368 <_>11 12 4 5 2.</_></rects> 12369 <tilted>0</tilted></feature> 12370 <threshold>-0.0248029995709658</threshold> 12371 <left_val>-0.2501359879970551</left_val> 12372 <right_val>0.1597869992256165</right_val></_></_> 12373 <_> 12374 <!-- tree 34 --> 12375 <_> 12376 <!-- root node --> 12377 <feature> 12378 <rects> 12379 <_>5 0 6 9 -1.</_> 12380 <_>7 0 2 9 3.</_></rects> 12381 <tilted>0</tilted></feature> 12382 <threshold>0.0100980000570416</threshold> 12383 <left_val>0.0437389984726906</left_val> 12384 <right_val>-0.6998609900474548</right_val></_></_> 12385 <_> 12386 <!-- tree 35 --> 12387 <_> 12388 <!-- root node --> 12389 <feature> 12390 <rects> 12391 <_>12 0 6 9 -1.</_> 12392 <_>14 0 2 9 3.</_></rects> 12393 <tilted>0</tilted></feature> 12394 <threshold>-0.0209470000118017</threshold> 12395 <left_val>-0.9413779973983765</left_val> 12396 <right_val>0.2320400029420853</right_val></_></_> 12397 <_> 12398 <!-- tree 36 --> 12399 <_> 12400 <!-- root node --> 12401 <feature> 12402 <rects> 12403 <_>5 5 12 8 -1.</_> 12404 <_>5 5 6 4 2.</_> 12405 <_>11 9 6 4 2.</_></rects> 12406 <tilted>0</tilted></feature> 12407 <threshold>0.0224580001085997</threshold> 12408 <left_val>-0.2718580067157745</left_val> 12409 <right_val>0.4531919956207275</right_val></_></_> 12410 <_> 12411 <!-- tree 37 --> 12412 <_> 12413 <!-- root node --> 12414 <feature> 12415 <rects> 12416 <_>13 12 11 6 -1.</_> 12417 <_>13 14 11 2 3.</_></rects> 12418 <tilted>0</tilted></feature> 12419 <threshold>-0.0371109992265701</threshold> 12420 <left_val>-1.0314660072326660</left_val> 12421 <right_val>0.1442179977893829</right_val></_></_> 12422 <_> 12423 <!-- tree 38 --> 12424 <_> 12425 <!-- root node --> 12426 <feature> 12427 <rects> 12428 <_>0 13 21 3 -1.</_> 12429 <_>0 14 21 1 3.</_></rects> 12430 <tilted>0</tilted></feature> 12431 <threshold>-0.0106480000540614</threshold> 12432 <left_val>0.6310700178146362</left_val> 12433 <right_val>-0.2552079856395721</right_val></_></_> 12434 <_> 12435 <!-- tree 39 --> 12436 <_> 12437 <!-- root node --> 12438 <feature> 12439 <rects> 12440 <_>8 1 8 12 -1.</_> 12441 <_>12 1 4 6 2.</_> 12442 <_>8 7 4 6 2.</_></rects> 12443 <tilted>0</tilted></feature> 12444 <threshold>0.0554229989647865</threshold> 12445 <left_val>0.1620659977197647</left_val> 12446 <right_val>-1.7722640037536621</right_val></_></_> 12447 <_> 12448 <!-- tree 40 --> 12449 <_> 12450 <!-- root node --> 12451 <feature> 12452 <rects> 12453 <_>1 0 6 12 -1.</_> 12454 <_>1 0 3 6 2.</_> 12455 <_>4 6 3 6 2.</_></rects> 12456 <tilted>0</tilted></feature> 12457 <threshold>0.0216019991785288</threshold> 12458 <left_val>-0.2501609921455383</left_val> 12459 <right_val>0.5411980152130127</right_val></_></_> 12460 <_> 12461 <!-- tree 41 --> 12462 <_> 12463 <!-- root node --> 12464 <feature> 12465 <rects> 12466 <_>2 2 21 2 -1.</_> 12467 <_>2 3 21 1 2.</_></rects> 12468 <tilted>0</tilted></feature> 12469 <threshold>8.7000000348780304e-005</threshold> 12470 <left_val>-0.2900890111923218</left_val> 12471 <right_val>0.3350799977779388</right_val></_></_> 12472 <_> 12473 <!-- tree 42 --> 12474 <_> 12475 <!-- root node --> 12476 <feature> 12477 <rects> 12478 <_>2 2 19 3 -1.</_> 12479 <_>2 3 19 1 3.</_></rects> 12480 <tilted>0</tilted></feature> 12481 <threshold>0.0144060002639890</threshold> 12482 <left_val>-7.8840004280209541e-003</left_val> 12483 <right_val>-1.1677219867706299</right_val></_></_> 12484 <_> 12485 <!-- tree 43 --> 12486 <_> 12487 <!-- root node --> 12488 <feature> 12489 <rects> 12490 <_>17 10 6 14 -1.</_> 12491 <_>20 10 3 7 2.</_> 12492 <_>17 17 3 7 2.</_></rects> 12493 <tilted>0</tilted></feature> 12494 <threshold>0.1077739968895912</threshold> 12495 <left_val>0.1129200011491776</left_val> 12496 <right_val>-2.4940319061279297</right_val></_></_> 12497 <_> 12498 <!-- tree 44 --> 12499 <_> 12500 <!-- root node --> 12501 <feature> 12502 <rects> 12503 <_>1 10 6 14 -1.</_> 12504 <_>1 10 3 7 2.</_> 12505 <_>4 17 3 7 2.</_></rects> 12506 <tilted>0</tilted></feature> 12507 <threshold>0.0359439998865128</threshold> 12508 <left_val>-0.1948059946298599</left_val> 12509 <right_val>0.9575750231742859</right_val></_></_> 12510 <_> 12511 <!-- tree 45 --> 12512 <_> 12513 <!-- root node --> 12514 <feature> 12515 <rects> 12516 <_>7 6 14 14 -1.</_> 12517 <_>14 6 7 7 2.</_> 12518 <_>7 13 7 7 2.</_></rects> 12519 <tilted>0</tilted></feature> 12520 <threshold>-3.9510000497102737e-003</threshold> 12521 <left_val>0.3092780113220215</left_val> 12522 <right_val>-0.2553020119667053</right_val></_></_> 12523 <_> 12524 <!-- tree 46 --> 12525 <_> 12526 <!-- root node --> 12527 <feature> 12528 <rects> 12529 <_>0 12 9 6 -1.</_> 12530 <_>0 14 9 2 3.</_></rects> 12531 <tilted>0</tilted></feature> 12532 <threshold>0.0209420006722212</threshold> 12533 <left_val>-7.6319999061524868e-003</left_val> 12534 <right_val>-1.0086350440979004</right_val></_></_> 12535 <_> 12536 <!-- tree 47 --> 12537 <_> 12538 <!-- root node --> 12539 <feature> 12540 <rects> 12541 <_>15 14 8 9 -1.</_> 12542 <_>15 17 8 3 3.</_></rects> 12543 <tilted>0</tilted></feature> 12544 <threshold>-0.0298779997974634</threshold> 12545 <left_val>-0.4602769911289215</left_val> 12546 <right_val>0.1950719952583313</right_val></_></_> 12547 <_> 12548 <!-- tree 48 --> 12549 <_> 12550 <!-- root node --> 12551 <feature> 12552 <rects> 12553 <_>1 1 22 4 -1.</_> 12554 <_>1 1 11 2 2.</_> 12555 <_>12 3 11 2 2.</_></rects> 12556 <tilted>0</tilted></feature> 12557 <threshold>0.0259719993919134</threshold> 12558 <left_val>-0.0121879996731877</left_val> 12559 <right_val>-1.0035500526428223</right_val></_></_> 12560 <_> 12561 <!-- tree 49 --> 12562 <_> 12563 <!-- root node --> 12564 <feature> 12565 <rects> 12566 <_>9 11 9 6 -1.</_> 12567 <_>9 13 9 2 3.</_></rects> 12568 <tilted>0</tilted></feature> 12569 <threshold>0.0106030004099011</threshold> 12570 <left_val>-0.0759690031409264</left_val> 12571 <right_val>0.4166989922523499</right_val></_></_> 12572 <_> 12573 <!-- tree 50 --> 12574 <_> 12575 <!-- root node --> 12576 <feature> 12577 <rects> 12578 <_>0 15 18 3 -1.</_> 12579 <_>0 16 18 1 3.</_></rects> 12580 <tilted>0</tilted></feature> 12581 <threshold>8.5819996893405914e-003</threshold> 12582 <left_val>-0.2664859890937805</left_val> 12583 <right_val>0.3911150097846985</right_val></_></_> 12584 <_> 12585 <!-- tree 51 --> 12586 <_> 12587 <!-- root node --> 12588 <feature> 12589 <rects> 12590 <_>16 14 7 9 -1.</_> 12591 <_>16 17 7 3 3.</_></rects> 12592 <tilted>0</tilted></feature> 12593 <threshold>0.0212709996849298</threshold> 12594 <left_val>0.1827390044927597</left_val> 12595 <right_val>-0.3605229854583740</right_val></_></_> 12596 <_> 12597 <!-- tree 52 --> 12598 <_> 12599 <!-- root node --> 12600 <feature> 12601 <rects> 12602 <_>4 3 16 4 -1.</_> 12603 <_>12 3 8 4 2.</_></rects> 12604 <tilted>0</tilted></feature> 12605 <threshold>0.0745180025696754</threshold> 12606 <left_val>-0.1893839985132217</left_val> 12607 <right_val>0.9265800118446350</right_val></_></_> 12608 <_> 12609 <!-- tree 53 --> 12610 <_> 12611 <!-- root node --> 12612 <feature> 12613 <rects> 12614 <_>7 6 12 5 -1.</_> 12615 <_>7 6 6 5 2.</_></rects> 12616 <tilted>0</tilted></feature> 12617 <threshold>4.6569998376071453e-003</threshold> 12618 <left_val>-0.1450619995594025</left_val> 12619 <right_val>0.3329460024833679</right_val></_></_> 12620 <_> 12621 <!-- tree 54 --> 12622 <_> 12623 <!-- root node --> 12624 <feature> 12625 <rects> 12626 <_>9 6 4 9 -1.</_> 12627 <_>11 6 2 9 2.</_></rects> 12628 <tilted>0</tilted></feature> 12629 <threshold>1.7119999974966049e-003</threshold> 12630 <left_val>-0.5246400237083435</left_val> 12631 <right_val>0.0898799970746040</right_val></_></_> 12632 <_> 12633 <!-- tree 55 --> 12634 <_> 12635 <!-- root node --> 12636 <feature> 12637 <rects> 12638 <_>12 1 4 10 -1.</_> 12639 <_>12 1 2 10 2.</_></rects> 12640 <tilted>0</tilted></feature> 12641 <threshold>9.8500004969537258e-004</threshold> 12642 <left_val>-0.3838199973106384</left_val> 12643 <right_val>0.2439299970865250</right_val></_></_> 12644 <_> 12645 <!-- tree 56 --> 12646 <_> 12647 <!-- root node --> 12648 <feature> 12649 <rects> 12650 <_>8 1 4 10 -1.</_> 12651 <_>10 1 2 10 2.</_></rects> 12652 <tilted>0</tilted></feature> 12653 <threshold>0.0282339993864298</threshold> 12654 <left_val>-5.7879998348653316e-003</left_val> 12655 <right_val>-1.2617139816284180</right_val></_></_> 12656 <_> 12657 <!-- tree 57 --> 12658 <_> 12659 <!-- root node --> 12660 <feature> 12661 <rects> 12662 <_>15 15 6 9 -1.</_> 12663 <_>15 18 6 3 3.</_></rects> 12664 <tilted>0</tilted></feature> 12665 <threshold>-0.0326780006289482</threshold> 12666 <left_val>-0.5795329809188843</left_val> 12667 <right_val>0.1695529967546463</right_val></_></_> 12668 <_> 12669 <!-- tree 58 --> 12670 <_> 12671 <!-- root node --> 12672 <feature> 12673 <rects> 12674 <_>3 15 6 9 -1.</_> 12675 <_>3 18 6 3 3.</_></rects> 12676 <tilted>0</tilted></feature> 12677 <threshold>0.0225360002368689</threshold> 12678 <left_val>0.0222810003906488</left_val> 12679 <right_val>-0.8786960244178772</right_val></_></_> 12680 <_> 12681 <!-- tree 59 --> 12682 <_> 12683 <!-- root node --> 12684 <feature> 12685 <rects> 12686 <_>15 1 3 19 -1.</_> 12687 <_>16 1 1 19 3.</_></rects> 12688 <tilted>0</tilted></feature> 12689 <threshold>-0.0216579996049404</threshold> 12690 <left_val>-0.6510850191116333</left_val> 12691 <right_val>0.1296689957380295</right_val></_></_> 12692 <_> 12693 <!-- tree 60 --> 12694 <_> 12695 <!-- root node --> 12696 <feature> 12697 <rects> 12698 <_>1 3 6 9 -1.</_> 12699 <_>3 3 2 9 3.</_></rects> 12700 <tilted>0</tilted></feature> 12701 <threshold>7.6799998059868813e-003</threshold> 12702 <left_val>-0.3396520018577576</left_val> 12703 <right_val>0.2201330065727234</right_val></_></_> 12704 <_> 12705 <!-- tree 61 --> 12706 <_> 12707 <!-- root node --> 12708 <feature> 12709 <rects> 12710 <_>15 0 3 19 -1.</_> 12711 <_>16 0 1 19 3.</_></rects> 12712 <tilted>0</tilted></feature> 12713 <threshold>0.0145920002833009</threshold> 12714 <left_val>0.1507730036973953</left_val> 12715 <right_val>-0.5045239925384522</right_val></_></_> 12716 <_> 12717 <!-- tree 62 --> 12718 <_> 12719 <!-- root node --> 12720 <feature> 12721 <rects> 12722 <_>6 3 12 4 -1.</_> 12723 <_>12 3 6 4 2.</_></rects> 12724 <tilted>0</tilted></feature> 12725 <threshold>0.0278680007904768</threshold> 12726 <left_val>-0.2504529953002930</left_val> 12727 <right_val>0.4574199914932251</right_val></_></_> 12728 <_> 12729 <!-- tree 63 --> 12730 <_> 12731 <!-- root node --> 12732 <feature> 12733 <rects> 12734 <_>10 5 4 9 -1.</_> 12735 <_>10 5 2 9 2.</_></rects> 12736 <tilted>0</tilted></feature> 12737 <threshold>5.6940000504255295e-003</threshold> 12738 <left_val>-0.1094850003719330</left_val> 12739 <right_val>0.5575780272483826</right_val></_></_> 12740 <_> 12741 <!-- tree 64 --> 12742 <_> 12743 <!-- root node --> 12744 <feature> 12745 <rects> 12746 <_>6 0 3 19 -1.</_> 12747 <_>7 0 1 19 3.</_></rects> 12748 <tilted>0</tilted></feature> 12749 <threshold>-0.0100029995664954</threshold> 12750 <left_val>-0.9736629724502564</left_val> 12751 <right_val>0.0184679999947548</right_val></_></_> 12752 <_> 12753 <!-- tree 65 --> 12754 <_> 12755 <!-- root node --> 12756 <feature> 12757 <rects> 12758 <_>11 1 3 12 -1.</_> 12759 <_>11 7 3 6 2.</_></rects> 12760 <tilted>0</tilted></feature> 12761 <threshold>-4.0719998069107533e-003</threshold> 12762 <left_val>0.3822219967842102</left_val> 12763 <right_val>-0.1692110002040863</right_val></_></_> 12764 <_> 12765 <!-- tree 66 --> 12766 <_> 12767 <!-- root node --> 12768 <feature> 12769 <rects> 12770 <_>6 7 10 5 -1.</_> 12771 <_>11 7 5 5 2.</_></rects> 12772 <tilted>0</tilted></feature> 12773 <threshold>-0.0225939992815256</threshold> 12774 <left_val>-1.0391089916229248</left_val> 12775 <right_val>5.1839998923242092e-003</right_val></_></_> 12776 <_> 12777 <!-- tree 67 --> 12778 <_> 12779 <!-- root node --> 12780 <feature> 12781 <rects> 12782 <_>11 3 3 18 -1.</_> 12783 <_>12 3 1 18 3.</_></rects> 12784 <tilted>0</tilted></feature> 12785 <threshold>-0.0395799987018108</threshold> 12786 <left_val>-5.5109229087829590</left_val> 12787 <right_val>0.1116399988532066</right_val></_></_> 12788 <_> 12789 <!-- tree 68 --> 12790 <_> 12791 <!-- root node --> 12792 <feature> 12793 <rects> 12794 <_>9 3 6 12 -1.</_> 12795 <_>11 3 2 12 3.</_></rects> 12796 <tilted>0</tilted></feature> 12797 <threshold>-0.0175379998981953</threshold> 12798 <left_val>0.9548580050468445</left_val> 12799 <right_val>-0.1858450025320053</right_val></_></_> 12800 <_> 12801 <!-- tree 69 --> 12802 <_> 12803 <!-- root node --> 12804 <feature> 12805 <rects> 12806 <_>3 7 19 3 -1.</_> 12807 <_>3 8 19 1 3.</_></rects> 12808 <tilted>0</tilted></feature> 12809 <threshold>9.0300003066658974e-003</threshold> 12810 <left_val>0.0104360003024340</left_val> 12811 <right_val>0.8211479783058167</right_val></_></_> 12812 <_> 12813 <!-- tree 70 --> 12814 <_> 12815 <!-- root node --> 12816 <feature> 12817 <rects> 12818 <_>2 7 18 3 -1.</_> 12819 <_>2 8 18 1 3.</_></rects> 12820 <tilted>0</tilted></feature> 12821 <threshold>-7.9539995640516281e-003</threshold> 12822 <left_val>0.2263289988040924</left_val> 12823 <right_val>-0.3456819951534271</right_val></_></_> 12824 <_> 12825 <!-- tree 71 --> 12826 <_> 12827 <!-- root node --> 12828 <feature> 12829 <rects> 12830 <_>3 13 18 4 -1.</_> 12831 <_>12 13 9 2 2.</_> 12832 <_>3 15 9 2 2.</_></rects> 12833 <tilted>0</tilted></feature> 12834 <threshold>0.0270910002291203</threshold> 12835 <left_val>0.1643009930849075</left_val> 12836 <right_val>-1.3926379680633545</right_val></_></_> 12837 <_> 12838 <!-- tree 72 --> 12839 <_> 12840 <!-- root node --> 12841 <feature> 12842 <rects> 12843 <_>3 5 6 9 -1.</_> 12844 <_>5 5 2 9 3.</_></rects> 12845 <tilted>0</tilted></feature> 12846 <threshold>-0.0206259991973639</threshold> 12847 <left_val>-0.8636609911918640</left_val> 12848 <right_val>2.3880000226199627e-003</right_val></_></_> 12849 <_> 12850 <!-- tree 73 --> 12851 <_> 12852 <!-- root node --> 12853 <feature> 12854 <rects> 12855 <_>4 1 20 4 -1.</_> 12856 <_>14 1 10 2 2.</_> 12857 <_>4 3 10 2 2.</_></rects> 12858 <tilted>0</tilted></feature> 12859 <threshold>-0.0719899982213974</threshold> 12860 <left_val>-2.8192629814147949</left_val> 12861 <right_val>0.1157049983739853</right_val></_></_> 12862 <_> 12863 <!-- tree 74 --> 12864 <_> 12865 <!-- root node --> 12866 <feature> 12867 <rects> 12868 <_>0 1 20 4 -1.</_> 12869 <_>0 1 10 2 2.</_> 12870 <_>10 3 10 2 2.</_></rects> 12871 <tilted>0</tilted></feature> 12872 <threshold>-0.0269649997353554</threshold> 12873 <left_val>-1.2946130037307739</left_val> 12874 <right_val>-0.0246610008180141</right_val></_></_> 12875 <_> 12876 <!-- tree 75 --> 12877 <_> 12878 <!-- root node --> 12879 <feature> 12880 <rects> 12881 <_>10 15 6 6 -1.</_> 12882 <_>10 15 3 6 2.</_></rects> 12883 <tilted>0</tilted></feature> 12884 <threshold>-0.0473779998719692</threshold> 12885 <left_val>-0.8130639791488648</left_val> 12886 <right_val>0.1183139979839325</right_val></_></_> 12887 <_> 12888 <!-- tree 76 --> 12889 <_> 12890 <!-- root node --> 12891 <feature> 12892 <rects> 12893 <_>0 2 24 8 -1.</_> 12894 <_>8 2 8 8 3.</_></rects> 12895 <tilted>0</tilted></feature> 12896 <threshold>-0.1089560016989708</threshold> 12897 <left_val>0.6593790054321289</left_val> 12898 <right_val>-0.2084390074014664</right_val></_></_> 12899 <_> 12900 <!-- tree 77 --> 12901 <_> 12902 <!-- root node --> 12903 <feature> 12904 <rects> 12905 <_>5 5 18 3 -1.</_> 12906 <_>5 6 18 1 3.</_></rects> 12907 <tilted>0</tilted></feature> 12908 <threshold>0.0135740004479885</threshold> 12909 <left_val>7.4240001849830151e-003</left_val> 12910 <right_val>0.5315219759941101</right_val></_></_> 12911 <_> 12912 <!-- tree 78 --> 12913 <_> 12914 <!-- root node --> 12915 <feature> 12916 <rects> 12917 <_>8 15 6 6 -1.</_> 12918 <_>11 15 3 6 2.</_></rects> 12919 <tilted>0</tilted></feature> 12920 <threshold>-6.6920001991093159e-003</threshold> 12921 <left_val>0.3065580129623413</left_val> 12922 <right_val>-0.3108429908752441</right_val></_></_> 12923 <_> 12924 <!-- tree 79 --> 12925 <_> 12926 <!-- root node --> 12927 <feature> 12928 <rects> 12929 <_>11 12 8 5 -1.</_> 12930 <_>11 12 4 5 2.</_></rects> 12931 <tilted>0</tilted></feature> 12932 <threshold>-3.9070001803338528e-003</threshold> 12933 <left_val>0.2557649910449982</left_val> 12934 <right_val>-0.0529320016503334</right_val></_></_> 12935 <_> 12936 <!-- tree 80 --> 12937 <_> 12938 <!-- root node --> 12939 <feature> 12940 <rects> 12941 <_>5 12 8 5 -1.</_> 12942 <_>9 12 4 5 2.</_></rects> 12943 <tilted>0</tilted></feature> 12944 <threshold>-0.0376130007207394</threshold> 12945 <left_val>-1.4350049495697021</left_val> 12946 <right_val>-0.0154480002820492</right_val></_></_> 12947 <_> 12948 <!-- tree 81 --> 12949 <_> 12950 <!-- root node --> 12951 <feature> 12952 <rects> 12953 <_>5 0 14 6 -1.</_> 12954 <_>5 2 14 2 3.</_></rects> 12955 <tilted>0</tilted></feature> 12956 <threshold>8.6329998448491096e-003</threshold> 12957 <left_val>-0.1688439995050430</left_val> 12958 <right_val>0.4212490022182465</right_val></_></_> 12959 <_> 12960 <!-- tree 82 --> 12961 <_> 12962 <!-- root node --> 12963 <feature> 12964 <rects> 12965 <_>10 2 4 15 -1.</_> 12966 <_>10 7 4 5 3.</_></rects> 12967 <tilted>0</tilted></feature> 12968 <threshold>-0.0320970006287098</threshold> 12969 <left_val>-0.6497939825057983</left_val> 12970 <right_val>0.0411100015044212</right_val></_></_> 12971 <_> 12972 <!-- tree 83 --> 12973 <_> 12974 <!-- root node --> 12975 <feature> 12976 <rects> 12977 <_>10 7 5 12 -1.</_> 12978 <_>10 11 5 4 3.</_></rects> 12979 <tilted>0</tilted></feature> 12980 <threshold>0.0584959983825684</threshold> 12981 <left_val>-0.0529639981687069</left_val> 12982 <right_val>0.6336830258369446</right_val></_></_> 12983 <_> 12984 <!-- tree 84 --> 12985 <_> 12986 <!-- root node --> 12987 <feature> 12988 <rects> 12989 <_>7 9 8 14 -1.</_> 12990 <_>7 9 4 7 2.</_> 12991 <_>11 16 4 7 2.</_></rects> 12992 <tilted>0</tilted></feature> 12993 <threshold>-0.0409019999206066</threshold> 12994 <left_val>-0.9210109710693359</left_val> 12995 <right_val>9.0640000998973846e-003</right_val></_></_> 12996 <_> 12997 <!-- tree 85 --> 12998 <_> 12999 <!-- root node --> 13000 <feature> 13001 <rects> 13002 <_>1 5 22 6 -1.</_> 13003 <_>12 5 11 3 2.</_> 13004 <_>1 8 11 3 2.</_></rects> 13005 <tilted>0</tilted></feature> 13006 <threshold>-0.0199250001460314</threshold> 13007 <left_val>0.5375999808311462</left_val> 13008 <right_val>-0.0629969984292984</right_val></_></_> 13009 <_> 13010 <!-- tree 86 --> 13011 <_> 13012 <!-- root node --> 13013 <feature> 13014 <rects> 13015 <_>0 5 6 6 -1.</_> 13016 <_>0 8 6 3 2.</_></rects> 13017 <tilted>0</tilted></feature> 13018 <threshold>-4.6020001173019409e-003</threshold> 13019 <left_val>-0.5433350205421448</left_val> 13020 <right_val>0.0841049998998642</right_val></_></_> 13021 <_> 13022 <!-- tree 87 --> 13023 <_> 13024 <!-- root node --> 13025 <feature> 13026 <rects> 13027 <_>12 17 9 4 -1.</_> 13028 <_>12 19 9 2 2.</_></rects> 13029 <tilted>0</tilted></feature> 13030 <threshold>0.0168249998241663</threshold> 13031 <left_val>0.1556369960308075</left_val> 13032 <right_val>-0.4017120003700256</right_val></_></_> 13033 <_> 13034 <!-- tree 88 --> 13035 <_> 13036 <!-- root node --> 13037 <feature> 13038 <rects> 13039 <_>2 18 19 3 -1.</_> 13040 <_>2 19 19 1 3.</_></rects> 13041 <tilted>0</tilted></feature> 13042 <threshold>9.4790002331137657e-003</threshold> 13043 <left_val>-0.2424529939889908</left_val> 13044 <right_val>0.5150949954986572</right_val></_></_> 13045 <_> 13046 <!-- tree 89 --> 13047 <_> 13048 <!-- root node --> 13049 <feature> 13050 <rects> 13051 <_>12 17 9 4 -1.</_> 13052 <_>12 19 9 2 2.</_></rects> 13053 <tilted>0</tilted></feature> 13054 <threshold>-0.0195349995046854</threshold> 13055 <left_val>-0.5111839771270752</left_val> 13056 <right_val>0.1383199989795685</right_val></_></_> 13057 <_> 13058 <!-- tree 90 --> 13059 <_> 13060 <!-- root node --> 13061 <feature> 13062 <rects> 13063 <_>1 17 18 3 -1.</_> 13064 <_>1 18 18 1 3.</_></rects> 13065 <tilted>0</tilted></feature> 13066 <threshold>0.0107460003346205</threshold> 13067 <left_val>-0.2185499966144562</left_val> 13068 <right_val>0.6282870173454285</right_val></_></_> 13069 <_> 13070 <!-- tree 91 --> 13071 <_> 13072 <!-- root node --> 13073 <feature> 13074 <rects> 13075 <_>12 17 9 4 -1.</_> 13076 <_>12 19 9 2 2.</_></rects> 13077 <tilted>0</tilted></feature> 13078 <threshold>0.0379270017147064</threshold> 13079 <left_val>0.1164029985666275</left_val> 13080 <right_val>-2.7301959991455078</right_val></_></_> 13081 <_> 13082 <!-- tree 92 --> 13083 <_> 13084 <!-- root node --> 13085 <feature> 13086 <rects> 13087 <_>0 0 24 3 -1.</_> 13088 <_>0 1 24 1 3.</_></rects> 13089 <tilted>0</tilted></feature> 13090 <threshold>0.0163909997791052</threshold> 13091 <left_val>-0.0146359996870160</left_val> 13092 <right_val>-1.0797250270843506</right_val></_></_> 13093 <_> 13094 <!-- tree 93 --> 13095 <_> 13096 <!-- root node --> 13097 <feature> 13098 <rects> 13099 <_>5 0 14 4 -1.</_> 13100 <_>5 2 14 2 2.</_></rects> 13101 <tilted>0</tilted></feature> 13102 <threshold>-0.0197850000113249</threshold> 13103 <left_val>1.2166420221328735</left_val> 13104 <right_val>0.0332750007510185</right_val></_></_> 13105 <_> 13106 <!-- tree 94 --> 13107 <_> 13108 <!-- root node --> 13109 <feature> 13110 <rects> 13111 <_>6 14 9 6 -1.</_> 13112 <_>6 16 9 2 3.</_></rects> 13113 <tilted>0</tilted></feature> 13114 <threshold>0.0110670002177358</threshold> 13115 <left_val>-0.2538830041885376</left_val> 13116 <right_val>0.4403859972953796</right_val></_></_> 13117 <_> 13118 <!-- tree 95 --> 13119 <_> 13120 <!-- root node --> 13121 <feature> 13122 <rects> 13123 <_>14 13 6 9 -1.</_> 13124 <_>14 16 6 3 3.</_></rects> 13125 <tilted>0</tilted></feature> 13126 <threshold>5.2479999139904976e-003</threshold> 13127 <left_val>0.2249680012464523</left_val> 13128 <right_val>-0.2421649992465973</right_val></_></_> 13129 <_> 13130 <!-- tree 96 --> 13131 <_> 13132 <!-- root node --> 13133 <feature> 13134 <rects> 13135 <_>5 20 13 4 -1.</_> 13136 <_>5 22 13 2 2.</_></rects> 13137 <tilted>0</tilted></feature> 13138 <threshold>-0.0111419996246696</threshold> 13139 <left_val>0.2501809895038605</left_val> 13140 <right_val>-0.3081150054931641</right_val></_></_> 13141 <_> 13142 <!-- tree 97 --> 13143 <_> 13144 <!-- root node --> 13145 <feature> 13146 <rects> 13147 <_>9 9 6 12 -1.</_> 13148 <_>9 13 6 4 3.</_></rects> 13149 <tilted>0</tilted></feature> 13150 <threshold>-0.0106669999659061</threshold> 13151 <left_val>-0.3272910118103027</left_val> 13152 <right_val>0.2616829872131348</right_val></_></_> 13153 <_> 13154 <!-- tree 98 --> 13155 <_> 13156 <!-- root node --> 13157 <feature> 13158 <rects> 13159 <_>1 10 21 3 -1.</_> 13160 <_>8 10 7 3 3.</_></rects> 13161 <tilted>0</tilted></feature> 13162 <threshold>0.1054529994726181</threshold> 13163 <left_val>-0.0557500012218952</left_val> 13164 <right_val>-1.9605729579925537</right_val></_></_> 13165 <_> 13166 <!-- tree 99 --> 13167 <_> 13168 <!-- root node --> 13169 <feature> 13170 <rects> 13171 <_>8 8 9 6 -1.</_> 13172 <_>11 8 3 6 3.</_></rects> 13173 <tilted>0</tilted></feature> 13174 <threshold>0.0548279993236065</threshold> 13175 <left_val>-1.9519999623298645e-003</left_val> 13176 <right_val>0.7386609911918640</right_val></_></_> 13177 <_> 13178 <!-- tree 100 --> 13179 <_> 13180 <!-- root node --> 13181 <feature> 13182 <rects> 13183 <_>3 10 9 7 -1.</_> 13184 <_>6 10 3 7 3.</_></rects> 13185 <tilted>0</tilted></feature> 13186 <threshold>0.0177609995007515</threshold> 13187 <left_val>-0.3064720034599304</left_val> 13188 <right_val>0.2634699940681458</right_val></_></_> 13189 <_> 13190 <!-- tree 101 --> 13191 <_> 13192 <!-- root node --> 13193 <feature> 13194 <rects> 13195 <_>12 10 10 8 -1.</_> 13196 <_>17 10 5 4 2.</_> 13197 <_>12 14 5 4 2.</_></rects> 13198 <tilted>0</tilted></feature> 13199 <threshold>-0.0311859995126724</threshold> 13200 <left_val>-0.2460090070962906</left_val> 13201 <right_val>0.1708219945430756</right_val></_></_> 13202 <_> 13203 <!-- tree 102 --> 13204 <_> 13205 <!-- root node --> 13206 <feature> 13207 <rects> 13208 <_>0 15 24 3 -1.</_> 13209 <_>8 15 8 3 3.</_></rects> 13210 <tilted>0</tilted></feature> 13211 <threshold>-0.0572960004210472</threshold> 13212 <left_val>0.4703350067138672</left_val> 13213 <right_val>-0.2604829967021942</right_val></_></_> 13214 <_> 13215 <!-- tree 103 --> 13216 <_> 13217 <!-- root node --> 13218 <feature> 13219 <rects> 13220 <_>8 5 9 6 -1.</_> 13221 <_>8 7 9 2 3.</_></rects> 13222 <tilted>0</tilted></feature> 13223 <threshold>-0.0113120004534721</threshold> 13224 <left_val>0.3862890005111694</left_val> 13225 <right_val>-0.2881700098514557</right_val></_></_> 13226 <_> 13227 <!-- tree 104 --> 13228 <_> 13229 <!-- root node --> 13230 <feature> 13231 <rects> 13232 <_>4 13 6 9 -1.</_> 13233 <_>4 16 6 3 3.</_></rects> 13234 <tilted>0</tilted></feature> 13235 <threshold>0.0305920001119375</threshold> 13236 <left_val>-0.0488260015845299</left_val> 13237 <right_val>-1.7638969421386719</right_val></_></_> 13238 <_> 13239 <!-- tree 105 --> 13240 <_> 13241 <!-- root node --> 13242 <feature> 13243 <rects> 13244 <_>12 17 9 4 -1.</_> 13245 <_>12 19 9 2 2.</_></rects> 13246 <tilted>0</tilted></feature> 13247 <threshold>1.8489999929443002e-003</threshold> 13248 <left_val>0.2109989970922470</left_val> 13249 <right_val>-0.0259409993886948</right_val></_></_> 13250 <_> 13251 <!-- tree 106 --> 13252 <_> 13253 <!-- root node --> 13254 <feature> 13255 <rects> 13256 <_>9 12 6 6 -1.</_> 13257 <_>9 15 6 3 2.</_></rects> 13258 <tilted>0</tilted></feature> 13259 <threshold>0.0114190001040697</threshold> 13260 <left_val>-0.1682959944009781</left_val> 13261 <right_val>1.0278660058975220</right_val></_></_> 13262 <_> 13263 <!-- tree 107 --> 13264 <_> 13265 <!-- root node --> 13266 <feature> 13267 <rects> 13268 <_>9 9 14 10 -1.</_> 13269 <_>16 9 7 5 2.</_> 13270 <_>9 14 7 5 2.</_></rects> 13271 <tilted>0</tilted></feature> 13272 <threshold>0.0814030021429062</threshold> 13273 <left_val>0.1153199970722199</left_val> 13274 <right_val>-1.2482399940490723</right_val></_></_> 13275 <_> 13276 <!-- tree 108 --> 13277 <_> 13278 <!-- root node --> 13279 <feature> 13280 <rects> 13281 <_>1 9 14 10 -1.</_> 13282 <_>1 9 7 5 2.</_> 13283 <_>8 14 7 5 2.</_></rects> 13284 <tilted>0</tilted></feature> 13285 <threshold>0.0534959994256496</threshold> 13286 <left_val>-0.0463039986789227</left_val> 13287 <right_val>-1.7165969610214233</right_val></_></_> 13288 <_> 13289 <!-- tree 109 --> 13290 <_> 13291 <!-- root node --> 13292 <feature> 13293 <rects> 13294 <_>8 7 9 17 -1.</_> 13295 <_>11 7 3 17 3.</_></rects> 13296 <tilted>0</tilted></feature> 13297 <threshold>-0.0239480007439852</threshold> 13298 <left_val>-0.4024659991264343</left_val> 13299 <right_val>0.2056210041046143</right_val></_></_> 13300 <_> 13301 <!-- tree 110 --> 13302 <_> 13303 <!-- root node --> 13304 <feature> 13305 <rects> 13306 <_>3 4 6 20 -1.</_> 13307 <_>3 4 3 10 2.</_> 13308 <_>6 14 3 10 2.</_></rects> 13309 <tilted>0</tilted></feature> 13310 <threshold>6.7690000869333744e-003</threshold> 13311 <left_val>-0.3315230011940002</left_val> 13312 <right_val>0.2068340033292770</right_val></_></_> 13313 <_> 13314 <!-- tree 111 --> 13315 <_> 13316 <!-- root node --> 13317 <feature> 13318 <rects> 13319 <_>7 8 10 4 -1.</_> 13320 <_>7 8 5 4 2.</_></rects> 13321 <tilted>0</tilted></feature> 13322 <threshold>-0.0323439985513687</threshold> 13323 <left_val>-0.7263280153274536</left_val> 13324 <right_val>0.2007350027561188</right_val></_></_> 13325 <_> 13326 <!-- tree 112 --> 13327 <_> 13328 <!-- root node --> 13329 <feature> 13330 <rects> 13331 <_>10 7 4 9 -1.</_> 13332 <_>12 7 2 9 2.</_></rects> 13333 <tilted>0</tilted></feature> 13334 <threshold>0.0378630012273788</threshold> 13335 <left_val>-0.1563100069761276</left_val> 13336 <right_val>1.6697460412979126</right_val></_></_> 13337 <_> 13338 <!-- tree 113 --> 13339 <_> 13340 <!-- root node --> 13341 <feature> 13342 <rects> 13343 <_>10 15 6 9 -1.</_> 13344 <_>12 15 2 9 3.</_></rects> 13345 <tilted>0</tilted></feature> 13346 <threshold>0.0154400002211332</threshold> 13347 <left_val>0.1948740035295487</left_val> 13348 <right_val>-0.3538419902324677</right_val></_></_> 13349 <_> 13350 <!-- tree 114 --> 13351 <_> 13352 <!-- root node --> 13353 <feature> 13354 <rects> 13355 <_>3 8 6 16 -1.</_> 13356 <_>3 8 3 8 2.</_> 13357 <_>6 16 3 8 2.</_></rects> 13358 <tilted>0</tilted></feature> 13359 <threshold>-0.0443760007619858</threshold> 13360 <left_val>0.8209360241889954</left_val> 13361 <right_val>-0.1819359958171845</right_val></_></_> 13362 <_> 13363 <!-- tree 115 --> 13364 <_> 13365 <!-- root node --> 13366 <feature> 13367 <rects> 13368 <_>12 17 9 4 -1.</_> 13369 <_>12 19 9 2 2.</_></rects> 13370 <tilted>0</tilted></feature> 13371 <threshold>-0.0231020003557205</threshold> 13372 <left_val>-0.4304409921169281</left_val> 13373 <right_val>0.1237540021538734</right_val></_></_> 13374 <_> 13375 <!-- tree 116 --> 13376 <_> 13377 <!-- root node --> 13378 <feature> 13379 <rects> 13380 <_>3 17 9 4 -1.</_> 13381 <_>3 19 9 2 2.</_></rects> 13382 <tilted>0</tilted></feature> 13383 <threshold>0.0194000005722046</threshold> 13384 <left_val>-0.0297260005027056</left_val> 13385 <right_val>-1.1597590446472168</right_val></_></_> 13386 <_> 13387 <!-- tree 117 --> 13388 <_> 13389 <!-- root node --> 13390 <feature> 13391 <rects> 13392 <_>10 1 9 6 -1.</_> 13393 <_>13 1 3 6 3.</_></rects> 13394 <tilted>0</tilted></feature> 13395 <threshold>0.1038570031523705</threshold> 13396 <left_val>0.1114989966154099</left_val> 13397 <right_val>-4.6835222244262695</right_val></_></_> 13398 <_> 13399 <!-- tree 118 --> 13400 <_> 13401 <!-- root node --> 13402 <feature> 13403 <rects> 13404 <_>5 7 4 10 -1.</_> 13405 <_>5 12 4 5 2.</_></rects> 13406 <tilted>0</tilted></feature> 13407 <threshold>-0.0189640000462532</threshold> 13408 <left_val>2.1773819923400879</left_val> 13409 <right_val>-0.1454440057277679</right_val></_></_> 13410 <_> 13411 <!-- tree 119 --> 13412 <_> 13413 <!-- root node --> 13414 <feature> 13415 <rects> 13416 <_>7 5 12 6 -1.</_> 13417 <_>11 5 4 6 3.</_></rects> 13418 <tilted>0</tilted></feature> 13419 <threshold>0.0387509986758232</threshold> 13420 <left_val>-0.0494460016489029</left_val> 13421 <right_val>0.3401829898357391</right_val></_></_> 13422 <_> 13423 <!-- tree 120 --> 13424 <_> 13425 <!-- root node --> 13426 <feature> 13427 <rects> 13428 <_>6 4 9 8 -1.</_> 13429 <_>9 4 3 8 3.</_></rects> 13430 <tilted>0</tilted></feature> 13431 <threshold>0.0227669999003410</threshold> 13432 <left_val>-0.3280299901962280</left_val> 13433 <right_val>0.3053140044212341</right_val></_></_> 13434 <_> 13435 <!-- tree 121 --> 13436 <_> 13437 <!-- root node --> 13438 <feature> 13439 <rects> 13440 <_>12 16 10 8 -1.</_> 13441 <_>17 16 5 4 2.</_> 13442 <_>12 20 5 4 2.</_></rects> 13443 <tilted>0</tilted></feature> 13444 <threshold>-0.0313570015132427</threshold> 13445 <left_val>1.1520819664001465</left_val> 13446 <right_val>0.0273059997707605</right_val></_></_> 13447 <_> 13448 <!-- tree 122 --> 13449 <_> 13450 <!-- root node --> 13451 <feature> 13452 <rects> 13453 <_>2 16 10 8 -1.</_> 13454 <_>2 16 5 4 2.</_> 13455 <_>7 20 5 4 2.</_></rects> 13456 <tilted>0</tilted></feature> 13457 <threshold>9.6909999847412109e-003</threshold> 13458 <left_val>-0.3879950046539307</left_val> 13459 <right_val>0.2151259928941727</right_val></_></_> 13460 <_> 13461 <!-- tree 123 --> 13462 <_> 13463 <!-- root node --> 13464 <feature> 13465 <rects> 13466 <_>0 0 24 4 -1.</_> 13467 <_>12 0 12 2 2.</_> 13468 <_>0 2 12 2 2.</_></rects> 13469 <tilted>0</tilted></feature> 13470 <threshold>-0.0492849983274937</threshold> 13471 <left_val>-1.6774909496307373</left_val> 13472 <right_val>0.1577419936656952</right_val></_></_> 13473 <_> 13474 <!-- tree 124 --> 13475 <_> 13476 <!-- root node --> 13477 <feature> 13478 <rects> 13479 <_>0 6 9 6 -1.</_> 13480 <_>0 8 9 2 3.</_></rects> 13481 <tilted>0</tilted></feature> 13482 <threshold>-0.0395109988749027</threshold> 13483 <left_val>-0.9764789938926697</left_val> 13484 <right_val>-0.0105520002543926</right_val></_></_> 13485 <_> 13486 <!-- tree 125 --> 13487 <_> 13488 <!-- root node --> 13489 <feature> 13490 <rects> 13491 <_>0 4 24 6 -1.</_> 13492 <_>12 4 12 3 2.</_> 13493 <_>0 7 12 3 2.</_></rects> 13494 <tilted>0</tilted></feature> 13495 <threshold>0.0479979999363422</threshold> 13496 <left_val>0.2084390074014664</left_val> 13497 <right_val>-0.6899279952049255</right_val></_></_> 13498 <_> 13499 <!-- tree 126 --> 13500 <_> 13501 <!-- root node --> 13502 <feature> 13503 <rects> 13504 <_>5 0 11 4 -1.</_> 13505 <_>5 2 11 2 2.</_></rects> 13506 <tilted>0</tilted></feature> 13507 <threshold>0.0514229983091354</threshold> 13508 <left_val>-0.1666530072689056</left_val> 13509 <right_val>1.2149239778518677</right_val></_></_> 13510 <_> 13511 <!-- tree 127 --> 13512 <_> 13513 <!-- root node --> 13514 <feature> 13515 <rects> 13516 <_>1 1 22 4 -1.</_> 13517 <_>12 1 11 2 2.</_> 13518 <_>1 3 11 2 2.</_></rects> 13519 <tilted>0</tilted></feature> 13520 <threshold>0.0142799997702241</threshold> 13521 <left_val>0.2362769991159439</left_val> 13522 <right_val>-0.4139679968357086</right_val></_></_> 13523 <_> 13524 <!-- tree 128 --> 13525 <_> 13526 <!-- root node --> 13527 <feature> 13528 <rects> 13529 <_>9 6 6 18 -1.</_> 13530 <_>9 15 6 9 2.</_></rects> 13531 <tilted>0</tilted></feature> 13532 <threshold>-0.0916119962930679</threshold> 13533 <left_val>-0.9283090233802795</left_val> 13534 <right_val>-0.0183450002223253</right_val></_></_> 13535 <_> 13536 <!-- tree 129 --> 13537 <_> 13538 <!-- root node --> 13539 <feature> 13540 <rects> 13541 <_>2 9 20 4 -1.</_> 13542 <_>2 11 20 2 2.</_></rects> 13543 <tilted>0</tilted></feature> 13544 <threshold>6.5080001950263977e-003</threshold> 13545 <left_val>-0.7364720106124878</left_val> 13546 <right_val>0.1949709951877594</right_val></_></_> 13547 <_> 13548 <!-- tree 130 --> 13549 <_> 13550 <!-- root node --> 13551 <feature> 13552 <rects> 13553 <_>5 2 14 14 -1.</_> 13554 <_>5 9 14 7 2.</_></rects> 13555 <tilted>0</tilted></feature> 13556 <threshold>0.0357230007648468</threshold> 13557 <left_val>0.1419779956340790</left_val> 13558 <right_val>-0.4208930134773254</right_val></_></_> 13559 <_> 13560 <!-- tree 131 --> 13561 <_> 13562 <!-- root node --> 13563 <feature> 13564 <rects> 13565 <_>4 2 16 6 -1.</_> 13566 <_>4 5 16 3 2.</_></rects> 13567 <tilted>0</tilted></feature> 13568 <threshold>0.0506380014121532</threshold> 13569 <left_val>0.0116440001875162</left_val> 13570 <right_val>0.7848659753799439</right_val></_></_> 13571 <_> 13572 <!-- tree 132 --> 13573 <_> 13574 <!-- root node --> 13575 <feature> 13576 <rects> 13577 <_>2 3 19 3 -1.</_> 13578 <_>2 4 19 1 3.</_></rects> 13579 <tilted>0</tilted></feature> 13580 <threshold>-0.0146139999851584</threshold> 13581 <left_val>-1.1909500360488892</left_val> 13582 <right_val>-0.0351280011236668</right_val></_></_> 13583 <_> 13584 <!-- tree 133 --> 13585 <_> 13586 <!-- root node --> 13587 <feature> 13588 <rects> 13589 <_>7 1 10 4 -1.</_> 13590 <_>7 3 10 2 2.</_></rects> 13591 <tilted>0</tilted></feature> 13592 <threshold>-0.0386629998683929</threshold> 13593 <left_val>2.4314730167388916</left_val> 13594 <right_val>0.0656479969620705</right_val></_></_> 13595 <_> 13596 <!-- tree 134 --> 13597 <_> 13598 <!-- root node --> 13599 <feature> 13600 <rects> 13601 <_>0 9 4 15 -1.</_> 13602 <_>0 14 4 5 3.</_></rects> 13603 <tilted>0</tilted></feature> 13604 <threshold>-0.0403469987213612</threshold> 13605 <left_val>0.7175530195236206</left_val> 13606 <right_val>-0.1910829991102219</right_val></_></_> 13607 <_> 13608 <!-- tree 135 --> 13609 <_> 13610 <!-- root node --> 13611 <feature> 13612 <rects> 13613 <_>2 10 21 3 -1.</_> 13614 <_>2 11 21 1 3.</_></rects> 13615 <tilted>0</tilted></feature> 13616 <threshold>0.0239020008593798</threshold> 13617 <left_val>0.1564619988203049</left_val> 13618 <right_val>-0.7929480075836182</right_val></_></_></trees> 13619 <stage_threshold>-3.4265899658203125</stage_threshold> 13620 <parent>13</parent> 13621 <next>-1</next></_> 13622 <_> 13623 <!-- stage 15 --> 13624 <trees> 13625 <_> 13626 <!-- tree 0 --> 13627 <_> 13628 <!-- root node --> 13629 <feature> 13630 <rects> 13631 <_>3 0 6 6 -1.</_> 13632 <_>6 0 3 6 2.</_></rects> 13633 <tilted>0</tilted></feature> 13634 <threshold>8.5640000179409981e-003</threshold> 13635 <left_val>-0.8145070075988770</left_val> 13636 <right_val>0.5887529850006104</right_val></_></_> 13637 <_> 13638 <!-- tree 1 --> 13639 <_> 13640 <!-- root node --> 13641 <feature> 13642 <rects> 13643 <_>6 4 14 9 -1.</_> 13644 <_>6 7 14 3 3.</_></rects> 13645 <tilted>0</tilted></feature> 13646 <threshold>-0.1329260021448135</threshold> 13647 <left_val>0.9321339726448059</left_val> 13648 <right_val>-0.2936730086803436</right_val></_></_> 13649 <_> 13650 <!-- tree 2 --> 13651 <_> 13652 <!-- root node --> 13653 <feature> 13654 <rects> 13655 <_>9 1 6 9 -1.</_> 13656 <_>11 1 2 9 3.</_></rects> 13657 <tilted>0</tilted></feature> 13658 <threshold>9.8400004208087921e-003</threshold> 13659 <left_val>-0.5646290183067322</left_val> 13660 <right_val>0.4164769947528839</right_val></_></_> 13661 <_> 13662 <!-- tree 3 --> 13663 <_> 13664 <!-- root node --> 13665 <feature> 13666 <rects> 13667 <_>15 8 9 9 -1.</_> 13668 <_>15 11 9 3 3.</_></rects> 13669 <tilted>0</tilted></feature> 13670 <threshold>5.0889998674392700e-003</threshold> 13671 <left_val>-0.7923280000686646</left_val> 13672 <right_val>0.1697500050067902</right_val></_></_> 13673 <_> 13674 <!-- tree 4 --> 13675 <_> 13676 <!-- root node --> 13677 <feature> 13678 <rects> 13679 <_>8 0 4 21 -1.</_> 13680 <_>8 7 4 7 3.</_></rects> 13681 <tilted>0</tilted></feature> 13682 <threshold>-0.0610390007495880</threshold> 13683 <left_val>-1.4169000387191772</left_val> 13684 <right_val>0.0250209998339415</right_val></_></_> 13685 <_> 13686 <!-- tree 5 --> 13687 <_> 13688 <!-- root node --> 13689 <feature> 13690 <rects> 13691 <_>3 22 19 2 -1.</_> 13692 <_>3 23 19 1 2.</_></rects> 13693 <tilted>0</tilted></feature> 13694 <threshold>-4.6599999768659472e-004</threshold> 13695 <left_val>0.3798249959945679</left_val> 13696 <right_val>-0.4156709909439087</right_val></_></_> 13697 <_> 13698 <!-- tree 6 --> 13699 <_> 13700 <!-- root node --> 13701 <feature> 13702 <rects> 13703 <_>2 15 20 3 -1.</_> 13704 <_>2 16 20 1 3.</_></rects> 13705 <tilted>0</tilted></feature> 13706 <threshold>3.3889999613165855e-003</threshold> 13707 <left_val>-0.4076859951019287</left_val> 13708 <right_val>0.3554849922657013</right_val></_></_> 13709 <_> 13710 <!-- tree 7 --> 13711 <_> 13712 <!-- root node --> 13713 <feature> 13714 <rects> 13715 <_>19 0 4 13 -1.</_> 13716 <_>19 0 2 13 2.</_></rects> 13717 <tilted>0</tilted></feature> 13718 <threshold>0.0210069995373487</threshold> 13719 <left_val>-0.2408010065555573</left_val> 13720 <right_val>0.8611270189285278</right_val></_></_> 13721 <_> 13722 <!-- tree 8 --> 13723 <_> 13724 <!-- root node --> 13725 <feature> 13726 <rects> 13727 <_>1 7 8 8 -1.</_> 13728 <_>1 11 8 4 2.</_></rects> 13729 <tilted>0</tilted></feature> 13730 <threshold>7.5559997931122780e-003</threshold> 13731 <left_val>-0.8746719956398010</left_val> 13732 <right_val>0.0985720008611679</right_val></_></_> 13733 <_> 13734 <!-- tree 9 --> 13735 <_> 13736 <!-- root node --> 13737 <feature> 13738 <rects> 13739 <_>14 14 6 9 -1.</_> 13740 <_>14 17 6 3 3.</_></rects> 13741 <tilted>0</tilted></feature> 13742 <threshold>0.0247799996286631</threshold> 13743 <left_val>0.1556620001792908</left_val> 13744 <right_val>-0.6922979950904846</right_val></_></_> 13745 <_> 13746 <!-- tree 10 --> 13747 <_> 13748 <!-- root node --> 13749 <feature> 13750 <rects> 13751 <_>4 14 6 9 -1.</_> 13752 <_>4 17 6 3 3.</_></rects> 13753 <tilted>0</tilted></feature> 13754 <threshold>-0.0356200002133846</threshold> 13755 <left_val>-1.1472270488739014</left_val> 13756 <right_val>0.0363599993288517</right_val></_></_> 13757 <_> 13758 <!-- tree 11 --> 13759 <_> 13760 <!-- root node --> 13761 <feature> 13762 <rects> 13763 <_>14 5 4 10 -1.</_> 13764 <_>14 5 2 10 2.</_></rects> 13765 <tilted>0</tilted></feature> 13766 <threshold>0.0198100004345179</threshold> 13767 <left_val>0.1551620066165924</left_val> 13768 <right_val>-0.6952009797096252</right_val></_></_> 13769 <_> 13770 <!-- tree 12 --> 13771 <_> 13772 <!-- root node --> 13773 <feature> 13774 <rects> 13775 <_>6 5 4 10 -1.</_> 13776 <_>8 5 2 10 2.</_></rects> 13777 <tilted>0</tilted></feature> 13778 <threshold>0.0150199998170137</threshold> 13779 <left_val>0.0419900007545948</left_val> 13780 <right_val>-0.9662280082702637</right_val></_></_> 13781 <_> 13782 <!-- tree 13 --> 13783 <_> 13784 <!-- root node --> 13785 <feature> 13786 <rects> 13787 <_>14 5 6 6 -1.</_> 13788 <_>14 8 6 3 2.</_></rects> 13789 <tilted>0</tilted></feature> 13790 <threshold>-0.0231379996985197</threshold> 13791 <left_val>0.4339689910411835</left_val> 13792 <right_val>2.4160000029951334e-003</right_val></_></_> 13793 <_> 13794 <!-- tree 14 --> 13795 <_> 13796 <!-- root node --> 13797 <feature> 13798 <rects> 13799 <_>4 5 6 6 -1.</_> 13800 <_>4 8 6 3 2.</_></rects> 13801 <tilted>0</tilted></feature> 13802 <threshold>-0.0187430009245873</threshold> 13803 <left_val>0.4348109960556030</left_val> 13804 <right_val>-0.3252249956130981</right_val></_></_> 13805 <_> 13806 <!-- tree 15 --> 13807 <_> 13808 <!-- root node --> 13809 <feature> 13810 <rects> 13811 <_>0 2 24 21 -1.</_> 13812 <_>8 2 8 21 3.</_></rects> 13813 <tilted>0</tilted></feature> 13814 <threshold>0.4508000016212463</threshold> 13815 <left_val>-0.0945739969611168</left_val> 13816 <right_val>0.7242130041122437</right_val></_></_> 13817 <_> 13818 <!-- tree 16 --> 13819 <_> 13820 <!-- root node --> 13821 <feature> 13822 <rects> 13823 <_>1 2 6 13 -1.</_> 13824 <_>3 2 2 13 3.</_></rects> 13825 <tilted>0</tilted></feature> 13826 <threshold>0.0118549996986985</threshold> 13827 <left_val>-0.3813309967517853</left_val> 13828 <right_val>0.3009839951992035</right_val></_></_> 13829 <_> 13830 <!-- tree 17 --> 13831 <_> 13832 <!-- root node --> 13833 <feature> 13834 <rects> 13835 <_>20 0 4 21 -1.</_> 13836 <_>20 0 2 21 2.</_></rects> 13837 <tilted>0</tilted></feature> 13838 <threshold>-0.0248300004750490</threshold> 13839 <left_val>0.8930060267448425</left_val> 13840 <right_val>-0.1029589995741844</right_val></_></_> 13841 <_> 13842 <!-- tree 18 --> 13843 <_> 13844 <!-- root node --> 13845 <feature> 13846 <rects> 13847 <_>0 4 4 20 -1.</_> 13848 <_>2 4 2 20 2.</_></rects> 13849 <tilted>0</tilted></feature> 13850 <threshold>-0.0447430014610291</threshold> 13851 <left_val>0.8628029823303223</left_val> 13852 <right_val>-0.2171649932861328</right_val></_></_> 13853 <_> 13854 <!-- tree 19 --> 13855 <_> 13856 <!-- root node --> 13857 <feature> 13858 <rects> 13859 <_>8 16 9 6 -1.</_> 13860 <_>8 18 9 2 3.</_></rects> 13861 <tilted>0</tilted></feature> 13862 <threshold>-0.0146000003442168</threshold> 13863 <left_val>0.6006940007209778</left_val> 13864 <right_val>-0.1590629965066910</right_val></_></_> 13865 <_> 13866 <!-- tree 20 --> 13867 <_> 13868 <!-- root node --> 13869 <feature> 13870 <rects> 13871 <_>7 0 6 9 -1.</_> 13872 <_>9 0 2 9 3.</_></rects> 13873 <tilted>0</tilted></feature> 13874 <threshold>-0.0245270002633333</threshold> 13875 <left_val>-1.5872869491577148</left_val> 13876 <right_val>-0.0218170005828142</right_val></_></_> 13877 <_> 13878 <!-- tree 21 --> 13879 <_> 13880 <!-- root node --> 13881 <feature> 13882 <rects> 13883 <_>16 12 7 9 -1.</_> 13884 <_>16 15 7 3 3.</_></rects> 13885 <tilted>0</tilted></feature> 13886 <threshold>0.0230240002274513</threshold> 13887 <left_val>0.1685339957475662</left_val> 13888 <right_val>-0.3810690045356751</right_val></_></_> 13889 <_> 13890 <!-- tree 22 --> 13891 <_> 13892 <!-- root node --> 13893 <feature> 13894 <rects> 13895 <_>5 21 14 3 -1.</_> 13896 <_>12 21 7 3 2.</_></rects> 13897 <tilted>0</tilted></feature> 13898 <threshold>-0.0249170009046793</threshold> 13899 <left_val>0.5081089735031128</left_val> 13900 <right_val>-0.2727989852428436</right_val></_></_> 13901 <_> 13902 <!-- tree 23 --> 13903 <_> 13904 <!-- root node --> 13905 <feature> 13906 <rects> 13907 <_>11 5 6 9 -1.</_> 13908 <_>11 5 3 9 2.</_></rects> 13909 <tilted>0</tilted></feature> 13910 <threshold>1.0130000300705433e-003</threshold> 13911 <left_val>-0.4313879907131195</left_val> 13912 <right_val>0.2643809914588928</right_val></_></_> 13913 <_> 13914 <!-- tree 24 --> 13915 <_> 13916 <!-- root node --> 13917 <feature> 13918 <rects> 13919 <_>10 5 4 10 -1.</_> 13920 <_>12 5 2 10 2.</_></rects> 13921 <tilted>0</tilted></feature> 13922 <threshold>0.0156030002981424</threshold> 13923 <left_val>-0.3162420094013214</left_val> 13924 <right_val>0.5571590065956116</right_val></_></_> 13925 <_> 13926 <!-- tree 25 --> 13927 <_> 13928 <!-- root node --> 13929 <feature> 13930 <rects> 13931 <_>10 6 6 9 -1.</_> 13932 <_>12 6 2 9 3.</_></rects> 13933 <tilted>0</tilted></feature> 13934 <threshold>-0.0266859997063875</threshold> 13935 <left_val>1.0553920269012451</left_val> 13936 <right_val>0.0290740001946688</right_val></_></_> 13937 <_> 13938 <!-- tree 26 --> 13939 <_> 13940 <!-- root node --> 13941 <feature> 13942 <rects> 13943 <_>7 5 6 9 -1.</_> 13944 <_>10 5 3 9 2.</_></rects> 13945 <tilted>0</tilted></feature> 13946 <threshold>1.3940000208094716e-003</threshold> 13947 <left_val>-0.7187380194664002</left_val> 13948 <right_val>0.0653909966349602</right_val></_></_> 13949 <_> 13950 <!-- tree 27 --> 13951 <_> 13952 <!-- root node --> 13953 <feature> 13954 <rects> 13955 <_>14 14 10 4 -1.</_> 13956 <_>14 16 10 2 2.</_></rects> 13957 <tilted>0</tilted></feature> 13958 <threshold>-6.4799998654052615e-004</threshold> 13959 <left_val>0.2488439977169037</left_val> 13960 <right_val>-0.2097820043563843</right_val></_></_> 13961 <_> 13962 <!-- tree 28 --> 13963 <_> 13964 <!-- root node --> 13965 <feature> 13966 <rects> 13967 <_>5 5 14 14 -1.</_> 13968 <_>5 5 7 7 2.</_> 13969 <_>12 12 7 7 2.</_></rects> 13970 <tilted>0</tilted></feature> 13971 <threshold>-0.0318880006670952</threshold> 13972 <left_val>-0.6884449720382690</left_val> 13973 <right_val>0.0635899975895882</right_val></_></_> 13974 <_> 13975 <!-- tree 29 --> 13976 <_> 13977 <!-- root node --> 13978 <feature> 13979 <rects> 13980 <_>12 8 12 6 -1.</_> 13981 <_>18 8 6 3 2.</_> 13982 <_>12 11 6 3 2.</_></rects> 13983 <tilted>0</tilted></feature> 13984 <threshold>-4.9290000461041927e-003</threshold> 13985 <left_val>-0.5915250182151794</left_val> 13986 <right_val>0.2794359922409058</right_val></_></_> 13987 <_> 13988 <!-- tree 30 --> 13989 <_> 13990 <!-- root node --> 13991 <feature> 13992 <rects> 13993 <_>6 6 12 12 -1.</_> 13994 <_>6 6 6 6 2.</_> 13995 <_>12 12 6 6 2.</_></rects> 13996 <tilted>0</tilted></feature> 13997 <threshold>0.0311680007725954</threshold> 13998 <left_val>0.0452239997684956</left_val> 13999 <right_val>-0.8863919973373413</right_val></_></_> 14000 <_> 14001 <!-- tree 31 --> 14002 <_> 14003 <!-- root node --> 14004 <feature> 14005 <rects> 14006 <_>11 13 6 10 -1.</_> 14007 <_>13 13 2 10 3.</_></rects> 14008 <tilted>0</tilted></feature> 14009 <threshold>-0.0336630009114742</threshold> 14010 <left_val>-0.6159020066261292</left_val> 14011 <right_val>0.1574929952621460</right_val></_></_> 14012 <_> 14013 <!-- tree 32 --> 14014 <_> 14015 <!-- root node --> 14016 <feature> 14017 <rects> 14018 <_>1 10 20 8 -1.</_> 14019 <_>1 10 10 4 2.</_> 14020 <_>11 14 10 4 2.</_></rects> 14021 <tilted>0</tilted></feature> 14022 <threshold>0.0119669996201992</threshold> 14023 <left_val>-0.3060669898986816</left_val> 14024 <right_val>0.4229330122470856</right_val></_></_> 14025 <_> 14026 <!-- tree 33 --> 14027 <_> 14028 <!-- root node --> 14029 <feature> 14030 <rects> 14031 <_>15 13 9 6 -1.</_> 14032 <_>15 15 9 2 3.</_></rects> 14033 <tilted>0</tilted></feature> 14034 <threshold>-0.0346800014376640</threshold> 14035 <left_val>-1.3734940290451050</left_val> 14036 <right_val>0.1590870022773743</right_val></_></_> 14037 <_> 14038 <!-- tree 34 --> 14039 <_> 14040 <!-- root node --> 14041 <feature> 14042 <rects> 14043 <_>9 0 6 9 -1.</_> 14044 <_>9 3 6 3 3.</_></rects> 14045 <tilted>0</tilted></feature> 14046 <threshold>9.9290004000067711e-003</threshold> 14047 <left_val>-0.5586019754409790</left_val> 14048 <right_val>0.1211920008063316</right_val></_></_> 14049 <_> 14050 <!-- tree 35 --> 14051 <_> 14052 <!-- root node --> 14053 <feature> 14054 <rects> 14055 <_>10 1 5 14 -1.</_> 14056 <_>10 8 5 7 2.</_></rects> 14057 <tilted>0</tilted></feature> 14058 <threshold>0.0595749989151955</threshold> 14059 <left_val>4.9720001406967640e-003</left_val> 14060 <right_val>0.8205540180206299</right_val></_></_> 14061 <_> 14062 <!-- tree 36 --> 14063 <_> 14064 <!-- root node --> 14065 <feature> 14066 <rects> 14067 <_>3 4 16 6 -1.</_> 14068 <_>3 6 16 2 3.</_></rects> 14069 <tilted>0</tilted></feature> 14070 <threshold>-0.0654280036687851</threshold> 14071 <left_val>1.5651429891586304</left_val> 14072 <right_val>-0.1681749969720841</right_val></_></_> 14073 <_> 14074 <!-- tree 37 --> 14075 <_> 14076 <!-- root node --> 14077 <feature> 14078 <rects> 14079 <_>16 3 8 9 -1.</_> 14080 <_>16 6 8 3 3.</_></rects> 14081 <tilted>0</tilted></feature> 14082 <threshold>-0.0928959995508194</threshold> 14083 <left_val>-1.5794529914855957</left_val> 14084 <right_val>0.1466179937124252</right_val></_></_> 14085 <_> 14086 <!-- tree 38 --> 14087 <_> 14088 <!-- root node --> 14089 <feature> 14090 <rects> 14091 <_>7 13 6 10 -1.</_> 14092 <_>9 13 2 10 3.</_></rects> 14093 <tilted>0</tilted></feature> 14094 <threshold>-0.0411840006709099</threshold> 14095 <left_val>-1.5518720149993896</left_val> 14096 <right_val>-0.0299699995666742</right_val></_></_> 14097 <_> 14098 <!-- tree 39 --> 14099 <_> 14100 <!-- root node --> 14101 <feature> 14102 <rects> 14103 <_>15 13 9 6 -1.</_> 14104 <_>15 15 9 2 3.</_></rects> 14105 <tilted>0</tilted></feature> 14106 <threshold>0.0214479994028807</threshold> 14107 <left_val>0.1719630062580109</left_val> 14108 <right_val>-0.6934319734573364</right_val></_></_> 14109 <_> 14110 <!-- tree 40 --> 14111 <_> 14112 <!-- root node --> 14113 <feature> 14114 <rects> 14115 <_>0 13 9 6 -1.</_> 14116 <_>0 15 9 2 3.</_></rects> 14117 <tilted>0</tilted></feature> 14118 <threshold>-0.0255699995905161</threshold> 14119 <left_val>-1.3061310052871704</left_val> 14120 <right_val>-0.0243369992822409</right_val></_></_> 14121 <_> 14122 <!-- tree 41 --> 14123 <_> 14124 <!-- root node --> 14125 <feature> 14126 <rects> 14127 <_>13 16 9 6 -1.</_> 14128 <_>13 18 9 2 3.</_></rects> 14129 <tilted>0</tilted></feature> 14130 <threshold>-0.0412009991705418</threshold> 14131 <left_val>-1.3821059465408325</left_val> 14132 <right_val>0.1480180025100708</right_val></_></_> 14133 <_> 14134 <!-- tree 42 --> 14135 <_> 14136 <!-- root node --> 14137 <feature> 14138 <rects> 14139 <_>2 16 9 6 -1.</_> 14140 <_>2 18 9 2 3.</_></rects> 14141 <tilted>0</tilted></feature> 14142 <threshold>-0.0176689997315407</threshold> 14143 <left_val>-0.7088999748229981</left_val> 14144 <right_val>0.0365240015089512</right_val></_></_> 14145 <_> 14146 <!-- tree 43 --> 14147 <_> 14148 <!-- root node --> 14149 <feature> 14150 <rects> 14151 <_>5 16 18 3 -1.</_> 14152 <_>5 17 18 1 3.</_></rects> 14153 <tilted>0</tilted></feature> 14154 <threshold>9.0060001239180565e-003</threshold> 14155 <left_val>-0.0409139990806580</left_val> 14156 <right_val>0.8037310242652893</right_val></_></_> 14157 <_> 14158 <!-- tree 44 --> 14159 <_> 14160 <!-- root node --> 14161 <feature> 14162 <rects> 14163 <_>1 16 18 3 -1.</_> 14164 <_>1 17 18 1 3.</_></rects> 14165 <tilted>0</tilted></feature> 14166 <threshold>-0.0116529995575547</threshold> 14167 <left_val>0.5754680037498474</left_val> 14168 <right_val>-0.2499170005321503</right_val></_></_> 14169 <_> 14170 <!-- tree 45 --> 14171 <_> 14172 <!-- root node --> 14173 <feature> 14174 <rects> 14175 <_>5 0 18 3 -1.</_> 14176 <_>5 1 18 1 3.</_></rects> 14177 <tilted>0</tilted></feature> 14178 <threshold>-7.4780001305043697e-003</threshold> 14179 <left_val>-0.4928089976310730</left_val> 14180 <right_val>0.1981090009212494</right_val></_></_> 14181 <_> 14182 <!-- tree 46 --> 14183 <_> 14184 <!-- root node --> 14185 <feature> 14186 <rects> 14187 <_>1 1 19 2 -1.</_> 14188 <_>1 2 19 1 2.</_></rects> 14189 <tilted>0</tilted></feature> 14190 <threshold>8.5499999113380909e-004</threshold> 14191 <left_val>-0.4885810017585754</left_val> 14192 <right_val>0.1356309950351715</right_val></_></_> 14193 <_> 14194 <!-- tree 47 --> 14195 <_> 14196 <!-- root node --> 14197 <feature> 14198 <rects> 14199 <_>14 2 6 11 -1.</_> 14200 <_>16 2 2 11 3.</_></rects> 14201 <tilted>0</tilted></feature> 14202 <threshold>-0.0305380001664162</threshold> 14203 <left_val>-0.6027839779853821</left_val> 14204 <right_val>0.1852200031280518</right_val></_></_> 14205 <_> 14206 <!-- tree 48 --> 14207 <_> 14208 <!-- root node --> 14209 <feature> 14210 <rects> 14211 <_>4 15 15 6 -1.</_> 14212 <_>9 15 5 6 3.</_></rects> 14213 <tilted>0</tilted></feature> 14214 <threshold>-0.0188469998538494</threshold> 14215 <left_val>0.2356559932231903</left_val> 14216 <right_val>-0.3513630032539368</right_val></_></_> 14217 <_> 14218 <!-- tree 49 --> 14219 <_> 14220 <!-- root node --> 14221 <feature> 14222 <rects> 14223 <_>14 2 6 11 -1.</_> 14224 <_>16 2 2 11 3.</_></rects> 14225 <tilted>0</tilted></feature> 14226 <threshold>-8.1129996106028557e-003</threshold> 14227 <left_val>-0.0813049972057343</left_val> 14228 <right_val>0.2106959968805313</right_val></_></_> 14229 <_> 14230 <!-- tree 50 --> 14231 <_> 14232 <!-- root node --> 14233 <feature> 14234 <rects> 14235 <_>4 2 6 11 -1.</_> 14236 <_>6 2 2 11 3.</_></rects> 14237 <tilted>0</tilted></feature> 14238 <threshold>-0.0348300002515316</threshold> 14239 <left_val>-1.2065670490264893</left_val> 14240 <right_val>-0.0142519995570183</right_val></_></_> 14241 <_> 14242 <!-- tree 51 --> 14243 <_> 14244 <!-- root node --> 14245 <feature> 14246 <rects> 14247 <_>18 2 6 9 -1.</_> 14248 <_>18 5 6 3 3.</_></rects> 14249 <tilted>0</tilted></feature> 14250 <threshold>0.0190210007131100</threshold> 14251 <left_val>0.2334990054368973</left_val> 14252 <right_val>-0.4566490054130554</right_val></_></_> 14253 <_> 14254 <!-- tree 52 --> 14255 <_> 14256 <!-- root node --> 14257 <feature> 14258 <rects> 14259 <_>1 2 22 4 -1.</_> 14260 <_>1 2 11 2 2.</_> 14261 <_>12 4 11 2 2.</_></rects> 14262 <tilted>0</tilted></feature> 14263 <threshold>-0.0190040003508329</threshold> 14264 <left_val>-0.8107579946517944</left_val> 14265 <right_val>0.0131400004029274</right_val></_></_> 14266 <_> 14267 <!-- tree 53 --> 14268 <_> 14269 <!-- root node --> 14270 <feature> 14271 <rects> 14272 <_>2 0 21 12 -1.</_> 14273 <_>9 0 7 12 3.</_></rects> 14274 <tilted>0</tilted></feature> 14275 <threshold>-0.0890579968690872</threshold> 14276 <left_val>0.6154239773750305</left_val> 14277 <right_val>0.0329830013215542</right_val></_></_> 14278 <_> 14279 <!-- tree 54 --> 14280 <_> 14281 <!-- root node --> 14282 <feature> 14283 <rects> 14284 <_>0 12 18 3 -1.</_> 14285 <_>0 13 18 1 3.</_></rects> 14286 <tilted>0</tilted></feature> 14287 <threshold>6.8620000965893269e-003</threshold> 14288 <left_val>-0.2958309948444367</left_val> 14289 <right_val>0.2700369954109192</right_val></_></_> 14290 <_> 14291 <!-- tree 55 --> 14292 <_> 14293 <!-- root node --> 14294 <feature> 14295 <rects> 14296 <_>12 2 6 9 -1.</_> 14297 <_>14 2 2 9 3.</_></rects> 14298 <tilted>0</tilted></feature> 14299 <threshold>-0.0282409992069006</threshold> 14300 <left_val>-0.6110270023345947</left_val> 14301 <right_val>0.1735749989748001</right_val></_></_> 14302 <_> 14303 <!-- tree 56 --> 14304 <_> 14305 <!-- root node --> 14306 <feature> 14307 <rects> 14308 <_>3 10 18 3 -1.</_> 14309 <_>3 11 18 1 3.</_></rects> 14310 <tilted>0</tilted></feature> 14311 <threshold>-3.2099999953061342e-004</threshold> 14312 <left_val>-0.5332289934158325</left_val> 14313 <right_val>0.0685390010476112</right_val></_></_> 14314 <_> 14315 <!-- tree 57 --> 14316 <_> 14317 <!-- root node --> 14318 <feature> 14319 <rects> 14320 <_>16 3 8 9 -1.</_> 14321 <_>16 6 8 3 3.</_></rects> 14322 <tilted>0</tilted></feature> 14323 <threshold>-0.1082910001277924</threshold> 14324 <left_val>-1.2879559993743896</left_val> 14325 <right_val>0.1180170029401779</right_val></_></_> 14326 <_> 14327 <!-- tree 58 --> 14328 <_> 14329 <!-- root node --> 14330 <feature> 14331 <rects> 14332 <_>3 7 18 3 -1.</_> 14333 <_>3 8 18 1 3.</_></rects> 14334 <tilted>0</tilted></feature> 14335 <threshold>0.0158789996057749</threshold> 14336 <left_val>-0.1707260012626648</left_val> 14337 <right_val>1.1103910207748413</right_val></_></_> 14338 <_> 14339 <!-- tree 59 --> 14340 <_> 14341 <!-- root node --> 14342 <feature> 14343 <rects> 14344 <_>9 11 6 9 -1.</_> 14345 <_>11 11 2 9 3.</_></rects> 14346 <tilted>0</tilted></feature> 14347 <threshold>8.6859995499253273e-003</threshold> 14348 <left_val>-0.1099509969353676</left_val> 14349 <right_val>0.4601050019264221</right_val></_></_> 14350 <_> 14351 <!-- tree 60 --> 14352 <_> 14353 <!-- root node --> 14354 <feature> 14355 <rects> 14356 <_>9 8 6 9 -1.</_> 14357 <_>11 8 2 9 3.</_></rects> 14358 <tilted>0</tilted></feature> 14359 <threshold>-0.0252349991351366</threshold> 14360 <left_val>1.0220669507980347</left_val> 14361 <right_val>-0.1869429945945740</right_val></_></_> 14362 <_> 14363 <!-- tree 61 --> 14364 <_> 14365 <!-- root node --> 14366 <feature> 14367 <rects> 14368 <_>15 0 2 18 -1.</_> 14369 <_>15 0 1 18 2.</_></rects> 14370 <tilted>0</tilted></feature> 14371 <threshold>-0.0135089997202158</threshold> 14372 <left_val>-0.7831659913063049</left_val> 14373 <right_val>0.1420260071754456</right_val></_></_> 14374 <_> 14375 <!-- tree 62 --> 14376 <_> 14377 <!-- root node --> 14378 <feature> 14379 <rects> 14380 <_>7 0 2 18 -1.</_> 14381 <_>8 0 1 18 2.</_></rects> 14382 <tilted>0</tilted></feature> 14383 <threshold>-7.7149998396635056e-003</threshold> 14384 <left_val>-0.8806070089340210</left_val> 14385 <right_val>0.0110600003972650</right_val></_></_> 14386 <_> 14387 <!-- tree 63 --> 14388 <_> 14389 <!-- root node --> 14390 <feature> 14391 <rects> 14392 <_>17 3 7 9 -1.</_> 14393 <_>17 6 7 3 3.</_></rects> 14394 <tilted>0</tilted></feature> 14395 <threshold>0.0715800002217293</threshold> 14396 <left_val>0.1136939972639084</left_val> 14397 <right_val>-1.1032789945602417</right_val></_></_> 14398 <_> 14399 <!-- tree 64 --> 14400 <_> 14401 <!-- root node --> 14402 <feature> 14403 <rects> 14404 <_>3 18 9 6 -1.</_> 14405 <_>3 20 9 2 3.</_></rects> 14406 <tilted>0</tilted></feature> 14407 <threshold>-0.0135540002956986</threshold> 14408 <left_val>-0.8109650015830994</left_val> 14409 <right_val>3.4080001059919596e-003</right_val></_></_> 14410 <_> 14411 <!-- tree 65 --> 14412 <_> 14413 <!-- root node --> 14414 <feature> 14415 <rects> 14416 <_>3 18 21 3 -1.</_> 14417 <_>3 19 21 1 3.</_></rects> 14418 <tilted>0</tilted></feature> 14419 <threshold>2.9450000729411840e-003</threshold> 14420 <left_val>-0.0728799998760223</left_val> 14421 <right_val>0.3499810099601746</right_val></_></_> 14422 <_> 14423 <!-- tree 66 --> 14424 <_> 14425 <!-- root node --> 14426 <feature> 14427 <rects> 14428 <_>0 3 7 9 -1.</_> 14429 <_>0 6 7 3 3.</_></rects> 14430 <tilted>0</tilted></feature> 14431 <threshold>-0.0508330017328262</threshold> 14432 <left_val>-1.2868590354919434</left_val> 14433 <right_val>-0.0288420002907515</right_val></_></_> 14434 <_> 14435 <!-- tree 67 --> 14436 <_> 14437 <!-- root node --> 14438 <feature> 14439 <rects> 14440 <_>2 7 22 3 -1.</_> 14441 <_>2 8 22 1 3.</_></rects> 14442 <tilted>0</tilted></feature> 14443 <threshold>-8.7989997118711472e-003</threshold> 14444 <left_val>0.4761359989643097</left_val> 14445 <right_val>-0.1469040066003799</right_val></_></_> 14446 <_> 14447 <!-- tree 68 --> 14448 <_> 14449 <!-- root node --> 14450 <feature> 14451 <rects> 14452 <_>0 3 24 16 -1.</_> 14453 <_>0 3 12 8 2.</_> 14454 <_>12 11 12 8 2.</_></rects> 14455 <tilted>0</tilted></feature> 14456 <threshold>0.2142439931631088</threshold> 14457 <left_val>-0.0597020015120506</left_val> 14458 <right_val>-2.4802260398864746</right_val></_></_> 14459 <_> 14460 <!-- tree 69 --> 14461 <_> 14462 <!-- root node --> 14463 <feature> 14464 <rects> 14465 <_>13 17 9 4 -1.</_> 14466 <_>13 19 9 2 2.</_></rects> 14467 <tilted>0</tilted></feature> 14468 <threshold>0.0139629999175668</threshold> 14469 <left_val>0.1742029935121536</left_val> 14470 <right_val>-0.4391100108623505</right_val></_></_> 14471 <_> 14472 <!-- tree 70 --> 14473 <_> 14474 <!-- root node --> 14475 <feature> 14476 <rects> 14477 <_>5 5 12 8 -1.</_> 14478 <_>5 5 6 4 2.</_> 14479 <_>11 9 6 4 2.</_></rects> 14480 <tilted>0</tilted></feature> 14481 <threshold>0.0425020009279251</threshold> 14482 <left_val>-0.1996529996395111</left_val> 14483 <right_val>0.7065479755401611</right_val></_></_> 14484 <_> 14485 <!-- tree 71 --> 14486 <_> 14487 <!-- root node --> 14488 <feature> 14489 <rects> 14490 <_>5 6 14 6 -1.</_> 14491 <_>12 6 7 3 2.</_> 14492 <_>5 9 7 3 2.</_></rects> 14493 <tilted>0</tilted></feature> 14494 <threshold>0.0198279991745949</threshold> 14495 <left_val>-0.0691360011696815</left_val> 14496 <right_val>0.6164339780807495</right_val></_></_> 14497 <_> 14498 <!-- tree 72 --> 14499 <_> 14500 <!-- root node --> 14501 <feature> 14502 <rects> 14503 <_>5 16 14 6 -1.</_> 14504 <_>5 16 7 3 2.</_> 14505 <_>12 19 7 3 2.</_></rects> 14506 <tilted>0</tilted></feature> 14507 <threshold>-0.0335600003600121</threshold> 14508 <left_val>-1.2740780115127563</left_val> 14509 <right_val>-0.0256730001419783</right_val></_></_> 14510 <_> 14511 <!-- tree 73 --> 14512 <_> 14513 <!-- root node --> 14514 <feature> 14515 <rects> 14516 <_>18 2 6 9 -1.</_> 14517 <_>18 5 6 3 3.</_></rects> 14518 <tilted>0</tilted></feature> 14519 <threshold>0.0635429993271828</threshold> 14520 <left_val>0.1240350008010864</left_val> 14521 <right_val>-1.0776289701461792</right_val></_></_> 14522 <_> 14523 <!-- tree 74 --> 14524 <_> 14525 <!-- root node --> 14526 <feature> 14527 <rects> 14528 <_>0 2 6 9 -1.</_> 14529 <_>0 5 6 3 3.</_></rects> 14530 <tilted>0</tilted></feature> 14531 <threshold>0.0219330005347729</threshold> 14532 <left_val>0.0149520002305508</left_val> 14533 <right_val>-0.7102349996566773</right_val></_></_> 14534 <_> 14535 <!-- tree 75 --> 14536 <_> 14537 <!-- root node --> 14538 <feature> 14539 <rects> 14540 <_>3 4 20 10 -1.</_> 14541 <_>13 4 10 5 2.</_> 14542 <_>3 9 10 5 2.</_></rects> 14543 <tilted>0</tilted></feature> 14544 <threshold>-0.0784249976277351</threshold> 14545 <left_val>0.6203399896621704</left_val> 14546 <right_val>0.0336109995841980</right_val></_></_> 14547 <_> 14548 <!-- tree 76 --> 14549 <_> 14550 <!-- root node --> 14551 <feature> 14552 <rects> 14553 <_>2 13 9 8 -1.</_> 14554 <_>5 13 3 8 3.</_></rects> 14555 <tilted>0</tilted></feature> 14556 <threshold>0.0143900001421571</threshold> 14557 <left_val>-0.3632459938526154</left_val> 14558 <right_val>0.1730830073356628</right_val></_></_> 14559 <_> 14560 <!-- tree 77 --> 14561 <_> 14562 <!-- root node --> 14563 <feature> 14564 <rects> 14565 <_>2 1 21 15 -1.</_> 14566 <_>9 1 7 15 3.</_></rects> 14567 <tilted>0</tilted></feature> 14568 <threshold>-0.0673099979758263</threshold> 14569 <left_val>0.5237410068511963</left_val> 14570 <right_val>0.0127999996766448</right_val></_></_> 14571 <_> 14572 <!-- tree 78 --> 14573 <_> 14574 <!-- root node --> 14575 <feature> 14576 <rects> 14577 <_>5 12 14 8 -1.</_> 14578 <_>12 12 7 8 2.</_></rects> 14579 <tilted>0</tilted></feature> 14580 <threshold>0.1304749995470047</threshold> 14581 <left_val>-0.1712249964475632</left_val> 14582 <right_val>1.1235200166702271</right_val></_></_> 14583 <_> 14584 <!-- tree 79 --> 14585 <_> 14586 <!-- root node --> 14587 <feature> 14588 <rects> 14589 <_>6 7 12 4 -1.</_> 14590 <_>6 7 6 4 2.</_></rects> 14591 <tilted>0</tilted></feature> 14592 <threshold>-0.0462459996342659</threshold> 14593 <left_val>-1.1908329725265503</left_val> 14594 <right_val>0.1742559969425201</right_val></_></_> 14595 <_> 14596 <!-- tree 80 --> 14597 <_> 14598 <!-- root node --> 14599 <feature> 14600 <rects> 14601 <_>6 5 9 6 -1.</_> 14602 <_>9 5 3 6 3.</_></rects> 14603 <tilted>0</tilted></feature> 14604 <threshold>-0.0298420004546642</threshold> 14605 <left_val>0.8393059968948364</left_val> 14606 <right_val>-0.1806419938802719</right_val></_></_> 14607 <_> 14608 <!-- tree 81 --> 14609 <_> 14610 <!-- root node --> 14611 <feature> 14612 <rects> 14613 <_>13 11 6 6 -1.</_> 14614 <_>13 11 3 6 2.</_></rects> 14615 <tilted>0</tilted></feature> 14616 <threshold>-3.8099999073892832e-004</threshold> 14617 <left_val>0.3553279936313629</left_val> 14618 <right_val>-0.2384230047464371</right_val></_></_> 14619 <_> 14620 <!-- tree 82 --> 14621 <_> 14622 <!-- root node --> 14623 <feature> 14624 <rects> 14625 <_>5 11 6 6 -1.</_> 14626 <_>8 11 3 6 2.</_></rects> 14627 <tilted>0</tilted></feature> 14628 <threshold>-0.0223789997398853</threshold> 14629 <left_val>-0.8794389963150024</left_val> 14630 <right_val>-7.8399997437372804e-004</right_val></_></_> 14631 <_> 14632 <!-- tree 83 --> 14633 <_> 14634 <!-- root node --> 14635 <feature> 14636 <rects> 14637 <_>6 4 18 2 -1.</_> 14638 <_>6 5 18 1 2.</_></rects> 14639 <tilted>0</tilted></feature> 14640 <threshold>-1.5569999814033508e-003</threshold> 14641 <left_val>-0.1425330042839050</left_val> 14642 <right_val>0.2587620019912720</right_val></_></_> 14643 <_> 14644 <!-- tree 84 --> 14645 <_> 14646 <!-- root node --> 14647 <feature> 14648 <rects> 14649 <_>0 2 6 11 -1.</_> 14650 <_>2 2 2 11 3.</_></rects> 14651 <tilted>0</tilted></feature> 14652 <threshold>0.0120130004361272</threshold> 14653 <left_val>-0.2901549935340881</left_val> 14654 <right_val>0.2605110108852387</right_val></_></_> 14655 <_> 14656 <!-- tree 85 --> 14657 <_> 14658 <!-- root node --> 14659 <feature> 14660 <rects> 14661 <_>18 0 6 15 -1.</_> 14662 <_>20 0 2 15 3.</_></rects> 14663 <tilted>0</tilted></feature> 14664 <threshold>0.0243849996477365</threshold> 14665 <left_val>-0.0314389988780022</left_val> 14666 <right_val>0.5869590044021606</right_val></_></_> 14667 <_> 14668 <!-- tree 86 --> 14669 <_> 14670 <!-- root node --> 14671 <feature> 14672 <rects> 14673 <_>0 0 6 13 -1.</_> 14674 <_>2 0 2 13 3.</_></rects> 14675 <tilted>0</tilted></feature> 14676 <threshold>-0.0471809990704060</threshold> 14677 <left_val>0.6943010091781616</left_val> 14678 <right_val>-0.2181610018014908</right_val></_></_> 14679 <_> 14680 <!-- tree 87 --> 14681 <_> 14682 <!-- root node --> 14683 <feature> 14684 <rects> 14685 <_>12 0 6 9 -1.</_> 14686 <_>14 0 2 9 3.</_></rects> 14687 <tilted>0</tilted></feature> 14688 <threshold>-0.0248939990997314</threshold> 14689 <left_val>-0.6459929943084717</left_val> 14690 <right_val>0.1561159938573837</right_val></_></_> 14691 <_> 14692 <!-- tree 88 --> 14693 <_> 14694 <!-- root node --> 14695 <feature> 14696 <rects> 14697 <_>6 0 6 9 -1.</_> 14698 <_>8 0 2 9 3.</_></rects> 14699 <tilted>0</tilted></feature> 14700 <threshold>0.0219449996948242</threshold> 14701 <left_val>-0.0277420002967119</left_val> 14702 <right_val>-1.1346880197525024</right_val></_></_> 14703 <_> 14704 <!-- tree 89 --> 14705 <_> 14706 <!-- root node --> 14707 <feature> 14708 <rects> 14709 <_>0 2 24 4 -1.</_> 14710 <_>8 2 8 4 3.</_></rects> 14711 <tilted>0</tilted></feature> 14712 <threshold>0.1880989968776703</threshold> 14713 <left_val>-0.0100760003551841</left_val> 14714 <right_val>1.2429029941558838</right_val></_></_> 14715 <_> 14716 <!-- tree 90 --> 14717 <_> 14718 <!-- root node --> 14719 <feature> 14720 <rects> 14721 <_>3 13 18 4 -1.</_> 14722 <_>12 13 9 4 2.</_></rects> 14723 <tilted>0</tilted></feature> 14724 <threshold>-0.0778720006346703</threshold> 14725 <left_val>0.8500800132751465</left_val> 14726 <right_val>-0.1901549994945526</right_val></_></_> 14727 <_> 14728 <!-- tree 91 --> 14729 <_> 14730 <!-- root node --> 14731 <feature> 14732 <rects> 14733 <_>9 7 10 4 -1.</_> 14734 <_>9 7 5 4 2.</_></rects> 14735 <tilted>0</tilted></feature> 14736 <threshold>-0.0487690009176731</threshold> 14737 <left_val>-2.0763080120086670</left_val> 14738 <right_val>0.1217940002679825</right_val></_></_> 14739 <_> 14740 <!-- tree 92 --> 14741 <_> 14742 <!-- root node --> 14743 <feature> 14744 <rects> 14745 <_>5 8 12 3 -1.</_> 14746 <_>11 8 6 3 2.</_></rects> 14747 <tilted>0</tilted></feature> 14748 <threshold>-0.0171150006353855</threshold> 14749 <left_val>-0.8568729758262634</left_val> 14750 <right_val>7.8760003671050072e-003</right_val></_></_> 14751 <_> 14752 <!-- tree 93 --> 14753 <_> 14754 <!-- root node --> 14755 <feature> 14756 <rects> 14757 <_>4 14 19 3 -1.</_> 14758 <_>4 15 19 1 3.</_></rects> 14759 <tilted>0</tilted></feature> 14760 <threshold>-2.7499999850988388e-003</threshold> 14761 <left_val>0.3864549994468689</left_val> 14762 <right_val>-0.1139149963855743</right_val></_></_> 14763 <_> 14764 <!-- tree 94 --> 14765 <_> 14766 <!-- root node --> 14767 <feature> 14768 <rects> 14769 <_>10 0 4 20 -1.</_> 14770 <_>10 10 4 10 2.</_></rects> 14771 <tilted>0</tilted></feature> 14772 <threshold>-0.0987939983606339</threshold> 14773 <left_val>-1.7233899831771851</left_val> 14774 <right_val>-0.0560630001127720</right_val></_></_> 14775 <_> 14776 <!-- tree 95 --> 14777 <_> 14778 <!-- root node --> 14779 <feature> 14780 <rects> 14781 <_>8 15 9 6 -1.</_> 14782 <_>8 17 9 2 3.</_></rects> 14783 <tilted>0</tilted></feature> 14784 <threshold>-0.0219369996339083</threshold> 14785 <left_val>0.5474939942359924</left_val> 14786 <right_val>-0.0424819998443127</right_val></_></_> 14787 <_> 14788 <!-- tree 96 --> 14789 <_> 14790 <!-- root node --> 14791 <feature> 14792 <rects> 14793 <_>2 9 15 4 -1.</_> 14794 <_>7 9 5 4 3.</_></rects> 14795 <tilted>0</tilted></feature> 14796 <threshold>0.0610969997942448</threshold> 14797 <left_val>-0.0389450006186962</left_val> 14798 <right_val>-1.0807880163192749</right_val></_></_> 14799 <_> 14800 <!-- tree 97 --> 14801 <_> 14802 <!-- root node --> 14803 <feature> 14804 <rects> 14805 <_>8 4 12 7 -1.</_> 14806 <_>12 4 4 7 3.</_></rects> 14807 <tilted>0</tilted></feature> 14808 <threshold>-0.0245639998465776</threshold> 14809 <left_val>0.5831109881401062</left_val> 14810 <right_val>-9.7599998116493225e-004</right_val></_></_> 14811 <_> 14812 <!-- tree 98 --> 14813 <_> 14814 <!-- root node --> 14815 <feature> 14816 <rects> 14817 <_>0 10 6 9 -1.</_> 14818 <_>0 13 6 3 3.</_></rects> 14819 <tilted>0</tilted></feature> 14820 <threshold>0.0337520018219948</threshold> 14821 <left_val>-0.0137959998100996</left_val> 14822 <right_val>-0.8473029732704163</right_val></_></_> 14823 <_> 14824 <!-- tree 99 --> 14825 <_> 14826 <!-- root node --> 14827 <feature> 14828 <rects> 14829 <_>18 5 6 9 -1.</_> 14830 <_>18 8 6 3 3.</_></rects> 14831 <tilted>0</tilted></feature> 14832 <threshold>0.0381990000605583</threshold> 14833 <left_val>0.1511429995298386</left_val> 14834 <right_val>-0.7947340011596680</right_val></_></_> 14835 <_> 14836 <!-- tree 100 --> 14837 <_> 14838 <!-- root node --> 14839 <feature> 14840 <rects> 14841 <_>0 18 16 6 -1.</_> 14842 <_>0 18 8 3 2.</_> 14843 <_>8 21 8 3 2.</_></rects> 14844 <tilted>0</tilted></feature> 14845 <threshold>-0.0201179999858141</threshold> 14846 <left_val>0.5157909989356995</left_val> 14847 <right_val>-0.2144539952278137</right_val></_></_> 14848 <_> 14849 <!-- tree 101 --> 14850 <_> 14851 <!-- root node --> 14852 <feature> 14853 <rects> 14854 <_>9 18 14 6 -1.</_> 14855 <_>16 18 7 3 2.</_> 14856 <_>9 21 7 3 2.</_></rects> 14857 <tilted>0</tilted></feature> 14858 <threshold>0.0247349999845028</threshold> 14859 <left_val>-0.0221050009131432</left_val> 14860 <right_val>0.4291769862174988</right_val></_></_> 14861 <_> 14862 <!-- tree 102 --> 14863 <_> 14864 <!-- root node --> 14865 <feature> 14866 <rects> 14867 <_>1 20 20 4 -1.</_> 14868 <_>1 20 10 2 2.</_> 14869 <_>11 22 10 2 2.</_></rects> 14870 <tilted>0</tilted></feature> 14871 <threshold>-0.0243570003658533</threshold> 14872 <left_val>-0.8620129823684692</left_val> 14873 <right_val>-3.6760000512003899e-003</right_val></_></_> 14874 <_> 14875 <!-- tree 103 --> 14876 <_> 14877 <!-- root node --> 14878 <feature> 14879 <rects> 14880 <_>2 8 20 6 -1.</_> 14881 <_>12 8 10 3 2.</_> 14882 <_>2 11 10 3 2.</_></rects> 14883 <tilted>0</tilted></feature> 14884 <threshold>-0.0264420006424189</threshold> 14885 <left_val>-0.4539749920368195</left_val> 14886 <right_val>0.2246280014514923</right_val></_></_> 14887 <_> 14888 <!-- tree 104 --> 14889 <_> 14890 <!-- root node --> 14891 <feature> 14892 <rects> 14893 <_>7 8 6 9 -1.</_> 14894 <_>9 8 2 9 3.</_></rects> 14895 <tilted>0</tilted></feature> 14896 <threshold>-3.4429999068379402e-003</threshold> 14897 <left_val>0.1307300031185150</left_val> 14898 <right_val>-0.3862270116806030</right_val></_></_> 14899 <_> 14900 <!-- tree 105 --> 14901 <_> 14902 <!-- root node --> 14903 <feature> 14904 <rects> 14905 <_>8 5 12 8 -1.</_> 14906 <_>12 5 4 8 3.</_></rects> 14907 <tilted>0</tilted></feature> 14908 <threshold>0.1070170029997826</threshold> 14909 <left_val>0.1315860003232956</left_val> 14910 <right_val>-0.7930690050125122</right_val></_></_> 14911 <_> 14912 <!-- tree 106 --> 14913 <_> 14914 <!-- root node --> 14915 <feature> 14916 <rects> 14917 <_>4 5 12 8 -1.</_> 14918 <_>8 5 4 8 3.</_></rects> 14919 <tilted>0</tilted></feature> 14920 <threshold>0.0451529994606972</threshold> 14921 <left_val>-0.2529680132865906</left_val> 14922 <right_val>0.4067240059375763</right_val></_></_> 14923 <_> 14924 <!-- tree 107 --> 14925 <_> 14926 <!-- root node --> 14927 <feature> 14928 <rects> 14929 <_>10 6 6 9 -1.</_> 14930 <_>12 6 2 9 3.</_></rects> 14931 <tilted>0</tilted></feature> 14932 <threshold>0.0443499982357025</threshold> 14933 <left_val>0.0226130001246929</left_val> 14934 <right_val>0.7961810231208801</right_val></_></_> 14935 <_> 14936 <!-- tree 108 --> 14937 <_> 14938 <!-- root node --> 14939 <feature> 14940 <rects> 14941 <_>2 0 6 16 -1.</_> 14942 <_>4 0 2 16 3.</_></rects> 14943 <tilted>0</tilted></feature> 14944 <threshold>1.0839999886229634e-003</threshold> 14945 <left_val>-0.3915840089321137</left_val> 14946 <right_val>0.1163910031318665</right_val></_></_> 14947 <_> 14948 <!-- tree 109 --> 14949 <_> 14950 <!-- root node --> 14951 <feature> 14952 <rects> 14953 <_>15 4 6 12 -1.</_> 14954 <_>15 8 6 4 3.</_></rects> 14955 <tilted>0</tilted></feature> 14956 <threshold>0.0714330002665520</threshold> 14957 <left_val>0.0824669972062111</left_val> 14958 <right_val>1.2530590295791626</right_val></_></_> 14959 <_> 14960 <!-- tree 110 --> 14961 <_> 14962 <!-- root node --> 14963 <feature> 14964 <rects> 14965 <_>3 4 6 12 -1.</_> 14966 <_>3 8 6 4 3.</_></rects> 14967 <tilted>0</tilted></feature> 14968 <threshold>0.0358380004763603</threshold> 14969 <left_val>-0.1820330023765564</left_val> 14970 <right_val>0.7707870006561279</right_val></_></_> 14971 <_> 14972 <!-- tree 111 --> 14973 <_> 14974 <!-- root node --> 14975 <feature> 14976 <rects> 14977 <_>15 12 9 6 -1.</_> 14978 <_>15 14 9 2 3.</_></rects> 14979 <tilted>0</tilted></feature> 14980 <threshold>-0.0208390001207590</threshold> 14981 <left_val>-0.6174439787864685</left_val> 14982 <right_val>0.1589139997959137</right_val></_></_> 14983 <_> 14984 <!-- tree 112 --> 14985 <_> 14986 <!-- root node --> 14987 <feature> 14988 <rects> 14989 <_>4 0 15 22 -1.</_> 14990 <_>4 11 15 11 2.</_></rects> 14991 <tilted>0</tilted></feature> 14992 <threshold>0.4252580106258392</threshold> 14993 <left_val>-0.0489780008792877</left_val> 14994 <right_val>-1.8422030210494995</right_val></_></_> 14995 <_> 14996 <!-- tree 113 --> 14997 <_> 14998 <!-- root node --> 14999 <feature> 15000 <rects> 15001 <_>15 12 9 6 -1.</_> 15002 <_>15 14 9 2 3.</_></rects> 15003 <tilted>0</tilted></feature> 15004 <threshold>0.0114080002531409</threshold> 15005 <left_val>0.1791819930076599</left_val> 15006 <right_val>-0.1538349986076355</right_val></_></_> 15007 <_> 15008 <!-- tree 114 --> 15009 <_> 15010 <!-- root node --> 15011 <feature> 15012 <rects> 15013 <_>0 12 9 6 -1.</_> 15014 <_>0 14 9 2 3.</_></rects> 15015 <tilted>0</tilted></feature> 15016 <threshold>-0.0153649998828769</threshold> 15017 <left_val>-0.8401650190353394</left_val> 15018 <right_val>-1.0280000278726220e-003</right_val></_></_> 15019 <_> 15020 <!-- tree 115 --> 15021 <_> 15022 <!-- root node --> 15023 <feature> 15024 <rects> 15025 <_>15 15 9 6 -1.</_> 15026 <_>15 17 9 2 3.</_></rects> 15027 <tilted>0</tilted></feature> 15028 <threshold>-0.0152120003476739</threshold> 15029 <left_val>-0.1899569928646088</left_val> 15030 <right_val>0.1713099926710129</right_val></_></_> 15031 <_> 15032 <!-- tree 116 --> 15033 <_> 15034 <!-- root node --> 15035 <feature> 15036 <rects> 15037 <_>0 15 9 6 -1.</_> 15038 <_>0 17 9 2 3.</_></rects> 15039 <tilted>0</tilted></feature> 15040 <threshold>-0.0189720001071692</threshold> 15041 <left_val>-0.7954199910163879</left_val> 15042 <right_val>6.6800001077353954e-003</right_val></_></_> 15043 <_> 15044 <!-- tree 117 --> 15045 <_> 15046 <!-- root node --> 15047 <feature> 15048 <rects> 15049 <_>10 0 8 10 -1.</_> 15050 <_>14 0 4 5 2.</_> 15051 <_>10 5 4 5 2.</_></rects> 15052 <tilted>0</tilted></feature> 15053 <threshold>-3.3330000005662441e-003</threshold> 15054 <left_val>-0.2353080064058304</left_val> 15055 <right_val>0.2473009973764420</right_val></_></_> 15056 <_> 15057 <!-- tree 118 --> 15058 <_> 15059 <!-- root node --> 15060 <feature> 15061 <rects> 15062 <_>1 0 4 16 -1.</_> 15063 <_>3 0 2 16 2.</_></rects> 15064 <tilted>0</tilted></feature> 15065 <threshold>0.0932480022311211</threshold> 15066 <left_val>-0.0547580011188984</left_val> 15067 <right_val>-1.8324300050735474</right_val></_></_> 15068 <_> 15069 <!-- tree 119 --> 15070 <_> 15071 <!-- root node --> 15072 <feature> 15073 <rects> 15074 <_>7 6 10 6 -1.</_> 15075 <_>7 8 10 2 3.</_></rects> 15076 <tilted>0</tilted></feature> 15077 <threshold>-0.0125550003722310</threshold> 15078 <left_val>0.2638520002365112</left_val> 15079 <right_val>-0.3852640092372894</right_val></_></_> 15080 <_> 15081 <!-- tree 120 --> 15082 <_> 15083 <!-- root node --> 15084 <feature> 15085 <rects> 15086 <_>10 12 4 10 -1.</_> 15087 <_>10 17 4 5 2.</_></rects> 15088 <tilted>0</tilted></feature> 15089 <threshold>-0.0270700007677078</threshold> 15090 <left_val>-0.6692979931831360</left_val> 15091 <right_val>0.0203409995883703</right_val></_></_> 15092 <_> 15093 <!-- tree 121 --> 15094 <_> 15095 <!-- root node --> 15096 <feature> 15097 <rects> 15098 <_>8 4 10 6 -1.</_> 15099 <_>8 6 10 2 3.</_></rects> 15100 <tilted>0</tilted></feature> 15101 <threshold>-0.0236770007759333</threshold> 15102 <left_val>0.6726530194282532</left_val> 15103 <right_val>-0.0143440002575517</right_val></_></_> 15104 <_> 15105 <!-- tree 122 --> 15106 <_> 15107 <!-- root node --> 15108 <feature> 15109 <rects> 15110 <_>3 22 18 2 -1.</_> 15111 <_>12 22 9 2 2.</_></rects> 15112 <tilted>0</tilted></feature> 15113 <threshold>-0.0142750004306436</threshold> 15114 <left_val>0.3018639981746674</left_val> 15115 <right_val>-0.2851440012454987</right_val></_></_> 15116 <_> 15117 <!-- tree 123 --> 15118 <_> 15119 <!-- root node --> 15120 <feature> 15121 <rects> 15122 <_>7 7 11 6 -1.</_> 15123 <_>7 9 11 2 3.</_></rects> 15124 <tilted>0</tilted></feature> 15125 <threshold>0.0280969999730587</threshold> 15126 <left_val>0.1476600021123886</left_val> 15127 <right_val>-1.4078520536422729</right_val></_></_> 15128 <_> 15129 <!-- tree 124 --> 15130 <_> 15131 <!-- root node --> 15132 <feature> 15133 <rects> 15134 <_>0 0 12 10 -1.</_> 15135 <_>0 0 6 5 2.</_> 15136 <_>6 5 6 5 2.</_></rects> 15137 <tilted>0</tilted></feature> 15138 <threshold>0.0508400015532970</threshold> 15139 <left_val>-0.1861360073089600</left_val> 15140 <right_val>0.7995300292968750</right_val></_></_> 15141 <_> 15142 <!-- tree 125 --> 15143 <_> 15144 <!-- root node --> 15145 <feature> 15146 <rects> 15147 <_>10 1 12 6 -1.</_> 15148 <_>16 1 6 3 2.</_> 15149 <_>10 4 6 3 2.</_></rects> 15150 <tilted>0</tilted></feature> 15151 <threshold>0.0115059996023774</threshold> 15152 <left_val>0.1911839991807938</left_val> 15153 <right_val>-0.0850350037217140</right_val></_></_> 15154 <_> 15155 <!-- tree 126 --> 15156 <_> 15157 <!-- root node --> 15158 <feature> 15159 <rects> 15160 <_>7 16 9 4 -1.</_> 15161 <_>7 18 9 2 2.</_></rects> 15162 <tilted>0</tilted></feature> 15163 <threshold>-0.0146610001102090</threshold> 15164 <left_val>0.4523929953575134</left_val> 15165 <right_val>-0.2220519930124283</right_val></_></_> 15166 <_> 15167 <!-- tree 127 --> 15168 <_> 15169 <!-- root node --> 15170 <feature> 15171 <rects> 15172 <_>5 7 15 16 -1.</_> 15173 <_>10 7 5 16 3.</_></rects> 15174 <tilted>0</tilted></feature> 15175 <threshold>0.2284249961376190</threshold> 15176 <left_val>0.1348839998245239</left_val> 15177 <right_val>-1.2894610166549683</right_val></_></_> 15178 <_> 15179 <!-- tree 128 --> 15180 <_> 15181 <!-- root node --> 15182 <feature> 15183 <rects> 15184 <_>5 10 12 13 -1.</_> 15185 <_>11 10 6 13 2.</_></rects> 15186 <tilted>0</tilted></feature> 15187 <threshold>0.1110690012574196</threshold> 15188 <left_val>-0.2075379937887192</left_val> 15189 <right_val>0.5456159710884094</right_val></_></_> 15190 <_> 15191 <!-- tree 129 --> 15192 <_> 15193 <!-- root node --> 15194 <feature> 15195 <rects> 15196 <_>6 2 12 6 -1.</_> 15197 <_>12 2 6 3 2.</_> 15198 <_>6 5 6 3 2.</_></rects> 15199 <tilted>0</tilted></feature> 15200 <threshold>3.2450000289827585e-003</threshold> 15201 <left_val>0.3205370008945465</left_val> 15202 <right_val>-0.1640350073575974</right_val></_></_> 15203 <_> 15204 <!-- tree 130 --> 15205 <_> 15206 <!-- root node --> 15207 <feature> 15208 <rects> 15209 <_>3 9 12 9 -1.</_> 15210 <_>3 12 12 3 3.</_></rects> 15211 <tilted>0</tilted></feature> 15212 <threshold>0.0853099972009659</threshold> 15213 <left_val>-0.2021050006151199</left_val> 15214 <right_val>0.5329679846763611</right_val></_></_> 15215 <_> 15216 <!-- tree 131 --> 15217 <_> 15218 <!-- root node --> 15219 <feature> 15220 <rects> 15221 <_>16 2 8 6 -1.</_> 15222 <_>16 5 8 3 2.</_></rects> 15223 <tilted>0</tilted></feature> 15224 <threshold>0.0220480002462864</threshold> 15225 <left_val>0.1569859981536865</left_val> 15226 <right_val>-0.1701409965753555</right_val></_></_> 15227 <_> 15228 <!-- tree 132 --> 15229 <_> 15230 <!-- root node --> 15231 <feature> 15232 <rects> 15233 <_>0 2 8 6 -1.</_> 15234 <_>0 5 8 3 2.</_></rects> 15235 <tilted>0</tilted></feature> 15236 <threshold>-0.0156769994646311</threshold> 15237 <left_val>-0.6286349892616272</left_val> 15238 <right_val>0.0407619997859001</right_val></_></_> 15239 <_> 15240 <!-- tree 133 --> 15241 <_> 15242 <!-- root node --> 15243 <feature> 15244 <rects> 15245 <_>0 3 24 11 -1.</_> 15246 <_>0 3 12 11 2.</_></rects> 15247 <tilted>0</tilted></feature> 15248 <threshold>0.3311290144920349</threshold> 15249 <left_val>0.1660930067300797</left_val> 15250 <right_val>-1.0326379537582397</right_val></_></_> 15251 <_> 15252 <!-- tree 134 --> 15253 <_> 15254 <!-- root node --> 15255 <feature> 15256 <rects> 15257 <_>0 13 8 10 -1.</_> 15258 <_>0 13 4 5 2.</_> 15259 <_>4 18 4 5 2.</_></rects> 15260 <tilted>0</tilted></feature> 15261 <threshold>8.8470000773668289e-003</threshold> 15262 <left_val>-0.2507619857788086</left_val> 15263 <right_val>0.3166059851646423</right_val></_></_> 15264 <_> 15265 <!-- tree 135 --> 15266 <_> 15267 <!-- root node --> 15268 <feature> 15269 <rects> 15270 <_>10 14 4 10 -1.</_> 15271 <_>10 19 4 5 2.</_></rects> 15272 <tilted>0</tilted></feature> 15273 <threshold>0.0460800006985664</threshold> 15274 <left_val>0.1535210013389587</left_val> 15275 <right_val>-1.6333500146865845</right_val></_></_> 15276 <_> 15277 <!-- tree 136 --> 15278 <_> 15279 <!-- root node --> 15280 <feature> 15281 <rects> 15282 <_>10 2 4 21 -1.</_> 15283 <_>10 9 4 7 3.</_></rects> 15284 <tilted>0</tilted></feature> 15285 <threshold>-0.0377030000090599</threshold> 15286 <left_val>0.5687379837036133</left_val> 15287 <right_val>-0.2010259926319122</right_val></_></_></trees> 15288 <stage_threshold>-3.5125269889831543</stage_threshold> 15289 <parent>14</parent> 15290 <next>-1</next></_> 15291 <_> 15292 <!-- stage 16 --> 15293 <trees> 15294 <_> 15295 <!-- tree 0 --> 15296 <_> 15297 <!-- root node --> 15298 <feature> 15299 <rects> 15300 <_>4 4 15 9 -1.</_> 15301 <_>4 7 15 3 3.</_></rects> 15302 <tilted>0</tilted></feature> 15303 <threshold>-0.0818089991807938</threshold> 15304 <left_val>0.5712479948997498</left_val> 15305 <right_val>-0.6743879914283752</right_val></_></_> 15306 <_> 15307 <!-- tree 1 --> 15308 <_> 15309 <!-- root node --> 15310 <feature> 15311 <rects> 15312 <_>0 1 24 6 -1.</_> 15313 <_>8 1 8 6 3.</_></rects> 15314 <tilted>0</tilted></feature> 15315 <threshold>0.2176119983196259</threshold> 15316 <left_val>-0.3861019909381867</left_val> 15317 <right_val>0.9034399986267090</right_val></_></_> 15318 <_> 15319 <!-- tree 2 --> 15320 <_> 15321 <!-- root node --> 15322 <feature> 15323 <rects> 15324 <_>9 6 5 16 -1.</_> 15325 <_>9 14 5 8 2.</_></rects> 15326 <tilted>0</tilted></feature> 15327 <threshold>0.0148780001327395</threshold> 15328 <left_val>0.2224159985780716</left_val> 15329 <right_val>-1.2779350280761719</right_val></_></_> 15330 <_> 15331 <!-- tree 3 --> 15332 <_> 15333 <!-- root node --> 15334 <feature> 15335 <rects> 15336 <_>3 21 18 3 -1.</_> 15337 <_>9 21 6 3 3.</_></rects> 15338 <tilted>0</tilted></feature> 15339 <threshold>0.0524349994957447</threshold> 15340 <left_val>-0.2869040071964264</left_val> 15341 <right_val>0.7574229836463928</right_val></_></_> 15342 <_> 15343 <!-- tree 4 --> 15344 <_> 15345 <!-- root node --> 15346 <feature> 15347 <rects> 15348 <_>6 5 3 12 -1.</_> 15349 <_>6 11 3 6 2.</_></rects> 15350 <tilted>0</tilted></feature> 15351 <threshold>9.1429995372891426e-003</threshold> 15352 <left_val>-0.6488040089607239</left_val> 15353 <right_val>0.2226880043745041</right_val></_></_> 15354 <_> 15355 <!-- tree 5 --> 15356 <_> 15357 <!-- root node --> 15358 <feature> 15359 <rects> 15360 <_>11 6 4 9 -1.</_> 15361 <_>11 6 2 9 2.</_></rects> 15362 <tilted>0</tilted></feature> 15363 <threshold>7.9169999808073044e-003</threshold> 15364 <left_val>-0.2925359904766083</left_val> 15365 <right_val>0.3103019893169403</right_val></_></_> 15366 <_> 15367 <!-- tree 6 --> 15368 <_> 15369 <!-- root node --> 15370 <feature> 15371 <rects> 15372 <_>5 6 9 8 -1.</_> 15373 <_>8 6 3 8 3.</_></rects> 15374 <tilted>0</tilted></feature> 15375 <threshold>-0.0260840002447367</threshold> 15376 <left_val>0.4553270041942596</left_val> 15377 <right_val>-0.3850060105323792</right_val></_></_> 15378 <_> 15379 <!-- tree 7 --> 15380 <_> 15381 <!-- root node --> 15382 <feature> 15383 <rects> 15384 <_>4 3 20 2 -1.</_> 15385 <_>4 4 20 1 2.</_></rects> 15386 <tilted>0</tilted></feature> 15387 <threshold>-2.9400000348687172e-003</threshold> 15388 <left_val>-0.5126439929008484</left_val> 15389 <right_val>0.2743229866027832</right_val></_></_> 15390 <_> 15391 <!-- tree 8 --> 15392 <_> 15393 <!-- root node --> 15394 <feature> 15395 <rects> 15396 <_>2 10 18 3 -1.</_> 15397 <_>8 10 6 3 3.</_></rects> 15398 <tilted>0</tilted></feature> 15399 <threshold>0.0571300014853477</threshold> 15400 <left_val>0.0157880000770092</left_val> 15401 <right_val>-1.2133100032806396</right_val></_></_> 15402 <_> 15403 <!-- tree 9 --> 15404 <_> 15405 <!-- root node --> 15406 <feature> 15407 <rects> 15408 <_>7 15 10 6 -1.</_> 15409 <_>7 17 10 2 3.</_></rects> 15410 <tilted>0</tilted></feature> 15411 <threshold>-6.1309998854994774e-003</threshold> 15412 <left_val>0.3917460143566132</left_val> 15413 <right_val>-0.3086679875850678</right_val></_></_> 15414 <_> 15415 <!-- tree 10 --> 15416 <_> 15417 <!-- root node --> 15418 <feature> 15419 <rects> 15420 <_>1 4 4 18 -1.</_> 15421 <_>1 4 2 9 2.</_> 15422 <_>3 13 2 9 2.</_></rects> 15423 <tilted>0</tilted></feature> 15424 <threshold>-0.0404050014913082</threshold> 15425 <left_val>1.1901949644088745</left_val> 15426 <right_val>-0.2034710049629211</right_val></_></_> 15427 <_> 15428 <!-- tree 11 --> 15429 <_> 15430 <!-- root node --> 15431 <feature> 15432 <rects> 15433 <_>13 0 6 9 -1.</_> 15434 <_>15 0 2 9 3.</_></rects> 15435 <tilted>0</tilted></feature> 15436 <threshold>-0.0202970001846552</threshold> 15437 <left_val>-0.6823949813842773</left_val> 15438 <right_val>0.2045869976282120</right_val></_></_> 15439 <_> 15440 <!-- tree 12 --> 15441 <_> 15442 <!-- root node --> 15443 <feature> 15444 <rects> 15445 <_>5 0 6 9 -1.</_> 15446 <_>7 0 2 9 3.</_></rects> 15447 <tilted>0</tilted></feature> 15448 <threshold>-0.0171889998018742</threshold> 15449 <left_val>-0.8493989706039429</left_val> 15450 <right_val>0.0384330004453659</right_val></_></_> 15451 <_> 15452 <!-- tree 13 --> 15453 <_> 15454 <!-- root node --> 15455 <feature> 15456 <rects> 15457 <_>11 0 6 9 -1.</_> 15458 <_>13 0 2 9 3.</_></rects> 15459 <tilted>0</tilted></feature> 15460 <threshold>-0.0242159999907017</threshold> 15461 <left_val>-1.1039420366287231</left_val> 15462 <right_val>0.1597509980201721</right_val></_></_> 15463 <_> 15464 <!-- tree 14 --> 15465 <_> 15466 <!-- root node --> 15467 <feature> 15468 <rects> 15469 <_>6 7 9 6 -1.</_> 15470 <_>9 7 3 6 3.</_></rects> 15471 <tilted>0</tilted></feature> 15472 <threshold>0.0568690001964569</threshold> 15473 <left_val>-0.1959529966115952</left_val> 15474 <right_val>1.1806850433349609</right_val></_></_> 15475 <_> 15476 <!-- tree 15 --> 15477 <_> 15478 <!-- root node --> 15479 <feature> 15480 <rects> 15481 <_>3 0 18 2 -1.</_> 15482 <_>3 1 18 1 2.</_></rects> 15483 <tilted>0</tilted></feature> 15484 <threshold>3.6199999158270657e-004</threshold> 15485 <left_val>-0.4084779918193817</left_val> 15486 <right_val>0.3293859958648682</right_val></_></_> 15487 <_> 15488 <!-- tree 16 --> 15489 <_> 15490 <!-- root node --> 15491 <feature> 15492 <rects> 15493 <_>0 10 20 4 -1.</_> 15494 <_>0 10 10 2 2.</_> 15495 <_>10 12 10 2 2.</_></rects> 15496 <tilted>0</tilted></feature> 15497 <threshold>9.9790003150701523e-003</threshold> 15498 <left_val>-0.2967300117015839</left_val> 15499 <right_val>0.4154790043830872</right_val></_></_> 15500 <_> 15501 <!-- tree 17 --> 15502 <_> 15503 <!-- root node --> 15504 <feature> 15505 <rects> 15506 <_>10 2 4 12 -1.</_> 15507 <_>10 8 4 6 2.</_></rects> 15508 <tilted>0</tilted></feature> 15509 <threshold>-0.0526250004768372</threshold> 15510 <left_val>-1.3069299459457397</left_val> 15511 <right_val>0.1786260008811951</right_val></_></_> 15512 <_> 15513 <!-- tree 18 --> 15514 <_> 15515 <!-- root node --> 15516 <feature> 15517 <rects> 15518 <_>6 5 6 12 -1.</_> 15519 <_>6 5 3 6 2.</_> 15520 <_>9 11 3 6 2.</_></rects> 15521 <tilted>0</tilted></feature> 15522 <threshold>-0.0137489996850491</threshold> 15523 <left_val>0.2366580069065094</left_val> 15524 <right_val>-0.4453659951686859</right_val></_></_> 15525 <_> 15526 <!-- tree 19 --> 15527 <_> 15528 <!-- root node --> 15529 <feature> 15530 <rects> 15531 <_>6 0 18 22 -1.</_> 15532 <_>15 0 9 11 2.</_> 15533 <_>6 11 9 11 2.</_></rects> 15534 <tilted>0</tilted></feature> 15535 <threshold>-0.0305170007050037</threshold> 15536 <left_val>0.2901830077171326</left_val> 15537 <right_val>-0.1121010035276413</right_val></_></_> 15538 <_> 15539 <!-- tree 20 --> 15540 <_> 15541 <!-- root node --> 15542 <feature> 15543 <rects> 15544 <_>0 0 18 22 -1.</_> 15545 <_>0 0 9 11 2.</_> 15546 <_>9 11 9 11 2.</_></rects> 15547 <tilted>0</tilted></feature> 15548 <threshold>-0.3003750145435333</threshold> 15549 <left_val>-2.4237680435180664</left_val> 15550 <right_val>-0.0428309999406338</right_val></_></_> 15551 <_> 15552 <!-- tree 21 --> 15553 <_> 15554 <!-- root node --> 15555 <feature> 15556 <rects> 15557 <_>18 2 6 11 -1.</_> 15558 <_>20 2 2 11 3.</_></rects> 15559 <tilted>0</tilted></feature> 15560 <threshold>-0.0359909981489182</threshold> 15561 <left_val>0.8820649981498718</left_val> 15562 <right_val>-0.0470129996538162</right_val></_></_> 15563 <_> 15564 <!-- tree 22 --> 15565 <_> 15566 <!-- root node --> 15567 <feature> 15568 <rects> 15569 <_>0 2 6 11 -1.</_> 15570 <_>2 2 2 11 3.</_></rects> 15571 <tilted>0</tilted></feature> 15572 <threshold>-0.0551120005548000</threshold> 15573 <left_val>0.8011900186538696</left_val> 15574 <right_val>-0.2049099951982498</right_val></_></_> 15575 <_> 15576 <!-- tree 23 --> 15577 <_> 15578 <!-- root node --> 15579 <feature> 15580 <rects> 15581 <_>11 0 6 9 -1.</_> 15582 <_>13 0 2 9 3.</_></rects> 15583 <tilted>0</tilted></feature> 15584 <threshold>0.0337620005011559</threshold> 15585 <left_val>0.1461759954690933</left_val> 15586 <right_val>-1.1349489688873291</right_val></_></_> 15587 <_> 15588 <!-- tree 24 --> 15589 <_> 15590 <!-- root node --> 15591 <feature> 15592 <rects> 15593 <_>0 0 20 3 -1.</_> 15594 <_>0 1 20 1 3.</_></rects> 15595 <tilted>0</tilted></feature> 15596 <threshold>-8.2710003480315208e-003</threshold> 15597 <left_val>-0.8160489797592163</left_val> 15598 <right_val>0.0189880002290010</right_val></_></_> 15599 <_> 15600 <!-- tree 25 --> 15601 <_> 15602 <!-- root node --> 15603 <feature> 15604 <rects> 15605 <_>2 2 20 2 -1.</_> 15606 <_>2 3 20 1 2.</_></rects> 15607 <tilted>0</tilted></feature> 15608 <threshold>-5.4399999789893627e-003</threshold> 15609 <left_val>-0.7098090052604675</left_val> 15610 <right_val>0.2234369963407517</right_val></_></_> 15611 <_> 15612 <!-- tree 26 --> 15613 <_> 15614 <!-- root node --> 15615 <feature> 15616 <rects> 15617 <_>1 10 18 2 -1.</_> 15618 <_>1 11 18 1 2.</_></rects> 15619 <tilted>0</tilted></feature> 15620 <threshold>3.1059999018907547e-003</threshold> 15621 <left_val>-0.7280859947204590</left_val> 15622 <right_val>0.0402249991893768</right_val></_></_> 15623 <_> 15624 <!-- tree 27 --> 15625 <_> 15626 <!-- root node --> 15627 <feature> 15628 <rects> 15629 <_>18 7 6 9 -1.</_> 15630 <_>18 10 6 3 3.</_></rects> 15631 <tilted>0</tilted></feature> 15632 <threshold>0.0536519996821880</threshold> 15633 <left_val>0.1717090010643005</left_val> 15634 <right_val>-1.1163710355758667</right_val></_></_> 15635 <_> 15636 <!-- tree 28 --> 15637 <_> 15638 <!-- root node --> 15639 <feature> 15640 <rects> 15641 <_>0 0 22 9 -1.</_> 15642 <_>0 3 22 3 3.</_></rects> 15643 <tilted>0</tilted></feature> 15644 <threshold>-0.1254139989614487</threshold> 15645 <left_val>2.7680370807647705</left_val> 15646 <right_val>-0.1461150050163269</right_val></_></_> 15647 <_> 15648 <!-- tree 29 --> 15649 <_> 15650 <!-- root node --> 15651 <feature> 15652 <rects> 15653 <_>17 3 6 9 -1.</_> 15654 <_>17 6 6 3 3.</_></rects> 15655 <tilted>0</tilted></feature> 15656 <threshold>0.0925420001149178</threshold> 15657 <left_val>0.1160980015993118</left_val> 15658 <right_val>-3.9635529518127441</right_val></_></_> 15659 <_> 15660 <!-- tree 30 --> 15661 <_> 15662 <!-- root node --> 15663 <feature> 15664 <rects> 15665 <_>0 7 6 9 -1.</_> 15666 <_>0 10 6 3 3.</_></rects> 15667 <tilted>0</tilted></feature> 15668 <threshold>0.0385139994323254</threshold> 15669 <left_val>-7.6399999670684338e-003</left_val> 15670 <right_val>-0.9878090023994446</right_val></_></_> 15671 <_> 15672 <!-- tree 31 --> 15673 <_> 15674 <!-- root node --> 15675 <feature> 15676 <rects> 15677 <_>0 6 24 6 -1.</_> 15678 <_>0 8 24 2 3.</_></rects> 15679 <tilted>0</tilted></feature> 15680 <threshold>-2.0200000144541264e-003</threshold> 15681 <left_val>0.2305999994277954</left_val> 15682 <right_val>-0.7497029900550842</right_val></_></_> 15683 <_> 15684 <!-- tree 32 --> 15685 <_> 15686 <!-- root node --> 15687 <feature> 15688 <rects> 15689 <_>0 2 6 10 -1.</_> 15690 <_>2 2 2 10 3.</_></rects> 15691 <tilted>0</tilted></feature> 15692 <threshold>9.7599998116493225e-003</threshold> 15693 <left_val>-0.3113799989223480</left_val> 15694 <right_val>0.3028779923915863</right_val></_></_> 15695 <_> 15696 <!-- tree 33 --> 15697 <_> 15698 <!-- root node --> 15699 <feature> 15700 <rects> 15701 <_>10 6 6 9 -1.</_> 15702 <_>12 6 2 9 3.</_></rects> 15703 <tilted>0</tilted></feature> 15704 <threshold>0.0240950006991625</threshold> 15705 <left_val>-0.0495299994945526</left_val> 15706 <right_val>0.5269010066986084</right_val></_></_> 15707 <_> 15708 <!-- tree 34 --> 15709 <_> 15710 <!-- root node --> 15711 <feature> 15712 <rects> 15713 <_>7 0 6 9 -1.</_> 15714 <_>9 0 2 9 3.</_></rects> 15715 <tilted>0</tilted></feature> 15716 <threshold>-0.0179820004850626</threshold> 15717 <left_val>-1.1610640287399292</left_val> 15718 <right_val>-5.7000000961124897e-003</right_val></_></_> 15719 <_> 15720 <!-- tree 35 --> 15721 <_> 15722 <!-- root node --> 15723 <feature> 15724 <rects> 15725 <_>15 0 6 9 -1.</_> 15726 <_>17 0 2 9 3.</_></rects> 15727 <tilted>0</tilted></feature> 15728 <threshold>-0.0105550000444055</threshold> 15729 <left_val>-0.2718909978866577</left_val> 15730 <right_val>0.2359769940376282</right_val></_></_> 15731 <_> 15732 <!-- tree 36 --> 15733 <_> 15734 <!-- root node --> 15735 <feature> 15736 <rects> 15737 <_>3 0 6 9 -1.</_> 15738 <_>5 0 2 9 3.</_></rects> 15739 <tilted>0</tilted></feature> 15740 <threshold>-7.2889998555183411e-003</threshold> 15741 <left_val>-0.5421910285949707</left_val> 15742 <right_val>0.0819140002131462</right_val></_></_> 15743 <_> 15744 <!-- tree 37 --> 15745 <_> 15746 <!-- root node --> 15747 <feature> 15748 <rects> 15749 <_>15 17 9 6 -1.</_> 15750 <_>15 19 9 2 3.</_></rects> 15751 <tilted>0</tilted></feature> 15752 <threshold>0.0239390004426241</threshold> 15753 <left_val>0.1797579973936081</left_val> 15754 <right_val>-0.6704949736595154</right_val></_></_> 15755 <_> 15756 <!-- tree 38 --> 15757 <_> 15758 <!-- root node --> 15759 <feature> 15760 <rects> 15761 <_>0 17 18 3 -1.</_> 15762 <_>0 18 18 1 3.</_></rects> 15763 <tilted>0</tilted></feature> 15764 <threshold>-0.0183659996837378</threshold> 15765 <left_val>0.6266430020332336</left_val> 15766 <right_val>-0.2097010016441345</right_val></_></_> 15767 <_> 15768 <!-- tree 39 --> 15769 <_> 15770 <!-- root node --> 15771 <feature> 15772 <rects> 15773 <_>15 14 9 6 -1.</_> 15774 <_>15 16 9 2 3.</_></rects> 15775 <tilted>0</tilted></feature> 15776 <threshold>0.0157159995287657</threshold> 15777 <left_val>0.2419369965791702</left_val> 15778 <right_val>-1.0444309711456299</right_val></_></_> 15779 <_> 15780 <!-- tree 40 --> 15781 <_> 15782 <!-- root node --> 15783 <feature> 15784 <rects> 15785 <_>0 15 23 6 -1.</_> 15786 <_>0 17 23 2 3.</_></rects> 15787 <tilted>0</tilted></feature> 15788 <threshold>-0.0488040000200272</threshold> 15789 <left_val>-0.9406059980392456</left_val> 15790 <right_val>-3.7519999314099550e-003</right_val></_></_> 15791 <_> 15792 <!-- tree 41 --> 15793 <_> 15794 <!-- root node --> 15795 <feature> 15796 <rects> 15797 <_>5 15 18 3 -1.</_> 15798 <_>5 16 18 1 3.</_></rects> 15799 <tilted>0</tilted></feature> 15800 <threshold>6.7130001261830330e-003</threshold> 15801 <left_val>-0.0754320025444031</left_val> 15802 <right_val>0.6157529950141907</right_val></_></_> 15803 <_> 15804 <!-- tree 42 --> 15805 <_> 15806 <!-- root node --> 15807 <feature> 15808 <rects> 15809 <_>0 14 9 6 -1.</_> 15810 <_>0 16 9 2 3.</_></rects> 15811 <tilted>0</tilted></feature> 15812 <threshold>9.7770001739263535e-003</threshold> 15813 <left_val>0.0392850004136562</left_val> 15814 <right_val>-0.8481029868125916</right_val></_></_> 15815 <_> 15816 <!-- tree 43 --> 15817 <_> 15818 <!-- root node --> 15819 <feature> 15820 <rects> 15821 <_>9 8 8 10 -1.</_> 15822 <_>13 8 4 5 2.</_> 15823 <_>9 13 4 5 2.</_></rects> 15824 <tilted>0</tilted></feature> 15825 <threshold>0.0147449998185039</threshold> 15826 <left_val>0.1696899980306625</left_val> 15827 <right_val>-0.5090640187263489</right_val></_></_> 15828 <_> 15829 <!-- tree 44 --> 15830 <_> 15831 <!-- root node --> 15832 <feature> 15833 <rects> 15834 <_>3 7 15 6 -1.</_> 15835 <_>8 7 5 6 3.</_></rects> 15836 <tilted>0</tilted></feature> 15837 <threshold>0.0970790013670921</threshold> 15838 <left_val>-0.0331030003726482</left_val> 15839 <right_val>-1.2706379890441895</right_val></_></_> 15840 <_> 15841 <!-- tree 45 --> 15842 <_> 15843 <!-- root node --> 15844 <feature> 15845 <rects> 15846 <_>9 8 8 10 -1.</_> 15847 <_>13 8 4 5 2.</_> 15848 <_>9 13 4 5 2.</_></rects> 15849 <tilted>0</tilted></feature> 15850 <threshold>0.0482859984040260</threshold> 15851 <left_val>0.0943299978971481</left_val> 15852 <right_val>2.7203190326690674</right_val></_></_> 15853 <_> 15854 <!-- tree 46 --> 15855 <_> 15856 <!-- root node --> 15857 <feature> 15858 <rects> 15859 <_>5 0 6 12 -1.</_> 15860 <_>8 0 3 12 2.</_></rects> 15861 <tilted>0</tilted></feature> 15862 <threshold>9.7810002043843269e-003</threshold> 15863 <left_val>-0.3953340053558350</left_val> 15864 <right_val>0.1536380052566528</right_val></_></_> 15865 <_> 15866 <!-- tree 47 --> 15867 <_> 15868 <!-- root node --> 15869 <feature> 15870 <rects> 15871 <_>9 8 8 10 -1.</_> 15872 <_>13 8 4 5 2.</_> 15873 <_>9 13 4 5 2.</_></rects> 15874 <tilted>0</tilted></feature> 15875 <threshold>-0.0398939996957779</threshold> 15876 <left_val>-0.2276740074157715</left_val> 15877 <right_val>0.1391399949789047</right_val></_></_> 15878 <_> 15879 <!-- tree 48 --> 15880 <_> 15881 <!-- root node --> 15882 <feature> 15883 <rects> 15884 <_>8 5 6 9 -1.</_> 15885 <_>10 5 2 9 3.</_></rects> 15886 <tilted>0</tilted></feature> 15887 <threshold>0.0228480007499456</threshold> 15888 <left_val>-0.2739199995994568</left_val> 15889 <right_val>0.3419950008392334</right_val></_></_> 15890 <_> 15891 <!-- tree 49 --> 15892 <_> 15893 <!-- root node --> 15894 <feature> 15895 <rects> 15896 <_>10 6 4 18 -1.</_> 15897 <_>12 6 2 9 2.</_> 15898 <_>10 15 2 9 2.</_></rects> 15899 <tilted>0</tilted></feature> 15900 <threshold>6.7179999314248562e-003</threshold> 15901 <left_val>-0.1087429970502853</left_val> 15902 <right_val>0.4812540113925934</right_val></_></_> 15903 <_> 15904 <!-- tree 50 --> 15905 <_> 15906 <!-- root node --> 15907 <feature> 15908 <rects> 15909 <_>5 7 12 4 -1.</_> 15910 <_>11 7 6 4 2.</_></rects> 15911 <tilted>0</tilted></feature> 15912 <threshold>0.0595999993383884</threshold> 15913 <left_val>-0.0495220012962818</left_val> 15914 <right_val>-2.0117089748382568</right_val></_></_> 15915 <_> 15916 <!-- tree 51 --> 15917 <_> 15918 <!-- root node --> 15919 <feature> 15920 <rects> 15921 <_>9 8 8 10 -1.</_> 15922 <_>13 8 4 5 2.</_> 15923 <_>9 13 4 5 2.</_></rects> 15924 <tilted>0</tilted></feature> 15925 <threshold>6.9340001791715622e-003</threshold> 15926 <left_val>0.1503749936819077</left_val> 15927 <right_val>-0.1127189993858337</right_val></_></_> 15928 <_> 15929 <!-- tree 52 --> 15930 <_> 15931 <!-- root node --> 15932 <feature> 15933 <rects> 15934 <_>7 8 8 10 -1.</_> 15935 <_>7 8 4 5 2.</_> 15936 <_>11 13 4 5 2.</_></rects> 15937 <tilted>0</tilted></feature> 15938 <threshold>0.0157570000737906</threshold> 15939 <left_val>-0.0208850000053644</left_val> 15940 <right_val>-1.1651979684829712</right_val></_></_> 15941 <_> 15942 <!-- tree 53 --> 15943 <_> 15944 <!-- root node --> 15945 <feature> 15946 <rects> 15947 <_>11 10 6 14 -1.</_> 15948 <_>14 10 3 7 2.</_> 15949 <_>11 17 3 7 2.</_></rects> 15950 <tilted>0</tilted></feature> 15951 <threshold>-0.0496900007128716</threshold> 15952 <left_val>-0.8021349906921387</left_val> 15953 <right_val>0.1437229961156845</right_val></_></_> 15954 <_> 15955 <!-- tree 54 --> 15956 <_> 15957 <!-- root node --> 15958 <feature> 15959 <rects> 15960 <_>9 5 6 19 -1.</_> 15961 <_>12 5 3 19 2.</_></rects> 15962 <tilted>0</tilted></feature> 15963 <threshold>0.0523470006883144</threshold> 15964 <left_val>-0.2083670049905777</left_val> 15965 <right_val>0.6167759895324707</right_val></_></_> 15966 <_> 15967 <!-- tree 55 --> 15968 <_> 15969 <!-- root node --> 15970 <feature> 15971 <rects> 15972 <_>6 12 12 6 -1.</_> 15973 <_>12 12 6 3 2.</_> 15974 <_>6 15 6 3 2.</_></rects> 15975 <tilted>0</tilted></feature> 15976 <threshold>0.0224309992045164</threshold> 15977 <left_val>0.2030590027570725</left_val> 15978 <right_val>-0.7532619833946228</right_val></_></_> 15979 <_> 15980 <!-- tree 56 --> 15981 <_> 15982 <!-- root node --> 15983 <feature> 15984 <rects> 15985 <_>1 9 18 6 -1.</_> 15986 <_>1 9 9 3 2.</_> 15987 <_>10 12 9 3 2.</_></rects> 15988 <tilted>0</tilted></feature> 15989 <threshold>0.0411420017480850</threshold> 15990 <left_val>-0.1811819970607758</left_val> 15991 <right_val>1.0033359527587891</right_val></_></_> 15992 <_> 15993 <!-- tree 57 --> 15994 <_> 15995 <!-- root node --> 15996 <feature> 15997 <rects> 15998 <_>16 14 8 10 -1.</_> 15999 <_>20 14 4 5 2.</_> 16000 <_>16 19 4 5 2.</_></rects> 16001 <tilted>0</tilted></feature> 16002 <threshold>-0.0216320008039474</threshold> 16003 <left_val>0.4999899864196777</left_val> 16004 <right_val>-0.0346629992127419</right_val></_></_> 16005 <_> 16006 <!-- tree 58 --> 16007 <_> 16008 <!-- root node --> 16009 <feature> 16010 <rects> 16011 <_>0 9 22 8 -1.</_> 16012 <_>0 9 11 4 2.</_> 16013 <_>11 13 11 4 2.</_></rects> 16014 <tilted>0</tilted></feature> 16015 <threshold>-0.0828080028295517</threshold> 16016 <left_val>1.1711900234222412</left_val> 16017 <right_val>-0.1843360066413879</right_val></_></_> 16018 <_> 16019 <!-- tree 59 --> 16020 <_> 16021 <!-- root node --> 16022 <feature> 16023 <rects> 16024 <_>8 18 12 6 -1.</_> 16025 <_>14 18 6 3 2.</_> 16026 <_>8 21 6 3 2.</_></rects> 16027 <tilted>0</tilted></feature> 16028 <threshold>8.5060000419616699e-003</threshold> 16029 <left_val>-0.0632250010967255</left_val> 16030 <right_val>0.2902489900588989</right_val></_></_> 16031 <_> 16032 <!-- tree 60 --> 16033 <_> 16034 <!-- root node --> 16035 <feature> 16036 <rects> 16037 <_>0 6 20 18 -1.</_> 16038 <_>0 6 10 9 2.</_> 16039 <_>10 15 10 9 2.</_></rects> 16040 <tilted>0</tilted></feature> 16041 <threshold>0.0789050012826920</threshold> 16042 <left_val>-0.2327450066804886</left_val> 16043 <right_val>0.5969579815864563</right_val></_></_> 16044 <_> 16045 <!-- tree 61 --> 16046 <_> 16047 <!-- root node --> 16048 <feature> 16049 <rects> 16050 <_>3 6 20 12 -1.</_> 16051 <_>13 6 10 6 2.</_> 16052 <_>3 12 10 6 2.</_></rects> 16053 <tilted>0</tilted></feature> 16054 <threshold>-0.0902070030570030</threshold> 16055 <left_val>-0.8221189975738525</left_val> 16056 <right_val>0.1777220070362091</right_val></_></_> 16057 <_> 16058 <!-- tree 62 --> 16059 <_> 16060 <!-- root node --> 16061 <feature> 16062 <rects> 16063 <_>0 16 10 8 -1.</_> 16064 <_>0 16 5 4 2.</_> 16065 <_>5 20 5 4 2.</_></rects> 16066 <tilted>0</tilted></feature> 16067 <threshold>-0.0292690005153418</threshold> 16068 <left_val>0.6086069941520691</left_val> 16069 <right_val>-0.2146890014410019</right_val></_></_> 16070 <_> 16071 <!-- tree 63 --> 16072 <_> 16073 <!-- root node --> 16074 <feature> 16075 <rects> 16076 <_>6 16 18 3 -1.</_> 16077 <_>6 17 18 1 3.</_></rects> 16078 <tilted>0</tilted></feature> 16079 <threshold>6.9499998353421688e-003</threshold> 16080 <left_val>-0.0426659993827343</left_val> 16081 <right_val>0.6051210165023804</right_val></_></_> 16082 <_> 16083 <!-- tree 64 --> 16084 <_> 16085 <!-- root node --> 16086 <feature> 16087 <rects> 16088 <_>0 11 19 3 -1.</_> 16089 <_>0 12 19 1 3.</_></rects> 16090 <tilted>0</tilted></feature> 16091 <threshold>-8.0629996955394745e-003</threshold> 16092 <left_val>-1.1508270502090454</left_val> 16093 <right_val>-0.0272860005497932</right_val></_></_> 16094 <_> 16095 <!-- tree 65 --> 16096 <_> 16097 <!-- root node --> 16098 <feature> 16099 <rects> 16100 <_>14 6 6 9 -1.</_> 16101 <_>14 9 6 3 3.</_></rects> 16102 <tilted>0</tilted></feature> 16103 <threshold>0.0195959992706776</threshold> 16104 <left_val>-9.1880001127719879e-003</left_val> 16105 <right_val>0.5685780048370361</right_val></_></_> 16106 <_> 16107 <!-- tree 66 --> 16108 <_> 16109 <!-- root node --> 16110 <feature> 16111 <rects> 16112 <_>1 7 22 4 -1.</_> 16113 <_>1 7 11 2 2.</_> 16114 <_>12 9 11 2 2.</_></rects> 16115 <tilted>0</tilted></feature> 16116 <threshold>-0.0148849999532104</threshold> 16117 <left_val>0.3765879869461060</left_val> 16118 <right_val>-0.2714950144290924</right_val></_></_> 16119 <_> 16120 <!-- tree 67 --> 16121 <_> 16122 <!-- root node --> 16123 <feature> 16124 <rects> 16125 <_>13 6 7 12 -1.</_> 16126 <_>13 10 7 4 3.</_></rects> 16127 <tilted>0</tilted></feature> 16128 <threshold>0.0252170003950596</threshold> 16129 <left_val>-0.0999910011887550</left_val> 16130 <right_val>0.2466470003128052</right_val></_></_> 16131 <_> 16132 <!-- tree 68 --> 16133 <_> 16134 <!-- root node --> 16135 <feature> 16136 <rects> 16137 <_>4 7 11 9 -1.</_> 16138 <_>4 10 11 3 3.</_></rects> 16139 <tilted>0</tilted></feature> 16140 <threshold>-0.0158559996634722</threshold> 16141 <left_val>0.6682670116424561</left_val> 16142 <right_val>-0.2061470001935959</right_val></_></_> 16143 <_> 16144 <!-- tree 69 --> 16145 <_> 16146 <!-- root node --> 16147 <feature> 16148 <rects> 16149 <_>12 10 10 8 -1.</_> 16150 <_>17 10 5 4 2.</_> 16151 <_>12 14 5 4 2.</_></rects> 16152 <tilted>0</tilted></feature> 16153 <threshold>0.0294410008937120</threshold> 16154 <left_val>0.1583220064640045</left_val> 16155 <right_val>-0.7606089711189270</right_val></_></_> 16156 <_> 16157 <!-- tree 70 --> 16158 <_> 16159 <!-- root node --> 16160 <feature> 16161 <rects> 16162 <_>2 12 9 7 -1.</_> 16163 <_>5 12 3 7 3.</_></rects> 16164 <tilted>0</tilted></feature> 16165 <threshold>-8.5279997438192368e-003</threshold> 16166 <left_val>0.3821229934692383</left_val> 16167 <right_val>-0.2540780007839203</right_val></_></_> 16168 <_> 16169 <!-- tree 71 --> 16170 <_> 16171 <!-- root node --> 16172 <feature> 16173 <rects> 16174 <_>16 14 6 9 -1.</_> 16175 <_>16 17 6 3 3.</_></rects> 16176 <tilted>0</tilted></feature> 16177 <threshold>0.0244219992309809</threshold> 16178 <left_val>0.1510509997606278</left_val> 16179 <right_val>-0.2875289916992188</right_val></_></_> 16180 <_> 16181 <!-- tree 72 --> 16182 <_> 16183 <!-- root node --> 16184 <feature> 16185 <rects> 16186 <_>3 12 6 12 -1.</_> 16187 <_>3 16 6 4 3.</_></rects> 16188 <tilted>0</tilted></feature> 16189 <threshold>-0.0338869988918304</threshold> 16190 <left_val>-0.6800280213356018</left_val> 16191 <right_val>0.0343270003795624</right_val></_></_> 16192 <_> 16193 <!-- tree 73 --> 16194 <_> 16195 <!-- root node --> 16196 <feature> 16197 <rects> 16198 <_>14 13 6 6 -1.</_> 16199 <_>14 16 6 3 2.</_></rects> 16200 <tilted>0</tilted></feature> 16201 <threshold>-2.0810000132769346e-003</threshold> 16202 <left_val>0.2541390061378479</left_val> 16203 <right_val>-0.2685909867286682</right_val></_></_> 16204 <_> 16205 <!-- tree 74 --> 16206 <_> 16207 <!-- root node --> 16208 <feature> 16209 <rects> 16210 <_>8 0 6 9 -1.</_> 16211 <_>10 0 2 9 3.</_></rects> 16212 <tilted>0</tilted></feature> 16213 <threshold>0.0303589999675751</threshold> 16214 <left_val>-0.0308420006185770</left_val> 16215 <right_val>-1.1476809978485107</right_val></_></_> 16216 <_> 16217 <!-- tree 75 --> 16218 <_> 16219 <!-- root node --> 16220 <feature> 16221 <rects> 16222 <_>9 1 6 23 -1.</_> 16223 <_>11 1 2 23 3.</_></rects> 16224 <tilted>0</tilted></feature> 16225 <threshold>4.0210001170635223e-003</threshold> 16226 <left_val>-0.3525379896163940</left_val> 16227 <right_val>0.2986809909343720</right_val></_></_> 16228 <_> 16229 <!-- tree 76 --> 16230 <_> 16231 <!-- root node --> 16232 <feature> 16233 <rects> 16234 <_>0 16 9 6 -1.</_> 16235 <_>0 18 9 2 3.</_></rects> 16236 <tilted>0</tilted></feature> 16237 <threshold>0.0276810005307198</threshold> 16238 <left_val>-0.0381489992141724</left_val> 16239 <right_val>-1.3262039422988892</right_val></_></_> 16240 <_> 16241 <!-- tree 77 --> 16242 <_> 16243 <!-- root node --> 16244 <feature> 16245 <rects> 16246 <_>4 17 18 3 -1.</_> 16247 <_>4 18 18 1 3.</_></rects> 16248 <tilted>0</tilted></feature> 16249 <threshold>7.9039996489882469e-003</threshold> 16250 <left_val>-0.0237370003014803</left_val> 16251 <right_val>0.7050300240516663</right_val></_></_> 16252 <_> 16253 <!-- tree 78 --> 16254 <_> 16255 <!-- root node --> 16256 <feature> 16257 <rects> 16258 <_>5 2 13 14 -1.</_> 16259 <_>5 9 13 7 2.</_></rects> 16260 <tilted>0</tilted></feature> 16261 <threshold>0.0440310016274452</threshold> 16262 <left_val>0.1067489981651306</left_val> 16263 <right_val>-0.4526120126247406</right_val></_></_> 16264 <_> 16265 <!-- tree 79 --> 16266 <_> 16267 <!-- root node --> 16268 <feature> 16269 <rects> 16270 <_>15 0 8 12 -1.</_> 16271 <_>19 0 4 6 2.</_> 16272 <_>15 6 4 6 2.</_></rects> 16273 <tilted>0</tilted></feature> 16274 <threshold>-0.0323709994554520</threshold> 16275 <left_val>0.4667490124702454</left_val> 16276 <right_val>-0.0615469999611378</right_val></_></_> 16277 <_> 16278 <!-- tree 80 --> 16279 <_> 16280 <!-- root node --> 16281 <feature> 16282 <rects> 16283 <_>0 0 8 12 -1.</_> 16284 <_>0 0 4 6 2.</_> 16285 <_>4 6 4 6 2.</_></rects> 16286 <tilted>0</tilted></feature> 16287 <threshold>0.0209330003708601</threshold> 16288 <left_val>-0.2844789922237396</left_val> 16289 <right_val>0.4384559988975525</right_val></_></_> 16290 <_> 16291 <!-- tree 81 --> 16292 <_> 16293 <!-- root node --> 16294 <feature> 16295 <rects> 16296 <_>8 2 8 7 -1.</_> 16297 <_>8 2 4 7 2.</_></rects> 16298 <tilted>0</tilted></feature> 16299 <threshold>0.0252279993146658</threshold> 16300 <left_val>-0.0225370004773140</left_val> 16301 <right_val>0.7038909792900085</right_val></_></_> 16302 <_> 16303 <!-- tree 82 --> 16304 <_> 16305 <!-- root node --> 16306 <feature> 16307 <rects> 16308 <_>1 1 6 9 -1.</_> 16309 <_>3 1 2 9 3.</_></rects> 16310 <tilted>0</tilted></feature> 16311 <threshold>6.5520000644028187e-003</threshold> 16312 <left_val>-0.3255490064620972</left_val> 16313 <right_val>0.2402369976043701</right_val></_></_> 16314 <_> 16315 <!-- tree 83 --> 16316 <_> 16317 <!-- root node --> 16318 <feature> 16319 <rects> 16320 <_>14 8 6 12 -1.</_> 16321 <_>17 8 3 6 2.</_> 16322 <_>14 14 3 6 2.</_></rects> 16323 <tilted>0</tilted></feature> 16324 <threshold>-0.0585579983890057</threshold> 16325 <left_val>-1.2227720022201538</left_val> 16326 <right_val>0.1166879981756210</right_val></_></_> 16327 <_> 16328 <!-- tree 84 --> 16329 <_> 16330 <!-- root node --> 16331 <feature> 16332 <rects> 16333 <_>4 8 6 12 -1.</_> 16334 <_>4 8 3 6 2.</_> 16335 <_>7 14 3 6 2.</_></rects> 16336 <tilted>0</tilted></feature> 16337 <threshold>0.0318999998271465</threshold> 16338 <left_val>-0.0193050000816584</left_val> 16339 <right_val>-1.0973169803619385</right_val></_></_> 16340 <_> 16341 <!-- tree 85 --> 16342 <_> 16343 <!-- root node --> 16344 <feature> 16345 <rects> 16346 <_>16 5 5 15 -1.</_> 16347 <_>16 10 5 5 3.</_></rects> 16348 <tilted>0</tilted></feature> 16349 <threshold>-0.0304450001567602</threshold> 16350 <left_val>0.6558250188827515</left_val> 16351 <right_val>0.0750909969210625</right_val></_></_> 16352 <_> 16353 <!-- tree 86 --> 16354 <_> 16355 <!-- root node --> 16356 <feature> 16357 <rects> 16358 <_>3 5 5 15 -1.</_> 16359 <_>3 10 5 5 3.</_></rects> 16360 <tilted>0</tilted></feature> 16361 <threshold>0.0149330003187060</threshold> 16362 <left_val>-0.5215579867362976</left_val> 16363 <right_val>0.1152309998869896</right_val></_></_> 16364 <_> 16365 <!-- tree 87 --> 16366 <_> 16367 <!-- root node --> 16368 <feature> 16369 <rects> 16370 <_>18 4 6 9 -1.</_> 16371 <_>18 7 6 3 3.</_></rects> 16372 <tilted>0</tilted></feature> 16373 <threshold>-0.0490080006420612</threshold> 16374 <left_val>-0.7830399870872498</left_val> 16375 <right_val>0.1665720045566559</right_val></_></_> 16376 <_> 16377 <!-- tree 88 --> 16378 <_> 16379 <!-- root node --> 16380 <feature> 16381 <rects> 16382 <_>1 7 6 15 -1.</_> 16383 <_>1 12 6 5 3.</_></rects> 16384 <tilted>0</tilted></feature> 16385 <threshold>0.0831589996814728</threshold> 16386 <left_val>-2.6879999786615372e-003</left_val> 16387 <right_val>-0.8528230190277100</right_val></_></_> 16388 <_> 16389 <!-- tree 89 --> 16390 <_> 16391 <!-- root node --> 16392 <feature> 16393 <rects> 16394 <_>11 15 12 8 -1.</_> 16395 <_>17 15 6 4 2.</_> 16396 <_>11 19 6 4 2.</_></rects> 16397 <tilted>0</tilted></feature> 16398 <threshold>0.0239029992371798</threshold> 16399 <left_val>-0.0510109998285770</left_val> 16400 <right_val>0.4199909865856171</right_val></_></_> 16401 <_> 16402 <!-- tree 90 --> 16403 <_> 16404 <!-- root node --> 16405 <feature> 16406 <rects> 16407 <_>0 2 24 4 -1.</_> 16408 <_>0 2 12 2 2.</_> 16409 <_>12 4 12 2 2.</_></rects> 16410 <tilted>0</tilted></feature> 16411 <threshold>0.0164289996027946</threshold> 16412 <left_val>0.0192329995334148</left_val> 16413 <right_val>-0.6504909992218018</right_val></_></_> 16414 <_> 16415 <!-- tree 91 --> 16416 <_> 16417 <!-- root node --> 16418 <feature> 16419 <rects> 16420 <_>15 1 2 19 -1.</_> 16421 <_>15 1 1 19 2.</_></rects> 16422 <tilted>0</tilted></feature> 16423 <threshold>-0.0118380002677441</threshold> 16424 <left_val>-0.6240980029106140</left_val> 16425 <right_val>0.1541119962930679</right_val></_></_> 16426 <_> 16427 <!-- tree 92 --> 16428 <_> 16429 <!-- root node --> 16430 <feature> 16431 <rects> 16432 <_>7 1 2 19 -1.</_> 16433 <_>8 1 1 19 2.</_></rects> 16434 <tilted>0</tilted></feature> 16435 <threshold>-1.6799999866634607e-004</threshold> 16436 <left_val>0.1758919954299927</left_val> 16437 <right_val>-0.3433870077133179</right_val></_></_> 16438 <_> 16439 <!-- tree 93 --> 16440 <_> 16441 <!-- root node --> 16442 <feature> 16443 <rects> 16444 <_>22 1 2 20 -1.</_> 16445 <_>22 1 1 20 2.</_></rects> 16446 <tilted>0</tilted></feature> 16447 <threshold>0.0191939994692802</threshold> 16448 <left_val>0.0434189997613430</left_val> 16449 <right_val>0.7906919717788696</right_val></_></_> 16450 <_> 16451 <!-- tree 94 --> 16452 <_> 16453 <!-- root node --> 16454 <feature> 16455 <rects> 16456 <_>0 1 2 20 -1.</_> 16457 <_>1 1 1 20 2.</_></rects> 16458 <tilted>0</tilted></feature> 16459 <threshold>-0.0100320000201464</threshold> 16460 <left_val>0.4564889967441559</left_val> 16461 <right_val>-0.2249480038881302</right_val></_></_> 16462 <_> 16463 <!-- tree 95 --> 16464 <_> 16465 <!-- root node --> 16466 <feature> 16467 <rects> 16468 <_>18 11 6 12 -1.</_> 16469 <_>20 11 2 12 3.</_></rects> 16470 <tilted>0</tilted></feature> 16471 <threshold>-0.0140040004625916</threshold> 16472 <left_val>0.3357099890708923</left_val> 16473 <right_val>-4.8799999058246613e-003</right_val></_></_> 16474 <_> 16475 <!-- tree 96 --> 16476 <_> 16477 <!-- root node --> 16478 <feature> 16479 <rects> 16480 <_>0 11 6 12 -1.</_> 16481 <_>2 11 2 12 3.</_></rects> 16482 <tilted>0</tilted></feature> 16483 <threshold>-0.1031989976763725</threshold> 16484 <left_val>-2.3378000259399414</left_val> 16485 <right_val>-0.0589330010116100</right_val></_></_> 16486 <_> 16487 <!-- tree 97 --> 16488 <_> 16489 <!-- root node --> 16490 <feature> 16491 <rects> 16492 <_>3 6 18 14 -1.</_> 16493 <_>3 13 18 7 2.</_></rects> 16494 <tilted>0</tilted></feature> 16495 <threshold>-0.0956970006227493</threshold> 16496 <left_val>-0.6615390181541443</left_val> 16497 <right_val>0.2009859979152679</right_val></_></_> 16498 <_> 16499 <!-- tree 98 --> 16500 <_> 16501 <!-- root node --> 16502 <feature> 16503 <rects> 16504 <_>6 10 7 8 -1.</_> 16505 <_>6 14 7 4 2.</_></rects> 16506 <tilted>0</tilted></feature> 16507 <threshold>-0.0414809994399548</threshold> 16508 <left_val>0.4593920111656189</left_val> 16509 <right_val>-0.2231409996747971</right_val></_></_> 16510 <_> 16511 <!-- tree 99 --> 16512 <_> 16513 <!-- root node --> 16514 <feature> 16515 <rects> 16516 <_>7 9 12 12 -1.</_> 16517 <_>7 13 12 4 3.</_></rects> 16518 <tilted>0</tilted></feature> 16519 <threshold>2.4099999573081732e-003</threshold> 16520 <left_val>-0.2689859867095947</left_val> 16521 <right_val>0.2492299973964691</right_val></_></_> 16522 <_> 16523 <!-- tree 100 --> 16524 <_> 16525 <!-- root node --> 16526 <feature> 16527 <rects> 16528 <_>2 18 18 5 -1.</_> 16529 <_>11 18 9 5 2.</_></rects> 16530 <tilted>0</tilted></feature> 16531 <threshold>0.1072499975562096</threshold> 16532 <left_val>-0.1864019930362701</left_val> 16533 <right_val>0.7276980280876160</right_val></_></_> 16534 <_> 16535 <!-- tree 101 --> 16536 <_> 16537 <!-- root node --> 16538 <feature> 16539 <rects> 16540 <_>4 21 20 3 -1.</_> 16541 <_>4 22 20 1 3.</_></rects> 16542 <tilted>0</tilted></feature> 16543 <threshold>3.1870000530034304e-003</threshold> 16544 <left_val>-0.0246089994907379</left_val> 16545 <right_val>0.2864390015602112</right_val></_></_> 16546 <_> 16547 <!-- tree 102 --> 16548 <_> 16549 <!-- root node --> 16550 <feature> 16551 <rects> 16552 <_>9 12 6 12 -1.</_> 16553 <_>9 12 3 6 2.</_> 16554 <_>12 18 3 6 2.</_></rects> 16555 <tilted>0</tilted></feature> 16556 <threshold>0.0291670002043247</threshold> 16557 <left_val>-0.0346830002963543</left_val> 16558 <right_val>-1.1162580251693726</right_val></_></_> 16559 <_> 16560 <!-- tree 103 --> 16561 <_> 16562 <!-- root node --> 16563 <feature> 16564 <rects> 16565 <_>4 6 18 3 -1.</_> 16566 <_>4 7 18 1 3.</_></rects> 16567 <tilted>0</tilted></feature> 16568 <threshold>0.0112870000302792</threshold> 16569 <left_val>6.3760001212358475e-003</left_val> 16570 <right_val>0.6663209795951843</right_val></_></_> 16571 <_> 16572 <!-- tree 104 --> 16573 <_> 16574 <!-- root node --> 16575 <feature> 16576 <rects> 16577 <_>3 6 18 3 -1.</_> 16578 <_>3 7 18 1 3.</_></rects> 16579 <tilted>0</tilted></feature> 16580 <threshold>-0.0120010003447533</threshold> 16581 <left_val>0.4242010116577148</left_val> 16582 <right_val>-0.2627980113029480</right_val></_></_> 16583 <_> 16584 <!-- tree 105 --> 16585 <_> 16586 <!-- root node --> 16587 <feature> 16588 <rects> 16589 <_>18 4 6 9 -1.</_> 16590 <_>18 7 6 3 3.</_></rects> 16591 <tilted>0</tilted></feature> 16592 <threshold>-0.0126959998160601</threshold> 16593 <left_val>-0.0219570007175207</left_val> 16594 <right_val>0.1893679946660996</right_val></_></_> 16595 <_> 16596 <!-- tree 106 --> 16597 <_> 16598 <!-- root node --> 16599 <feature> 16600 <rects> 16601 <_>2 12 9 6 -1.</_> 16602 <_>2 14 9 2 3.</_></rects> 16603 <tilted>0</tilted></feature> 16604 <threshold>0.0245970003306866</threshold> 16605 <left_val>-0.0349639989435673</left_val> 16606 <right_val>-1.0989320278167725</right_val></_></_> 16607 <_> 16608 <!-- tree 107 --> 16609 <_> 16610 <!-- root node --> 16611 <feature> 16612 <rects> 16613 <_>4 14 18 4 -1.</_> 16614 <_>13 14 9 2 2.</_> 16615 <_>4 16 9 2 2.</_></rects> 16616 <tilted>0</tilted></feature> 16617 <threshold>0.0459530018270016</threshold> 16618 <left_val>0.1110979989171028</left_val> 16619 <right_val>-2.9306049346923828</right_val></_></_> 16620 <_> 16621 <!-- tree 108 --> 16622 <_> 16623 <!-- root node --> 16624 <feature> 16625 <rects> 16626 <_>7 7 6 14 -1.</_> 16627 <_>7 7 3 7 2.</_> 16628 <_>10 14 3 7 2.</_></rects> 16629 <tilted>0</tilted></feature> 16630 <threshold>-0.0272410009056330</threshold> 16631 <left_val>0.2910169959068298</left_val> 16632 <right_val>-0.2740789949893951</right_val></_></_> 16633 <_> 16634 <!-- tree 109 --> 16635 <_> 16636 <!-- root node --> 16637 <feature> 16638 <rects> 16639 <_>7 13 12 6 -1.</_> 16640 <_>13 13 6 3 2.</_> 16641 <_>7 16 6 3 2.</_></rects> 16642 <tilted>0</tilted></feature> 16643 <threshold>0.0400639995932579</threshold> 16644 <left_val>0.1187790036201477</left_val> 16645 <right_val>-0.6280180215835571</right_val></_></_> 16646 <_> 16647 <!-- tree 110 --> 16648 <_> 16649 <!-- root node --> 16650 <feature> 16651 <rects> 16652 <_>6 7 12 9 -1.</_> 16653 <_>10 7 4 9 3.</_></rects> 16654 <tilted>0</tilted></feature> 16655 <threshold>0.0230550002306700</threshold> 16656 <left_val>0.1481380015611649</left_val> 16657 <right_val>-0.3700749874114990</right_val></_></_> 16658 <_> 16659 <!-- tree 111 --> 16660 <_> 16661 <!-- root node --> 16662 <feature> 16663 <rects> 16664 <_>12 12 6 6 -1.</_> 16665 <_>12 12 3 6 2.</_></rects> 16666 <tilted>0</tilted></feature> 16667 <threshold>-0.0237370003014803</threshold> 16668 <left_val>-0.5372480154037476</left_val> 16669 <right_val>0.1935819983482361</right_val></_></_> 16670 <_> 16671 <!-- tree 112 --> 16672 <_> 16673 <!-- root node --> 16674 <feature> 16675 <rects> 16676 <_>0 2 4 10 -1.</_> 16677 <_>0 7 4 5 2.</_></rects> 16678 <tilted>0</tilted></feature> 16679 <threshold>0.0775220021605492</threshold> 16680 <left_val>-0.0601940006017685</left_val> 16681 <right_val>-1.9489669799804688</right_val></_></_> 16682 <_> 16683 <!-- tree 113 --> 16684 <_> 16685 <!-- root node --> 16686 <feature> 16687 <rects> 16688 <_>8 0 9 6 -1.</_> 16689 <_>11 0 3 6 3.</_></rects> 16690 <tilted>0</tilted></feature> 16691 <threshold>-0.0133450003340840</threshold> 16692 <left_val>-0.4522959887981415</left_val> 16693 <right_val>0.1874150037765503</right_val></_></_> 16694 <_> 16695 <!-- tree 114 --> 16696 <_> 16697 <!-- root node --> 16698 <feature> 16699 <rects> 16700 <_>2 9 12 6 -1.</_> 16701 <_>2 12 12 3 2.</_></rects> 16702 <tilted>0</tilted></feature> 16703 <threshold>-0.0217199996113777</threshold> 16704 <left_val>1.2144249677658081</left_val> 16705 <right_val>-0.1536580026149750</right_val></_></_> 16706 <_> 16707 <!-- tree 115 --> 16708 <_> 16709 <!-- root node --> 16710 <feature> 16711 <rects> 16712 <_>13 10 6 9 -1.</_> 16713 <_>13 13 6 3 3.</_></rects> 16714 <tilted>0</tilted></feature> 16715 <threshold>-0.0714749991893768</threshold> 16716 <left_val>-2.3047130107879639</left_val> 16717 <right_val>0.1099990010261536</right_val></_></_> 16718 <_> 16719 <!-- tree 116 --> 16720 <_> 16721 <!-- root node --> 16722 <feature> 16723 <rects> 16724 <_>5 10 6 9 -1.</_> 16725 <_>5 13 6 3 3.</_></rects> 16726 <tilted>0</tilted></feature> 16727 <threshold>-5.4999999701976776e-003</threshold> 16728 <left_val>-0.7185519933700562</left_val> 16729 <right_val>0.0201009996235371</right_val></_></_> 16730 <_> 16731 <!-- tree 117 --> 16732 <_> 16733 <!-- root node --> 16734 <feature> 16735 <rects> 16736 <_>9 15 9 6 -1.</_> 16737 <_>9 17 9 2 3.</_></rects> 16738 <tilted>0</tilted></feature> 16739 <threshold>0.0267409998923540</threshold> 16740 <left_val>0.0735450014472008</left_val> 16741 <right_val>0.9878600239753723</right_val></_></_> 16742 <_> 16743 <!-- tree 118 --> 16744 <_> 16745 <!-- root node --> 16746 <feature> 16747 <rects> 16748 <_>5 16 12 6 -1.</_> 16749 <_>5 19 12 3 2.</_></rects> 16750 <tilted>0</tilted></feature> 16751 <threshold>-0.0394079983234406</threshold> 16752 <left_val>-1.2227380275726318</left_val> 16753 <right_val>-0.0435069985687733</right_val></_></_> 16754 <_> 16755 <!-- tree 119 --> 16756 <_> 16757 <!-- root node --> 16758 <feature> 16759 <rects> 16760 <_>3 2 20 3 -1.</_> 16761 <_>3 3 20 1 3.</_></rects> 16762 <tilted>0</tilted></feature> 16763 <threshold>0.0258889999240637</threshold> 16764 <left_val>0.1340930014848709</left_val> 16765 <right_val>-1.1770780086517334</right_val></_></_> 16766 <_> 16767 <!-- tree 120 --> 16768 <_> 16769 <!-- root node --> 16770 <feature> 16771 <rects> 16772 <_>2 5 12 6 -1.</_> 16773 <_>6 5 4 6 3.</_></rects> 16774 <tilted>0</tilted></feature> 16775 <threshold>0.0489250011742115</threshold> 16776 <left_val>-0.0308100003749132</left_val> 16777 <right_val>-0.9347950220108032</right_val></_></_> 16778 <_> 16779 <!-- tree 121 --> 16780 <_> 16781 <!-- root node --> 16782 <feature> 16783 <rects> 16784 <_>11 0 3 24 -1.</_> 16785 <_>12 0 1 24 3.</_></rects> 16786 <tilted>0</tilted></feature> 16787 <threshold>0.0368929989635944</threshold> 16788 <left_val>0.1333370059728622</left_val> 16789 <right_val>-1.4998290538787842</right_val></_></_> 16790 <_> 16791 <!-- tree 122 --> 16792 <_> 16793 <!-- root node --> 16794 <feature> 16795 <rects> 16796 <_>3 16 15 4 -1.</_> 16797 <_>8 16 5 4 3.</_></rects> 16798 <tilted>0</tilted></feature> 16799 <threshold>0.0789299979805946</threshold> 16800 <left_val>-0.1453880071640015</left_val> 16801 <right_val>1.5631790161132813</right_val></_></_> 16802 <_> 16803 <!-- tree 123 --> 16804 <_> 16805 <!-- root node --> 16806 <feature> 16807 <rects> 16808 <_>9 12 6 12 -1.</_> 16809 <_>9 18 6 6 2.</_></rects> 16810 <tilted>0</tilted></feature> 16811 <threshold>0.0290060006082058</threshold> 16812 <left_val>0.1938370019197464</left_val> 16813 <right_val>-0.6764280200004578</right_val></_></_> 16814 <_> 16815 <!-- tree 124 --> 16816 <_> 16817 <!-- root node --> 16818 <feature> 16819 <rects> 16820 <_>1 15 12 8 -1.</_> 16821 <_>1 15 6 4 2.</_> 16822 <_>7 19 6 4 2.</_></rects> 16823 <tilted>0</tilted></feature> 16824 <threshold>6.3089998438954353e-003</threshold> 16825 <left_val>-0.3746539950370789</left_val> 16826 <right_val>0.1085750013589859</right_val></_></_> 16827 <_> 16828 <!-- tree 125 --> 16829 <_> 16830 <!-- root node --> 16831 <feature> 16832 <rects> 16833 <_>15 10 8 14 -1.</_> 16834 <_>19 10 4 7 2.</_> 16835 <_>15 17 4 7 2.</_></rects> 16836 <tilted>0</tilted></feature> 16837 <threshold>-0.0658309981226921</threshold> 16838 <left_val>0.8105940222740173</left_val> 16839 <right_val>0.0302019994705915</right_val></_></_> 16840 <_> 16841 <!-- tree 126 --> 16842 <_> 16843 <!-- root node --> 16844 <feature> 16845 <rects> 16846 <_>1 9 8 14 -1.</_> 16847 <_>1 9 4 7 2.</_> 16848 <_>5 16 4 7 2.</_></rects> 16849 <tilted>0</tilted></feature> 16850 <threshold>-0.0689650028944016</threshold> 16851 <left_val>0.8377259969711304</left_val> 16852 <right_val>-0.1714099943637848</right_val></_></_> 16853 <_> 16854 <!-- tree 127 --> 16855 <_> 16856 <!-- root node --> 16857 <feature> 16858 <rects> 16859 <_>9 11 9 10 -1.</_> 16860 <_>9 16 9 5 2.</_></rects> 16861 <tilted>0</tilted></feature> 16862 <threshold>-0.1166910007596016</threshold> 16863 <left_val>-0.9464719891548157</left_val> 16864 <right_val>0.1312319934368134</right_val></_></_> 16865 <_> 16866 <!-- tree 128 --> 16867 <_> 16868 <!-- root node --> 16869 <feature> 16870 <rects> 16871 <_>6 7 12 6 -1.</_> 16872 <_>6 9 12 2 3.</_></rects> 16873 <tilted>0</tilted></feature> 16874 <threshold>-1.3060000492259860e-003</threshold> 16875 <left_val>0.0460079982876778</left_val> 16876 <right_val>-0.5201159715652466</right_val></_></_> 16877 <_> 16878 <!-- tree 129 --> 16879 <_> 16880 <!-- root node --> 16881 <feature> 16882 <rects> 16883 <_>10 15 6 9 -1.</_> 16884 <_>12 15 2 9 3.</_></rects> 16885 <tilted>0</tilted></feature> 16886 <threshold>-0.0445589981973171</threshold> 16887 <left_val>-1.9423669576644897</left_val> 16888 <right_val>0.1320070028305054</right_val></_></_> 16889 <_> 16890 <!-- tree 130 --> 16891 <_> 16892 <!-- root node --> 16893 <feature> 16894 <rects> 16895 <_>7 8 9 7 -1.</_> 16896 <_>10 8 3 7 3.</_></rects> 16897 <tilted>0</tilted></feature> 16898 <threshold>0.0510330013930798</threshold> 16899 <left_val>-0.2148099988698959</left_val> 16900 <right_val>0.4867390096187592</right_val></_></_> 16901 <_> 16902 <!-- tree 131 --> 16903 <_> 16904 <!-- root node --> 16905 <feature> 16906 <rects> 16907 <_>10 4 8 10 -1.</_> 16908 <_>14 4 4 5 2.</_> 16909 <_>10 9 4 5 2.</_></rects> 16910 <tilted>0</tilted></feature> 16911 <threshold>-0.0315780006349087</threshold> 16912 <left_val>0.5998979806900024</left_val> 16913 <right_val>7.9159997403621674e-003</right_val></_></_> 16914 <_> 16915 <!-- tree 132 --> 16916 <_> 16917 <!-- root node --> 16918 <feature> 16919 <rects> 16920 <_>4 6 6 9 -1.</_> 16921 <_>4 9 6 3 3.</_></rects> 16922 <tilted>0</tilted></feature> 16923 <threshold>0.0210200008004904</threshold> 16924 <left_val>-0.2206950038671494</left_val> 16925 <right_val>0.5404620170593262</right_val></_></_> 16926 <_> 16927 <!-- tree 133 --> 16928 <_> 16929 <!-- root node --> 16930 <feature> 16931 <rects> 16932 <_>0 6 24 12 -1.</_> 16933 <_>8 6 8 12 3.</_></rects> 16934 <tilted>0</tilted></feature> 16935 <threshold>-0.1382420063018799</threshold> 16936 <left_val>0.6295750141143799</left_val> 16937 <right_val>-0.0217129997909069</right_val></_></_> 16938 <_> 16939 <!-- tree 134 --> 16940 <_> 16941 <!-- root node --> 16942 <feature> 16943 <rects> 16944 <_>3 7 6 14 -1.</_> 16945 <_>6 7 3 14 2.</_></rects> 16946 <tilted>0</tilted></feature> 16947 <threshold>0.0522289983928204</threshold> 16948 <left_val>-0.2336090058088303</left_val> 16949 <right_val>0.4976080060005188</right_val></_></_> 16950 <_> 16951 <!-- tree 135 --> 16952 <_> 16953 <!-- root node --> 16954 <feature> 16955 <rects> 16956 <_>19 8 5 8 -1.</_> 16957 <_>19 12 5 4 2.</_></rects> 16958 <tilted>0</tilted></feature> 16959 <threshold>0.0258840005844831</threshold> 16960 <left_val>0.1804199963808060</left_val> 16961 <right_val>-0.2203920036554337</right_val></_></_> 16962 <_> 16963 <!-- tree 136 --> 16964 <_> 16965 <!-- root node --> 16966 <feature> 16967 <rects> 16968 <_>0 8 5 8 -1.</_> 16969 <_>0 12 5 4 2.</_></rects> 16970 <tilted>0</tilted></feature> 16971 <threshold>-0.0121389999985695</threshold> 16972 <left_val>-0.6973189711570740</left_val> 16973 <right_val>0.0157120004296303</right_val></_></_> 16974 <_> 16975 <!-- tree 137 --> 16976 <_> 16977 <!-- root node --> 16978 <feature> 16979 <rects> 16980 <_>17 3 6 6 -1.</_> 16981 <_>17 6 6 3 2.</_></rects> 16982 <tilted>0</tilted></feature> 16983 <threshold>-0.0242379996925592</threshold> 16984 <left_val>0.3459329903125763</left_val> 16985 <right_val>0.0714699998497963</right_val></_></_> 16986 <_> 16987 <!-- tree 138 --> 16988 <_> 16989 <!-- root node --> 16990 <feature> 16991 <rects> 16992 <_>1 3 6 6 -1.</_> 16993 <_>1 6 6 3 2.</_></rects> 16994 <tilted>0</tilted></feature> 16995 <threshold>-0.0252720005810261</threshold> 16996 <left_val>-0.8758329749107361</left_val> 16997 <right_val>-9.8240002989768982e-003</right_val></_></_> 16998 <_> 16999 <!-- tree 139 --> 17000 <_> 17001 <!-- root node --> 17002 <feature> 17003 <rects> 17004 <_>18 2 6 9 -1.</_> 17005 <_>18 5 6 3 3.</_></rects> 17006 <tilted>0</tilted></feature> 17007 <threshold>0.0125970002263784</threshold> 17008 <left_val>0.2364999949932098</left_val> 17009 <right_val>-0.2873120009899139</right_val></_></_> 17010 <_> 17011 <!-- tree 140 --> 17012 <_> 17013 <!-- root node --> 17014 <feature> 17015 <rects> 17016 <_>0 2 6 9 -1.</_> 17017 <_>0 5 6 3 3.</_></rects> 17018 <tilted>0</tilted></feature> 17019 <threshold>0.0573309995234013</threshold> 17020 <left_val>-0.0615309998393059</left_val> 17021 <right_val>-2.2326040267944336</right_val></_></_> 17022 <_> 17023 <!-- tree 141 --> 17024 <_> 17025 <!-- root node --> 17026 <feature> 17027 <rects> 17028 <_>3 3 18 6 -1.</_> 17029 <_>3 5 18 2 3.</_></rects> 17030 <tilted>0</tilted></feature> 17031 <threshold>0.0166710000485182</threshold> 17032 <left_val>-0.1985010057687759</left_val> 17033 <right_val>0.4081070125102997</right_val></_></_> 17034 <_> 17035 <!-- tree 142 --> 17036 <_> 17037 <!-- root node --> 17038 <feature> 17039 <rects> 17040 <_>2 3 9 6 -1.</_> 17041 <_>2 5 9 2 3.</_></rects> 17042 <tilted>0</tilted></feature> 17043 <threshold>-0.0228189993649721</threshold> 17044 <left_val>0.9648759961128235</left_val> 17045 <right_val>-0.2024569958448410</right_val></_></_> 17046 <_> 17047 <!-- tree 143 --> 17048 <_> 17049 <!-- root node --> 17050 <feature> 17051 <rects> 17052 <_>9 3 10 8 -1.</_> 17053 <_>14 3 5 4 2.</_> 17054 <_>9 7 5 4 2.</_></rects> 17055 <tilted>0</tilted></feature> 17056 <threshold>3.7000001611886546e-005</threshold> 17057 <left_val>-0.0589089989662170</left_val> 17058 <right_val>0.2705540060997009</right_val></_></_> 17059 <_> 17060 <!-- tree 144 --> 17061 <_> 17062 <!-- root node --> 17063 <feature> 17064 <rects> 17065 <_>5 3 10 8 -1.</_> 17066 <_>5 3 5 4 2.</_> 17067 <_>10 7 5 4 2.</_></rects> 17068 <tilted>0</tilted></feature> 17069 <threshold>-7.6700001955032349e-003</threshold> 17070 <left_val>-0.4531710147857666</left_val> 17071 <right_val>0.0896280035376549</right_val></_></_> 17072 <_> 17073 <!-- tree 145 --> 17074 <_> 17075 <!-- root node --> 17076 <feature> 17077 <rects> 17078 <_>10 11 6 12 -1.</_> 17079 <_>10 11 3 12 2.</_></rects> 17080 <tilted>0</tilted></feature> 17081 <threshold>0.0940859988331795</threshold> 17082 <left_val>0.1160459965467453</left_val> 17083 <right_val>-1.0951169729232788</right_val></_></_> 17084 <_> 17085 <!-- tree 146 --> 17086 <_> 17087 <!-- root node --> 17088 <feature> 17089 <rects> 17090 <_>8 11 6 11 -1.</_> 17091 <_>11 11 3 11 2.</_></rects> 17092 <tilted>0</tilted></feature> 17093 <threshold>-0.0622670017182827</threshold> 17094 <left_val>1.8096530437469482</left_val> 17095 <right_val>-0.1477320045232773</right_val></_></_> 17096 <_> 17097 <!-- tree 147 --> 17098 <_> 17099 <!-- root node --> 17100 <feature> 17101 <rects> 17102 <_>7 8 10 4 -1.</_> 17103 <_>7 8 5 4 2.</_></rects> 17104 <tilted>0</tilted></feature> 17105 <threshold>0.0174160003662109</threshold> 17106 <left_val>0.2306820005178452</left_val> 17107 <right_val>-0.4241760075092316</right_val></_></_> 17108 <_> 17109 <!-- tree 148 --> 17110 <_> 17111 <!-- root node --> 17112 <feature> 17113 <rects> 17114 <_>9 6 6 7 -1.</_> 17115 <_>12 6 3 7 2.</_></rects> 17116 <tilted>0</tilted></feature> 17117 <threshold>-0.0220660008490086</threshold> 17118 <left_val>0.4927029907703400</left_val> 17119 <right_val>-0.2063090056180954</right_val></_></_> 17120 <_> 17121 <!-- tree 149 --> 17122 <_> 17123 <!-- root node --> 17124 <feature> 17125 <rects> 17126 <_>5 18 18 3 -1.</_> 17127 <_>5 19 18 1 3.</_></rects> 17128 <tilted>0</tilted></feature> 17129 <threshold>-0.0104040000587702</threshold> 17130 <left_val>0.6092429757118225</left_val> 17131 <right_val>0.0281300004571676</right_val></_></_> 17132 <_> 17133 <!-- tree 150 --> 17134 <_> 17135 <!-- root node --> 17136 <feature> 17137 <rects> 17138 <_>8 4 6 9 -1.</_> 17139 <_>10 4 2 9 3.</_></rects> 17140 <tilted>0</tilted></feature> 17141 <threshold>-9.3670003116130829e-003</threshold> 17142 <left_val>0.4017120003700256</left_val> 17143 <right_val>-0.2168170064687729</right_val></_></_> 17144 <_> 17145 <!-- tree 151 --> 17146 <_> 17147 <!-- root node --> 17148 <feature> 17149 <rects> 17150 <_>8 1 9 7 -1.</_> 17151 <_>11 1 3 7 3.</_></rects> 17152 <tilted>0</tilted></feature> 17153 <threshold>-0.0290399994701147</threshold> 17154 <left_val>-0.8487650156021118</left_val> 17155 <right_val>0.1424680054187775</right_val></_></_> 17156 <_> 17157 <!-- tree 152 --> 17158 <_> 17159 <!-- root node --> 17160 <feature> 17161 <rects> 17162 <_>6 11 6 6 -1.</_> 17163 <_>9 11 3 6 2.</_></rects> 17164 <tilted>0</tilted></feature> 17165 <threshold>-0.0210619997233152</threshold> 17166 <left_val>-0.7919830083847046</left_val> 17167 <right_val>-0.0125959999859333</right_val></_></_> 17168 <_> 17169 <!-- tree 153 --> 17170 <_> 17171 <!-- root node --> 17172 <feature> 17173 <rects> 17174 <_>14 12 4 11 -1.</_> 17175 <_>14 12 2 11 2.</_></rects> 17176 <tilted>0</tilted></feature> 17177 <threshold>-0.0370009988546371</threshold> 17178 <left_val>-0.6748890280723572</left_val> 17179 <right_val>0.1283040046691895</right_val></_></_> 17180 <_> 17181 <!-- tree 154 --> 17182 <_> 17183 <!-- root node --> 17184 <feature> 17185 <rects> 17186 <_>6 12 4 11 -1.</_> 17187 <_>8 12 2 11 2.</_></rects> 17188 <tilted>0</tilted></feature> 17189 <threshold>0.0107359997928143</threshold> 17190 <left_val>0.0367799997329712</left_val> 17191 <right_val>-0.6339300274848938</right_val></_></_> 17192 <_> 17193 <!-- tree 155 --> 17194 <_> 17195 <!-- root node --> 17196 <feature> 17197 <rects> 17198 <_>8 0 12 18 -1.</_> 17199 <_>12 0 4 18 3.</_></rects> 17200 <tilted>0</tilted></feature> 17201 <threshold>0.1636759936809540</threshold> 17202 <left_val>0.1380389928817749</left_val> 17203 <right_val>-0.4718900024890900</right_val></_></_> 17204 <_> 17205 <!-- tree 156 --> 17206 <_> 17207 <!-- root node --> 17208 <feature> 17209 <rects> 17210 <_>2 12 10 5 -1.</_> 17211 <_>7 12 5 5 2.</_></rects> 17212 <tilted>0</tilted></feature> 17213 <threshold>0.0949179977178574</threshold> 17214 <left_val>-0.1385570019483566</left_val> 17215 <right_val>1.9492419958114624</right_val></_></_> 17216 <_> 17217 <!-- tree 157 --> 17218 <_> 17219 <!-- root node --> 17220 <feature> 17221 <rects> 17222 <_>2 20 22 3 -1.</_> 17223 <_>2 21 22 1 3.</_></rects> 17224 <tilted>0</tilted></feature> 17225 <threshold>0.0352619998157024</threshold> 17226 <left_val>0.1372189968824387</left_val> 17227 <right_val>-2.1186530590057373</right_val></_></_> 17228 <_> 17229 <!-- tree 158 --> 17230 <_> 17231 <!-- root node --> 17232 <feature> 17233 <rects> 17234 <_>0 4 2 20 -1.</_> 17235 <_>1 4 1 20 2.</_></rects> 17236 <tilted>0</tilted></feature> 17237 <threshold>0.0128110004588962</threshold> 17238 <left_val>-0.2000810056924820</left_val> 17239 <right_val>0.4950779974460602</right_val></_></_></trees> 17240 <stage_threshold>-3.5939640998840332</stage_threshold> 17241 <parent>15</parent> 17242 <next>-1</next></_> 17243 <_> 17244 <!-- stage 17 --> 17245 <trees> 17246 <_> 17247 <!-- tree 0 --> 17248 <_> 17249 <!-- root node --> 17250 <feature> 17251 <rects> 17252 <_>0 2 24 4 -1.</_> 17253 <_>8 2 8 4 3.</_></rects> 17254 <tilted>0</tilted></feature> 17255 <threshold>0.1390440016984940</threshold> 17256 <left_val>-0.4658119976520538</left_val> 17257 <right_val>0.7643160223960877</right_val></_></_> 17258 <_> 17259 <!-- tree 1 --> 17260 <_> 17261 <!-- root node --> 17262 <feature> 17263 <rects> 17264 <_>7 8 10 4 -1.</_> 17265 <_>7 10 10 2 2.</_></rects> 17266 <tilted>0</tilted></feature> 17267 <threshold>0.0119169997051358</threshold> 17268 <left_val>-0.9439899921417236</left_val> 17269 <right_val>0.3972629904747009</right_val></_></_> 17270 <_> 17271 <!-- tree 2 --> 17272 <_> 17273 <!-- root node --> 17274 <feature> 17275 <rects> 17276 <_>6 7 8 10 -1.</_> 17277 <_>6 7 4 5 2.</_> 17278 <_>10 12 4 5 2.</_></rects> 17279 <tilted>0</tilted></feature> 17280 <threshold>-0.0100069995969534</threshold> 17281 <left_val>0.3271879851818085</left_val> 17282 <right_val>-0.6336740255355835</right_val></_></_> 17283 <_> 17284 <!-- tree 3 --> 17285 <_> 17286 <!-- root node --> 17287 <feature> 17288 <rects> 17289 <_>14 0 6 14 -1.</_> 17290 <_>17 0 3 7 2.</_> 17291 <_>14 7 3 7 2.</_></rects> 17292 <tilted>0</tilted></feature> 17293 <threshold>-6.0479999519884586e-003</threshold> 17294 <left_val>0.2742789983749390</left_val> 17295 <right_val>-0.5744699835777283</right_val></_></_> 17296 <_> 17297 <!-- tree 4 --> 17298 <_> 17299 <!-- root node --> 17300 <feature> 17301 <rects> 17302 <_>4 11 5 8 -1.</_> 17303 <_>4 15 5 4 2.</_></rects> 17304 <tilted>0</tilted></feature> 17305 <threshold>-1.2489999644458294e-003</threshold> 17306 <left_val>0.2362930029630661</left_val> 17307 <right_val>-0.6859350204467773</right_val></_></_> 17308 <_> 17309 <!-- tree 5 --> 17310 <_> 17311 <!-- root node --> 17312 <feature> 17313 <rects> 17314 <_>2 0 20 9 -1.</_> 17315 <_>2 3 20 3 3.</_></rects> 17316 <tilted>0</tilted></feature> 17317 <threshold>0.0323820002377033</threshold> 17318 <left_val>-0.5763019919395447</left_val> 17319 <right_val>0.2749269902706146</right_val></_></_> 17320 <_> 17321 <!-- tree 6 --> 17322 <_> 17323 <!-- root node --> 17324 <feature> 17325 <rects> 17326 <_>6 7 12 8 -1.</_> 17327 <_>6 7 6 4 2.</_> 17328 <_>12 11 6 4 2.</_></rects> 17329 <tilted>0</tilted></feature> 17330 <threshold>-0.0139579996466637</threshold> 17331 <left_val>-0.6106150150299072</left_val> 17332 <right_val>0.2454160004854202</right_val></_></_> 17333 <_> 17334 <!-- tree 7 --> 17335 <_> 17336 <!-- root node --> 17337 <feature> 17338 <rects> 17339 <_>9 17 6 6 -1.</_> 17340 <_>9 20 6 3 2.</_></rects> 17341 <tilted>0</tilted></feature> 17342 <threshold>1.1159999994561076e-003</threshold> 17343 <left_val>-0.5653910040855408</left_val> 17344 <right_val>0.2717930078506470</right_val></_></_> 17345 <_> 17346 <!-- tree 8 --> 17347 <_> 17348 <!-- root node --> 17349 <feature> 17350 <rects> 17351 <_>7 10 10 4 -1.</_> 17352 <_>7 12 10 2 2.</_></rects> 17353 <tilted>0</tilted></feature> 17354 <threshold>2.7000000045518391e-005</threshold> 17355 <left_val>-0.8023599982261658</left_val> 17356 <right_val>0.1150910034775734</right_val></_></_> 17357 <_> 17358 <!-- tree 9 --> 17359 <_> 17360 <!-- root node --> 17361 <feature> 17362 <rects> 17363 <_>6 5 12 9 -1.</_> 17364 <_>10 5 4 9 3.</_></rects> 17365 <tilted>0</tilted></feature> 17366 <threshold>-2.5700000696815550e-004</threshold> 17367 <left_val>-0.8120589852333069</left_val> 17368 <right_val>0.2384469956159592</right_val></_></_> 17369 <_> 17370 <!-- tree 10 --> 17371 <_> 17372 <!-- root node --> 17373 <feature> 17374 <rects> 17375 <_>5 11 6 8 -1.</_> 17376 <_>8 11 3 8 2.</_></rects> 17377 <tilted>0</tilted></feature> 17378 <threshold>4.0460000745952129e-003</threshold> 17379 <left_val>0.1390960067510605</left_val> 17380 <right_val>-0.6616320013999939</right_val></_></_> 17381 <_> 17382 <!-- tree 11 --> 17383 <_> 17384 <!-- root node --> 17385 <feature> 17386 <rects> 17387 <_>18 4 4 17 -1.</_> 17388 <_>18 4 2 17 2.</_></rects> 17389 <tilted>0</tilted></feature> 17390 <threshold>0.0143560003489256</threshold> 17391 <left_val>-0.1648519933223724</left_val> 17392 <right_val>0.4190169870853424</right_val></_></_> 17393 <_> 17394 <!-- tree 12 --> 17395 <_> 17396 <!-- root node --> 17397 <feature> 17398 <rects> 17399 <_>0 0 6 6 -1.</_> 17400 <_>3 0 3 6 2.</_></rects> 17401 <tilted>0</tilted></feature> 17402 <threshold>-0.0553749985992908</threshold> 17403 <left_val>1.4425870180130005</left_val> 17404 <right_val>-0.1882019937038422</right_val></_></_> 17405 <_> 17406 <!-- tree 13 --> 17407 <_> 17408 <!-- root node --> 17409 <feature> 17410 <rects> 17411 <_>18 4 4 17 -1.</_> 17412 <_>18 4 2 17 2.</_></rects> 17413 <tilted>0</tilted></feature> 17414 <threshold>0.0935949981212616</threshold> 17415 <left_val>0.1354829967021942</left_val> 17416 <right_val>-0.9163609743118286</right_val></_></_> 17417 <_> 17418 <!-- tree 14 --> 17419 <_> 17420 <!-- root node --> 17421 <feature> 17422 <rects> 17423 <_>2 4 4 17 -1.</_> 17424 <_>4 4 2 17 2.</_></rects> 17425 <tilted>0</tilted></feature> 17426 <threshold>0.0266249999403954</threshold> 17427 <left_val>-0.3374829888343811</left_val> 17428 <right_val>0.3923360109329224</right_val></_></_> 17429 <_> 17430 <!-- tree 15 --> 17431 <_> 17432 <!-- root node --> 17433 <feature> 17434 <rects> 17435 <_>5 18 19 3 -1.</_> 17436 <_>5 19 19 1 3.</_></rects> 17437 <tilted>0</tilted></feature> 17438 <threshold>3.7469998933374882e-003</threshold> 17439 <left_val>-0.1161540001630783</left_val> 17440 <right_val>0.4439930021762848</right_val></_></_> 17441 <_> 17442 <!-- tree 16 --> 17443 <_> 17444 <!-- root node --> 17445 <feature> 17446 <rects> 17447 <_>11 0 2 18 -1.</_> 17448 <_>11 9 2 9 2.</_></rects> 17449 <tilted>0</tilted></feature> 17450 <threshold>-0.0318860001862049</threshold> 17451 <left_val>-0.9949830174446106</left_val> 17452 <right_val>1.6120000509545207e-003</right_val></_></_> 17453 <_> 17454 <!-- tree 17 --> 17455 <_> 17456 <!-- root node --> 17457 <feature> 17458 <rects> 17459 <_>15 4 2 18 -1.</_> 17460 <_>15 13 2 9 2.</_></rects> 17461 <tilted>0</tilted></feature> 17462 <threshold>-0.0226000007241964</threshold> 17463 <left_val>-0.4806739985942841</left_val> 17464 <right_val>0.1700730025768280</right_val></_></_> 17465 <_> 17466 <!-- tree 18 --> 17467 <_> 17468 <!-- root node --> 17469 <feature> 17470 <rects> 17471 <_>7 4 2 18 -1.</_> 17472 <_>7 13 2 9 2.</_></rects> 17473 <tilted>0</tilted></feature> 17474 <threshold>0.0252020005136728</threshold> 17475 <left_val>0.0355800017714500</left_val> 17476 <right_val>-0.8021540045738220</right_val></_></_> 17477 <_> 17478 <!-- tree 19 --> 17479 <_> 17480 <!-- root node --> 17481 <feature> 17482 <rects> 17483 <_>7 11 10 8 -1.</_> 17484 <_>12 11 5 4 2.</_> 17485 <_>7 15 5 4 2.</_></rects> 17486 <tilted>0</tilted></feature> 17487 <threshold>-0.0310369990766048</threshold> 17488 <left_val>-1.0895340442657471</left_val> 17489 <right_val>0.1808190047740936</right_val></_></_> 17490 <_> 17491 <!-- tree 20 --> 17492 <_> 17493 <!-- root node --> 17494 <feature> 17495 <rects> 17496 <_>10 6 4 9 -1.</_> 17497 <_>12 6 2 9 2.</_></rects> 17498 <tilted>0</tilted></feature> 17499 <threshold>-0.0264759995043278</threshold> 17500 <left_val>0.9567120075225830</left_val> 17501 <right_val>-0.2104939967393875</right_val></_></_> 17502 <_> 17503 <!-- tree 21 --> 17504 <_> 17505 <!-- root node --> 17506 <feature> 17507 <rects> 17508 <_>10 0 6 9 -1.</_> 17509 <_>12 0 2 9 3.</_></rects> 17510 <tilted>0</tilted></feature> 17511 <threshold>-0.0138539997860789</threshold> 17512 <left_val>-1.0370320081710815</left_val> 17513 <right_val>0.2216670066118240</right_val></_></_> 17514 <_> 17515 <!-- tree 22 --> 17516 <_> 17517 <!-- root node --> 17518 <feature> 17519 <rects> 17520 <_>2 9 16 8 -1.</_> 17521 <_>2 9 8 4 2.</_> 17522 <_>10 13 8 4 2.</_></rects> 17523 <tilted>0</tilted></feature> 17524 <threshold>-0.0629250034689903</threshold> 17525 <left_val>0.9019939899444580</left_val> 17526 <right_val>-0.1908529996871948</right_val></_></_> 17527 <_> 17528 <!-- tree 23 --> 17529 <_> 17530 <!-- root node --> 17531 <feature> 17532 <rects> 17533 <_>14 15 6 9 -1.</_> 17534 <_>14 18 6 3 3.</_></rects> 17535 <tilted>0</tilted></feature> 17536 <threshold>-0.0447509996592999</threshold> 17537 <left_val>-1.0119110345840454</left_val> 17538 <right_val>0.1469119936227799</right_val></_></_> 17539 <_> 17540 <!-- tree 24 --> 17541 <_> 17542 <!-- root node --> 17543 <feature> 17544 <rects> 17545 <_>8 7 6 9 -1.</_> 17546 <_>10 7 2 9 3.</_></rects> 17547 <tilted>0</tilted></feature> 17548 <threshold>-0.0204280000180006</threshold> 17549 <left_val>0.6162449717521668</left_val> 17550 <right_val>-0.2355269938707352</right_val></_></_> 17551 <_> 17552 <!-- tree 25 --> 17553 <_> 17554 <!-- root node --> 17555 <feature> 17556 <rects> 17557 <_>14 15 6 9 -1.</_> 17558 <_>14 18 6 3 3.</_></rects> 17559 <tilted>0</tilted></feature> 17560 <threshold>-8.0329999327659607e-003</threshold> 17561 <left_val>-0.0832799971103668</left_val> 17562 <right_val>0.2172870039939880</right_val></_></_> 17563 <_> 17564 <!-- tree 26 --> 17565 <_> 17566 <!-- root node --> 17567 <feature> 17568 <rects> 17569 <_>3 12 12 6 -1.</_> 17570 <_>3 14 12 2 3.</_></rects> 17571 <tilted>0</tilted></feature> 17572 <threshold>8.7280003353953362e-003</threshold> 17573 <left_val>0.0654589980840683</left_val> 17574 <right_val>-0.6031870245933533</right_val></_></_> 17575 <_> 17576 <!-- tree 27 --> 17577 <_> 17578 <!-- root node --> 17579 <feature> 17580 <rects> 17581 <_>14 12 9 6 -1.</_> 17582 <_>14 14 9 2 3.</_></rects> 17583 <tilted>0</tilted></feature> 17584 <threshold>-0.0272020008414984</threshold> 17585 <left_val>-0.9344739913940430</left_val> 17586 <right_val>0.1527000069618225</right_val></_></_> 17587 <_> 17588 <!-- tree 28 --> 17589 <_> 17590 <!-- root node --> 17591 <feature> 17592 <rects> 17593 <_>1 12 9 6 -1.</_> 17594 <_>1 14 9 2 3.</_></rects> 17595 <tilted>0</tilted></feature> 17596 <threshold>-0.0164710003882647</threshold> 17597 <left_val>-0.8417710065841675</left_val> 17598 <right_val>0.0133320000022650</right_val></_></_> 17599 <_> 17600 <!-- tree 29 --> 17601 <_> 17602 <!-- root node --> 17603 <feature> 17604 <rects> 17605 <_>3 7 18 3 -1.</_> 17606 <_>3 8 18 1 3.</_></rects> 17607 <tilted>0</tilted></feature> 17608 <threshold>-0.0137440003454685</threshold> 17609 <left_val>0.6056720018386841</left_val> 17610 <right_val>-0.0920210033655167</right_val></_></_> 17611 <_> 17612 <!-- tree 30 --> 17613 <_> 17614 <!-- root node --> 17615 <feature> 17616 <rects> 17617 <_>1 7 22 6 -1.</_> 17618 <_>1 9 22 2 3.</_></rects> 17619 <tilted>0</tilted></feature> 17620 <threshold>0.0291649997234344</threshold> 17621 <left_val>-0.0281140003353357</left_val> 17622 <right_val>-1.4014569520950317</right_val></_></_> 17623 <_> 17624 <!-- tree 31 --> 17625 <_> 17626 <!-- root node --> 17627 <feature> 17628 <rects> 17629 <_>18 4 6 6 -1.</_> 17630 <_>18 7 6 3 2.</_></rects> 17631 <tilted>0</tilted></feature> 17632 <threshold>0.0374570004642010</threshold> 17633 <left_val>0.1308059990406036</left_val> 17634 <right_val>-0.4938249886035919</right_val></_></_> 17635 <_> 17636 <!-- tree 32 --> 17637 <_> 17638 <!-- root node --> 17639 <feature> 17640 <rects> 17641 <_>0 4 6 6 -1.</_> 17642 <_>0 7 6 3 2.</_></rects> 17643 <tilted>0</tilted></feature> 17644 <threshold>-0.0250700004398823</threshold> 17645 <left_val>-1.1289390325546265</left_val> 17646 <right_val>-0.0146000003442168</right_val></_></_> 17647 <_> 17648 <!-- tree 33 --> 17649 <_> 17650 <!-- root node --> 17651 <feature> 17652 <rects> 17653 <_>5 11 16 6 -1.</_> 17654 <_>5 14 16 3 2.</_></rects> 17655 <tilted>0</tilted></feature> 17656 <threshold>-0.0638120025396347</threshold> 17657 <left_val>0.7587159872055054</left_val> 17658 <right_val>-1.8200000049546361e-003</right_val></_></_> 17659 <_> 17660 <!-- tree 34 --> 17661 <_> 17662 <!-- root node --> 17663 <feature> 17664 <rects> 17665 <_>6 16 9 4 -1.</_> 17666 <_>6 18 9 2 2.</_></rects> 17667 <tilted>0</tilted></feature> 17668 <threshold>-9.3900002539157867e-003</threshold> 17669 <left_val>0.2993640005588532</left_val> 17670 <right_val>-0.2948780059814453</right_val></_></_> 17671 <_> 17672 <!-- tree 35 --> 17673 <_> 17674 <!-- root node --> 17675 <feature> 17676 <rects> 17677 <_>14 15 6 9 -1.</_> 17678 <_>14 18 6 3 3.</_></rects> 17679 <tilted>0</tilted></feature> 17680 <threshold>-7.6000002445653081e-004</threshold> 17681 <left_val>0.0197250004857779</left_val> 17682 <right_val>0.1999389976263046</right_val></_></_> 17683 <_> 17684 <!-- tree 36 --> 17685 <_> 17686 <!-- root node --> 17687 <feature> 17688 <rects> 17689 <_>4 15 6 9 -1.</_> 17690 <_>4 18 6 3 3.</_></rects> 17691 <tilted>0</tilted></feature> 17692 <threshold>-0.0217409990727901</threshold> 17693 <left_val>-0.8524789810180664</left_val> 17694 <right_val>0.0491699986159801</right_val></_></_> 17695 <_> 17696 <!-- tree 37 --> 17697 <_> 17698 <!-- root node --> 17699 <feature> 17700 <rects> 17701 <_>15 1 6 23 -1.</_> 17702 <_>17 1 2 23 3.</_></rects> 17703 <tilted>0</tilted></feature> 17704 <threshold>-0.0178699996322393</threshold> 17705 <left_val>-0.0599859990179539</left_val> 17706 <right_val>0.1522250026464462</right_val></_></_> 17707 <_> 17708 <!-- tree 38 --> 17709 <_> 17710 <!-- root node --> 17711 <feature> 17712 <rects> 17713 <_>0 21 24 3 -1.</_> 17714 <_>8 21 8 3 3.</_></rects> 17715 <tilted>0</tilted></feature> 17716 <threshold>-0.0248310007154942</threshold> 17717 <left_val>0.3560340106487274</left_val> 17718 <right_val>-0.2625989913940430</right_val></_></_> 17719 <_> 17720 <!-- tree 39 --> 17721 <_> 17722 <!-- root node --> 17723 <feature> 17724 <rects> 17725 <_>0 20 24 4 -1.</_> 17726 <_>8 20 8 4 3.</_></rects> 17727 <tilted>0</tilted></feature> 17728 <threshold>0.1571550071239471</threshold> 17729 <left_val>1.5599999460391700e-004</left_val> 17730 <right_val>1.0428730249404907</right_val></_></_> 17731 <_> 17732 <!-- tree 40 --> 17733 <_> 17734 <!-- root node --> 17735 <feature> 17736 <rects> 17737 <_>3 1 6 23 -1.</_> 17738 <_>5 1 2 23 3.</_></rects> 17739 <tilted>0</tilted></feature> 17740 <threshold>0.0690269991755486</threshold> 17741 <left_val>-0.0330069996416569</left_val> 17742 <right_val>-1.1796669960021973</right_val></_></_> 17743 <_> 17744 <!-- tree 41 --> 17745 <_> 17746 <!-- root node --> 17747 <feature> 17748 <rects> 17749 <_>3 17 18 3 -1.</_> 17750 <_>3 18 18 1 3.</_></rects> 17751 <tilted>0</tilted></feature> 17752 <threshold>-0.0110219996422529</threshold> 17753 <left_val>0.5898770093917847</left_val> 17754 <right_val>-0.0576479993760586</right_val></_></_> 17755 <_> 17756 <!-- tree 42 --> 17757 <_> 17758 <!-- root node --> 17759 <feature> 17760 <rects> 17761 <_>0 16 18 3 -1.</_> 17762 <_>0 17 18 1 3.</_></rects> 17763 <tilted>0</tilted></feature> 17764 <threshold>-0.0138349998742342</threshold> 17765 <left_val>0.5950279831886292</left_val> 17766 <right_val>-0.2441859990358353</right_val></_></_> 17767 <_> 17768 <!-- tree 43 --> 17769 <_> 17770 <!-- root node --> 17771 <feature> 17772 <rects> 17773 <_>1 16 22 4 -1.</_> 17774 <_>12 16 11 2 2.</_> 17775 <_>1 18 11 2 2.</_></rects> 17776 <tilted>0</tilted></feature> 17777 <threshold>-0.0309410002082586</threshold> 17778 <left_val>-1.1723799705505371</left_val> 17779 <right_val>0.1690700054168701</right_val></_></_> 17780 <_> 17781 <!-- tree 44 --> 17782 <_> 17783 <!-- root node --> 17784 <feature> 17785 <rects> 17786 <_>0 16 9 6 -1.</_> 17787 <_>0 18 9 2 3.</_></rects> 17788 <tilted>0</tilted></feature> 17789 <threshold>0.0212580002844334</threshold> 17790 <left_val>-0.0189009997993708</left_val> 17791 <right_val>-1.0684759616851807</right_val></_></_> 17792 <_> 17793 <!-- tree 45 --> 17794 <_> 17795 <!-- root node --> 17796 <feature> 17797 <rects> 17798 <_>2 10 21 3 -1.</_> 17799 <_>9 10 7 3 3.</_></rects> 17800 <tilted>0</tilted></feature> 17801 <threshold>0.0930799990892410</threshold> 17802 <left_val>0.1630560010671616</left_val> 17803 <right_val>-1.3375270366668701</right_val></_></_> 17804 <_> 17805 <!-- tree 46 --> 17806 <_> 17807 <!-- root node --> 17808 <feature> 17809 <rects> 17810 <_>2 18 12 6 -1.</_> 17811 <_>2 18 6 3 2.</_> 17812 <_>8 21 6 3 2.</_></rects> 17813 <tilted>0</tilted></feature> 17814 <threshold>0.0296359993517399</threshold> 17815 <left_val>-0.2252479940652847</left_val> 17816 <right_val>0.4540010094642639</right_val></_></_> 17817 <_> 17818 <!-- tree 47 --> 17819 <_> 17820 <!-- root node --> 17821 <feature> 17822 <rects> 17823 <_>0 5 24 4 -1.</_> 17824 <_>0 7 24 2 2.</_></rects> 17825 <tilted>0</tilted></feature> 17826 <threshold>-1.2199999764561653e-004</threshold> 17827 <left_val>0.2740910053253174</left_val> 17828 <right_val>-0.3737139999866486</right_val></_></_> 17829 <_> 17830 <!-- tree 48 --> 17831 <_> 17832 <!-- root node --> 17833 <feature> 17834 <rects> 17835 <_>10 2 4 15 -1.</_> 17836 <_>10 7 4 5 3.</_></rects> 17837 <tilted>0</tilted></feature> 17838 <threshold>-0.0420980006456375</threshold> 17839 <left_val>-0.7582880258560181</left_val> 17840 <right_val>0.0171370003372431</right_val></_></_> 17841 <_> 17842 <!-- tree 49 --> 17843 <_> 17844 <!-- root node --> 17845 <feature> 17846 <rects> 17847 <_>10 7 6 12 -1.</_> 17848 <_>10 13 6 6 2.</_></rects> 17849 <tilted>0</tilted></feature> 17850 <threshold>-0.0225050002336502</threshold> 17851 <left_val>-0.2275930047035217</left_val> 17852 <right_val>0.2369869947433472</right_val></_></_> 17853 <_> 17854 <!-- tree 50 --> 17855 <_> 17856 <!-- root node --> 17857 <feature> 17858 <rects> 17859 <_>6 6 6 9 -1.</_> 17860 <_>8 6 2 9 3.</_></rects> 17861 <tilted>0</tilted></feature> 17862 <threshold>-0.0128629999235272</threshold> 17863 <left_val>0.1925240010023117</left_val> 17864 <right_val>-0.3212710022926331</right_val></_></_> 17865 <_> 17866 <!-- tree 51 --> 17867 <_> 17868 <!-- root node --> 17869 <feature> 17870 <rects> 17871 <_>11 0 6 9 -1.</_> 17872 <_>13 0 2 9 3.</_></rects> 17873 <tilted>0</tilted></feature> 17874 <threshold>0.0278600007295609</threshold> 17875 <left_val>0.1672369986772537</left_val> 17876 <right_val>-1.0209059715270996</right_val></_></_> 17877 <_> 17878 <!-- tree 52 --> 17879 <_> 17880 <!-- root node --> 17881 <feature> 17882 <rects> 17883 <_>9 7 6 9 -1.</_> 17884 <_>11 7 2 9 3.</_></rects> 17885 <tilted>0</tilted></feature> 17886 <threshold>-0.0278079994022846</threshold> 17887 <left_val>1.2824759483337402</left_val> 17888 <right_val>-0.1722529977560043</right_val></_></_> 17889 <_> 17890 <!-- tree 53 --> 17891 <_> 17892 <!-- root node --> 17893 <feature> 17894 <rects> 17895 <_>2 1 20 3 -1.</_> 17896 <_>2 2 20 1 3.</_></rects> 17897 <tilted>0</tilted></feature> 17898 <threshold>-6.1630001291632652e-003</threshold> 17899 <left_val>-0.5407289862632752</left_val> 17900 <right_val>0.2388570010662079</right_val></_></_> 17901 <_> 17902 <!-- tree 54 --> 17903 <_> 17904 <!-- root node --> 17905 <feature> 17906 <rects> 17907 <_>1 18 12 6 -1.</_> 17908 <_>1 18 6 3 2.</_> 17909 <_>7 21 6 3 2.</_></rects> 17910 <tilted>0</tilted></feature> 17911 <threshold>-0.0204360000789166</threshold> 17912 <left_val>0.6335539817810059</left_val> 17913 <right_val>-0.2109059989452362</right_val></_></_> 17914 <_> 17915 <!-- tree 55 --> 17916 <_> 17917 <!-- root node --> 17918 <feature> 17919 <rects> 17920 <_>13 2 4 13 -1.</_> 17921 <_>13 2 2 13 2.</_></rects> 17922 <tilted>0</tilted></feature> 17923 <threshold>-0.0123079996556044</threshold> 17924 <left_val>-0.4977819919586182</left_val> 17925 <right_val>0.1740259975194931</right_val></_></_> 17926 <_> 17927 <!-- tree 56 --> 17928 <_> 17929 <!-- root node --> 17930 <feature> 17931 <rects> 17932 <_>6 7 12 4 -1.</_> 17933 <_>12 7 6 4 2.</_></rects> 17934 <tilted>0</tilted></feature> 17935 <threshold>-0.0404939986765385</threshold> 17936 <left_val>-1.1848740577697754</left_val> 17937 <right_val>-0.0338909998536110</right_val></_></_> 17938 <_> 17939 <!-- tree 57 --> 17940 <_> 17941 <!-- root node --> 17942 <feature> 17943 <rects> 17944 <_>10 1 4 13 -1.</_> 17945 <_>10 1 2 13 2.</_></rects> 17946 <tilted>0</tilted></feature> 17947 <threshold>0.0296570006757975</threshold> 17948 <left_val>0.0217409990727901</left_val> 17949 <right_val>1.0069919824600220</right_val></_></_> 17950 <_> 17951 <!-- tree 58 --> 17952 <_> 17953 <!-- root node --> 17954 <feature> 17955 <rects> 17956 <_>6 0 3 18 -1.</_> 17957 <_>7 0 1 18 3.</_></rects> 17958 <tilted>0</tilted></feature> 17959 <threshold>6.8379999138414860e-003</threshold> 17960 <left_val>0.0292179994285107</left_val> 17961 <right_val>-0.5990629792213440</right_val></_></_> 17962 <_> 17963 <!-- tree 59 --> 17964 <_> 17965 <!-- root node --> 17966 <feature> 17967 <rects> 17968 <_>14 3 10 5 -1.</_> 17969 <_>14 3 5 5 2.</_></rects> 17970 <tilted>0</tilted></feature> 17971 <threshold>0.0161649994552135</threshold> 17972 <left_val>-0.2100079953670502</left_val> 17973 <right_val>0.3763729929924011</right_val></_></_> 17974 <_> 17975 <!-- tree 60 --> 17976 <_> 17977 <!-- root node --> 17978 <feature> 17979 <rects> 17980 <_>6 15 12 8 -1.</_> 17981 <_>10 15 4 8 3.</_></rects> 17982 <tilted>0</tilted></feature> 17983 <threshold>0.0501930005848408</threshold> 17984 <left_val>2.5319999549537897e-003</left_val> 17985 <right_val>-0.7166820168495178</right_val></_></_> 17986 <_> 17987 <!-- tree 61 --> 17988 <_> 17989 <!-- root node --> 17990 <feature> 17991 <rects> 17992 <_>9 10 6 9 -1.</_> 17993 <_>11 10 2 9 3.</_></rects> 17994 <tilted>0</tilted></feature> 17995 <threshold>1.9680000841617584e-003</threshold> 17996 <left_val>-0.2192140072584152</left_val> 17997 <right_val>0.3229869902133942</right_val></_></_> 17998 <_> 17999 <!-- tree 62 --> 18000 <_> 18001 <!-- root node --> 18002 <feature> 18003 <rects> 18004 <_>8 3 4 9 -1.</_> 18005 <_>10 3 2 9 2.</_></rects> 18006 <tilted>0</tilted></feature> 18007 <threshold>0.0249799992889166</threshold> 18008 <left_val>-9.6840001642704010e-003</left_val> 18009 <right_val>-0.7757290005683899</right_val></_></_> 18010 <_> 18011 <!-- tree 63 --> 18012 <_> 18013 <!-- root node --> 18014 <feature> 18015 <rects> 18016 <_>17 0 6 14 -1.</_> 18017 <_>20 0 3 7 2.</_> 18018 <_>17 7 3 7 2.</_></rects> 18019 <tilted>0</tilted></feature> 18020 <threshold>-0.0158099997788668</threshold> 18021 <left_val>0.4463750123977661</left_val> 18022 <right_val>-0.0617600008845329</right_val></_></_> 18023 <_> 18024 <!-- tree 64 --> 18025 <_> 18026 <!-- root node --> 18027 <feature> 18028 <rects> 18029 <_>1 0 6 14 -1.</_> 18030 <_>1 0 3 7 2.</_> 18031 <_>4 7 3 7 2.</_></rects> 18032 <tilted>0</tilted></feature> 18033 <threshold>0.0372069999575615</threshold> 18034 <left_val>-0.2049539983272553</left_val> 18035 <right_val>0.5772219896316528</right_val></_></_> 18036 <_> 18037 <!-- tree 65 --> 18038 <_> 18039 <!-- root node --> 18040 <feature> 18041 <rects> 18042 <_>14 0 6 16 -1.</_> 18043 <_>17 0 3 8 2.</_> 18044 <_>14 8 3 8 2.</_></rects> 18045 <tilted>0</tilted></feature> 18046 <threshold>-0.0792649984359741</threshold> 18047 <left_val>-0.7674540281295776</left_val> 18048 <right_val>0.1255040019750595</right_val></_></_> 18049 <_> 18050 <!-- tree 66 --> 18051 <_> 18052 <!-- root node --> 18053 <feature> 18054 <rects> 18055 <_>7 4 4 10 -1.</_> 18056 <_>9 4 2 10 2.</_></rects> 18057 <tilted>0</tilted></feature> 18058 <threshold>-0.0171520002186298</threshold> 18059 <left_val>-1.4121830463409424</left_val> 18060 <right_val>-0.0517040006816387</right_val></_></_> 18061 <_> 18062 <!-- tree 67 --> 18063 <_> 18064 <!-- root node --> 18065 <feature> 18066 <rects> 18067 <_>3 17 18 6 -1.</_> 18068 <_>12 17 9 3 2.</_> 18069 <_>3 20 9 3 2.</_></rects> 18070 <tilted>0</tilted></feature> 18071 <threshold>0.0327400006353855</threshold> 18072 <left_val>0.1933400034904480</left_val> 18073 <right_val>-0.6363369822502136</right_val></_></_> 18074 <_> 18075 <!-- tree 68 --> 18076 <_> 18077 <!-- root node --> 18078 <feature> 18079 <rects> 18080 <_>1 20 22 4 -1.</_> 18081 <_>12 20 11 4 2.</_></rects> 18082 <tilted>0</tilted></feature> 18083 <threshold>-0.1175699979066849</threshold> 18084 <left_val>0.8432540297508240</left_val> 18085 <right_val>-0.1801860034465790</right_val></_></_> 18086 <_> 18087 <!-- tree 69 --> 18088 <_> 18089 <!-- root node --> 18090 <feature> 18091 <rects> 18092 <_>14 3 10 5 -1.</_> 18093 <_>14 3 5 5 2.</_></rects> 18094 <tilted>0</tilted></feature> 18095 <threshold>0.1205720007419586</threshold> 18096 <left_val>0.1253000050783157</left_val> 18097 <right_val>-2.1213600635528564</right_val></_></_> 18098 <_> 18099 <!-- tree 70 --> 18100 <_> 18101 <!-- root node --> 18102 <feature> 18103 <rects> 18104 <_>0 3 10 5 -1.</_> 18105 <_>5 3 5 5 2.</_></rects> 18106 <tilted>0</tilted></feature> 18107 <threshold>4.2779999785125256e-003</threshold> 18108 <left_val>-0.4660440087318420</left_val> 18109 <right_val>0.0896439999341965</right_val></_></_> 18110 <_> 18111 <!-- tree 71 --> 18112 <_> 18113 <!-- root node --> 18114 <feature> 18115 <rects> 18116 <_>12 6 12 16 -1.</_> 18117 <_>16 6 4 16 3.</_></rects> 18118 <tilted>0</tilted></feature> 18119 <threshold>-0.0725449994206429</threshold> 18120 <left_val>0.5182650089263916</left_val> 18121 <right_val>0.0168239995837212</right_val></_></_> 18122 <_> 18123 <!-- tree 72 --> 18124 <_> 18125 <!-- root node --> 18126 <feature> 18127 <rects> 18128 <_>0 6 12 16 -1.</_> 18129 <_>4 6 4 16 3.</_></rects> 18130 <tilted>0</tilted></feature> 18131 <threshold>0.1771059930324554</threshold> 18132 <left_val>-0.0309100002050400</left_val> 18133 <right_val>-1.1046639680862427</right_val></_></_> 18134 <_> 18135 <!-- tree 73 --> 18136 <_> 18137 <!-- root node --> 18138 <feature> 18139 <rects> 18140 <_>10 9 5 15 -1.</_> 18141 <_>10 14 5 5 3.</_></rects> 18142 <tilted>0</tilted></feature> 18143 <threshold>8.4229996427893639e-003</threshold> 18144 <left_val>0.2444580048322678</left_val> 18145 <right_val>-0.3861309885978699</right_val></_></_> 18146 <_> 18147 <!-- tree 74 --> 18148 <_> 18149 <!-- root node --> 18150 <feature> 18151 <rects> 18152 <_>1 18 21 2 -1.</_> 18153 <_>1 19 21 1 2.</_></rects> 18154 <tilted>0</tilted></feature> 18155 <threshold>-0.0130350003018975</threshold> 18156 <left_val>0.9800440073013306</left_val> 18157 <right_val>-0.1701650023460388</right_val></_></_> 18158 <_> 18159 <!-- tree 75 --> 18160 <_> 18161 <!-- root node --> 18162 <feature> 18163 <rects> 18164 <_>15 0 9 6 -1.</_> 18165 <_>15 2 9 2 3.</_></rects> 18166 <tilted>0</tilted></feature> 18167 <threshold>0.0189120005816221</threshold> 18168 <left_val>0.2024849951267242</left_val> 18169 <right_val>-0.3854590058326721</right_val></_></_> 18170 <_> 18171 <!-- tree 76 --> 18172 <_> 18173 <!-- root node --> 18174 <feature> 18175 <rects> 18176 <_>6 1 12 4 -1.</_> 18177 <_>12 1 6 4 2.</_></rects> 18178 <tilted>0</tilted></feature> 18179 <threshold>0.0214479994028807</threshold> 18180 <left_val>-0.2571719884872437</left_val> 18181 <right_val>0.3518120050430298</right_val></_></_> 18182 <_> 18183 <!-- tree 77 --> 18184 <_> 18185 <!-- root node --> 18186 <feature> 18187 <rects> 18188 <_>6 0 12 12 -1.</_> 18189 <_>12 0 6 6 2.</_> 18190 <_>6 6 6 6 2.</_></rects> 18191 <tilted>0</tilted></feature> 18192 <threshold>0.0633570030331612</threshold> 18193 <left_val>0.1699479967355728</left_val> 18194 <right_val>-0.9138380289077759</right_val></_></_> 18195 <_> 18196 <!-- tree 78 --> 18197 <_> 18198 <!-- root node --> 18199 <feature> 18200 <rects> 18201 <_>8 10 8 12 -1.</_> 18202 <_>8 10 4 6 2.</_> 18203 <_>12 16 4 6 2.</_></rects> 18204 <tilted>0</tilted></feature> 18205 <threshold>-0.0324359983205795</threshold> 18206 <left_val>-0.8568159937858582</left_val> 18207 <right_val>-0.0216809995472431</right_val></_></_> 18208 <_> 18209 <!-- tree 79 --> 18210 <_> 18211 <!-- root node --> 18212 <feature> 18213 <rects> 18214 <_>14 16 10 8 -1.</_> 18215 <_>19 16 5 4 2.</_> 18216 <_>14 20 5 4 2.</_></rects> 18217 <tilted>0</tilted></feature> 18218 <threshold>-0.0235649999231100</threshold> 18219 <left_val>0.5611559748649597</left_val> 18220 <right_val>-2.2400000307243317e-004</right_val></_></_> 18221 <_> 18222 <!-- tree 80 --> 18223 <_> 18224 <!-- root node --> 18225 <feature> 18226 <rects> 18227 <_>0 16 10 8 -1.</_> 18228 <_>0 16 5 4 2.</_> 18229 <_>5 20 5 4 2.</_></rects> 18230 <tilted>0</tilted></feature> 18231 <threshold>0.0187890008091927</threshold> 18232 <left_val>-0.2545979917049408</left_val> 18233 <right_val>0.3451290130615234</right_val></_></_> 18234 <_> 18235 <!-- tree 81 --> 18236 <_> 18237 <!-- root node --> 18238 <feature> 18239 <rects> 18240 <_>10 12 12 5 -1.</_> 18241 <_>14 12 4 5 3.</_></rects> 18242 <tilted>0</tilted></feature> 18243 <threshold>0.0310420002788305</threshold> 18244 <left_val>7.5719999149441719e-003</left_val> 18245 <right_val>0.3480019867420197</right_val></_></_> 18246 <_> 18247 <!-- tree 82 --> 18248 <_> 18249 <!-- root node --> 18250 <feature> 18251 <rects> 18252 <_>6 16 10 8 -1.</_> 18253 <_>6 16 5 4 2.</_> 18254 <_>11 20 5 4 2.</_></rects> 18255 <tilted>0</tilted></feature> 18256 <threshold>-0.0112269995734096</threshold> 18257 <left_val>-0.6021980047225952</left_val> 18258 <right_val>0.0428149998188019</right_val></_></_> 18259 <_> 18260 <!-- tree 83 --> 18261 <_> 18262 <!-- root node --> 18263 <feature> 18264 <rects> 18265 <_>7 6 12 6 -1.</_> 18266 <_>13 6 6 3 2.</_> 18267 <_>7 9 6 3 2.</_></rects> 18268 <tilted>0</tilted></feature> 18269 <threshold>-0.0128459995612502</threshold> 18270 <left_val>0.4202040135860443</left_val> 18271 <right_val>-0.0538010001182556</right_val></_></_> 18272 <_> 18273 <!-- tree 84 --> 18274 <_> 18275 <!-- root node --> 18276 <feature> 18277 <rects> 18278 <_>9 6 4 18 -1.</_> 18279 <_>9 6 2 9 2.</_> 18280 <_>11 15 2 9 2.</_></rects> 18281 <tilted>0</tilted></feature> 18282 <threshold>-0.0127919996157289</threshold> 18283 <left_val>0.2272450029850006</left_val> 18284 <right_val>-0.3239800035953522</right_val></_></_> 18285 <_> 18286 <!-- tree 85 --> 18287 <_> 18288 <!-- root node --> 18289 <feature> 18290 <rects> 18291 <_>10 9 6 14 -1.</_> 18292 <_>13 9 3 7 2.</_> 18293 <_>10 16 3 7 2.</_></rects> 18294 <tilted>0</tilted></feature> 18295 <threshold>0.0686519965529442</threshold> 18296 <left_val>0.0935320034623146</left_val> 18297 <right_val>10.</right_val></_></_> 18298 <_> 18299 <!-- tree 86 --> 18300 <_> 18301 <!-- root node --> 18302 <feature> 18303 <rects> 18304 <_>8 9 6 14 -1.</_> 18305 <_>8 9 3 7 2.</_> 18306 <_>11 16 3 7 2.</_></rects> 18307 <tilted>0</tilted></feature> 18308 <threshold>5.2789999172091484e-003</threshold> 18309 <left_val>-0.2692629992961884</left_val> 18310 <right_val>0.3330320119857788</right_val></_></_> 18311 <_> 18312 <!-- tree 87 --> 18313 <_> 18314 <!-- root node --> 18315 <feature> 18316 <rects> 18317 <_>7 4 11 12 -1.</_> 18318 <_>7 10 11 6 2.</_></rects> 18319 <tilted>0</tilted></feature> 18320 <threshold>-0.0387790016829968</threshold> 18321 <left_val>-0.7236530184745789</left_val> 18322 <right_val>0.1780650019645691</right_val></_></_> 18323 <_> 18324 <!-- tree 88 --> 18325 <_> 18326 <!-- root node --> 18327 <feature> 18328 <rects> 18329 <_>4 8 6 16 -1.</_> 18330 <_>4 8 3 8 2.</_> 18331 <_>7 16 3 8 2.</_></rects> 18332 <tilted>0</tilted></feature> 18333 <threshold>6.1820000410079956e-003</threshold> 18334 <left_val>-0.3511939942836762</left_val> 18335 <right_val>0.1658630073070526</right_val></_></_> 18336 <_> 18337 <!-- tree 89 --> 18338 <_> 18339 <!-- root node --> 18340 <feature> 18341 <rects> 18342 <_>17 3 4 21 -1.</_> 18343 <_>17 10 4 7 3.</_></rects> 18344 <tilted>0</tilted></feature> 18345 <threshold>0.1751520037651062</threshold> 18346 <left_val>0.1162310019135475</left_val> 18347 <right_val>-1.5419290065765381</right_val></_></_> 18348 <_> 18349 <!-- tree 90 --> 18350 <_> 18351 <!-- root node --> 18352 <feature> 18353 <rects> 18354 <_>3 3 4 21 -1.</_> 18355 <_>3 10 4 7 3.</_></rects> 18356 <tilted>0</tilted></feature> 18357 <threshold>0.1162799969315529</threshold> 18358 <left_val>-9.1479998081922531e-003</left_val> 18359 <right_val>-0.9984260201454163</right_val></_></_> 18360 <_> 18361 <!-- tree 91 --> 18362 <_> 18363 <!-- root node --> 18364 <feature> 18365 <rects> 18366 <_>10 1 8 18 -1.</_> 18367 <_>14 1 4 9 2.</_> 18368 <_>10 10 4 9 2.</_></rects> 18369 <tilted>0</tilted></feature> 18370 <threshold>-0.0229640007019043</threshold> 18371 <left_val>0.2056539952754974</left_val> 18372 <right_val>0.0154320001602173</right_val></_></_> 18373 <_> 18374 <!-- tree 92 --> 18375 <_> 18376 <!-- root node --> 18377 <feature> 18378 <rects> 18379 <_>2 5 16 8 -1.</_> 18380 <_>2 5 8 4 2.</_> 18381 <_>10 9 8 4 2.</_></rects> 18382 <tilted>0</tilted></feature> 18383 <threshold>-0.0514100007712841</threshold> 18384 <left_val>0.5807240009307861</left_val> 18385 <right_val>-0.2011840045452118</right_val></_></_> 18386 <_> 18387 <!-- tree 93 --> 18388 <_> 18389 <!-- root node --> 18390 <feature> 18391 <rects> 18392 <_>3 6 18 12 -1.</_> 18393 <_>3 10 18 4 3.</_></rects> 18394 <tilted>0</tilted></feature> 18395 <threshold>0.2247419953346252</threshold> 18396 <left_val>0.0187289994210005</left_val> 18397 <right_val>1.0829299688339233</right_val></_></_> 18398 <_> 18399 <!-- tree 94 --> 18400 <_> 18401 <!-- root node --> 18402 <feature> 18403 <rects> 18404 <_>4 10 16 12 -1.</_> 18405 <_>4 14 16 4 3.</_></rects> 18406 <tilted>0</tilted></feature> 18407 <threshold>9.4860000535845757e-003</threshold> 18408 <left_val>-0.3317129909992218</left_val> 18409 <right_val>0.1990299969911575</right_val></_></_> 18410 <_> 18411 <!-- tree 95 --> 18412 <_> 18413 <!-- root node --> 18414 <feature> 18415 <rects> 18416 <_>15 4 8 20 -1.</_> 18417 <_>19 4 4 10 2.</_> 18418 <_>15 14 4 10 2.</_></rects> 18419 <tilted>0</tilted></feature> 18420 <threshold>-0.1184630021452904</threshold> 18421 <left_val>1.3711010217666626</left_val> 18422 <right_val>0.0689269974827766</right_val></_></_> 18423 <_> 18424 <!-- tree 96 --> 18425 <_> 18426 <!-- root node --> 18427 <feature> 18428 <rects> 18429 <_>7 2 9 6 -1.</_> 18430 <_>10 2 3 6 3.</_></rects> 18431 <tilted>0</tilted></feature> 18432 <threshold>0.0378109999001026</threshold> 18433 <left_val>-9.3600002583116293e-004</left_val> 18434 <right_val>-0.8399699926376343</right_val></_></_> 18435 <_> 18436 <!-- tree 97 --> 18437 <_> 18438 <!-- root node --> 18439 <feature> 18440 <rects> 18441 <_>15 4 8 20 -1.</_> 18442 <_>19 4 4 10 2.</_> 18443 <_>15 14 4 10 2.</_></rects> 18444 <tilted>0</tilted></feature> 18445 <threshold>0.0222020000219345</threshold> 18446 <left_val>-0.0119639998301864</left_val> 18447 <right_val>0.3667399883270264</right_val></_></_> 18448 <_> 18449 <!-- tree 98 --> 18450 <_> 18451 <!-- root node --> 18452 <feature> 18453 <rects> 18454 <_>1 4 8 20 -1.</_> 18455 <_>1 4 4 10 2.</_> 18456 <_>5 14 4 10 2.</_></rects> 18457 <tilted>0</tilted></feature> 18458 <threshold>-0.0363660007715225</threshold> 18459 <left_val>0.3786650002002716</left_val> 18460 <right_val>-0.2771480083465576</right_val></_></_> 18461 <_> 18462 <!-- tree 99 --> 18463 <_> 18464 <!-- root node --> 18465 <feature> 18466 <rects> 18467 <_>11 8 8 14 -1.</_> 18468 <_>15 8 4 7 2.</_> 18469 <_>11 15 4 7 2.</_></rects> 18470 <tilted>0</tilted></feature> 18471 <threshold>-0.1318469941616058</threshold> 18472 <left_val>-2.7481179237365723</left_val> 18473 <right_val>0.1066690012812614</right_val></_></_> 18474 <_> 18475 <!-- tree 100 --> 18476 <_> 18477 <!-- root node --> 18478 <feature> 18479 <rects> 18480 <_>5 8 8 14 -1.</_> 18481 <_>5 8 4 7 2.</_> 18482 <_>9 15 4 7 2.</_></rects> 18483 <tilted>0</tilted></feature> 18484 <threshold>-0.0416559986770153</threshold> 18485 <left_val>0.4752430021762848</left_val> 18486 <right_val>-0.2324980050325394</right_val></_></_> 18487 <_> 18488 <!-- tree 101 --> 18489 <_> 18490 <!-- root node --> 18491 <feature> 18492 <rects> 18493 <_>10 13 5 8 -1.</_> 18494 <_>10 17 5 4 2.</_></rects> 18495 <tilted>0</tilted></feature> 18496 <threshold>-0.0331519991159439</threshold> 18497 <left_val>-0.5792940258979797</left_val> 18498 <right_val>0.1743440032005310</right_val></_></_> 18499 <_> 18500 <!-- tree 102 --> 18501 <_> 18502 <!-- root node --> 18503 <feature> 18504 <rects> 18505 <_>4 13 7 9 -1.</_> 18506 <_>4 16 7 3 3.</_></rects> 18507 <tilted>0</tilted></feature> 18508 <threshold>0.0157699994742870</threshold> 18509 <left_val>-0.0112840002402663</left_val> 18510 <right_val>-0.8370140194892883</right_val></_></_> 18511 <_> 18512 <!-- tree 103 --> 18513 <_> 18514 <!-- root node --> 18515 <feature> 18516 <rects> 18517 <_>0 13 24 10 -1.</_> 18518 <_>0 18 24 5 2.</_></rects> 18519 <tilted>0</tilted></feature> 18520 <threshold>-0.0393630005419254</threshold> 18521 <left_val>0.3482159972190857</left_val> 18522 <right_val>-0.1745540052652359</right_val></_></_> 18523 <_> 18524 <!-- tree 104 --> 18525 <_> 18526 <!-- root node --> 18527 <feature> 18528 <rects> 18529 <_>4 2 8 11 -1.</_> 18530 <_>8 2 4 11 2.</_></rects> 18531 <tilted>0</tilted></feature> 18532 <threshold>-0.0678490027785301</threshold> 18533 <left_val>1.4225699901580811</left_val> 18534 <right_val>-0.1476559937000275</right_val></_></_> 18535 <_> 18536 <!-- tree 105 --> 18537 <_> 18538 <!-- root node --> 18539 <feature> 18540 <rects> 18541 <_>10 2 8 16 -1.</_> 18542 <_>14 2 4 8 2.</_> 18543 <_>10 10 4 8 2.</_></rects> 18544 <tilted>0</tilted></feature> 18545 <threshold>-0.0267750006169081</threshold> 18546 <left_val>0.2394700050354004</left_val> 18547 <right_val>0.0132719995453954</right_val></_></_> 18548 <_> 18549 <!-- tree 106 --> 18550 <_> 18551 <!-- root node --> 18552 <feature> 18553 <rects> 18554 <_>0 2 24 6 -1.</_> 18555 <_>0 2 12 3 2.</_> 18556 <_>12 5 12 3 2.</_></rects> 18557 <tilted>0</tilted></feature> 18558 <threshold>0.0399190001189709</threshold> 18559 <left_val>-8.9999996125698090e-003</left_val> 18560 <right_val>-0.7593889832496643</right_val></_></_> 18561 <_> 18562 <!-- tree 107 --> 18563 <_> 18564 <!-- root node --> 18565 <feature> 18566 <rects> 18567 <_>6 0 12 9 -1.</_> 18568 <_>6 3 12 3 3.</_></rects> 18569 <tilted>0</tilted></feature> 18570 <threshold>0.1006560027599335</threshold> 18571 <left_val>-0.0186850000172853</left_val> 18572 <right_val>0.7624530196189880</right_val></_></_> 18573 <_> 18574 <!-- tree 108 --> 18575 <_> 18576 <!-- root node --> 18577 <feature> 18578 <rects> 18579 <_>1 2 12 12 -1.</_> 18580 <_>1 2 6 6 2.</_> 18581 <_>7 8 6 6 2.</_></rects> 18582 <tilted>0</tilted></feature> 18583 <threshold>-0.0810220018029213</threshold> 18584 <left_val>-0.9043909907341003</left_val> 18585 <right_val>-8.5880002006888390e-003</right_val></_></_> 18586 <_> 18587 <!-- tree 109 --> 18588 <_> 18589 <!-- root node --> 18590 <feature> 18591 <rects> 18592 <_>18 5 6 9 -1.</_> 18593 <_>18 8 6 3 3.</_></rects> 18594 <tilted>0</tilted></feature> 18595 <threshold>-0.0212580002844334</threshold> 18596 <left_val>-0.2131959944963455</left_val> 18597 <right_val>0.2191970050334930</right_val></_></_> 18598 <_> 18599 <!-- tree 110 --> 18600 <_> 18601 <!-- root node --> 18602 <feature> 18603 <rects> 18604 <_>4 3 8 10 -1.</_> 18605 <_>4 3 4 5 2.</_> 18606 <_>8 8 4 5 2.</_></rects> 18607 <tilted>0</tilted></feature> 18608 <threshold>-0.0106309996917844</threshold> 18609 <left_val>0.1959809958934784</left_val> 18610 <right_val>-0.3576810061931610</right_val></_></_> 18611 <_> 18612 <!-- tree 111 --> 18613 <_> 18614 <!-- root node --> 18615 <feature> 18616 <rects> 18617 <_>6 21 18 3 -1.</_> 18618 <_>6 22 18 1 3.</_></rects> 18619 <tilted>0</tilted></feature> 18620 <threshold>8.1300002057105303e-004</threshold> 18621 <left_val>-0.0927949994802475</left_val> 18622 <right_val>0.2614589929580689</right_val></_></_> 18623 <_> 18624 <!-- tree 112 --> 18625 <_> 18626 <!-- root node --> 18627 <feature> 18628 <rects> 18629 <_>1 10 18 2 -1.</_> 18630 <_>1 11 18 1 2.</_></rects> 18631 <tilted>0</tilted></feature> 18632 <threshold>3.4650000743567944e-003</threshold> 18633 <left_val>-0.5533609986305237</left_val> 18634 <right_val>0.0273860003799200</right_val></_></_> 18635 <_> 18636 <!-- tree 113 --> 18637 <_> 18638 <!-- root node --> 18639 <feature> 18640 <rects> 18641 <_>1 10 22 3 -1.</_> 18642 <_>1 11 22 1 3.</_></rects> 18643 <tilted>0</tilted></feature> 18644 <threshold>0.0188359990715981</threshold> 18645 <left_val>0.1844609975814819</left_val> 18646 <right_val>-0.6693429946899414</right_val></_></_> 18647 <_> 18648 <!-- tree 114 --> 18649 <_> 18650 <!-- root node --> 18651 <feature> 18652 <rects> 18653 <_>2 8 12 9 -1.</_> 18654 <_>2 11 12 3 3.</_></rects> 18655 <tilted>0</tilted></feature> 18656 <threshold>-0.0256319995969534</threshold> 18657 <left_val>1.9382879734039307</left_val> 18658 <right_val>-0.1470890045166016</right_val></_></_> 18659 <_> 18660 <!-- tree 115 --> 18661 <_> 18662 <!-- root node --> 18663 <feature> 18664 <rects> 18665 <_>12 8 12 6 -1.</_> 18666 <_>18 8 6 3 2.</_> 18667 <_>12 11 6 3 2.</_></rects> 18668 <tilted>0</tilted></feature> 18669 <threshold>-4.0939999744296074e-003</threshold> 18670 <left_val>-0.2645159959793091</left_val> 18671 <right_val>0.2073320001363754</right_val></_></_> 18672 <_> 18673 <!-- tree 116 --> 18674 <_> 18675 <!-- root node --> 18676 <feature> 18677 <rects> 18678 <_>0 8 12 6 -1.</_> 18679 <_>0 8 6 3 2.</_> 18680 <_>6 11 6 3 2.</_></rects> 18681 <tilted>0</tilted></feature> 18682 <threshold>-8.9199998183175921e-004</threshold> 18683 <left_val>-0.5503159761428833</left_val> 18684 <right_val>0.0503749996423721</right_val></_></_> 18685 <_> 18686 <!-- tree 117 --> 18687 <_> 18688 <!-- root node --> 18689 <feature> 18690 <rects> 18691 <_>10 15 6 9 -1.</_> 18692 <_>12 15 2 9 3.</_></rects> 18693 <tilted>0</tilted></feature> 18694 <threshold>-0.0495180003345013</threshold> 18695 <left_val>-2.5615389347076416</left_val> 18696 <right_val>0.1314170062541962</right_val></_></_> 18697 <_> 18698 <!-- tree 118 --> 18699 <_> 18700 <!-- root node --> 18701 <feature> 18702 <rects> 18703 <_>7 13 9 6 -1.</_> 18704 <_>7 15 9 2 3.</_></rects> 18705 <tilted>0</tilted></feature> 18706 <threshold>0.0116809997707605</threshold> 18707 <left_val>-0.2481980025768280</left_val> 18708 <right_val>0.3998270034790039</right_val></_></_> 18709 <_> 18710 <!-- tree 119 --> 18711 <_> 18712 <!-- root node --> 18713 <feature> 18714 <rects> 18715 <_>9 8 7 12 -1.</_> 18716 <_>9 14 7 6 2.</_></rects> 18717 <tilted>0</tilted></feature> 18718 <threshold>0.0345639996230602</threshold> 18719 <left_val>0.1617880016565323</left_val> 18720 <right_val>-0.7141889929771423</right_val></_></_> 18721 <_> 18722 <!-- tree 120 --> 18723 <_> 18724 <!-- root node --> 18725 <feature> 18726 <rects> 18727 <_>4 13 9 6 -1.</_> 18728 <_>7 13 3 6 3.</_></rects> 18729 <tilted>0</tilted></feature> 18730 <threshold>-8.2909995689988136e-003</threshold> 18731 <left_val>0.2218009978532791</left_val> 18732 <right_val>-0.2918170094490051</right_val></_></_> 18733 <_> 18734 <!-- tree 121 --> 18735 <_> 18736 <!-- root node --> 18737 <feature> 18738 <rects> 18739 <_>6 15 18 4 -1.</_> 18740 <_>12 15 6 4 3.</_></rects> 18741 <tilted>0</tilted></feature> 18742 <threshold>-0.0223580002784729</threshold> 18743 <left_val>0.3104409873485565</left_val> 18744 <right_val>-2.7280000504106283e-003</right_val></_></_> 18745 <_> 18746 <!-- tree 122 --> 18747 <_> 18748 <!-- root node --> 18749 <feature> 18750 <rects> 18751 <_>5 4 4 16 -1.</_> 18752 <_>7 4 2 16 2.</_></rects> 18753 <tilted>0</tilted></feature> 18754 <threshold>-0.0308010000735521</threshold> 18755 <left_val>-0.9567270278930664</left_val> 18756 <right_val>-8.3400001749396324e-003</right_val></_></_> 18757 <_> 18758 <!-- tree 123 --> 18759 <_> 18760 <!-- root node --> 18761 <feature> 18762 <rects> 18763 <_>10 15 6 9 -1.</_> 18764 <_>12 15 2 9 3.</_></rects> 18765 <tilted>0</tilted></feature> 18766 <threshold>0.0437790006399155</threshold> 18767 <left_val>0.1255690008401871</left_val> 18768 <right_val>-1.1759619712829590</right_val></_></_> 18769 <_> 18770 <!-- tree 124 --> 18771 <_> 18772 <!-- root node --> 18773 <feature> 18774 <rects> 18775 <_>8 15 6 9 -1.</_> 18776 <_>10 15 2 9 3.</_></rects> 18777 <tilted>0</tilted></feature> 18778 <threshold>0.0430460013449192</threshold> 18779 <left_val>-0.0588769987225533</left_val> 18780 <right_val>-1.8568470478057861</right_val></_></_> 18781 <_> 18782 <!-- tree 125 --> 18783 <_> 18784 <!-- root node --> 18785 <feature> 18786 <rects> 18787 <_>9 11 12 10 -1.</_> 18788 <_>15 11 6 5 2.</_> 18789 <_>9 16 6 5 2.</_></rects> 18790 <tilted>0</tilted></feature> 18791 <threshold>0.0271889995783567</threshold> 18792 <left_val>0.0428580008447170</left_val> 18793 <right_val>0.3903670012950897</right_val></_></_> 18794 <_> 18795 <!-- tree 126 --> 18796 <_> 18797 <!-- root node --> 18798 <feature> 18799 <rects> 18800 <_>3 6 14 6 -1.</_> 18801 <_>3 8 14 2 3.</_></rects> 18802 <tilted>0</tilted></feature> 18803 <threshold>9.4149997457861900e-003</threshold> 18804 <left_val>-0.0435670018196106</left_val> 18805 <right_val>-1.1094470024108887</right_val></_></_> 18806 <_> 18807 <!-- tree 127 --> 18808 <_> 18809 <!-- root node --> 18810 <feature> 18811 <rects> 18812 <_>4 2 17 8 -1.</_> 18813 <_>4 6 17 4 2.</_></rects> 18814 <tilted>0</tilted></feature> 18815 <threshold>0.0943119972944260</threshold> 18816 <left_val>0.0402569994330406</left_val> 18817 <right_val>0.9844229817390442</right_val></_></_> 18818 <_> 18819 <!-- tree 128 --> 18820 <_> 18821 <!-- root node --> 18822 <feature> 18823 <rects> 18824 <_>6 2 12 21 -1.</_> 18825 <_>6 9 12 7 3.</_></rects> 18826 <tilted>0</tilted></feature> 18827 <threshold>0.1702509969472885</threshold> 18828 <left_val>0.0295100007206202</left_val> 18829 <right_val>-0.6950929760932922</right_val></_></_> 18830 <_> 18831 <!-- tree 129 --> 18832 <_> 18833 <!-- root node --> 18834 <feature> 18835 <rects> 18836 <_>8 1 9 9 -1.</_> 18837 <_>8 4 9 3 3.</_></rects> 18838 <tilted>0</tilted></feature> 18839 <threshold>-0.0471480004489422</threshold> 18840 <left_val>1.0338569879531860</left_val> 18841 <right_val>0.0676020011305809</right_val></_></_> 18842 <_> 18843 <!-- tree 130 --> 18844 <_> 18845 <!-- root node --> 18846 <feature> 18847 <rects> 18848 <_>0 7 24 3 -1.</_> 18849 <_>12 7 12 3 2.</_></rects> 18850 <tilted>0</tilted></feature> 18851 <threshold>0.1118630021810532</threshold> 18852 <left_val>-0.0686829984188080</left_val> 18853 <right_val>-2.4985830783843994</right_val></_></_> 18854 <_> 18855 <!-- tree 131 --> 18856 <_> 18857 <!-- root node --> 18858 <feature> 18859 <rects> 18860 <_>11 6 9 10 -1.</_> 18861 <_>11 11 9 5 2.</_></rects> 18862 <tilted>0</tilted></feature> 18863 <threshold>-0.0143539998680353</threshold> 18864 <left_val>-0.5948190093040466</left_val> 18865 <right_val>0.1500169932842255</right_val></_></_> 18866 <_> 18867 <!-- tree 132 --> 18868 <_> 18869 <!-- root node --> 18870 <feature> 18871 <rects> 18872 <_>2 11 18 3 -1.</_> 18873 <_>2 12 18 1 3.</_></rects> 18874 <tilted>0</tilted></feature> 18875 <threshold>0.0340240001678467</threshold> 18876 <left_val>-0.0648230016231537</left_val> 18877 <right_val>-2.1382639408111572</right_val></_></_> 18878 <_> 18879 <!-- tree 133 --> 18880 <_> 18881 <!-- root node --> 18882 <feature> 18883 <rects> 18884 <_>8 16 9 4 -1.</_> 18885 <_>8 18 9 2 2.</_></rects> 18886 <tilted>0</tilted></feature> 18887 <threshold>0.0216019991785288</threshold> 18888 <left_val>0.0553099997341633</left_val> 18889 <right_val>0.7829290032386780</right_val></_></_> 18890 <_> 18891 <!-- tree 134 --> 18892 <_> 18893 <!-- root node --> 18894 <feature> 18895 <rects> 18896 <_>0 0 9 6 -1.</_> 18897 <_>0 2 9 2 3.</_></rects> 18898 <tilted>0</tilted></feature> 18899 <threshold>0.0217719990760088</threshold> 18900 <left_val>-7.1279997937381268e-003</left_val> 18901 <right_val>-0.7214810252189636</right_val></_></_> 18902 <_> 18903 <!-- tree 135 --> 18904 <_> 18905 <!-- root node --> 18906 <feature> 18907 <rects> 18908 <_>0 11 24 6 -1.</_> 18909 <_>0 13 24 2 3.</_></rects> 18910 <tilted>0</tilted></feature> 18911 <threshold>0.0824169963598251</threshold> 18912 <left_val>0.1460949927568436</left_val> 18913 <right_val>-1.3636670112609863</right_val></_></_> 18914 <_> 18915 <!-- tree 136 --> 18916 <_> 18917 <!-- root node --> 18918 <feature> 18919 <rects> 18920 <_>2 9 20 6 -1.</_> 18921 <_>2 12 20 3 2.</_></rects> 18922 <tilted>0</tilted></feature> 18923 <threshold>0.0846719965338707</threshold> 18924 <left_val>-0.1778469979763031</left_val> 18925 <right_val>0.7285770177841187</right_val></_></_> 18926 <_> 18927 <!-- tree 137 --> 18928 <_> 18929 <!-- root node --> 18930 <feature> 18931 <rects> 18932 <_>4 5 16 12 -1.</_> 18933 <_>12 5 8 6 2.</_> 18934 <_>4 11 8 6 2.</_></rects> 18935 <tilted>0</tilted></feature> 18936 <threshold>-0.0551280006766319</threshold> 18937 <left_val>-0.5940240025520325</left_val> 18938 <right_val>0.1935780048370361</right_val></_></_> 18939 <_> 18940 <!-- tree 138 --> 18941 <_> 18942 <!-- root node --> 18943 <feature> 18944 <rects> 18945 <_>10 2 4 15 -1.</_> 18946 <_>10 7 4 5 3.</_></rects> 18947 <tilted>0</tilted></feature> 18948 <threshold>-0.0648230016231537</threshold> 18949 <left_val>-1.0783840417861938</left_val> 18950 <right_val>-0.0407340005040169</right_val></_></_> 18951 <_> 18952 <!-- tree 139 --> 18953 <_> 18954 <!-- root node --> 18955 <feature> 18956 <rects> 18957 <_>7 3 10 4 -1.</_> 18958 <_>7 5 10 2 2.</_></rects> 18959 <tilted>0</tilted></feature> 18960 <threshold>-0.0227690003812313</threshold> 18961 <left_val>0.7790020108222961</left_val> 18962 <right_val>3.4960000775754452e-003</right_val></_></_> 18963 <_> 18964 <!-- tree 140 --> 18965 <_> 18966 <!-- root node --> 18967 <feature> 18968 <rects> 18969 <_>9 15 6 8 -1.</_> 18970 <_>9 19 6 4 2.</_></rects> 18971 <tilted>0</tilted></feature> 18972 <threshold>0.0547560006380081</threshold> 18973 <left_val>-0.0656839981675148</left_val> 18974 <right_val>-1.8188409805297852</right_val></_></_> 18975 <_> 18976 <!-- tree 141 --> 18977 <_> 18978 <!-- root node --> 18979 <feature> 18980 <rects> 18981 <_>17 0 7 10 -1.</_> 18982 <_>17 5 7 5 2.</_></rects> 18983 <tilted>0</tilted></feature> 18984 <threshold>-8.9000001025851816e-005</threshold> 18985 <left_val>-0.0178919993340969</left_val> 18986 <right_val>0.2076829969882965</right_val></_></_> 18987 <_> 18988 <!-- tree 142 --> 18989 <_> 18990 <!-- root node --> 18991 <feature> 18992 <rects> 18993 <_>0 0 7 10 -1.</_> 18994 <_>0 5 7 5 2.</_></rects> 18995 <tilted>0</tilted></feature> 18996 <threshold>0.0983619987964630</threshold> 18997 <left_val>-0.0559469982981682</left_val> 18998 <right_val>-1.4153920412063599</right_val></_></_> 18999 <_> 19000 <!-- tree 143 --> 19001 <_> 19002 <!-- root node --> 19003 <feature> 19004 <rects> 19005 <_>16 1 6 12 -1.</_> 19006 <_>19 1 3 6 2.</_> 19007 <_>16 7 3 6 2.</_></rects> 19008 <tilted>0</tilted></feature> 19009 <threshold>-7.0930002257227898e-003</threshold> 19010 <left_val>0.3413529992103577</left_val> 19011 <right_val>-0.1208989992737770</right_val></_></_> 19012 <_> 19013 <!-- tree 144 --> 19014 <_> 19015 <!-- root node --> 19016 <feature> 19017 <rects> 19018 <_>1 0 19 8 -1.</_> 19019 <_>1 4 19 4 2.</_></rects> 19020 <tilted>0</tilted></feature> 19021 <threshold>0.0502780005335808</threshold> 19022 <left_val>-0.2628670036792755</left_val> 19023 <right_val>0.2579729855060577</right_val></_></_> 19024 <_> 19025 <!-- tree 145 --> 19026 <_> 19027 <!-- root node --> 19028 <feature> 19029 <rects> 19030 <_>12 2 9 4 -1.</_> 19031 <_>12 4 9 2 2.</_></rects> 19032 <tilted>0</tilted></feature> 19033 <threshold>-5.7870000600814819e-003</threshold> 19034 <left_val>-0.1317860037088394</left_val> 19035 <right_val>0.1735019981861115</right_val></_></_> 19036 <_> 19037 <!-- tree 146 --> 19038 <_> 19039 <!-- root node --> 19040 <feature> 19041 <rects> 19042 <_>3 2 9 4 -1.</_> 19043 <_>3 4 9 2 2.</_></rects> 19044 <tilted>0</tilted></feature> 19045 <threshold>0.0139739997684956</threshold> 19046 <left_val>0.0285180006176233</left_val> 19047 <right_val>-0.6115220189094544</right_val></_></_> 19048 <_> 19049 <!-- tree 147 --> 19050 <_> 19051 <!-- root node --> 19052 <feature> 19053 <rects> 19054 <_>12 2 10 6 -1.</_> 19055 <_>12 4 10 2 3.</_></rects> 19056 <tilted>0</tilted></feature> 19057 <threshold>0.0214499998837709</threshold> 19058 <left_val>0.0261819995939732</left_val> 19059 <right_val>0.3030659854412079</right_val></_></_> 19060 <_> 19061 <!-- tree 148 --> 19062 <_> 19063 <!-- root node --> 19064 <feature> 19065 <rects> 19066 <_>3 4 18 2 -1.</_> 19067 <_>12 4 9 2 2.</_></rects> 19068 <tilted>0</tilted></feature> 19069 <threshold>-0.0292140003293753</threshold> 19070 <left_val>0.4494059979915619</left_val> 19071 <right_val>-0.2280309945344925</right_val></_></_> 19072 <_> 19073 <!-- tree 149 --> 19074 <_> 19075 <!-- root node --> 19076 <feature> 19077 <rects> 19078 <_>12 1 4 9 -1.</_> 19079 <_>12 1 2 9 2.</_></rects> 19080 <tilted>0</tilted></feature> 19081 <threshold>4.8099999548867345e-004</threshold> 19082 <left_val>-0.1987999975681305</left_val> 19083 <right_val>0.2074449956417084</right_val></_></_> 19084 <_> 19085 <!-- tree 150 --> 19086 <_> 19087 <!-- root node --> 19088 <feature> 19089 <rects> 19090 <_>8 1 4 9 -1.</_> 19091 <_>10 1 2 9 2.</_></rects> 19092 <tilted>0</tilted></feature> 19093 <threshold>1.7109999898821115e-003</threshold> 19094 <left_val>-0.5403720140457153</left_val> 19095 <right_val>0.0678659975528717</right_val></_></_> 19096 <_> 19097 <!-- tree 151 --> 19098 <_> 19099 <!-- root node --> 19100 <feature> 19101 <rects> 19102 <_>10 5 8 10 -1.</_> 19103 <_>14 5 4 5 2.</_> 19104 <_>10 10 4 5 2.</_></rects> 19105 <tilted>0</tilted></feature> 19106 <threshold>8.6660003289580345e-003</threshold> 19107 <left_val>-0.0131280003115535</left_val> 19108 <right_val>0.5229790210723877</right_val></_></_> 19109 <_> 19110 <!-- tree 152 --> 19111 <_> 19112 <!-- root node --> 19113 <feature> 19114 <rects> 19115 <_>6 4 12 13 -1.</_> 19116 <_>10 4 4 13 3.</_></rects> 19117 <tilted>0</tilted></feature> 19118 <threshold>0.0636579990386963</threshold> 19119 <left_val>0.0682990029454231</left_val> 19120 <right_val>-0.4923509955406189</right_val></_></_> 19121 <_> 19122 <!-- tree 153 --> 19123 <_> 19124 <!-- root node --> 19125 <feature> 19126 <rects> 19127 <_>13 5 6 6 -1.</_> 19128 <_>13 5 3 6 2.</_></rects> 19129 <tilted>0</tilted></feature> 19130 <threshold>-0.0279680006206036</threshold> 19131 <left_val>0.6818389892578125</left_val> 19132 <right_val>0.0787810012698174</right_val></_></_> 19133 <_> 19134 <!-- tree 154 --> 19135 <_> 19136 <!-- root node --> 19137 <feature> 19138 <rects> 19139 <_>1 5 12 3 -1.</_> 19140 <_>7 5 6 3 2.</_></rects> 19141 <tilted>0</tilted></feature> 19142 <threshold>0.0489539988338947</threshold> 19143 <left_val>-0.2062239944934845</left_val> 19144 <right_val>0.5038809776306152</right_val></_></_></trees> 19145 <stage_threshold>-3.3933560848236084</stage_threshold> 19146 <parent>16</parent> 19147 <next>-1</next></_> 19148 <_> 19149 <!-- stage 18 --> 19150 <trees> 19151 <_> 19152 <!-- tree 0 --> 19153 <_> 19154 <!-- root node --> 19155 <feature> 19156 <rects> 19157 <_>7 5 10 6 -1.</_> 19158 <_>7 7 10 2 3.</_></rects> 19159 <tilted>0</tilted></feature> 19160 <threshold>-0.0293129999190569</threshold> 19161 <left_val>0.7128469944000244</left_val> 19162 <right_val>-0.5823069810867310</right_val></_></_> 19163 <_> 19164 <!-- tree 1 --> 19165 <_> 19166 <!-- root node --> 19167 <feature> 19168 <rects> 19169 <_>2 0 21 5 -1.</_> 19170 <_>9 0 7 5 3.</_></rects> 19171 <tilted>0</tilted></feature> 19172 <threshold>0.1241509988903999</threshold> 19173 <left_val>-0.3686349987983704</left_val> 19174 <right_val>0.6006720066070557</right_val></_></_> 19175 <_> 19176 <!-- tree 2 --> 19177 <_> 19178 <!-- root node --> 19179 <feature> 19180 <rects> 19181 <_>0 8 9 9 -1.</_> 19182 <_>0 11 9 3 3.</_></rects> 19183 <tilted>0</tilted></feature> 19184 <threshold>7.9349996522068977e-003</threshold> 19185 <left_val>-0.8600829839706421</left_val> 19186 <right_val>0.2172469943761826</right_val></_></_> 19187 <_> 19188 <!-- tree 3 --> 19189 <_> 19190 <!-- root node --> 19191 <feature> 19192 <rects> 19193 <_>9 6 6 9 -1.</_> 19194 <_>11 6 2 9 3.</_></rects> 19195 <tilted>0</tilted></feature> 19196 <threshold>0.0303659997880459</threshold> 19197 <left_val>-0.2718699872493744</left_val> 19198 <right_val>0.6124789714813232</right_val></_></_> 19199 <_> 19200 <!-- tree 4 --> 19201 <_> 19202 <!-- root node --> 19203 <feature> 19204 <rects> 19205 <_>0 3 6 7 -1.</_> 19206 <_>3 3 3 7 2.</_></rects> 19207 <tilted>0</tilted></feature> 19208 <threshold>0.0252180006355047</threshold> 19209 <left_val>-0.3474830090999603</left_val> 19210 <right_val>0.5042769908905029</right_val></_></_> 19211 <_> 19212 <!-- tree 5 --> 19213 <_> 19214 <!-- root node --> 19215 <feature> 19216 <rects> 19217 <_>9 18 12 6 -1.</_> 19218 <_>15 18 6 3 2.</_> 19219 <_>9 21 6 3 2.</_></rects> 19220 <tilted>0</tilted></feature> 19221 <threshold>0.0100140003487468</threshold> 19222 <left_val>-0.3189899921417236</left_val> 19223 <right_val>0.4137679934501648</right_val></_></_> 19224 <_> 19225 <!-- tree 6 --> 19226 <_> 19227 <!-- root node --> 19228 <feature> 19229 <rects> 19230 <_>2 8 20 6 -1.</_> 19231 <_>2 8 10 3 2.</_> 19232 <_>12 11 10 3 2.</_></rects> 19233 <tilted>0</tilted></feature> 19234 <threshold>-0.0167750008404255</threshold> 19235 <left_val>-0.6904810070991516</left_val> 19236 <right_val>0.0948309972882271</right_val></_></_> 19237 <_> 19238 <!-- tree 7 --> 19239 <_> 19240 <!-- root node --> 19241 <feature> 19242 <rects> 19243 <_>13 2 10 4 -1.</_> 19244 <_>13 4 10 2 2.</_></rects> 19245 <tilted>0</tilted></feature> 19246 <threshold>-2.6950000319629908e-003</threshold> 19247 <left_val>-0.2082979977130890</left_val> 19248 <right_val>0.2373719960451126</right_val></_></_> 19249 <_> 19250 <!-- tree 8 --> 19251 <_> 19252 <!-- root node --> 19253 <feature> 19254 <rects> 19255 <_>4 5 5 18 -1.</_> 19256 <_>4 11 5 6 3.</_></rects> 19257 <tilted>0</tilted></feature> 19258 <threshold>0.0422579981386662</threshold> 19259 <left_val>-0.4936670064926148</left_val> 19260 <right_val>0.1817059963941574</right_val></_></_> 19261 <_> 19262 <!-- tree 9 --> 19263 <_> 19264 <!-- root node --> 19265 <feature> 19266 <rects> 19267 <_>20 4 4 9 -1.</_> 19268 <_>20 4 2 9 2.</_></rects> 19269 <tilted>0</tilted></feature> 19270 <threshold>-0.0485050007700920</threshold> 19271 <left_val>1.3429640531539917</left_val> 19272 <right_val>0.0397690013051033</right_val></_></_> 19273 <_> 19274 <!-- tree 10 --> 19275 <_> 19276 <!-- root node --> 19277 <feature> 19278 <rects> 19279 <_>8 6 8 14 -1.</_> 19280 <_>8 13 8 7 2.</_></rects> 19281 <tilted>0</tilted></feature> 19282 <threshold>0.0289929993450642</threshold> 19283 <left_val>0.0464960001409054</left_val> 19284 <right_val>-0.8164349794387817</right_val></_></_> 19285 <_> 19286 <!-- tree 11 --> 19287 <_> 19288 <!-- root node --> 19289 <feature> 19290 <rects> 19291 <_>0 1 24 6 -1.</_> 19292 <_>12 1 12 3 2.</_> 19293 <_>0 4 12 3 2.</_></rects> 19294 <tilted>0</tilted></feature> 19295 <threshold>-0.0400890000164509</threshold> 19296 <left_val>-0.7119780182838440</left_val> 19297 <right_val>0.2255389988422394</right_val></_></_> 19298 <_> 19299 <!-- tree 12 --> 19300 <_> 19301 <!-- root node --> 19302 <feature> 19303 <rects> 19304 <_>0 4 4 9 -1.</_> 19305 <_>2 4 2 9 2.</_></rects> 19306 <tilted>0</tilted></feature> 19307 <threshold>-0.0410219989717007</threshold> 19308 <left_val>1.0057929754257202</left_val> 19309 <right_val>-0.1969020068645477</right_val></_></_> 19310 <_> 19311 <!-- tree 13 --> 19312 <_> 19313 <!-- root node --> 19314 <feature> 19315 <rects> 19316 <_>3 6 18 3 -1.</_> 19317 <_>3 7 18 1 3.</_></rects> 19318 <tilted>0</tilted></feature> 19319 <threshold>0.0118380002677441</threshold> 19320 <left_val>-0.0126000000163913</left_val> 19321 <right_val>0.8076710104942322</right_val></_></_> 19322 <_> 19323 <!-- tree 14 --> 19324 <_> 19325 <!-- root node --> 19326 <feature> 19327 <rects> 19328 <_>3 17 16 6 -1.</_> 19329 <_>3 19 16 2 3.</_></rects> 19330 <tilted>0</tilted></feature> 19331 <threshold>-0.0213280003517866</threshold> 19332 <left_val>-0.8202390074729919</left_val> 19333 <right_val>0.0205249991267920</right_val></_></_> 19334 <_> 19335 <!-- tree 15 --> 19336 <_> 19337 <!-- root node --> 19338 <feature> 19339 <rects> 19340 <_>13 6 6 9 -1.</_> 19341 <_>13 9 6 3 3.</_></rects> 19342 <tilted>0</tilted></feature> 19343 <threshold>-0.0239049997180700</threshold> 19344 <left_val>0.5421050190925598</left_val> 19345 <right_val>-0.0747670009732246</right_val></_></_> 19346 <_> 19347 <!-- tree 16 --> 19348 <_> 19349 <!-- root node --> 19350 <feature> 19351 <rects> 19352 <_>5 6 14 6 -1.</_> 19353 <_>5 6 7 3 2.</_> 19354 <_>12 9 7 3 2.</_></rects> 19355 <tilted>0</tilted></feature> 19356 <threshold>0.0180089995265007</threshold> 19357 <left_val>-0.3382770121097565</left_val> 19358 <right_val>0.4235860109329224</right_val></_></_> 19359 <_> 19360 <!-- tree 17 --> 19361 <_> 19362 <!-- root node --> 19363 <feature> 19364 <rects> 19365 <_>13 5 8 10 -1.</_> 19366 <_>17 5 4 5 2.</_> 19367 <_>13 10 4 5 2.</_></rects> 19368 <tilted>0</tilted></feature> 19369 <threshold>-0.0436140000820160</threshold> 19370 <left_val>-1.1983489990234375</left_val> 19371 <right_val>0.1556620001792908</right_val></_></_> 19372 <_> 19373 <!-- tree 18 --> 19374 <_> 19375 <!-- root node --> 19376 <feature> 19377 <rects> 19378 <_>2 2 20 3 -1.</_> 19379 <_>2 3 20 1 3.</_></rects> 19380 <tilted>0</tilted></feature> 19381 <threshold>-9.2449998483061790e-003</threshold> 19382 <left_val>-0.8902999758720398</left_val> 19383 <right_val>0.0110039999708533</right_val></_></_> 19384 <_> 19385 <!-- tree 19 --> 19386 <_> 19387 <!-- root node --> 19388 <feature> 19389 <rects> 19390 <_>9 2 9 6 -1.</_> 19391 <_>12 2 3 6 3.</_></rects> 19392 <tilted>0</tilted></feature> 19393 <threshold>0.0474850013852119</threshold> 19394 <left_val>0.1666409969329834</left_val> 19395 <right_val>-0.9076449871063232</right_val></_></_> 19396 <_> 19397 <!-- tree 20 --> 19398 <_> 19399 <!-- root node --> 19400 <feature> 19401 <rects> 19402 <_>8 6 6 9 -1.</_> 19403 <_>10 6 2 9 3.</_></rects> 19404 <tilted>0</tilted></feature> 19405 <threshold>-0.0142339998856187</threshold> 19406 <left_val>0.6269519925117493</left_val> 19407 <right_val>-0.2579120099544525</right_val></_></_> 19408 <_> 19409 <!-- tree 21 --> 19410 <_> 19411 <!-- root node --> 19412 <feature> 19413 <rects> 19414 <_>12 3 4 11 -1.</_> 19415 <_>12 3 2 11 2.</_></rects> 19416 <tilted>0</tilted></feature> 19417 <threshold>3.8010000716894865e-003</threshold> 19418 <left_val>-0.2822999954223633</left_val> 19419 <right_val>0.2662459909915924</right_val></_></_> 19420 <_> 19421 <!-- tree 22 --> 19422 <_> 19423 <!-- root node --> 19424 <feature> 19425 <rects> 19426 <_>8 3 4 11 -1.</_> 19427 <_>10 3 2 11 2.</_></rects> 19428 <tilted>0</tilted></feature> 19429 <threshold>3.4330000635236502e-003</threshold> 19430 <left_val>-0.6377199888229370</left_val> 19431 <right_val>0.0984229966998100</right_val></_></_> 19432 <_> 19433 <!-- tree 23 --> 19434 <_> 19435 <!-- root node --> 19436 <feature> 19437 <rects> 19438 <_>8 3 8 10 -1.</_> 19439 <_>12 3 4 5 2.</_> 19440 <_>8 8 4 5 2.</_></rects> 19441 <tilted>0</tilted></feature> 19442 <threshold>-0.0292210001498461</threshold> 19443 <left_val>-0.7676990032196045</left_val> 19444 <right_val>0.2263450026512146</right_val></_></_> 19445 <_> 19446 <!-- tree 24 --> 19447 <_> 19448 <!-- root node --> 19449 <feature> 19450 <rects> 19451 <_>11 1 2 18 -1.</_> 19452 <_>12 1 1 18 2.</_></rects> 19453 <tilted>0</tilted></feature> 19454 <threshold>-6.4949998632073402e-003</threshold> 19455 <left_val>0.4560010135173798</left_val> 19456 <right_val>-0.2652890086174011</right_val></_></_> 19457 <_> 19458 <!-- tree 25 --> 19459 <_> 19460 <!-- root node --> 19461 <feature> 19462 <rects> 19463 <_>9 2 9 6 -1.</_> 19464 <_>12 2 3 6 3.</_></rects> 19465 <tilted>0</tilted></feature> 19466 <threshold>-0.0300340000540018</threshold> 19467 <left_val>-0.7655109763145447</left_val> 19468 <right_val>0.1400929987430573</right_val></_></_> 19469 <_> 19470 <!-- tree 26 --> 19471 <_> 19472 <!-- root node --> 19473 <feature> 19474 <rects> 19475 <_>0 2 19 3 -1.</_> 19476 <_>0 3 19 1 3.</_></rects> 19477 <tilted>0</tilted></feature> 19478 <threshold>7.8360000625252724e-003</threshold> 19479 <left_val>0.0467559993267059</left_val> 19480 <right_val>-0.7235620021820068</right_val></_></_> 19481 <_> 19482 <!-- tree 27 --> 19483 <_> 19484 <!-- root node --> 19485 <feature> 19486 <rects> 19487 <_>9 14 9 6 -1.</_> 19488 <_>9 16 9 2 3.</_></rects> 19489 <tilted>0</tilted></feature> 19490 <threshold>8.8550001382827759e-003</threshold> 19491 <left_val>-0.0491419993340969</left_val> 19492 <right_val>0.5147269964218140</right_val></_></_> 19493 <_> 19494 <!-- tree 28 --> 19495 <_> 19496 <!-- root node --> 19497 <feature> 19498 <rects> 19499 <_>1 8 18 5 -1.</_> 19500 <_>7 8 6 5 3.</_></rects> 19501 <tilted>0</tilted></feature> 19502 <threshold>0.0959739983081818</threshold> 19503 <left_val>-0.0200689993798733</left_val> 19504 <right_val>-1.0850950479507446</right_val></_></_> 19505 <_> 19506 <!-- tree 29 --> 19507 <_> 19508 <!-- root node --> 19509 <feature> 19510 <rects> 19511 <_>12 0 6 9 -1.</_> 19512 <_>14 0 2 9 3.</_></rects> 19513 <tilted>0</tilted></feature> 19514 <threshold>-0.0328769981861115</threshold> 19515 <left_val>-0.9587529897689819</left_val> 19516 <right_val>0.1454360038042069</right_val></_></_> 19517 <_> 19518 <!-- tree 30 --> 19519 <_> 19520 <!-- root node --> 19521 <feature> 19522 <rects> 19523 <_>6 0 6 9 -1.</_> 19524 <_>8 0 2 9 3.</_></rects> 19525 <tilted>0</tilted></feature> 19526 <threshold>-0.0133840003982186</threshold> 19527 <left_val>-0.7001360058784485</left_val> 19528 <right_val>0.0291579999029636</right_val></_></_> 19529 <_> 19530 <!-- tree 31 --> 19531 <_> 19532 <!-- root node --> 19533 <feature> 19534 <rects> 19535 <_>13 6 4 15 -1.</_> 19536 <_>13 11 4 5 3.</_></rects> 19537 <tilted>0</tilted></feature> 19538 <threshold>0.0152359995990992</threshold> 19539 <left_val>-0.2823570072650909</left_val> 19540 <right_val>0.2536799907684326</right_val></_></_> 19541 <_> 19542 <!-- tree 32 --> 19543 <_> 19544 <!-- root node --> 19545 <feature> 19546 <rects> 19547 <_>1 5 18 3 -1.</_> 19548 <_>1 6 18 1 3.</_></rects> 19549 <tilted>0</tilted></feature> 19550 <threshold>0.0120540000498295</threshold> 19551 <left_val>-0.2530339956283569</left_val> 19552 <right_val>0.4652670025825501</right_val></_></_> 19553 <_> 19554 <!-- tree 33 --> 19555 <_> 19556 <!-- root node --> 19557 <feature> 19558 <rects> 19559 <_>9 7 14 6 -1.</_> 19560 <_>9 9 14 2 3.</_></rects> 19561 <tilted>0</tilted></feature> 19562 <threshold>-0.0762950032949448</threshold> 19563 <left_val>-0.6991580128669739</left_val> 19564 <right_val>0.1321720033884049</right_val></_></_> 19565 <_> 19566 <!-- tree 34 --> 19567 <_> 19568 <!-- root node --> 19569 <feature> 19570 <rects> 19571 <_>2 16 18 3 -1.</_> 19572 <_>2 17 18 1 3.</_></rects> 19573 <tilted>0</tilted></feature> 19574 <threshold>-0.0120400004088879</threshold> 19575 <left_val>0.4589459896087647</left_val> 19576 <right_val>-0.2385649979114533</right_val></_></_> 19577 <_> 19578 <!-- tree 35 --> 19579 <_> 19580 <!-- root node --> 19581 <feature> 19582 <rects> 19583 <_>15 17 9 6 -1.</_> 19584 <_>15 19 9 2 3.</_></rects> 19585 <tilted>0</tilted></feature> 19586 <threshold>0.0219160001724958</threshold> 19587 <left_val>0.1826860010623932</left_val> 19588 <right_val>-0.6162970066070557</right_val></_></_> 19589 <_> 19590 <!-- tree 36 --> 19591 <_> 19592 <!-- root node --> 19593 <feature> 19594 <rects> 19595 <_>0 8 12 6 -1.</_> 19596 <_>0 8 6 3 2.</_> 19597 <_>6 11 6 3 2.</_></rects> 19598 <tilted>0</tilted></feature> 19599 <threshold>-2.7330000884830952e-003</threshold> 19600 <left_val>-0.6325790286064148</left_val> 19601 <right_val>0.0342190004885197</right_val></_></_> 19602 <_> 19603 <!-- tree 37 --> 19604 <_> 19605 <!-- root node --> 19606 <feature> 19607 <rects> 19608 <_>9 13 7 8 -1.</_> 19609 <_>9 17 7 4 2.</_></rects> 19610 <tilted>0</tilted></feature> 19611 <threshold>-0.0486520007252693</threshold> 19612 <left_val>-1.0297729969024658</left_val> 19613 <right_val>0.1738650053739548</right_val></_></_> 19614 <_> 19615 <!-- tree 38 --> 19616 <_> 19617 <!-- root node --> 19618 <feature> 19619 <rects> 19620 <_>2 17 20 3 -1.</_> 19621 <_>2 18 20 1 3.</_></rects> 19622 <tilted>0</tilted></feature> 19623 <threshold>-0.0104639995843172</threshold> 19624 <left_val>0.3475730121135712</left_val> 19625 <right_val>-0.2746410071849823</right_val></_></_> 19626 <_> 19627 <!-- tree 39 --> 19628 <_> 19629 <!-- root node --> 19630 <feature> 19631 <rects> 19632 <_>15 17 9 6 -1.</_> 19633 <_>15 19 9 2 3.</_></rects> 19634 <tilted>0</tilted></feature> 19635 <threshold>-6.6550001502037048e-003</threshold> 19636 <left_val>-0.2898029983043671</left_val> 19637 <right_val>0.2403790056705475</right_val></_></_> 19638 <_> 19639 <!-- tree 40 --> 19640 <_> 19641 <!-- root node --> 19642 <feature> 19643 <rects> 19644 <_>4 0 15 4 -1.</_> 19645 <_>4 2 15 2 2.</_></rects> 19646 <tilted>0</tilted></feature> 19647 <threshold>8.5469996556639671e-003</threshold> 19648 <left_val>-0.4434050023555756</left_val> 19649 <right_val>0.1426739990711212</right_val></_></_> 19650 <_> 19651 <!-- tree 41 --> 19652 <_> 19653 <!-- root node --> 19654 <feature> 19655 <rects> 19656 <_>17 2 6 6 -1.</_> 19657 <_>17 5 6 3 2.</_></rects> 19658 <tilted>0</tilted></feature> 19659 <threshold>0.0199139993637800</threshold> 19660 <left_val>0.1774040013551712</left_val> 19661 <right_val>-0.2409629970788956</right_val></_></_> 19662 <_> 19663 <!-- tree 42 --> 19664 <_> 19665 <!-- root node --> 19666 <feature> 19667 <rects> 19668 <_>0 3 6 9 -1.</_> 19669 <_>0 6 6 3 3.</_></rects> 19670 <tilted>0</tilted></feature> 19671 <threshold>0.0220129992812872</threshold> 19672 <left_val>-0.0108120003715158</left_val> 19673 <right_val>-0.9469079971313477</right_val></_></_> 19674 <_> 19675 <!-- tree 43 --> 19676 <_> 19677 <!-- root node --> 19678 <feature> 19679 <rects> 19680 <_>15 17 9 6 -1.</_> 19681 <_>15 19 9 2 3.</_></rects> 19682 <tilted>0</tilted></feature> 19683 <threshold>-0.0521790012717247</threshold> 19684 <left_val>1.6547499895095825</left_val> 19685 <right_val>0.0964870005846024</right_val></_></_> 19686 <_> 19687 <!-- tree 44 --> 19688 <_> 19689 <!-- root node --> 19690 <feature> 19691 <rects> 19692 <_>0 17 9 6 -1.</_> 19693 <_>0 19 9 2 3.</_></rects> 19694 <tilted>0</tilted></feature> 19695 <threshold>0.0196989998221397</threshold> 19696 <left_val>-6.7560002207756042e-003</left_val> 19697 <right_val>-0.8631150126457214</right_val></_></_> 19698 <_> 19699 <!-- tree 45 --> 19700 <_> 19701 <!-- root node --> 19702 <feature> 19703 <rects> 19704 <_>9 18 12 6 -1.</_> 19705 <_>15 18 6 3 2.</_> 19706 <_>9 21 6 3 2.</_></rects> 19707 <tilted>0</tilted></feature> 19708 <threshold>0.0230400003492832</threshold> 19709 <left_val>-2.3519999813288450e-003</left_val> 19710 <right_val>0.3853130042552948</right_val></_></_> 19711 <_> 19712 <!-- tree 46 --> 19713 <_> 19714 <!-- root node --> 19715 <feature> 19716 <rects> 19717 <_>3 15 6 9 -1.</_> 19718 <_>3 18 6 3 3.</_></rects> 19719 <tilted>0</tilted></feature> 19720 <threshold>-0.0150380004197359</threshold> 19721 <left_val>-0.6190569996833801</left_val> 19722 <right_val>0.0310779996216297</right_val></_></_> 19723 <_> 19724 <!-- tree 47 --> 19725 <_> 19726 <!-- root node --> 19727 <feature> 19728 <rects> 19729 <_>16 13 8 10 -1.</_> 19730 <_>20 13 4 5 2.</_> 19731 <_>16 18 4 5 2.</_></rects> 19732 <tilted>0</tilted></feature> 19733 <threshold>-0.0499560013413429</threshold> 19734 <left_val>0.7065749764442444</left_val> 19735 <right_val>0.0478809997439384</right_val></_></_> 19736 <_> 19737 <!-- tree 48 --> 19738 <_> 19739 <!-- root node --> 19740 <feature> 19741 <rects> 19742 <_>0 14 24 4 -1.</_> 19743 <_>8 14 8 4 3.</_></rects> 19744 <tilted>0</tilted></feature> 19745 <threshold>-0.0692699998617172</threshold> 19746 <left_val>0.3921290040016174</left_val> 19747 <right_val>-0.2384800016880035</right_val></_></_> 19748 <_> 19749 <!-- tree 49 --> 19750 <_> 19751 <!-- root node --> 19752 <feature> 19753 <rects> 19754 <_>13 18 6 6 -1.</_> 19755 <_>13 18 3 6 2.</_></rects> 19756 <tilted>0</tilted></feature> 19757 <threshold>4.7399997711181641e-003</threshold> 19758 <left_val>-0.0243090000003576</left_val> 19759 <right_val>0.2538630068302155</right_val></_></_> 19760 <_> 19761 <!-- tree 50 --> 19762 <_> 19763 <!-- root node --> 19764 <feature> 19765 <rects> 19766 <_>0 13 8 10 -1.</_> 19767 <_>0 13 4 5 2.</_> 19768 <_>4 18 4 5 2.</_></rects> 19769 <tilted>0</tilted></feature> 19770 <threshold>-0.0339239984750748</threshold> 19771 <left_val>0.4693039953708649</left_val> 19772 <right_val>-0.2332189977169037</right_val></_></_> 19773 <_> 19774 <!-- tree 51 --> 19775 <_> 19776 <!-- root node --> 19777 <feature> 19778 <rects> 19779 <_>0 14 24 6 -1.</_> 19780 <_>0 17 24 3 2.</_></rects> 19781 <tilted>0</tilted></feature> 19782 <threshold>-0.0162310004234314</threshold> 19783 <left_val>0.3231920003890991</left_val> 19784 <right_val>-0.2054560035467148</right_val></_></_> 19785 <_> 19786 <!-- tree 52 --> 19787 <_> 19788 <!-- root node --> 19789 <feature> 19790 <rects> 19791 <_>5 2 12 8 -1.</_> 19792 <_>5 2 6 4 2.</_> 19793 <_>11 6 6 4 2.</_></rects> 19794 <tilted>0</tilted></feature> 19795 <threshold>-0.0501930005848408</threshold> 19796 <left_val>-1.2277870178222656</left_val> 19797 <right_val>-0.0407980009913445</right_val></_></_> 19798 <_> 19799 <!-- tree 53 --> 19800 <_> 19801 <!-- root node --> 19802 <feature> 19803 <rects> 19804 <_>8 9 9 6 -1.</_> 19805 <_>11 9 3 6 3.</_></rects> 19806 <tilted>0</tilted></feature> 19807 <threshold>0.0569440014660358</threshold> 19808 <left_val>0.0451840013265610</left_val> 19809 <right_val>0.6019750237464905</right_val></_></_> 19810 <_> 19811 <!-- tree 54 --> 19812 <_> 19813 <!-- root node --> 19814 <feature> 19815 <rects> 19816 <_>4 3 16 4 -1.</_> 19817 <_>4 5 16 2 2.</_></rects> 19818 <tilted>0</tilted></feature> 19819 <threshold>0.0409369990229607</threshold> 19820 <left_val>-0.1677280068397522</left_val> 19821 <right_val>0.8981930017471314</right_val></_></_> 19822 <_> 19823 <!-- tree 55 --> 19824 <_> 19825 <!-- root node --> 19826 <feature> 19827 <rects> 19828 <_>10 2 4 10 -1.</_> 19829 <_>10 7 4 5 2.</_></rects> 19830 <tilted>0</tilted></feature> 19831 <threshold>-3.0839999672025442e-003</threshold> 19832 <left_val>0.3371619880199432</left_val> 19833 <right_val>-0.2724080085754395</right_val></_></_> 19834 <_> 19835 <!-- tree 56 --> 19836 <_> 19837 <!-- root node --> 19838 <feature> 19839 <rects> 19840 <_>8 4 5 8 -1.</_> 19841 <_>8 8 5 4 2.</_></rects> 19842 <tilted>0</tilted></feature> 19843 <threshold>-0.0326000005006790</threshold> 19844 <left_val>-0.8544650077819824</left_val> 19845 <right_val>0.0196649990975857</right_val></_></_> 19846 <_> 19847 <!-- tree 57 --> 19848 <_> 19849 <!-- root node --> 19850 <feature> 19851 <rects> 19852 <_>11 5 9 12 -1.</_> 19853 <_>11 9 9 4 3.</_></rects> 19854 <tilted>0</tilted></feature> 19855 <threshold>0.0984809994697571</threshold> 19856 <left_val>0.0547420009970665</left_val> 19857 <right_val>0.6382730007171631</right_val></_></_> 19858 <_> 19859 <!-- tree 58 --> 19860 <_> 19861 <!-- root node --> 19862 <feature> 19863 <rects> 19864 <_>4 5 9 12 -1.</_> 19865 <_>4 9 9 4 3.</_></rects> 19866 <tilted>0</tilted></feature> 19867 <threshold>-0.0381850004196167</threshold> 19868 <left_val>0.5227469801902771</left_val> 19869 <right_val>-0.2338480055332184</right_val></_></_> 19870 <_> 19871 <!-- tree 59 --> 19872 <_> 19873 <!-- root node --> 19874 <feature> 19875 <rects> 19876 <_>14 6 6 9 -1.</_> 19877 <_>14 9 6 3 3.</_></rects> 19878 <tilted>0</tilted></feature> 19879 <threshold>-0.0459170006215572</threshold> 19880 <left_val>0.6282920241355896</left_val> 19881 <right_val>0.0328590013086796</right_val></_></_> 19882 <_> 19883 <!-- tree 60 --> 19884 <_> 19885 <!-- root node --> 19886 <feature> 19887 <rects> 19888 <_>2 4 20 12 -1.</_> 19889 <_>2 8 20 4 3.</_></rects> 19890 <tilted>0</tilted></feature> 19891 <threshold>-0.1195549964904785</threshold> 19892 <left_val>-0.6157270073890686</left_val> 19893 <right_val>0.0346800014376640</right_val></_></_> 19894 <_> 19895 <!-- tree 61 --> 19896 <_> 19897 <!-- root node --> 19898 <feature> 19899 <rects> 19900 <_>4 4 17 16 -1.</_> 19901 <_>4 12 17 8 2.</_></rects> 19902 <tilted>0</tilted></feature> 19903 <threshold>-0.1204439997673035</threshold> 19904 <left_val>-0.8438000082969666</left_val> 19905 <right_val>0.1653070002794266</right_val></_></_> 19906 <_> 19907 <!-- tree 62 --> 19908 <_> 19909 <!-- root node --> 19910 <feature> 19911 <rects> 19912 <_>8 7 7 6 -1.</_> 19913 <_>8 10 7 3 2.</_></rects> 19914 <tilted>0</tilted></feature> 19915 <threshold>0.0706190019845963</threshold> 19916 <left_val>-0.0632610023021698</left_val> 19917 <right_val>-1.9863929748535156</right_val></_></_> 19918 <_> 19919 <!-- tree 63 --> 19920 <_> 19921 <!-- root node --> 19922 <feature> 19923 <rects> 19924 <_>1 9 23 2 -1.</_> 19925 <_>1 10 23 1 2.</_></rects> 19926 <tilted>0</tilted></feature> 19927 <threshold>8.4889996796846390e-003</threshold> 19928 <left_val>-0.1766339987516403</left_val> 19929 <right_val>0.3801119923591614</right_val></_></_> 19930 <_> 19931 <!-- tree 64 --> 19932 <_> 19933 <!-- root node --> 19934 <feature> 19935 <rects> 19936 <_>7 0 6 9 -1.</_> 19937 <_>9 0 2 9 3.</_></rects> 19938 <tilted>0</tilted></feature> 19939 <threshold>0.0227109994739294</threshold> 19940 <left_val>-0.0276059992611408</left_val> 19941 <right_val>-0.9192140102386475</right_val></_></_> 19942 <_> 19943 <!-- tree 65 --> 19944 <_> 19945 <!-- root node --> 19946 <feature> 19947 <rects> 19948 <_>13 3 4 9 -1.</_> 19949 <_>13 3 2 9 2.</_></rects> 19950 <tilted>0</tilted></feature> 19951 <threshold>4.9700000090524554e-004</threshold> 19952 <left_val>-0.2429320067167282</left_val> 19953 <right_val>0.2287890017032623</right_val></_></_> 19954 <_> 19955 <!-- tree 66 --> 19956 <_> 19957 <!-- root node --> 19958 <feature> 19959 <rects> 19960 <_>8 1 6 13 -1.</_> 19961 <_>10 1 2 13 3.</_></rects> 19962 <tilted>0</tilted></feature> 19963 <threshold>0.0346519984304905</threshold> 19964 <left_val>-0.2370599955320358</left_val> 19965 <right_val>0.5401099920272827</right_val></_></_> 19966 <_> 19967 <!-- tree 67 --> 19968 <_> 19969 <!-- root node --> 19970 <feature> 19971 <rects> 19972 <_>4 22 18 2 -1.</_> 19973 <_>4 23 18 1 2.</_></rects> 19974 <tilted>0</tilted></feature> 19975 <threshold>-4.4700000435113907e-003</threshold> 19976 <left_val>0.3907899856567383</left_val> 19977 <right_val>-0.1269380003213882</right_val></_></_> 19978 <_> 19979 <!-- tree 68 --> 19980 <_> 19981 <!-- root node --> 19982 <feature> 19983 <rects> 19984 <_>3 10 9 6 -1.</_> 19985 <_>6 10 3 6 3.</_></rects> 19986 <tilted>0</tilted></feature> 19987 <threshold>0.0236430000513792</threshold> 19988 <left_val>-0.2666369974613190</left_val> 19989 <right_val>0.3231259882450104</right_val></_></_> 19990 <_> 19991 <!-- tree 69 --> 19992 <_> 19993 <!-- root node --> 19994 <feature> 19995 <rects> 19996 <_>14 0 2 24 -1.</_> 19997 <_>14 0 1 24 2.</_></rects> 19998 <tilted>0</tilted></feature> 19999 <threshold>0.0128130000084639</threshold> 20000 <left_val>0.1754080057144165</left_val> 20001 <right_val>-0.6078799962997437</right_val></_></_> 20002 <_> 20003 <!-- tree 70 --> 20004 <_> 20005 <!-- root node --> 20006 <feature> 20007 <rects> 20008 <_>8 0 2 24 -1.</_> 20009 <_>9 0 1 24 2.</_></rects> 20010 <tilted>0</tilted></feature> 20011 <threshold>-0.0112509997561574</threshold> 20012 <left_val>-1.0852589607238770</left_val> 20013 <right_val>-0.0280460007488728</right_val></_></_> 20014 <_> 20015 <!-- tree 71 --> 20016 <_> 20017 <!-- root node --> 20018 <feature> 20019 <rects> 20020 <_>3 2 18 10 -1.</_> 20021 <_>9 2 6 10 3.</_></rects> 20022 <tilted>0</tilted></feature> 20023 <threshold>-0.0415350012481213</threshold> 20024 <left_val>0.7188739776611328</left_val> 20025 <right_val>0.0279820002615452</right_val></_></_> 20026 <_> 20027 <!-- tree 72 --> 20028 <_> 20029 <!-- root node --> 20030 <feature> 20031 <rects> 20032 <_>4 13 15 6 -1.</_> 20033 <_>9 13 5 6 3.</_></rects> 20034 <tilted>0</tilted></feature> 20035 <threshold>-0.0934709981083870</threshold> 20036 <left_val>-1.1906319856643677</left_val> 20037 <right_val>-0.0448109991848469</right_val></_></_> 20038 <_> 20039 <!-- tree 73 --> 20040 <_> 20041 <!-- root node --> 20042 <feature> 20043 <rects> 20044 <_>3 21 18 3 -1.</_> 20045 <_>9 21 6 3 3.</_></rects> 20046 <tilted>0</tilted></feature> 20047 <threshold>-0.0272499993443489</threshold> 20048 <left_val>0.6294249892234802</left_val> 20049 <right_val>9.5039997249841690e-003</right_val></_></_> 20050 <_> 20051 <!-- tree 74 --> 20052 <_> 20053 <!-- root node --> 20054 <feature> 20055 <rects> 20056 <_>9 1 4 11 -1.</_> 20057 <_>11 1 2 11 2.</_></rects> 20058 <tilted>0</tilted></feature> 20059 <threshold>-0.0217599999159575</threshold> 20060 <left_val>1.3233649730682373</left_val> 20061 <right_val>-0.1502700001001358</right_val></_></_> 20062 <_> 20063 <!-- tree 75 --> 20064 <_> 20065 <!-- root node --> 20066 <feature> 20067 <rects> 20068 <_>9 7 10 4 -1.</_> 20069 <_>9 7 5 4 2.</_></rects> 20070 <tilted>0</tilted></feature> 20071 <threshold>-9.6890004351735115e-003</threshold> 20072 <left_val>-0.3394710123538971</left_val> 20073 <right_val>0.1708579957485199</right_val></_></_> 20074 <_> 20075 <!-- tree 76 --> 20076 <_> 20077 <!-- root node --> 20078 <feature> 20079 <rects> 20080 <_>7 0 10 18 -1.</_> 20081 <_>12 0 5 18 2.</_></rects> 20082 <tilted>0</tilted></feature> 20083 <threshold>0.0693959966301918</threshold> 20084 <left_val>-0.2565779983997345</left_val> 20085 <right_val>0.4765209853649139</right_val></_></_> 20086 <_> 20087 <!-- tree 77 --> 20088 <_> 20089 <!-- root node --> 20090 <feature> 20091 <rects> 20092 <_>12 1 6 16 -1.</_> 20093 <_>14 1 2 16 3.</_></rects> 20094 <tilted>0</tilted></feature> 20095 <threshold>0.0312089994549751</threshold> 20096 <left_val>0.1415400058031082</left_val> 20097 <right_val>-0.3494200110435486</right_val></_></_> 20098 <_> 20099 <!-- tree 78 --> 20100 <_> 20101 <!-- root node --> 20102 <feature> 20103 <rects> 20104 <_>6 1 6 16 -1.</_> 20105 <_>8 1 2 16 3.</_></rects> 20106 <tilted>0</tilted></feature> 20107 <threshold>-0.0497270002961159</threshold> 20108 <left_val>-1.1675560474395752</left_val> 20109 <right_val>-0.0407579988241196</right_val></_></_> 20110 <_> 20111 <!-- tree 79 --> 20112 <_> 20113 <!-- root node --> 20114 <feature> 20115 <rects> 20116 <_>18 2 6 6 -1.</_> 20117 <_>18 5 6 3 2.</_></rects> 20118 <tilted>0</tilted></feature> 20119 <threshold>-0.0203019995242357</threshold> 20120 <left_val>-0.3948639929294586</left_val> 20121 <right_val>0.1581490039825440</right_val></_></_> 20122 <_> 20123 <!-- tree 80 --> 20124 <_> 20125 <!-- root node --> 20126 <feature> 20127 <rects> 20128 <_>3 5 18 2 -1.</_> 20129 <_>3 6 18 1 2.</_></rects> 20130 <tilted>0</tilted></feature> 20131 <threshold>-0.0153670003637671</threshold> 20132 <left_val>0.4930000007152557</left_val> 20133 <right_val>-0.2009209990501404</right_val></_></_> 20134 <_> 20135 <!-- tree 81 --> 20136 <_> 20137 <!-- root node --> 20138 <feature> 20139 <rects> 20140 <_>18 2 6 6 -1.</_> 20141 <_>18 5 6 3 2.</_></rects> 20142 <tilted>0</tilted></feature> 20143 <threshold>-0.0507350005209446</threshold> 20144 <left_val>1.8736059665679932</left_val> 20145 <right_val>0.0867300033569336</right_val></_></_> 20146 <_> 20147 <!-- tree 82 --> 20148 <_> 20149 <!-- root node --> 20150 <feature> 20151 <rects> 20152 <_>0 2 6 6 -1.</_> 20153 <_>0 5 6 3 2.</_></rects> 20154 <tilted>0</tilted></feature> 20155 <threshold>-0.0207260008901358</threshold> 20156 <left_val>-0.8893839716911316</left_val> 20157 <right_val>-7.3199998587369919e-003</right_val></_></_> 20158 <_> 20159 <!-- tree 83 --> 20160 <_> 20161 <!-- root node --> 20162 <feature> 20163 <rects> 20164 <_>13 11 11 6 -1.</_> 20165 <_>13 13 11 2 3.</_></rects> 20166 <tilted>0</tilted></feature> 20167 <threshold>-0.0309939999133348</threshold> 20168 <left_val>-1.1664899587631226</left_val> 20169 <right_val>0.1427460014820099</right_val></_></_> 20170 <_> 20171 <!-- tree 84 --> 20172 <_> 20173 <!-- root node --> 20174 <feature> 20175 <rects> 20176 <_>5 7 10 4 -1.</_> 20177 <_>10 7 5 4 2.</_></rects> 20178 <tilted>0</tilted></feature> 20179 <threshold>-4.4269999489188194e-003</threshold> 20180 <left_val>-0.6681510210037231</left_val> 20181 <right_val>4.4120000675320625e-003</right_val></_></_> 20182 <_> 20183 <!-- tree 85 --> 20184 <_> 20185 <!-- root node --> 20186 <feature> 20187 <rects> 20188 <_>11 9 10 7 -1.</_> 20189 <_>11 9 5 7 2.</_></rects> 20190 <tilted>0</tilted></feature> 20191 <threshold>-0.0457439981400967</threshold> 20192 <left_val>-0.4795520007610321</left_val> 20193 <right_val>0.1512199938297272</right_val></_></_> 20194 <_> 20195 <!-- tree 86 --> 20196 <_> 20197 <!-- root node --> 20198 <feature> 20199 <rects> 20200 <_>3 9 10 7 -1.</_> 20201 <_>8 9 5 7 2.</_></rects> 20202 <tilted>0</tilted></feature> 20203 <threshold>0.0166989993304014</threshold> 20204 <left_val>0.1204859986901283</left_val> 20205 <right_val>-0.4523589909076691</right_val></_></_> 20206 <_> 20207 <!-- tree 87 --> 20208 <_> 20209 <!-- root node --> 20210 <feature> 20211 <rects> 20212 <_>16 4 6 6 -1.</_> 20213 <_>16 4 3 6 2.</_></rects> 20214 <tilted>0</tilted></feature> 20215 <threshold>3.2210000790655613e-003</threshold> 20216 <left_val>-0.0776150003075600</left_val> 20217 <right_val>0.2784659862518311</right_val></_></_> 20218 <_> 20219 <!-- tree 88 --> 20220 <_> 20221 <!-- root node --> 20222 <feature> 20223 <rects> 20224 <_>5 6 10 8 -1.</_> 20225 <_>5 6 5 4 2.</_> 20226 <_>10 10 5 4 2.</_></rects> 20227 <tilted>0</tilted></feature> 20228 <threshold>0.0244340002536774</threshold> 20229 <left_val>-0.1998710036277771</left_val> 20230 <right_val>0.6725370287895203</right_val></_></_> 20231 <_> 20232 <!-- tree 89 --> 20233 <_> 20234 <!-- root node --> 20235 <feature> 20236 <rects> 20237 <_>7 21 16 3 -1.</_> 20238 <_>7 21 8 3 2.</_></rects> 20239 <tilted>0</tilted></feature> 20240 <threshold>-0.0796779990196228</threshold> 20241 <left_val>0.9222239851951599</left_val> 20242 <right_val>0.0925579965114594</right_val></_></_> 20243 <_> 20244 <!-- tree 90 --> 20245 <_> 20246 <!-- root node --> 20247 <feature> 20248 <rects> 20249 <_>1 21 16 3 -1.</_> 20250 <_>9 21 8 3 2.</_></rects> 20251 <tilted>0</tilted></feature> 20252 <threshold>0.0445300005376339</threshold> 20253 <left_val>-0.2669050097465515</left_val> 20254 <right_val>0.3332050144672394</right_val></_></_> 20255 <_> 20256 <!-- tree 91 --> 20257 <_> 20258 <!-- root node --> 20259 <feature> 20260 <rects> 20261 <_>2 5 22 14 -1.</_> 20262 <_>13 5 11 7 2.</_> 20263 <_>2 12 11 7 2.</_></rects> 20264 <tilted>0</tilted></feature> 20265 <threshold>-0.1252830028533936</threshold> 20266 <left_val>-0.5425310134887695</left_val> 20267 <right_val>0.1397629976272583</right_val></_></_> 20268 <_> 20269 <!-- tree 92 --> 20270 <_> 20271 <!-- root node --> 20272 <feature> 20273 <rects> 20274 <_>3 10 8 10 -1.</_> 20275 <_>3 10 4 5 2.</_> 20276 <_>7 15 4 5 2.</_></rects> 20277 <tilted>0</tilted></feature> 20278 <threshold>0.0179719999432564</threshold> 20279 <left_val>0.0182199999690056</left_val> 20280 <right_val>-0.6804850101470947</right_val></_></_> 20281 <_> 20282 <!-- tree 93 --> 20283 <_> 20284 <!-- root node --> 20285 <feature> 20286 <rects> 20287 <_>17 0 6 12 -1.</_> 20288 <_>20 0 3 6 2.</_> 20289 <_>17 6 3 6 2.</_></rects> 20290 <tilted>0</tilted></feature> 20291 <threshold>0.0191840007901192</threshold> 20292 <left_val>-0.0125839998945594</left_val> 20293 <right_val>0.5412669777870178</right_val></_></_> 20294 <_> 20295 <!-- tree 94 --> 20296 <_> 20297 <!-- root node --> 20298 <feature> 20299 <rects> 20300 <_>5 2 6 18 -1.</_> 20301 <_>7 2 2 18 3.</_></rects> 20302 <tilted>0</tilted></feature> 20303 <threshold>0.0400240011513233</threshold> 20304 <left_val>-0.1763879954814911</left_val> 20305 <right_val>0.7881039977073669</right_val></_></_> 20306 <_> 20307 <!-- tree 95 --> 20308 <_> 20309 <!-- root node --> 20310 <feature> 20311 <rects> 20312 <_>13 0 6 9 -1.</_> 20313 <_>15 0 2 9 3.</_></rects> 20314 <tilted>0</tilted></feature> 20315 <threshold>0.0135589996352792</threshold> 20316 <left_val>0.2073760032653809</left_val> 20317 <right_val>-0.4774430096149445</right_val></_></_> 20318 <_> 20319 <!-- tree 96 --> 20320 <_> 20321 <!-- root node --> 20322 <feature> 20323 <rects> 20324 <_>0 12 7 9 -1.</_> 20325 <_>0 15 7 3 3.</_></rects> 20326 <tilted>0</tilted></feature> 20327 <threshold>0.0162209998816252</threshold> 20328 <left_val>0.0230769999325275</left_val> 20329 <right_val>-0.6118209958076477</right_val></_></_> 20330 <_> 20331 <!-- tree 97 --> 20332 <_> 20333 <!-- root node --> 20334 <feature> 20335 <rects> 20336 <_>15 13 8 10 -1.</_> 20337 <_>19 13 4 5 2.</_> 20338 <_>15 18 4 5 2.</_></rects> 20339 <tilted>0</tilted></feature> 20340 <threshold>0.0112290000542998</threshold> 20341 <left_val>-0.0177280008792877</left_val> 20342 <right_val>0.4176419973373413</right_val></_></_> 20343 <_> 20344 <!-- tree 98 --> 20345 <_> 20346 <!-- root node --> 20347 <feature> 20348 <rects> 20349 <_>1 0 6 12 -1.</_> 20350 <_>1 0 3 6 2.</_> 20351 <_>4 6 3 6 2.</_></rects> 20352 <tilted>0</tilted></feature> 20353 <threshold>0.0391930006444454</threshold> 20354 <left_val>-0.1894849985837936</left_val> 20355 <right_val>0.7401930093765259</right_val></_></_> 20356 <_> 20357 <!-- tree 99 --> 20358 <_> 20359 <!-- root node --> 20360 <feature> 20361 <rects> 20362 <_>12 1 3 12 -1.</_> 20363 <_>12 7 3 6 2.</_></rects> 20364 <tilted>0</tilted></feature> 20365 <threshold>-9.5539996400475502e-003</threshold> 20366 <left_val>0.4094710052013397</left_val> 20367 <right_val>-0.1350889950990677</right_val></_></_> 20368 <_> 20369 <!-- tree 100 --> 20370 <_> 20371 <!-- root node --> 20372 <feature> 20373 <rects> 20374 <_>1 13 8 10 -1.</_> 20375 <_>1 13 4 5 2.</_> 20376 <_>5 18 4 5 2.</_></rects> 20377 <tilted>0</tilted></feature> 20378 <threshold>0.0278789997100830</threshold> 20379 <left_val>-0.2035070061683655</left_val> 20380 <right_val>0.6162539720535278</right_val></_></_> 20381 <_> 20382 <!-- tree 101 --> 20383 <_> 20384 <!-- root node --> 20385 <feature> 20386 <rects> 20387 <_>3 21 19 2 -1.</_> 20388 <_>3 22 19 1 2.</_></rects> 20389 <tilted>0</tilted></feature> 20390 <threshold>-0.0236009992659092</threshold> 20391 <left_val>-1.6967060565948486</left_val> 20392 <right_val>0.1463319957256317</right_val></_></_> 20393 <_> 20394 <!-- tree 102 --> 20395 <_> 20396 <!-- root node --> 20397 <feature> 20398 <rects> 20399 <_>6 3 4 13 -1.</_> 20400 <_>8 3 2 13 2.</_></rects> 20401 <tilted>0</tilted></feature> 20402 <threshold>0.0269300006330013</threshold> 20403 <left_val>-0.0304019991308451</left_val> 20404 <right_val>-1.0909470319747925</right_val></_></_> 20405 <_> 20406 <!-- tree 103 --> 20407 <_> 20408 <!-- root node --> 20409 <feature> 20410 <rects> 20411 <_>5 10 18 3 -1.</_> 20412 <_>5 11 18 1 3.</_></rects> 20413 <tilted>0</tilted></feature> 20414 <threshold>2.8999999631196260e-004</threshold> 20415 <left_val>-0.2007600069046021</left_val> 20416 <right_val>0.2231409996747971</right_val></_></_> 20417 <_> 20418 <!-- tree 104 --> 20419 <_> 20420 <!-- root node --> 20421 <feature> 20422 <rects> 20423 <_>9 3 5 12 -1.</_> 20424 <_>9 7 5 4 3.</_></rects> 20425 <tilted>0</tilted></feature> 20426 <threshold>-0.0411249995231628</threshold> 20427 <left_val>-0.4524219930171967</left_val> 20428 <right_val>0.0573920011520386</right_val></_></_> 20429 <_> 20430 <!-- tree 105 --> 20431 <_> 20432 <!-- root node --> 20433 <feature> 20434 <rects> 20435 <_>11 2 4 15 -1.</_> 20436 <_>11 7 4 5 3.</_></rects> 20437 <tilted>0</tilted></feature> 20438 <threshold>6.6789998672902584e-003</threshold> 20439 <left_val>0.2382490038871765</left_val> 20440 <right_val>-0.2126210033893585</right_val></_></_> 20441 <_> 20442 <!-- tree 106 --> 20443 <_> 20444 <!-- root node --> 20445 <feature> 20446 <rects> 20447 <_>4 1 16 4 -1.</_> 20448 <_>4 3 16 2 2.</_></rects> 20449 <tilted>0</tilted></feature> 20450 <threshold>0.0478649996221066</threshold> 20451 <left_val>-0.1819480061531067</left_val> 20452 <right_val>0.6191840171813965</right_val></_></_> 20453 <_> 20454 <!-- tree 107 --> 20455 <_> 20456 <!-- root node --> 20457 <feature> 20458 <rects> 20459 <_>6 0 18 3 -1.</_> 20460 <_>6 1 18 1 3.</_></rects> 20461 <tilted>0</tilted></feature> 20462 <threshold>-3.1679999083280563e-003</threshold> 20463 <left_val>-0.2739320099353790</left_val> 20464 <right_val>0.2501730024814606</right_val></_></_> 20465 <_> 20466 <!-- tree 108 --> 20467 <_> 20468 <!-- root node --> 20469 <feature> 20470 <rects> 20471 <_>5 1 10 8 -1.</_> 20472 <_>5 1 5 4 2.</_> 20473 <_>10 5 5 4 2.</_></rects> 20474 <tilted>0</tilted></feature> 20475 <threshold>-8.6230002343654633e-003</threshold> 20476 <left_val>-0.4628030061721802</left_val> 20477 <right_val>0.0423979982733727</right_val></_></_> 20478 <_> 20479 <!-- tree 109 --> 20480 <_> 20481 <!-- root node --> 20482 <feature> 20483 <rects> 20484 <_>11 18 12 6 -1.</_> 20485 <_>17 18 6 3 2.</_> 20486 <_>11 21 6 3 2.</_></rects> 20487 <tilted>0</tilted></feature> 20488 <threshold>-7.4350000359117985e-003</threshold> 20489 <left_val>0.4179680049419403</left_val> 20490 <right_val>-1.7079999670386314e-003</right_val></_></_> 20491 <_> 20492 <!-- tree 110 --> 20493 <_> 20494 <!-- root node --> 20495 <feature> 20496 <rects> 20497 <_>5 15 12 3 -1.</_> 20498 <_>11 15 6 3 2.</_></rects> 20499 <tilted>0</tilted></feature> 20500 <threshold>-1.8769999733194709e-003</threshold> 20501 <left_val>0.1460230052471161</left_val> 20502 <right_val>-0.3372110128402710</right_val></_></_> 20503 <_> 20504 <!-- tree 111 --> 20505 <_> 20506 <!-- root node --> 20507 <feature> 20508 <rects> 20509 <_>1 10 22 4 -1.</_> 20510 <_>1 10 11 4 2.</_></rects> 20511 <tilted>0</tilted></feature> 20512 <threshold>-0.0862260013818741</threshold> 20513 <left_val>0.7514340281486511</left_val> 20514 <right_val>0.0107119996100664</right_val></_></_> 20515 <_> 20516 <!-- tree 112 --> 20517 <_> 20518 <!-- root node --> 20519 <feature> 20520 <rects> 20521 <_>7 9 9 6 -1.</_> 20522 <_>10 9 3 6 3.</_></rects> 20523 <tilted>0</tilted></feature> 20524 <threshold>0.0468339994549751</threshold> 20525 <left_val>-0.1911959946155548</left_val> 20526 <right_val>0.4841490089893341</right_val></_></_> 20527 <_> 20528 <!-- tree 113 --> 20529 <_> 20530 <!-- root node --> 20531 <feature> 20532 <rects> 20533 <_>6 11 12 5 -1.</_> 20534 <_>10 11 4 5 3.</_></rects> 20535 <tilted>0</tilted></feature> 20536 <threshold>-9.2000002041459084e-005</threshold> 20537 <left_val>0.3522039949893951</left_val> 20538 <right_val>-0.1733330041170120</right_val></_></_> 20539 <_> 20540 <!-- tree 114 --> 20541 <_> 20542 <!-- root node --> 20543 <feature> 20544 <rects> 20545 <_>6 7 10 7 -1.</_> 20546 <_>11 7 5 7 2.</_></rects> 20547 <tilted>0</tilted></feature> 20548 <threshold>-0.0163439996540546</threshold> 20549 <left_val>-0.6439769864082336</left_val> 20550 <right_val>9.0680001303553581e-003</right_val></_></_> 20551 <_> 20552 <!-- tree 115 --> 20553 <_> 20554 <!-- root node --> 20555 <feature> 20556 <rects> 20557 <_>11 2 8 10 -1.</_> 20558 <_>11 2 4 10 2.</_></rects> 20559 <tilted>0</tilted></feature> 20560 <threshold>0.0457039996981621</threshold> 20561 <left_val>0.0182160008698702</left_val> 20562 <right_val>0.3197079896926880</right_val></_></_> 20563 <_> 20564 <!-- tree 116 --> 20565 <_> 20566 <!-- root node --> 20567 <feature> 20568 <rects> 20569 <_>5 2 8 10 -1.</_> 20570 <_>9 2 4 10 2.</_></rects> 20571 <tilted>0</tilted></feature> 20572 <threshold>-0.0273829996585846</threshold> 20573 <left_val>1.0564049482345581</left_val> 20574 <right_val>-0.1727640032768250</right_val></_></_> 20575 <_> 20576 <!-- tree 117 --> 20577 <_> 20578 <!-- root node --> 20579 <feature> 20580 <rects> 20581 <_>6 4 18 6 -1.</_> 20582 <_>15 4 9 3 2.</_> 20583 <_>6 7 9 3 2.</_></rects> 20584 <tilted>0</tilted></feature> 20585 <threshold>-0.0276020001620054</threshold> 20586 <left_val>0.2971549928188324</left_val> 20587 <right_val>-9.4600003212690353e-003</right_val></_></_> 20588 <_> 20589 <!-- tree 118 --> 20590 <_> 20591 <!-- root node --> 20592 <feature> 20593 <rects> 20594 <_>0 5 10 9 -1.</_> 20595 <_>0 8 10 3 3.</_></rects> 20596 <tilted>0</tilted></feature> 20597 <threshold>7.6939999125897884e-003</threshold> 20598 <left_val>-0.2166029959917069</left_val> 20599 <right_val>0.4738520085811615</right_val></_></_> 20600 <_> 20601 <!-- tree 119 --> 20602 <_> 20603 <!-- root node --> 20604 <feature> 20605 <rects> 20606 <_>2 7 21 6 -1.</_> 20607 <_>2 9 21 2 3.</_></rects> 20608 <tilted>0</tilted></feature> 20609 <threshold>-7.0500001311302185e-004</threshold> 20610 <left_val>0.2404879927635193</left_val> 20611 <right_val>-0.2677600085735321</right_val></_></_> 20612 <_> 20613 <!-- tree 120 --> 20614 <_> 20615 <!-- root node --> 20616 <feature> 20617 <rects> 20618 <_>0 4 22 16 -1.</_> 20619 <_>0 4 11 8 2.</_> 20620 <_>11 12 11 8 2.</_></rects> 20621 <tilted>0</tilted></feature> 20622 <threshold>0.1105419993400574</threshold> 20623 <left_val>-0.0335390008985996</left_val> 20624 <right_val>-1.0233880281448364</right_val></_></_> 20625 <_> 20626 <!-- tree 121 --> 20627 <_> 20628 <!-- root node --> 20629 <feature> 20630 <rects> 20631 <_>9 0 6 22 -1.</_> 20632 <_>9 11 6 11 2.</_></rects> 20633 <tilted>0</tilted></feature> 20634 <threshold>0.0687659978866577</threshold> 20635 <left_val>-4.3239998631179333e-003</left_val> 20636 <right_val>0.5715339779853821</right_val></_></_> 20637 <_> 20638 <!-- tree 122 --> 20639 <_> 20640 <!-- root node --> 20641 <feature> 20642 <rects> 20643 <_>9 1 3 12 -1.</_> 20644 <_>9 7 3 6 2.</_></rects> 20645 <tilted>0</tilted></feature> 20646 <threshold>1.7999999690800905e-003</threshold> 20647 <left_val>0.0775749981403351</left_val> 20648 <right_val>-0.4209269881248474</right_val></_></_> 20649 <_> 20650 <!-- tree 123 --> 20651 <_> 20652 <!-- root node --> 20653 <feature> 20654 <rects> 20655 <_>12 0 12 18 -1.</_> 20656 <_>18 0 6 9 2.</_> 20657 <_>12 9 6 9 2.</_></rects> 20658 <tilted>0</tilted></feature> 20659 <threshold>0.1923200041055679</threshold> 20660 <left_val>0.0820219963788986</left_val> 20661 <right_val>2.8810169696807861</right_val></_></_> 20662 <_> 20663 <!-- tree 124 --> 20664 <_> 20665 <!-- root node --> 20666 <feature> 20667 <rects> 20668 <_>0 0 12 18 -1.</_> 20669 <_>0 0 6 9 2.</_> 20670 <_>6 9 6 9 2.</_></rects> 20671 <tilted>0</tilted></feature> 20672 <threshold>0.1574209928512573</threshold> 20673 <left_val>-0.1370819956064224</left_val> 20674 <right_val>2.0890059471130371</right_val></_></_> 20675 <_> 20676 <!-- tree 125 --> 20677 <_> 20678 <!-- root node --> 20679 <feature> 20680 <rects> 20681 <_>1 1 22 4 -1.</_> 20682 <_>12 1 11 2 2.</_> 20683 <_>1 3 11 2 2.</_></rects> 20684 <tilted>0</tilted></feature> 20685 <threshold>-0.0493870005011559</threshold> 20686 <left_val>-1.8610910177230835</left_val> 20687 <right_val>0.1433209925889969</right_val></_></_> 20688 <_> 20689 <!-- tree 126 --> 20690 <_> 20691 <!-- root node --> 20692 <feature> 20693 <rects> 20694 <_>3 0 18 4 -1.</_> 20695 <_>3 2 18 2 2.</_></rects> 20696 <tilted>0</tilted></feature> 20697 <threshold>0.0519290007650852</threshold> 20698 <left_val>-0.1873700022697449</left_val> 20699 <right_val>0.5423160195350647</right_val></_></_> 20700 <_> 20701 <!-- tree 127 --> 20702 <_> 20703 <!-- root node --> 20704 <feature> 20705 <rects> 20706 <_>2 5 22 6 -1.</_> 20707 <_>2 7 22 2 3.</_></rects> 20708 <tilted>0</tilted></feature> 20709 <threshold>0.0499650016427040</threshold> 20710 <left_val>0.1417530030012131</left_val> 20711 <right_val>-1.5625779628753662</right_val></_></_> 20712 <_> 20713 <!-- tree 128 --> 20714 <_> 20715 <!-- root node --> 20716 <feature> 20717 <rects> 20718 <_>5 0 6 9 -1.</_> 20719 <_>5 3 6 3 3.</_></rects> 20720 <tilted>0</tilted></feature> 20721 <threshold>-0.0426330007612705</threshold> 20722 <left_val>1.6059479713439941</left_val> 20723 <right_val>-0.1471289992332459</right_val></_></_> 20724 <_> 20725 <!-- tree 129 --> 20726 <_> 20727 <!-- root node --> 20728 <feature> 20729 <rects> 20730 <_>10 14 6 9 -1.</_> 20731 <_>12 14 2 9 3.</_></rects> 20732 <tilted>0</tilted></feature> 20733 <threshold>-0.0375539995729923</threshold> 20734 <left_val>-0.8097490072250366</left_val> 20735 <right_val>0.1325699985027313</right_val></_></_> 20736 <_> 20737 <!-- tree 130 --> 20738 <_> 20739 <!-- root node --> 20740 <feature> 20741 <rects> 20742 <_>8 14 6 9 -1.</_> 20743 <_>10 14 2 9 3.</_></rects> 20744 <tilted>0</tilted></feature> 20745 <threshold>-0.0371749997138977</threshold> 20746 <left_val>-1.3945020437240601</left_val> 20747 <right_val>-0.0570550002157688</right_val></_></_> 20748 <_> 20749 <!-- tree 131 --> 20750 <_> 20751 <!-- root node --> 20752 <feature> 20753 <rects> 20754 <_>5 18 18 3 -1.</_> 20755 <_>5 19 18 1 3.</_></rects> 20756 <tilted>0</tilted></feature> 20757 <threshold>0.0139459995552897</threshold> 20758 <left_val>0.0334270000457764</left_val> 20759 <right_val>0.5747479796409607</right_val></_></_> 20760 <_> 20761 <!-- tree 132 --> 20762 <_> 20763 <!-- root node --> 20764 <feature> 20765 <rects> 20766 <_>6 0 6 13 -1.</_> 20767 <_>9 0 3 13 2.</_></rects> 20768 <tilted>0</tilted></feature> 20769 <threshold>-4.4800000614486635e-004</threshold> 20770 <left_val>-0.5532749891281128</left_val> 20771 <right_val>0.0219529997557402</right_val></_></_> 20772 <_> 20773 <!-- tree 133 --> 20774 <_> 20775 <!-- root node --> 20776 <feature> 20777 <rects> 20778 <_>7 4 12 4 -1.</_> 20779 <_>7 4 6 4 2.</_></rects> 20780 <tilted>0</tilted></feature> 20781 <threshold>0.0319930016994476</threshold> 20782 <left_val>0.0203409995883703</left_val> 20783 <right_val>0.3745920062065125</right_val></_></_> 20784 <_> 20785 <!-- tree 134 --> 20786 <_> 20787 <!-- root node --> 20788 <feature> 20789 <rects> 20790 <_>5 2 12 6 -1.</_> 20791 <_>9 2 4 6 3.</_></rects> 20792 <tilted>0</tilted></feature> 20793 <threshold>-4.2799999937415123e-003</threshold> 20794 <left_val>0.4442870020866394</left_val> 20795 <right_val>-0.2299969941377640</right_val></_></_> 20796 <_> 20797 <!-- tree 135 --> 20798 <_> 20799 <!-- root node --> 20800 <feature> 20801 <rects> 20802 <_>4 1 18 3 -1.</_> 20803 <_>4 2 18 1 3.</_></rects> 20804 <tilted>0</tilted></feature> 20805 <threshold>9.8550003021955490e-003</threshold> 20806 <left_val>0.1831579953432083</left_val> 20807 <right_val>-0.4096499979496002</right_val></_></_> 20808 <_> 20809 <!-- tree 136 --> 20810 <_> 20811 <!-- root node --> 20812 <feature> 20813 <rects> 20814 <_>0 8 6 12 -1.</_> 20815 <_>0 12 6 4 3.</_></rects> 20816 <tilted>0</tilted></feature> 20817 <threshold>0.0933569967746735</threshold> 20818 <left_val>-0.0636610016226768</left_val> 20819 <right_val>-1.6929290294647217</right_val></_></_> 20820 <_> 20821 <!-- tree 137 --> 20822 <_> 20823 <!-- root node --> 20824 <feature> 20825 <rects> 20826 <_>9 15 6 9 -1.</_> 20827 <_>11 15 2 9 3.</_></rects> 20828 <tilted>0</tilted></feature> 20829 <threshold>0.0172099992632866</threshold> 20830 <left_val>0.2015389949083328</left_val> 20831 <right_val>-0.4606109857559204</right_val></_></_> 20832 <_> 20833 <!-- tree 138 --> 20834 <_> 20835 <!-- root node --> 20836 <feature> 20837 <rects> 20838 <_>9 10 6 13 -1.</_> 20839 <_>11 10 2 13 3.</_></rects> 20840 <tilted>0</tilted></feature> 20841 <threshold>8.4319999441504478e-003</threshold> 20842 <left_val>-0.3200399875640869</left_val> 20843 <right_val>0.1531219929456711</right_val></_></_> 20844 <_> 20845 <!-- tree 139 --> 20846 <_> 20847 <!-- root node --> 20848 <feature> 20849 <rects> 20850 <_>6 17 18 2 -1.</_> 20851 <_>6 18 18 1 2.</_></rects> 20852 <tilted>0</tilted></feature> 20853 <threshold>-0.0140549996867776</threshold> 20854 <left_val>0.8688240051269531</left_val> 20855 <right_val>0.0325750000774860</right_val></_></_> 20856 <_> 20857 <!-- tree 140 --> 20858 <_> 20859 <!-- root node --> 20860 <feature> 20861 <rects> 20862 <_>9 4 6 9 -1.</_> 20863 <_>11 4 2 9 3.</_></rects> 20864 <tilted>0</tilted></feature> 20865 <threshold>-7.7180000953376293e-003</threshold> 20866 <left_val>0.6368669867515564</left_val> 20867 <right_val>-0.1842550039291382</right_val></_></_> 20868 <_> 20869 <!-- tree 141 --> 20870 <_> 20871 <!-- root node --> 20872 <feature> 20873 <rects> 20874 <_>10 0 6 9 -1.</_> 20875 <_>12 0 2 9 3.</_></rects> 20876 <tilted>0</tilted></feature> 20877 <threshold>0.0280050002038479</threshold> 20878 <left_val>0.1735749989748001</left_val> 20879 <right_val>-0.4788359999656677</right_val></_></_> 20880 <_> 20881 <!-- tree 142 --> 20882 <_> 20883 <!-- root node --> 20884 <feature> 20885 <rects> 20886 <_>5 6 10 8 -1.</_> 20887 <_>5 6 5 4 2.</_> 20888 <_>10 10 5 4 2.</_></rects> 20889 <tilted>0</tilted></feature> 20890 <threshold>-0.0188849996775389</threshold> 20891 <left_val>0.2410160005092621</left_val> 20892 <right_val>-0.2654759883880615</right_val></_></_> 20893 <_> 20894 <!-- tree 143 --> 20895 <_> 20896 <!-- root node --> 20897 <feature> 20898 <rects> 20899 <_>14 9 5 8 -1.</_> 20900 <_>14 13 5 4 2.</_></rects> 20901 <tilted>0</tilted></feature> 20902 <threshold>-0.0185850001871586</threshold> 20903 <left_val>0.5423250198364258</left_val> 20904 <right_val>0.0536330007016659</right_val></_></_> 20905 <_> 20906 <!-- tree 144 --> 20907 <_> 20908 <!-- root node --> 20909 <feature> 20910 <rects> 20911 <_>5 9 5 8 -1.</_> 20912 <_>5 13 5 4 2.</_></rects> 20913 <tilted>0</tilted></feature> 20914 <threshold>-0.0364370010793209</threshold> 20915 <left_val>2.3908898830413818</left_val> 20916 <right_val>-0.1363469958305359</right_val></_></_> 20917 <_> 20918 <!-- tree 145 --> 20919 <_> 20920 <!-- root node --> 20921 <feature> 20922 <rects> 20923 <_>14 11 9 6 -1.</_> 20924 <_>14 13 9 2 3.</_></rects> 20925 <tilted>0</tilted></feature> 20926 <threshold>0.0324550010263920</threshold> 20927 <left_val>0.1591069996356964</left_val> 20928 <right_val>-0.6758149862289429</right_val></_></_> 20929 <_> 20930 <!-- tree 146 --> 20931 <_> 20932 <!-- root node --> 20933 <feature> 20934 <rects> 20935 <_>0 2 23 15 -1.</_> 20936 <_>0 7 23 5 3.</_></rects> 20937 <tilted>0</tilted></feature> 20938 <threshold>0.0597819983959198</threshold> 20939 <left_val>-2.3479999508708715e-003</left_val> 20940 <right_val>-0.7305369973182678</right_val></_></_> 20941 <_> 20942 <!-- tree 147 --> 20943 <_> 20944 <!-- root node --> 20945 <feature> 20946 <rects> 20947 <_>16 0 8 12 -1.</_> 20948 <_>16 6 8 6 2.</_></rects> 20949 <tilted>0</tilted></feature> 20950 <threshold>9.8209995776414871e-003</threshold> 20951 <left_val>-0.1144409999251366</left_val> 20952 <right_val>0.3057030141353607</right_val></_></_> 20953 <_> 20954 <!-- tree 148 --> 20955 <_> 20956 <!-- root node --> 20957 <feature> 20958 <rects> 20959 <_>4 15 6 9 -1.</_> 20960 <_>4 18 6 3 3.</_></rects> 20961 <tilted>0</tilted></feature> 20962 <threshold>-0.0351639986038208</threshold> 20963 <left_val>-1.0511469841003418</left_val> 20964 <right_val>-0.0331030003726482</right_val></_></_> 20965 <_> 20966 <!-- tree 149 --> 20967 <_> 20968 <!-- root node --> 20969 <feature> 20970 <rects> 20971 <_>8 18 9 4 -1.</_> 20972 <_>8 20 9 2 2.</_></rects> 20973 <tilted>0</tilted></feature> 20974 <threshold>2.7429999317973852e-003</threshold> 20975 <left_val>-0.2013539969921112</left_val> 20976 <right_val>0.3275409936904907</right_val></_></_> 20977 <_> 20978 <!-- tree 150 --> 20979 <_> 20980 <!-- root node --> 20981 <feature> 20982 <rects> 20983 <_>0 17 18 3 -1.</_> 20984 <_>0 18 18 1 3.</_></rects> 20985 <tilted>0</tilted></feature> 20986 <threshold>8.1059997901320457e-003</threshold> 20987 <left_val>-0.2138350009918213</left_val> 20988 <right_val>0.4336209893226624</right_val></_></_> 20989 <_> 20990 <!-- tree 151 --> 20991 <_> 20992 <!-- root node --> 20993 <feature> 20994 <rects> 20995 <_>13 11 11 6 -1.</_> 20996 <_>13 13 11 2 3.</_></rects> 20997 <tilted>0</tilted></feature> 20998 <threshold>0.0889429971575737</threshold> 20999 <left_val>0.1094089969992638</left_val> 21000 <right_val>-4.7609338760375977</right_val></_></_> 21001 <_> 21002 <!-- tree 152 --> 21003 <_> 21004 <!-- root node --> 21005 <feature> 21006 <rects> 21007 <_>0 11 11 6 -1.</_> 21008 <_>0 13 11 2 3.</_></rects> 21009 <tilted>0</tilted></feature> 21010 <threshold>-0.0300549995154142</threshold> 21011 <left_val>-1.7169300317764282</left_val> 21012 <right_val>-0.0609190016984940</right_val></_></_> 21013 <_> 21014 <!-- tree 153 --> 21015 <_> 21016 <!-- root node --> 21017 <feature> 21018 <rects> 21019 <_>0 9 24 6 -1.</_> 21020 <_>12 9 12 3 2.</_> 21021 <_>0 12 12 3 2.</_></rects> 21022 <tilted>0</tilted></feature> 21023 <threshold>-0.0217349994927645</threshold> 21024 <left_val>0.6477890014648438</left_val> 21025 <right_val>-0.0328309983015060</right_val></_></_> 21026 <_> 21027 <!-- tree 154 --> 21028 <_> 21029 <!-- root node --> 21030 <feature> 21031 <rects> 21032 <_>6 16 8 8 -1.</_> 21033 <_>6 20 8 4 2.</_></rects> 21034 <tilted>0</tilted></feature> 21035 <threshold>0.0376489982008934</threshold> 21036 <left_val>-0.0100600002333522</left_val> 21037 <right_val>-0.7656909823417664</right_val></_></_> 21038 <_> 21039 <!-- tree 155 --> 21040 <_> 21041 <!-- root node --> 21042 <feature> 21043 <rects> 21044 <_>10 16 14 6 -1.</_> 21045 <_>10 18 14 2 3.</_></rects> 21046 <tilted>0</tilted></feature> 21047 <threshold>2.7189999818801880e-003</threshold> 21048 <left_val>0.1988890022039414</left_val> 21049 <right_val>-0.0824790000915527</right_val></_></_> 21050 <_> 21051 <!-- tree 156 --> 21052 <_> 21053 <!-- root node --> 21054 <feature> 21055 <rects> 21056 <_>1 1 21 3 -1.</_> 21057 <_>1 2 21 1 3.</_></rects> 21058 <tilted>0</tilted></feature> 21059 <threshold>-0.0105480002239347</threshold> 21060 <left_val>-0.8661360144615173</left_val> 21061 <right_val>-0.0259860008955002</right_val></_></_> 21062 <_> 21063 <!-- tree 157 --> 21064 <_> 21065 <!-- root node --> 21066 <feature> 21067 <rects> 21068 <_>0 2 24 3 -1.</_> 21069 <_>0 2 12 3 2.</_></rects> 21070 <tilted>0</tilted></feature> 21071 <threshold>0.1296630054712296</threshold> 21072 <left_val>0.1391199976205826</left_val> 21073 <right_val>-2.2271950244903564</right_val></_></_> 21074 <_> 21075 <!-- tree 158 --> 21076 <_> 21077 <!-- root node --> 21078 <feature> 21079 <rects> 21080 <_>2 15 8 5 -1.</_> 21081 <_>6 15 4 5 2.</_></rects> 21082 <tilted>0</tilted></feature> 21083 <threshold>-0.0176769997924566</threshold> 21084 <left_val>0.3396770060062408</left_val> 21085 <right_val>-0.2398959994316101</right_val></_></_> 21086 <_> 21087 <!-- tree 159 --> 21088 <_> 21089 <!-- root node --> 21090 <feature> 21091 <rects> 21092 <_>2 11 21 3 -1.</_> 21093 <_>9 11 7 3 3.</_></rects> 21094 <tilted>0</tilted></feature> 21095 <threshold>-0.0770519971847534</threshold> 21096 <left_val>-2.5017969608306885</left_val> 21097 <right_val>0.1284199953079224</right_val></_></_> 21098 <_> 21099 <!-- tree 160 --> 21100 <_> 21101 <!-- root node --> 21102 <feature> 21103 <rects> 21104 <_>1 18 12 6 -1.</_> 21105 <_>1 18 6 3 2.</_> 21106 <_>7 21 6 3 2.</_></rects> 21107 <tilted>0</tilted></feature> 21108 <threshold>-0.0192300006747246</threshold> 21109 <left_val>0.5064120292663574</left_val> 21110 <right_val>-0.1975159943103790</right_val></_></_> 21111 <_> 21112 <!-- tree 161 --> 21113 <_> 21114 <!-- root node --> 21115 <feature> 21116 <rects> 21117 <_>10 14 4 10 -1.</_> 21118 <_>10 19 4 5 2.</_></rects> 21119 <tilted>0</tilted></feature> 21120 <threshold>-0.0512229986488819</threshold> 21121 <left_val>-2.9333369731903076</left_val> 21122 <right_val>0.1385850012302399</right_val></_></_> 21123 <_> 21124 <!-- tree 162 --> 21125 <_> 21126 <!-- root node --> 21127 <feature> 21128 <rects> 21129 <_>7 7 4 10 -1.</_> 21130 <_>7 12 4 5 2.</_></rects> 21131 <tilted>0</tilted></feature> 21132 <threshold>2.0830000285059214e-003</threshold> 21133 <left_val>-0.6004359722137451</left_val> 21134 <right_val>0.0297180004417896</right_val></_></_> 21135 <_> 21136 <!-- tree 163 --> 21137 <_> 21138 <!-- root node --> 21139 <feature> 21140 <rects> 21141 <_>9 8 6 12 -1.</_> 21142 <_>9 12 6 4 3.</_></rects> 21143 <tilted>0</tilted></feature> 21144 <threshold>0.0254180002957582</threshold> 21145 <left_val>0.3391579985618591</left_val> 21146 <right_val>-0.1439200043678284</right_val></_></_> 21147 <_> 21148 <!-- tree 164 --> 21149 <_> 21150 <!-- root node --> 21151 <feature> 21152 <rects> 21153 <_>7 1 9 6 -1.</_> 21154 <_>10 1 3 6 3.</_></rects> 21155 <tilted>0</tilted></feature> 21156 <threshold>-0.0239059999585152</threshold> 21157 <left_val>-1.1082680225372314</left_val> 21158 <right_val>-0.0473770014941692</right_val></_></_> 21159 <_> 21160 <!-- tree 165 --> 21161 <_> 21162 <!-- root node --> 21163 <feature> 21164 <rects> 21165 <_>3 14 19 2 -1.</_> 21166 <_>3 15 19 1 2.</_></rects> 21167 <tilted>0</tilted></feature> 21168 <threshold>-6.3740001060068607e-003</threshold> 21169 <left_val>0.4453369975090027</left_val> 21170 <right_val>-0.0670529976487160</right_val></_></_> 21171 <_> 21172 <!-- tree 166 --> 21173 <_> 21174 <!-- root node --> 21175 <feature> 21176 <rects> 21177 <_>7 7 10 10 -1.</_> 21178 <_>7 7 5 5 2.</_> 21179 <_>12 12 5 5 2.</_></rects> 21180 <tilted>0</tilted></feature> 21181 <threshold>-0.0376989990472794</threshold> 21182 <left_val>-1.0406579971313477</left_val> 21183 <right_val>-0.0417900010943413</right_val></_></_> 21184 <_> 21185 <!-- tree 167 --> 21186 <_> 21187 <!-- root node --> 21188 <feature> 21189 <rects> 21190 <_>3 12 18 12 -1.</_> 21191 <_>3 12 9 12 2.</_></rects> 21192 <tilted>0</tilted></feature> 21193 <threshold>0.2165510058403015</threshold> 21194 <left_val>0.0338630005717278</left_val> 21195 <right_val>0.8201730251312256</right_val></_></_> 21196 <_> 21197 <!-- tree 168 --> 21198 <_> 21199 <!-- root node --> 21200 <feature> 21201 <rects> 21202 <_>8 0 6 12 -1.</_> 21203 <_>10 0 2 12 3.</_></rects> 21204 <tilted>0</tilted></feature> 21205 <threshold>-0.0134009998291731</threshold> 21206 <left_val>0.5290349721908569</left_val> 21207 <right_val>-0.1913300007581711</right_val></_></_></trees> 21208 <stage_threshold>-3.2396929264068604</stage_threshold> 21209 <parent>17</parent> 21210 <next>-1</next></_> 21211 <_> 21212 <!-- stage 19 --> 21213 <trees> 21214 <_> 21215 <!-- tree 0 --> 21216 <_> 21217 <!-- root node --> 21218 <feature> 21219 <rects> 21220 <_>3 0 17 9 -1.</_> 21221 <_>3 3 17 3 3.</_></rects> 21222 <tilted>0</tilted></feature> 21223 <threshold>0.0712689980864525</threshold> 21224 <left_val>-0.5363119840621948</left_val> 21225 <right_val>0.6071529984474182</right_val></_></_> 21226 <_> 21227 <!-- tree 1 --> 21228 <_> 21229 <!-- root node --> 21230 <feature> 21231 <rects> 21232 <_>6 0 12 11 -1.</_> 21233 <_>10 0 4 11 3.</_></rects> 21234 <tilted>0</tilted></feature> 21235 <threshold>0.0561110004782677</threshold> 21236 <left_val>-0.5014160275459290</left_val> 21237 <right_val>0.4397610127925873</right_val></_></_> 21238 <_> 21239 <!-- tree 2 --> 21240 <_> 21241 <!-- root node --> 21242 <feature> 21243 <rects> 21244 <_>1 0 6 13 -1.</_> 21245 <_>4 0 3 13 2.</_></rects> 21246 <tilted>0</tilted></feature> 21247 <threshold>0.0404639989137650</threshold> 21248 <left_val>-0.3292219936847687</left_val> 21249 <right_val>0.5483469963073731</right_val></_></_> 21250 <_> 21251 <!-- tree 3 --> 21252 <_> 21253 <!-- root node --> 21254 <feature> 21255 <rects> 21256 <_>5 8 16 6 -1.</_> 21257 <_>5 11 16 3 2.</_></rects> 21258 <tilted>0</tilted></feature> 21259 <threshold>0.0631550028920174</threshold> 21260 <left_val>-0.3170169889926910</left_val> 21261 <right_val>0.4615299999713898</right_val></_></_> 21262 <_> 21263 <!-- tree 4 --> 21264 <_> 21265 <!-- root node --> 21266 <feature> 21267 <rects> 21268 <_>8 8 5 12 -1.</_> 21269 <_>8 14 5 6 2.</_></rects> 21270 <tilted>0</tilted></feature> 21271 <threshold>0.0103209996595979</threshold> 21272 <left_val>0.1069499999284744</left_val> 21273 <right_val>-0.9824389815330505</right_val></_></_> 21274 <_> 21275 <!-- tree 5 --> 21276 <_> 21277 <!-- root node --> 21278 <feature> 21279 <rects> 21280 <_>3 21 18 3 -1.</_> 21281 <_>9 21 6 3 3.</_></rects> 21282 <tilted>0</tilted></feature> 21283 <threshold>0.0626069977879524</threshold> 21284 <left_val>-0.1432970017194748</left_val> 21285 <right_val>0.7109500169754028</right_val></_></_> 21286 <_> 21287 <!-- tree 6 --> 21288 <_> 21289 <!-- root node --> 21290 <feature> 21291 <rects> 21292 <_>0 0 6 6 -1.</_> 21293 <_>3 0 3 6 2.</_></rects> 21294 <tilted>0</tilted></feature> 21295 <threshold>-0.0394160002470016</threshold> 21296 <left_val>0.9438019990921021</left_val> 21297 <right_val>-0.2157209962606430</right_val></_></_> 21298 <_> 21299 <!-- tree 7 --> 21300 <_> 21301 <!-- root node --> 21302 <feature> 21303 <rects> 21304 <_>2 0 20 3 -1.</_> 21305 <_>2 1 20 1 3.</_></rects> 21306 <tilted>0</tilted></feature> 21307 <threshold>-5.3960001096129417e-003</threshold> 21308 <left_val>-0.5461199879646301</left_val> 21309 <right_val>0.2530379891395569</right_val></_></_> 21310 <_> 21311 <!-- tree 8 --> 21312 <_> 21313 <!-- root node --> 21314 <feature> 21315 <rects> 21316 <_>4 6 15 10 -1.</_> 21317 <_>9 6 5 10 3.</_></rects> 21318 <tilted>0</tilted></feature> 21319 <threshold>0.1077319979667664</threshold> 21320 <left_val>0.0124960001558065</left_val> 21321 <right_val>-1.0809199810028076</right_val></_></_> 21322 <_> 21323 <!-- tree 9 --> 21324 <_> 21325 <!-- root node --> 21326 <feature> 21327 <rects> 21328 <_>9 6 6 9 -1.</_> 21329 <_>11 6 2 9 3.</_></rects> 21330 <tilted>0</tilted></feature> 21331 <threshold>0.0169820003211498</threshold> 21332 <left_val>-0.3153640031814575</left_val> 21333 <right_val>0.5123999714851379</right_val></_></_> 21334 <_> 21335 <!-- tree 10 --> 21336 <_> 21337 <!-- root node --> 21338 <feature> 21339 <rects> 21340 <_>9 0 6 9 -1.</_> 21341 <_>11 0 2 9 3.</_></rects> 21342 <tilted>0</tilted></feature> 21343 <threshold>0.0312169995158911</threshold> 21344 <left_val>-4.5199999585747719e-003</left_val> 21345 <right_val>-1.2443480491638184</right_val></_></_> 21346 <_> 21347 <!-- tree 11 --> 21348 <_> 21349 <!-- root node --> 21350 <feature> 21351 <rects> 21352 <_>14 0 6 9 -1.</_> 21353 <_>16 0 2 9 3.</_></rects> 21354 <tilted>0</tilted></feature> 21355 <threshold>-0.0231069996953011</threshold> 21356 <left_val>-0.7649289965629578</left_val> 21357 <right_val>0.2064059972763062</right_val></_></_> 21358 <_> 21359 <!-- tree 12 --> 21360 <_> 21361 <!-- root node --> 21362 <feature> 21363 <rects> 21364 <_>7 16 9 6 -1.</_> 21365 <_>7 18 9 2 3.</_></rects> 21366 <tilted>0</tilted></feature> 21367 <threshold>-0.0112039996311069</threshold> 21368 <left_val>0.2409269958734512</left_val> 21369 <right_val>-0.3514209985733032</right_val></_></_> 21370 <_> 21371 <!-- tree 13 --> 21372 <_> 21373 <!-- root node --> 21374 <feature> 21375 <rects> 21376 <_>14 0 6 9 -1.</_> 21377 <_>16 0 2 9 3.</_></rects> 21378 <tilted>0</tilted></feature> 21379 <threshold>-4.7479998320341110e-003</threshold> 21380 <left_val>-0.0970079973340034</left_val> 21381 <right_val>0.2063809931278229</right_val></_></_> 21382 <_> 21383 <!-- tree 14 --> 21384 <_> 21385 <!-- root node --> 21386 <feature> 21387 <rects> 21388 <_>4 0 6 9 -1.</_> 21389 <_>6 0 2 9 3.</_></rects> 21390 <tilted>0</tilted></feature> 21391 <threshold>-0.0173589996993542</threshold> 21392 <left_val>-0.7902029752731323</left_val> 21393 <right_val>0.0218529999256134</right_val></_></_> 21394 <_> 21395 <!-- tree 15 --> 21396 <_> 21397 <!-- root node --> 21398 <feature> 21399 <rects> 21400 <_>17 1 6 16 -1.</_> 21401 <_>19 1 2 16 3.</_></rects> 21402 <tilted>0</tilted></feature> 21403 <threshold>0.0188519991934299</threshold> 21404 <left_val>-0.1039460003376007</left_val> 21405 <right_val>0.5484420061111450</right_val></_></_> 21406 <_> 21407 <!-- tree 16 --> 21408 <_> 21409 <!-- root node --> 21410 <feature> 21411 <rects> 21412 <_>1 1 6 16 -1.</_> 21413 <_>3 1 2 16 3.</_></rects> 21414 <tilted>0</tilted></feature> 21415 <threshold>7.2249998338520527e-003</threshold> 21416 <left_val>-0.4040940105915070</left_val> 21417 <right_val>0.2676379978656769</right_val></_></_> 21418 <_> 21419 <!-- tree 17 --> 21420 <_> 21421 <!-- root node --> 21422 <feature> 21423 <rects> 21424 <_>14 13 6 9 -1.</_> 21425 <_>14 16 6 3 3.</_></rects> 21426 <tilted>0</tilted></feature> 21427 <threshold>0.0189159996807575</threshold> 21428 <left_val>0.2050800025463104</left_val> 21429 <right_val>-1.0206340551376343</right_val></_></_> 21430 <_> 21431 <!-- tree 18 --> 21432 <_> 21433 <!-- root node --> 21434 <feature> 21435 <rects> 21436 <_>0 0 6 9 -1.</_> 21437 <_>0 3 6 3 3.</_></rects> 21438 <tilted>0</tilted></feature> 21439 <threshold>0.0311569999903440</threshold> 21440 <left_val>1.2400000123307109e-003</left_val> 21441 <right_val>-0.8729349970817566</right_val></_></_> 21442 <_> 21443 <!-- tree 19 --> 21444 <_> 21445 <!-- root node --> 21446 <feature> 21447 <rects> 21448 <_>9 5 6 6 -1.</_> 21449 <_>9 5 3 6 2.</_></rects> 21450 <tilted>0</tilted></feature> 21451 <threshold>0.0209519993513823</threshold> 21452 <left_val>-5.5559999309480190e-003</left_val> 21453 <right_val>0.8035619854927063</right_val></_></_> 21454 <_> 21455 <!-- tree 20 --> 21456 <_> 21457 <!-- root node --> 21458 <feature> 21459 <rects> 21460 <_>3 10 9 6 -1.</_> 21461 <_>6 10 3 6 3.</_></rects> 21462 <tilted>0</tilted></feature> 21463 <threshold>0.0112910000607371</threshold> 21464 <left_val>-0.3647840023040772</left_val> 21465 <right_val>0.2276789993047714</right_val></_></_> 21466 <_> 21467 <!-- tree 21 --> 21468 <_> 21469 <!-- root node --> 21470 <feature> 21471 <rects> 21472 <_>14 7 3 16 -1.</_> 21473 <_>14 15 3 8 2.</_></rects> 21474 <tilted>0</tilted></feature> 21475 <threshold>-0.0570110008120537</threshold> 21476 <left_val>-1.4295619726181030</left_val> 21477 <right_val>0.1432200074195862</right_val></_></_> 21478 <_> 21479 <!-- tree 22 --> 21480 <_> 21481 <!-- root node --> 21482 <feature> 21483 <rects> 21484 <_>4 10 14 12 -1.</_> 21485 <_>4 10 7 6 2.</_> 21486 <_>11 16 7 6 2.</_></rects> 21487 <tilted>0</tilted></feature> 21488 <threshold>0.0721940025687218</threshold> 21489 <left_val>-0.0418500006198883</left_val> 21490 <right_val>-1.9111829996109009</right_val></_></_> 21491 <_> 21492 <!-- tree 23 --> 21493 <_> 21494 <!-- root node --> 21495 <feature> 21496 <rects> 21497 <_>7 6 12 6 -1.</_> 21498 <_>7 8 12 2 3.</_></rects> 21499 <tilted>0</tilted></feature> 21500 <threshold>-0.0198740009218454</threshold> 21501 <left_val>0.2642549872398377</left_val> 21502 <right_val>-0.3261770009994507</right_val></_></_> 21503 <_> 21504 <!-- tree 24 --> 21505 <_> 21506 <!-- root node --> 21507 <feature> 21508 <rects> 21509 <_>7 2 4 20 -1.</_> 21510 <_>9 2 2 20 2.</_></rects> 21511 <tilted>0</tilted></feature> 21512 <threshold>-0.0166929997503757</threshold> 21513 <left_val>-0.8390780091285706</left_val> 21514 <right_val>4.0799999260343611e-004</right_val></_></_> 21515 <_> 21516 <!-- tree 25 --> 21517 <_> 21518 <!-- root node --> 21519 <feature> 21520 <rects> 21521 <_>14 13 6 9 -1.</_> 21522 <_>14 16 6 3 3.</_></rects> 21523 <tilted>0</tilted></feature> 21524 <threshold>-0.0398349985480309</threshold> 21525 <left_val>-0.4885849952697754</left_val> 21526 <right_val>0.1643610000610352</right_val></_></_> 21527 <_> 21528 <!-- tree 26 --> 21529 <_> 21530 <!-- root node --> 21531 <feature> 21532 <rects> 21533 <_>10 6 4 9 -1.</_> 21534 <_>12 6 2 9 2.</_></rects> 21535 <tilted>0</tilted></feature> 21536 <threshold>0.0270099993795156</threshold> 21537 <left_val>-0.1886249929666519</left_val> 21538 <right_val>0.8341940045356751</right_val></_></_> 21539 <_> 21540 <!-- tree 27 --> 21541 <_> 21542 <!-- root node --> 21543 <feature> 21544 <rects> 21545 <_>14 13 6 9 -1.</_> 21546 <_>14 16 6 3 3.</_></rects> 21547 <tilted>0</tilted></feature> 21548 <threshold>-3.9420002140104771e-003</threshold> 21549 <left_val>0.2323150038719177</left_val> 21550 <right_val>-0.0723600015044212</right_val></_></_> 21551 <_> 21552 <!-- tree 28 --> 21553 <_> 21554 <!-- root node --> 21555 <feature> 21556 <rects> 21557 <_>5 20 14 4 -1.</_> 21558 <_>5 22 14 2 2.</_></rects> 21559 <tilted>0</tilted></feature> 21560 <threshold>0.0228330008685589</threshold> 21561 <left_val>-0.0358840003609657</left_val> 21562 <right_val>-1.1549400091171265</right_val></_></_> 21563 <_> 21564 <!-- tree 29 --> 21565 <_> 21566 <!-- root node --> 21567 <feature> 21568 <rects> 21569 <_>4 4 16 12 -1.</_> 21570 <_>4 10 16 6 2.</_></rects> 21571 <tilted>0</tilted></feature> 21572 <threshold>-0.0688880011439323</threshold> 21573 <left_val>-1.7837309837341309</left_val> 21574 <right_val>0.1515900045633316</right_val></_></_> 21575 <_> 21576 <!-- tree 30 --> 21577 <_> 21578 <!-- root node --> 21579 <feature> 21580 <rects> 21581 <_>9 6 6 9 -1.</_> 21582 <_>11 6 2 9 3.</_></rects> 21583 <tilted>0</tilted></feature> 21584 <threshold>0.0430970005691051</threshold> 21585 <left_val>-0.2160809934139252</left_val> 21586 <right_val>0.5062410235404968</right_val></_></_> 21587 <_> 21588 <!-- tree 31 --> 21589 <_> 21590 <!-- root node --> 21591 <feature> 21592 <rects> 21593 <_>3 0 21 4 -1.</_> 21594 <_>3 2 21 2 2.</_></rects> 21595 <tilted>0</tilted></feature> 21596 <threshold>8.6239995434880257e-003</threshold> 21597 <left_val>-0.1779559999704361</left_val> 21598 <right_val>0.2895790040493012</right_val></_></_> 21599 <_> 21600 <!-- tree 32 --> 21601 <_> 21602 <!-- root node --> 21603 <feature> 21604 <rects> 21605 <_>4 13 6 9 -1.</_> 21606 <_>4 16 6 3 3.</_></rects> 21607 <tilted>0</tilted></feature> 21608 <threshold>0.0145610002800822</threshold> 21609 <left_val>-0.0114080002531409</left_val> 21610 <right_val>-0.8940200209617615</right_val></_></_> 21611 <_> 21612 <!-- tree 33 --> 21613 <_> 21614 <!-- root node --> 21615 <feature> 21616 <rects> 21617 <_>16 16 5 8 -1.</_> 21618 <_>16 20 5 4 2.</_></rects> 21619 <tilted>0</tilted></feature> 21620 <threshold>-0.0115010002627969</threshold> 21621 <left_val>0.3017199933528900</left_val> 21622 <right_val>-0.0436590015888214</right_val></_></_> 21623 <_> 21624 <!-- tree 34 --> 21625 <_> 21626 <!-- root node --> 21627 <feature> 21628 <rects> 21629 <_>4 0 16 16 -1.</_> 21630 <_>4 0 8 8 2.</_> 21631 <_>12 8 8 8 2.</_></rects> 21632 <tilted>0</tilted></feature> 21633 <threshold>-0.1097149997949600</threshold> 21634 <left_val>-0.9514709711074829</left_val> 21635 <right_val>-0.0199730005115271</right_val></_></_> 21636 <_> 21637 <!-- tree 35 --> 21638 <_> 21639 <!-- root node --> 21640 <feature> 21641 <rects> 21642 <_>6 6 14 6 -1.</_> 21643 <_>13 6 7 3 2.</_> 21644 <_>6 9 7 3 2.</_></rects> 21645 <tilted>0</tilted></feature> 21646 <threshold>0.0452280007302761</threshold> 21647 <left_val>0.0331109985709190</left_val> 21648 <right_val>0.9661980271339417</right_val></_></_> 21649 <_> 21650 <!-- tree 36 --> 21651 <_> 21652 <!-- root node --> 21653 <feature> 21654 <rects> 21655 <_>10 5 4 15 -1.</_> 21656 <_>10 10 4 5 3.</_></rects> 21657 <tilted>0</tilted></feature> 21658 <threshold>-0.0270479992032051</threshold> 21659 <left_val>0.9796360135078430</left_val> 21660 <right_val>-0.1726190000772476</right_val></_></_> 21661 <_> 21662 <!-- tree 37 --> 21663 <_> 21664 <!-- root node --> 21665 <feature> 21666 <rects> 21667 <_>9 15 12 8 -1.</_> 21668 <_>15 15 6 4 2.</_> 21669 <_>9 19 6 4 2.</_></rects> 21670 <tilted>0</tilted></feature> 21671 <threshold>0.0180309992283583</threshold> 21672 <left_val>-0.0208010002970696</left_val> 21673 <right_val>0.2738589942455292</right_val></_></_> 21674 <_> 21675 <!-- tree 38 --> 21676 <_> 21677 <!-- root node --> 21678 <feature> 21679 <rects> 21680 <_>6 7 12 4 -1.</_> 21681 <_>12 7 6 4 2.</_></rects> 21682 <tilted>0</tilted></feature> 21683 <threshold>0.0505249984562397</threshold> 21684 <left_val>-0.0568029992282391</left_val> 21685 <right_val>-1.7775089740753174</right_val></_></_> 21686 <_> 21687 <!-- tree 39 --> 21688 <_> 21689 <!-- root node --> 21690 <feature> 21691 <rects> 21692 <_>5 6 14 6 -1.</_> 21693 <_>12 6 7 3 2.</_> 21694 <_>5 9 7 3 2.</_></rects> 21695 <tilted>0</tilted></feature> 21696 <threshold>-0.0299239996820688</threshold> 21697 <left_val>0.6532920002937317</left_val> 21698 <right_val>-0.0235370006412268</right_val></_></_> 21699 <_> 21700 <!-- tree 40 --> 21701 <_> 21702 <!-- root node --> 21703 <feature> 21704 <rects> 21705 <_>3 6 18 10 -1.</_> 21706 <_>3 6 9 5 2.</_> 21707 <_>12 11 9 5 2.</_></rects> 21708 <tilted>0</tilted></feature> 21709 <threshold>0.0380580015480518</threshold> 21710 <left_val>0.0263170003890991</left_val> 21711 <right_val>-0.7066569924354553</right_val></_></_> 21712 <_> 21713 <!-- tree 41 --> 21714 <_> 21715 <!-- root node --> 21716 <feature> 21717 <rects> 21718 <_>6 0 18 21 -1.</_> 21719 <_>12 0 6 21 3.</_></rects> 21720 <tilted>0</tilted></feature> 21721 <threshold>0.1856389939785004</threshold> 21722 <left_val>-5.6039998307824135e-003</left_val> 21723 <right_val>0.3287369906902313</right_val></_></_> 21724 <_> 21725 <!-- tree 42 --> 21726 <_> 21727 <!-- root node --> 21728 <feature> 21729 <rects> 21730 <_>0 0 24 21 -1.</_> 21731 <_>8 0 8 21 3.</_></rects> 21732 <tilted>0</tilted></feature> 21733 <threshold>-4.0670000016689301e-003</threshold> 21734 <left_val>0.3420479893684387</left_val> 21735 <right_val>-0.3017159998416901</right_val></_></_> 21736 <_> 21737 <!-- tree 43 --> 21738 <_> 21739 <!-- root node --> 21740 <feature> 21741 <rects> 21742 <_>6 18 18 3 -1.</_> 21743 <_>6 19 18 1 3.</_></rects> 21744 <tilted>0</tilted></feature> 21745 <threshold>0.0101089999079704</threshold> 21746 <left_val>-7.3600001633167267e-003</left_val> 21747 <right_val>0.5798159837722778</right_val></_></_> 21748 <_> 21749 <!-- tree 44 --> 21750 <_> 21751 <!-- root node --> 21752 <feature> 21753 <rects> 21754 <_>0 15 9 6 -1.</_> 21755 <_>0 17 9 2 3.</_></rects> 21756 <tilted>0</tilted></feature> 21757 <threshold>-0.0115670002996922</threshold> 21758 <left_val>-0.5272219777107239</left_val> 21759 <right_val>0.0464479997754097</right_val></_></_> 21760 <_> 21761 <!-- tree 45 --> 21762 <_> 21763 <!-- root node --> 21764 <feature> 21765 <rects> 21766 <_>4 3 19 2 -1.</_> 21767 <_>4 4 19 1 2.</_></rects> 21768 <tilted>0</tilted></feature> 21769 <threshold>-6.5649999305605888e-003</threshold> 21770 <left_val>-0.5852910280227661</left_val> 21771 <right_val>0.1910189986228943</right_val></_></_> 21772 <_> 21773 <!-- tree 46 --> 21774 <_> 21775 <!-- root node --> 21776 <feature> 21777 <rects> 21778 <_>0 3 24 2 -1.</_> 21779 <_>0 4 24 1 2.</_></rects> 21780 <tilted>0</tilted></feature> 21781 <threshold>0.0105820000171661</threshold> 21782 <left_val>0.0210730005055666</left_val> 21783 <right_val>-0.6889259815216065</right_val></_></_> 21784 <_> 21785 <!-- tree 47 --> 21786 <_> 21787 <!-- root node --> 21788 <feature> 21789 <rects> 21790 <_>15 14 9 4 -1.</_> 21791 <_>15 16 9 2 2.</_></rects> 21792 <tilted>0</tilted></feature> 21793 <threshold>-0.0203040000051260</threshold> 21794 <left_val>-0.3640069961547852</left_val> 21795 <right_val>0.1533879935741425</right_val></_></_> 21796 <_> 21797 <!-- tree 48 --> 21798 <_> 21799 <!-- root node --> 21800 <feature> 21801 <rects> 21802 <_>0 14 9 4 -1.</_> 21803 <_>0 16 9 2 2.</_></rects> 21804 <tilted>0</tilted></feature> 21805 <threshold>2.3529999889433384e-003</threshold> 21806 <left_val>0.0361640006303787</left_val> 21807 <right_val>-0.5982509851455689</right_val></_></_> 21808 <_> 21809 <!-- tree 49 --> 21810 <_> 21811 <!-- root node --> 21812 <feature> 21813 <rects> 21814 <_>6 15 18 2 -1.</_> 21815 <_>6 16 18 1 2.</_></rects> 21816 <tilted>0</tilted></feature> 21817 <threshold>-1.4690000098198652e-003</threshold> 21818 <left_val>-0.1470769941806793</left_val> 21819 <right_val>0.3750799894332886</right_val></_></_> 21820 <_> 21821 <!-- tree 50 --> 21822 <_> 21823 <!-- root node --> 21824 <feature> 21825 <rects> 21826 <_>3 17 18 3 -1.</_> 21827 <_>3 18 18 1 3.</_></rects> 21828 <tilted>0</tilted></feature> 21829 <threshold>8.6449999362230301e-003</threshold> 21830 <left_val>-0.2170850038528442</left_val> 21831 <right_val>0.5193679928779602</right_val></_></_> 21832 <_> 21833 <!-- tree 51 --> 21834 <_> 21835 <!-- root node --> 21836 <feature> 21837 <rects> 21838 <_>12 0 3 23 -1.</_> 21839 <_>13 0 1 23 3.</_></rects> 21840 <tilted>0</tilted></feature> 21841 <threshold>-0.0243260003626347</threshold> 21842 <left_val>-1.0846769809722900</left_val> 21843 <right_val>0.1408479958772659</right_val></_></_> 21844 <_> 21845 <!-- tree 52 --> 21846 <_> 21847 <!-- root node --> 21848 <feature> 21849 <rects> 21850 <_>6 0 8 6 -1.</_> 21851 <_>6 3 8 3 2.</_></rects> 21852 <tilted>0</tilted></feature> 21853 <threshold>0.0744189992547035</threshold> 21854 <left_val>-0.1551380008459091</left_val> 21855 <right_val>1.1822769641876221</right_val></_></_> 21856 <_> 21857 <!-- tree 53 --> 21858 <_> 21859 <!-- root node --> 21860 <feature> 21861 <rects> 21862 <_>6 16 18 3 -1.</_> 21863 <_>6 17 18 1 3.</_></rects> 21864 <tilted>0</tilted></feature> 21865 <threshold>0.0170779991894960</threshold> 21866 <left_val>0.0442310012876987</left_val> 21867 <right_val>0.9156110286712647</right_val></_></_> 21868 <_> 21869 <!-- tree 54 --> 21870 <_> 21871 <!-- root node --> 21872 <feature> 21873 <rects> 21874 <_>9 0 3 23 -1.</_> 21875 <_>10 0 1 23 3.</_></rects> 21876 <tilted>0</tilted></feature> 21877 <threshold>-0.0245779994875193</threshold> 21878 <left_val>-1.5504100322723389</left_val> 21879 <right_val>-0.0547459982335567</right_val></_></_> 21880 <_> 21881 <!-- tree 55 --> 21882 <_> 21883 <!-- root node --> 21884 <feature> 21885 <rects> 21886 <_>10 7 4 10 -1.</_> 21887 <_>10 12 4 5 2.</_></rects> 21888 <tilted>0</tilted></feature> 21889 <threshold>0.0302050001919270</threshold> 21890 <left_val>0.1666280031204224</left_val> 21891 <right_val>-1.0001239776611328</right_val></_></_> 21892 <_> 21893 <!-- tree 56 --> 21894 <_> 21895 <!-- root node --> 21896 <feature> 21897 <rects> 21898 <_>7 8 10 12 -1.</_> 21899 <_>7 12 10 4 3.</_></rects> 21900 <tilted>0</tilted></feature> 21901 <threshold>0.0121360002085567</threshold> 21902 <left_val>-0.7707909941673279</left_val> 21903 <right_val>-4.8639997839927673e-003</right_val></_></_> 21904 <_> 21905 <!-- tree 57 --> 21906 <_> 21907 <!-- root node --> 21908 <feature> 21909 <rects> 21910 <_>14 9 6 14 -1.</_> 21911 <_>17 9 3 7 2.</_> 21912 <_>14 16 3 7 2.</_></rects> 21913 <tilted>0</tilted></feature> 21914 <threshold>0.0867170020937920</threshold> 21915 <left_val>0.1106169968843460</left_val> 21916 <right_val>-1.6857999563217163</right_val></_></_> 21917 <_> 21918 <!-- tree 58 --> 21919 <_> 21920 <!-- root node --> 21921 <feature> 21922 <rects> 21923 <_>2 0 10 9 -1.</_> 21924 <_>2 3 10 3 3.</_></rects> 21925 <tilted>0</tilted></feature> 21926 <threshold>-0.0423090010881424</threshold> 21927 <left_val>1.1075930595397949</left_val> 21928 <right_val>-0.1543859988451004</right_val></_></_> 21929 <_> 21930 <!-- tree 59 --> 21931 <_> 21932 <!-- root node --> 21933 <feature> 21934 <rects> 21935 <_>11 1 5 12 -1.</_> 21936 <_>11 7 5 6 2.</_></rects> 21937 <tilted>0</tilted></feature> 21938 <threshold>-2.6420000940561295e-003</threshold> 21939 <left_val>0.2745189964771271</left_val> 21940 <right_val>-0.1845619976520538</right_val></_></_> 21941 <_> 21942 <!-- tree 60 --> 21943 <_> 21944 <!-- root node --> 21945 <feature> 21946 <rects> 21947 <_>1 4 12 10 -1.</_> 21948 <_>1 4 6 5 2.</_> 21949 <_>7 9 6 5 2.</_></rects> 21950 <tilted>0</tilted></feature> 21951 <threshold>-0.0566620007157326</threshold> 21952 <left_val>-0.8062559962272644</left_val> 21953 <right_val>-0.0169280003756285</right_val></_></_> 21954 <_> 21955 <!-- tree 61 --> 21956 <_> 21957 <!-- root node --> 21958 <feature> 21959 <rects> 21960 <_>15 1 9 4 -1.</_> 21961 <_>15 3 9 2 2.</_></rects> 21962 <tilted>0</tilted></feature> 21963 <threshold>0.0234750006347895</threshold> 21964 <left_val>0.1418769955635071</left_val> 21965 <right_val>-0.2550089955329895</right_val></_></_> 21966 <_> 21967 <!-- tree 62 --> 21968 <_> 21969 <!-- root node --> 21970 <feature> 21971 <rects> 21972 <_>1 2 8 10 -1.</_> 21973 <_>1 2 4 5 2.</_> 21974 <_>5 7 4 5 2.</_></rects> 21975 <tilted>0</tilted></feature> 21976 <threshold>-0.0208030007779598</threshold> 21977 <left_val>0.1982630044221878</left_val> 21978 <right_val>-0.3117119967937470</right_val></_></_> 21979 <_> 21980 <!-- tree 63 --> 21981 <_> 21982 <!-- root node --> 21983 <feature> 21984 <rects> 21985 <_>10 1 5 12 -1.</_> 21986 <_>10 5 5 4 3.</_></rects> 21987 <tilted>0</tilted></feature> 21988 <threshold>7.2599998675286770e-003</threshold> 21989 <left_val>-0.0505909994244576</left_val> 21990 <right_val>0.4192380011081696</right_val></_></_> 21991 <_> 21992 <!-- tree 64 --> 21993 <_> 21994 <!-- root node --> 21995 <feature> 21996 <rects> 21997 <_>4 0 14 24 -1.</_> 21998 <_>11 0 7 24 2.</_></rects> 21999 <tilted>0</tilted></feature> 22000 <threshold>0.3416000008583069</threshold> 22001 <left_val>-0.1667490005493164</left_val> 22002 <right_val>0.9274860024452210</right_val></_></_> 22003 <_> 22004 <!-- tree 65 --> 22005 <_> 22006 <!-- root node --> 22007 <feature> 22008 <rects> 22009 <_>7 17 10 4 -1.</_> 22010 <_>7 19 10 2 2.</_></rects> 22011 <tilted>0</tilted></feature> 22012 <threshold>6.2029999680817127e-003</threshold> 22013 <left_val>-0.1262589991092682</left_val> 22014 <right_val>0.4044530093669891</right_val></_></_> 22015 <_> 22016 <!-- tree 66 --> 22017 <_> 22018 <!-- root node --> 22019 <feature> 22020 <rects> 22021 <_>10 14 4 10 -1.</_> 22022 <_>10 19 4 5 2.</_></rects> 22023 <tilted>0</tilted></feature> 22024 <threshold>0.0326920002698898</threshold> 22025 <left_val>-0.0326349996030331</left_val> 22026 <right_val>-0.9893980026245117</right_val></_></_> 22027 <_> 22028 <!-- tree 67 --> 22029 <_> 22030 <!-- root node --> 22031 <feature> 22032 <rects> 22033 <_>13 15 6 9 -1.</_> 22034 <_>15 15 2 9 3.</_></rects> 22035 <tilted>0</tilted></feature> 22036 <threshold>2.1100000594742596e-004</threshold> 22037 <left_val>-0.0645340010523796</left_val> 22038 <right_val>0.2547369897365570</right_val></_></_> 22039 <_> 22040 <!-- tree 68 --> 22041 <_> 22042 <!-- root node --> 22043 <feature> 22044 <rects> 22045 <_>3 21 18 3 -1.</_> 22046 <_>3 22 18 1 3.</_></rects> 22047 <tilted>0</tilted></feature> 22048 <threshold>7.2100001852959394e-004</threshold> 22049 <left_val>-0.3661859929561615</left_val> 22050 <right_val>0.1197310015559197</right_val></_></_> 22051 <_> 22052 <!-- tree 69 --> 22053 <_> 22054 <!-- root node --> 22055 <feature> 22056 <rects> 22057 <_>13 15 6 9 -1.</_> 22058 <_>15 15 2 9 3.</_></rects> 22059 <tilted>0</tilted></feature> 22060 <threshold>0.0544909983873367</threshold> 22061 <left_val>0.1207349970936775</left_val> 22062 <right_val>-1.0291390419006348</right_val></_></_> 22063 <_> 22064 <!-- tree 70 --> 22065 <_> 22066 <!-- root node --> 22067 <feature> 22068 <rects> 22069 <_>5 15 6 9 -1.</_> 22070 <_>7 15 2 9 3.</_></rects> 22071 <tilted>0</tilted></feature> 22072 <threshold>-0.0101410001516342</threshold> 22073 <left_val>-0.5217720270156860</left_val> 22074 <right_val>0.0337349995970726</right_val></_></_> 22075 <_> 22076 <!-- tree 71 --> 22077 <_> 22078 <!-- root node --> 22079 <feature> 22080 <rects> 22081 <_>10 6 4 18 -1.</_> 22082 <_>12 6 2 9 2.</_> 22083 <_>10 15 2 9 2.</_></rects> 22084 <tilted>0</tilted></feature> 22085 <threshold>-0.0188159998506308</threshold> 22086 <left_val>0.6518179774284363</left_val> 22087 <right_val>1.3399999588727951e-003</right_val></_></_> 22088 <_> 22089 <!-- tree 72 --> 22090 <_> 22091 <!-- root node --> 22092 <feature> 22093 <rects> 22094 <_>7 3 6 11 -1.</_> 22095 <_>9 3 2 11 3.</_></rects> 22096 <tilted>0</tilted></feature> 22097 <threshold>-5.3480002097785473e-003</threshold> 22098 <left_val>0.1737069934606552</left_val> 22099 <right_val>-0.3413200080394745</right_val></_></_> 22100 <_> 22101 <!-- tree 73 --> 22102 <_> 22103 <!-- root node --> 22104 <feature> 22105 <rects> 22106 <_>15 1 9 4 -1.</_> 22107 <_>15 3 9 2 2.</_></rects> 22108 <tilted>0</tilted></feature> 22109 <threshold>-0.0108470004051924</threshold> 22110 <left_val>-0.1969989985227585</left_val> 22111 <right_val>0.1504549980163574</right_val></_></_> 22112 <_> 22113 <!-- tree 74 --> 22114 <_> 22115 <!-- root node --> 22116 <feature> 22117 <rects> 22118 <_>5 4 14 8 -1.</_> 22119 <_>5 8 14 4 2.</_></rects> 22120 <tilted>0</tilted></feature> 22121 <threshold>-0.0499260015785694</threshold> 22122 <left_val>-0.5088850259780884</left_val> 22123 <right_val>0.0307620000094175</right_val></_></_> 22124 <_> 22125 <!-- tree 75 --> 22126 <_> 22127 <!-- root node --> 22128 <feature> 22129 <rects> 22130 <_>8 1 15 9 -1.</_> 22131 <_>8 4 15 3 3.</_></rects> 22132 <tilted>0</tilted></feature> 22133 <threshold>0.0121600003913045</threshold> 22134 <left_val>-0.0692519992589951</left_val> 22135 <right_val>0.1874549984931946</right_val></_></_> 22136 <_> 22137 <!-- tree 76 --> 22138 <_> 22139 <!-- root node --> 22140 <feature> 22141 <rects> 22142 <_>7 2 8 10 -1.</_> 22143 <_>7 2 4 5 2.</_> 22144 <_>11 7 4 5 2.</_></rects> 22145 <tilted>0</tilted></feature> 22146 <threshold>-2.2189998999238014e-003</threshold> 22147 <left_val>-0.4084909856319428</left_val> 22148 <right_val>0.0799549967050552</right_val></_></_> 22149 <_> 22150 <!-- tree 77 --> 22151 <_> 22152 <!-- root node --> 22153 <feature> 22154 <rects> 22155 <_>12 2 6 12 -1.</_> 22156 <_>12 2 3 12 2.</_></rects> 22157 <tilted>0</tilted></feature> 22158 <threshold>3.1580000650137663e-003</threshold> 22159 <left_val>-0.2112459987401962</left_val> 22160 <right_val>0.2236640006303787</right_val></_></_> 22161 <_> 22162 <!-- tree 78 --> 22163 <_> 22164 <!-- root node --> 22165 <feature> 22166 <rects> 22167 <_>6 2 6 12 -1.</_> 22168 <_>9 2 3 12 2.</_></rects> 22169 <tilted>0</tilted></feature> 22170 <threshold>4.1439998894929886e-003</threshold> 22171 <left_val>-0.4990029931068420</left_val> 22172 <right_val>0.0629170015454292</right_val></_></_> 22173 <_> 22174 <!-- tree 79 --> 22175 <_> 22176 <!-- root node --> 22177 <feature> 22178 <rects> 22179 <_>7 7 12 4 -1.</_> 22180 <_>7 7 6 4 2.</_></rects> 22181 <tilted>0</tilted></feature> 22182 <threshold>-7.3730000294744968e-003</threshold> 22183 <left_val>-0.2055329978466034</left_val> 22184 <right_val>0.2209669947624207</right_val></_></_> 22185 <_> 22186 <!-- tree 80 --> 22187 <_> 22188 <!-- root node --> 22189 <feature> 22190 <rects> 22191 <_>6 3 12 10 -1.</_> 22192 <_>10 3 4 10 3.</_></rects> 22193 <tilted>0</tilted></feature> 22194 <threshold>0.0518120005726814</threshold> 22195 <left_val>0.1809680014848709</left_val> 22196 <right_val>-0.4349580109119415</right_val></_></_> 22197 <_> 22198 <!-- tree 81 --> 22199 <_> 22200 <!-- root node --> 22201 <feature> 22202 <rects> 22203 <_>5 6 16 6 -1.</_> 22204 <_>13 6 8 3 2.</_> 22205 <_>5 9 8 3 2.</_></rects> 22206 <tilted>0</tilted></feature> 22207 <threshold>0.0183400008827448</threshold> 22208 <left_val>0.0152000002563000</left_val> 22209 <right_val>0.3799169957637787</right_val></_></_> 22210 <_> 22211 <!-- tree 82 --> 22212 <_> 22213 <!-- root node --> 22214 <feature> 22215 <rects> 22216 <_>3 1 18 9 -1.</_> 22217 <_>9 1 6 9 3.</_></rects> 22218 <tilted>0</tilted></feature> 22219 <threshold>0.1749079972505570</threshold> 22220 <left_val>-0.2092079967260361</left_val> 22221 <right_val>0.4001300036907196</right_val></_></_> 22222 <_> 22223 <!-- tree 83 --> 22224 <_> 22225 <!-- root node --> 22226 <feature> 22227 <rects> 22228 <_>3 8 18 5 -1.</_> 22229 <_>9 8 6 5 3.</_></rects> 22230 <tilted>0</tilted></feature> 22231 <threshold>0.0539939999580383</threshold> 22232 <left_val>0.2475160062313080</left_val> 22233 <right_val>-0.2671290040016174</right_val></_></_> 22234 <_> 22235 <!-- tree 84 --> 22236 <_> 22237 <!-- root node --> 22238 <feature> 22239 <rects> 22240 <_>0 0 24 22 -1.</_> 22241 <_>0 0 12 11 2.</_> 22242 <_>12 11 12 11 2.</_></rects> 22243 <tilted>0</tilted></feature> 22244 <threshold>-0.3203319907188416</threshold> 22245 <left_val>-1.9094380140304565</left_val> 22246 <right_val>-0.0669609978795052</right_val></_></_> 22247 <_> 22248 <!-- tree 85 --> 22249 <_> 22250 <!-- root node --> 22251 <feature> 22252 <rects> 22253 <_>14 16 9 6 -1.</_> 22254 <_>14 18 9 2 3.</_></rects> 22255 <tilted>0</tilted></feature> 22256 <threshold>-0.0270600002259016</threshold> 22257 <left_val>-0.7137129902839661</left_val> 22258 <right_val>0.1590459942817688</right_val></_></_> 22259 <_> 22260 <!-- tree 86 --> 22261 <_> 22262 <!-- root node --> 22263 <feature> 22264 <rects> 22265 <_>0 16 24 8 -1.</_> 22266 <_>0 20 24 4 2.</_></rects> 22267 <tilted>0</tilted></feature> 22268 <threshold>0.0774639993906021</threshold> 22269 <left_val>-0.1697019934654236</left_val> 22270 <right_val>0.7755299806594849</right_val></_></_> 22271 <_> 22272 <!-- tree 87 --> 22273 <_> 22274 <!-- root node --> 22275 <feature> 22276 <rects> 22277 <_>1 19 22 4 -1.</_> 22278 <_>12 19 11 2 2.</_> 22279 <_>1 21 11 2 2.</_></rects> 22280 <tilted>0</tilted></feature> 22281 <threshold>0.0237719994038343</threshold> 22282 <left_val>0.1902189999818802</left_val> 22283 <right_val>-0.6016209721565247</right_val></_></_> 22284 <_> 22285 <!-- tree 88 --> 22286 <_> 22287 <!-- root node --> 22288 <feature> 22289 <rects> 22290 <_>1 16 9 6 -1.</_> 22291 <_>1 18 9 2 3.</_></rects> 22292 <tilted>0</tilted></feature> 22293 <threshold>0.0115010002627969</threshold> 22294 <left_val>7.7039999887347221e-003</left_val> 22295 <right_val>-0.6173030138015747</right_val></_></_> 22296 <_> 22297 <!-- tree 89 --> 22298 <_> 22299 <!-- root node --> 22300 <feature> 22301 <rects> 22302 <_>7 8 10 4 -1.</_> 22303 <_>7 8 5 4 2.</_></rects> 22304 <tilted>0</tilted></feature> 22305 <threshold>0.0326160006225109</threshold> 22306 <left_val>0.1715919971466065</left_val> 22307 <right_val>-0.7097820043563843</right_val></_></_> 22308 <_> 22309 <!-- tree 90 --> 22310 <_> 22311 <!-- root node --> 22312 <feature> 22313 <rects> 22314 <_>9 15 6 9 -1.</_> 22315 <_>11 15 2 9 3.</_></rects> 22316 <tilted>0</tilted></feature> 22317 <threshold>-0.0443830005824566</threshold> 22318 <left_val>-2.2606229782104492</left_val> 22319 <right_val>-0.0732769966125488</right_val></_></_> 22320 <_> 22321 <!-- tree 91 --> 22322 <_> 22323 <!-- root node --> 22324 <feature> 22325 <rects> 22326 <_>10 18 12 6 -1.</_> 22327 <_>16 18 6 3 2.</_> 22328 <_>10 21 6 3 2.</_></rects> 22329 <tilted>0</tilted></feature> 22330 <threshold>-0.0584760010242462</threshold> 22331 <left_val>2.4087750911712646</left_val> 22332 <right_val>0.0830919966101646</right_val></_></_> 22333 <_> 22334 <!-- tree 92 --> 22335 <_> 22336 <!-- root node --> 22337 <feature> 22338 <rects> 22339 <_>2 18 12 6 -1.</_> 22340 <_>2 18 6 3 2.</_> 22341 <_>8 21 6 3 2.</_></rects> 22342 <tilted>0</tilted></feature> 22343 <threshold>0.0193039998412132</threshold> 22344 <left_val>-0.2708230018615723</left_val> 22345 <right_val>0.2736999988555908</right_val></_></_> 22346 <_> 22347 <!-- tree 93 --> 22348 <_> 22349 <!-- root node --> 22350 <feature> 22351 <rects> 22352 <_>8 3 16 9 -1.</_> 22353 <_>8 6 16 3 3.</_></rects> 22354 <tilted>0</tilted></feature> 22355 <threshold>-0.0447059981524944</threshold> 22356 <left_val>0.3135559856891632</left_val> 22357 <right_val>-0.0624920018017292</right_val></_></_> 22358 <_> 22359 <!-- tree 94 --> 22360 <_> 22361 <!-- root node --> 22362 <feature> 22363 <rects> 22364 <_>0 5 10 6 -1.</_> 22365 <_>0 7 10 2 3.</_></rects> 22366 <tilted>0</tilted></feature> 22367 <threshold>-0.0603349991142750</threshold> 22368 <left_val>-1.4515119791030884</left_val> 22369 <right_val>-0.0587610006332397</right_val></_></_> 22370 <_> 22371 <!-- tree 95 --> 22372 <_> 22373 <!-- root node --> 22374 <feature> 22375 <rects> 22376 <_>5 5 18 3 -1.</_> 22377 <_>5 6 18 1 3.</_></rects> 22378 <tilted>0</tilted></feature> 22379 <threshold>0.0116670001298189</threshold> 22380 <left_val>-0.0180849991738796</left_val> 22381 <right_val>0.5047969818115234</right_val></_></_> 22382 <_> 22383 <!-- tree 96 --> 22384 <_> 22385 <!-- root node --> 22386 <feature> 22387 <rects> 22388 <_>2 6 9 6 -1.</_> 22389 <_>2 9 9 3 2.</_></rects> 22390 <tilted>0</tilted></feature> 22391 <threshold>0.0280099995434284</threshold> 22392 <left_val>-0.2330289930105209</left_val> 22393 <right_val>0.3070870041847229</right_val></_></_> 22394 <_> 22395 <!-- tree 97 --> 22396 <_> 22397 <!-- root node --> 22398 <feature> 22399 <rects> 22400 <_>14 2 10 9 -1.</_> 22401 <_>14 5 10 3 3.</_></rects> 22402 <tilted>0</tilted></feature> 22403 <threshold>0.0653970018029213</threshold> 22404 <left_val>0.1413590013980866</left_val> 22405 <right_val>-0.5001090168952942</right_val></_></_> 22406 <_> 22407 <!-- tree 98 --> 22408 <_> 22409 <!-- root node --> 22410 <feature> 22411 <rects> 22412 <_>3 6 18 3 -1.</_> 22413 <_>3 7 18 1 3.</_></rects> 22414 <tilted>0</tilted></feature> 22415 <threshold>9.6239997074007988e-003</threshold> 22416 <left_val>-0.2205460071563721</left_val> 22417 <right_val>0.3919120132923126</right_val></_></_> 22418 <_> 22419 <!-- tree 99 --> 22420 <_> 22421 <!-- root node --> 22422 <feature> 22423 <rects> 22424 <_>9 2 15 6 -1.</_> 22425 <_>9 4 15 2 3.</_></rects> 22426 <tilted>0</tilted></feature> 22427 <threshold>2.5510000996291637e-003</threshold> 22428 <left_val>-0.1138150021433830</left_val> 22429 <right_val>0.2003230005502701</right_val></_></_> 22430 <_> 22431 <!-- tree 100 --> 22432 <_> 22433 <!-- root node --> 22434 <feature> 22435 <rects> 22436 <_>4 8 15 6 -1.</_> 22437 <_>4 10 15 2 3.</_></rects> 22438 <tilted>0</tilted></feature> 22439 <threshold>0.0318470001220703</threshold> 22440 <left_val>0.0254769995808601</left_val> 22441 <right_val>-0.5332639813423157</right_val></_></_> 22442 <_> 22443 <!-- tree 101 --> 22444 <_> 22445 <!-- root node --> 22446 <feature> 22447 <rects> 22448 <_>0 5 24 4 -1.</_> 22449 <_>12 5 12 2 2.</_> 22450 <_>0 7 12 2 2.</_></rects> 22451 <tilted>0</tilted></feature> 22452 <threshold>0.0330550000071526</threshold> 22453 <left_val>0.1780769973993301</left_val> 22454 <right_val>-0.6279389858245850</right_val></_></_> 22455 <_> 22456 <!-- tree 102 --> 22457 <_> 22458 <!-- root node --> 22459 <feature> 22460 <rects> 22461 <_>7 8 6 12 -1.</_> 22462 <_>9 8 2 12 3.</_></rects> 22463 <tilted>0</tilted></feature> 22464 <threshold>0.0476009994745255</threshold> 22465 <left_val>-0.1474789977073669</left_val> 22466 <right_val>1.4204180240631104</right_val></_></_> 22467 <_> 22468 <!-- tree 103 --> 22469 <_> 22470 <!-- root node --> 22471 <feature> 22472 <rects> 22473 <_>11 0 6 9 -1.</_> 22474 <_>13 0 2 9 3.</_></rects> 22475 <tilted>0</tilted></feature> 22476 <threshold>-0.0195719990879297</threshold> 22477 <left_val>-0.5269349813461304</left_val> 22478 <right_val>0.1583860069513321</right_val></_></_> 22479 <_> 22480 <!-- tree 104 --> 22481 <_> 22482 <!-- root node --> 22483 <feature> 22484 <rects> 22485 <_>0 12 6 12 -1.</_> 22486 <_>0 12 3 6 2.</_> 22487 <_>3 18 3 6 2.</_></rects> 22488 <tilted>0</tilted></feature> 22489 <threshold>-0.0547300018370152</threshold> 22490 <left_val>0.8823159933090210</left_val> 22491 <right_val>-0.1662780046463013</right_val></_></_> 22492 <_> 22493 <!-- tree 105 --> 22494 <_> 22495 <!-- root node --> 22496 <feature> 22497 <rects> 22498 <_>14 12 10 6 -1.</_> 22499 <_>14 14 10 2 3.</_></rects> 22500 <tilted>0</tilted></feature> 22501 <threshold>-0.0226860009133816</threshold> 22502 <left_val>-0.4838689863681793</left_val> 22503 <right_val>0.1500010043382645</right_val></_></_> 22504 <_> 22505 <!-- tree 106 --> 22506 <_> 22507 <!-- root node --> 22508 <feature> 22509 <rects> 22510 <_>2 7 18 9 -1.</_> 22511 <_>2 10 18 3 3.</_></rects> 22512 <tilted>0</tilted></feature> 22513 <threshold>0.1071320027112961</threshold> 22514 <left_val>-0.2133619934320450</left_val> 22515 <right_val>0.4233390092849731</right_val></_></_> 22516 <_> 22517 <!-- tree 107 --> 22518 <_> 22519 <!-- root node --> 22520 <feature> 22521 <rects> 22522 <_>11 14 10 9 -1.</_> 22523 <_>11 17 10 3 3.</_></rects> 22524 <tilted>0</tilted></feature> 22525 <threshold>-0.0363800004124641</threshold> 22526 <left_val>-0.0741980001330376</left_val> 22527 <right_val>0.1458940058946610</right_val></_></_> 22528 <_> 22529 <!-- tree 108 --> 22530 <_> 22531 <!-- root node --> 22532 <feature> 22533 <rects> 22534 <_>7 6 10 8 -1.</_> 22535 <_>7 6 5 4 2.</_> 22536 <_>12 10 5 4 2.</_></rects> 22537 <tilted>0</tilted></feature> 22538 <threshold>0.0139359999448061</threshold> 22539 <left_val>-0.2491160035133362</left_val> 22540 <right_val>0.2677119970321655</right_val></_></_> 22541 <_> 22542 <!-- tree 109 --> 22543 <_> 22544 <!-- root node --> 22545 <feature> 22546 <rects> 22547 <_>6 6 14 6 -1.</_> 22548 <_>13 6 7 3 2.</_> 22549 <_>6 9 7 3 2.</_></rects> 22550 <tilted>0</tilted></feature> 22551 <threshold>0.0209919996559620</threshold> 22552 <left_val>8.7959999218583107e-003</left_val> 22553 <right_val>0.4306499958038330</right_val></_></_> 22554 <_> 22555 <!-- tree 110 --> 22556 <_> 22557 <!-- root node --> 22558 <feature> 22559 <rects> 22560 <_>4 13 9 7 -1.</_> 22561 <_>7 13 3 7 3.</_></rects> 22562 <tilted>0</tilted></feature> 22563 <threshold>0.0491189993917942</threshold> 22564 <left_val>-0.1759199947118759</left_val> 22565 <right_val>0.6928290128707886</right_val></_></_> 22566 <_> 22567 <!-- tree 111 --> 22568 <_> 22569 <!-- root node --> 22570 <feature> 22571 <rects> 22572 <_>14 10 6 12 -1.</_> 22573 <_>17 10 3 6 2.</_> 22574 <_>14 16 3 6 2.</_></rects> 22575 <tilted>0</tilted></feature> 22576 <threshold>0.0363159999251366</threshold> 22577 <left_val>0.1314529925584793</left_val> 22578 <right_val>-0.3359729945659638</right_val></_></_> 22579 <_> 22580 <!-- tree 112 --> 22581 <_> 22582 <!-- root node --> 22583 <feature> 22584 <rects> 22585 <_>4 10 6 12 -1.</_> 22586 <_>4 10 3 6 2.</_> 22587 <_>7 16 3 6 2.</_></rects> 22588 <tilted>0</tilted></feature> 22589 <threshold>0.0412280000746250</threshold> 22590 <left_val>-0.0456920005381107</left_val> 22591 <right_val>-1.3515930175781250</right_val></_></_> 22592 <_> 22593 <!-- tree 113 --> 22594 <_> 22595 <!-- root node --> 22596 <feature> 22597 <rects> 22598 <_>13 9 8 6 -1.</_> 22599 <_>13 9 4 6 2.</_></rects> 22600 <tilted>0</tilted></feature> 22601 <threshold>0.0156720001250505</threshold> 22602 <left_val>0.1754409968852997</left_val> 22603 <right_val>-0.0605500005185604</right_val></_></_> 22604 <_> 22605 <!-- tree 114 --> 22606 <_> 22607 <!-- root node --> 22608 <feature> 22609 <rects> 22610 <_>8 3 4 14 -1.</_> 22611 <_>10 3 2 14 2.</_></rects> 22612 <tilted>0</tilted></feature> 22613 <threshold>-0.0162860006093979</threshold> 22614 <left_val>-1.1308189630508423</left_val> 22615 <right_val>-0.0395330004394054</right_val></_></_> 22616 <_> 22617 <!-- tree 115 --> 22618 <_> 22619 <!-- root node --> 22620 <feature> 22621 <rects> 22622 <_>17 0 3 18 -1.</_> 22623 <_>18 0 1 18 3.</_></rects> 22624 <tilted>0</tilted></feature> 22625 <threshold>-3.0229999683797359e-003</threshold> 22626 <left_val>-0.2245430052280426</left_val> 22627 <right_val>0.2362809926271439</right_val></_></_> 22628 <_> 22629 <!-- tree 116 --> 22630 <_> 22631 <!-- root node --> 22632 <feature> 22633 <rects> 22634 <_>4 12 16 12 -1.</_> 22635 <_>12 12 8 12 2.</_></rects> 22636 <tilted>0</tilted></feature> 22637 <threshold>-0.1378629952669144</threshold> 22638 <left_val>0.4537689983844757</left_val> 22639 <right_val>-0.2109870016574860</right_val></_></_> 22640 <_> 22641 <!-- tree 117 --> 22642 <_> 22643 <!-- root node --> 22644 <feature> 22645 <rects> 22646 <_>15 0 6 14 -1.</_> 22647 <_>17 0 2 14 3.</_></rects> 22648 <tilted>0</tilted></feature> 22649 <threshold>-9.6760001033544540e-003</threshold> 22650 <left_val>-0.1510509997606278</left_val> 22651 <right_val>0.2078170031309128</right_val></_></_> 22652 <_> 22653 <!-- tree 118 --> 22654 <_> 22655 <!-- root node --> 22656 <feature> 22657 <rects> 22658 <_>3 0 6 14 -1.</_> 22659 <_>5 0 2 14 3.</_></rects> 22660 <tilted>0</tilted></feature> 22661 <threshold>-0.0248399991542101</threshold> 22662 <left_val>-0.6835029721260071</left_val> 22663 <right_val>-8.0040004104375839e-003</right_val></_></_> 22664 <_> 22665 <!-- tree 119 --> 22666 <_> 22667 <!-- root node --> 22668 <feature> 22669 <rects> 22670 <_>12 2 12 20 -1.</_> 22671 <_>16 2 4 20 3.</_></rects> 22672 <tilted>0</tilted></feature> 22673 <threshold>-0.1396439969539642</threshold> 22674 <left_val>0.6501129865646362</left_val> 22675 <right_val>0.0465440005064011</right_val></_></_> 22676 <_> 22677 <!-- tree 120 --> 22678 <_> 22679 <!-- root node --> 22680 <feature> 22681 <rects> 22682 <_>0 2 12 20 -1.</_> 22683 <_>4 2 4 20 3.</_></rects> 22684 <tilted>0</tilted></feature> 22685 <threshold>-0.0821539983153343</threshold> 22686 <left_val>0.4488719999790192</left_val> 22687 <right_val>-0.2359199970960617</right_val></_></_> 22688 <_> 22689 <!-- tree 121 --> 22690 <_> 22691 <!-- root node --> 22692 <feature> 22693 <rects> 22694 <_>16 0 6 17 -1.</_> 22695 <_>18 0 2 17 3.</_></rects> 22696 <tilted>0</tilted></feature> 22697 <threshold>3.8449999410659075e-003</threshold> 22698 <left_val>-0.0881730020046234</left_val> 22699 <right_val>0.2734679877758026</right_val></_></_> 22700 <_> 22701 <!-- tree 122 --> 22702 <_> 22703 <!-- root node --> 22704 <feature> 22705 <rects> 22706 <_>2 0 6 17 -1.</_> 22707 <_>4 0 2 17 3.</_></rects> 22708 <tilted>0</tilted></feature> 22709 <threshold>-6.6579999402165413e-003</threshold> 22710 <left_val>-0.4686659872531891</left_val> 22711 <right_val>0.0770019963383675</right_val></_></_> 22712 <_> 22713 <!-- tree 123 --> 22714 <_> 22715 <!-- root node --> 22716 <feature> 22717 <rects> 22718 <_>15 6 9 6 -1.</_> 22719 <_>15 8 9 2 3.</_></rects> 22720 <tilted>0</tilted></feature> 22721 <threshold>-0.0158980004489422</threshold> 22722 <left_val>0.2926839888095856</left_val> 22723 <right_val>-0.0219410005956888</right_val></_></_> 22724 <_> 22725 <!-- tree 124 --> 22726 <_> 22727 <!-- root node --> 22728 <feature> 22729 <rects> 22730 <_>0 6 9 6 -1.</_> 22731 <_>0 8 9 2 3.</_></rects> 22732 <tilted>0</tilted></feature> 22733 <threshold>-0.0509460009634495</threshold> 22734 <left_val>-1.2093789577484131</left_val> 22735 <right_val>-0.0421099998056889</right_val></_></_> 22736 <_> 22737 <!-- tree 125 --> 22738 <_> 22739 <!-- root node --> 22740 <feature> 22741 <rects> 22742 <_>18 1 6 13 -1.</_> 22743 <_>20 1 2 13 3.</_></rects> 22744 <tilted>0</tilted></feature> 22745 <threshold>0.0168379992246628</threshold> 22746 <left_val>-0.0455959998071194</left_val> 22747 <right_val>0.5018069744110107</right_val></_></_> 22748 <_> 22749 <!-- tree 126 --> 22750 <_> 22751 <!-- root node --> 22752 <feature> 22753 <rects> 22754 <_>0 1 6 13 -1.</_> 22755 <_>2 1 2 13 3.</_></rects> 22756 <tilted>0</tilted></feature> 22757 <threshold>0.0159189999103546</threshold> 22758 <left_val>-0.2690429985523224</left_val> 22759 <right_val>0.2651630043983460</right_val></_></_> 22760 <_> 22761 <!-- tree 127 --> 22762 <_> 22763 <!-- root node --> 22764 <feature> 22765 <rects> 22766 <_>16 0 4 9 -1.</_> 22767 <_>16 0 2 9 2.</_></rects> 22768 <tilted>0</tilted></feature> 22769 <threshold>3.6309999413788319e-003</threshold> 22770 <left_val>-0.1304610073566437</left_val> 22771 <right_val>0.3180710077285767</right_val></_></_> 22772 <_> 22773 <!-- tree 128 --> 22774 <_> 22775 <!-- root node --> 22776 <feature> 22777 <rects> 22778 <_>5 10 12 7 -1.</_> 22779 <_>9 10 4 7 3.</_></rects> 22780 <tilted>0</tilted></feature> 22781 <threshold>-0.0861449986696243</threshold> 22782 <left_val>1.9443659782409668</left_val> 22783 <right_val>-0.1397829949855804</right_val></_></_> 22784 <_> 22785 <!-- tree 129 --> 22786 <_> 22787 <!-- root node --> 22788 <feature> 22789 <rects> 22790 <_>12 9 12 6 -1.</_> 22791 <_>12 11 12 2 3.</_></rects> 22792 <tilted>0</tilted></feature> 22793 <threshold>0.0331409983336926</threshold> 22794 <left_val>0.1526679992675781</left_val> 22795 <right_val>-0.0308660008013248</right_val></_></_> 22796 <_> 22797 <!-- tree 130 --> 22798 <_> 22799 <!-- root node --> 22800 <feature> 22801 <rects> 22802 <_>0 9 12 6 -1.</_> 22803 <_>0 11 12 2 3.</_></rects> 22804 <tilted>0</tilted></feature> 22805 <threshold>-3.9679999463260174e-003</threshold> 22806 <left_val>-0.7120230197906494</left_val> 22807 <right_val>-0.0138440001755953</right_val></_></_> 22808 <_> 22809 <!-- tree 131 --> 22810 <_> 22811 <!-- root node --> 22812 <feature> 22813 <rects> 22814 <_>5 7 14 9 -1.</_> 22815 <_>5 10 14 3 3.</_></rects> 22816 <tilted>0</tilted></feature> 22817 <threshold>-0.0240080002695322</threshold> 22818 <left_val>0.9200779795646668</left_val> 22819 <right_val>0.0467239990830421</right_val></_></_> 22820 <_> 22821 <!-- tree 132 --> 22822 <_> 22823 <!-- root node --> 22824 <feature> 22825 <rects> 22826 <_>0 15 20 3 -1.</_> 22827 <_>0 16 20 1 3.</_></rects> 22828 <tilted>0</tilted></feature> 22829 <threshold>8.7320003658533096e-003</threshold> 22830 <left_val>-0.2256730049848557</left_val> 22831 <right_val>0.3193179965019226</right_val></_></_> 22832 <_> 22833 <!-- tree 133 --> 22834 <_> 22835 <!-- root node --> 22836 <feature> 22837 <rects> 22838 <_>8 10 8 10 -1.</_> 22839 <_>12 10 4 5 2.</_> 22840 <_>8 15 4 5 2.</_></rects> 22841 <tilted>0</tilted></feature> 22842 <threshold>-0.0277869999408722</threshold> 22843 <left_val>-0.7233710289001465</left_val> 22844 <right_val>0.1701859980821610</right_val></_></_> 22845 <_> 22846 <!-- tree 134 --> 22847 <_> 22848 <!-- root node --> 22849 <feature> 22850 <rects> 22851 <_>5 4 13 9 -1.</_> 22852 <_>5 7 13 3 3.</_></rects> 22853 <tilted>0</tilted></feature> 22854 <threshold>-0.1945530027151108</threshold> 22855 <left_val>1.2461860179901123</left_val> 22856 <right_val>-0.1473619937896729</right_val></_></_> 22857 <_> 22858 <!-- tree 135 --> 22859 <_> 22860 <!-- root node --> 22861 <feature> 22862 <rects> 22863 <_>10 2 6 18 -1.</_> 22864 <_>10 8 6 6 3.</_></rects> 22865 <tilted>0</tilted></feature> 22866 <threshold>-0.1086969971656799</threshold> 22867 <left_val>-1.4465179443359375</left_val> 22868 <right_val>0.1214530020952225</right_val></_></_> 22869 <_> 22870 <!-- tree 136 --> 22871 <_> 22872 <!-- root node --> 22873 <feature> 22874 <rects> 22875 <_>6 0 6 9 -1.</_> 22876 <_>8 0 2 9 3.</_></rects> 22877 <tilted>0</tilted></feature> 22878 <threshold>-0.0194949992001057</threshold> 22879 <left_val>-0.7815309762954712</left_val> 22880 <right_val>-0.0237329993396997</right_val></_></_> 22881 <_> 22882 <!-- tree 137 --> 22883 <_> 22884 <!-- root node --> 22885 <feature> 22886 <rects> 22887 <_>6 9 12 4 -1.</_> 22888 <_>6 11 12 2 2.</_></rects> 22889 <tilted>0</tilted></feature> 22890 <threshold>3.0650000553578138e-003</threshold> 22891 <left_val>-0.8547139763832092</left_val> 22892 <right_val>0.1668699979782105</right_val></_></_> 22893 <_> 22894 <!-- tree 138 --> 22895 <_> 22896 <!-- root node --> 22897 <feature> 22898 <rects> 22899 <_>3 2 15 12 -1.</_> 22900 <_>3 6 15 4 3.</_></rects> 22901 <tilted>0</tilted></feature> 22902 <threshold>0.0591939985752106</threshold> 22903 <left_val>-0.1485369950532913</left_val> 22904 <right_val>1.1273469924926758</right_val></_></_> 22905 <_> 22906 <!-- tree 139 --> 22907 <_> 22908 <!-- root node --> 22909 <feature> 22910 <rects> 22911 <_>12 0 12 5 -1.</_> 22912 <_>16 0 4 5 3.</_></rects> 22913 <tilted>0</tilted></feature> 22914 <threshold>-0.0542079992592335</threshold> 22915 <left_val>0.5472699999809265</left_val> 22916 <right_val>0.0355239994823933</right_val></_></_> 22917 <_> 22918 <!-- tree 140 --> 22919 <_> 22920 <!-- root node --> 22921 <feature> 22922 <rects> 22923 <_>0 15 18 3 -1.</_> 22924 <_>6 15 6 3 3.</_></rects> 22925 <tilted>0</tilted></feature> 22926 <threshold>-0.0393249988555908</threshold> 22927 <left_val>0.3664259910583496</left_val> 22928 <right_val>-0.2054399996995926</right_val></_></_> 22929 <_> 22930 <!-- tree 141 --> 22931 <_> 22932 <!-- root node --> 22933 <feature> 22934 <rects> 22935 <_>0 14 24 5 -1.</_> 22936 <_>8 14 8 5 3.</_></rects> 22937 <tilted>0</tilted></feature> 22938 <threshold>0.0822789967060089</threshold> 22939 <left_val>-0.0350079983472824</left_val> 22940 <right_val>0.5399420261383057</right_val></_></_> 22941 <_> 22942 <!-- tree 142 --> 22943 <_> 22944 <!-- root node --> 22945 <feature> 22946 <rects> 22947 <_>5 1 3 18 -1.</_> 22948 <_>6 1 1 18 3.</_></rects> 22949 <tilted>0</tilted></feature> 22950 <threshold>-7.4479999020695686e-003</threshold> 22951 <left_val>-0.6153749823570252</left_val> 22952 <right_val>-3.5319998860359192e-003</right_val></_></_> 22953 <_> 22954 <!-- tree 143 --> 22955 <_> 22956 <!-- root node --> 22957 <feature> 22958 <rects> 22959 <_>10 0 4 14 -1.</_> 22960 <_>10 0 2 14 2.</_></rects> 22961 <tilted>0</tilted></feature> 22962 <threshold>7.3770000599324703e-003</threshold> 22963 <left_val>-0.0655910000205040</left_val> 22964 <right_val>0.4196139872074127</right_val></_></_> 22965 <_> 22966 <!-- tree 144 --> 22967 <_> 22968 <!-- root node --> 22969 <feature> 22970 <rects> 22971 <_>9 3 4 9 -1.</_> 22972 <_>11 3 2 9 2.</_></rects> 22973 <tilted>0</tilted></feature> 22974 <threshold>7.0779998786747456e-003</threshold> 22975 <left_val>-0.3412950038909912</left_val> 22976 <right_val>0.1253679990768433</right_val></_></_> 22977 <_> 22978 <!-- tree 145 --> 22979 <_> 22980 <!-- root node --> 22981 <feature> 22982 <rects> 22983 <_>8 2 12 6 -1.</_> 22984 <_>14 2 6 3 2.</_> 22985 <_>8 5 6 3 2.</_></rects> 22986 <tilted>0</tilted></feature> 22987 <threshold>-0.0155819999054074</threshold> 22988 <left_val>-0.3024039864540100</left_val> 22989 <right_val>0.2151100039482117</right_val></_></_> 22990 <_> 22991 <!-- tree 146 --> 22992 <_> 22993 <!-- root node --> 22994 <feature> 22995 <rects> 22996 <_>0 4 17 4 -1.</_> 22997 <_>0 6 17 2 2.</_></rects> 22998 <tilted>0</tilted></feature> 22999 <threshold>-2.7399999089539051e-003</threshold> 23000 <left_val>0.0765530019998550</left_val> 23001 <right_val>-0.4106050133705139</right_val></_></_> 23002 <_> 23003 <!-- tree 147 --> 23004 <_> 23005 <!-- root node --> 23006 <feature> 23007 <rects> 23008 <_>16 16 5 8 -1.</_> 23009 <_>16 20 5 4 2.</_></rects> 23010 <tilted>0</tilted></feature> 23011 <threshold>-0.0706000030040741</threshold> 23012 <left_val>-0.9735620021820068</left_val> 23013 <right_val>0.1124180033802986</right_val></_></_> 23014 <_> 23015 <!-- tree 148 --> 23016 <_> 23017 <!-- root node --> 23018 <feature> 23019 <rects> 23020 <_>3 16 5 8 -1.</_> 23021 <_>3 20 5 4 2.</_></rects> 23022 <tilted>0</tilted></feature> 23023 <threshold>-0.0117060001939535</threshold> 23024 <left_val>0.1856070011854172</left_val> 23025 <right_val>-0.2975519895553589</right_val></_></_> 23026 <_> 23027 <!-- tree 149 --> 23028 <_> 23029 <!-- root node --> 23030 <feature> 23031 <rects> 23032 <_>6 18 18 2 -1.</_> 23033 <_>6 19 18 1 2.</_></rects> 23034 <tilted>0</tilted></feature> 23035 <threshold>7.1499997284263372e-004</threshold> 23036 <left_val>-0.0596500001847744</left_val> 23037 <right_val>0.2482469975948334</right_val></_></_> 23038 <_> 23039 <!-- tree 150 --> 23040 <_> 23041 <!-- root node --> 23042 <feature> 23043 <rects> 23044 <_>0 0 12 5 -1.</_> 23045 <_>4 0 4 5 3.</_></rects> 23046 <tilted>0</tilted></feature> 23047 <threshold>-0.0368660017848015</threshold> 23048 <left_val>0.3275170028209686</left_val> 23049 <right_val>-0.2305960059165955</right_val></_></_> 23050 <_> 23051 <!-- tree 151 --> 23052 <_> 23053 <!-- root node --> 23054 <feature> 23055 <rects> 23056 <_>14 3 6 12 -1.</_> 23057 <_>17 3 3 6 2.</_> 23058 <_>14 9 3 6 2.</_></rects> 23059 <tilted>0</tilted></feature> 23060 <threshold>-0.0325269997119904</threshold> 23061 <left_val>-0.2932029962539673</left_val> 23062 <right_val>0.1542769968509674</right_val></_></_> 23063 <_> 23064 <!-- tree 152 --> 23065 <_> 23066 <!-- root node --> 23067 <feature> 23068 <rects> 23069 <_>0 12 6 12 -1.</_> 23070 <_>2 12 2 12 3.</_></rects> 23071 <tilted>0</tilted></feature> 23072 <threshold>-0.0748139992356300</threshold> 23073 <left_val>-1.2143570184707642</left_val> 23074 <right_val>-0.0522440001368523</right_val></_></_> 23075 <_> 23076 <!-- tree 153 --> 23077 <_> 23078 <!-- root node --> 23079 <feature> 23080 <rects> 23081 <_>2 3 21 3 -1.</_> 23082 <_>2 4 21 1 3.</_></rects> 23083 <tilted>0</tilted></feature> 23084 <threshold>0.0414699986577034</threshold> 23085 <left_val>0.1306249946355820</left_val> 23086 <right_val>-2.3274369239807129</right_val></_></_> 23087 <_> 23088 <!-- tree 154 --> 23089 <_> 23090 <!-- root node --> 23091 <feature> 23092 <rects> 23093 <_>4 3 6 12 -1.</_> 23094 <_>4 3 3 6 2.</_> 23095 <_>7 9 3 6 2.</_></rects> 23096 <tilted>0</tilted></feature> 23097 <threshold>-0.0288800001144409</threshold> 23098 <left_val>-0.6607459783554077</left_val> 23099 <right_val>-9.0960003435611725e-003</right_val></_></_> 23100 <_> 23101 <!-- tree 155 --> 23102 <_> 23103 <!-- root node --> 23104 <feature> 23105 <rects> 23106 <_>12 8 12 6 -1.</_> 23107 <_>18 8 6 3 2.</_> 23108 <_>12 11 6 3 2.</_></rects> 23109 <tilted>0</tilted></feature> 23110 <threshold>0.0463819988071918</threshold> 23111 <left_val>0.1663019955158234</left_val> 23112 <right_val>-0.6694949865341187</right_val></_></_> 23113 <_> 23114 <!-- tree 156 --> 23115 <_> 23116 <!-- root node --> 23117 <feature> 23118 <rects> 23119 <_>0 15 16 9 -1.</_> 23120 <_>8 15 8 9 2.</_></rects> 23121 <tilted>0</tilted></feature> 23122 <threshold>0.2542499899864197</threshold> 23123 <left_val>-0.0546419993042946</left_val> 23124 <right_val>-1.2676080465316772</right_val></_></_> 23125 <_> 23126 <!-- tree 157 --> 23127 <_> 23128 <!-- root node --> 23129 <feature> 23130 <rects> 23131 <_>6 13 18 5 -1.</_> 23132 <_>6 13 9 5 2.</_></rects> 23133 <tilted>0</tilted></feature> 23134 <threshold>2.4000001139938831e-003</threshold> 23135 <left_val>0.2027679979801178</left_val> 23136 <right_val>0.0146679999306798</right_val></_></_> 23137 <_> 23138 <!-- tree 158 --> 23139 <_> 23140 <!-- root node --> 23141 <feature> 23142 <rects> 23143 <_>1 6 15 6 -1.</_> 23144 <_>6 6 5 6 3.</_></rects> 23145 <tilted>0</tilted></feature> 23146 <threshold>-0.0828059986233711</threshold> 23147 <left_val>-0.7871360182762146</left_val> 23148 <right_val>-0.0244689993560314</right_val></_></_> 23149 <_> 23150 <!-- tree 159 --> 23151 <_> 23152 <!-- root node --> 23153 <feature> 23154 <rects> 23155 <_>11 9 9 6 -1.</_> 23156 <_>14 9 3 6 3.</_></rects> 23157 <tilted>0</tilted></feature> 23158 <threshold>-0.0114380000159144</threshold> 23159 <left_val>0.2862339913845062</left_val> 23160 <right_val>-0.0308940000832081</right_val></_></_> 23161 <_> 23162 <!-- tree 160 --> 23163 <_> 23164 <!-- root node --> 23165 <feature> 23166 <rects> 23167 <_>3 0 15 11 -1.</_> 23168 <_>8 0 5 11 3.</_></rects> 23169 <tilted>0</tilted></feature> 23170 <threshold>-0.1291339993476868</threshold> 23171 <left_val>1.7292929887771606</left_val> 23172 <right_val>-0.1429390013217926</right_val></_></_> 23173 <_> 23174 <!-- tree 161 --> 23175 <_> 23176 <!-- root node --> 23177 <feature> 23178 <rects> 23179 <_>15 3 3 18 -1.</_> 23180 <_>15 9 3 6 3.</_></rects> 23181 <tilted>0</tilted></feature> 23182 <threshold>0.0385529994964600</threshold> 23183 <left_val>0.0192329995334148</left_val> 23184 <right_val>0.3773260116577148</right_val></_></_> 23185 <_> 23186 <!-- tree 162 --> 23187 <_> 23188 <!-- root node --> 23189 <feature> 23190 <rects> 23191 <_>6 3 3 18 -1.</_> 23192 <_>6 9 3 6 3.</_></rects> 23193 <tilted>0</tilted></feature> 23194 <threshold>0.1019140034914017</threshold> 23195 <left_val>-0.0745339989662170</left_val> 23196 <right_val>-3.3868899345397949</right_val></_></_> 23197 <_> 23198 <!-- tree 163 --> 23199 <_> 23200 <!-- root node --> 23201 <feature> 23202 <rects> 23203 <_>9 5 10 8 -1.</_> 23204 <_>14 5 5 4 2.</_> 23205 <_>9 9 5 4 2.</_></rects> 23206 <tilted>0</tilted></feature> 23207 <threshold>-0.0190680008381605</threshold> 23208 <left_val>0.3181410133838654</left_val> 23209 <right_val>0.0192610006779432</right_val></_></_> 23210 <_> 23211 <!-- tree 164 --> 23212 <_> 23213 <!-- root node --> 23214 <feature> 23215 <rects> 23216 <_>4 4 16 8 -1.</_> 23217 <_>4 4 8 4 2.</_> 23218 <_>12 8 8 4 2.</_></rects> 23219 <tilted>0</tilted></feature> 23220 <threshold>-0.0607750006020069</threshold> 23221 <left_val>0.7693629860877991</left_val> 23222 <right_val>-0.1764400005340576</right_val></_></_> 23223 <_> 23224 <!-- tree 165 --> 23225 <_> 23226 <!-- root node --> 23227 <feature> 23228 <rects> 23229 <_>7 7 12 3 -1.</_> 23230 <_>7 7 6 3 2.</_></rects> 23231 <tilted>0</tilted></feature> 23232 <threshold>0.0246799997985363</threshold> 23233 <left_val>0.1839649975299835</left_val> 23234 <right_val>-0.3086880147457123</right_val></_></_> 23235 <_> 23236 <!-- tree 166 --> 23237 <_> 23238 <!-- root node --> 23239 <feature> 23240 <rects> 23241 <_>5 0 9 13 -1.</_> 23242 <_>8 0 3 13 3.</_></rects> 23243 <tilted>0</tilted></feature> 23244 <threshold>0.0267590004950762</threshold> 23245 <left_val>-0.2345490008592606</left_val> 23246 <right_val>0.3305659890174866</right_val></_></_> 23247 <_> 23248 <!-- tree 167 --> 23249 <_> 23250 <!-- root node --> 23251 <feature> 23252 <rects> 23253 <_>11 0 6 9 -1.</_> 23254 <_>13 0 2 9 3.</_></rects> 23255 <tilted>0</tilted></feature> 23256 <threshold>0.0149699999019504</threshold> 23257 <left_val>0.1721359938383102</left_val> 23258 <right_val>-0.1824889928102493</right_val></_></_> 23259 <_> 23260 <!-- tree 168 --> 23261 <_> 23262 <!-- root node --> 23263 <feature> 23264 <rects> 23265 <_>7 0 6 9 -1.</_> 23266 <_>9 0 2 9 3.</_></rects> 23267 <tilted>0</tilted></feature> 23268 <threshold>0.0261429995298386</threshold> 23269 <left_val>-0.0464639998972416</left_val> 23270 <right_val>-1.1318379640579224</right_val></_></_> 23271 <_> 23272 <!-- tree 169 --> 23273 <_> 23274 <!-- root node --> 23275 <feature> 23276 <rects> 23277 <_>8 1 10 9 -1.</_> 23278 <_>8 4 10 3 3.</_></rects> 23279 <tilted>0</tilted></feature> 23280 <threshold>-0.0375120006501675</threshold> 23281 <left_val>0.8040400147438049</left_val> 23282 <right_val>0.0696600005030632</right_val></_></_> 23283 <_> 23284 <!-- tree 170 --> 23285 <_> 23286 <!-- root node --> 23287 <feature> 23288 <rects> 23289 <_>0 2 18 2 -1.</_> 23290 <_>0 3 18 1 2.</_></rects> 23291 <tilted>0</tilted></feature> 23292 <threshold>-5.3229997865855694e-003</threshold> 23293 <left_val>-0.8188440203666687</left_val> 23294 <right_val>-0.0182249993085861</right_val></_></_> 23295 <_> 23296 <!-- tree 171 --> 23297 <_> 23298 <!-- root node --> 23299 <feature> 23300 <rects> 23301 <_>10 13 14 6 -1.</_> 23302 <_>17 13 7 3 2.</_> 23303 <_>10 16 7 3 2.</_></rects> 23304 <tilted>0</tilted></feature> 23305 <threshold>0.0178130008280277</threshold> 23306 <left_val>0.1495780050754547</left_val> 23307 <right_val>-0.1866720020771027</right_val></_></_> 23308 <_> 23309 <!-- tree 172 --> 23310 <_> 23311 <!-- root node --> 23312 <feature> 23313 <rects> 23314 <_>0 13 14 6 -1.</_> 23315 <_>0 13 7 3 2.</_> 23316 <_>7 16 7 3 2.</_></rects> 23317 <tilted>0</tilted></feature> 23318 <threshold>-0.0340100005269051</threshold> 23319 <left_val>-0.7285230159759522</left_val> 23320 <right_val>-0.0166159998625517</right_val></_></_> 23321 <_> 23322 <!-- tree 173 --> 23323 <_> 23324 <!-- root node --> 23325 <feature> 23326 <rects> 23327 <_>20 2 3 21 -1.</_> 23328 <_>21 2 1 21 3.</_></rects> 23329 <tilted>0</tilted></feature> 23330 <threshold>-0.0159530006349087</threshold> 23331 <left_val>0.5694400072097778</left_val> 23332 <right_val>0.0138320000842214</right_val></_></_> 23333 <_> 23334 <!-- tree 174 --> 23335 <_> 23336 <!-- root node --> 23337 <feature> 23338 <rects> 23339 <_>0 9 5 12 -1.</_> 23340 <_>0 13 5 4 3.</_></rects> 23341 <tilted>0</tilted></feature> 23342 <threshold>0.0197439994663000</threshold> 23343 <left_val>0.0405250005424023</left_val> 23344 <right_val>-0.4177339971065521</right_val></_></_> 23345 <_> 23346 <!-- tree 175 --> 23347 <_> 23348 <!-- root node --> 23349 <feature> 23350 <rects> 23351 <_>12 6 12 6 -1.</_> 23352 <_>12 8 12 2 3.</_></rects> 23353 <tilted>0</tilted></feature> 23354 <threshold>-0.1037480011582375</threshold> 23355 <left_val>-1.9825149774551392</left_val> 23356 <right_val>0.1196020022034645</right_val></_></_> 23357 <_> 23358 <!-- tree 176 --> 23359 <_> 23360 <!-- root node --> 23361 <feature> 23362 <rects> 23363 <_>1 8 20 3 -1.</_> 23364 <_>1 9 20 1 3.</_></rects> 23365 <tilted>0</tilted></feature> 23366 <threshold>-0.0192850008606911</threshold> 23367 <left_val>0.5023059844970703</left_val> 23368 <right_val>-0.1974589973688126</right_val></_></_> 23369 <_> 23370 <!-- tree 177 --> 23371 <_> 23372 <!-- root node --> 23373 <feature> 23374 <rects> 23375 <_>5 7 19 3 -1.</_> 23376 <_>5 8 19 1 3.</_></rects> 23377 <tilted>0</tilted></feature> 23378 <threshold>-0.0127800004556775</threshold> 23379 <left_val>0.4019500017166138</left_val> 23380 <right_val>-0.0269579999148846</right_val></_></_> 23381 <_> 23382 <!-- tree 178 --> 23383 <_> 23384 <!-- root node --> 23385 <feature> 23386 <rects> 23387 <_>1 12 9 6 -1.</_> 23388 <_>1 14 9 2 3.</_></rects> 23389 <tilted>0</tilted></feature> 23390 <threshold>-0.0163529999554157</threshold> 23391 <left_val>-0.7660880088806152</left_val> 23392 <right_val>-0.0242090001702309</right_val></_></_> 23393 <_> 23394 <!-- tree 179 --> 23395 <_> 23396 <!-- root node --> 23397 <feature> 23398 <rects> 23399 <_>6 10 14 12 -1.</_> 23400 <_>6 14 14 4 3.</_></rects> 23401 <tilted>0</tilted></feature> 23402 <threshold>-0.1276369988918304</threshold> 23403 <left_val>0.8657850027084351</left_val> 23404 <right_val>0.0642059966921806</right_val></_></_> 23405 <_> 23406 <!-- tree 180 --> 23407 <_> 23408 <!-- root node --> 23409 <feature> 23410 <rects> 23411 <_>5 6 14 18 -1.</_> 23412 <_>5 12 14 6 3.</_></rects> 23413 <tilted>0</tilted></feature> 23414 <threshold>0.0190689992159605</threshold> 23415 <left_val>-0.5592979788780212</left_val> 23416 <right_val>-1.6880000475794077e-003</right_val></_></_> 23417 <_> 23418 <!-- tree 181 --> 23419 <_> 23420 <!-- root node --> 23421 <feature> 23422 <rects> 23423 <_>11 12 9 7 -1.</_> 23424 <_>14 12 3 7 3.</_></rects> 23425 <tilted>0</tilted></feature> 23426 <threshold>0.0324809998273849</threshold> 23427 <left_val>0.0407220013439655</left_val> 23428 <right_val>0.4892509877681732</right_val></_></_> 23429 <_> 23430 <!-- tree 182 --> 23431 <_> 23432 <!-- root node --> 23433 <feature> 23434 <rects> 23435 <_>1 15 18 4 -1.</_> 23436 <_>1 17 18 2 2.</_></rects> 23437 <tilted>0</tilted></feature> 23438 <threshold>9.4849998131394386e-003</threshold> 23439 <left_val>-0.1923190057277679</left_val> 23440 <right_val>0.5113970041275024</right_val></_></_> 23441 <_> 23442 <!-- tree 183 --> 23443 <_> 23444 <!-- root node --> 23445 <feature> 23446 <rects> 23447 <_>11 14 6 9 -1.</_> 23448 <_>11 17 6 3 3.</_></rects> 23449 <tilted>0</tilted></feature> 23450 <threshold>5.0470000132918358e-003</threshold> 23451 <left_val>0.1870680004358292</left_val> 23452 <right_val>-0.1611360013484955</right_val></_></_> 23453 <_> 23454 <!-- tree 184 --> 23455 <_> 23456 <!-- root node --> 23457 <feature> 23458 <rects> 23459 <_>0 8 18 4 -1.</_> 23460 <_>0 8 9 2 2.</_> 23461 <_>9 10 9 2 2.</_></rects> 23462 <tilted>0</tilted></feature> 23463 <threshold>0.0412679985165596</threshold> 23464 <left_val>-0.0488179996609688</left_val> 23465 <right_val>-1.1326299905776978</right_val></_></_> 23466 <_> 23467 <!-- tree 185 --> 23468 <_> 23469 <!-- root node --> 23470 <feature> 23471 <rects> 23472 <_>3 10 20 6 -1.</_> 23473 <_>13 10 10 3 2.</_> 23474 <_>3 13 10 3 2.</_></rects> 23475 <tilted>0</tilted></feature> 23476 <threshold>-0.0763589963316917</threshold> 23477 <left_val>1.4169390201568604</left_val> 23478 <right_val>0.0873199999332428</right_val></_></_> 23479 <_> 23480 <!-- tree 186 --> 23481 <_> 23482 <!-- root node --> 23483 <feature> 23484 <rects> 23485 <_>1 10 20 6 -1.</_> 23486 <_>1 10 10 3 2.</_> 23487 <_>11 13 10 3 2.</_></rects> 23488 <tilted>0</tilted></feature> 23489 <threshold>-0.0728349983692169</threshold> 23490 <left_val>1.3189860582351685</left_val> 23491 <right_val>-0.1481910049915314</right_val></_></_> 23492 <_> 23493 <!-- tree 187 --> 23494 <_> 23495 <!-- root node --> 23496 <feature> 23497 <rects> 23498 <_>0 9 24 2 -1.</_> 23499 <_>0 9 12 2 2.</_></rects> 23500 <tilted>0</tilted></feature> 23501 <threshold>0.0595769993960857</threshold> 23502 <left_val>0.0483769997954369</left_val> 23503 <right_val>0.8561180233955383</right_val></_></_> 23504 <_> 23505 <!-- tree 188 --> 23506 <_> 23507 <!-- root node --> 23508 <feature> 23509 <rects> 23510 <_>1 12 20 8 -1.</_> 23511 <_>1 12 10 4 2.</_> 23512 <_>11 16 10 4 2.</_></rects> 23513 <tilted>0</tilted></feature> 23514 <threshold>0.0202639997005463</threshold> 23515 <left_val>-0.2104409933090210</left_val> 23516 <right_val>0.3385899960994721</right_val></_></_> 23517 <_> 23518 <!-- tree 189 --> 23519 <_> 23520 <!-- root node --> 23521 <feature> 23522 <rects> 23523 <_>11 12 9 7 -1.</_> 23524 <_>14 12 3 7 3.</_></rects> 23525 <tilted>0</tilted></feature> 23526 <threshold>-0.0803010016679764</threshold> 23527 <left_val>-1.2464400529861450</left_val> 23528 <right_val>0.1185709983110428</right_val></_></_> 23529 <_> 23530 <!-- tree 190 --> 23531 <_> 23532 <!-- root node --> 23533 <feature> 23534 <rects> 23535 <_>4 12 9 7 -1.</_> 23536 <_>7 12 3 7 3.</_></rects> 23537 <tilted>0</tilted></feature> 23538 <threshold>-0.0178350005298853</threshold> 23539 <left_val>0.2578229904174805</left_val> 23540 <right_val>-0.2456479966640472</right_val></_></_> 23541 <_> 23542 <!-- tree 191 --> 23543 <_> 23544 <!-- root node --> 23545 <feature> 23546 <rects> 23547 <_>12 12 8 5 -1.</_> 23548 <_>12 12 4 5 2.</_></rects> 23549 <tilted>0</tilted></feature> 23550 <threshold>0.0114310001954436</threshold> 23551 <left_val>0.2294979989528656</left_val> 23552 <right_val>-0.2949759960174561</right_val></_></_> 23553 <_> 23554 <!-- tree 192 --> 23555 <_> 23556 <!-- root node --> 23557 <feature> 23558 <rects> 23559 <_>4 12 8 5 -1.</_> 23560 <_>8 12 4 5 2.</_></rects> 23561 <tilted>0</tilted></feature> 23562 <threshold>-0.0255410000681877</threshold> 23563 <left_val>-0.8625299930572510</left_val> 23564 <right_val>-7.0400000549852848e-004</right_val></_></_> 23565 <_> 23566 <!-- tree 193 --> 23567 <_> 23568 <!-- root node --> 23569 <feature> 23570 <rects> 23571 <_>13 10 4 10 -1.</_> 23572 <_>13 10 2 10 2.</_></rects> 23573 <tilted>0</tilted></feature> 23574 <threshold>-7.6899997657164931e-004</threshold> 23575 <left_val>0.3151139914989471</left_val> 23576 <right_val>-0.1434900015592575</right_val></_></_> 23577 <_> 23578 <!-- tree 194 --> 23579 <_> 23580 <!-- root node --> 23581 <feature> 23582 <rects> 23583 <_>1 15 20 2 -1.</_> 23584 <_>11 15 10 2 2.</_></rects> 23585 <tilted>0</tilted></feature> 23586 <threshold>-0.0144539996981621</threshold> 23587 <left_val>0.2514849901199341</left_val> 23588 <right_val>-0.2823289930820465</right_val></_></_> 23589 <_> 23590 <!-- tree 195 --> 23591 <_> 23592 <!-- root node --> 23593 <feature> 23594 <rects> 23595 <_>9 10 6 6 -1.</_> 23596 <_>9 10 3 6 2.</_></rects> 23597 <tilted>0</tilted></feature> 23598 <threshold>8.6730001494288445e-003</threshold> 23599 <left_val>0.2660140097141266</left_val> 23600 <right_val>-0.2819080054759979</right_val></_></_></trees> 23601 <stage_threshold>-3.2103500366210937</stage_threshold> 23602 <parent>18</parent> 23603 <next>-1</next></_> 23604 <_> 23605 <!-- stage 20 --> 23606 <trees> 23607 <_> 23608 <!-- tree 0 --> 23609 <_> 23610 <!-- root node --> 23611 <feature> 23612 <rects> 23613 <_>0 1 21 3 -1.</_> 23614 <_>7 1 7 3 3.</_></rects> 23615 <tilted>0</tilted></feature> 23616 <threshold>0.0547089986503124</threshold> 23617 <left_val>-0.5414429903030396</left_val> 23618 <right_val>0.6104300022125244</right_val></_></_> 23619 <_> 23620 <!-- tree 1 --> 23621 <_> 23622 <!-- root node --> 23623 <feature> 23624 <rects> 23625 <_>6 4 13 9 -1.</_> 23626 <_>6 7 13 3 3.</_></rects> 23627 <tilted>0</tilted></feature> 23628 <threshold>-0.1083879992365837</threshold> 23629 <left_val>0.7173990011215210</left_val> 23630 <right_val>-0.4119609892368317</right_val></_></_> 23631 <_> 23632 <!-- tree 2 --> 23633 <_> 23634 <!-- root node --> 23635 <feature> 23636 <rects> 23637 <_>6 5 12 5 -1.</_> 23638 <_>10 5 4 5 3.</_></rects> 23639 <tilted>0</tilted></feature> 23640 <threshold>0.0229969993233681</threshold> 23641 <left_val>-0.5826979875564575</left_val> 23642 <right_val>0.2964560091495514</right_val></_></_> 23643 <_> 23644 <!-- tree 3 --> 23645 <_> 23646 <!-- root node --> 23647 <feature> 23648 <rects> 23649 <_>10 10 10 6 -1.</_> 23650 <_>10 12 10 2 3.</_></rects> 23651 <tilted>0</tilted></feature> 23652 <threshold>2.7540000155568123e-003</threshold> 23653 <left_val>-0.7424389719963074</left_val> 23654 <right_val>0.1418330073356628</right_val></_></_> 23655 <_> 23656 <!-- tree 4 --> 23657 <_> 23658 <!-- root node --> 23659 <feature> 23660 <rects> 23661 <_>6 12 5 8 -1.</_> 23662 <_>6 16 5 4 2.</_></rects> 23663 <tilted>0</tilted></feature> 23664 <threshold>-2.1520000882446766e-003</threshold> 23665 <left_val>0.1787990033626556</left_val> 23666 <right_val>-0.6854860186576843</right_val></_></_> 23667 <_> 23668 <!-- tree 5 --> 23669 <_> 23670 <!-- root node --> 23671 <feature> 23672 <rects> 23673 <_>13 0 6 9 -1.</_> 23674 <_>15 0 2 9 3.</_></rects> 23675 <tilted>0</tilted></feature> 23676 <threshold>-0.0225590001791716</threshold> 23677 <left_val>-1.0775549411773682</left_val> 23678 <right_val>0.1238899976015091</right_val></_></_> 23679 <_> 23680 <!-- tree 6 --> 23681 <_> 23682 <!-- root node --> 23683 <feature> 23684 <rects> 23685 <_>2 10 18 6 -1.</_> 23686 <_>8 10 6 6 3.</_></rects> 23687 <tilted>0</tilted></feature> 23688 <threshold>0.0830250009894371</threshold> 23689 <left_val>0.0245009995996952</left_val> 23690 <right_val>-1.0251879692077637</right_val></_></_> 23691 <_> 23692 <!-- tree 7 --> 23693 <_> 23694 <!-- root node --> 23695 <feature> 23696 <rects> 23697 <_>11 2 9 4 -1.</_> 23698 <_>11 4 9 2 2.</_></rects> 23699 <tilted>0</tilted></feature> 23700 <threshold>-6.6740000620484352e-003</threshold> 23701 <left_val>-0.4528310000896454</left_val> 23702 <right_val>0.2123019993305206</right_val></_></_> 23703 <_> 23704 <!-- tree 8 --> 23705 <_> 23706 <!-- root node --> 23707 <feature> 23708 <rects> 23709 <_>1 20 21 3 -1.</_> 23710 <_>8 20 7 3 3.</_></rects> 23711 <tilted>0</tilted></feature> 23712 <threshold>0.0764850005507469</threshold> 23713 <left_val>-0.2697269916534424</left_val> 23714 <right_val>0.4858019948005676</right_val></_></_> 23715 <_> 23716 <!-- tree 9 --> 23717 <_> 23718 <!-- root node --> 23719 <feature> 23720 <rects> 23721 <_>1 10 22 2 -1.</_> 23722 <_>1 11 22 1 2.</_></rects> 23723 <tilted>0</tilted></feature> 23724 <threshold>5.4910001344978809e-003</threshold> 23725 <left_val>-0.4887120127677918</left_val> 23726 <right_val>0.3161639869213104</right_val></_></_> 23727 <_> 23728 <!-- tree 10 --> 23729 <_> 23730 <!-- root node --> 23731 <feature> 23732 <rects> 23733 <_>0 17 18 3 -1.</_> 23734 <_>0 18 18 1 3.</_></rects> 23735 <tilted>0</tilted></feature> 23736 <threshold>-0.0104149999096990</threshold> 23737 <left_val>0.4151290059089661</left_val> 23738 <right_val>-0.3004480004310608</right_val></_></_> 23739 <_> 23740 <!-- tree 11 --> 23741 <_> 23742 <!-- root node --> 23743 <feature> 23744 <rects> 23745 <_>13 0 6 9 -1.</_> 23746 <_>15 0 2 9 3.</_></rects> 23747 <tilted>0</tilted></feature> 23748 <threshold>0.0276079997420311</threshold> 23749 <left_val>0.1620379984378815</left_val> 23750 <right_val>-0.9986850023269653</right_val></_></_> 23751 <_> 23752 <!-- tree 12 --> 23753 <_> 23754 <!-- root node --> 23755 <feature> 23756 <rects> 23757 <_>5 0 6 9 -1.</_> 23758 <_>7 0 2 9 3.</_></rects> 23759 <tilted>0</tilted></feature> 23760 <threshold>-0.0232720002532005</threshold> 23761 <left_val>-1.1024399995803833</left_val> 23762 <right_val>0.0211249999701977</right_val></_></_> 23763 <_> 23764 <!-- tree 13 --> 23765 <_> 23766 <!-- root node --> 23767 <feature> 23768 <rects> 23769 <_>18 2 6 20 -1.</_> 23770 <_>20 2 2 20 3.</_></rects> 23771 <tilted>0</tilted></feature> 23772 <threshold>-0.0556199997663498</threshold> 23773 <left_val>0.6503310203552246</left_val> 23774 <right_val>-0.0279380008578300</right_val></_></_> 23775 <_> 23776 <!-- tree 14 --> 23777 <_> 23778 <!-- root node --> 23779 <feature> 23780 <rects> 23781 <_>0 2 6 20 -1.</_> 23782 <_>2 2 2 20 3.</_></rects> 23783 <tilted>0</tilted></feature> 23784 <threshold>-0.0406319983303547</threshold> 23785 <left_val>0.4211730062961578</left_val> 23786 <right_val>-0.2676379978656769</right_val></_></_> 23787 <_> 23788 <!-- tree 15 --> 23789 <_> 23790 <!-- root node --> 23791 <feature> 23792 <rects> 23793 <_>11 7 6 14 -1.</_> 23794 <_>14 7 3 7 2.</_> 23795 <_>11 14 3 7 2.</_></rects> 23796 <tilted>0</tilted></feature> 23797 <threshold>-7.3560001328587532e-003</threshold> 23798 <left_val>0.3527779877185822</left_val> 23799 <right_val>-0.3785400092601776</right_val></_></_> 23800 <_> 23801 <!-- tree 16 --> 23802 <_> 23803 <!-- root node --> 23804 <feature> 23805 <rects> 23806 <_>0 1 4 9 -1.</_> 23807 <_>2 1 2 9 2.</_></rects> 23808 <tilted>0</tilted></feature> 23809 <threshold>0.0170070007443428</threshold> 23810 <left_val>-0.2918950021266937</left_val> 23811 <right_val>0.4105379879474640</right_val></_></_> 23812 <_> 23813 <!-- tree 17 --> 23814 <_> 23815 <!-- root node --> 23816 <feature> 23817 <rects> 23818 <_>12 14 9 4 -1.</_> 23819 <_>12 16 9 2 2.</_></rects> 23820 <tilted>0</tilted></feature> 23821 <threshold>-0.0370340012013912</threshold> 23822 <left_val>-1.3216309547424316</left_val> 23823 <right_val>0.1296650022268295</right_val></_></_> 23824 <_> 23825 <!-- tree 18 --> 23826 <_> 23827 <!-- root node --> 23828 <feature> 23829 <rects> 23830 <_>1 13 9 4 -1.</_> 23831 <_>1 15 9 2 2.</_></rects> 23832 <tilted>0</tilted></feature> 23833 <threshold>-0.0196330007165670</threshold> 23834 <left_val>-0.8770229816436768</left_val> 23835 <right_val>1.0799999581649899e-003</right_val></_></_> 23836 <_> 23837 <!-- tree 19 --> 23838 <_> 23839 <!-- root node --> 23840 <feature> 23841 <rects> 23842 <_>7 6 15 6 -1.</_> 23843 <_>7 8 15 2 3.</_></rects> 23844 <tilted>0</tilted></feature> 23845 <threshold>-0.0235469993203878</threshold> 23846 <left_val>0.2610610127449036</left_val> 23847 <right_val>-0.2148140072822571</right_val></_></_> 23848 <_> 23849 <!-- tree 20 --> 23850 <_> 23851 <!-- root node --> 23852 <feature> 23853 <rects> 23854 <_>8 2 3 18 -1.</_> 23855 <_>8 8 3 6 3.</_></rects> 23856 <tilted>0</tilted></feature> 23857 <threshold>-0.0433529987931252</threshold> 23858 <left_val>-0.9908969998359680</left_val> 23859 <right_val>-9.9560003727674484e-003</right_val></_></_> 23860 <_> 23861 <!-- tree 21 --> 23862 <_> 23863 <!-- root node --> 23864 <feature> 23865 <rects> 23866 <_>6 6 12 6 -1.</_> 23867 <_>12 6 6 3 2.</_> 23868 <_>6 9 6 3 2.</_></rects> 23869 <tilted>0</tilted></feature> 23870 <threshold>-0.0221839994192123</threshold> 23871 <left_val>0.6345440149307251</left_val> 23872 <right_val>-0.0565470010042191</right_val></_></_> 23873 <_> 23874 <!-- tree 22 --> 23875 <_> 23876 <!-- root node --> 23877 <feature> 23878 <rects> 23879 <_>2 19 20 4 -1.</_> 23880 <_>2 19 10 2 2.</_> 23881 <_>12 21 10 2 2.</_></rects> 23882 <tilted>0</tilted></feature> 23883 <threshold>0.0165309999138117</threshold> 23884 <left_val>0.0246649999171495</left_val> 23885 <right_val>-0.7332680225372315</right_val></_></_> 23886 <_> 23887 <!-- tree 23 --> 23888 <_> 23889 <!-- root node --> 23890 <feature> 23891 <rects> 23892 <_>14 15 6 9 -1.</_> 23893 <_>14 18 6 3 3.</_></rects> 23894 <tilted>0</tilted></feature> 23895 <threshold>-0.0327440015971661</threshold> 23896 <left_val>-0.5629720091819763</left_val> 23897 <right_val>0.1664029955863953</right_val></_></_> 23898 <_> 23899 <!-- tree 24 --> 23900 <_> 23901 <!-- root node --> 23902 <feature> 23903 <rects> 23904 <_>3 5 18 14 -1.</_> 23905 <_>3 5 9 7 2.</_> 23906 <_>12 12 9 7 2.</_></rects> 23907 <tilted>0</tilted></feature> 23908 <threshold>0.0714159980416298</threshold> 23909 <left_val>-3.0000001424923539e-004</left_val> 23910 <right_val>-0.9328640103340149</right_val></_></_> 23911 <_> 23912 <!-- tree 25 --> 23913 <_> 23914 <!-- root node --> 23915 <feature> 23916 <rects> 23917 <_>15 6 4 18 -1.</_> 23918 <_>17 6 2 9 2.</_> 23919 <_>15 15 2 9 2.</_></rects> 23920 <tilted>0</tilted></feature> 23921 <threshold>8.0999999772757292e-004</threshold> 23922 <left_val>-0.0953800007700920</left_val> 23923 <right_val>0.2518469989299774</right_val></_></_> 23924 <_> 23925 <!-- tree 26 --> 23926 <_> 23927 <!-- root node --> 23928 <feature> 23929 <rects> 23930 <_>5 6 4 18 -1.</_> 23931 <_>5 6 2 9 2.</_> 23932 <_>7 15 2 9 2.</_></rects> 23933 <tilted>0</tilted></feature> 23934 <threshold>-8.4090000018477440e-003</threshold> 23935 <left_val>-0.6549680233001709</left_val> 23936 <right_val>0.0673009976744652</right_val></_></_> 23937 <_> 23938 <!-- tree 27 --> 23939 <_> 23940 <!-- root node --> 23941 <feature> 23942 <rects> 23943 <_>11 0 6 9 -1.</_> 23944 <_>13 0 2 9 3.</_></rects> 23945 <tilted>0</tilted></feature> 23946 <threshold>-0.0172540005296469</threshold> 23947 <left_val>-0.4649299979209900</left_val> 23948 <right_val>0.1607089936733246</right_val></_></_> 23949 <_> 23950 <!-- tree 28 --> 23951 <_> 23952 <!-- root node --> 23953 <feature> 23954 <rects> 23955 <_>7 0 6 9 -1.</_> 23956 <_>9 0 2 9 3.</_></rects> 23957 <tilted>0</tilted></feature> 23958 <threshold>-0.0186410006135702</threshold> 23959 <left_val>-1.0594010353088379</left_val> 23960 <right_val>-0.0196170005947351</right_val></_></_> 23961 <_> 23962 <!-- tree 29 --> 23963 <_> 23964 <!-- root node --> 23965 <feature> 23966 <rects> 23967 <_>11 5 6 9 -1.</_> 23968 <_>13 5 2 9 3.</_></rects> 23969 <tilted>0</tilted></feature> 23970 <threshold>-9.1979997232556343e-003</threshold> 23971 <left_val>0.5071619749069214</left_val> 23972 <right_val>-0.1533920019865036</right_val></_></_> 23973 <_> 23974 <!-- tree 30 --> 23975 <_> 23976 <!-- root node --> 23977 <feature> 23978 <rects> 23979 <_>9 5 6 6 -1.</_> 23980 <_>12 5 3 6 2.</_></rects> 23981 <tilted>0</tilted></feature> 23982 <threshold>0.0185380000621080</threshold> 23983 <left_val>-0.3049820065498352</left_val> 23984 <right_val>0.7350620031356812</right_val></_></_> 23985 <_> 23986 <!-- tree 31 --> 23987 <_> 23988 <!-- root node --> 23989 <feature> 23990 <rects> 23991 <_>4 1 16 6 -1.</_> 23992 <_>12 1 8 3 2.</_> 23993 <_>4 4 8 3 2.</_></rects> 23994 <tilted>0</tilted></feature> 23995 <threshold>-0.0503350012004375</threshold> 23996 <left_val>-1.1140480041503906</left_val> 23997 <right_val>0.1800010055303574</right_val></_></_> 23998 <_> 23999 <!-- tree 32 --> 24000 <_> 24001 <!-- root node --> 24002 <feature> 24003 <rects> 24004 <_>9 13 6 11 -1.</_> 24005 <_>11 13 2 11 3.</_></rects> 24006 <tilted>0</tilted></feature> 24007 <threshold>-0.0235290005803108</threshold> 24008 <left_val>-0.8690789937973023</left_val> 24009 <right_val>-0.0124599998816848</right_val></_></_> 24010 <_> 24011 <!-- tree 33 --> 24012 <_> 24013 <!-- root node --> 24014 <feature> 24015 <rects> 24016 <_>17 1 6 12 -1.</_> 24017 <_>20 1 3 6 2.</_> 24018 <_>17 7 3 6 2.</_></rects> 24019 <tilted>0</tilted></feature> 24020 <threshold>-0.0271000005304813</threshold> 24021 <left_val>0.6594290137290955</left_val> 24022 <right_val>-0.0353239998221397</right_val></_></_> 24023 <_> 24024 <!-- tree 34 --> 24025 <_> 24026 <!-- root node --> 24027 <feature> 24028 <rects> 24029 <_>1 17 18 3 -1.</_> 24030 <_>1 18 18 1 3.</_></rects> 24031 <tilted>0</tilted></feature> 24032 <threshold>6.5879998728632927e-003</threshold> 24033 <left_val>-0.2295340001583099</left_val> 24034 <right_val>0.4242509901523590</right_val></_></_> 24035 <_> 24036 <!-- tree 35 --> 24037 <_> 24038 <!-- root node --> 24039 <feature> 24040 <rects> 24041 <_>7 13 10 8 -1.</_> 24042 <_>7 17 10 4 2.</_></rects> 24043 <tilted>0</tilted></feature> 24044 <threshold>0.0233600009232759</threshold> 24045 <left_val>0.1835619956254959</left_val> 24046 <right_val>-0.9858729839324951</right_val></_></_> 24047 <_> 24048 <!-- tree 36 --> 24049 <_> 24050 <!-- root node --> 24051 <feature> 24052 <rects> 24053 <_>6 18 10 6 -1.</_> 24054 <_>6 20 10 2 3.</_></rects> 24055 <tilted>0</tilted></feature> 24056 <threshold>0.0129469996318221</threshold> 24057 <left_val>-0.3314740061759949</left_val> 24058 <right_val>0.2132319957017899</right_val></_></_> 24059 <_> 24060 <!-- tree 37 --> 24061 <_> 24062 <!-- root node --> 24063 <feature> 24064 <rects> 24065 <_>9 14 9 4 -1.</_> 24066 <_>9 16 9 2 2.</_></rects> 24067 <tilted>0</tilted></feature> 24068 <threshold>-6.6559999249875546e-003</threshold> 24069 <left_val>-0.1195140033960342</left_val> 24070 <right_val>0.2975279986858368</right_val></_></_> 24071 <_> 24072 <!-- tree 38 --> 24073 <_> 24074 <!-- root node --> 24075 <feature> 24076 <rects> 24077 <_>1 1 6 12 -1.</_> 24078 <_>1 1 3 6 2.</_> 24079 <_>4 7 3 6 2.</_></rects> 24080 <tilted>0</tilted></feature> 24081 <threshold>-0.0225709993392229</threshold> 24082 <left_val>0.3849940001964569</left_val> 24083 <right_val>-0.2443449944257736</right_val></_></_> 24084 <_> 24085 <!-- tree 39 --> 24086 <_> 24087 <!-- root node --> 24088 <feature> 24089 <rects> 24090 <_>19 4 5 12 -1.</_> 24091 <_>19 8 5 4 3.</_></rects> 24092 <tilted>0</tilted></feature> 24093 <threshold>-0.0638139992952347</threshold> 24094 <left_val>-0.8938350081443787</left_val> 24095 <right_val>0.1421750038862228</right_val></_></_> 24096 <_> 24097 <!-- tree 40 --> 24098 <_> 24099 <!-- root node --> 24100 <feature> 24101 <rects> 24102 <_>0 0 8 8 -1.</_> 24103 <_>4 0 4 8 2.</_></rects> 24104 <tilted>0</tilted></feature> 24105 <threshold>-0.0499450005590916</threshold> 24106 <left_val>0.5386440157890320</left_val> 24107 <right_val>-0.2048529982566834</right_val></_></_> 24108 <_> 24109 <!-- tree 41 --> 24110 <_> 24111 <!-- root node --> 24112 <feature> 24113 <rects> 24114 <_>3 5 19 3 -1.</_> 24115 <_>3 6 19 1 3.</_></rects> 24116 <tilted>0</tilted></feature> 24117 <threshold>6.8319998681545258e-003</threshold> 24118 <left_val>-0.0566789992153645</left_val> 24119 <right_val>0.3997099995613098</right_val></_></_> 24120 <_> 24121 <!-- tree 42 --> 24122 <_> 24123 <!-- root node --> 24124 <feature> 24125 <rects> 24126 <_>1 5 12 6 -1.</_> 24127 <_>1 5 6 3 2.</_> 24128 <_>7 8 6 3 2.</_></rects> 24129 <tilted>0</tilted></feature> 24130 <threshold>-0.0558359995484352</threshold> 24131 <left_val>-1.5239470005035400</left_val> 24132 <right_val>-0.0511830002069473</right_val></_></_> 24133 <_> 24134 <!-- tree 43 --> 24135 <_> 24136 <!-- root node --> 24137 <feature> 24138 <rects> 24139 <_>2 1 21 8 -1.</_> 24140 <_>9 1 7 8 3.</_></rects> 24141 <tilted>0</tilted></feature> 24142 <threshold>0.3195700049400330</threshold> 24143 <left_val>0.0745740011334419</left_val> 24144 <right_val>1.2447799444198608</right_val></_></_> 24145 <_> 24146 <!-- tree 44 --> 24147 <_> 24148 <!-- root node --> 24149 <feature> 24150 <rects> 24151 <_>4 1 16 8 -1.</_> 24152 <_>4 5 16 4 2.</_></rects> 24153 <tilted>0</tilted></feature> 24154 <threshold>0.0809559971094131</threshold> 24155 <left_val>-0.1966550052165985</left_val> 24156 <right_val>0.5988969802856445</right_val></_></_> 24157 <_> 24158 <!-- tree 45 --> 24159 <_> 24160 <!-- root node --> 24161 <feature> 24162 <rects> 24163 <_>6 0 18 3 -1.</_> 24164 <_>6 1 18 1 3.</_></rects> 24165 <tilted>0</tilted></feature> 24166 <threshold>-0.0149119999259710</threshold> 24167 <left_val>-0.6402059793472290</left_val> 24168 <right_val>0.1580760031938553</right_val></_></_> 24169 <_> 24170 <!-- tree 46 --> 24171 <_> 24172 <!-- root node --> 24173 <feature> 24174 <rects> 24175 <_>4 4 10 14 -1.</_> 24176 <_>4 11 10 7 2.</_></rects> 24177 <tilted>0</tilted></feature> 24178 <threshold>0.0467090010643005</threshold> 24179 <left_val>0.0852390006184578</left_val> 24180 <right_val>-0.4548720121383667</right_val></_></_> 24181 <_> 24182 <!-- tree 47 --> 24183 <_> 24184 <!-- root node --> 24185 <feature> 24186 <rects> 24187 <_>15 6 4 10 -1.</_> 24188 <_>15 11 4 5 2.</_></rects> 24189 <tilted>0</tilted></feature> 24190 <threshold>6.0539999976754189e-003</threshold> 24191 <left_val>-0.4318400025367737</left_val> 24192 <right_val>0.2245260030031204</right_val></_></_> 24193 <_> 24194 <!-- tree 48 --> 24195 <_> 24196 <!-- root node --> 24197 <feature> 24198 <rects> 24199 <_>3 18 18 3 -1.</_> 24200 <_>9 18 6 3 3.</_></rects> 24201 <tilted>0</tilted></feature> 24202 <threshold>-0.0343759991228580</threshold> 24203 <left_val>0.4020250141620636</left_val> 24204 <right_val>-0.2390359938144684</right_val></_></_> 24205 <_> 24206 <!-- tree 49 --> 24207 <_> 24208 <!-- root node --> 24209 <feature> 24210 <rects> 24211 <_>8 18 12 6 -1.</_> 24212 <_>12 18 4 6 3.</_></rects> 24213 <tilted>0</tilted></feature> 24214 <threshold>-0.0349240005016327</threshold> 24215 <left_val>0.5287010073661804</left_val> 24216 <right_val>0.0397090017795563</right_val></_></_> 24217 <_> 24218 <!-- tree 50 --> 24219 <_> 24220 <!-- root node --> 24221 <feature> 24222 <rects> 24223 <_>3 15 6 9 -1.</_> 24224 <_>6 15 3 9 2.</_></rects> 24225 <tilted>0</tilted></feature> 24226 <threshold>3.0030000489205122e-003</threshold> 24227 <left_val>-0.3875429928302765</left_val> 24228 <right_val>0.1419260054826737</right_val></_></_> 24229 <_> 24230 <!-- tree 51 --> 24231 <_> 24232 <!-- root node --> 24233 <feature> 24234 <rects> 24235 <_>15 7 6 8 -1.</_> 24236 <_>15 11 6 4 2.</_></rects> 24237 <tilted>0</tilted></feature> 24238 <threshold>-0.0141329998150468</threshold> 24239 <left_val>0.8752840161323547</left_val> 24240 <right_val>0.0855079963803291</right_val></_></_> 24241 <_> 24242 <!-- tree 52 --> 24243 <_> 24244 <!-- root node --> 24245 <feature> 24246 <rects> 24247 <_>3 7 6 8 -1.</_> 24248 <_>3 11 6 4 2.</_></rects> 24249 <tilted>0</tilted></feature> 24250 <threshold>-6.7940000444650650e-003</threshold> 24251 <left_val>-1.1649219989776611</left_val> 24252 <right_val>-0.0339430011808872</right_val></_></_> 24253 <_> 24254 <!-- tree 53 --> 24255 <_> 24256 <!-- root node --> 24257 <feature> 24258 <rects> 24259 <_>5 9 18 6 -1.</_> 24260 <_>14 9 9 3 2.</_> 24261 <_>5 12 9 3 2.</_></rects> 24262 <tilted>0</tilted></feature> 24263 <threshold>-0.0528860017657280</threshold> 24264 <left_val>1.0930680036544800</left_val> 24265 <right_val>0.0511870011687279</right_val></_></_> 24266 <_> 24267 <!-- tree 54 --> 24268 <_> 24269 <!-- root node --> 24270 <feature> 24271 <rects> 24272 <_>1 13 12 6 -1.</_> 24273 <_>1 15 12 2 3.</_></rects> 24274 <tilted>0</tilted></feature> 24275 <threshold>-2.1079999860376120e-003</threshold> 24276 <left_val>0.1369619965553284</left_val> 24277 <right_val>-0.3384999930858612</right_val></_></_> 24278 <_> 24279 <!-- tree 55 --> 24280 <_> 24281 <!-- root node --> 24282 <feature> 24283 <rects> 24284 <_>14 15 10 6 -1.</_> 24285 <_>14 17 10 2 3.</_></rects> 24286 <tilted>0</tilted></feature> 24287 <threshold>0.0183530002832413</threshold> 24288 <left_val>0.1366160064935684</left_val> 24289 <right_val>-0.4077779948711395</right_val></_></_> 24290 <_> 24291 <!-- tree 56 --> 24292 <_> 24293 <!-- root node --> 24294 <feature> 24295 <rects> 24296 <_>0 15 10 6 -1.</_> 24297 <_>0 17 10 2 3.</_></rects> 24298 <tilted>0</tilted></feature> 24299 <threshold>0.0126719996333122</threshold> 24300 <left_val>-0.0149360001087189</left_val> 24301 <right_val>-0.8170750141143799</right_val></_></_> 24302 <_> 24303 <!-- tree 57 --> 24304 <_> 24305 <!-- root node --> 24306 <feature> 24307 <rects> 24308 <_>15 13 6 9 -1.</_> 24309 <_>15 16 6 3 3.</_></rects> 24310 <tilted>0</tilted></feature> 24311 <threshold>0.0129249999299645</threshold> 24312 <left_val>0.1762509942054749</left_val> 24313 <right_val>-0.3249169886112213</right_val></_></_> 24314 <_> 24315 <!-- tree 58 --> 24316 <_> 24317 <!-- root node --> 24318 <feature> 24319 <rects> 24320 <_>3 13 6 9 -1.</_> 24321 <_>3 16 6 3 3.</_></rects> 24322 <tilted>0</tilted></feature> 24323 <threshold>-0.0179210007190704</threshold> 24324 <left_val>-0.5274540185928345</left_val> 24325 <right_val>0.0444430001080036</right_val></_></_> 24326 <_> 24327 <!-- tree 59 --> 24328 <_> 24329 <!-- root node --> 24330 <feature> 24331 <rects> 24332 <_>9 5 8 8 -1.</_> 24333 <_>9 5 4 8 2.</_></rects> 24334 <tilted>0</tilted></feature> 24335 <threshold>1.9160000374540687e-003</threshold> 24336 <left_val>-0.1097859963774681</left_val> 24337 <right_val>0.2206750065088272</right_val></_></_> 24338 <_> 24339 <!-- tree 60 --> 24340 <_> 24341 <!-- root node --> 24342 <feature> 24343 <rects> 24344 <_>1 18 12 6 -1.</_> 24345 <_>1 18 6 3 2.</_> 24346 <_>7 21 6 3 2.</_></rects> 24347 <tilted>0</tilted></feature> 24348 <threshold>-0.0146979996934533</threshold> 24349 <left_val>0.3906779885292053</left_val> 24350 <right_val>-0.2222499996423721</right_val></_></_> 24351 <_> 24352 <!-- tree 61 --> 24353 <_> 24354 <!-- root node --> 24355 <feature> 24356 <rects> 24357 <_>13 19 10 4 -1.</_> 24358 <_>13 21 10 2 2.</_></rects> 24359 <tilted>0</tilted></feature> 24360 <threshold>-0.0149729996919632</threshold> 24361 <left_val>-0.2545090019702911</left_val> 24362 <right_val>0.1779000014066696</right_val></_></_> 24363 <_> 24364 <!-- tree 62 --> 24365 <_> 24366 <!-- root node --> 24367 <feature> 24368 <rects> 24369 <_>1 19 10 4 -1.</_> 24370 <_>1 21 10 2 2.</_></rects> 24371 <tilted>0</tilted></feature> 24372 <threshold>0.0146369999274611</threshold> 24373 <left_val>-0.0251250006258488</left_val> 24374 <right_val>-0.8712130188941956</right_val></_></_> 24375 <_> 24376 <!-- tree 63 --> 24377 <_> 24378 <!-- root node --> 24379 <feature> 24380 <rects> 24381 <_>6 19 18 3 -1.</_> 24382 <_>6 20 18 1 3.</_></rects> 24383 <tilted>0</tilted></feature> 24384 <threshold>-0.0109740002080798</threshold> 24385 <left_val>0.7908279895782471</left_val> 24386 <right_val>0.0201210007071495</right_val></_></_> 24387 <_> 24388 <!-- tree 64 --> 24389 <_> 24390 <!-- root node --> 24391 <feature> 24392 <rects> 24393 <_>8 14 4 10 -1.</_> 24394 <_>8 19 4 5 2.</_></rects> 24395 <tilted>0</tilted></feature> 24396 <threshold>-9.1599998995661736e-003</threshold> 24397 <left_val>-0.4790689945220947</left_val> 24398 <right_val>0.0522320009768009</right_val></_></_> 24399 <_> 24400 <!-- tree 65 --> 24401 <_> 24402 <!-- root node --> 24403 <feature> 24404 <rects> 24405 <_>0 0 24 6 -1.</_> 24406 <_>0 2 24 2 3.</_></rects> 24407 <tilted>0</tilted></feature> 24408 <threshold>4.6179997734725475e-003</threshold> 24409 <left_val>-0.1724459975957871</left_val> 24410 <right_val>0.3452779948711395</right_val></_></_> 24411 <_> 24412 <!-- tree 66 --> 24413 <_> 24414 <!-- root node --> 24415 <feature> 24416 <rects> 24417 <_>0 1 6 9 -1.</_> 24418 <_>0 4 6 3 3.</_></rects> 24419 <tilted>0</tilted></feature> 24420 <threshold>0.0234769992530346</threshold> 24421 <left_val>3.7760001141577959e-003</left_val> 24422 <right_val>-0.6533370018005371</right_val></_></_> 24423 <_> 24424 <!-- tree 67 --> 24425 <_> 24426 <!-- root node --> 24427 <feature> 24428 <rects> 24429 <_>4 9 20 6 -1.</_> 24430 <_>14 9 10 3 2.</_> 24431 <_>4 12 10 3 2.</_></rects> 24432 <tilted>0</tilted></feature> 24433 <threshold>0.0317669995129108</threshold> 24434 <left_val>0.0163640007376671</left_val> 24435 <right_val>0.5872370004653931</right_val></_></_> 24436 <_> 24437 <!-- tree 68 --> 24438 <_> 24439 <!-- root node --> 24440 <feature> 24441 <rects> 24442 <_>1 15 19 8 -1.</_> 24443 <_>1 19 19 4 2.</_></rects> 24444 <tilted>0</tilted></feature> 24445 <threshold>-0.0184199996292591</threshold> 24446 <left_val>0.1999389976263046</left_val> 24447 <right_val>-0.3205649852752686</right_val></_></_> 24448 <_> 24449 <!-- tree 69 --> 24450 <_> 24451 <!-- root node --> 24452 <feature> 24453 <rects> 24454 <_>14 0 10 6 -1.</_> 24455 <_>14 2 10 2 3.</_></rects> 24456 <tilted>0</tilted></feature> 24457 <threshold>0.0195439998060465</threshold> 24458 <left_val>0.1845020055770874</left_val> 24459 <right_val>-0.2379360049962997</right_val></_></_> 24460 <_> 24461 <!-- tree 70 --> 24462 <_> 24463 <!-- root node --> 24464 <feature> 24465 <rects> 24466 <_>1 10 21 14 -1.</_> 24467 <_>8 10 7 14 3.</_></rects> 24468 <tilted>0</tilted></feature> 24469 <threshold>0.4115949869155884</threshold> 24470 <left_val>-0.0603820011019707</left_val> 24471 <right_val>-1.6072119474411011</right_val></_></_> 24472 <_> 24473 <!-- tree 71 --> 24474 <_> 24475 <!-- root node --> 24476 <feature> 24477 <rects> 24478 <_>10 10 8 8 -1.</_> 24479 <_>10 10 4 8 2.</_></rects> 24480 <tilted>0</tilted></feature> 24481 <threshold>-0.0415959991514683</threshold> 24482 <left_val>-0.3275620043277741</left_val> 24483 <right_val>0.1505800038576126</right_val></_></_> 24484 <_> 24485 <!-- tree 72 --> 24486 <_> 24487 <!-- root node --> 24488 <feature> 24489 <rects> 24490 <_>6 8 10 4 -1.</_> 24491 <_>11 8 5 4 2.</_></rects> 24492 <tilted>0</tilted></feature> 24493 <threshold>-0.0103359995409846</threshold> 24494 <left_val>-0.6239439845085144</left_val> 24495 <right_val>0.0131120001897216</right_val></_></_> 24496 <_> 24497 <!-- tree 73 --> 24498 <_> 24499 <!-- root node --> 24500 <feature> 24501 <rects> 24502 <_>10 5 4 9 -1.</_> 24503 <_>10 5 2 9 2.</_></rects> 24504 <tilted>0</tilted></feature> 24505 <threshold>0.0123929996043444</threshold> 24506 <left_val>-0.0331149995326996</left_val> 24507 <right_val>0.5557990074157715</right_val></_></_> 24508 <_> 24509 <!-- tree 74 --> 24510 <_> 24511 <!-- root node --> 24512 <feature> 24513 <rects> 24514 <_>7 5 6 10 -1.</_> 24515 <_>9 5 2 10 3.</_></rects> 24516 <tilted>0</tilted></feature> 24517 <threshold>-8.7270000949501991e-003</threshold> 24518 <left_val>0.1988320052623749</left_val> 24519 <right_val>-0.3763560056686401</right_val></_></_> 24520 <_> 24521 <!-- tree 75 --> 24522 <_> 24523 <!-- root node --> 24524 <feature> 24525 <rects> 24526 <_>14 4 4 13 -1.</_> 24527 <_>14 4 2 13 2.</_></rects> 24528 <tilted>0</tilted></feature> 24529 <threshold>0.0162950009107590</threshold> 24530 <left_val>0.2037300020456314</left_val> 24531 <right_val>-0.4280079901218414</right_val></_></_> 24532 <_> 24533 <!-- tree 76 --> 24534 <_> 24535 <!-- root node --> 24536 <feature> 24537 <rects> 24538 <_>6 4 4 13 -1.</_> 24539 <_>8 4 2 13 2.</_></rects> 24540 <tilted>0</tilted></feature> 24541 <threshold>-0.0104839997366071</threshold> 24542 <left_val>-0.5684700012207031</left_val> 24543 <right_val>0.0441990010440350</right_val></_></_> 24544 <_> 24545 <!-- tree 77 --> 24546 <_> 24547 <!-- root node --> 24548 <feature> 24549 <rects> 24550 <_>8 7 9 6 -1.</_> 24551 <_>11 7 3 6 3.</_></rects> 24552 <tilted>0</tilted></feature> 24553 <threshold>-0.0124319996684790</threshold> 24554 <left_val>0.7464190125465393</left_val> 24555 <right_val>0.0436789989471436</right_val></_></_> 24556 <_> 24557 <!-- tree 78 --> 24558 <_> 24559 <!-- root node --> 24560 <feature> 24561 <rects> 24562 <_>3 6 16 6 -1.</_> 24563 <_>3 6 8 3 2.</_> 24564 <_>11 9 8 3 2.</_></rects> 24565 <tilted>0</tilted></feature> 24566 <threshold>-0.0503749996423721</threshold> 24567 <left_val>0.8509010076522827</left_val> 24568 <right_val>-0.1777379959821701</right_val></_></_> 24569 <_> 24570 <!-- tree 79 --> 24571 <_> 24572 <!-- root node --> 24573 <feature> 24574 <rects> 24575 <_>5 4 16 14 -1.</_> 24576 <_>13 4 8 7 2.</_> 24577 <_>5 11 8 7 2.</_></rects> 24578 <tilted>0</tilted></feature> 24579 <threshold>0.0495480000972748</threshold> 24580 <left_val>0.1678490042686462</left_val> 24581 <right_val>-0.2987749874591827</right_val></_></_> 24582 <_> 24583 <!-- tree 80 --> 24584 <_> 24585 <!-- root node --> 24586 <feature> 24587 <rects> 24588 <_>0 0 24 4 -1.</_> 24589 <_>0 0 12 2 2.</_> 24590 <_>12 2 12 2 2.</_></rects> 24591 <tilted>0</tilted></feature> 24592 <threshold>-0.0410850010812283</threshold> 24593 <left_val>-1.3302919864654541</left_val> 24594 <right_val>-0.0491820015013218</right_val></_></_> 24595 <_> 24596 <!-- tree 81 --> 24597 <_> 24598 <!-- root node --> 24599 <feature> 24600 <rects> 24601 <_>9 1 9 6 -1.</_> 24602 <_>12 1 3 6 3.</_></rects> 24603 <tilted>0</tilted></feature> 24604 <threshold>1.0069999843835831e-003</threshold> 24605 <left_val>-0.0605389997363091</left_val> 24606 <right_val>0.1848320066928864</right_val></_></_> 24607 <_> 24608 <!-- tree 82 --> 24609 <_> 24610 <!-- root node --> 24611 <feature> 24612 <rects> 24613 <_>4 1 14 4 -1.</_> 24614 <_>11 1 7 4 2.</_></rects> 24615 <tilted>0</tilted></feature> 24616 <threshold>-0.0501429997384548</threshold> 24617 <left_val>0.7644770145416260</left_val> 24618 <right_val>-0.1835699975490570</right_val></_></_> 24619 <_> 24620 <!-- tree 83 --> 24621 <_> 24622 <!-- root node --> 24623 <feature> 24624 <rects> 24625 <_>10 14 7 9 -1.</_> 24626 <_>10 17 7 3 3.</_></rects> 24627 <tilted>0</tilted></feature> 24628 <threshold>-8.7879998609423637e-003</threshold> 24629 <left_val>0.2265599966049194</left_val> 24630 <right_val>-0.0631569996476173</right_val></_></_> 24631 <_> 24632 <!-- tree 84 --> 24633 <_> 24634 <!-- root node --> 24635 <feature> 24636 <rects> 24637 <_>8 3 8 10 -1.</_> 24638 <_>8 3 4 5 2.</_> 24639 <_>12 8 4 5 2.</_></rects> 24640 <tilted>0</tilted></feature> 24641 <threshold>-0.0501709990203381</threshold> 24642 <left_val>-1.5899070501327515</left_val> 24643 <right_val>-0.0612550005316734</right_val></_></_> 24644 <_> 24645 <!-- tree 85 --> 24646 <_> 24647 <!-- root node --> 24648 <feature> 24649 <rects> 24650 <_>7 3 12 5 -1.</_> 24651 <_>11 3 4 5 3.</_></rects> 24652 <tilted>0</tilted></feature> 24653 <threshold>0.1021609976887703</threshold> 24654 <left_val>0.1207180023193359</left_val> 24655 <right_val>-1.4120110273361206</right_val></_></_> 24656 <_> 24657 <!-- tree 86 --> 24658 <_> 24659 <!-- root node --> 24660 <feature> 24661 <rects> 24662 <_>8 2 4 13 -1.</_> 24663 <_>10 2 2 13 2.</_></rects> 24664 <tilted>0</tilted></feature> 24665 <threshold>-0.0143729997798800</threshold> 24666 <left_val>-1.3116970062255859</left_val> 24667 <right_val>-0.0519360005855560</right_val></_></_> 24668 <_> 24669 <!-- tree 87 --> 24670 <_> 24671 <!-- root node --> 24672 <feature> 24673 <rects> 24674 <_>11 2 3 19 -1.</_> 24675 <_>12 2 1 19 3.</_></rects> 24676 <tilted>0</tilted></feature> 24677 <threshold>0.0102819995954633</threshold> 24678 <left_val>-2.1639999467879534e-003</left_val> 24679 <right_val>0.4424720108509064</right_val></_></_> 24680 <_> 24681 <!-- tree 88 --> 24682 <_> 24683 <!-- root node --> 24684 <feature> 24685 <rects> 24686 <_>7 7 9 6 -1.</_> 24687 <_>10 7 3 6 3.</_></rects> 24688 <tilted>0</tilted></feature> 24689 <threshold>-0.0118140000849962</threshold> 24690 <left_val>0.6537809967994690</left_val> 24691 <right_val>-0.1872369945049286</right_val></_></_> 24692 <_> 24693 <!-- tree 89 --> 24694 <_> 24695 <!-- root node --> 24696 <feature> 24697 <rects> 24698 <_>4 22 20 2 -1.</_> 24699 <_>4 22 10 2 2.</_></rects> 24700 <tilted>0</tilted></feature> 24701 <threshold>0.0721149966120720</threshold> 24702 <left_val>0.0718469992280006</left_val> 24703 <right_val>0.8149629831314087</right_val></_></_> 24704 <_> 24705 <!-- tree 90 --> 24706 <_> 24707 <!-- root node --> 24708 <feature> 24709 <rects> 24710 <_>0 16 24 4 -1.</_> 24711 <_>0 16 12 2 2.</_> 24712 <_>12 18 12 2 2.</_></rects> 24713 <tilted>0</tilted></feature> 24714 <threshold>-0.0190019998699427</threshold> 24715 <left_val>-0.6742720007896423</left_val> 24716 <right_val>-4.3200000072829425e-004</right_val></_></_> 24717 <_> 24718 <!-- tree 91 --> 24719 <_> 24720 <!-- root node --> 24721 <feature> 24722 <rects> 24723 <_>7 3 12 5 -1.</_> 24724 <_>11 3 4 5 3.</_></rects> 24725 <tilted>0</tilted></feature> 24726 <threshold>-4.6990001574158669e-003</threshold> 24727 <left_val>0.3331150114536285</left_val> 24728 <right_val>0.0557940006256104</right_val></_></_> 24729 <_> 24730 <!-- tree 92 --> 24731 <_> 24732 <!-- root node --> 24733 <feature> 24734 <rects> 24735 <_>1 10 8 14 -1.</_> 24736 <_>1 10 4 7 2.</_> 24737 <_>5 17 4 7 2.</_></rects> 24738 <tilted>0</tilted></feature> 24739 <threshold>-0.0581570006906986</threshold> 24740 <left_val>0.4557229876518250</left_val> 24741 <right_val>-0.2030510008335114</right_val></_></_> 24742 <_> 24743 <!-- tree 93 --> 24744 <_> 24745 <!-- root node --> 24746 <feature> 24747 <rects> 24748 <_>11 16 6 6 -1.</_> 24749 <_>11 19 6 3 2.</_></rects> 24750 <tilted>0</tilted></feature> 24751 <threshold>1.1360000353306532e-003</threshold> 24752 <left_val>-0.0446869991719723</left_val> 24753 <right_val>0.2268189936876297</right_val></_></_> 24754 <_> 24755 <!-- tree 94 --> 24756 <_> 24757 <!-- root node --> 24758 <feature> 24759 <rects> 24760 <_>6 0 10 24 -1.</_> 24761 <_>6 0 5 12 2.</_> 24762 <_>11 12 5 12 2.</_></rects> 24763 <tilted>0</tilted></feature> 24764 <threshold>-0.0494149997830391</threshold> 24765 <left_val>0.2669459879398346</left_val> 24766 <right_val>-0.2611699998378754</right_val></_></_> 24767 <_> 24768 <!-- tree 95 --> 24769 <_> 24770 <!-- root node --> 24771 <feature> 24772 <rects> 24773 <_>7 5 14 14 -1.</_> 24774 <_>14 5 7 7 2.</_> 24775 <_>7 12 7 7 2.</_></rects> 24776 <tilted>0</tilted></feature> 24777 <threshold>-0.1191380023956299</threshold> 24778 <left_val>-0.8301799893379211</left_val> 24779 <right_val>0.1324850022792816</right_val></_></_> 24780 <_> 24781 <!-- tree 96 --> 24782 <_> 24783 <!-- root node --> 24784 <feature> 24785 <rects> 24786 <_>7 8 10 8 -1.</_> 24787 <_>7 8 5 4 2.</_> 24788 <_>12 12 5 4 2.</_></rects> 24789 <tilted>0</tilted></feature> 24790 <threshold>-0.0183039996773005</threshold> 24791 <left_val>-0.6749920248985291</left_val> 24792 <right_val>0.0170920006930828</right_val></_></_> 24793 <_> 24794 <!-- tree 97 --> 24795 <_> 24796 <!-- root node --> 24797 <feature> 24798 <rects> 24799 <_>9 1 9 6 -1.</_> 24800 <_>12 1 3 6 3.</_></rects> 24801 <tilted>0</tilted></feature> 24802 <threshold>-7.9199997708201408e-003</threshold> 24803 <left_val>-0.0722870007157326</left_val> 24804 <right_val>0.1442580074071884</right_val></_></_> 24805 <_> 24806 <!-- tree 98 --> 24807 <_> 24808 <!-- root node --> 24809 <feature> 24810 <rects> 24811 <_>0 6 24 3 -1.</_> 24812 <_>12 6 12 3 2.</_></rects> 24813 <tilted>0</tilted></feature> 24814 <threshold>0.0519259981811047</threshold> 24815 <left_val>0.0309219993650913</left_val> 24816 <right_val>-0.5586060285568237</right_val></_></_> 24817 <_> 24818 <!-- tree 99 --> 24819 <_> 24820 <!-- root node --> 24821 <feature> 24822 <rects> 24823 <_>7 3 12 5 -1.</_> 24824 <_>11 3 4 5 3.</_></rects> 24825 <tilted>0</tilted></feature> 24826 <threshold>0.0667240023612976</threshold> 24827 <left_val>0.1366640031337738</left_val> 24828 <right_val>-0.2941100001335144</right_val></_></_> 24829 <_> 24830 <!-- tree 100 --> 24831 <_> 24832 <!-- root node --> 24833 <feature> 24834 <rects> 24835 <_>1 13 22 4 -1.</_> 24836 <_>1 13 11 2 2.</_> 24837 <_>12 15 11 2 2.</_></rects> 24838 <tilted>0</tilted></feature> 24839 <threshold>-0.0137780001387000</threshold> 24840 <left_val>-0.5944390296936035</left_val> 24841 <right_val>0.0153000000864267</right_val></_></_> 24842 <_> 24843 <!-- tree 101 --> 24844 <_> 24845 <!-- root node --> 24846 <feature> 24847 <rects> 24848 <_>9 12 12 6 -1.</_> 24849 <_>9 14 12 2 3.</_></rects> 24850 <tilted>0</tilted></feature> 24851 <threshold>-0.0177609995007515</threshold> 24852 <left_val>0.4049650132656097</left_val> 24853 <right_val>-3.3559999428689480e-003</right_val></_></_> 24854 <_> 24855 <!-- tree 102 --> 24856 <_> 24857 <!-- root node --> 24858 <feature> 24859 <rects> 24860 <_>0 5 9 6 -1.</_> 24861 <_>0 7 9 2 3.</_></rects> 24862 <tilted>0</tilted></feature> 24863 <threshold>-0.0422349981963634</threshold> 24864 <left_val>-1.0897940397262573</left_val> 24865 <right_val>-0.0402249991893768</right_val></_></_> 24866 <_> 24867 <!-- tree 103 --> 24868 <_> 24869 <!-- root node --> 24870 <feature> 24871 <rects> 24872 <_>1 5 23 6 -1.</_> 24873 <_>1 7 23 2 3.</_></rects> 24874 <tilted>0</tilted></feature> 24875 <threshold>-0.0135249998420477</threshold> 24876 <left_val>0.2892189919948578</left_val> 24877 <right_val>-0.2519479990005493</right_val></_></_> 24878 <_> 24879 <!-- tree 104 --> 24880 <_> 24881 <!-- root node --> 24882 <feature> 24883 <rects> 24884 <_>1 6 19 12 -1.</_> 24885 <_>1 10 19 4 3.</_></rects> 24886 <tilted>0</tilted></feature> 24887 <threshold>-0.0111060002818704</threshold> 24888 <left_val>0.6531280279159546</left_val> 24889 <right_val>-0.1805370002985001</right_val></_></_> 24890 <_> 24891 <!-- tree 105 --> 24892 <_> 24893 <!-- root node --> 24894 <feature> 24895 <rects> 24896 <_>9 1 6 21 -1.</_> 24897 <_>9 8 6 7 3.</_></rects> 24898 <tilted>0</tilted></feature> 24899 <threshold>-0.1228459998965263</threshold> 24900 <left_val>-1.9570649862289429</left_val> 24901 <right_val>0.1481540054082871</right_val></_></_> 24902 <_> 24903 <!-- tree 106 --> 24904 <_> 24905 <!-- root node --> 24906 <feature> 24907 <rects> 24908 <_>3 19 18 3 -1.</_> 24909 <_>9 19 6 3 3.</_></rects> 24910 <tilted>0</tilted></feature> 24911 <threshold>0.0477159991860390</threshold> 24912 <left_val>-0.2287559956312180</left_val> 24913 <right_val>0.3423370122909546</right_val></_></_> 24914 <_> 24915 <!-- tree 107 --> 24916 <_> 24917 <!-- root node --> 24918 <feature> 24919 <rects> 24920 <_>9 14 6 9 -1.</_> 24921 <_>11 14 2 9 3.</_></rects> 24922 <tilted>0</tilted></feature> 24923 <threshold>0.0318170003592968</threshold> 24924 <left_val>0.1597629934549332</left_val> 24925 <right_val>-1.0091969966888428</right_val></_></_> 24926 <_> 24927 <!-- tree 108 --> 24928 <_> 24929 <!-- root node --> 24930 <feature> 24931 <rects> 24932 <_>9 6 4 12 -1.</_> 24933 <_>11 6 2 12 2.</_></rects> 24934 <tilted>0</tilted></feature> 24935 <threshold>4.2570000514388084e-003</threshold> 24936 <left_val>-0.3888129889965057</left_val> 24937 <right_val>0.0842100009322166</right_val></_></_> 24938 <_> 24939 <!-- tree 109 --> 24940 <_> 24941 <!-- root node --> 24942 <feature> 24943 <rects> 24944 <_>16 0 6 9 -1.</_> 24945 <_>18 0 2 9 3.</_></rects> 24946 <tilted>0</tilted></feature> 24947 <threshold>-0.0613729991018772</threshold> 24948 <left_val>1.7152810096740723</left_val> 24949 <right_val>0.0593249984085560</right_val></_></_> 24950 <_> 24951 <!-- tree 110 --> 24952 <_> 24953 <!-- root node --> 24954 <feature> 24955 <rects> 24956 <_>2 0 6 9 -1.</_> 24957 <_>4 0 2 9 3.</_></rects> 24958 <tilted>0</tilted></feature> 24959 <threshold>-2.7030000928789377e-003</threshold> 24960 <left_val>-0.3816170096397400</left_val> 24961 <right_val>0.0851270034909248</right_val></_></_> 24962 <_> 24963 <!-- tree 111 --> 24964 <_> 24965 <!-- root node --> 24966 <feature> 24967 <rects> 24968 <_>13 1 4 22 -1.</_> 24969 <_>15 1 2 11 2.</_> 24970 <_>13 12 2 11 2.</_></rects> 24971 <tilted>0</tilted></feature> 24972 <threshold>-0.0685440003871918</threshold> 24973 <left_val>-3.0925889015197754</left_val> 24974 <right_val>0.1178800016641617</right_val></_></_> 24975 <_> 24976 <!-- tree 112 --> 24977 <_> 24978 <!-- root node --> 24979 <feature> 24980 <rects> 24981 <_>1 8 8 12 -1.</_> 24982 <_>1 14 8 6 2.</_></rects> 24983 <tilted>0</tilted></feature> 24984 <threshold>0.1037250012159348</threshold> 24985 <left_val>-0.1376930028200150</left_val> 24986 <right_val>1.9009410142898560</right_val></_></_> 24987 <_> 24988 <!-- tree 113 --> 24989 <_> 24990 <!-- root node --> 24991 <feature> 24992 <rects> 24993 <_>14 7 7 9 -1.</_> 24994 <_>14 10 7 3 3.</_></rects> 24995 <tilted>0</tilted></feature> 24996 <threshold>0.0157990008592606</threshold> 24997 <left_val>-0.0626600012183189</left_val> 24998 <right_val>0.2591769993305206</right_val></_></_> 24999 <_> 25000 <!-- tree 114 --> 25001 <_> 25002 <!-- root node --> 25003 <feature> 25004 <rects> 25005 <_>3 12 18 4 -1.</_> 25006 <_>3 12 9 2 2.</_> 25007 <_>12 14 9 2 2.</_></rects> 25008 <tilted>0</tilted></feature> 25009 <threshold>-9.8040001466870308e-003</threshold> 25010 <left_val>-0.5629159808158875</left_val> 25011 <right_val>0.0439230017364025</right_val></_></_> 25012 <_> 25013 <!-- tree 115 --> 25014 <_> 25015 <!-- root node --> 25016 <feature> 25017 <rects> 25018 <_>13 1 4 22 -1.</_> 25019 <_>15 1 2 11 2.</_> 25020 <_>13 12 2 11 2.</_></rects> 25021 <tilted>0</tilted></feature> 25022 <threshold>-9.0229995548725128e-003</threshold> 25023 <left_val>0.2528710067272186</left_val> 25024 <right_val>-0.0412259995937347</right_val></_></_> 25025 <_> 25026 <!-- tree 116 --> 25027 <_> 25028 <!-- root node --> 25029 <feature> 25030 <rects> 25031 <_>7 1 4 22 -1.</_> 25032 <_>7 1 2 11 2.</_> 25033 <_>9 12 2 11 2.</_></rects> 25034 <tilted>0</tilted></feature> 25035 <threshold>-0.0637549981474876</threshold> 25036 <left_val>-2.6178569793701172</left_val> 25037 <right_val>-0.0740059986710548</right_val></_></_> 25038 <_> 25039 <!-- tree 117 --> 25040 <_> 25041 <!-- root node --> 25042 <feature> 25043 <rects> 25044 <_>4 7 20 4 -1.</_> 25045 <_>14 7 10 2 2.</_> 25046 <_>4 9 10 2 2.</_></rects> 25047 <tilted>0</tilted></feature> 25048 <threshold>0.0389549992978573</threshold> 25049 <left_val>0.0590329989790916</left_val> 25050 <right_val>0.8594560027122498</right_val></_></_> 25051 <_> 25052 <!-- tree 118 --> 25053 <_> 25054 <!-- root node --> 25055 <feature> 25056 <rects> 25057 <_>9 10 6 7 -1.</_> 25058 <_>12 10 3 7 2.</_></rects> 25059 <tilted>0</tilted></feature> 25060 <threshold>-0.0398029983043671</threshold> 25061 <left_val>0.9360049962997437</left_val> 25062 <right_val>-0.1563940048217773</right_val></_></_> 25063 <_> 25064 <!-- tree 119 --> 25065 <_> 25066 <!-- root node --> 25067 <feature> 25068 <rects> 25069 <_>7 7 10 4 -1.</_> 25070 <_>7 7 5 4 2.</_></rects> 25071 <tilted>0</tilted></feature> 25072 <threshold>0.0503019988536835</threshold> 25073 <left_val>0.1372590065002441</left_val> 25074 <right_val>-2.5549728870391846</right_val></_></_> 25075 <_> 25076 <!-- tree 120 --> 25077 <_> 25078 <!-- root node --> 25079 <feature> 25080 <rects> 25081 <_>0 3 4 15 -1.</_> 25082 <_>0 8 4 5 3.</_></rects> 25083 <tilted>0</tilted></feature> 25084 <threshold>0.0462500005960464</threshold> 25085 <left_val>-0.0139640001580119</left_val> 25086 <right_val>-0.7102620005607605</right_val></_></_> 25087 <_> 25088 <!-- tree 121 --> 25089 <_> 25090 <!-- root node --> 25091 <feature> 25092 <rects> 25093 <_>15 0 8 12 -1.</_> 25094 <_>19 0 4 6 2.</_> 25095 <_>15 6 4 6 2.</_></rects> 25096 <tilted>0</tilted></feature> 25097 <threshold>0.0621960014104843</threshold> 25098 <left_val>0.0595260001718998</left_val> 25099 <right_val>1.6509100198745728</right_val></_></_> 25100 <_> 25101 <!-- tree 122 --> 25102 <_> 25103 <!-- root node --> 25104 <feature> 25105 <rects> 25106 <_>1 0 8 12 -1.</_> 25107 <_>1 0 4 6 2.</_> 25108 <_>5 6 4 6 2.</_></rects> 25109 <tilted>0</tilted></feature> 25110 <threshold>-0.0647760033607483</threshold> 25111 <left_val>0.7136899828910828</left_val> 25112 <right_val>-0.1727000027894974</right_val></_></_> 25113 <_> 25114 <!-- tree 123 --> 25115 <_> 25116 <!-- root node --> 25117 <feature> 25118 <rects> 25119 <_>14 5 6 16 -1.</_> 25120 <_>16 5 2 16 3.</_></rects> 25121 <tilted>0</tilted></feature> 25122 <threshold>0.0275229997932911</threshold> 25123 <left_val>0.1463160067796707</left_val> 25124 <right_val>-0.0814289972186089</right_val></_></_> 25125 <_> 25126 <!-- tree 124 --> 25127 <_> 25128 <!-- root node --> 25129 <feature> 25130 <rects> 25131 <_>4 5 6 16 -1.</_> 25132 <_>6 5 2 16 3.</_></rects> 25133 <tilted>0</tilted></feature> 25134 <threshold>3.9900001138448715e-004</threshold> 25135 <left_val>-0.3714450001716614</left_val> 25136 <right_val>0.1015269979834557</right_val></_></_> 25137 <_> 25138 <!-- tree 125 --> 25139 <_> 25140 <!-- root node --> 25141 <feature> 25142 <rects> 25143 <_>15 0 6 16 -1.</_> 25144 <_>17 0 2 16 3.</_></rects> 25145 <tilted>0</tilted></feature> 25146 <threshold>-4.3299999088048935e-003</threshold> 25147 <left_val>-0.2375629991292954</left_val> 25148 <right_val>0.2679840028285980</right_val></_></_> 25149 <_> 25150 <!-- tree 126 --> 25151 <_> 25152 <!-- root node --> 25153 <feature> 25154 <rects> 25155 <_>3 0 6 16 -1.</_> 25156 <_>5 0 2 16 3.</_></rects> 25157 <tilted>0</tilted></feature> 25158 <threshold>0.0472970008850098</threshold> 25159 <left_val>-0.0276820007711649</left_val> 25160 <right_val>-0.8491029739379883</right_val></_></_> 25161 <_> 25162 <!-- tree 127 --> 25163 <_> 25164 <!-- root node --> 25165 <feature> 25166 <rects> 25167 <_>0 2 24 3 -1.</_> 25168 <_>0 3 24 1 3.</_></rects> 25169 <tilted>0</tilted></feature> 25170 <threshold>0.0125089995563030</threshold> 25171 <left_val>0.1873019933700562</left_val> 25172 <right_val>-0.5600110292434692</right_val></_></_> 25173 <_> 25174 <!-- tree 128 --> 25175 <_> 25176 <!-- root node --> 25177 <feature> 25178 <rects> 25179 <_>7 1 10 4 -1.</_> 25180 <_>7 3 10 2 2.</_></rects> 25181 <tilted>0</tilted></feature> 25182 <threshold>0.0458990000188351</threshold> 25183 <left_val>-0.1560119986534119</left_val> 25184 <right_val>0.9707300066947937</right_val></_></_> 25185 <_> 25186 <!-- tree 129 --> 25187 <_> 25188 <!-- root node --> 25189 <feature> 25190 <rects> 25191 <_>1 0 23 8 -1.</_> 25192 <_>1 4 23 4 2.</_></rects> 25193 <tilted>0</tilted></feature> 25194 <threshold>0.1985339969396591</threshold> 25195 <left_val>0.1489550024271011</left_val> 25196 <right_val>-1.1015529632568359</right_val></_></_> 25197 <_> 25198 <!-- tree 130 --> 25199 <_> 25200 <!-- root node --> 25201 <feature> 25202 <rects> 25203 <_>1 17 19 3 -1.</_> 25204 <_>1 18 19 1 3.</_></rects> 25205 <tilted>0</tilted></feature> 25206 <threshold>0.0166749991476536</threshold> 25207 <left_val>-0.1661529988050461</left_val> 25208 <right_val>0.8221099972724915</right_val></_></_> 25209 <_> 25210 <!-- tree 131 --> 25211 <_> 25212 <!-- root node --> 25213 <feature> 25214 <rects> 25215 <_>6 18 18 2 -1.</_> 25216 <_>6 19 18 1 2.</_></rects> 25217 <tilted>0</tilted></feature> 25218 <threshold>1.9829999655485153e-003</threshold> 25219 <left_val>-0.0712499991059303</left_val> 25220 <right_val>0.2881090044975281</right_val></_></_> 25221 <_> 25222 <!-- tree 132 --> 25223 <_> 25224 <!-- root node --> 25225 <feature> 25226 <rects> 25227 <_>1 17 9 6 -1.</_> 25228 <_>1 19 9 2 3.</_></rects> 25229 <tilted>0</tilted></feature> 25230 <threshold>0.0224479995667934</threshold> 25231 <left_val>-0.0209810007363558</left_val> 25232 <right_val>-0.7841650247573853</right_val></_></_> 25233 <_> 25234 <!-- tree 133 --> 25235 <_> 25236 <!-- root node --> 25237 <feature> 25238 <rects> 25239 <_>15 15 6 9 -1.</_> 25240 <_>15 18 6 3 3.</_></rects> 25241 <tilted>0</tilted></feature> 25242 <threshold>-0.0139130000025034</threshold> 25243 <left_val>-0.1816579997539520</left_val> 25244 <right_val>0.2049179971218109</right_val></_></_> 25245 <_> 25246 <!-- tree 134 --> 25247 <_> 25248 <!-- root node --> 25249 <feature> 25250 <rects> 25251 <_>3 15 6 9 -1.</_> 25252 <_>3 18 6 3 3.</_></rects> 25253 <tilted>0</tilted></feature> 25254 <threshold>-7.7659999951720238e-003</threshold> 25255 <left_val>-0.4559589922428131</left_val> 25256 <right_val>0.0635769963264465</right_val></_></_> 25257 <_> 25258 <!-- tree 135 --> 25259 <_> 25260 <!-- root node --> 25261 <feature> 25262 <rects> 25263 <_>4 14 20 6 -1.</_> 25264 <_>4 17 20 3 2.</_></rects> 25265 <tilted>0</tilted></feature> 25266 <threshold>-0.0132090002298355</threshold> 25267 <left_val>0.2663230001926422</left_val> 25268 <right_val>-0.1779599934816361</right_val></_></_> 25269 <_> 25270 <!-- tree 136 --> 25271 <_> 25272 <!-- root node --> 25273 <feature> 25274 <rects> 25275 <_>0 10 6 14 -1.</_> 25276 <_>0 10 3 7 2.</_> 25277 <_>3 17 3 7 2.</_></rects> 25278 <tilted>0</tilted></feature> 25279 <threshold>0.0490529984235764</threshold> 25280 <left_val>-0.1547680050134659</left_val> 25281 <right_val>1.1069979667663574</right_val></_></_> 25282 <_> 25283 <!-- tree 137 --> 25284 <_> 25285 <!-- root node --> 25286 <feature> 25287 <rects> 25288 <_>6 18 18 3 -1.</_> 25289 <_>6 19 18 1 3.</_></rects> 25290 <tilted>0</tilted></feature> 25291 <threshold>0.0202639997005463</threshold> 25292 <left_val>0.0689150020480156</left_val> 25293 <right_val>0.6986749768257141</right_val></_></_> 25294 <_> 25295 <!-- tree 138 --> 25296 <_> 25297 <!-- root node --> 25298 <feature> 25299 <rects> 25300 <_>4 12 9 7 -1.</_> 25301 <_>7 12 3 7 3.</_></rects> 25302 <tilted>0</tilted></feature> 25303 <threshold>-0.0168280005455017</threshold> 25304 <left_val>0.2760719954967499</left_val> 25305 <right_val>-0.2513920068740845</right_val></_></_> 25306 <_> 25307 <!-- tree 139 --> 25308 <_> 25309 <!-- root node --> 25310 <feature> 25311 <rects> 25312 <_>6 10 18 5 -1.</_> 25313 <_>12 10 6 5 3.</_></rects> 25314 <tilted>0</tilted></feature> 25315 <threshold>-0.1693949997425079</threshold> 25316 <left_val>-3.0767529010772705</left_val> 25317 <right_val>0.1161750033497810</right_val></_></_> 25318 <_> 25319 <!-- tree 140 --> 25320 <_> 25321 <!-- root node --> 25322 <feature> 25323 <rects> 25324 <_>0 10 18 5 -1.</_> 25325 <_>6 10 6 5 3.</_></rects> 25326 <tilted>0</tilted></feature> 25327 <threshold>-0.1133610010147095</threshold> 25328 <left_val>-1.4639229774475098</left_val> 25329 <right_val>-0.0514470003545284</right_val></_></_> 25330 <_> 25331 <!-- tree 141 --> 25332 <_> 25333 <!-- root node --> 25334 <feature> 25335 <rects> 25336 <_>3 2 18 9 -1.</_> 25337 <_>9 2 6 9 3.</_></rects> 25338 <tilted>0</tilted></feature> 25339 <threshold>-0.0776859968900681</threshold> 25340 <left_val>0.8843020200729370</left_val> 25341 <right_val>0.0433069989085197</right_val></_></_> 25342 <_> 25343 <!-- tree 142 --> 25344 <_> 25345 <!-- root node --> 25346 <feature> 25347 <rects> 25348 <_>4 6 10 10 -1.</_> 25349 <_>4 6 5 5 2.</_> 25350 <_>9 11 5 5 2.</_></rects> 25351 <tilted>0</tilted></feature> 25352 <threshold>-0.0155680002644658</threshold> 25353 <left_val>0.1367249935865402</left_val> 25354 <right_val>-0.3450550138950348</right_val></_></_> 25355 <_> 25356 <!-- tree 143 --> 25357 <_> 25358 <!-- root node --> 25359 <feature> 25360 <rects> 25361 <_>20 14 4 9 -1.</_> 25362 <_>20 14 2 9 2.</_></rects> 25363 <tilted>0</tilted></feature> 25364 <threshold>-0.0660189986228943</threshold> 25365 <left_val>-1.0300110578536987</left_val> 25366 <right_val>0.1160139963030815</right_val></_></_> 25367 <_> 25368 <!-- tree 144 --> 25369 <_> 25370 <!-- root node --> 25371 <feature> 25372 <rects> 25373 <_>0 14 4 9 -1.</_> 25374 <_>2 14 2 9 2.</_></rects> 25375 <tilted>0</tilted></feature> 25376 <threshold>8.3699999377131462e-003</threshold> 25377 <left_val>0.0764290019869804</left_val> 25378 <right_val>-0.4400250017642975</right_val></_></_> 25379 <_> 25380 <!-- tree 145 --> 25381 <_> 25382 <!-- root node --> 25383 <feature> 25384 <rects> 25385 <_>11 1 4 20 -1.</_> 25386 <_>13 1 2 10 2.</_> 25387 <_>11 11 2 10 2.</_></rects> 25388 <tilted>0</tilted></feature> 25389 <threshold>0.0354029983282089</threshold> 25390 <left_val>0.1197950020432472</left_val> 25391 <right_val>-0.7266830205917358</right_val></_></_> 25392 <_> 25393 <!-- tree 146 --> 25394 <_> 25395 <!-- root node --> 25396 <feature> 25397 <rects> 25398 <_>6 21 12 3 -1.</_> 25399 <_>12 21 6 3 2.</_></rects> 25400 <tilted>0</tilted></feature> 25401 <threshold>-0.0390510000288486</threshold> 25402 <left_val>0.6737530231475830</left_val> 25403 <right_val>-0.1819600015878677</right_val></_></_> 25404 <_> 25405 <!-- tree 147 --> 25406 <_> 25407 <!-- root node --> 25408 <feature> 25409 <rects> 25410 <_>11 1 4 20 -1.</_> 25411 <_>13 1 2 10 2.</_> 25412 <_>11 11 2 10 2.</_></rects> 25413 <tilted>0</tilted></feature> 25414 <threshold>-9.7899995744228363e-003</threshold> 25415 <left_val>0.2126459926366806</left_val> 25416 <right_val>0.0367560014128685</right_val></_></_> 25417 <_> 25418 <!-- tree 148 --> 25419 <_> 25420 <!-- root node --> 25421 <feature> 25422 <rects> 25423 <_>1 16 10 8 -1.</_> 25424 <_>1 16 5 4 2.</_> 25425 <_>6 20 5 4 2.</_></rects> 25426 <tilted>0</tilted></feature> 25427 <threshold>-0.0230470001697540</threshold> 25428 <left_val>0.4474219977855682</left_val> 25429 <right_val>-0.2098670005798340</right_val></_></_> 25430 <_> 25431 <!-- tree 149 --> 25432 <_> 25433 <!-- root node --> 25434 <feature> 25435 <rects> 25436 <_>11 1 4 20 -1.</_> 25437 <_>13 1 2 10 2.</_> 25438 <_>11 11 2 10 2.</_></rects> 25439 <tilted>0</tilted></feature> 25440 <threshold>3.1169999856501818e-003</threshold> 25441 <left_val>0.0375440008938313</left_val> 25442 <right_val>0.2780820131301880</right_val></_></_> 25443 <_> 25444 <!-- tree 150 --> 25445 <_> 25446 <!-- root node --> 25447 <feature> 25448 <rects> 25449 <_>1 0 3 19 -1.</_> 25450 <_>2 0 1 19 3.</_></rects> 25451 <tilted>0</tilted></feature> 25452 <threshold>0.0131360003724694</threshold> 25453 <left_val>-0.1984239965677261</left_val> 25454 <right_val>0.5433570146560669</right_val></_></_> 25455 <_> 25456 <!-- tree 151 --> 25457 <_> 25458 <!-- root node --> 25459 <feature> 25460 <rects> 25461 <_>11 1 4 20 -1.</_> 25462 <_>13 1 2 10 2.</_> 25463 <_>11 11 2 10 2.</_></rects> 25464 <tilted>0</tilted></feature> 25465 <threshold>0.0147820003330708</threshold> 25466 <left_val>0.1353060007095337</left_val> 25467 <right_val>-0.1115360036492348</right_val></_></_> 25468 <_> 25469 <!-- tree 152 --> 25470 <_> 25471 <!-- root node --> 25472 <feature> 25473 <rects> 25474 <_>0 1 6 9 -1.</_> 25475 <_>2 1 2 9 3.</_></rects> 25476 <tilted>0</tilted></feature> 25477 <threshold>-0.0601390004158020</threshold> 25478 <left_val>0.8403930068016052</left_val> 25479 <right_val>-0.1671160012483597</right_val></_></_> 25480 <_> 25481 <!-- tree 153 --> 25482 <_> 25483 <!-- root node --> 25484 <feature> 25485 <rects> 25486 <_>3 7 19 4 -1.</_> 25487 <_>3 9 19 2 2.</_></rects> 25488 <tilted>0</tilted></feature> 25489 <threshold>0.0519989989697933</threshold> 25490 <left_val>0.1737200021743774</left_val> 25491 <right_val>-0.7854760289192200</right_val></_></_> 25492 <_> 25493 <!-- tree 154 --> 25494 <_> 25495 <!-- root node --> 25496 <feature> 25497 <rects> 25498 <_>7 14 9 6 -1.</_> 25499 <_>7 16 9 2 3.</_></rects> 25500 <tilted>0</tilted></feature> 25501 <threshold>0.0247920006513596</threshold> 25502 <left_val>-0.1773920059204102</left_val> 25503 <right_val>0.6675260066986084</right_val></_></_> 25504 <_> 25505 <!-- tree 155 --> 25506 <_> 25507 <!-- root node --> 25508 <feature> 25509 <rects> 25510 <_>17 1 7 6 -1.</_> 25511 <_>17 4 7 3 2.</_></rects> 25512 <tilted>0</tilted></feature> 25513 <threshold>-0.0120149999856949</threshold> 25514 <left_val>-0.1426369994878769</left_val> 25515 <right_val>0.1607050001621246</right_val></_></_> 25516 <_> 25517 <!-- tree 156 --> 25518 <_> 25519 <!-- root node --> 25520 <feature> 25521 <rects> 25522 <_>5 0 14 8 -1.</_> 25523 <_>5 4 14 4 2.</_></rects> 25524 <tilted>0</tilted></feature> 25525 <threshold>-0.0986559987068176</threshold> 25526 <left_val>1.0429769754409790</left_val> 25527 <right_val>-0.1577019989490509</right_val></_></_> 25528 <_> 25529 <!-- tree 157 --> 25530 <_> 25531 <!-- root node --> 25532 <feature> 25533 <rects> 25534 <_>16 1 8 6 -1.</_> 25535 <_>16 4 8 3 2.</_></rects> 25536 <tilted>0</tilted></feature> 25537 <threshold>0.1175829991698265</threshold> 25538 <left_val>0.1095570027828217</left_val> 25539 <right_val>-4.4920377731323242</right_val></_></_> 25540 <_> 25541 <!-- tree 158 --> 25542 <_> 25543 <!-- root node --> 25544 <feature> 25545 <rects> 25546 <_>0 1 8 6 -1.</_> 25547 <_>0 4 8 3 2.</_></rects> 25548 <tilted>0</tilted></feature> 25549 <threshold>-0.0189229995012283</threshold> 25550 <left_val>-0.7854340076446533</left_val> 25551 <right_val>0.0129840001463890</right_val></_></_> 25552 <_> 25553 <!-- tree 159 --> 25554 <_> 25555 <!-- root node --> 25556 <feature> 25557 <rects> 25558 <_>6 0 18 4 -1.</_> 25559 <_>15 0 9 2 2.</_> 25560 <_>6 2 9 2 2.</_></rects> 25561 <tilted>0</tilted></feature> 25562 <threshold>-0.0283909998834133</threshold> 25563 <left_val>-0.6056990027427673</left_val> 25564 <right_val>0.1290349960327148</right_val></_></_> 25565 <_> 25566 <!-- tree 160 --> 25567 <_> 25568 <!-- root node --> 25569 <feature> 25570 <rects> 25571 <_>0 14 9 6 -1.</_> 25572 <_>0 16 9 2 3.</_></rects> 25573 <tilted>0</tilted></feature> 25574 <threshold>0.0131829995661974</threshold> 25575 <left_val>-0.0144159998744726</left_val> 25576 <right_val>-0.7321050167083740</right_val></_></_> 25577 <_> 25578 <!-- tree 161 --> 25579 <_> 25580 <!-- root node --> 25581 <feature> 25582 <rects> 25583 <_>3 7 18 8 -1.</_> 25584 <_>9 7 6 8 3.</_></rects> 25585 <tilted>0</tilted></feature> 25586 <threshold>-0.1165300011634827</threshold> 25587 <left_val>-2.0442469120025635</left_val> 25588 <right_val>0.1405310034751892</right_val></_></_> 25589 <_> 25590 <!-- tree 162 --> 25591 <_> 25592 <!-- root node --> 25593 <feature> 25594 <rects> 25595 <_>2 11 6 9 -1.</_> 25596 <_>4 11 2 9 3.</_></rects> 25597 <tilted>0</tilted></feature> 25598 <threshold>-3.8880000356584787e-003</threshold> 25599 <left_val>-0.4186159968376160</left_val> 25600 <right_val>0.0787049978971481</right_val></_></_> 25601 <_> 25602 <!-- tree 163 --> 25603 <_> 25604 <!-- root node --> 25605 <feature> 25606 <rects> 25607 <_>10 5 6 9 -1.</_> 25608 <_>12 5 2 9 3.</_></rects> 25609 <tilted>0</tilted></feature> 25610 <threshold>0.0312290005385876</threshold> 25611 <left_val>0.0246329996734858</left_val> 25612 <right_val>0.4187040030956268</right_val></_></_> 25613 <_> 25614 <!-- tree 164 --> 25615 <_> 25616 <!-- root node --> 25617 <feature> 25618 <rects> 25619 <_>10 6 4 18 -1.</_> 25620 <_>10 6 2 9 2.</_> 25621 <_>12 15 2 9 2.</_></rects> 25622 <tilted>0</tilted></feature> 25623 <threshold>0.0251989997923374</threshold> 25624 <left_val>-0.1755779981613159</left_val> 25625 <right_val>0.6471059918403626</right_val></_></_> 25626 <_> 25627 <!-- tree 165 --> 25628 <_> 25629 <!-- root node --> 25630 <feature> 25631 <rects> 25632 <_>11 1 4 20 -1.</_> 25633 <_>13 1 2 10 2.</_> 25634 <_>11 11 2 10 2.</_></rects> 25635 <tilted>0</tilted></feature> 25636 <threshold>-0.0281240008771420</threshold> 25637 <left_val>-0.2200559973716736</left_val> 25638 <right_val>0.1412100046873093</right_val></_></_> 25639 <_> 25640 <!-- tree 166 --> 25641 <_> 25642 <!-- root node --> 25643 <feature> 25644 <rects> 25645 <_>9 1 4 20 -1.</_> 25646 <_>9 1 2 10 2.</_> 25647 <_>11 11 2 10 2.</_></rects> 25648 <tilted>0</tilted></feature> 25649 <threshold>0.0364990010857582</threshold> 25650 <left_val>-0.0684269964694977</left_val> 25651 <right_val>-2.3410849571228027</right_val></_></_> 25652 <_> 25653 <!-- tree 167 --> 25654 <_> 25655 <!-- root node --> 25656 <feature> 25657 <rects> 25658 <_>5 9 18 6 -1.</_> 25659 <_>14 9 9 3 2.</_> 25660 <_>5 12 9 3 2.</_></rects> 25661 <tilted>0</tilted></feature> 25662 <threshold>-0.0722929984331131</threshold> 25663 <left_val>1.2898750305175781</left_val> 25664 <right_val>0.0848750025033951</right_val></_></_> 25665 <_> 25666 <!-- tree 168 --> 25667 <_> 25668 <!-- root node --> 25669 <feature> 25670 <rects> 25671 <_>6 4 6 9 -1.</_> 25672 <_>8 4 2 9 3.</_></rects> 25673 <tilted>0</tilted></feature> 25674 <threshold>-0.0416710004210472</threshold> 25675 <left_val>-1.1630970239639282</left_val> 25676 <right_val>-0.0537529997527599</right_val></_></_> 25677 <_> 25678 <!-- tree 169 --> 25679 <_> 25680 <!-- root node --> 25681 <feature> 25682 <rects> 25683 <_>10 16 8 6 -1.</_> 25684 <_>10 16 4 6 2.</_></rects> 25685 <tilted>0</tilted></feature> 25686 <threshold>0.0477030016481876</threshold> 25687 <left_val>0.0701010003685951</left_val> 25688 <right_val>0.7367650270462036</right_val></_></_> 25689 <_> 25690 <!-- tree 170 --> 25691 <_> 25692 <!-- root node --> 25693 <feature> 25694 <rects> 25695 <_>0 0 18 8 -1.</_> 25696 <_>0 0 9 4 2.</_> 25697 <_>9 4 9 4 2.</_></rects> 25698 <tilted>0</tilted></feature> 25699 <threshold>0.0657930001616478</threshold> 25700 <left_val>-0.1775529980659485</left_val> 25701 <right_val>0.6978049874305725</right_val></_></_> 25702 <_> 25703 <!-- tree 171 --> 25704 <_> 25705 <!-- root node --> 25706 <feature> 25707 <rects> 25708 <_>6 5 14 12 -1.</_> 25709 <_>13 5 7 6 2.</_> 25710 <_>6 11 7 6 2.</_></rects> 25711 <tilted>0</tilted></feature> 25712 <threshold>0.0139049999415874</threshold> 25713 <left_val>0.2193679958581924</left_val> 25714 <right_val>-0.2039079964160919</right_val></_></_> 25715 <_> 25716 <!-- tree 172 --> 25717 <_> 25718 <!-- root node --> 25719 <feature> 25720 <rects> 25721 <_>4 3 15 7 -1.</_> 25722 <_>9 3 5 7 3.</_></rects> 25723 <tilted>0</tilted></feature> 25724 <threshold>-0.0277309995144606</threshold> 25725 <left_val>0.6186789870262146</left_val> 25726 <right_val>-0.1780409961938858</right_val></_></_> 25727 <_> 25728 <!-- tree 173 --> 25729 <_> 25730 <!-- root node --> 25731 <feature> 25732 <rects> 25733 <_>14 12 10 6 -1.</_> 25734 <_>14 14 10 2 3.</_></rects> 25735 <tilted>0</tilted></feature> 25736 <threshold>-0.0158799998462200</threshold> 25737 <left_val>-0.4648410081863403</left_val> 25738 <right_val>0.1882860064506531</right_val></_></_> 25739 <_> 25740 <!-- tree 174 --> 25741 <_> 25742 <!-- root node --> 25743 <feature> 25744 <rects> 25745 <_>0 11 4 10 -1.</_> 25746 <_>0 16 4 5 2.</_></rects> 25747 <tilted>0</tilted></feature> 25748 <threshold>0.0741280019283295</threshold> 25749 <left_val>-0.1285810023546219</left_val> 25750 <right_val>3.2792479991912842</right_val></_></_> 25751 <_> 25752 <!-- tree 175 --> 25753 <_> 25754 <!-- root node --> 25755 <feature> 25756 <rects> 25757 <_>1 10 22 3 -1.</_> 25758 <_>1 11 22 1 3.</_></rects> 25759 <tilted>0</tilted></feature> 25760 <threshold>-8.9000002481043339e-004</threshold> 25761 <left_val>-0.3011760115623474</left_val> 25762 <right_val>0.2381879985332489</right_val></_></_> 25763 <_> 25764 <!-- tree 176 --> 25765 <_> 25766 <!-- root node --> 25767 <feature> 25768 <rects> 25769 <_>8 9 6 10 -1.</_> 25770 <_>10 9 2 10 3.</_></rects> 25771 <tilted>0</tilted></feature> 25772 <threshold>0.0179650001227856</threshold> 25773 <left_val>-0.2228499948978424</left_val> 25774 <right_val>0.2995400130748749</right_val></_></_> 25775 <_> 25776 <!-- tree 177 --> 25777 <_> 25778 <!-- root node --> 25779 <feature> 25780 <rects> 25781 <_>13 2 6 12 -1.</_> 25782 <_>16 2 3 6 2.</_> 25783 <_>13 8 3 6 2.</_></rects> 25784 <tilted>0</tilted></feature> 25785 <threshold>-2.5380000006407499e-003</threshold> 25786 <left_val>0.2506439983844757</left_val> 25787 <right_val>-0.1366560012102127</right_val></_></_> 25788 <_> 25789 <!-- tree 178 --> 25790 <_> 25791 <!-- root node --> 25792 <feature> 25793 <rects> 25794 <_>10 6 4 18 -1.</_> 25795 <_>10 6 2 9 2.</_> 25796 <_>12 15 2 9 2.</_></rects> 25797 <tilted>0</tilted></feature> 25798 <threshold>-9.0680001303553581e-003</threshold> 25799 <left_val>0.2901749908924103</left_val> 25800 <right_val>-0.2892970144748688</right_val></_></_> 25801 <_> 25802 <!-- tree 179 --> 25803 <_> 25804 <!-- root node --> 25805 <feature> 25806 <rects> 25807 <_>7 8 10 16 -1.</_> 25808 <_>12 8 5 8 2.</_> 25809 <_>7 16 5 8 2.</_></rects> 25810 <tilted>0</tilted></feature> 25811 <threshold>0.0491699986159801</threshold> 25812 <left_val>0.1915639936923981</left_val> 25813 <right_val>-0.6832870244979858</right_val></_></_> 25814 <_> 25815 <!-- tree 180 --> 25816 <_> 25817 <!-- root node --> 25818 <feature> 25819 <rects> 25820 <_>8 1 8 12 -1.</_> 25821 <_>8 1 4 6 2.</_> 25822 <_>12 7 4 6 2.</_></rects> 25823 <tilted>0</tilted></feature> 25824 <threshold>-0.0306809991598129</threshold> 25825 <left_val>-0.7567700147628784</left_val> 25826 <right_val>-0.0132799996063113</right_val></_></_> 25827 <_> 25828 <!-- tree 181 --> 25829 <_> 25830 <!-- root node --> 25831 <feature> 25832 <rects> 25833 <_>7 1 12 14 -1.</_> 25834 <_>13 1 6 7 2.</_> 25835 <_>7 8 6 7 2.</_></rects> 25836 <tilted>0</tilted></feature> 25837 <threshold>0.1001740023493767</threshold> 25838 <left_val>0.0844539999961853</left_val> 25839 <right_val>1.0888710021972656</right_val></_></_> 25840 <_> 25841 <!-- tree 182 --> 25842 <_> 25843 <!-- root node --> 25844 <feature> 25845 <rects> 25846 <_>2 14 12 6 -1.</_> 25847 <_>2 16 12 2 3.</_></rects> 25848 <tilted>0</tilted></feature> 25849 <threshold>3.1950001139193773e-003</threshold> 25850 <left_val>-0.2691940069198608</left_val> 25851 <right_val>0.1953790038824081</right_val></_></_> 25852 <_> 25853 <!-- tree 183 --> 25854 <_> 25855 <!-- root node --> 25856 <feature> 25857 <rects> 25858 <_>11 16 6 6 -1.</_> 25859 <_>11 19 6 3 2.</_></rects> 25860 <tilted>0</tilted></feature> 25861 <threshold>0.0355030000209808</threshold> 25862 <left_val>0.1363230049610138</left_val> 25863 <right_val>-0.5691720247268677</right_val></_></_> 25864 <_> 25865 <!-- tree 184 --> 25866 <_> 25867 <!-- root node --> 25868 <feature> 25869 <rects> 25870 <_>7 16 6 6 -1.</_> 25871 <_>7 19 6 3 2.</_></rects> 25872 <tilted>0</tilted></feature> 25873 <threshold>4.5900000259280205e-004</threshold> 25874 <left_val>-0.4044399857521057</left_val> 25875 <right_val>0.1407479941844940</right_val></_></_> 25876 <_> 25877 <!-- tree 185 --> 25878 <_> 25879 <!-- root node --> 25880 <feature> 25881 <rects> 25882 <_>13 4 4 10 -1.</_> 25883 <_>13 4 2 10 2.</_></rects> 25884 <tilted>0</tilted></feature> 25885 <threshold>0.0252589993178844</threshold> 25886 <left_val>0.1624320000410080</left_val> 25887 <right_val>-0.5574179887771606</right_val></_></_> 25888 <_> 25889 <!-- tree 186 --> 25890 <_> 25891 <!-- root node --> 25892 <feature> 25893 <rects> 25894 <_>0 19 19 3 -1.</_> 25895 <_>0 20 19 1 3.</_></rects> 25896 <tilted>0</tilted></feature> 25897 <threshold>-5.1549999043345451e-003</threshold> 25898 <left_val>0.3113259971141815</left_val> 25899 <right_val>-0.2275609970092773</right_val></_></_> 25900 <_> 25901 <!-- tree 187 --> 25902 <_> 25903 <!-- root node --> 25904 <feature> 25905 <rects> 25906 <_>12 8 6 8 -1.</_> 25907 <_>12 12 6 4 2.</_></rects> 25908 <tilted>0</tilted></feature> 25909 <threshold>1.5869999770075083e-003</threshold> 25910 <left_val>-0.2686769962310791</left_val> 25911 <right_val>0.1956540048122406</right_val></_></_> 25912 <_> 25913 <!-- tree 188 --> 25914 <_> 25915 <!-- root node --> 25916 <feature> 25917 <rects> 25918 <_>8 1 8 22 -1.</_> 25919 <_>8 12 8 11 2.</_></rects> 25920 <tilted>0</tilted></feature> 25921 <threshold>-0.0162049997597933</threshold> 25922 <left_val>0.1548649966716766</left_val> 25923 <right_val>-0.3405779898166657</right_val></_></_> 25924 <_> 25925 <!-- tree 189 --> 25926 <_> 25927 <!-- root node --> 25928 <feature> 25929 <rects> 25930 <_>12 8 6 8 -1.</_> 25931 <_>12 12 6 4 2.</_></rects> 25932 <tilted>0</tilted></feature> 25933 <threshold>-0.0296240001916885</threshold> 25934 <left_val>1.1466799974441528</left_val> 25935 <right_val>0.0905579999089241</right_val></_></_> 25936 <_> 25937 <!-- tree 190 --> 25938 <_> 25939 <!-- root node --> 25940 <feature> 25941 <rects> 25942 <_>6 8 6 8 -1.</_> 25943 <_>6 12 6 4 2.</_></rects> 25944 <tilted>0</tilted></feature> 25945 <threshold>-1.5930000226944685e-003</threshold> 25946 <left_val>-0.7125750184059143</left_val> 25947 <right_val>-7.0400000549852848e-004</right_val></_></_> 25948 <_> 25949 <!-- tree 191 --> 25950 <_> 25951 <!-- root node --> 25952 <feature> 25953 <rects> 25954 <_>14 5 6 9 -1.</_> 25955 <_>14 8 6 3 3.</_></rects> 25956 <tilted>0</tilted></feature> 25957 <threshold>-0.0540190003812313</threshold> 25958 <left_val>0.4153749942779541</left_val> 25959 <right_val>0.0272460002452135</right_val></_></_> 25960 <_> 25961 <!-- tree 192 --> 25962 <_> 25963 <!-- root node --> 25964 <feature> 25965 <rects> 25966 <_>0 6 24 4 -1.</_> 25967 <_>0 8 24 2 2.</_></rects> 25968 <tilted>0</tilted></feature> 25969 <threshold>-0.0662110000848770</threshold> 25970 <left_val>-1.3340090513229370</left_val> 25971 <right_val>-0.0473529994487762</right_val></_></_> 25972 <_> 25973 <!-- tree 193 --> 25974 <_> 25975 <!-- root node --> 25976 <feature> 25977 <rects> 25978 <_>14 12 10 6 -1.</_> 25979 <_>14 14 10 2 3.</_></rects> 25980 <tilted>0</tilted></feature> 25981 <threshold>0.0279409997165203</threshold> 25982 <left_val>0.1444630026817322</left_val> 25983 <right_val>-0.5151839852333069</right_val></_></_> 25984 <_> 25985 <!-- tree 194 --> 25986 <_> 25987 <!-- root node --> 25988 <feature> 25989 <rects> 25990 <_>0 12 10 6 -1.</_> 25991 <_>0 14 10 2 3.</_></rects> 25992 <tilted>0</tilted></feature> 25993 <threshold>0.0289570000022650</threshold> 25994 <left_val>-0.0499660000205040</left_val> 25995 <right_val>-1.1929039955139160</right_val></_></_> 25996 <_> 25997 <!-- tree 195 --> 25998 <_> 25999 <!-- root node --> 26000 <feature> 26001 <rects> 26002 <_>4 6 19 3 -1.</_> 26003 <_>4 7 19 1 3.</_></rects> 26004 <tilted>0</tilted></feature> 26005 <threshold>-0.0204249992966652</threshold> 26006 <left_val>0.6388130187988281</left_val> 26007 <right_val>0.0381410010159016</right_val></_></_> 26008 <_> 26009 <!-- tree 196 --> 26010 <_> 26011 <!-- root node --> 26012 <feature> 26013 <rects> 26014 <_>1 6 19 3 -1.</_> 26015 <_>1 7 19 1 3.</_></rects> 26016 <tilted>0</tilted></feature> 26017 <threshold>0.0124169997870922</threshold> 26018 <left_val>-0.2154700011014938</left_val> 26019 <right_val>0.4947769939899445</right_val></_></_></trees> 26020 <stage_threshold>-3.2772979736328125</stage_threshold> 26021 <parent>19</parent> 26022 <next>-1</next></_> 26023 <_> 26024 <!-- stage 21 --> 26025 <trees> 26026 <_> 26027 <!-- tree 0 --> 26028 <_> 26029 <!-- root node --> 26030 <feature> 26031 <rects> 26032 <_>4 0 16 9 -1.</_> 26033 <_>4 3 16 3 3.</_></rects> 26034 <tilted>0</tilted></feature> 26035 <threshold>0.0432740002870560</threshold> 26036 <left_val>-0.8049439787864685</left_val> 26037 <right_val>0.3989729881286621</right_val></_></_> 26038 <_> 26039 <!-- tree 1 --> 26040 <_> 26041 <!-- root node --> 26042 <feature> 26043 <rects> 26044 <_>0 1 24 5 -1.</_> 26045 <_>8 1 8 5 3.</_></rects> 26046 <tilted>0</tilted></feature> 26047 <threshold>0.1861550062894821</threshold> 26048 <left_val>-0.3165529966354370</left_val> 26049 <right_val>0.6887729763984680</right_val></_></_> 26050 <_> 26051 <!-- tree 2 --> 26052 <_> 26053 <!-- root node --> 26054 <feature> 26055 <rects> 26056 <_>3 6 6 15 -1.</_> 26057 <_>3 11 6 5 3.</_></rects> 26058 <tilted>0</tilted></feature> 26059 <threshold>0.0318609997630119</threshold> 26060 <left_val>-0.6426619887351990</left_val> 26061 <right_val>0.2555089890956879</right_val></_></_> 26062 <_> 26063 <!-- tree 3 --> 26064 <_> 26065 <!-- root node --> 26066 <feature> 26067 <rects> 26068 <_>9 6 6 9 -1.</_> 26069 <_>11 6 2 9 3.</_></rects> 26070 <tilted>0</tilted></feature> 26071 <threshold>0.0140220001339912</threshold> 26072 <left_val>-0.4592660069465637</left_val> 26073 <right_val>0.3117119967937470</right_val></_></_> 26074 <_> 26075 <!-- tree 4 --> 26076 <_> 26077 <!-- root node --> 26078 <feature> 26079 <rects> 26080 <_>0 17 18 3 -1.</_> 26081 <_>0 18 18 1 3.</_></rects> 26082 <tilted>0</tilted></feature> 26083 <threshold>-6.3029997982084751e-003</threshold> 26084 <left_val>0.4602690041065216</left_val> 26085 <right_val>-0.2743850052356720</right_val></_></_> 26086 <_> 26087 <!-- tree 5 --> 26088 <_> 26089 <!-- root node --> 26090 <feature> 26091 <rects> 26092 <_>6 22 18 2 -1.</_> 26093 <_>6 23 18 1 2.</_></rects> 26094 <tilted>0</tilted></feature> 26095 <threshold>-5.4310001432895660e-003</threshold> 26096 <left_val>0.3660860061645508</left_val> 26097 <right_val>-0.2720580101013184</right_val></_></_> 26098 <_> 26099 <!-- tree 6 --> 26100 <_> 26101 <!-- root node --> 26102 <feature> 26103 <rects> 26104 <_>2 12 6 9 -1.</_> 26105 <_>2 15 6 3 3.</_></rects> 26106 <tilted>0</tilted></feature> 26107 <threshold>0.0168229993432760</threshold> 26108 <left_val>0.0234769992530346</left_val> 26109 <right_val>-0.8844379782676697</right_val></_></_> 26110 <_> 26111 <!-- tree 7 --> 26112 <_> 26113 <!-- root node --> 26114 <feature> 26115 <rects> 26116 <_>18 12 6 9 -1.</_> 26117 <_>18 15 6 3 3.</_></rects> 26118 <tilted>0</tilted></feature> 26119 <threshold>0.0260390006005764</threshold> 26120 <left_val>0.1748879998922348</left_val> 26121 <right_val>-0.5456470251083374</right_val></_></_> 26122 <_> 26123 <!-- tree 8 --> 26124 <_> 26125 <!-- root node --> 26126 <feature> 26127 <rects> 26128 <_>0 12 6 9 -1.</_> 26129 <_>0 15 6 3 3.</_></rects> 26130 <tilted>0</tilted></feature> 26131 <threshold>-0.0267200004309416</threshold> 26132 <left_val>-0.9639649987220764</left_val> 26133 <right_val>0.0235249996185303</right_val></_></_> 26134 <_> 26135 <!-- tree 9 --> 26136 <_> 26137 <!-- root node --> 26138 <feature> 26139 <rects> 26140 <_>11 14 4 10 -1.</_> 26141 <_>11 19 4 5 2.</_></rects> 26142 <tilted>0</tilted></feature> 26143 <threshold>-0.0170419998466969</threshold> 26144 <left_val>-0.7084879875183106</left_val> 26145 <right_val>0.2146809995174408</right_val></_></_> 26146 <_> 26147 <!-- tree 10 --> 26148 <_> 26149 <!-- root node --> 26150 <feature> 26151 <rects> 26152 <_>9 6 6 16 -1.</_> 26153 <_>9 14 6 8 2.</_></rects> 26154 <tilted>0</tilted></feature> 26155 <threshold>5.9569999575614929e-003</threshold> 26156 <left_val>0.0736010000109673</left_val> 26157 <right_val>-0.6822559833526611</right_val></_></_> 26158 <_> 26159 <!-- tree 11 --> 26160 <_> 26161 <!-- root node --> 26162 <feature> 26163 <rects> 26164 <_>7 7 10 10 -1.</_> 26165 <_>7 12 10 5 2.</_></rects> 26166 <tilted>0</tilted></feature> 26167 <threshold>-2.8679999522864819e-003</threshold> 26168 <left_val>-0.7493500113487244</left_val> 26169 <right_val>0.2380339950323105</right_val></_></_> 26170 <_> 26171 <!-- tree 12 --> 26172 <_> 26173 <!-- root node --> 26174 <feature> 26175 <rects> 26176 <_>1 3 6 13 -1.</_> 26177 <_>3 3 2 13 3.</_></rects> 26178 <tilted>0</tilted></feature> 26179 <threshold>-0.0437749996781349</threshold> 26180 <left_val>0.6832330226898193</left_val> 26181 <right_val>-0.2138029932975769</right_val></_></_> 26182 <_> 26183 <!-- tree 13 --> 26184 <_> 26185 <!-- root node --> 26186 <feature> 26187 <rects> 26188 <_>18 1 6 13 -1.</_> 26189 <_>18 1 3 13 2.</_></rects> 26190 <tilted>0</tilted></feature> 26191 <threshold>0.0516330003738403</threshold> 26192 <left_val>-0.1256649941205978</left_val> 26193 <right_val>0.6752380132675171</right_val></_></_> 26194 <_> 26195 <!-- tree 14 --> 26196 <_> 26197 <!-- root node --> 26198 <feature> 26199 <rects> 26200 <_>5 1 6 9 -1.</_> 26201 <_>7 1 2 9 3.</_></rects> 26202 <tilted>0</tilted></feature> 26203 <threshold>8.1780003383755684e-003</threshold> 26204 <left_val>0.0706899985671043</left_val> 26205 <right_val>-0.8066589832305908</right_val></_></_> 26206 <_> 26207 <!-- tree 15 --> 26208 <_> 26209 <!-- root node --> 26210 <feature> 26211 <rects> 26212 <_>18 2 6 11 -1.</_> 26213 <_>18 2 3 11 2.</_></rects> 26214 <tilted>0</tilted></feature> 26215 <threshold>-0.0528419986367226</threshold> 26216 <left_val>0.9543390274047852</left_val> 26217 <right_val>0.0165480002760887</right_val></_></_> 26218 <_> 26219 <!-- tree 16 --> 26220 <_> 26221 <!-- root node --> 26222 <feature> 26223 <rects> 26224 <_>0 2 6 11 -1.</_> 26225 <_>3 2 3 11 2.</_></rects> 26226 <tilted>0</tilted></feature> 26227 <threshold>0.0525839999318123</threshold> 26228 <left_val>-0.2841440141201019</left_val> 26229 <right_val>0.4712980091571808</right_val></_></_> 26230 <_> 26231 <!-- tree 17 --> 26232 <_> 26233 <!-- root node --> 26234 <feature> 26235 <rects> 26236 <_>9 12 15 6 -1.</_> 26237 <_>9 14 15 2 3.</_></rects> 26238 <tilted>0</tilted></feature> 26239 <threshold>-0.0126590002328157</threshold> 26240 <left_val>0.3844540119171143</left_val> 26241 <right_val>-0.0622880011796951</right_val></_></_> 26242 <_> 26243 <!-- tree 18 --> 26244 <_> 26245 <!-- root node --> 26246 <feature> 26247 <rects> 26248 <_>2 2 20 3 -1.</_> 26249 <_>2 3 20 1 3.</_></rects> 26250 <tilted>0</tilted></feature> 26251 <threshold>0.0116940001025796</threshold> 26252 <left_val>5.6000000768108293e-005</left_val> 26253 <right_val>-1.0173139572143555</right_val></_></_> 26254 <_> 26255 <!-- tree 19 --> 26256 <_> 26257 <!-- root node --> 26258 <feature> 26259 <rects> 26260 <_>10 6 4 9 -1.</_> 26261 <_>10 6 2 9 2.</_></rects> 26262 <tilted>0</tilted></feature> 26263 <threshold>-0.0239189993590117</threshold> 26264 <left_val>0.8492130041122437</left_val> 26265 <right_val>5.7399999350309372e-003</right_val></_></_> 26266 <_> 26267 <!-- tree 20 --> 26268 <_> 26269 <!-- root node --> 26270 <feature> 26271 <rects> 26272 <_>5 6 12 14 -1.</_> 26273 <_>5 6 6 7 2.</_> 26274 <_>11 13 6 7 2.</_></rects> 26275 <tilted>0</tilted></feature> 26276 <threshold>-0.0616739988327026</threshold> 26277 <left_val>-0.9257140159606934</left_val> 26278 <right_val>-1.7679999582469463e-003</right_val></_></_> 26279 <_> 26280 <!-- tree 21 --> 26281 <_> 26282 <!-- root node --> 26283 <feature> 26284 <rects> 26285 <_>9 0 6 9 -1.</_> 26286 <_>11 0 2 9 3.</_></rects> 26287 <tilted>0</tilted></feature> 26288 <threshold>-1.8279999494552612e-003</threshold> 26289 <left_val>-0.5437229871749878</left_val> 26290 <right_val>0.2493239939212799</right_val></_></_> 26291 <_> 26292 <!-- tree 22 --> 26293 <_> 26294 <!-- root node --> 26295 <feature> 26296 <rects> 26297 <_>7 0 9 6 -1.</_> 26298 <_>10 0 3 6 3.</_></rects> 26299 <tilted>0</tilted></feature> 26300 <threshold>0.0352579988539219</threshold> 26301 <left_val>-7.3719997890293598e-003</left_val> 26302 <right_val>-0.9396399855613709</right_val></_></_> 26303 <_> 26304 <!-- tree 23 --> 26305 <_> 26306 <!-- root node --> 26307 <feature> 26308 <rects> 26309 <_>10 6 6 9 -1.</_> 26310 <_>12 6 2 9 3.</_></rects> 26311 <tilted>0</tilted></feature> 26312 <threshold>-0.0184380002319813</threshold> 26313 <left_val>0.7213670015335083</left_val> 26314 <right_val>0.0104919997975230</right_val></_></_> 26315 <_> 26316 <!-- tree 24 --> 26317 <_> 26318 <!-- root node --> 26319 <feature> 26320 <rects> 26321 <_>4 1 12 20 -1.</_> 26322 <_>4 1 6 10 2.</_> 26323 <_>10 11 6 10 2.</_></rects> 26324 <tilted>0</tilted></feature> 26325 <threshold>-0.0383890010416508</threshold> 26326 <left_val>0.1927260011434555</left_val> 26327 <right_val>-0.3583210110664368</right_val></_></_> 26328 <_> 26329 <!-- tree 25 --> 26330 <_> 26331 <!-- root node --> 26332 <feature> 26333 <rects> 26334 <_>6 7 18 3 -1.</_> 26335 <_>6 7 9 3 2.</_></rects> 26336 <tilted>0</tilted></feature> 26337 <threshold>0.0997209995985031</threshold> 26338 <left_val>0.1135419979691505</left_val> 26339 <right_val>-1.6304190158843994</right_val></_></_> 26340 <_> 26341 <!-- tree 26 --> 26342 <_> 26343 <!-- root node --> 26344 <feature> 26345 <rects> 26346 <_>0 7 18 3 -1.</_> 26347 <_>9 7 9 3 2.</_></rects> 26348 <tilted>0</tilted></feature> 26349 <threshold>0.0844620019197464</threshold> 26350 <left_val>-0.0534209981560707</left_val> 26351 <right_val>-1.6981120109558105</right_val></_></_> 26352 <_> 26353 <!-- tree 27 --> 26354 <_> 26355 <!-- root node --> 26356 <feature> 26357 <rects> 26358 <_>3 20 18 3 -1.</_> 26359 <_>9 20 6 3 3.</_></rects> 26360 <tilted>0</tilted></feature> 26361 <threshold>0.0402700006961823</threshold> 26362 <left_val>-0.1078319996595383</left_val> 26363 <right_val>0.5192660093307495</right_val></_></_> 26364 <_> 26365 <!-- tree 28 --> 26366 <_> 26367 <!-- root node --> 26368 <feature> 26369 <rects> 26370 <_>9 6 6 9 -1.</_> 26371 <_>11 6 2 9 3.</_></rects> 26372 <tilted>0</tilted></feature> 26373 <threshold>0.0589359998703003</threshold> 26374 <left_val>-0.1805370002985001</left_val> 26375 <right_val>0.9511979818344116</right_val></_></_> 26376 <_> 26377 <!-- tree 29 --> 26378 <_> 26379 <!-- root node --> 26380 <feature> 26381 <rects> 26382 <_>6 2 12 15 -1.</_> 26383 <_>10 2 4 15 3.</_></rects> 26384 <tilted>0</tilted></feature> 26385 <threshold>0.1495700031518936</threshold> 26386 <left_val>0.1678529977798462</left_val> 26387 <right_val>-1.1591869592666626</right_val></_></_> 26388 <_> 26389 <!-- tree 30 --> 26390 <_> 26391 <!-- root node --> 26392 <feature> 26393 <rects> 26394 <_>2 3 18 3 -1.</_> 26395 <_>2 4 18 1 3.</_></rects> 26396 <tilted>0</tilted></feature> 26397 <threshold>6.9399998756125569e-004</threshold> 26398 <left_val>0.2049140036106110</left_val> 26399 <right_val>-0.3311820030212402</right_val></_></_> 26400 <_> 26401 <!-- tree 31 --> 26402 <_> 26403 <!-- root node --> 26404 <feature> 26405 <rects> 26406 <_>19 4 4 18 -1.</_> 26407 <_>21 4 2 9 2.</_> 26408 <_>19 13 2 9 2.</_></rects> 26409 <tilted>0</tilted></feature> 26410 <threshold>-0.0333690010011196</threshold> 26411 <left_val>0.9346809983253479</left_val> 26412 <right_val>-2.9639999847859144e-003</right_val></_></_> 26413 <_> 26414 <!-- tree 32 --> 26415 <_> 26416 <!-- root node --> 26417 <feature> 26418 <rects> 26419 <_>0 1 19 3 -1.</_> 26420 <_>0 2 19 1 3.</_></rects> 26421 <tilted>0</tilted></feature> 26422 <threshold>9.3759996816515923e-003</threshold> 26423 <left_val>3.7000000011175871e-003</left_val> 26424 <right_val>-0.7754979729652405</right_val></_></_> 26425 <_> 26426 <!-- tree 33 --> 26427 <_> 26428 <!-- root node --> 26429 <feature> 26430 <rects> 26431 <_>5 0 15 4 -1.</_> 26432 <_>5 2 15 2 2.</_></rects> 26433 <tilted>0</tilted></feature> 26434 <threshold>0.0431939996778965</threshold> 26435 <left_val>-2.2040000185370445e-003</left_val> 26436 <right_val>0.7458969950675964</right_val></_></_> 26437 <_> 26438 <!-- tree 34 --> 26439 <_> 26440 <!-- root node --> 26441 <feature> 26442 <rects> 26443 <_>5 2 14 5 -1.</_> 26444 <_>12 2 7 5 2.</_></rects> 26445 <tilted>0</tilted></feature> 26446 <threshold>-0.0675550028681755</threshold> 26447 <left_val>0.7229210138320923</left_val> 26448 <right_val>-0.1840420067310333</right_val></_></_> 26449 <_> 26450 <!-- tree 35 --> 26451 <_> 26452 <!-- root node --> 26453 <feature> 26454 <rects> 26455 <_>1 2 22 14 -1.</_> 26456 <_>1 2 11 14 2.</_></rects> 26457 <tilted>0</tilted></feature> 26458 <threshold>-0.3116860091686249</threshold> 26459 <left_val>1.0014270544052124</left_val> 26460 <right_val>0.0340030007064343</right_val></_></_> 26461 <_> 26462 <!-- tree 36 --> 26463 <_> 26464 <!-- root node --> 26465 <feature> 26466 <rects> 26467 <_>8 15 6 9 -1.</_> 26468 <_>10 15 2 9 3.</_></rects> 26469 <tilted>0</tilted></feature> 26470 <threshold>0.0297439992427826</threshold> 26471 <left_val>-0.0463560000061989</left_val> 26472 <right_val>-1.2781809568405151</right_val></_></_> 26473 <_> 26474 <!-- tree 37 --> 26475 <_> 26476 <!-- root node --> 26477 <feature> 26478 <rects> 26479 <_>6 17 18 3 -1.</_> 26480 <_>6 18 18 1 3.</_></rects> 26481 <tilted>0</tilted></feature> 26482 <threshold>0.0107370000332594</threshold> 26483 <left_val>0.0148120000958443</left_val> 26484 <right_val>0.6664999723434448</right_val></_></_> 26485 <_> 26486 <!-- tree 38 --> 26487 <_> 26488 <!-- root node --> 26489 <feature> 26490 <rects> 26491 <_>9 6 3 18 -1.</_> 26492 <_>9 12 3 6 3.</_></rects> 26493 <tilted>0</tilted></feature> 26494 <threshold>-0.0288410000503063</threshold> 26495 <left_val>-0.9422259926795960</left_val> 26496 <right_val>-0.0207969993352890</right_val></_></_> 26497 <_> 26498 <!-- tree 39 --> 26499 <_> 26500 <!-- root node --> 26501 <feature> 26502 <rects> 26503 <_>2 0 20 3 -1.</_> 26504 <_>2 1 20 1 3.</_></rects> 26505 <tilted>0</tilted></feature> 26506 <threshold>-5.7649998925626278e-003</threshold> 26507 <left_val>-0.4354189932346344</left_val> 26508 <right_val>0.2338600009679794</right_val></_></_> 26509 <_> 26510 <!-- tree 40 --> 26511 <_> 26512 <!-- root node --> 26513 <feature> 26514 <rects> 26515 <_>5 4 5 12 -1.</_> 26516 <_>5 8 5 4 3.</_></rects> 26517 <tilted>0</tilted></feature> 26518 <threshold>0.0284109991043806</threshold> 26519 <left_val>-0.1761579960584641</left_val> 26520 <right_val>0.8576530218124390</right_val></_></_> 26521 <_> 26522 <!-- tree 41 --> 26523 <_> 26524 <!-- root node --> 26525 <feature> 26526 <rects> 26527 <_>8 6 12 5 -1.</_> 26528 <_>12 6 4 5 3.</_></rects> 26529 <tilted>0</tilted></feature> 26530 <threshold>-0.0290079992264509</threshold> 26531 <left_val>0.5797809958457947</left_val> 26532 <right_val>0.0285659991204739</right_val></_></_> 26533 <_> 26534 <!-- tree 42 --> 26535 <_> 26536 <!-- root node --> 26537 <feature> 26538 <rects> 26539 <_>9 12 6 12 -1.</_> 26540 <_>9 12 3 6 2.</_> 26541 <_>12 18 3 6 2.</_></rects> 26542 <tilted>0</tilted></feature> 26543 <threshold>0.0249659996479750</threshold> 26544 <left_val>-0.0227290000766516</left_val> 26545 <right_val>-0.9677309989929199</right_val></_></_> 26546 <_> 26547 <!-- tree 43 --> 26548 <_> 26549 <!-- root node --> 26550 <feature> 26551 <rects> 26552 <_>14 14 8 10 -1.</_> 26553 <_>18 14 4 5 2.</_> 26554 <_>14 19 4 5 2.</_></rects> 26555 <tilted>0</tilted></feature> 26556 <threshold>0.0120360003784299</threshold> 26557 <left_val>-0.1421470046043396</left_val> 26558 <right_val>0.5168799757957459</right_val></_></_> 26559 <_> 26560 <!-- tree 44 --> 26561 <_> 26562 <!-- root node --> 26563 <feature> 26564 <rects> 26565 <_>2 14 8 10 -1.</_> 26566 <_>2 14 4 5 2.</_> 26567 <_>6 19 4 5 2.</_></rects> 26568 <tilted>0</tilted></feature> 26569 <threshold>-0.0425140000879765</threshold> 26570 <left_val>0.9727380275726318</left_val> 26571 <right_val>-0.1811980009078980</right_val></_></_> 26572 <_> 26573 <!-- tree 45 --> 26574 <_> 26575 <!-- root node --> 26576 <feature> 26577 <rects> 26578 <_>10 18 12 6 -1.</_> 26579 <_>16 18 6 3 2.</_> 26580 <_>10 21 6 3 2.</_></rects> 26581 <tilted>0</tilted></feature> 26582 <threshold>0.0102760000154376</threshold> 26583 <left_val>-0.0830999985337257</left_val> 26584 <right_val>0.3176279962062836</right_val></_></_> 26585 <_> 26586 <!-- tree 46 --> 26587 <_> 26588 <!-- root node --> 26589 <feature> 26590 <rects> 26591 <_>1 3 6 9 -1.</_> 26592 <_>1 6 6 3 3.</_></rects> 26593 <tilted>0</tilted></feature> 26594 <threshold>-0.0691919997334480</threshold> 26595 <left_val>-2.0668580532073975</left_val> 26596 <right_val>-0.0601739995181561</right_val></_></_> 26597 <_> 26598 <!-- tree 47 --> 26599 <_> 26600 <!-- root node --> 26601 <feature> 26602 <rects> 26603 <_>11 3 3 20 -1.</_> 26604 <_>12 3 1 20 3.</_></rects> 26605 <tilted>0</tilted></feature> 26606 <threshold>-4.6769999898970127e-003</threshold> 26607 <left_val>0.4413180053234100</left_val> 26608 <right_val>0.0232090000063181</right_val></_></_> 26609 <_> 26610 <!-- tree 48 --> 26611 <_> 26612 <!-- root node --> 26613 <feature> 26614 <rects> 26615 <_>4 6 14 6 -1.</_> 26616 <_>4 6 7 3 2.</_> 26617 <_>11 9 7 3 2.</_></rects> 26618 <tilted>0</tilted></feature> 26619 <threshold>-0.0139239998534322</threshold> 26620 <left_val>0.2860670089721680</left_val> 26621 <right_val>-0.2915270030498505</right_val></_></_> 26622 <_> 26623 <!-- tree 49 --> 26624 <_> 26625 <!-- root node --> 26626 <feature> 26627 <rects> 26628 <_>6 5 12 13 -1.</_> 26629 <_>10 5 4 13 3.</_></rects> 26630 <tilted>0</tilted></feature> 26631 <threshold>-0.0153339998796582</threshold> 26632 <left_val>-0.5741450190544128</left_val> 26633 <right_val>0.2306330054998398</right_val></_></_> 26634 <_> 26635 <!-- tree 50 --> 26636 <_> 26637 <!-- root node --> 26638 <feature> 26639 <rects> 26640 <_>5 4 4 15 -1.</_> 26641 <_>5 9 4 5 3.</_></rects> 26642 <tilted>0</tilted></feature> 26643 <threshold>-0.0102390004321933</threshold> 26644 <left_val>0.3447920083999634</left_val> 26645 <right_val>-0.2608039975166321</right_val></_></_> 26646 <_> 26647 <!-- tree 51 --> 26648 <_> 26649 <!-- root node --> 26650 <feature> 26651 <rects> 26652 <_>9 16 15 4 -1.</_> 26653 <_>14 16 5 4 3.</_></rects> 26654 <tilted>0</tilted></feature> 26655 <threshold>-0.0509889982640743</threshold> 26656 <left_val>0.5615410208702087</left_val> 26657 <right_val>0.0612189993262291</right_val></_></_> 26658 <_> 26659 <!-- tree 52 --> 26660 <_> 26661 <!-- root node --> 26662 <feature> 26663 <rects> 26664 <_>7 8 6 14 -1.</_> 26665 <_>7 8 3 7 2.</_> 26666 <_>10 15 3 7 2.</_></rects> 26667 <tilted>0</tilted></feature> 26668 <threshold>0.0306899994611740</threshold> 26669 <left_val>-0.1477279961109161</left_val> 26670 <right_val>1.6378489732742310</right_val></_></_> 26671 <_> 26672 <!-- tree 53 --> 26673 <_> 26674 <!-- root node --> 26675 <feature> 26676 <rects> 26677 <_>7 6 10 6 -1.</_> 26678 <_>7 8 10 2 3.</_></rects> 26679 <tilted>0</tilted></feature> 26680 <threshold>-0.0112239997833967</threshold> 26681 <left_val>0.2400619983673096</left_val> 26682 <right_val>-0.4486489892005920</right_val></_></_> 26683 <_> 26684 <!-- tree 54 --> 26685 <_> 26686 <!-- root node --> 26687 <feature> 26688 <rects> 26689 <_>2 5 18 3 -1.</_> 26690 <_>2 6 18 1 3.</_></rects> 26691 <tilted>0</tilted></feature> 26692 <threshold>-6.2899999320507050e-003</threshold> 26693 <left_val>0.4311949908733368</left_val> 26694 <right_val>-0.2380899935960770</right_val></_></_> 26695 <_> 26696 <!-- tree 55 --> 26697 <_> 26698 <!-- root node --> 26699 <feature> 26700 <rects> 26701 <_>5 1 15 8 -1.</_> 26702 <_>5 5 15 4 2.</_></rects> 26703 <tilted>0</tilted></feature> 26704 <threshold>0.0785909965634346</threshold> 26705 <left_val>0.0198650006204844</left_val> 26706 <right_val>0.8085380196571350</right_val></_></_> 26707 <_> 26708 <!-- tree 56 --> 26709 <_> 26710 <!-- root node --> 26711 <feature> 26712 <rects> 26713 <_>7 1 8 18 -1.</_> 26714 <_>7 10 8 9 2.</_></rects> 26715 <tilted>0</tilted></feature> 26716 <threshold>-0.0101789999753237</threshold> 26717 <left_val>0.1819320023059845</left_val> 26718 <right_val>-0.3287779986858368</right_val></_></_> 26719 <_> 26720 <!-- tree 57 --> 26721 <_> 26722 <!-- root node --> 26723 <feature> 26724 <rects> 26725 <_>0 10 24 3 -1.</_> 26726 <_>0 11 24 1 3.</_></rects> 26727 <tilted>0</tilted></feature> 26728 <threshold>0.0312270000576973</threshold> 26729 <left_val>0.1497389972209930</left_val> 26730 <right_val>-1.4180339574813843</right_val></_></_> 26731 <_> 26732 <!-- tree 58 --> 26733 <_> 26734 <!-- root node --> 26735 <feature> 26736 <rects> 26737 <_>0 2 6 13 -1.</_> 26738 <_>2 2 2 13 3.</_></rects> 26739 <tilted>0</tilted></feature> 26740 <threshold>0.0401969999074936</threshold> 26741 <left_val>-0.1976049989461899</left_val> 26742 <right_val>0.5850819945335388</right_val></_></_> 26743 <_> 26744 <!-- tree 59 --> 26745 <_> 26746 <!-- root node --> 26747 <feature> 26748 <rects> 26749 <_>16 0 8 10 -1.</_> 26750 <_>20 0 4 5 2.</_> 26751 <_>16 5 4 5 2.</_></rects> 26752 <tilted>0</tilted></feature> 26753 <threshold>0.0161380004137754</threshold> 26754 <left_val>5.0000002374872565e-004</left_val> 26755 <right_val>0.3905000090599060</right_val></_></_> 26756 <_> 26757 <!-- tree 60 --> 26758 <_> 26759 <!-- root node --> 26760 <feature> 26761 <rects> 26762 <_>5 1 10 9 -1.</_> 26763 <_>5 4 10 3 3.</_></rects> 26764 <tilted>0</tilted></feature> 26765 <threshold>-0.0455190017819405</threshold> 26766 <left_val>1.2646820545196533</left_val> 26767 <right_val>-0.1563259959220886</right_val></_></_> 26768 <_> 26769 <!-- tree 61 --> 26770 <_> 26771 <!-- root node --> 26772 <feature> 26773 <rects> 26774 <_>5 6 18 3 -1.</_> 26775 <_>5 7 18 1 3.</_></rects> 26776 <tilted>0</tilted></feature> 26777 <threshold>-0.0181300006806850</threshold> 26778 <left_val>0.6514850258827210</left_val> 26779 <right_val>0.0102359997108579</right_val></_></_> 26780 <_> 26781 <!-- tree 62 --> 26782 <_> 26783 <!-- root node --> 26784 <feature> 26785 <rects> 26786 <_>0 1 24 3 -1.</_> 26787 <_>0 2 24 1 3.</_></rects> 26788 <tilted>0</tilted></feature> 26789 <threshold>-0.0140019999817014</threshold> 26790 <left_val>-1.0344820022583008</left_val> 26791 <right_val>-0.0321829989552498</right_val></_></_> 26792 <_> 26793 <!-- tree 63 --> 26794 <_> 26795 <!-- root node --> 26796 <feature> 26797 <rects> 26798 <_>11 4 6 11 -1.</_> 26799 <_>13 4 2 11 3.</_></rects> 26800 <tilted>0</tilted></feature> 26801 <threshold>-0.0388160012662411</threshold> 26802 <left_val>-0.4787429869174957</left_val> 26803 <right_val>0.1629070043563843</right_val></_></_> 26804 <_> 26805 <!-- tree 64 --> 26806 <_> 26807 <!-- root node --> 26808 <feature> 26809 <rects> 26810 <_>0 0 8 10 -1.</_> 26811 <_>0 0 4 5 2.</_> 26812 <_>4 5 4 5 2.</_></rects> 26813 <tilted>0</tilted></feature> 26814 <threshold>0.0316560007631779</threshold> 26815 <left_val>-0.2098339945077896</left_val> 26816 <right_val>0.5457590222358704</right_val></_></_> 26817 <_> 26818 <!-- tree 65 --> 26819 <_> 26820 <!-- root node --> 26821 <feature> 26822 <rects> 26823 <_>4 16 18 3 -1.</_> 26824 <_>4 17 18 1 3.</_></rects> 26825 <tilted>0</tilted></feature> 26826 <threshold>-0.0108399996533990</threshold> 26827 <left_val>0.5189880132675171</left_val> 26828 <right_val>-0.0150800002738833</right_val></_></_> 26829 <_> 26830 <!-- tree 66 --> 26831 <_> 26832 <!-- root node --> 26833 <feature> 26834 <rects> 26835 <_>2 16 18 3 -1.</_> 26836 <_>2 17 18 1 3.</_></rects> 26837 <tilted>0</tilted></feature> 26838 <threshold>0.0120329996570945</threshold> 26839 <left_val>-0.2110760062932968</left_val> 26840 <right_val>0.7593700289726257</right_val></_></_> 26841 <_> 26842 <!-- tree 67 --> 26843 <_> 26844 <!-- root node --> 26845 <feature> 26846 <rects> 26847 <_>3 0 18 10 -1.</_> 26848 <_>12 0 9 5 2.</_> 26849 <_>3 5 9 5 2.</_></rects> 26850 <tilted>0</tilted></feature> 26851 <threshold>0.0707729980349541</threshold> 26852 <left_val>0.1804880052804947</left_val> 26853 <right_val>-0.7404850125312805</right_val></_></_> 26854 <_> 26855 <!-- tree 68 --> 26856 <_> 26857 <!-- root node --> 26858 <feature> 26859 <rects> 26860 <_>2 3 20 21 -1.</_> 26861 <_>12 3 10 21 2.</_></rects> 26862 <tilted>0</tilted></feature> 26863 <threshold>0.5313979983329773</threshold> 26864 <left_val>-0.1449169963598251</left_val> 26865 <right_val>1.5360039472579956</right_val></_></_> 26866 <_> 26867 <!-- tree 69 --> 26868 <_> 26869 <!-- root node --> 26870 <feature> 26871 <rects> 26872 <_>6 7 14 3 -1.</_> 26873 <_>6 7 7 3 2.</_></rects> 26874 <tilted>0</tilted></feature> 26875 <threshold>-0.0147740002721548</threshold> 26876 <left_val>-0.2815369963645935</left_val> 26877 <right_val>0.2040729969739914</right_val></_></_> 26878 <_> 26879 <!-- tree 70 --> 26880 <_> 26881 <!-- root node --> 26882 <feature> 26883 <rects> 26884 <_>0 9 12 6 -1.</_> 26885 <_>0 9 6 3 2.</_> 26886 <_>6 12 6 3 2.</_></rects> 26887 <tilted>0</tilted></feature> 26888 <threshold>-2.2410000674426556e-003</threshold> 26889 <left_val>-0.4487630128860474</left_val> 26890 <right_val>0.0539890006184578</right_val></_></_> 26891 <_> 26892 <!-- tree 71 --> 26893 <_> 26894 <!-- root node --> 26895 <feature> 26896 <rects> 26897 <_>3 14 21 4 -1.</_> 26898 <_>10 14 7 4 3.</_></rects> 26899 <tilted>0</tilted></feature> 26900 <threshold>0.0499680005013943</threshold> 26901 <left_val>0.0415140017867088</left_val> 26902 <right_val>0.2941710054874420</right_val></_></_> 26903 <_> 26904 <!-- tree 72 --> 26905 <_> 26906 <!-- root node --> 26907 <feature> 26908 <rects> 26909 <_>0 14 21 4 -1.</_> 26910 <_>7 14 7 4 3.</_></rects> 26911 <tilted>0</tilted></feature> 26912 <threshold>-0.0477019995450974</threshold> 26913 <left_val>0.3967429995536804</left_val> 26914 <right_val>-0.2830179929733276</right_val></_></_> 26915 <_> 26916 <!-- tree 73 --> 26917 <_> 26918 <!-- root node --> 26919 <feature> 26920 <rects> 26921 <_>5 21 18 3 -1.</_> 26922 <_>11 21 6 3 3.</_></rects> 26923 <tilted>0</tilted></feature> 26924 <threshold>-0.0913110002875328</threshold> 26925 <left_val>2.1994259357452393</left_val> 26926 <right_val>0.0879649966955185</right_val></_></_> 26927 <_> 26928 <!-- tree 74 --> 26929 <_> 26930 <!-- root node --> 26931 <feature> 26932 <rects> 26933 <_>1 21 18 3 -1.</_> 26934 <_>7 21 6 3 3.</_></rects> 26935 <tilted>0</tilted></feature> 26936 <threshold>0.0380700007081032</threshold> 26937 <left_val>-0.2802560031414032</left_val> 26938 <right_val>0.2515619993209839</right_val></_></_> 26939 <_> 26940 <!-- tree 75 --> 26941 <_> 26942 <!-- root node --> 26943 <feature> 26944 <rects> 26945 <_>19 4 4 18 -1.</_> 26946 <_>21 4 2 9 2.</_> 26947 <_>19 13 2 9 2.</_></rects> 26948 <tilted>0</tilted></feature> 26949 <threshold>-0.0155389998108149</threshold> 26950 <left_val>0.3415749967098236</left_val> 26951 <right_val>0.0179249998182058</right_val></_></_> 26952 <_> 26953 <!-- tree 76 --> 26954 <_> 26955 <!-- root node --> 26956 <feature> 26957 <rects> 26958 <_>3 7 18 3 -1.</_> 26959 <_>3 8 18 1 3.</_></rects> 26960 <tilted>0</tilted></feature> 26961 <threshold>-0.0154459998011589</threshold> 26962 <left_val>0.2868019938468933</left_val> 26963 <right_val>-0.2513589859008789</right_val></_></_> 26964 <_> 26965 <!-- tree 77 --> 26966 <_> 26967 <!-- root node --> 26968 <feature> 26969 <rects> 26970 <_>19 4 4 18 -1.</_> 26971 <_>21 4 2 9 2.</_> 26972 <_>19 13 2 9 2.</_></rects> 26973 <tilted>0</tilted></feature> 26974 <threshold>-0.0573880001902580</threshold> 26975 <left_val>0.6383000016212463</left_val> 26976 <right_val>0.0885979980230331</right_val></_></_> 26977 <_> 26978 <!-- tree 78 --> 26979 <_> 26980 <!-- root node --> 26981 <feature> 26982 <rects> 26983 <_>7 15 10 6 -1.</_> 26984 <_>7 17 10 2 3.</_></rects> 26985 <tilted>0</tilted></feature> 26986 <threshold>-5.9440000914037228e-003</threshold> 26987 <left_val>0.0790169984102249</left_val> 26988 <right_val>-0.4077489972114563</right_val></_></_> 26989 <_> 26990 <!-- tree 79 --> 26991 <_> 26992 <!-- root node --> 26993 <feature> 26994 <rects> 26995 <_>9 13 11 9 -1.</_> 26996 <_>9 16 11 3 3.</_></rects> 26997 <tilted>0</tilted></feature> 26998 <threshold>-0.0699689984321594</threshold> 26999 <left_val>-0.4464420080184937</left_val> 27000 <right_val>0.1721960008144379</right_val></_></_> 27001 <_> 27002 <!-- tree 80 --> 27003 <_> 27004 <!-- root node --> 27005 <feature> 27006 <rects> 27007 <_>0 6 4 10 -1.</_> 27008 <_>0 11 4 5 2.</_></rects> 27009 <tilted>0</tilted></feature> 27010 <threshold>-0.0250649992376566</threshold> 27011 <left_val>-0.9827020168304443</left_val> 27012 <right_val>-0.0353880003094673</right_val></_></_> 27013 <_> 27014 <!-- tree 81 --> 27015 <_> 27016 <!-- root node --> 27017 <feature> 27018 <rects> 27019 <_>15 16 9 6 -1.</_> 27020 <_>15 18 9 2 3.</_></rects> 27021 <tilted>0</tilted></feature> 27022 <threshold>0.0172160007059574</threshold> 27023 <left_val>0.2270590066909790</left_val> 27024 <right_val>-0.8055009841918945</right_val></_></_> 27025 <_> 27026 <!-- tree 82 --> 27027 <_> 27028 <!-- root node --> 27029 <feature> 27030 <rects> 27031 <_>1 5 4 18 -1.</_> 27032 <_>1 5 2 9 2.</_> 27033 <_>3 14 2 9 2.</_></rects> 27034 <tilted>0</tilted></feature> 27035 <threshold>-0.0442790016531944</threshold> 27036 <left_val>0.8395199775695801</left_val> 27037 <right_val>-0.1742960065603256</right_val></_></_> 27038 <_> 27039 <!-- tree 83 --> 27040 <_> 27041 <!-- root node --> 27042 <feature> 27043 <rects> 27044 <_>9 8 8 10 -1.</_> 27045 <_>13 8 4 5 2.</_> 27046 <_>9 13 4 5 2.</_></rects> 27047 <tilted>0</tilted></feature> 27048 <threshold>0.0439889989793301</threshold> 27049 <left_val>0.1155719980597496</left_val> 27050 <right_val>-1.9666889905929565</right_val></_></_> 27051 <_> 27052 <!-- tree 84 --> 27053 <_> 27054 <!-- root node --> 27055 <feature> 27056 <rects> 27057 <_>7 8 8 10 -1.</_> 27058 <_>7 8 4 5 2.</_> 27059 <_>11 13 4 5 2.</_></rects> 27060 <tilted>0</tilted></feature> 27061 <threshold>0.0159070007503033</threshold> 27062 <left_val>-0.0375760011374950</left_val> 27063 <right_val>-1.0311100482940674</right_val></_></_> 27064 <_> 27065 <!-- tree 85 --> 27066 <_> 27067 <!-- root node --> 27068 <feature> 27069 <rects> 27070 <_>9 8 12 5 -1.</_> 27071 <_>13 8 4 5 3.</_></rects> 27072 <tilted>0</tilted></feature> 27073 <threshold>-0.0927549973130226</threshold> 27074 <left_val>-1.3530019521713257</left_val> 27075 <right_val>0.1214129999279976</right_val></_></_> 27076 <_> 27077 <!-- tree 86 --> 27078 <_> 27079 <!-- root node --> 27080 <feature> 27081 <rects> 27082 <_>7 8 9 7 -1.</_> 27083 <_>10 8 3 7 3.</_></rects> 27084 <tilted>0</tilted></feature> 27085 <threshold>0.0710370019078255</threshold> 27086 <left_val>-0.1768430024385452</left_val> 27087 <right_val>0.7448520064353943</right_val></_></_> 27088 <_> 27089 <!-- tree 87 --> 27090 <_> 27091 <!-- root node --> 27092 <feature> 27093 <rects> 27094 <_>9 8 12 5 -1.</_> 27095 <_>13 8 4 5 3.</_></rects> 27096 <tilted>0</tilted></feature> 27097 <threshold>0.0577620007097721</threshold> 27098 <left_val>0.1283559948205948</left_val> 27099 <right_val>-0.4444420039653778</right_val></_></_> 27100 <_> 27101 <!-- tree 88 --> 27102 <_> 27103 <!-- root node --> 27104 <feature> 27105 <rects> 27106 <_>7 6 9 7 -1.</_> 27107 <_>10 6 3 7 3.</_></rects> 27108 <tilted>0</tilted></feature> 27109 <threshold>-0.0164320003241301</threshold> 27110 <left_val>0.8015270233154297</left_val> 27111 <right_val>-0.1749169975519180</right_val></_></_> 27112 <_> 27113 <!-- tree 89 --> 27114 <_> 27115 <!-- root node --> 27116 <feature> 27117 <rects> 27118 <_>9 8 12 5 -1.</_> 27119 <_>13 8 4 5 3.</_></rects> 27120 <tilted>0</tilted></feature> 27121 <threshold>0.0239390004426241</threshold> 27122 <left_val>0.1614499986171722</left_val> 27123 <right_val>-0.1236450001597405</right_val></_></_> 27124 <_> 27125 <!-- tree 90 --> 27126 <_> 27127 <!-- root node --> 27128 <feature> 27129 <rects> 27130 <_>10 5 4 18 -1.</_> 27131 <_>10 11 4 6 3.</_></rects> 27132 <tilted>0</tilted></feature> 27133 <threshold>0.0126360002905130</threshold> 27134 <left_val>0.1541199982166290</left_val> 27135 <right_val>-0.3329379856586456</right_val></_></_> 27136 <_> 27137 <!-- tree 91 --> 27138 <_> 27139 <!-- root node --> 27140 <feature> 27141 <rects> 27142 <_>5 5 14 12 -1.</_> 27143 <_>5 11 14 6 2.</_></rects> 27144 <tilted>0</tilted></feature> 27145 <threshold>-0.0543479993939400</threshold> 27146 <left_val>-1.8400700092315674</left_val> 27147 <right_val>0.1483599990606308</right_val></_></_> 27148 <_> 27149 <!-- tree 92 --> 27150 <_> 27151 <!-- root node --> 27152 <feature> 27153 <rects> 27154 <_>0 1 11 4 -1.</_> 27155 <_>0 3 11 2 2.</_></rects> 27156 <tilted>0</tilted></feature> 27157 <threshold>-0.0132619999349117</threshold> 27158 <left_val>-0.8083879947662354</left_val> 27159 <right_val>-0.0277260001748800</right_val></_></_> 27160 <_> 27161 <!-- tree 93 --> 27162 <_> 27163 <!-- root node --> 27164 <feature> 27165 <rects> 27166 <_>9 10 6 10 -1.</_> 27167 <_>11 10 2 10 3.</_></rects> 27168 <tilted>0</tilted></feature> 27169 <threshold>6.1340001411736012e-003</threshold> 27170 <left_val>-0.1378500014543533</left_val> 27171 <right_val>0.3285849988460541</right_val></_></_> 27172 <_> 27173 <!-- tree 94 --> 27174 <_> 27175 <!-- root node --> 27176 <feature> 27177 <rects> 27178 <_>2 17 11 6 -1.</_> 27179 <_>2 19 11 2 3.</_></rects> 27180 <tilted>0</tilted></feature> 27181 <threshold>0.0289910007268190</threshold> 27182 <left_val>-0.0255169998854399</left_val> 27183 <right_val>-0.8338720202445984</right_val></_></_> 27184 <_> 27185 <!-- tree 95 --> 27186 <_> 27187 <!-- root node --> 27188 <feature> 27189 <rects> 27190 <_>15 16 9 6 -1.</_> 27191 <_>15 18 9 2 3.</_></rects> 27192 <tilted>0</tilted></feature> 27193 <threshold>-0.0219860002398491</threshold> 27194 <left_val>-0.7373999953269959</left_val> 27195 <right_val>0.1788710057735443</right_val></_></_> 27196 <_> 27197 <!-- tree 96 --> 27198 <_> 27199 <!-- root node --> 27200 <feature> 27201 <rects> 27202 <_>1 10 18 2 -1.</_> 27203 <_>1 11 18 1 2.</_></rects> 27204 <tilted>0</tilted></feature> 27205 <threshold>5.3269998170435429e-003</threshold> 27206 <left_val>-0.4544929862022400</left_val> 27207 <right_val>0.0687910020351410</right_val></_></_> 27208 <_> 27209 <!-- tree 97 --> 27210 <_> 27211 <!-- root node --> 27212 <feature> 27213 <rects> 27214 <_>6 4 12 13 -1.</_> 27215 <_>10 4 4 13 3.</_></rects> 27216 <tilted>0</tilted></feature> 27217 <threshold>0.0860479995608330</threshold> 27218 <left_val>0.2100850045681000</left_val> 27219 <right_val>-0.3780890107154846</right_val></_></_> 27220 <_> 27221 <!-- tree 98 --> 27222 <_> 27223 <!-- root node --> 27224 <feature> 27225 <rects> 27226 <_>0 18 18 3 -1.</_> 27227 <_>0 19 18 1 3.</_></rects> 27228 <tilted>0</tilted></feature> 27229 <threshold>-8.5549997165799141e-003</threshold> 27230 <left_val>0.4013499915599823</left_val> 27231 <right_val>-0.2107409983873367</right_val></_></_> 27232 <_> 27233 <!-- tree 99 --> 27234 <_> 27235 <!-- root node --> 27236 <feature> 27237 <rects> 27238 <_>6 18 18 3 -1.</_> 27239 <_>6 19 18 1 3.</_></rects> 27240 <tilted>0</tilted></feature> 27241 <threshold>6.7790001630783081e-003</threshold> 27242 <left_val>-0.0216489993035793</left_val> 27243 <right_val>0.4542149901390076</right_val></_></_> 27244 <_> 27245 <!-- tree 100 --> 27246 <_> 27247 <!-- root node --> 27248 <feature> 27249 <rects> 27250 <_>0 16 9 6 -1.</_> 27251 <_>0 18 9 2 3.</_></rects> 27252 <tilted>0</tilted></feature> 27253 <threshold>-6.3959998078644276e-003</threshold> 27254 <left_val>-0.4981859922409058</left_val> 27255 <right_val>0.0759079977869987</right_val></_></_> 27256 <_> 27257 <!-- tree 101 --> 27258 <_> 27259 <!-- root node --> 27260 <feature> 27261 <rects> 27262 <_>13 15 9 6 -1.</_> 27263 <_>13 17 9 2 3.</_></rects> 27264 <tilted>0</tilted></feature> 27265 <threshold>8.9469999074935913e-003</threshold> 27266 <left_val>0.1785770058631897</left_val> 27267 <right_val>-0.2845489978790283</right_val></_></_> 27268 <_> 27269 <!-- tree 102 --> 27270 <_> 27271 <!-- root node --> 27272 <feature> 27273 <rects> 27274 <_>2 15 9 6 -1.</_> 27275 <_>2 17 9 2 3.</_></rects> 27276 <tilted>0</tilted></feature> 27277 <threshold>3.2589999027550220e-003</threshold> 27278 <left_val>0.0466249994933605</left_val> 27279 <right_val>-0.5520629882812500</right_val></_></_> 27280 <_> 27281 <!-- tree 103 --> 27282 <_> 27283 <!-- root node --> 27284 <feature> 27285 <rects> 27286 <_>13 1 6 16 -1.</_> 27287 <_>13 1 3 16 2.</_></rects> 27288 <tilted>0</tilted></feature> 27289 <threshold>0.0414769984781742</threshold> 27290 <left_val>0.1755049973726273</left_val> 27291 <right_val>-0.2070399969816208</right_val></_></_> 27292 <_> 27293 <!-- tree 104 --> 27294 <_> 27295 <!-- root node --> 27296 <feature> 27297 <rects> 27298 <_>5 1 6 16 -1.</_> 27299 <_>8 1 3 16 2.</_></rects> 27300 <tilted>0</tilted></feature> 27301 <threshold>-6.7449999041855335e-003</threshold> 27302 <left_val>-0.4639259874820709</left_val> 27303 <right_val>0.0693039968609810</right_val></_></_> 27304 <_> 27305 <!-- tree 105 --> 27306 <_> 27307 <!-- root node --> 27308 <feature> 27309 <rects> 27310 <_>11 5 6 10 -1.</_> 27311 <_>13 5 2 10 3.</_></rects> 27312 <tilted>0</tilted></feature> 27313 <threshold>0.0305649992078543</threshold> 27314 <left_val>0.0517349988222122</left_val> 27315 <right_val>0.7555050253868103</right_val></_></_> 27316 <_> 27317 <!-- tree 106 --> 27318 <_> 27319 <!-- root node --> 27320 <feature> 27321 <rects> 27322 <_>7 5 6 10 -1.</_> 27323 <_>9 5 2 10 3.</_></rects> 27324 <tilted>0</tilted></feature> 27325 <threshold>-7.4780001305043697e-003</threshold> 27326 <left_val>0.1489389985799789</left_val> 27327 <right_val>-0.3190680146217346</right_val></_></_> 27328 <_> 27329 <!-- tree 107 --> 27330 <_> 27331 <!-- root node --> 27332 <feature> 27333 <rects> 27334 <_>10 0 6 24 -1.</_> 27335 <_>12 0 2 24 3.</_></rects> 27336 <tilted>0</tilted></feature> 27337 <threshold>0.0890889987349510</threshold> 27338 <left_val>0.1373880058526993</left_val> 27339 <right_val>-1.1379710435867310</right_val></_></_> 27340 <_> 27341 <!-- tree 108 --> 27342 <_> 27343 <!-- root node --> 27344 <feature> 27345 <rects> 27346 <_>3 4 4 20 -1.</_> 27347 <_>3 4 2 10 2.</_> 27348 <_>5 14 2 10 2.</_></rects> 27349 <tilted>0</tilted></feature> 27350 <threshold>7.3230001144111156e-003</threshold> 27351 <left_val>-0.2882919907569885</left_val> 27352 <right_val>0.1908860057592392</right_val></_></_> 27353 <_> 27354 <!-- tree 109 --> 27355 <_> 27356 <!-- root node --> 27357 <feature> 27358 <rects> 27359 <_>14 0 6 9 -1.</_> 27360 <_>16 0 2 9 3.</_></rects> 27361 <tilted>0</tilted></feature> 27362 <threshold>-0.0182050000876188</threshold> 27363 <left_val>-0.3017860054969788</left_val> 27364 <right_val>0.1679580062627792</right_val></_></_> 27365 <_> 27366 <!-- tree 110 --> 27367 <_> 27368 <!-- root node --> 27369 <feature> 27370 <rects> 27371 <_>4 0 6 9 -1.</_> 27372 <_>6 0 2 9 3.</_></rects> 27373 <tilted>0</tilted></feature> 27374 <threshold>-0.0258280001580715</threshold> 27375 <left_val>-0.9813799858093262</left_val> 27376 <right_val>-0.0198609996587038</right_val></_></_> 27377 <_> 27378 <!-- tree 111 --> 27379 <_> 27380 <!-- root node --> 27381 <feature> 27382 <rects> 27383 <_>4 5 18 5 -1.</_> 27384 <_>10 5 6 5 3.</_></rects> 27385 <tilted>0</tilted></feature> 27386 <threshold>0.1093619987368584</threshold> 27387 <left_val>0.0487900003790855</left_val> 27388 <right_val>0.5311830043792725</right_val></_></_> 27389 <_> 27390 <!-- tree 112 --> 27391 <_> 27392 <!-- root node --> 27393 <feature> 27394 <rects> 27395 <_>5 6 6 9 -1.</_> 27396 <_>7 6 2 9 3.</_></rects> 27397 <tilted>0</tilted></feature> 27398 <threshold>-0.0114249996840954</threshold> 27399 <left_val>0.2370599955320358</left_val> 27400 <right_val>-0.2792530059814453</right_val></_></_> 27401 <_> 27402 <!-- tree 113 --> 27403 <_> 27404 <!-- root node --> 27405 <feature> 27406 <rects> 27407 <_>7 2 15 8 -1.</_> 27408 <_>12 2 5 8 3.</_></rects> 27409 <tilted>0</tilted></feature> 27410 <threshold>-0.0575659982860088</threshold> 27411 <left_val>0.4725539982318878</left_val> 27412 <right_val>0.0651710033416748</right_val></_></_> 27413 <_> 27414 <!-- tree 114 --> 27415 <_> 27416 <!-- root node --> 27417 <feature> 27418 <rects> 27419 <_>2 2 15 8 -1.</_> 27420 <_>7 2 5 8 3.</_></rects> 27421 <tilted>0</tilted></feature> 27422 <threshold>0.1027830019593239</threshold> 27423 <left_val>-0.2076510041952133</left_val> 27424 <right_val>0.5094770193099976</right_val></_></_> 27425 <_> 27426 <!-- tree 115 --> 27427 <_> 27428 <!-- root node --> 27429 <feature> 27430 <rects> 27431 <_>10 0 4 9 -1.</_> 27432 <_>10 0 2 9 2.</_></rects> 27433 <tilted>0</tilted></feature> 27434 <threshold>0.0270419996231794</threshold> 27435 <left_val>0.1642120033502579</left_val> 27436 <right_val>-1.4508620500564575</right_val></_></_> 27437 <_> 27438 <!-- tree 116 --> 27439 <_> 27440 <!-- root node --> 27441 <feature> 27442 <rects> 27443 <_>3 4 6 12 -1.</_> 27444 <_>3 4 3 6 2.</_> 27445 <_>6 10 3 6 2.</_></rects> 27446 <tilted>0</tilted></feature> 27447 <threshold>-0.0136350002139807</threshold> 27448 <left_val>-0.5654389858245850</left_val> 27449 <right_val>0.0237889997661114</right_val></_></_> 27450 <_> 27451 <!-- tree 117 --> 27452 <_> 27453 <!-- root node --> 27454 <feature> 27455 <rects> 27456 <_>16 0 8 18 -1.</_> 27457 <_>16 0 4 18 2.</_></rects> 27458 <tilted>0</tilted></feature> 27459 <threshold>-0.3215819895267487</threshold> 27460 <left_val>-3.5602829456329346</left_val> 27461 <right_val>0.1180130019783974</right_val></_></_> 27462 <_> 27463 <!-- tree 118 --> 27464 <_> 27465 <!-- root node --> 27466 <feature> 27467 <rects> 27468 <_>0 0 8 18 -1.</_> 27469 <_>4 0 4 18 2.</_></rects> 27470 <tilted>0</tilted></feature> 27471 <threshold>0.2045810073614121</threshold> 27472 <left_val>-0.0370160005986691</left_val> 27473 <right_val>-1.0225499868392944</right_val></_></_> 27474 <_> 27475 <!-- tree 119 --> 27476 <_> 27477 <!-- root node --> 27478 <feature> 27479 <rects> 27480 <_>0 7 24 6 -1.</_> 27481 <_>0 9 24 2 3.</_></rects> 27482 <tilted>0</tilted></feature> 27483 <threshold>-0.0703470036387444</threshold> 27484 <left_val>-0.5649189949035645</left_val> 27485 <right_val>0.1852519959211350</right_val></_></_> 27486 <_> 27487 <!-- tree 120 --> 27488 <_> 27489 <!-- root node --> 27490 <feature> 27491 <rects> 27492 <_>4 7 14 3 -1.</_> 27493 <_>11 7 7 3 2.</_></rects> 27494 <tilted>0</tilted></feature> 27495 <threshold>0.0378310009837151</threshold> 27496 <left_val>-0.0299019999802113</left_val> 27497 <right_val>-0.8292149901390076</right_val></_></_> 27498 <_> 27499 <!-- tree 121 --> 27500 <_> 27501 <!-- root node --> 27502 <feature> 27503 <rects> 27504 <_>10 8 8 15 -1.</_> 27505 <_>10 8 4 15 2.</_></rects> 27506 <tilted>0</tilted></feature> 27507 <threshold>-0.0702980011701584</threshold> 27508 <left_val>-0.5317230224609375</left_val> 27509 <right_val>0.1443019956350327</right_val></_></_> 27510 <_> 27511 <!-- tree 122 --> 27512 <_> 27513 <!-- root node --> 27514 <feature> 27515 <rects> 27516 <_>7 0 10 14 -1.</_> 27517 <_>12 0 5 14 2.</_></rects> 27518 <tilted>0</tilted></feature> 27519 <threshold>0.0632210001349449</threshold> 27520 <left_val>-0.2204120010137558</left_val> 27521 <right_val>0.4795219898223877</right_val></_></_> 27522 <_> 27523 <!-- tree 123 --> 27524 <_> 27525 <!-- root node --> 27526 <feature> 27527 <rects> 27528 <_>13 10 8 10 -1.</_> 27529 <_>17 10 4 5 2.</_> 27530 <_>13 15 4 5 2.</_></rects> 27531 <tilted>0</tilted></feature> 27532 <threshold>0.0363930016756058</threshold> 27533 <left_val>0.1422269940376282</left_val> 27534 <right_val>-0.6119390130043030</right_val></_></_> 27535 <_> 27536 <!-- tree 124 --> 27537 <_> 27538 <!-- root node --> 27539 <feature> 27540 <rects> 27541 <_>3 0 4 9 -1.</_> 27542 <_>5 0 2 9 2.</_></rects> 27543 <tilted>0</tilted></feature> 27544 <threshold>4.0099998004734516e-003</threshold> 27545 <left_val>-0.3456079959869385</left_val> 27546 <right_val>0.1173869967460632</right_val></_></_> 27547 <_> 27548 <!-- tree 125 --> 27549 <_> 27550 <!-- root node --> 27551 <feature> 27552 <rects> 27553 <_>16 1 6 8 -1.</_> 27554 <_>16 1 3 8 2.</_></rects> 27555 <tilted>0</tilted></feature> 27556 <threshold>-0.0491060018539429</threshold> 27557 <left_val>0.9598410129547119</left_val> 27558 <right_val>0.0649349987506866</right_val></_></_> 27559 <_> 27560 <!-- tree 126 --> 27561 <_> 27562 <!-- root node --> 27563 <feature> 27564 <rects> 27565 <_>2 1 6 8 -1.</_> 27566 <_>5 1 3 8 2.</_></rects> 27567 <tilted>0</tilted></feature> 27568 <threshold>-0.0715830028057098</threshold> 27569 <left_val>1.7385669946670532</left_val> 27570 <right_val>-0.1425289958715439</right_val></_></_> 27571 <_> 27572 <!-- tree 127 --> 27573 <_> 27574 <!-- root node --> 27575 <feature> 27576 <rects> 27577 <_>3 6 18 12 -1.</_> 27578 <_>3 10 18 4 3.</_></rects> 27579 <tilted>0</tilted></feature> 27580 <threshold>-0.0380089990794659</threshold> 27581 <left_val>1.3872820138931274</left_val> 27582 <right_val>0.0661880001425743</right_val></_></_> 27583 <_> 27584 <!-- tree 128 --> 27585 <_> 27586 <!-- root node --> 27587 <feature> 27588 <rects> 27589 <_>4 12 16 4 -1.</_> 27590 <_>4 14 16 2 2.</_></rects> 27591 <tilted>0</tilted></feature> 27592 <threshold>-3.1570000573992729e-003</threshold> 27593 <left_val>0.0536770001053810</left_val> 27594 <right_val>-0.5404800176620483</right_val></_></_> 27595 <_> 27596 <!-- tree 129 --> 27597 <_> 27598 <!-- root node --> 27599 <feature> 27600 <rects> 27601 <_>4 9 16 15 -1.</_> 27602 <_>4 14 16 5 3.</_></rects> 27603 <tilted>0</tilted></feature> 27604 <threshold>0.0194589998573065</threshold> 27605 <left_val>-0.0936200022697449</left_val> 27606 <right_val>0.3913100063800812</right_val></_></_> 27607 <_> 27608 <!-- tree 130 --> 27609 <_> 27610 <!-- root node --> 27611 <feature> 27612 <rects> 27613 <_>3 10 8 10 -1.</_> 27614 <_>3 10 4 5 2.</_> 27615 <_>7 15 4 5 2.</_></rects> 27616 <tilted>0</tilted></feature> 27617 <threshold>0.0112939998507500</threshold> 27618 <left_val>0.0372239984571934</left_val> 27619 <right_val>-0.5425180196762085</right_val></_></_> 27620 <_> 27621 <!-- tree 131 --> 27622 <_> 27623 <!-- root node --> 27624 <feature> 27625 <rects> 27626 <_>8 18 16 6 -1.</_> 27627 <_>16 18 8 3 2.</_> 27628 <_>8 21 8 3 2.</_></rects> 27629 <tilted>0</tilted></feature> 27630 <threshold>-0.0334950014948845</threshold> 27631 <left_val>0.9530789852142334</left_val> 27632 <right_val>0.0376969985663891</right_val></_></_> 27633 <_> 27634 <!-- tree 132 --> 27635 <_> 27636 <!-- root node --> 27637 <feature> 27638 <rects> 27639 <_>2 16 12 5 -1.</_> 27640 <_>6 16 4 5 3.</_></rects> 27641 <tilted>0</tilted></feature> 27642 <threshold>0.0920350030064583</threshold> 27643 <left_val>-0.1348839998245239</left_val> 27644 <right_val>2.2897069454193115</right_val></_></_> 27645 <_> 27646 <!-- tree 133 --> 27647 <_> 27648 <!-- root node --> 27649 <feature> 27650 <rects> 27651 <_>14 14 9 4 -1.</_> 27652 <_>14 16 9 2 2.</_></rects> 27653 <tilted>0</tilted></feature> 27654 <threshold>3.7529999390244484e-003</threshold> 27655 <left_val>0.2282419949769974</left_val> 27656 <right_val>-0.5998370051383972</right_val></_></_> 27657 <_> 27658 <!-- tree 134 --> 27659 <_> 27660 <!-- root node --> 27661 <feature> 27662 <rects> 27663 <_>7 14 9 6 -1.</_> 27664 <_>7 16 9 2 3.</_></rects> 27665 <tilted>0</tilted></feature> 27666 <threshold>0.0128480000421405</threshold> 27667 <left_val>-0.2200520038604736</left_val> 27668 <right_val>0.3722189962863922</right_val></_></_> 27669 <_> 27670 <!-- tree 135 --> 27671 <_> 27672 <!-- root node --> 27673 <feature> 27674 <rects> 27675 <_>4 10 16 12 -1.</_> 27676 <_>4 14 16 4 3.</_></rects> 27677 <tilted>0</tilted></feature> 27678 <threshold>-0.1431619971990585</threshold> 27679 <left_val>1.2855789661407471</left_val> 27680 <right_val>0.0472370013594627</right_val></_></_> 27681 <_> 27682 <!-- tree 136 --> 27683 <_> 27684 <!-- root node --> 27685 <feature> 27686 <rects> 27687 <_>0 13 19 6 -1.</_> 27688 <_>0 15 19 2 3.</_></rects> 27689 <tilted>0</tilted></feature> 27690 <threshold>-0.0968799963593483</threshold> 27691 <left_val>-3.9550929069519043</left_val> 27692 <right_val>-0.0729039981961250</right_val></_></_> 27693 <_> 27694 <!-- tree 137 --> 27695 <_> 27696 <!-- root node --> 27697 <feature> 27698 <rects> 27699 <_>10 13 9 6 -1.</_> 27700 <_>10 15 9 2 3.</_></rects> 27701 <tilted>0</tilted></feature> 27702 <threshold>-8.8459998369216919e-003</threshold> 27703 <left_val>0.3767499923706055</left_val> 27704 <right_val>-0.0464840009808540</right_val></_></_> 27705 <_> 27706 <!-- tree 138 --> 27707 <_> 27708 <!-- root node --> 27709 <feature> 27710 <rects> 27711 <_>5 0 3 23 -1.</_> 27712 <_>6 0 1 23 3.</_></rects> 27713 <tilted>0</tilted></feature> 27714 <threshold>0.0159000009298325</threshold> 27715 <left_val>-0.0244570001959801</left_val> 27716 <right_val>-0.8003479838371277</right_val></_></_> 27717 <_> 27718 <!-- tree 139 --> 27719 <_> 27720 <!-- root node --> 27721 <feature> 27722 <rects> 27723 <_>0 8 24 6 -1.</_> 27724 <_>0 10 24 2 3.</_></rects> 27725 <tilted>0</tilted></feature> 27726 <threshold>0.0703720003366470</threshold> 27727 <left_val>0.1701900064945221</left_val> 27728 <right_val>-0.6306899785995483</right_val></_></_> 27729 <_> 27730 <!-- tree 140 --> 27731 <_> 27732 <!-- root node --> 27733 <feature> 27734 <rects> 27735 <_>0 5 5 12 -1.</_> 27736 <_>0 9 5 4 3.</_></rects> 27737 <tilted>0</tilted></feature> 27738 <threshold>-0.0379539988934994</threshold> 27739 <left_val>-0.9366719722747803</left_val> 27740 <right_val>-0.0412140004336834</right_val></_></_> 27741 <_> 27742 <!-- tree 141 --> 27743 <_> 27744 <!-- root node --> 27745 <feature> 27746 <rects> 27747 <_>3 0 19 18 -1.</_> 27748 <_>3 9 19 9 2.</_></rects> 27749 <tilted>0</tilted></feature> 27750 <threshold>0.5159789919853210</threshold> 27751 <left_val>0.1308059990406036</left_val> 27752 <right_val>-1.5802290439605713</right_val></_></_> 27753 <_> 27754 <!-- tree 142 --> 27755 <_> 27756 <!-- root node --> 27757 <feature> 27758 <rects> 27759 <_>9 11 6 12 -1.</_> 27760 <_>9 11 3 6 2.</_> 27761 <_>12 17 3 6 2.</_></rects> 27762 <tilted>0</tilted></feature> 27763 <threshold>-0.0328430011868477</threshold> 27764 <left_val>-1.1441620588302612</left_val> 27765 <right_val>-0.0491739995777607</right_val></_></_> 27766 <_> 27767 <!-- tree 143 --> 27768 <_> 27769 <!-- root node --> 27770 <feature> 27771 <rects> 27772 <_>0 5 24 8 -1.</_> 27773 <_>12 5 12 4 2.</_> 27774 <_>0 9 12 4 2.</_></rects> 27775 <tilted>0</tilted></feature> 27776 <threshold>-0.0363570004701614</threshold> 27777 <left_val>0.4960640072822571</left_val> 27778 <right_val>-0.0344589985907078</right_val></_></_> 27779 <_> 27780 <!-- tree 144 --> 27781 <_> 27782 <!-- root node --> 27783 <feature> 27784 <rects> 27785 <_>6 18 9 4 -1.</_> 27786 <_>6 20 9 2 2.</_></rects> 27787 <tilted>0</tilted></feature> 27788 <threshold>6.8080001510679722e-003</threshold> 27789 <left_val>-0.3099780082702637</left_val> 27790 <right_val>0.1705480068922043</right_val></_></_> 27791 <_> 27792 <!-- tree 145 --> 27793 <_> 27794 <!-- root node --> 27795 <feature> 27796 <rects> 27797 <_>8 8 10 6 -1.</_> 27798 <_>8 10 10 2 3.</_></rects> 27799 <tilted>0</tilted></feature> 27800 <threshold>-0.0161140002310276</threshold> 27801 <left_val>-0.3790459930896759</left_val> 27802 <right_val>0.1607899963855743</right_val></_></_> 27803 <_> 27804 <!-- tree 146 --> 27805 <_> 27806 <!-- root node --> 27807 <feature> 27808 <rects> 27809 <_>2 7 20 3 -1.</_> 27810 <_>2 8 20 1 3.</_></rects> 27811 <tilted>0</tilted></feature> 27812 <threshold>8.4530003368854523e-003</threshold> 27813 <left_val>-0.1865549981594086</left_val> 27814 <right_val>0.5636770129203796</right_val></_></_> 27815 <_> 27816 <!-- tree 147 --> 27817 <_> 27818 <!-- root node --> 27819 <feature> 27820 <rects> 27821 <_>12 0 7 20 -1.</_> 27822 <_>12 10 7 10 2.</_></rects> 27823 <tilted>0</tilted></feature> 27824 <threshold>-0.1375239938497543</threshold> 27825 <left_val>-0.5898990035057068</left_val> 27826 <right_val>0.1174950003623962</right_val></_></_> 27827 <_> 27828 <!-- tree 148 --> 27829 <_> 27830 <!-- root node --> 27831 <feature> 27832 <rects> 27833 <_>5 0 7 20 -1.</_> 27834 <_>5 10 7 10 2.</_></rects> 27835 <tilted>0</tilted></feature> 27836 <threshold>0.1768800020217896</threshold> 27837 <left_val>-0.1542489975690842</left_val> 27838 <right_val>0.9291110038757324</right_val></_></_> 27839 <_> 27840 <!-- tree 149 --> 27841 <_> 27842 <!-- root node --> 27843 <feature> 27844 <rects> 27845 <_>14 2 2 18 -1.</_> 27846 <_>14 11 2 9 2.</_></rects> 27847 <tilted>0</tilted></feature> 27848 <threshold>7.9309996217489243e-003</threshold> 27849 <left_val>0.3219070136547089</left_val> 27850 <right_val>-0.1639260053634644</right_val></_></_> 27851 <_> 27852 <!-- tree 150 --> 27853 <_> 27854 <!-- root node --> 27855 <feature> 27856 <rects> 27857 <_>5 8 10 12 -1.</_> 27858 <_>10 8 5 12 2.</_></rects> 27859 <tilted>0</tilted></feature> 27860 <threshold>0.1097180023789406</threshold> 27861 <left_val>-0.1587650030851364</left_val> 27862 <right_val>1.0186259746551514</right_val></_></_> 27863 <_> 27864 <!-- tree 151 --> 27865 <_> 27866 <!-- root node --> 27867 <feature> 27868 <rects> 27869 <_>6 9 12 8 -1.</_> 27870 <_>12 9 6 4 2.</_> 27871 <_>6 13 6 4 2.</_></rects> 27872 <tilted>0</tilted></feature> 27873 <threshold>-0.0302930008620024</threshold> 27874 <left_val>0.7558730244636536</left_val> 27875 <right_val>0.0317949987947941</right_val></_></_> 27876 <_> 27877 <!-- tree 152 --> 27878 <_> 27879 <!-- root node --> 27880 <feature> 27881 <rects> 27882 <_>7 7 3 14 -1.</_> 27883 <_>7 14 3 7 2.</_></rects> 27884 <tilted>0</tilted></feature> 27885 <threshold>-0.0231180004775524</threshold> 27886 <left_val>-0.8845149874687195</left_val> 27887 <right_val>-9.5039997249841690e-003</right_val></_></_> 27888 <_> 27889 <!-- tree 153 --> 27890 <_> 27891 <!-- root node --> 27892 <feature> 27893 <rects> 27894 <_>11 2 12 16 -1.</_> 27895 <_>17 2 6 8 2.</_> 27896 <_>11 10 6 8 2.</_></rects> 27897 <tilted>0</tilted></feature> 27898 <threshold>-3.0900000128895044e-003</threshold> 27899 <left_val>0.2383829951286316</left_val> 27900 <right_val>-0.1160620003938675</right_val></_></_> 27901 <_> 27902 <!-- tree 154 --> 27903 <_> 27904 <!-- root node --> 27905 <feature> 27906 <rects> 27907 <_>7 0 6 9 -1.</_> 27908 <_>9 0 2 9 3.</_></rects> 27909 <tilted>0</tilted></feature> 27910 <threshold>-0.0333920009434223</threshold> 27911 <left_val>-1.8738139867782593</left_val> 27912 <right_val>-0.0685029998421669</right_val></_></_> 27913 <_> 27914 <!-- tree 155 --> 27915 <_> 27916 <!-- root node --> 27917 <feature> 27918 <rects> 27919 <_>13 14 9 4 -1.</_> 27920 <_>13 16 9 2 2.</_></rects> 27921 <tilted>0</tilted></feature> 27922 <threshold>0.0131900003179908</threshold> 27923 <left_val>0.1291989982128143</left_val> 27924 <right_val>-0.6751220226287842</right_val></_></_> 27925 <_> 27926 <!-- tree 156 --> 27927 <_> 27928 <!-- root node --> 27929 <feature> 27930 <rects> 27931 <_>0 12 22 4 -1.</_> 27932 <_>0 12 11 2 2.</_> 27933 <_>11 14 11 2 2.</_></rects> 27934 <tilted>0</tilted></feature> 27935 <threshold>0.0146610001102090</threshold> 27936 <left_val>-0.0248290002346039</left_val> 27937 <right_val>-0.7439680099487305</right_val></_></_> 27938 <_> 27939 <!-- tree 157 --> 27940 <_> 27941 <!-- root node --> 27942 <feature> 27943 <rects> 27944 <_>1 12 22 6 -1.</_> 27945 <_>12 12 11 3 2.</_> 27946 <_>1 15 11 3 2.</_></rects> 27947 <tilted>0</tilted></feature> 27948 <threshold>-0.0132480002939701</threshold> 27949 <left_val>0.4682019948959351</left_val> 27950 <right_val>-0.0241650007665157</right_val></_></_> 27951 <_> 27952 <!-- tree 158 --> 27953 <_> 27954 <!-- root node --> 27955 <feature> 27956 <rects> 27957 <_>6 6 9 6 -1.</_> 27958 <_>9 6 3 6 3.</_></rects> 27959 <tilted>0</tilted></feature> 27960 <threshold>-0.0162189994007349</threshold> 27961 <left_val>0.4008379876613617</left_val> 27962 <right_val>-0.2125570029020309</right_val></_></_> 27963 <_> 27964 <!-- tree 159 --> 27965 <_> 27966 <!-- root node --> 27967 <feature> 27968 <rects> 27969 <_>10 0 4 9 -1.</_> 27970 <_>10 0 2 9 2.</_></rects> 27971 <tilted>0</tilted></feature> 27972 <threshold>-0.0290520004928112</threshold> 27973 <left_val>-1.5650019645690918</left_val> 27974 <right_val>0.1437589973211289</right_val></_></_> 27975 <_> 27976 <!-- tree 160 --> 27977 <_> 27978 <!-- root node --> 27979 <feature> 27980 <rects> 27981 <_>3 8 18 7 -1.</_> 27982 <_>9 8 6 7 3.</_></rects> 27983 <tilted>0</tilted></feature> 27984 <threshold>-0.1015319973230362</threshold> 27985 <left_val>-1.9220689535140991</left_val> 27986 <right_val>-0.0695599988102913</right_val></_></_> 27987 <_> 27988 <!-- tree 161 --> 27989 <_> 27990 <!-- root node --> 27991 <feature> 27992 <rects> 27993 <_>0 6 24 6 -1.</_> 27994 <_>0 8 24 2 3.</_></rects> 27995 <tilted>0</tilted></feature> 27996 <threshold>0.0377539992332459</threshold> 27997 <left_val>0.1339679956436157</left_val> 27998 <right_val>-2.2639141082763672</right_val></_></_> 27999 <_> 28000 <!-- tree 162 --> 28001 <_> 28002 <!-- root node --> 28003 <feature> 28004 <rects> 28005 <_>0 11 24 10 -1.</_> 28006 <_>8 11 8 10 3.</_></rects> 28007 <tilted>0</tilted></feature> 28008 <threshold>-0.2855559885501862</threshold> 28009 <left_val>1.0215270519256592</left_val> 28010 <right_val>-0.1523219943046570</right_val></_></_> 28011 <_> 28012 <!-- tree 163 --> 28013 <_> 28014 <!-- root node --> 28015 <feature> 28016 <rects> 28017 <_>3 3 18 21 -1.</_> 28018 <_>9 3 6 21 3.</_></rects> 28019 <tilted>0</tilted></feature> 28020 <threshold>0.1536069959402084</threshold> 28021 <left_val>-0.0974090024828911</left_val> 28022 <right_val>0.4166240096092224</right_val></_></_> 28023 <_> 28024 <!-- tree 164 --> 28025 <_> 28026 <!-- root node --> 28027 <feature> 28028 <rects> 28029 <_>7 12 4 10 -1.</_> 28030 <_>9 12 2 10 2.</_></rects> 28031 <tilted>0</tilted></feature> 28032 <threshold>-2.1199999901000410e-004</threshold> 28033 <left_val>0.1127189993858337</left_val> 28034 <right_val>-0.4165399968624115</right_val></_></_> 28035 <_> 28036 <!-- tree 165 --> 28037 <_> 28038 <!-- root node --> 28039 <feature> 28040 <rects> 28041 <_>10 16 10 8 -1.</_> 28042 <_>15 16 5 4 2.</_> 28043 <_>10 20 5 4 2.</_></rects> 28044 <tilted>0</tilted></feature> 28045 <threshold>-0.0205979999154806</threshold> 28046 <left_val>0.6054049730300903</left_val> 28047 <right_val>0.0624679997563362</right_val></_></_> 28048 <_> 28049 <!-- tree 166 --> 28050 <_> 28051 <!-- root node --> 28052 <feature> 28053 <rects> 28054 <_>8 6 6 9 -1.</_> 28055 <_>10 6 2 9 3.</_></rects> 28056 <tilted>0</tilted></feature> 28057 <threshold>0.0373539999127388</threshold> 28058 <left_val>-0.1891900002956390</left_val> 28059 <right_val>0.4646469950675964</right_val></_></_> 28060 <_> 28061 <!-- tree 167 --> 28062 <_> 28063 <!-- root node --> 28064 <feature> 28065 <rects> 28066 <_>12 10 6 12 -1.</_> 28067 <_>15 10 3 6 2.</_> 28068 <_>12 16 3 6 2.</_></rects> 28069 <tilted>0</tilted></feature> 28070 <threshold>0.0572750009596348</threshold> 28071 <left_val>0.1156530007719994</left_val> 28072 <right_val>-1.3213009834289551</right_val></_></_> 28073 <_> 28074 <!-- tree 168 --> 28075 <_> 28076 <!-- root node --> 28077 <feature> 28078 <rects> 28079 <_>6 10 6 12 -1.</_> 28080 <_>6 10 3 6 2.</_> 28081 <_>9 16 3 6 2.</_></rects> 28082 <tilted>0</tilted></feature> 28083 <threshold>5.1029999740421772e-003</threshold> 28084 <left_val>-0.2806150019168854</left_val> 28085 <right_val>0.1931339949369431</right_val></_></_> 28086 <_> 28087 <!-- tree 169 --> 28088 <_> 28089 <!-- root node --> 28090 <feature> 28091 <rects> 28092 <_>16 12 6 12 -1.</_> 28093 <_>19 12 3 6 2.</_> 28094 <_>16 18 3 6 2.</_></rects> 28095 <tilted>0</tilted></feature> 28096 <threshold>-0.0546449981629848</threshold> 28097 <left_val>0.7242850065231323</left_val> 28098 <right_val>0.0754479989409447</right_val></_></_> 28099 <_> 28100 <!-- tree 170 --> 28101 <_> 28102 <!-- root node --> 28103 <feature> 28104 <rects> 28105 <_>2 12 6 12 -1.</_> 28106 <_>2 12 3 6 2.</_> 28107 <_>5 18 3 6 2.</_></rects> 28108 <tilted>0</tilted></feature> 28109 <threshold>0.0253490004688501</threshold> 28110 <left_val>-0.1948180049657822</left_val> 28111 <right_val>0.4603280127048492</right_val></_></_> 28112 <_> 28113 <!-- tree 171 --> 28114 <_> 28115 <!-- root node --> 28116 <feature> 28117 <rects> 28118 <_>10 15 6 9 -1.</_> 28119 <_>12 15 2 9 3.</_></rects> 28120 <tilted>0</tilted></feature> 28121 <threshold>0.0243110004812479</threshold> 28122 <left_val>0.1556410044431686</left_val> 28123 <right_val>-0.4991390109062195</right_val></_></_> 28124 <_> 28125 <!-- tree 172 --> 28126 <_> 28127 <!-- root node --> 28128 <feature> 28129 <rects> 28130 <_>8 15 6 9 -1.</_> 28131 <_>10 15 2 9 3.</_></rects> 28132 <tilted>0</tilted></feature> 28133 <threshold>0.0359620004892349</threshold> 28134 <left_val>-0.0585730001330376</left_val> 28135 <right_val>-1.5418399572372437</right_val></_></_> 28136 <_> 28137 <!-- tree 173 --> 28138 <_> 28139 <!-- root node --> 28140 <feature> 28141 <rects> 28142 <_>14 20 10 4 -1.</_> 28143 <_>14 20 5 4 2.</_></rects> 28144 <tilted>0</tilted></feature> 28145 <threshold>-0.1000069975852966</threshold> 28146 <left_val>-1.6100039482116699</left_val> 28147 <right_val>0.1145050004124641</right_val></_></_> 28148 <_> 28149 <!-- tree 174 --> 28150 <_> 28151 <!-- root node --> 28152 <feature> 28153 <rects> 28154 <_>0 20 10 4 -1.</_> 28155 <_>5 20 5 4 2.</_></rects> 28156 <tilted>0</tilted></feature> 28157 <threshold>0.0844359993934631</threshold> 28158 <left_val>-0.0614069998264313</left_val> 28159 <right_val>-1.4673349857330322</right_val></_></_> 28160 <_> 28161 <!-- tree 175 --> 28162 <_> 28163 <!-- root node --> 28164 <feature> 28165 <rects> 28166 <_>11 17 9 6 -1.</_> 28167 <_>11 19 9 2 3.</_></rects> 28168 <tilted>0</tilted></feature> 28169 <threshold>0.0159479994326830</threshold> 28170 <left_val>0.1628790050745010</left_val> 28171 <right_val>-0.1102640032768250</right_val></_></_> 28172 <_> 28173 <!-- tree 176 --> 28174 <_> 28175 <!-- root node --> 28176 <feature> 28177 <rects> 28178 <_>3 2 14 4 -1.</_> 28179 <_>3 4 14 2 2.</_></rects> 28180 <tilted>0</tilted></feature> 28181 <threshold>0.0338240005075932</threshold> 28182 <left_val>-0.1793269962072372</left_val> 28183 <right_val>0.5721840262413025</right_val></_></_> 28184 <_> 28185 <!-- tree 177 --> 28186 <_> 28187 <!-- root node --> 28188 <feature> 28189 <rects> 28190 <_>10 1 10 4 -1.</_> 28191 <_>10 3 10 2 2.</_></rects> 28192 <tilted>0</tilted></feature> 28193 <threshold>-0.0619960017502308</threshold> 28194 <left_val>4.6511812210083008</left_val> 28195 <right_val>0.0945340022444725</right_val></_></_> 28196 <_> 28197 <!-- tree 178 --> 28198 <_> 28199 <!-- root node --> 28200 <feature> 28201 <rects> 28202 <_>0 15 10 4 -1.</_> 28203 <_>5 15 5 4 2.</_></rects> 28204 <tilted>0</tilted></feature> 28205 <threshold>0.0698769986629486</threshold> 28206 <left_val>-0.1698590070009232</left_val> 28207 <right_val>0.8702899813652039</right_val></_></_> 28208 <_> 28209 <!-- tree 179 --> 28210 <_> 28211 <!-- root node --> 28212 <feature> 28213 <rects> 28214 <_>19 2 3 19 -1.</_> 28215 <_>20 2 1 19 3.</_></rects> 28216 <tilted>0</tilted></feature> 28217 <threshold>-0.0279169995337725</threshold> 28218 <left_val>0.9104250073432922</left_val> 28219 <right_val>0.0568270012736321</right_val></_></_> 28220 <_> 28221 <!-- tree 180 --> 28222 <_> 28223 <!-- root node --> 28224 <feature> 28225 <rects> 28226 <_>4 12 9 8 -1.</_> 28227 <_>7 12 3 8 3.</_></rects> 28228 <tilted>0</tilted></feature> 28229 <threshold>-0.0127640003338456</threshold> 28230 <left_val>0.2206670045852661</left_val> 28231 <right_val>-0.2776910066604614</right_val></_></_></trees> 28232 <stage_threshold>-3.3196411132812500</stage_threshold> 28233 <parent>20</parent> 28234 <next>-1</next></_> 28235 <_> 28236 <!-- stage 22 --> 28237 <trees> 28238 <_> 28239 <!-- tree 0 --> 28240 <_> 28241 <!-- root node --> 28242 <feature> 28243 <rects> 28244 <_>4 7 5 12 -1.</_> 28245 <_>4 11 5 4 3.</_></rects> 28246 <tilted>0</tilted></feature> 28247 <threshold>0.0216620005667210</threshold> 28248 <left_val>-0.8986889719963074</left_val> 28249 <right_val>0.2943629920482636</right_val></_></_> 28250 <_> 28251 <!-- tree 1 --> 28252 <_> 28253 <!-- root node --> 28254 <feature> 28255 <rects> 28256 <_>0 1 24 3 -1.</_> 28257 <_>8 1 8 3 3.</_></rects> 28258 <tilted>0</tilted></feature> 28259 <threshold>0.1004450023174286</threshold> 28260 <left_val>-0.3765920102596283</left_val> 28261 <right_val>0.6089100241661072</right_val></_></_> 28262 <_> 28263 <!-- tree 2 --> 28264 <_> 28265 <!-- root node --> 28266 <feature> 28267 <rects> 28268 <_>6 8 12 4 -1.</_> 28269 <_>6 10 12 2 2.</_></rects> 28270 <tilted>0</tilted></feature> 28271 <threshold>0.0260039996355772</threshold> 28272 <left_val>-0.3812850117683411</left_val> 28273 <right_val>0.3921740055084229</right_val></_></_> 28274 <_> 28275 <!-- tree 3 --> 28276 <_> 28277 <!-- root node --> 28278 <feature> 28279 <rects> 28280 <_>19 3 4 10 -1.</_> 28281 <_>19 3 2 10 2.</_></rects> 28282 <tilted>0</tilted></feature> 28283 <threshold>0.0284410007297993</threshold> 28284 <left_val>-0.1818230003118515</left_val> 28285 <right_val>0.5892720222473145</right_val></_></_> 28286 <_> 28287 <!-- tree 4 --> 28288 <_> 28289 <!-- root node --> 28290 <feature> 28291 <rects> 28292 <_>0 6 9 6 -1.</_> 28293 <_>3 6 3 6 3.</_></rects> 28294 <tilted>0</tilted></feature> 28295 <threshold>0.0386120006442070</threshold> 28296 <left_val>-0.2239959985017777</left_val> 28297 <right_val>0.6377999782562256</right_val></_></_> 28298 <_> 28299 <!-- tree 5 --> 28300 <_> 28301 <!-- root node --> 28302 <feature> 28303 <rects> 28304 <_>18 0 6 22 -1.</_> 28305 <_>20 0 2 22 3.</_></rects> 28306 <tilted>0</tilted></feature> 28307 <threshold>-0.0465949997305870</threshold> 28308 <left_val>0.7081220149993897</left_val> 28309 <right_val>-0.1466619968414307</right_val></_></_> 28310 <_> 28311 <!-- tree 6 --> 28312 <_> 28313 <!-- root node --> 28314 <feature> 28315 <rects> 28316 <_>0 0 6 22 -1.</_> 28317 <_>2 0 2 22 3.</_></rects> 28318 <tilted>0</tilted></feature> 28319 <threshold>-0.0427919998764992</threshold> 28320 <left_val>0.4768039882183075</left_val> 28321 <right_val>-0.2923319935798645</right_val></_></_> 28322 <_> 28323 <!-- tree 7 --> 28324 <_> 28325 <!-- root node --> 28326 <feature> 28327 <rects> 28328 <_>5 15 19 3 -1.</_> 28329 <_>5 16 19 1 3.</_></rects> 28330 <tilted>0</tilted></feature> 28331 <threshold>3.7960000336170197e-003</threshold> 28332 <left_val>-0.1851029992103577</left_val> 28333 <right_val>0.5262669920921326</right_val></_></_> 28334 <_> 28335 <!-- tree 8 --> 28336 <_> 28337 <!-- root node --> 28338 <feature> 28339 <rects> 28340 <_>10 7 4 15 -1.</_> 28341 <_>10 12 4 5 3.</_></rects> 28342 <tilted>0</tilted></feature> 28343 <threshold>0.0423489995300770</threshold> 28344 <left_val>0.0392449982464314</left_val> 28345 <right_val>-0.8919770121574402</right_val></_></_> 28346 <_> 28347 <!-- tree 9 --> 28348 <_> 28349 <!-- root node --> 28350 <feature> 28351 <rects> 28352 <_>9 6 6 9 -1.</_> 28353 <_>11 6 2 9 3.</_></rects> 28354 <tilted>0</tilted></feature> 28355 <threshold>0.0195989999920130</threshold> 28356 <left_val>-0.2335840016603470</left_val> 28357 <right_val>0.4414649903774262</right_val></_></_> 28358 <_> 28359 <!-- tree 10 --> 28360 <_> 28361 <!-- root node --> 28362 <feature> 28363 <rects> 28364 <_>0 21 18 3 -1.</_> 28365 <_>0 22 18 1 3.</_></rects> 28366 <tilted>0</tilted></feature> 28367 <threshold>8.7400001939386129e-004</threshold> 28368 <left_val>-0.4606359899044037</left_val> 28369 <right_val>0.1768960058689117</right_val></_></_> 28370 <_> 28371 <!-- tree 11 --> 28372 <_> 28373 <!-- root node --> 28374 <feature> 28375 <rects> 28376 <_>7 3 10 15 -1.</_> 28377 <_>7 8 10 5 3.</_></rects> 28378 <tilted>0</tilted></feature> 28379 <threshold>-4.3629999272525311e-003</threshold> 28380 <left_val>0.3349319994449616</left_val> 28381 <right_val>-0.2989340126514435</right_val></_></_> 28382 <_> 28383 <!-- tree 12 --> 28384 <_> 28385 <!-- root node --> 28386 <feature> 28387 <rects> 28388 <_>1 7 18 3 -1.</_> 28389 <_>1 8 18 1 3.</_></rects> 28390 <tilted>0</tilted></feature> 28391 <threshold>0.0169730000197887</threshold> 28392 <left_val>-0.1640869975090027</left_val> 28393 <right_val>1.5993679761886597</right_val></_></_> 28394 <_> 28395 <!-- tree 13 --> 28396 <_> 28397 <!-- root node --> 28398 <feature> 28399 <rects> 28400 <_>8 2 9 6 -1.</_> 28401 <_>11 2 3 6 3.</_></rects> 28402 <tilted>0</tilted></feature> 28403 <threshold>0.0360639989376068</threshold> 28404 <left_val>0.2260169982910156</left_val> 28405 <right_val>-0.5318610072135925</right_val></_></_> 28406 <_> 28407 <!-- tree 14 --> 28408 <_> 28409 <!-- root node --> 28410 <feature> 28411 <rects> 28412 <_>0 10 24 14 -1.</_> 28413 <_>0 17 24 7 2.</_></rects> 28414 <tilted>0</tilted></feature> 28415 <threshold>-0.0708649978041649</threshold> 28416 <left_val>0.1522050052881241</left_val> 28417 <right_val>-0.4191460013389587</right_val></_></_> 28418 <_> 28419 <!-- tree 15 --> 28420 <_> 28421 <!-- root node --> 28422 <feature> 28423 <rects> 28424 <_>13 9 8 10 -1.</_> 28425 <_>17 9 4 5 2.</_> 28426 <_>13 14 4 5 2.</_></rects> 28427 <tilted>0</tilted></feature> 28428 <threshold>-0.0630759969353676</threshold> 28429 <left_val>-1.4874019622802734</left_val> 28430 <right_val>0.1295370012521744</right_val></_></_> 28431 <_> 28432 <!-- tree 16 --> 28433 <_> 28434 <!-- root node --> 28435 <feature> 28436 <rects> 28437 <_>10 5 4 9 -1.</_> 28438 <_>12 5 2 9 2.</_></rects> 28439 <tilted>0</tilted></feature> 28440 <threshold>0.0296700000762939</threshold> 28441 <left_val>-0.1914590001106262</left_val> 28442 <right_val>0.9818490147590637</right_val></_></_> 28443 <_> 28444 <!-- tree 17 --> 28445 <_> 28446 <!-- root node --> 28447 <feature> 28448 <rects> 28449 <_>13 9 8 10 -1.</_> 28450 <_>17 9 4 5 2.</_> 28451 <_>13 14 4 5 2.</_></rects> 28452 <tilted>0</tilted></feature> 28453 <threshold>0.0378739982843399</threshold> 28454 <left_val>0.1345950067043304</left_val> 28455 <right_val>-0.5631629824638367</right_val></_></_> 28456 <_> 28457 <!-- tree 18 --> 28458 <_> 28459 <!-- root node --> 28460 <feature> 28461 <rects> 28462 <_>7 11 10 10 -1.</_> 28463 <_>7 11 5 5 2.</_> 28464 <_>12 16 5 5 2.</_></rects> 28465 <tilted>0</tilted></feature> 28466 <threshold>-0.0332890003919601</threshold> 28467 <left_val>-1.0828030109405518</left_val> 28468 <right_val>-0.0115040000528097</right_val></_></_> 28469 <_> 28470 <!-- tree 19 --> 28471 <_> 28472 <!-- root node --> 28473 <feature> 28474 <rects> 28475 <_>4 13 18 4 -1.</_> 28476 <_>13 13 9 2 2.</_> 28477 <_>4 15 9 2 2.</_></rects> 28478 <tilted>0</tilted></feature> 28479 <threshold>-0.0316089987754822</threshold> 28480 <left_val>-0.5922449827194214</left_val> 28481 <right_val>0.1339479982852936</right_val></_></_> 28482 <_> 28483 <!-- tree 20 --> 28484 <_> 28485 <!-- root node --> 28486 <feature> 28487 <rects> 28488 <_>0 0 19 2 -1.</_> 28489 <_>0 1 19 1 2.</_></rects> 28490 <tilted>0</tilted></feature> 28491 <threshold>1.0740000288933516e-003</threshold> 28492 <left_val>-0.4918580055236816</left_val> 28493 <right_val>0.0944460034370422</right_val></_></_> 28494 <_> 28495 <!-- tree 21 --> 28496 <_> 28497 <!-- root node --> 28498 <feature> 28499 <rects> 28500 <_>0 18 24 6 -1.</_> 28501 <_>8 18 8 6 3.</_></rects> 28502 <tilted>0</tilted></feature> 28503 <threshold>-0.0715560019016266</threshold> 28504 <left_val>0.5971019864082336</left_val> 28505 <right_val>-0.0395530015230179</right_val></_></_> 28506 <_> 28507 <!-- tree 22 --> 28508 <_> 28509 <!-- root node --> 28510 <feature> 28511 <rects> 28512 <_>6 4 8 16 -1.</_> 28513 <_>6 12 8 8 2.</_></rects> 28514 <tilted>0</tilted></feature> 28515 <threshold>-0.0811700001358986</threshold> 28516 <left_val>-1.1817820072174072</left_val> 28517 <right_val>-0.0282540004700422</right_val></_></_> 28518 <_> 28519 <!-- tree 23 --> 28520 <_> 28521 <!-- root node --> 28522 <feature> 28523 <rects> 28524 <_>7 8 10 4 -1.</_> 28525 <_>7 10 10 2 2.</_></rects> 28526 <tilted>0</tilted></feature> 28527 <threshold>4.4860001653432846e-003</threshold> 28528 <left_val>-0.6102809906005859</left_val> 28529 <right_val>0.2261909991502762</right_val></_></_> 28530 <_> 28531 <!-- tree 24 --> 28532 <_> 28533 <!-- root node --> 28534 <feature> 28535 <rects> 28536 <_>0 3 6 9 -1.</_> 28537 <_>0 6 6 3 3.</_></rects> 28538 <tilted>0</tilted></feature> 28539 <threshold>-0.0421760007739067</threshold> 28540 <left_val>-1.1435619592666626</left_val> 28541 <right_val>-0.0290019996464252</right_val></_></_> 28542 <_> 28543 <!-- tree 25 --> 28544 <_> 28545 <!-- root node --> 28546 <feature> 28547 <rects> 28548 <_>13 15 7 9 -1.</_> 28549 <_>13 18 7 3 3.</_></rects> 28550 <tilted>0</tilted></feature> 28551 <threshold>-0.0656400024890900</threshold> 28552 <left_val>-1.6470279693603516</left_val> 28553 <right_val>0.1281030029058456</right_val></_></_> 28554 <_> 28555 <!-- tree 26 --> 28556 <_> 28557 <!-- root node --> 28558 <feature> 28559 <rects> 28560 <_>3 18 12 6 -1.</_> 28561 <_>3 18 6 3 2.</_> 28562 <_>9 21 6 3 2.</_></rects> 28563 <tilted>0</tilted></feature> 28564 <threshold>0.0181889999657869</threshold> 28565 <left_val>-0.3114939928054810</left_val> 28566 <right_val>0.2573960125446320</right_val></_></_> 28567 <_> 28568 <!-- tree 27 --> 28569 <_> 28570 <!-- root node --> 28571 <feature> 28572 <rects> 28573 <_>12 14 6 9 -1.</_> 28574 <_>12 17 6 3 3.</_></rects> 28575 <tilted>0</tilted></feature> 28576 <threshold>-0.0515200011432171</threshold> 28577 <left_val>-0.6920689940452576</left_val> 28578 <right_val>0.1527079939842224</right_val></_></_> 28579 <_> 28580 <!-- tree 28 --> 28581 <_> 28582 <!-- root node --> 28583 <feature> 28584 <rects> 28585 <_>2 15 15 8 -1.</_> 28586 <_>2 19 15 4 2.</_></rects> 28587 <tilted>0</tilted></feature> 28588 <threshold>-0.0471509993076324</threshold> 28589 <left_val>-0.7186830043792725</left_val> 28590 <right_val>2.6879999786615372e-003</right_val></_></_> 28591 <_> 28592 <!-- tree 29 --> 28593 <_> 28594 <!-- root node --> 28595 <feature> 28596 <rects> 28597 <_>9 6 6 16 -1.</_> 28598 <_>9 14 6 8 2.</_></rects> 28599 <tilted>0</tilted></feature> 28600 <threshold>0.0174889992922544</threshold> 28601 <left_val>0.2237119972705841</left_val> 28602 <right_val>-0.5538179874420166</right_val></_></_> 28603 <_> 28604 <!-- tree 30 --> 28605 <_> 28606 <!-- root node --> 28607 <feature> 28608 <rects> 28609 <_>6 6 7 12 -1.</_> 28610 <_>6 10 7 4 3.</_></rects> 28611 <tilted>0</tilted></feature> 28612 <threshold>-0.0252640005201101</threshold> 28613 <left_val>1.0319819450378418</left_val> 28614 <right_val>-0.1749649941921234</right_val></_></_> 28615 <_> 28616 <!-- tree 31 --> 28617 <_> 28618 <!-- root node --> 28619 <feature> 28620 <rects> 28621 <_>14 6 6 9 -1.</_> 28622 <_>14 9 6 3 3.</_></rects> 28623 <tilted>0</tilted></feature> 28624 <threshold>-0.0407450012862682</threshold> 28625 <left_val>0.4496159851551056</left_val> 28626 <right_val>0.0393490009009838</right_val></_></_> 28627 <_> 28628 <!-- tree 32 --> 28629 <_> 28630 <!-- root node --> 28631 <feature> 28632 <rects> 28633 <_>5 14 6 9 -1.</_> 28634 <_>5 17 6 3 3.</_></rects> 28635 <tilted>0</tilted></feature> 28636 <threshold>-0.0376669988036156</threshold> 28637 <left_val>-0.8547570109367371</left_val> 28638 <right_val>-0.0124639999121428</right_val></_></_> 28639 <_> 28640 <!-- tree 33 --> 28641 <_> 28642 <!-- root node --> 28643 <feature> 28644 <rects> 28645 <_>10 8 6 9 -1.</_> 28646 <_>12 8 2 9 3.</_></rects> 28647 <tilted>0</tilted></feature> 28648 <threshold>-0.0134110003709793</threshold> 28649 <left_val>0.5784559845924377</left_val> 28650 <right_val>-0.0174679998308420</right_val></_></_> 28651 <_> 28652 <!-- tree 34 --> 28653 <_> 28654 <!-- root node --> 28655 <feature> 28656 <rects> 28657 <_>6 6 4 18 -1.</_> 28658 <_>6 6 2 9 2.</_> 28659 <_>8 15 2 9 2.</_></rects> 28660 <tilted>0</tilted></feature> 28661 <threshold>-7.8999997640494257e-005</threshold> 28662 <left_val>-0.3774920105934143</left_val> 28663 <right_val>0.1396179944276810</right_val></_></_> 28664 <_> 28665 <!-- tree 35 --> 28666 <_> 28667 <!-- root node --> 28668 <feature> 28669 <rects> 28670 <_>14 9 6 12 -1.</_> 28671 <_>17 9 3 6 2.</_> 28672 <_>14 15 3 6 2.</_></rects> 28673 <tilted>0</tilted></feature> 28674 <threshold>-0.0114150000736117</threshold> 28675 <left_val>-0.2618660032749176</left_val> 28676 <right_val>0.2371249943971634</right_val></_></_> 28677 <_> 28678 <!-- tree 36 --> 28679 <_> 28680 <!-- root node --> 28681 <feature> 28682 <rects> 28683 <_>4 9 6 12 -1.</_> 28684 <_>4 9 3 6 2.</_> 28685 <_>7 15 3 6 2.</_></rects> 28686 <tilted>0</tilted></feature> 28687 <threshold>0.0372000001370907</threshold> 28688 <left_val>-0.0286260005086660</left_val> 28689 <right_val>-1.2945239543914795</right_val></_></_> 28690 <_> 28691 <!-- tree 37 --> 28692 <_> 28693 <!-- root node --> 28694 <feature> 28695 <rects> 28696 <_>14 15 9 6 -1.</_> 28697 <_>14 17 9 2 3.</_></rects> 28698 <tilted>0</tilted></feature> 28699 <threshold>3.4050000831484795e-003</threshold> 28700 <left_val>0.2053139954805374</left_val> 28701 <right_val>-0.1874749958515167</right_val></_></_> 28702 <_> 28703 <!-- tree 38 --> 28704 <_> 28705 <!-- root node --> 28706 <feature> 28707 <rects> 28708 <_>0 20 18 4 -1.</_> 28709 <_>0 20 9 2 2.</_> 28710 <_>9 22 9 2 2.</_></rects> 28711 <tilted>0</tilted></feature> 28712 <threshold>-0.0224830005317926</threshold> 28713 <left_val>0.6702719926834106</left_val> 28714 <right_val>-0.1959400027990341</right_val></_></_> 28715 <_> 28716 <!-- tree 39 --> 28717 <_> 28718 <!-- root node --> 28719 <feature> 28720 <rects> 28721 <_>13 18 9 6 -1.</_> 28722 <_>13 20 9 2 3.</_></rects> 28723 <tilted>0</tilted></feature> 28724 <threshold>0.0232749991118908</threshold> 28725 <left_val>0.1740539968013763</left_val> 28726 <right_val>-0.3274630010128021</right_val></_></_> 28727 <_> 28728 <!-- tree 40 --> 28729 <_> 28730 <!-- root node --> 28731 <feature> 28732 <rects> 28733 <_>2 18 9 6 -1.</_> 28734 <_>2 20 9 2 3.</_></rects> 28735 <tilted>0</tilted></feature> 28736 <threshold>-0.0139170000329614</threshold> 28737 <left_val>-0.8395429849624634</left_val> 28738 <right_val>-6.3760001212358475e-003</right_val></_></_> 28739 <_> 28740 <!-- tree 41 --> 28741 <_> 28742 <!-- root node --> 28743 <feature> 28744 <rects> 28745 <_>6 16 18 3 -1.</_> 28746 <_>6 17 18 1 3.</_></rects> 28747 <tilted>0</tilted></feature> 28748 <threshold>7.5429999269545078e-003</threshold> 28749 <left_val>-0.0341949984431267</left_val> 28750 <right_val>0.5899819731712341</right_val></_></_> 28751 <_> 28752 <!-- tree 42 --> 28753 <_> 28754 <!-- root node --> 28755 <feature> 28756 <rects> 28757 <_>0 16 18 3 -1.</_> 28758 <_>0 17 18 1 3.</_></rects> 28759 <tilted>0</tilted></feature> 28760 <threshold>-0.0115390000864863</threshold> 28761 <left_val>0.4214279949665070</left_val> 28762 <right_val>-0.2351049929857254</right_val></_></_> 28763 <_> 28764 <!-- tree 43 --> 28765 <_> 28766 <!-- root node --> 28767 <feature> 28768 <rects> 28769 <_>19 2 4 22 -1.</_> 28770 <_>21 2 2 11 2.</_> 28771 <_>19 13 2 11 2.</_></rects> 28772 <tilted>0</tilted></feature> 28773 <threshold>0.0525019988417625</threshold> 28774 <left_val>0.0693039968609810</left_val> 28775 <right_val>0.7322649955749512</right_val></_></_> 28776 <_> 28777 <!-- tree 44 --> 28778 <_> 28779 <!-- root node --> 28780 <feature> 28781 <rects> 28782 <_>1 2 4 22 -1.</_> 28783 <_>1 2 2 11 2.</_> 28784 <_>3 13 2 11 2.</_></rects> 28785 <tilted>0</tilted></feature> 28786 <threshold>0.0527159981429577</threshold> 28787 <left_val>-0.1568810045719147</left_val> 28788 <right_val>1.0907289981842041</right_val></_></_> 28789 <_> 28790 <!-- tree 45 --> 28791 <_> 28792 <!-- root node --> 28793 <feature> 28794 <rects> 28795 <_>15 0 2 24 -1.</_> 28796 <_>15 0 1 24 2.</_></rects> 28797 <tilted>0</tilted></feature> 28798 <threshold>-0.0117260003462434</threshold> 28799 <left_val>-0.7093430161476135</left_val> 28800 <right_val>0.1682880073785782</right_val></_></_> 28801 <_> 28802 <!-- tree 46 --> 28803 <_> 28804 <!-- root node --> 28805 <feature> 28806 <rects> 28807 <_>3 20 16 4 -1.</_> 28808 <_>11 20 8 4 2.</_></rects> 28809 <tilted>0</tilted></feature> 28810 <threshold>0.0959459990262985</threshold> 28811 <left_val>-0.1619289964437485</left_val> 28812 <right_val>1.0072519779205322</right_val></_></_> 28813 <_> 28814 <!-- tree 47 --> 28815 <_> 28816 <!-- root node --> 28817 <feature> 28818 <rects> 28819 <_>11 6 4 18 -1.</_> 28820 <_>13 6 2 9 2.</_> 28821 <_>11 15 2 9 2.</_></rects> 28822 <tilted>0</tilted></feature> 28823 <threshold>-0.0158719997853041</threshold> 28824 <left_val>0.3900839984416962</left_val> 28825 <right_val>-0.0537770017981529</right_val></_></_> 28826 <_> 28827 <!-- tree 48 --> 28828 <_> 28829 <!-- root node --> 28830 <feature> 28831 <rects> 28832 <_>7 9 10 14 -1.</_> 28833 <_>7 9 5 7 2.</_> 28834 <_>12 16 5 7 2.</_></rects> 28835 <tilted>0</tilted></feature> 28836 <threshold>0.0348180010914803</threshold> 28837 <left_val>0.0171799995005131</left_val> 28838 <right_val>-0.9394180178642273</right_val></_></_> 28839 <_> 28840 <!-- tree 49 --> 28841 <_> 28842 <!-- root node --> 28843 <feature> 28844 <rects> 28845 <_>14 6 6 9 -1.</_> 28846 <_>14 9 6 3 3.</_></rects> 28847 <tilted>0</tilted></feature> 28848 <threshold>0.0347919985651970</threshold> 28849 <left_val>0.0504629984498024</left_val> 28850 <right_val>0.5446569919586182</right_val></_></_> 28851 <_> 28852 <!-- tree 50 --> 28853 <_> 28854 <!-- root node --> 28855 <feature> 28856 <rects> 28857 <_>3 6 7 9 -1.</_> 28858 <_>3 9 7 3 3.</_></rects> 28859 <tilted>0</tilted></feature> 28860 <threshold>0.0162840001285076</threshold> 28861 <left_val>-0.2698130011558533</left_val> 28862 <right_val>0.4036529958248138</right_val></_></_> 28863 <_> 28864 <!-- tree 51 --> 28865 <_> 28866 <!-- root node --> 28867 <feature> 28868 <rects> 28869 <_>20 4 4 20 -1.</_> 28870 <_>22 4 2 10 2.</_> 28871 <_>20 14 2 10 2.</_></rects> 28872 <tilted>0</tilted></feature> 28873 <threshold>-0.0443190000951290</threshold> 28874 <left_val>0.8439999818801880</left_val> 28875 <right_val>0.0328829996287823</right_val></_></_> 28876 <_> 28877 <!-- tree 52 --> 28878 <_> 28879 <!-- root node --> 28880 <feature> 28881 <rects> 28882 <_>7 6 6 9 -1.</_> 28883 <_>7 9 6 3 3.</_></rects> 28884 <tilted>0</tilted></feature> 28885 <threshold>-5.5689997971057892e-003</threshold> 28886 <left_val>0.1530939936637878</left_val> 28887 <right_val>-0.3495979905128479</right_val></_></_> 28888 <_> 28889 <!-- tree 53 --> 28890 <_> 28891 <!-- root node --> 28892 <feature> 28893 <rects> 28894 <_>7 0 10 14 -1.</_> 28895 <_>12 0 5 7 2.</_> 28896 <_>7 7 5 7 2.</_></rects> 28897 <tilted>0</tilted></feature> 28898 <threshold>-0.0658420026302338</threshold> 28899 <left_val>-0.9271119832992554</left_val> 28900 <right_val>0.1680099964141846</right_val></_></_> 28901 <_> 28902 <!-- tree 54 --> 28903 <_> 28904 <!-- root node --> 28905 <feature> 28906 <rects> 28907 <_>2 1 18 6 -1.</_> 28908 <_>11 1 9 6 2.</_></rects> 28909 <tilted>0</tilted></feature> 28910 <threshold>-0.0733370035886765</threshold> 28911 <left_val>0.5161449909210205</left_val> 28912 <right_val>-0.2023600041866303</right_val></_></_> 28913 <_> 28914 <!-- tree 55 --> 28915 <_> 28916 <!-- root node --> 28917 <feature> 28918 <rects> 28919 <_>15 0 2 24 -1.</_> 28920 <_>15 0 1 24 2.</_></rects> 28921 <tilted>0</tilted></feature> 28922 <threshold>0.0164500009268522</threshold> 28923 <left_val>0.1395059973001480</left_val> 28924 <right_val>-0.4930129945278168</right_val></_></_> 28925 <_> 28926 <!-- tree 56 --> 28927 <_> 28928 <!-- root node --> 28929 <feature> 28930 <rects> 28931 <_>7 0 2 24 -1.</_> 28932 <_>8 0 1 24 2.</_></rects> 28933 <tilted>0</tilted></feature> 28934 <threshold>-9.2630004510283470e-003</threshold> 28935 <left_val>-0.9010199904441834</left_val> 28936 <right_val>-0.0161160007119179</right_val></_></_> 28937 <_> 28938 <!-- tree 57 --> 28939 <_> 28940 <!-- root node --> 28941 <feature> 28942 <rects> 28943 <_>13 12 6 7 -1.</_> 28944 <_>13 12 3 7 2.</_></rects> 28945 <tilted>0</tilted></feature> 28946 <threshold>5.9139998629689217e-003</threshold> 28947 <left_val>0.1985819935798645</left_val> 28948 <right_val>-0.1673129945993424</right_val></_></_> 28949 <_> 28950 <!-- tree 58 --> 28951 <_> 28952 <!-- root node --> 28953 <feature> 28954 <rects> 28955 <_>5 12 6 7 -1.</_> 28956 <_>8 12 3 7 2.</_></rects> 28957 <tilted>0</tilted></feature> 28958 <threshold>-8.4699998842552304e-004</threshold> 28959 <left_val>0.0940050035715103</left_val> 28960 <right_val>-0.4157089889049530</right_val></_></_> 28961 <_> 28962 <!-- tree 59 --> 28963 <_> 28964 <!-- root node --> 28965 <feature> 28966 <rects> 28967 <_>3 5 18 19 -1.</_> 28968 <_>9 5 6 19 3.</_></rects> 28969 <tilted>0</tilted></feature> 28970 <threshold>0.2053290009498596</threshold> 28971 <left_val>-0.0600220002233982</left_val> 28972 <right_val>0.7099360227584839</right_val></_></_> 28973 <_> 28974 <!-- tree 60 --> 28975 <_> 28976 <!-- root node --> 28977 <feature> 28978 <rects> 28979 <_>5 6 9 6 -1.</_> 28980 <_>8 6 3 6 3.</_></rects> 28981 <tilted>0</tilted></feature> 28982 <threshold>-0.0168830007314682</threshold> 28983 <left_val>0.2439219951629639</left_val> 28984 <right_val>-0.3055180013179779</right_val></_></_> 28985 <_> 28986 <!-- tree 61 --> 28987 <_> 28988 <!-- root node --> 28989 <feature> 28990 <rects> 28991 <_>9 5 9 6 -1.</_> 28992 <_>12 5 3 6 3.</_></rects> 28993 <tilted>0</tilted></feature> 28994 <threshold>-0.0191110000014305</threshold> 28995 <left_val>0.6122990250587463</left_val> 28996 <right_val>0.0242529995739460</right_val></_></_> 28997 <_> 28998 <!-- tree 62 --> 28999 <_> 29000 <!-- root node --> 29001 <feature> 29002 <rects> 29003 <_>3 16 10 8 -1.</_> 29004 <_>3 16 5 4 2.</_> 29005 <_>8 20 5 4 2.</_></rects> 29006 <tilted>0</tilted></feature> 29007 <threshold>-0.0259629990905523</threshold> 29008 <left_val>0.9076499938964844</left_val> 29009 <right_val>-0.1672209948301315</right_val></_></_> 29010 <_> 29011 <!-- tree 63 --> 29012 <_> 29013 <!-- root node --> 29014 <feature> 29015 <rects> 29016 <_>19 8 5 15 -1.</_> 29017 <_>19 13 5 5 3.</_></rects> 29018 <tilted>0</tilted></feature> 29019 <threshold>-0.0217620003968477</threshold> 29020 <left_val>-0.3138470053672791</left_val> 29021 <right_val>0.2013459950685501</right_val></_></_> 29022 <_> 29023 <!-- tree 64 --> 29024 <_> 29025 <!-- root node --> 29026 <feature> 29027 <rects> 29028 <_>0 8 5 15 -1.</_> 29029 <_>0 13 5 5 3.</_></rects> 29030 <tilted>0</tilted></feature> 29031 <threshold>-0.0241199992597103</threshold> 29032 <left_val>-0.6658840179443359</left_val> 29033 <right_val>7.4559999629855156e-003</right_val></_></_> 29034 <_> 29035 <!-- tree 65 --> 29036 <_> 29037 <!-- root node --> 29038 <feature> 29039 <rects> 29040 <_>20 4 4 20 -1.</_> 29041 <_>22 4 2 10 2.</_> 29042 <_>20 14 2 10 2.</_></rects> 29043 <tilted>0</tilted></feature> 29044 <threshold>0.0471299998462200</threshold> 29045 <left_val>0.0595339983701706</left_val> 29046 <right_val>0.8780450224876404</right_val></_></_> 29047 <_> 29048 <!-- tree 66 --> 29049 <_> 29050 <!-- root node --> 29051 <feature> 29052 <rects> 29053 <_>0 4 4 20 -1.</_> 29054 <_>0 4 2 10 2.</_> 29055 <_>2 14 2 10 2.</_></rects> 29056 <tilted>0</tilted></feature> 29057 <threshold>-0.0459849983453751</threshold> 29058 <left_val>0.8006799817085266</left_val> 29059 <right_val>-0.1725230067968369</right_val></_></_> 29060 <_> 29061 <!-- tree 67 --> 29062 <_> 29063 <!-- root node --> 29064 <feature> 29065 <rects> 29066 <_>7 7 10 4 -1.</_> 29067 <_>7 7 5 4 2.</_></rects> 29068 <tilted>0</tilted></feature> 29069 <threshold>0.0265079997479916</threshold> 29070 <left_val>0.1877409964799881</left_val> 29071 <right_val>-0.6085060238838196</right_val></_></_> 29072 <_> 29073 <!-- tree 68 --> 29074 <_> 29075 <!-- root node --> 29076 <feature> 29077 <rects> 29078 <_>4 19 14 4 -1.</_> 29079 <_>11 19 7 4 2.</_></rects> 29080 <tilted>0</tilted></feature> 29081 <threshold>-0.0486150011420250</threshold> 29082 <left_val>0.5864409804344177</left_val> 29083 <right_val>-0.1942770034074783</right_val></_></_> 29084 <_> 29085 <!-- tree 69 --> 29086 <_> 29087 <!-- root node --> 29088 <feature> 29089 <rects> 29090 <_>10 11 12 3 -1.</_> 29091 <_>10 11 6 3 2.</_></rects> 29092 <tilted>0</tilted></feature> 29093 <threshold>-0.0185620002448559</threshold> 29094 <left_val>-0.2558790147304535</left_val> 29095 <right_val>0.1632619947195053</right_val></_></_> 29096 <_> 29097 <!-- tree 70 --> 29098 <_> 29099 <!-- root node --> 29100 <feature> 29101 <rects> 29102 <_>0 1 24 3 -1.</_> 29103 <_>0 2 24 1 3.</_></rects> 29104 <tilted>0</tilted></feature> 29105 <threshold>0.0126780001446605</threshold> 29106 <left_val>-0.0142280003055930</left_val> 29107 <right_val>-0.7673810124397278</right_val></_></_> 29108 <_> 29109 <!-- tree 71 --> 29110 <_> 29111 <!-- root node --> 29112 <feature> 29113 <rects> 29114 <_>7 2 14 20 -1.</_> 29115 <_>14 2 7 10 2.</_> 29116 <_>7 12 7 10 2.</_></rects> 29117 <tilted>0</tilted></feature> 29118 <threshold>-1.1919999960809946e-003</threshold> 29119 <left_val>0.2049500048160553</left_val> 29120 <right_val>-0.1140429973602295</right_val></_></_> 29121 <_> 29122 <!-- tree 72 --> 29123 <_> 29124 <!-- root node --> 29125 <feature> 29126 <rects> 29127 <_>0 13 6 9 -1.</_> 29128 <_>2 13 2 9 3.</_></rects> 29129 <tilted>0</tilted></feature> 29130 <threshold>-0.0490889996290207</threshold> 29131 <left_val>-1.0740849971771240</left_val> 29132 <right_val>-0.0389409996569157</right_val></_></_> 29133 <_> 29134 <!-- tree 73 --> 29135 <_> 29136 <!-- root node --> 29137 <feature> 29138 <rects> 29139 <_>13 0 4 19 -1.</_> 29140 <_>13 0 2 19 2.</_></rects> 29141 <tilted>0</tilted></feature> 29142 <threshold>-0.0174369998276234</threshold> 29143 <left_val>-0.5797380208969116</left_val> 29144 <right_val>0.1858450025320053</right_val></_></_> 29145 <_> 29146 <!-- tree 74 --> 29147 <_> 29148 <!-- root node --> 29149 <feature> 29150 <rects> 29151 <_>1 11 14 3 -1.</_> 29152 <_>8 11 7 3 2.</_></rects> 29153 <tilted>0</tilted></feature> 29154 <threshold>-0.0147700002416968</threshold> 29155 <left_val>-0.6615030169487000</left_val> 29156 <right_val>5.3119999356567860e-003</right_val></_></_> 29157 <_> 29158 <!-- tree 75 --> 29159 <_> 29160 <!-- root node --> 29161 <feature> 29162 <rects> 29163 <_>7 1 16 20 -1.</_> 29164 <_>15 1 8 10 2.</_> 29165 <_>7 11 8 10 2.</_></rects> 29166 <tilted>0</tilted></feature> 29167 <threshold>-0.2290520071983337</threshold> 29168 <left_val>-0.4830510020256043</left_val> 29169 <right_val>0.1232639998197556</right_val></_></_> 29170 <_> 29171 <!-- tree 76 --> 29172 <_> 29173 <!-- root node --> 29174 <feature> 29175 <rects> 29176 <_>0 10 21 9 -1.</_> 29177 <_>7 10 7 9 3.</_></rects> 29178 <tilted>0</tilted></feature> 29179 <threshold>-0.1270709931850433</threshold> 29180 <left_val>0.5745260119438171</left_val> 29181 <right_val>-0.1942040026187897</right_val></_></_> 29182 <_> 29183 <!-- tree 77 --> 29184 <_> 29185 <!-- root node --> 29186 <feature> 29187 <rects> 29188 <_>6 19 15 5 -1.</_> 29189 <_>11 19 5 5 3.</_></rects> 29190 <tilted>0</tilted></feature> 29191 <threshold>0.0103390002623200</threshold> 29192 <left_val>-0.0546419993042946</left_val> 29193 <right_val>0.2450180053710938</right_val></_></_> 29194 <_> 29195 <!-- tree 78 --> 29196 <_> 29197 <!-- root node --> 29198 <feature> 29199 <rects> 29200 <_>8 10 6 6 -1.</_> 29201 <_>11 10 3 6 2.</_></rects> 29202 <tilted>0</tilted></feature> 29203 <threshold>6.9010001607239246e-003</threshold> 29204 <left_val>0.1218060031533241</left_val> 29205 <right_val>-0.3879739940166473</right_val></_></_> 29206 <_> 29207 <!-- tree 79 --> 29208 <_> 29209 <!-- root node --> 29210 <feature> 29211 <rects> 29212 <_>7 1 16 20 -1.</_> 29213 <_>15 1 8 10 2.</_> 29214 <_>7 11 8 10 2.</_></rects> 29215 <tilted>0</tilted></feature> 29216 <threshold>0.2902539968490601</threshold> 29217 <left_val>0.1096619963645935</left_val> 29218 <right_val>-30.</right_val></_></_> 29219 <_> 29220 <!-- tree 80 --> 29221 <_> 29222 <!-- root node --> 29223 <feature> 29224 <rects> 29225 <_>1 1 16 20 -1.</_> 29226 <_>1 1 8 10 2.</_> 29227 <_>9 11 8 10 2.</_></rects> 29228 <tilted>0</tilted></feature> 29229 <threshold>-0.2380499988794327</threshold> 29230 <left_val>-1.7352679967880249</left_val> 29231 <right_val>-0.0638099983334541</right_val></_></_> 29232 <_> 29233 <!-- tree 81 --> 29234 <_> 29235 <!-- root node --> 29236 <feature> 29237 <rects> 29238 <_>16 4 3 12 -1.</_> 29239 <_>16 10 3 6 2.</_></rects> 29240 <tilted>0</tilted></feature> 29241 <threshold>0.0624810010194778</threshold> 29242 <left_val>0.1352300047874451</left_val> 29243 <right_val>-0.7030109763145447</right_val></_></_> 29244 <_> 29245 <!-- tree 82 --> 29246 <_> 29247 <!-- root node --> 29248 <feature> 29249 <rects> 29250 <_>5 4 3 12 -1.</_> 29251 <_>5 10 3 6 2.</_></rects> 29252 <tilted>0</tilted></feature> 29253 <threshold>4.7109997831285000e-003</threshold> 29254 <left_val>-0.4698410034179688</left_val> 29255 <right_val>0.0603419989347458</right_val></_></_> 29256 <_> 29257 <!-- tree 83 --> 29258 <_> 29259 <!-- root node --> 29260 <feature> 29261 <rects> 29262 <_>7 6 10 8 -1.</_> 29263 <_>12 6 5 4 2.</_> 29264 <_>7 10 5 4 2.</_></rects> 29265 <tilted>0</tilted></feature> 29266 <threshold>-0.0278159994632006</threshold> 29267 <left_val>0.6980760097503662</left_val> 29268 <right_val>1.3719999697059393e-003</right_val></_></_> 29269 <_> 29270 <!-- tree 84 --> 29271 <_> 29272 <!-- root node --> 29273 <feature> 29274 <rects> 29275 <_>4 9 6 6 -1.</_> 29276 <_>4 12 6 3 2.</_></rects> 29277 <tilted>0</tilted></feature> 29278 <threshold>-0.0170200001448393</threshold> 29279 <left_val>1.6870440244674683</left_val> 29280 <right_val>-0.1431480050086975</right_val></_></_> 29281 <_> 29282 <!-- tree 85 --> 29283 <_> 29284 <!-- root node --> 29285 <feature> 29286 <rects> 29287 <_>6 5 12 4 -1.</_> 29288 <_>6 7 12 2 2.</_></rects> 29289 <tilted>0</tilted></feature> 29290 <threshold>-0.0497549995779991</threshold> 29291 <left_val>0.7949770092964172</left_val> 29292 <right_val>7.7199999941512942e-004</right_val></_></_> 29293 <_> 29294 <!-- tree 86 --> 29295 <_> 29296 <!-- root node --> 29297 <feature> 29298 <rects> 29299 <_>9 2 5 15 -1.</_> 29300 <_>9 7 5 5 3.</_></rects> 29301 <tilted>0</tilted></feature> 29302 <threshold>-0.0747329965233803</threshold> 29303 <left_val>-1.0132360458374023</left_val> 29304 <right_val>-0.0193889997899532</right_val></_></_> 29305 <_> 29306 <!-- tree 87 --> 29307 <_> 29308 <!-- root node --> 29309 <feature> 29310 <rects> 29311 <_>15 0 9 6 -1.</_> 29312 <_>15 2 9 2 3.</_></rects> 29313 <tilted>0</tilted></feature> 29314 <threshold>0.0320090018212795</threshold> 29315 <left_val>0.1441210061311722</left_val> 29316 <right_val>-0.4213910102844238</right_val></_></_> 29317 <_> 29318 <!-- tree 88 --> 29319 <_> 29320 <!-- root node --> 29321 <feature> 29322 <rects> 29323 <_>6 0 11 10 -1.</_> 29324 <_>6 5 11 5 2.</_></rects> 29325 <tilted>0</tilted></feature> 29326 <threshold>-0.0944639965891838</threshold> 29327 <left_val>0.5068259835243225</left_val> 29328 <right_val>-0.2047889977693558</right_val></_></_> 29329 <_> 29330 <!-- tree 89 --> 29331 <_> 29332 <!-- root node --> 29333 <feature> 29334 <rects> 29335 <_>12 7 4 12 -1.</_> 29336 <_>12 13 4 6 2.</_></rects> 29337 <tilted>0</tilted></feature> 29338 <threshold>-0.0154269998893142</threshold> 29339 <left_val>-0.1581130027770996</left_val> 29340 <right_val>0.1780689954757690</right_val></_></_> 29341 <_> 29342 <!-- tree 90 --> 29343 <_> 29344 <!-- root node --> 29345 <feature> 29346 <rects> 29347 <_>7 2 9 4 -1.</_> 29348 <_>7 4 9 2 2.</_></rects> 29349 <tilted>0</tilted></feature> 29350 <threshold>-4.0540001355111599e-003</threshold> 29351 <left_val>-0.5436670184135437</left_val> 29352 <right_val>0.0312350001186132</right_val></_></_> 29353 <_> 29354 <!-- tree 91 --> 29355 <_> 29356 <!-- root node --> 29357 <feature> 29358 <rects> 29359 <_>6 0 13 6 -1.</_> 29360 <_>6 2 13 2 3.</_></rects> 29361 <tilted>0</tilted></feature> 29362 <threshold>3.0080000869929790e-003</threshold> 29363 <left_val>-0.1737679988145828</left_val> 29364 <right_val>0.3044170141220093</right_val></_></_> 29365 <_> 29366 <!-- tree 92 --> 29367 <_> 29368 <!-- root node --> 29369 <feature> 29370 <rects> 29371 <_>10 6 4 18 -1.</_> 29372 <_>10 6 2 9 2.</_> 29373 <_>12 15 2 9 2.</_></rects> 29374 <tilted>0</tilted></feature> 29375 <threshold>-0.0100919995456934</threshold> 29376 <left_val>0.2510380148887634</left_val> 29377 <right_val>-0.2622410058975220</right_val></_></_> 29378 <_> 29379 <!-- tree 93 --> 29380 <_> 29381 <!-- root node --> 29382 <feature> 29383 <rects> 29384 <_>10 8 6 9 -1.</_> 29385 <_>12 8 2 9 3.</_></rects> 29386 <tilted>0</tilted></feature> 29387 <threshold>-0.0388180017471313</threshold> 29388 <left_val>0.9322670102119446</left_val> 29389 <right_val>0.0726599991321564</right_val></_></_> 29390 <_> 29391 <!-- tree 94 --> 29392 <_> 29393 <!-- root node --> 29394 <feature> 29395 <rects> 29396 <_>3 18 10 6 -1.</_> 29397 <_>3 20 10 2 3.</_></rects> 29398 <tilted>0</tilted></feature> 29399 <threshold>0.0346519984304905</threshold> 29400 <left_val>-0.0339349992573261</left_val> 29401 <right_val>-0.8570790290832520</right_val></_></_> 29402 <_> 29403 <!-- tree 95 --> 29404 <_> 29405 <!-- root node --> 29406 <feature> 29407 <rects> 29408 <_>4 14 20 3 -1.</_> 29409 <_>4 15 20 1 3.</_></rects> 29410 <tilted>0</tilted></feature> 29411 <threshold>-4.6729999594390392e-003</threshold> 29412 <left_val>0.3496930003166199</left_val> 29413 <right_val>-0.0485179983079433</right_val></_></_> 29414 <_> 29415 <!-- tree 96 --> 29416 <_> 29417 <!-- root node --> 29418 <feature> 29419 <rects> 29420 <_>2 15 9 6 -1.</_> 29421 <_>2 17 9 2 3.</_></rects> 29422 <tilted>0</tilted></feature> 29423 <threshold>6.8499997723847628e-004</threshold> 29424 <left_val>0.0665730014443398</left_val> 29425 <right_val>-0.4497379958629608</right_val></_></_> 29426 <_> 29427 <!-- tree 97 --> 29428 <_> 29429 <!-- root node --> 29430 <feature> 29431 <rects> 29432 <_>13 0 4 19 -1.</_> 29433 <_>13 0 2 19 2.</_></rects> 29434 <tilted>0</tilted></feature> 29435 <threshold>0.0353170000016689</threshold> 29436 <left_val>0.1427579969167709</left_val> 29437 <right_val>-0.4672639966011047</right_val></_></_> 29438 <_> 29439 <!-- tree 98 --> 29440 <_> 29441 <!-- root node --> 29442 <feature> 29443 <rects> 29444 <_>7 0 4 19 -1.</_> 29445 <_>9 0 2 19 2.</_></rects> 29446 <tilted>0</tilted></feature> 29447 <threshold>-0.0235699992626905</threshold> 29448 <left_val>-1.0286079645156860</left_val> 29449 <right_val>-0.0452880002558231</right_val></_></_> 29450 <_> 29451 <!-- tree 99 --> 29452 <_> 29453 <!-- root node --> 29454 <feature> 29455 <rects> 29456 <_>1 4 22 2 -1.</_> 29457 <_>1 5 22 1 2.</_></rects> 29458 <tilted>0</tilted></feature> 29459 <threshold>-1.9109999993816018e-003</threshold> 29460 <left_val>-0.1965219974517822</left_val> 29461 <right_val>0.2866100072860718</right_val></_></_> 29462 <_> 29463 <!-- tree 100 --> 29464 <_> 29465 <!-- root node --> 29466 <feature> 29467 <rects> 29468 <_>0 0 9 6 -1.</_> 29469 <_>0 2 9 2 3.</_></rects> 29470 <tilted>0</tilted></feature> 29471 <threshold>-0.0166590008884668</threshold> 29472 <left_val>-0.7753220200538635</left_val> 29473 <right_val>-8.3280000835657120e-003</right_val></_></_> 29474 <_> 29475 <!-- tree 101 --> 29476 <_> 29477 <!-- root node --> 29478 <feature> 29479 <rects> 29480 <_>0 0 24 18 -1.</_> 29481 <_>0 9 24 9 2.</_></rects> 29482 <tilted>0</tilted></feature> 29483 <threshold>0.6606220006942749</threshold> 29484 <left_val>0.1323249936103821</left_val> 29485 <right_val>-3.5266680717468262</right_val></_></_> 29486 <_> 29487 <!-- tree 102 --> 29488 <_> 29489 <!-- root node --> 29490 <feature> 29491 <rects> 29492 <_>3 2 16 8 -1.</_> 29493 <_>3 6 16 4 2.</_></rects> 29494 <tilted>0</tilted></feature> 29495 <threshold>0.1097059994935989</threshold> 29496 <left_val>-0.1554719954729080</left_val> 29497 <right_val>1.4674140214920044</right_val></_></_> 29498 <_> 29499 <!-- tree 103 --> 29500 <_> 29501 <!-- root node --> 29502 <feature> 29503 <rects> 29504 <_>3 6 18 6 -1.</_> 29505 <_>3 8 18 2 3.</_></rects> 29506 <tilted>0</tilted></feature> 29507 <threshold>0.0135009996592999</threshold> 29508 <left_val>0.1523340046405792</left_val> 29509 <right_val>-1.3020930290222168</right_val></_></_> 29510 <_> 29511 <!-- tree 104 --> 29512 <_> 29513 <!-- root node --> 29514 <feature> 29515 <rects> 29516 <_>3 1 6 10 -1.</_> 29517 <_>5 1 2 10 3.</_></rects> 29518 <tilted>0</tilted></feature> 29519 <threshold>-0.0228719990700483</threshold> 29520 <left_val>-0.7132599949836731</left_val> 29521 <right_val>-8.7040001526474953e-003</right_val></_></_> 29522 <_> 29523 <!-- tree 105 --> 29524 <_> 29525 <!-- root node --> 29526 <feature> 29527 <rects> 29528 <_>13 0 9 6 -1.</_> 29529 <_>16 0 3 6 3.</_></rects> 29530 <tilted>0</tilted></feature> 29531 <threshold>-0.0818210020661354</threshold> 29532 <left_val>1.1127580404281616</left_val> 29533 <right_val>0.0832199975848198</right_val></_></_> 29534 <_> 29535 <!-- tree 106 --> 29536 <_> 29537 <!-- root node --> 29538 <feature> 29539 <rects> 29540 <_>2 0 9 6 -1.</_> 29541 <_>5 0 3 6 3.</_></rects> 29542 <tilted>0</tilted></feature> 29543 <threshold>-0.0527280010282993</threshold> 29544 <left_val>0.9316509962081909</left_val> 29545 <right_val>-0.1710399985313416</right_val></_></_> 29546 <_> 29547 <!-- tree 107 --> 29548 <_> 29549 <!-- root node --> 29550 <feature> 29551 <rects> 29552 <_>10 2 4 15 -1.</_> 29553 <_>10 7 4 5 3.</_></rects> 29554 <tilted>0</tilted></feature> 29555 <threshold>-0.0252420008182526</threshold> 29556 <left_val>-0.1973379999399185</left_val> 29557 <right_val>0.2535940110683441</right_val></_></_> 29558 <_> 29559 <!-- tree 108 --> 29560 <_> 29561 <!-- root node --> 29562 <feature> 29563 <rects> 29564 <_>6 0 7 10 -1.</_> 29565 <_>6 5 7 5 2.</_></rects> 29566 <tilted>0</tilted></feature> 29567 <threshold>-0.0438189990818501</threshold> 29568 <left_val>0.4181520044803619</left_val> 29569 <right_val>-0.2458550035953522</right_val></_></_> 29570 <_> 29571 <!-- tree 109 --> 29572 <_> 29573 <!-- root node --> 29574 <feature> 29575 <rects> 29576 <_>2 2 20 4 -1.</_> 29577 <_>12 2 10 2 2.</_> 29578 <_>2 4 10 2 2.</_></rects> 29579 <tilted>0</tilted></feature> 29580 <threshold>-0.0181889999657869</threshold> 29581 <left_val>-0.5174319744110107</left_val> 29582 <right_val>0.2017419934272766</right_val></_></_> 29583 <_> 29584 <!-- tree 110 --> 29585 <_> 29586 <!-- root node --> 29587 <feature> 29588 <rects> 29589 <_>2 11 19 3 -1.</_> 29590 <_>2 12 19 1 3.</_></rects> 29591 <tilted>0</tilted></feature> 29592 <threshold>0.0234660003334284</threshold> 29593 <left_val>-0.0430710017681122</left_val> 29594 <right_val>-1.0636579990386963</right_val></_></_> 29595 <_> 29596 <!-- tree 111 --> 29597 <_> 29598 <!-- root node --> 29599 <feature> 29600 <rects> 29601 <_>10 8 6 9 -1.</_> 29602 <_>12 8 2 9 3.</_></rects> 29603 <tilted>0</tilted></feature> 29604 <threshold>0.0342160016298294</threshold> 29605 <left_val>0.0537809990346432</left_val> 29606 <right_val>0.4970720112323761</right_val></_></_> 29607 <_> 29608 <!-- tree 112 --> 29609 <_> 29610 <!-- root node --> 29611 <feature> 29612 <rects> 29613 <_>8 8 6 9 -1.</_> 29614 <_>10 8 2 9 3.</_></rects> 29615 <tilted>0</tilted></feature> 29616 <threshold>0.0256929993629456</threshold> 29617 <left_val>-0.2380010038614273</left_val> 29618 <right_val>0.4165149927139282</right_val></_></_> 29619 <_> 29620 <!-- tree 113 --> 29621 <_> 29622 <!-- root node --> 29623 <feature> 29624 <rects> 29625 <_>13 8 4 9 -1.</_> 29626 <_>13 8 2 9 2.</_></rects> 29627 <tilted>0</tilted></feature> 29628 <threshold>-0.0265650004148483</threshold> 29629 <left_val>-0.8857480287551880</left_val> 29630 <right_val>0.1336590051651001</right_val></_></_> 29631 <_> 29632 <!-- tree 114 --> 29633 <_> 29634 <!-- root node --> 29635 <feature> 29636 <rects> 29637 <_>3 11 9 9 -1.</_> 29638 <_>6 11 3 9 3.</_></rects> 29639 <tilted>0</tilted></feature> 29640 <threshold>0.0609420016407967</threshold> 29641 <left_val>-0.2066970020532608</left_val> 29642 <right_val>0.5830900073051453</right_val></_></_> 29643 <_> 29644 <!-- tree 115 --> 29645 <_> 29646 <!-- root node --> 29647 <feature> 29648 <rects> 29649 <_>3 9 18 5 -1.</_> 29650 <_>9 9 6 5 3.</_></rects> 29651 <tilted>0</tilted></feature> 29652 <threshold>0.1447450071573257</threshold> 29653 <left_val>0.1328230053186417</left_val> 29654 <right_val>-3.1449348926544189</right_val></_></_> 29655 <_> 29656 <!-- tree 116 --> 29657 <_> 29658 <!-- root node --> 29659 <feature> 29660 <rects> 29661 <_>2 4 2 20 -1.</_> 29662 <_>2 14 2 10 2.</_></rects> 29663 <tilted>0</tilted></feature> 29664 <threshold>0.0534109994769096</threshold> 29665 <left_val>-0.1732520014047623</left_val> 29666 <right_val>0.6919069886207581</right_val></_></_> 29667 <_> 29668 <!-- tree 117 --> 29669 <_> 29670 <!-- root node --> 29671 <feature> 29672 <rects> 29673 <_>14 17 8 6 -1.</_> 29674 <_>14 20 8 3 2.</_></rects> 29675 <tilted>0</tilted></feature> 29676 <threshold>0.0114080002531409</threshold> 29677 <left_val>0.0548220016062260</left_val> 29678 <right_val>0.3024039864540100</right_val></_></_> 29679 <_> 29680 <!-- tree 118 --> 29681 <_> 29682 <!-- root node --> 29683 <feature> 29684 <rects> 29685 <_>3 21 18 2 -1.</_> 29686 <_>3 22 18 1 2.</_></rects> 29687 <tilted>0</tilted></feature> 29688 <threshold>-2.3179999552667141e-003</threshold> 29689 <left_val>0.1582089960575104</left_val> 29690 <right_val>-0.3197320103645325</right_val></_></_> 29691 <_> 29692 <!-- tree 119 --> 29693 <_> 29694 <!-- root node --> 29695 <feature> 29696 <rects> 29697 <_>5 4 15 6 -1.</_> 29698 <_>10 4 5 6 3.</_></rects> 29699 <tilted>0</tilted></feature> 29700 <threshold>-0.0296950004994869</threshold> 29701 <left_val>0.7127479910850525</left_val> 29702 <right_val>0.0581360012292862</right_val></_></_> 29703 <_> 29704 <!-- tree 120 --> 29705 <_> 29706 <!-- root node --> 29707 <feature> 29708 <rects> 29709 <_>2 15 12 6 -1.</_> 29710 <_>2 17 12 2 3.</_></rects> 29711 <tilted>0</tilted></feature> 29712 <threshold>0.0272499993443489</threshold> 29713 <left_val>-0.1575410068035126</left_val> 29714 <right_val>0.9214379787445068</right_val></_></_> 29715 <_> 29716 <!-- tree 121 --> 29717 <_> 29718 <!-- root node --> 29719 <feature> 29720 <rects> 29721 <_>17 8 6 9 -1.</_> 29722 <_>17 11 6 3 3.</_></rects> 29723 <tilted>0</tilted></feature> 29724 <threshold>-3.6200000904500484e-003</threshold> 29725 <left_val>-0.3454839885234833</left_val> 29726 <right_val>0.2022099941968918</right_val></_></_> 29727 <_> 29728 <!-- tree 122 --> 29729 <_> 29730 <!-- root node --> 29731 <feature> 29732 <rects> 29733 <_>2 12 20 4 -1.</_> 29734 <_>2 12 10 2 2.</_> 29735 <_>12 14 10 2 2.</_></rects> 29736 <tilted>0</tilted></feature> 29737 <threshold>-0.0125789996236563</threshold> 29738 <left_val>-0.5565029978752136</left_val> 29739 <right_val>0.0203889999538660</right_val></_></_> 29740 <_> 29741 <!-- tree 123 --> 29742 <_> 29743 <!-- root node --> 29744 <feature> 29745 <rects> 29746 <_>0 17 24 6 -1.</_> 29747 <_>0 19 24 2 3.</_></rects> 29748 <tilted>0</tilted></feature> 29749 <threshold>-0.0888490006327629</threshold> 29750 <left_val>-3.6100010871887207</left_val> 29751 <right_val>0.1316419988870621</right_val></_></_> 29752 <_> 29753 <!-- tree 124 --> 29754 <_> 29755 <!-- root node --> 29756 <feature> 29757 <rects> 29758 <_>7 16 9 4 -1.</_> 29759 <_>7 18 9 2 2.</_></rects> 29760 <tilted>0</tilted></feature> 29761 <threshold>-0.0192569997161627</threshold> 29762 <left_val>0.5190899968147278</left_val> 29763 <right_val>-0.1928430050611496</right_val></_></_> 29764 <_> 29765 <!-- tree 125 --> 29766 <_> 29767 <!-- root node --> 29768 <feature> 29769 <rects> 29770 <_>15 1 4 22 -1.</_> 29771 <_>17 1 2 11 2.</_> 29772 <_>15 12 2 11 2.</_></rects> 29773 <tilted>0</tilted></feature> 29774 <threshold>-0.0166669990867376</threshold> 29775 <left_val>-0.0874999985098839</left_val> 29776 <right_val>0.1581249982118607</right_val></_></_> 29777 <_> 29778 <!-- tree 126 --> 29779 <_> 29780 <!-- root node --> 29781 <feature> 29782 <rects> 29783 <_>5 1 4 22 -1.</_> 29784 <_>5 1 2 11 2.</_> 29785 <_>7 12 2 11 2.</_></rects> 29786 <tilted>0</tilted></feature> 29787 <threshold>0.0129319997504354</threshold> 29788 <left_val>0.0274059996008873</left_val> 29789 <right_val>-0.5512390136718750</right_val></_></_> 29790 <_> 29791 <!-- tree 127 --> 29792 <_> 29793 <!-- root node --> 29794 <feature> 29795 <rects> 29796 <_>11 13 8 9 -1.</_> 29797 <_>11 16 8 3 3.</_></rects> 29798 <tilted>0</tilted></feature> 29799 <threshold>-0.0134319998323917</threshold> 29800 <left_val>0.2345779985189438</left_val> 29801 <right_val>-0.0432350002229214</right_val></_></_> 29802 <_> 29803 <!-- tree 128 --> 29804 <_> 29805 <!-- root node --> 29806 <feature> 29807 <rects> 29808 <_>6 1 6 9 -1.</_> 29809 <_>8 1 2 9 3.</_></rects> 29810 <tilted>0</tilted></feature> 29811 <threshold>0.0188100002706051</threshold> 29812 <left_val>-0.0396809987723827</left_val> 29813 <right_val>-0.9437329769134522</right_val></_></_> 29814 <_> 29815 <!-- tree 129 --> 29816 <_> 29817 <!-- root node --> 29818 <feature> 29819 <rects> 29820 <_>11 4 3 18 -1.</_> 29821 <_>11 10 3 6 3.</_></rects> 29822 <tilted>0</tilted></feature> 29823 <threshold>-6.4349998719990253e-003</threshold> 29824 <left_val>0.4570370018482208</left_val> 29825 <right_val>-4.0520001202821732e-003</right_val></_></_> 29826 <_> 29827 <!-- tree 130 --> 29828 <_> 29829 <!-- root node --> 29830 <feature> 29831 <rects> 29832 <_>5 8 12 6 -1.</_> 29833 <_>5 8 6 3 2.</_> 29834 <_>11 11 6 3 2.</_></rects> 29835 <tilted>0</tilted></feature> 29836 <threshold>-0.0242490004748106</threshold> 29837 <left_val>-0.7624800205230713</left_val> 29838 <right_val>-0.0198570005595684</right_val></_></_> 29839 <_> 29840 <!-- tree 131 --> 29841 <_> 29842 <!-- root node --> 29843 <feature> 29844 <rects> 29845 <_>15 7 5 8 -1.</_> 29846 <_>15 11 5 4 2.</_></rects> 29847 <tilted>0</tilted></feature> 29848 <threshold>-0.0296679995954037</threshold> 29849 <left_val>-3.7412509918212891</left_val> 29850 <right_val>0.1125060021877289</right_val></_></_> 29851 <_> 29852 <!-- tree 132 --> 29853 <_> 29854 <!-- root node --> 29855 <feature> 29856 <rects> 29857 <_>4 7 5 8 -1.</_> 29858 <_>4 11 5 4 2.</_></rects> 29859 <tilted>0</tilted></feature> 29860 <threshold>5.1150000654160976e-003</threshold> 29861 <left_val>-0.6378179788589478</left_val> 29862 <right_val>0.0112239997833967</right_val></_></_> 29863 <_> 29864 <!-- tree 133 --> 29865 <_> 29866 <!-- root node --> 29867 <feature> 29868 <rects> 29869 <_>12 6 6 12 -1.</_> 29870 <_>15 6 3 6 2.</_> 29871 <_>12 12 3 6 2.</_></rects> 29872 <tilted>0</tilted></feature> 29873 <threshold>-5.7819997891783714e-003</threshold> 29874 <left_val>0.1937440037727356</left_val> 29875 <right_val>-0.0820420011878014</right_val></_></_> 29876 <_> 29877 <!-- tree 134 --> 29878 <_> 29879 <!-- root node --> 29880 <feature> 29881 <rects> 29882 <_>6 6 6 12 -1.</_> 29883 <_>6 6 3 6 2.</_> 29884 <_>9 12 3 6 2.</_></rects> 29885 <tilted>0</tilted></feature> 29886 <threshold>0.0166069995611906</threshold> 29887 <left_val>-0.1619209945201874</left_val> 29888 <right_val>1.1334990262985229</right_val></_></_> 29889 <_> 29890 <!-- tree 135 --> 29891 <_> 29892 <!-- root node --> 29893 <feature> 29894 <rects> 29895 <_>5 9 14 8 -1.</_> 29896 <_>12 9 7 4 2.</_> 29897 <_>5 13 7 4 2.</_></rects> 29898 <tilted>0</tilted></feature> 29899 <threshold>0.0382280014455318</threshold> 29900 <left_val>0.0211050007492304</left_val> 29901 <right_val>0.7626420259475708</right_val></_></_> 29902 <_> 29903 <!-- tree 136 --> 29904 <_> 29905 <!-- root node --> 29906 <feature> 29907 <rects> 29908 <_>9 1 3 14 -1.</_> 29909 <_>9 8 3 7 2.</_></rects> 29910 <tilted>0</tilted></feature> 29911 <threshold>-0.0570940002799034</threshold> 29912 <left_val>-1.6974929571151733</left_val> 29913 <right_val>-0.0597620010375977</right_val></_></_> 29914 <_> 29915 <!-- tree 137 --> 29916 <_> 29917 <!-- root node --> 29918 <feature> 29919 <rects> 29920 <_>12 6 6 12 -1.</_> 29921 <_>12 10 6 4 3.</_></rects> 29922 <tilted>0</tilted></feature> 29923 <threshold>-0.0538830012083054</threshold> 29924 <left_val>1.1850190162658691</left_val> 29925 <right_val>0.0909669995307922</right_val></_></_> 29926 <_> 29927 <!-- tree 138 --> 29928 <_> 29929 <!-- root node --> 29930 <feature> 29931 <rects> 29932 <_>4 5 4 18 -1.</_> 29933 <_>4 5 2 9 2.</_> 29934 <_>6 14 2 9 2.</_></rects> 29935 <tilted>0</tilted></feature> 29936 <threshold>-2.6110000908374786e-003</threshold> 29937 <left_val>-0.4094119966030121</left_val> 29938 <right_val>0.0838209986686707</right_val></_></_> 29939 <_> 29940 <!-- tree 139 --> 29941 <_> 29942 <!-- root node --> 29943 <feature> 29944 <rects> 29945 <_>4 6 16 18 -1.</_> 29946 <_>4 12 16 6 3.</_></rects> 29947 <tilted>0</tilted></feature> 29948 <threshold>0.2971439957618713</threshold> 29949 <left_val>0.1552989929914475</left_val> 29950 <right_val>-1.0995409488677979</right_val></_></_> 29951 <_> 29952 <!-- tree 140 --> 29953 <_> 29954 <!-- root node --> 29955 <feature> 29956 <rects> 29957 <_>5 4 7 20 -1.</_> 29958 <_>5 14 7 10 2.</_></rects> 29959 <tilted>0</tilted></feature> 29960 <threshold>-0.0890630036592484</threshold> 29961 <left_val>0.4894720017910004</left_val> 29962 <right_val>-0.2004120051860809</right_val></_></_> 29963 <_> 29964 <!-- tree 141 --> 29965 <_> 29966 <!-- root node --> 29967 <feature> 29968 <rects> 29969 <_>14 8 8 12 -1.</_> 29970 <_>14 14 8 6 2.</_></rects> 29971 <tilted>0</tilted></feature> 29972 <threshold>-0.0561930015683174</threshold> 29973 <left_val>-0.2458139955997467</left_val> 29974 <right_val>0.1436550021171570</right_val></_></_> 29975 <_> 29976 <!-- tree 142 --> 29977 <_> 29978 <!-- root node --> 29979 <feature> 29980 <rects> 29981 <_>9 10 6 14 -1.</_> 29982 <_>9 10 3 7 2.</_> 29983 <_>12 17 3 7 2.</_></rects> 29984 <tilted>0</tilted></feature> 29985 <threshold>0.0370049998164177</threshold> 29986 <left_val>-0.0481689982116222</left_val> 29987 <right_val>-1.2310709953308105</right_val></_></_> 29988 <_> 29989 <!-- tree 143 --> 29990 <_> 29991 <!-- root node --> 29992 <feature> 29993 <rects> 29994 <_>9 5 9 6 -1.</_> 29995 <_>12 5 3 6 3.</_></rects> 29996 <tilted>0</tilted></feature> 29997 <threshold>-8.4840003401041031e-003</threshold> 29998 <left_val>0.4337260127067566</left_val> 29999 <right_val>0.0137799996882677</right_val></_></_> 30000 <_> 30001 <!-- tree 144 --> 30002 <_> 30003 <!-- root node --> 30004 <feature> 30005 <rects> 30006 <_>9 4 3 18 -1.</_> 30007 <_>10 4 1 18 3.</_></rects> 30008 <tilted>0</tilted></feature> 30009 <threshold>-2.4379999376833439e-003</threshold> 30010 <left_val>0.1894969940185547</left_val> 30011 <right_val>-0.3229419887065888</right_val></_></_> 30012 <_> 30013 <!-- tree 145 --> 30014 <_> 30015 <!-- root node --> 30016 <feature> 30017 <rects> 30018 <_>1 4 22 14 -1.</_> 30019 <_>12 4 11 7 2.</_> 30020 <_>1 11 11 7 2.</_></rects> 30021 <tilted>0</tilted></feature> 30022 <threshold>-0.0716399997472763</threshold> 30023 <left_val>-0.4397900104522705</left_val> 30024 <right_val>0.2273019999265671</right_val></_></_> 30025 <_> 30026 <!-- tree 146 --> 30027 <_> 30028 <!-- root node --> 30029 <feature> 30030 <rects> 30031 <_>2 7 18 2 -1.</_> 30032 <_>2 8 18 1 2.</_></rects> 30033 <tilted>0</tilted></feature> 30034 <threshold>5.2260002121329308e-003</threshold> 30035 <left_val>-0.2054840028285980</left_val> 30036 <right_val>0.5093330144882202</right_val></_></_> 30037 <_> 30038 <!-- tree 147 --> 30039 <_> 30040 <!-- root node --> 30041 <feature> 30042 <rects> 30043 <_>12 6 6 12 -1.</_> 30044 <_>12 10 6 4 3.</_></rects> 30045 <tilted>0</tilted></feature> 30046 <threshold>-6.1360001564025879e-003</threshold> 30047 <left_val>0.3115719854831696</left_val> 30048 <right_val>0.0706809982657433</right_val></_></_> 30049 <_> 30050 <!-- tree 148 --> 30051 <_> 30052 <!-- root node --> 30053 <feature> 30054 <rects> 30055 <_>6 5 9 7 -1.</_> 30056 <_>9 5 3 7 3.</_></rects> 30057 <tilted>0</tilted></feature> 30058 <threshold>0.0155950002372265</threshold> 30059 <left_val>-0.3093479871749878</left_val> 30060 <right_val>0.1562770009040833</right_val></_></_> 30061 <_> 30062 <!-- tree 149 --> 30063 <_> 30064 <!-- root node --> 30065 <feature> 30066 <rects> 30067 <_>12 7 4 12 -1.</_> 30068 <_>12 13 4 6 2.</_></rects> 30069 <tilted>0</tilted></feature> 30070 <threshold>0.0259959995746613</threshold> 30071 <left_val>0.1382160037755966</left_val> 30072 <right_val>-0.1761659979820252</right_val></_></_> 30073 <_> 30074 <!-- tree 150 --> 30075 <_> 30076 <!-- root node --> 30077 <feature> 30078 <rects> 30079 <_>8 7 4 12 -1.</_> 30080 <_>8 13 4 6 2.</_></rects> 30081 <tilted>0</tilted></feature> 30082 <threshold>-0.0120850000530481</threshold> 30083 <left_val>-0.5107020139694214</left_val> 30084 <right_val>0.0584409981966019</right_val></_></_> 30085 <_> 30086 <!-- tree 151 --> 30087 <_> 30088 <!-- root node --> 30089 <feature> 30090 <rects> 30091 <_>7 2 10 22 -1.</_> 30092 <_>7 13 10 11 2.</_></rects> 30093 <tilted>0</tilted></feature> 30094 <threshold>-0.0678360015153885</threshold> 30095 <left_val>0.4775710105895996</left_val> 30096 <right_val>-0.0714460015296936</right_val></_></_> 30097 <_> 30098 <!-- tree 152 --> 30099 <_> 30100 <!-- root node --> 30101 <feature> 30102 <rects> 30103 <_>0 1 3 20 -1.</_> 30104 <_>1 1 1 20 3.</_></rects> 30105 <tilted>0</tilted></feature> 30106 <threshold>-0.0147150000557303</threshold> 30107 <left_val>0.4523890018463135</left_val> 30108 <right_val>-0.1986140012741089</right_val></_></_> 30109 <_> 30110 <!-- tree 153 --> 30111 <_> 30112 <!-- root node --> 30113 <feature> 30114 <rects> 30115 <_>4 13 18 4 -1.</_> 30116 <_>13 13 9 2 2.</_> 30117 <_>4 15 9 2 2.</_></rects> 30118 <tilted>0</tilted></feature> 30119 <threshold>0.0251189991831779</threshold> 30120 <left_val>0.1295489966869354</left_val> 30121 <right_val>-0.8626639842987061</right_val></_></_> 30122 <_> 30123 <!-- tree 154 --> 30124 <_> 30125 <!-- root node --> 30126 <feature> 30127 <rects> 30128 <_>2 13 18 4 -1.</_> 30129 <_>2 13 9 2 2.</_> 30130 <_>11 15 9 2 2.</_></rects> 30131 <tilted>0</tilted></feature> 30132 <threshold>0.0188260003924370</threshold> 30133 <left_val>-0.0415700003504753</left_val> 30134 <right_val>-1.1354700326919556</right_val></_></_> 30135 <_> 30136 <!-- tree 155 --> 30137 <_> 30138 <!-- root node --> 30139 <feature> 30140 <rects> 30141 <_>15 15 9 6 -1.</_> 30142 <_>15 17 9 2 3.</_></rects> 30143 <tilted>0</tilted></feature> 30144 <threshold>-0.0212639998644590</threshold> 30145 <left_val>-0.3473800122737885</left_val> 30146 <right_val>0.1577949970960617</right_val></_></_> 30147 <_> 30148 <!-- tree 156 --> 30149 <_> 30150 <!-- root node --> 30151 <feature> 30152 <rects> 30153 <_>0 15 9 6 -1.</_> 30154 <_>0 17 9 2 3.</_></rects> 30155 <tilted>0</tilted></feature> 30156 <threshold>9.4609996303915977e-003</threshold> 30157 <left_val>4.8639997839927673e-003</left_val> 30158 <right_val>-0.6165480017662048</right_val></_></_> 30159 <_> 30160 <!-- tree 157 --> 30161 <_> 30162 <!-- root node --> 30163 <feature> 30164 <rects> 30165 <_>6 0 18 24 -1.</_> 30166 <_>15 0 9 12 2.</_> 30167 <_>6 12 9 12 2.</_></rects> 30168 <tilted>0</tilted></feature> 30169 <threshold>0.2295770049095154</threshold> 30170 <left_val>0.0813729986548424</left_val> 30171 <right_val>0.6984140276908875</right_val></_></_> 30172 <_> 30173 <!-- tree 158 --> 30174 <_> 30175 <!-- root node --> 30176 <feature> 30177 <rects> 30178 <_>6 6 6 12 -1.</_> 30179 <_>6 10 6 4 3.</_></rects> 30180 <tilted>0</tilted></feature> 30181 <threshold>-0.0380619987845421</threshold> 30182 <left_val>1.1616369485855103</left_val> 30183 <right_val>-0.1497669965028763</right_val></_></_> 30184 <_> 30185 <!-- tree 159 --> 30186 <_> 30187 <!-- root node --> 30188 <feature> 30189 <rects> 30190 <_>8 7 10 4 -1.</_> 30191 <_>8 9 10 2 2.</_></rects> 30192 <tilted>0</tilted></feature> 30193 <threshold>-0.0134849995374680</threshold> 30194 <left_val>-0.3203639984130859</left_val> 30195 <right_val>0.1736509948968887</right_val></_></_> 30196 <_> 30197 <!-- tree 160 --> 30198 <_> 30199 <!-- root node --> 30200 <feature> 30201 <rects> 30202 <_>1 9 18 6 -1.</_> 30203 <_>1 9 9 3 2.</_> 30204 <_>10 12 9 3 2.</_></rects> 30205 <tilted>0</tilted></feature> 30206 <threshold>0.0362389981746674</threshold> 30207 <left_val>-0.1815849989652634</left_val> 30208 <right_val>0.6195669770240784</right_val></_></_> 30209 <_> 30210 <!-- tree 161 --> 30211 <_> 30212 <!-- root node --> 30213 <feature> 30214 <rects> 30215 <_>6 6 18 3 -1.</_> 30216 <_>6 7 18 1 3.</_></rects> 30217 <tilted>0</tilted></feature> 30218 <threshold>6.7210001870989799e-003</threshold> 30219 <left_val>7.9600000753998756e-004</left_val> 30220 <right_val>0.4244140088558197</right_val></_></_> 30221 <_> 30222 <!-- tree 162 --> 30223 <_> 30224 <!-- root node --> 30225 <feature> 30226 <rects> 30227 <_>7 7 9 8 -1.</_> 30228 <_>10 7 3 8 3.</_></rects> 30229 <tilted>0</tilted></feature> 30230 <threshold>0.0965259969234467</threshold> 30231 <left_val>-0.1469680070877075</left_val> 30232 <right_val>1.2525680065155029</right_val></_></_> 30233 <_> 30234 <!-- tree 163 --> 30235 <_> 30236 <!-- root node --> 30237 <feature> 30238 <rects> 30239 <_>10 12 6 12 -1.</_> 30240 <_>12 12 2 12 3.</_></rects> 30241 <tilted>0</tilted></feature> 30242 <threshold>-0.0356569997966290</threshold> 30243 <left_val>-0.3978169858455658</left_val> 30244 <right_val>0.1419139951467514</right_val></_></_> 30245 <_> 30246 <!-- tree 164 --> 30247 <_> 30248 <!-- root node --> 30249 <feature> 30250 <rects> 30251 <_>3 14 18 3 -1.</_> 30252 <_>3 15 18 1 3.</_></rects> 30253 <tilted>0</tilted></feature> 30254 <threshold>0.0107720000669360</threshold> 30255 <left_val>-0.1819400042295456</left_val> 30256 <right_val>0.5976219773292542</right_val></_></_> 30257 <_> 30258 <!-- tree 165 --> 30259 <_> 30260 <!-- root node --> 30261 <feature> 30262 <rects> 30263 <_>15 17 9 7 -1.</_> 30264 <_>18 17 3 7 3.</_></rects> 30265 <tilted>0</tilted></feature> 30266 <threshold>0.0792799964547157</threshold> 30267 <left_val>0.1464249938726425</left_val> 30268 <right_val>-0.7883689999580383</right_val></_></_> 30269 <_> 30270 <!-- tree 166 --> 30271 <_> 30272 <!-- root node --> 30273 <feature> 30274 <rects> 30275 <_>1 12 10 6 -1.</_> 30276 <_>1 14 10 2 3.</_></rects> 30277 <tilted>0</tilted></feature> 30278 <threshold>0.0328410007059574</threshold> 30279 <left_val>-0.0624080002307892</left_val> 30280 <right_val>-1.4227490425109863</right_val></_></_> 30281 <_> 30282 <!-- tree 167 --> 30283 <_> 30284 <!-- root node --> 30285 <feature> 30286 <rects> 30287 <_>15 17 9 7 -1.</_> 30288 <_>18 17 3 7 3.</_></rects> 30289 <tilted>0</tilted></feature> 30290 <threshold>-0.0277810003608465</threshold> 30291 <left_val>0.3403309881687164</left_val> 30292 <right_val>0.0306700002402067</right_val></_></_> 30293 <_> 30294 <!-- tree 168 --> 30295 <_> 30296 <!-- root node --> 30297 <feature> 30298 <rects> 30299 <_>10 3 3 19 -1.</_> 30300 <_>11 3 1 19 3.</_></rects> 30301 <tilted>0</tilted></feature> 30302 <threshold>-4.0339999832212925e-003</threshold> 30303 <left_val>0.3108470141887665</left_val> 30304 <right_val>-0.2259570062160492</right_val></_></_> 30305 <_> 30306 <!-- tree 169 --> 30307 <_> 30308 <!-- root node --> 30309 <feature> 30310 <rects> 30311 <_>15 17 9 7 -1.</_> 30312 <_>18 17 3 7 3.</_></rects> 30313 <tilted>0</tilted></feature> 30314 <threshold>7.4260002002120018e-003</threshold> 30315 <left_val>-0.0389369986951351</left_val> 30316 <right_val>0.3170210123062134</right_val></_></_> 30317 <_> 30318 <!-- tree 170 --> 30319 <_> 30320 <!-- root node --> 30321 <feature> 30322 <rects> 30323 <_>6 1 11 9 -1.</_> 30324 <_>6 4 11 3 3.</_></rects> 30325 <tilted>0</tilted></feature> 30326 <threshold>0.1121399998664856</threshold> 30327 <left_val>-0.1757829934358597</left_val> 30328 <right_val>0.6505659818649292</right_val></_></_> 30329 <_> 30330 <!-- tree 171 --> 30331 <_> 30332 <!-- root node --> 30333 <feature> 30334 <rects> 30335 <_>15 17 9 7 -1.</_> 30336 <_>18 17 3 7 3.</_></rects> 30337 <tilted>0</tilted></feature> 30338 <threshold>-0.1187810003757477</threshold> 30339 <left_val>-1.0092990398406982</left_val> 30340 <right_val>0.1106970012187958</right_val></_></_> 30341 <_> 30342 <!-- tree 172 --> 30343 <_> 30344 <!-- root node --> 30345 <feature> 30346 <rects> 30347 <_>6 5 11 6 -1.</_> 30348 <_>6 8 11 3 2.</_></rects> 30349 <tilted>0</tilted></feature> 30350 <threshold>-0.0415849983692169</threshold> 30351 <left_val>-0.5380640029907227</left_val> 30352 <right_val>0.0199050009250641</right_val></_></_> 30353 <_> 30354 <!-- tree 173 --> 30355 <_> 30356 <!-- root node --> 30357 <feature> 30358 <rects> 30359 <_>16 7 8 5 -1.</_> 30360 <_>16 7 4 5 2.</_></rects> 30361 <tilted>0</tilted></feature> 30362 <threshold>-0.0279660001397133</threshold> 30363 <left_val>0.4814319908618927</left_val> 30364 <right_val>0.0335909985005856</right_val></_></_> 30365 <_> 30366 <!-- tree 174 --> 30367 <_> 30368 <!-- root node --> 30369 <feature> 30370 <rects> 30371 <_>2 4 20 19 -1.</_> 30372 <_>12 4 10 19 2.</_></rects> 30373 <tilted>0</tilted></feature> 30374 <threshold>-0.1250640004873276</threshold> 30375 <left_val>0.2635219991207123</left_val> 30376 <right_val>-0.2573789954185486</right_val></_></_> 30377 <_> 30378 <!-- tree 175 --> 30379 <_> 30380 <!-- root node --> 30381 <feature> 30382 <rects> 30383 <_>2 1 21 6 -1.</_> 30384 <_>9 1 7 6 3.</_></rects> 30385 <tilted>0</tilted></feature> 30386 <threshold>0.2366690039634705</threshold> 30387 <left_val>0.0365080013871193</left_val> 30388 <right_val>0.9065560102462769</right_val></_></_> 30389 <_> 30390 <!-- tree 176 --> 30391 <_> 30392 <!-- root node --> 30393 <feature> 30394 <rects> 30395 <_>6 5 12 14 -1.</_> 30396 <_>6 5 6 7 2.</_> 30397 <_>12 12 6 7 2.</_></rects> 30398 <tilted>0</tilted></feature> 30399 <threshold>-0.0294759999960661</threshold> 30400 <left_val>-0.6004880070686340</left_val> 30401 <right_val>9.5880003646016121e-003</right_val></_></_> 30402 <_> 30403 <!-- tree 177 --> 30404 <_> 30405 <!-- root node --> 30406 <feature> 30407 <rects> 30408 <_>9 0 6 9 -1.</_> 30409 <_>11 0 2 9 3.</_></rects> 30410 <tilted>0</tilted></feature> 30411 <threshold>0.0377929992973804</threshold> 30412 <left_val>0.1550620049238205</left_val> 30413 <right_val>-0.9573349952697754</right_val></_></_> 30414 <_> 30415 <!-- tree 178 --> 30416 <_> 30417 <!-- root node --> 30418 <feature> 30419 <rects> 30420 <_>2 11 8 5 -1.</_> 30421 <_>6 11 4 5 2.</_></rects> 30422 <tilted>0</tilted></feature> 30423 <threshold>0.0720440000295639</threshold> 30424 <left_val>-0.1452589929103851</left_val> 30425 <right_val>1.3676730394363403</right_val></_></_> 30426 <_> 30427 <!-- tree 179 --> 30428 <_> 30429 <!-- root node --> 30430 <feature> 30431 <rects> 30432 <_>16 7 8 5 -1.</_> 30433 <_>16 7 4 5 2.</_></rects> 30434 <tilted>0</tilted></feature> 30435 <threshold>9.7759999334812164e-003</threshold> 30436 <left_val>0.0129159996286035</left_val> 30437 <right_val>0.2164089977741242</right_val></_></_> 30438 <_> 30439 <!-- tree 180 --> 30440 <_> 30441 <!-- root node --> 30442 <feature> 30443 <rects> 30444 <_>0 7 8 5 -1.</_> 30445 <_>4 7 4 5 2.</_></rects> 30446 <tilted>0</tilted></feature> 30447 <threshold>0.0521540008485317</threshold> 30448 <left_val>-0.0163599997758865</left_val> 30449 <right_val>-0.8835629820823669</right_val></_></_> 30450 <_> 30451 <!-- tree 181 --> 30452 <_> 30453 <!-- root node --> 30454 <feature> 30455 <rects> 30456 <_>15 17 9 7 -1.</_> 30457 <_>18 17 3 7 3.</_></rects> 30458 <tilted>0</tilted></feature> 30459 <threshold>-0.0437909997999668</threshold> 30460 <left_val>0.3582960069179535</left_val> 30461 <right_val>0.0651310011744499</right_val></_></_> 30462 <_> 30463 <!-- tree 182 --> 30464 <_> 30465 <!-- root node --> 30466 <feature> 30467 <rects> 30468 <_>8 6 8 10 -1.</_> 30469 <_>8 6 4 5 2.</_> 30470 <_>12 11 4 5 2.</_></rects> 30471 <tilted>0</tilted></feature> 30472 <threshold>-0.0383789986371994</threshold> 30473 <left_val>1.1961040496826172</left_val> 30474 <right_val>-0.1497150063514710</right_val></_></_> 30475 <_> 30476 <!-- tree 183 --> 30477 <_> 30478 <!-- root node --> 30479 <feature> 30480 <rects> 30481 <_>15 15 9 9 -1.</_> 30482 <_>18 15 3 9 3.</_></rects> 30483 <tilted>0</tilted></feature> 30484 <threshold>-0.0988389998674393</threshold> 30485 <left_val>-0.6183400154113770</left_val> 30486 <right_val>0.1278620064258575</right_val></_></_> 30487 <_> 30488 <!-- tree 184 --> 30489 <_> 30490 <!-- root node --> 30491 <feature> 30492 <rects> 30493 <_>0 15 9 9 -1.</_> 30494 <_>3 15 3 9 3.</_></rects> 30495 <tilted>0</tilted></feature> 30496 <threshold>-0.1219070032238960</threshold> 30497 <left_val>-1.8276120424270630</left_val> 30498 <right_val>-0.0648629963397980</right_val></_></_> 30499 <_> 30500 <!-- tree 185 --> 30501 <_> 30502 <!-- root node --> 30503 <feature> 30504 <rects> 30505 <_>12 10 9 7 -1.</_> 30506 <_>15 10 3 7 3.</_></rects> 30507 <tilted>0</tilted></feature> 30508 <threshold>-0.1198170036077499</threshold> 30509 <left_val>-30.</left_val> 30510 <right_val>0.1132330000400543</right_val></_></_> 30511 <_> 30512 <!-- tree 186 --> 30513 <_> 30514 <!-- root node --> 30515 <feature> 30516 <rects> 30517 <_>3 10 9 7 -1.</_> 30518 <_>6 10 3 7 3.</_></rects> 30519 <tilted>0</tilted></feature> 30520 <threshold>0.0309100002050400</threshold> 30521 <left_val>-0.2393400073051453</left_val> 30522 <right_val>0.3633289933204651</right_val></_></_> 30523 <_> 30524 <!-- tree 187 --> 30525 <_> 30526 <!-- root node --> 30527 <feature> 30528 <rects> 30529 <_>13 15 10 8 -1.</_> 30530 <_>18 15 5 4 2.</_> 30531 <_>13 19 5 4 2.</_></rects> 30532 <tilted>0</tilted></feature> 30533 <threshold>0.0108009995892644</threshold> 30534 <left_val>-0.0351400002837181</left_val> 30535 <right_val>0.2770789861679077</right_val></_></_> 30536 <_> 30537 <!-- tree 188 --> 30538 <_> 30539 <!-- root node --> 30540 <feature> 30541 <rects> 30542 <_>0 1 6 12 -1.</_> 30543 <_>0 1 3 6 2.</_> 30544 <_>3 7 3 6 2.</_></rects> 30545 <tilted>0</tilted></feature> 30546 <threshold>0.0568449981510639</threshold> 30547 <left_val>-0.1552429944276810</left_val> 30548 <right_val>1.0802700519561768</right_val></_></_> 30549 <_> 30550 <!-- tree 189 --> 30551 <_> 30552 <!-- root node --> 30553 <feature> 30554 <rects> 30555 <_>10 0 6 12 -1.</_> 30556 <_>13 0 3 6 2.</_> 30557 <_>10 6 3 6 2.</_></rects> 30558 <tilted>0</tilted></feature> 30559 <threshold>1.0280000278726220e-003</threshold> 30560 <left_val>-0.0612029992043972</left_val> 30561 <right_val>0.2050800025463104</right_val></_></_> 30562 <_> 30563 <!-- tree 190 --> 30564 <_> 30565 <!-- root node --> 30566 <feature> 30567 <rects> 30568 <_>7 0 10 12 -1.</_> 30569 <_>7 0 5 6 2.</_> 30570 <_>12 6 5 6 2.</_></rects> 30571 <tilted>0</tilted></feature> 30572 <threshold>-0.0282739996910095</threshold> 30573 <left_val>-0.6477800011634827</left_val> 30574 <right_val>0.0239170007407665</right_val></_></_> 30575 <_> 30576 <!-- tree 191 --> 30577 <_> 30578 <!-- root node --> 30579 <feature> 30580 <rects> 30581 <_>4 1 16 8 -1.</_> 30582 <_>4 1 8 8 2.</_></rects> 30583 <tilted>0</tilted></feature> 30584 <threshold>-0.1601359993219376</threshold> 30585 <left_val>1.0892050266265869</left_val> 30586 <right_val>0.0583890005946159</right_val></_></_> 30587 <_> 30588 <!-- tree 192 --> 30589 <_> 30590 <!-- root node --> 30591 <feature> 30592 <rects> 30593 <_>0 21 19 3 -1.</_> 30594 <_>0 22 19 1 3.</_></rects> 30595 <tilted>0</tilted></feature> 30596 <threshold>4.9629998393356800e-003</threshold> 30597 <left_val>-0.2580629885196686</left_val> 30598 <right_val>0.2083459943532944</right_val></_></_> 30599 <_> 30600 <!-- tree 193 --> 30601 <_> 30602 <!-- root node --> 30603 <feature> 30604 <rects> 30605 <_>6 9 18 4 -1.</_> 30606 <_>15 9 9 2 2.</_> 30607 <_>6 11 9 2 2.</_></rects> 30608 <tilted>0</tilted></feature> 30609 <threshold>0.0469370000064373</threshold> 30610 <left_val>0.1388629972934723</left_val> 30611 <right_val>-1.5662620067596436</right_val></_></_> 30612 <_> 30613 <!-- tree 194 --> 30614 <_> 30615 <!-- root node --> 30616 <feature> 30617 <rects> 30618 <_>3 4 9 6 -1.</_> 30619 <_>3 6 9 2 3.</_></rects> 30620 <tilted>0</tilted></feature> 30621 <threshold>0.0242860000580549</threshold> 30622 <left_val>-0.2072830051183701</left_val> 30623 <right_val>0.5243099927902222</right_val></_></_> 30624 <_> 30625 <!-- tree 195 --> 30626 <_> 30627 <!-- root node --> 30628 <feature> 30629 <rects> 30630 <_>9 1 6 15 -1.</_> 30631 <_>9 6 6 5 3.</_></rects> 30632 <tilted>0</tilted></feature> 30633 <threshold>0.0702020004391670</threshold> 30634 <left_val>0.1479689925909042</left_val> 30635 <right_val>-1.3095090389251709</right_val></_></_> 30636 <_> 30637 <!-- tree 196 --> 30638 <_> 30639 <!-- root node --> 30640 <feature> 30641 <rects> 30642 <_>5 9 6 6 -1.</_> 30643 <_>8 9 3 6 2.</_></rects> 30644 <tilted>0</tilted></feature> 30645 <threshold>9.8120002076029778e-003</threshold> 30646 <left_val>0.0279060006141663</left_val> 30647 <right_val>-0.5086460113525391</right_val></_></_> 30648 <_> 30649 <!-- tree 197 --> 30650 <_> 30651 <!-- root node --> 30652 <feature> 30653 <rects> 30654 <_>5 1 14 9 -1.</_> 30655 <_>5 4 14 3 3.</_></rects> 30656 <tilted>0</tilted></feature> 30657 <threshold>-0.0562009997665882</threshold> 30658 <left_val>1.2618130445480347</left_val> 30659 <right_val>0.0638019964098930</right_val></_></_> 30660 <_> 30661 <!-- tree 198 --> 30662 <_> 30663 <!-- root node --> 30664 <feature> 30665 <rects> 30666 <_>3 0 8 20 -1.</_> 30667 <_>3 0 4 10 2.</_> 30668 <_>7 10 4 10 2.</_></rects> 30669 <tilted>0</tilted></feature> 30670 <threshold>0.1098280027508736</threshold> 30671 <left_val>-0.1285009980201721</left_val> 30672 <right_val>3.0776169300079346</right_val></_></_></trees> 30673 <stage_threshold>-3.2573320865631104</stage_threshold> 30674 <parent>21</parent> 30675 <next>-1</next></_> 30676 <_> 30677 <!-- stage 23 --> 30678 <trees> 30679 <_> 30680 <!-- tree 0 --> 30681 <_> 30682 <!-- root node --> 30683 <feature> 30684 <rects> 30685 <_>5 0 7 9 -1.</_> 30686 <_>5 3 7 3 3.</_></rects> 30687 <tilted>0</tilted></feature> 30688 <threshold>0.0209100004285574</threshold> 30689 <left_val>-0.6855940222740173</left_val> 30690 <right_val>0.3898429870605469</right_val></_></_> 30691 <_> 30692 <!-- tree 1 --> 30693 <_> 30694 <!-- root node --> 30695 <feature> 30696 <rects> 30697 <_>6 6 12 5 -1.</_> 30698 <_>10 6 4 5 3.</_></rects> 30699 <tilted>0</tilted></feature> 30700 <threshold>0.0350320003926754</threshold> 30701 <left_val>-0.4772439897060394</left_val> 30702 <right_val>0.4502719938755035</right_val></_></_> 30703 <_> 30704 <!-- tree 2 --> 30705 <_> 30706 <!-- root node --> 30707 <feature> 30708 <rects> 30709 <_>0 1 8 14 -1.</_> 30710 <_>4 1 4 14 2.</_></rects> 30711 <tilted>0</tilted></feature> 30712 <threshold>0.0397990010678768</threshold> 30713 <left_val>-0.4701110124588013</left_val> 30714 <right_val>0.4270249903202057</right_val></_></_> 30715 <_> 30716 <!-- tree 3 --> 30717 <_> 30718 <!-- root node --> 30719 <feature> 30720 <rects> 30721 <_>2 12 22 4 -1.</_> 30722 <_>2 14 22 2 2.</_></rects> 30723 <tilted>0</tilted></feature> 30724 <threshold>-4.8409998416900635e-003</threshold> 30725 <left_val>0.2561430037021637</left_val> 30726 <right_val>-0.6655629873275757</right_val></_></_> 30727 <_> 30728 <!-- tree 4 --> 30729 <_> 30730 <!-- root node --> 30731 <feature> 30732 <rects> 30733 <_>8 17 6 6 -1.</_> 30734 <_>8 20 6 3 2.</_></rects> 30735 <tilted>0</tilted></feature> 30736 <threshold>2.3439999204128981e-003</threshold> 30737 <left_val>-0.4808349907398224</left_val> 30738 <right_val>0.2801379859447479</right_val></_></_> 30739 <_> 30740 <!-- tree 5 --> 30741 <_> 30742 <!-- root node --> 30743 <feature> 30744 <rects> 30745 <_>18 1 6 7 -1.</_> 30746 <_>18 1 3 7 2.</_></rects> 30747 <tilted>0</tilted></feature> 30748 <threshold>0.0253129992634058</threshold> 30749 <left_val>-0.2394820004701614</left_val> 30750 <right_val>0.4419179856777191</right_val></_></_> 30751 <_> 30752 <!-- tree 6 --> 30753 <_> 30754 <!-- root node --> 30755 <feature> 30756 <rects> 30757 <_>0 0 6 6 -1.</_> 30758 <_>3 0 3 6 2.</_></rects> 30759 <tilted>0</tilted></feature> 30760 <threshold>-0.0321930013597012</threshold> 30761 <left_val>0.7608669996261597</left_val> 30762 <right_val>-0.2505910098552704</right_val></_></_> 30763 <_> 30764 <!-- tree 7 --> 30765 <_> 30766 <!-- root node --> 30767 <feature> 30768 <rects> 30769 <_>4 6 17 18 -1.</_> 30770 <_>4 12 17 6 3.</_></rects> 30771 <tilted>0</tilted></feature> 30772 <threshold>0.0754090026021004</threshold> 30773 <left_val>-0.3497459888458252</left_val> 30774 <right_val>0.3438029885292053</right_val></_></_> 30775 <_> 30776 <!-- tree 8 --> 30777 <_> 30778 <!-- root node --> 30779 <feature> 30780 <rects> 30781 <_>6 0 12 6 -1.</_> 30782 <_>6 0 6 3 2.</_> 30783 <_>12 3 6 3 2.</_></rects> 30784 <tilted>0</tilted></feature> 30785 <threshold>-0.0184690002351999</threshold> 30786 <left_val>-0.7908560037612915</left_val> 30787 <right_val>0.0347880013287067</right_val></_></_> 30788 <_> 30789 <!-- tree 9 --> 30790 <_> 30791 <!-- root node --> 30792 <feature> 30793 <rects> 30794 <_>4 7 18 4 -1.</_> 30795 <_>13 7 9 2 2.</_> 30796 <_>4 9 9 2 2.</_></rects> 30797 <tilted>0</tilted></feature> 30798 <threshold>-0.0128020001575351</threshold> 30799 <left_val>0.4710780084133148</left_val> 30800 <right_val>-0.0600060001015663</right_val></_></_> 30801 <_> 30802 <!-- tree 10 --> 30803 <_> 30804 <!-- root node --> 30805 <feature> 30806 <rects> 30807 <_>4 12 10 6 -1.</_> 30808 <_>4 14 10 2 3.</_></rects> 30809 <tilted>0</tilted></feature> 30810 <threshold>-0.0265980008989573</threshold> 30811 <left_val>0.6711609959602356</left_val> 30812 <right_val>-0.2425750046968460</right_val></_></_> 30813 <_> 30814 <!-- tree 11 --> 30815 <_> 30816 <!-- root node --> 30817 <feature> 30818 <rects> 30819 <_>7 9 10 12 -1.</_> 30820 <_>12 9 5 6 2.</_> 30821 <_>7 15 5 6 2.</_></rects> 30822 <tilted>0</tilted></feature> 30823 <threshold>0.0219889990985394</threshold> 30824 <left_val>0.2471749931573868</left_val> 30825 <right_val>-0.4830169975757599</right_val></_></_> 30826 <_> 30827 <!-- tree 12 --> 30828 <_> 30829 <!-- root node --> 30830 <feature> 30831 <rects> 30832 <_>0 1 24 3 -1.</_> 30833 <_>8 1 8 3 3.</_></rects> 30834 <tilted>0</tilted></feature> 30835 <threshold>0.1465409994125366</threshold> 30836 <left_val>-0.2150409966707230</left_val> 30837 <right_val>0.7205590009689331</right_val></_></_> 30838 <_> 30839 <!-- tree 13 --> 30840 <_> 30841 <!-- root node --> 30842 <feature> 30843 <rects> 30844 <_>13 11 6 6 -1.</_> 30845 <_>13 11 3 6 2.</_></rects> 30846 <tilted>0</tilted></feature> 30847 <threshold>3.5310001112520695e-003</threshold> 30848 <left_val>0.2793099880218506</left_val> 30849 <right_val>-0.3433989882469177</right_val></_></_> 30850 <_> 30851 <!-- tree 14 --> 30852 <_> 30853 <!-- root node --> 30854 <feature> 30855 <rects> 30856 <_>5 11 6 6 -1.</_> 30857 <_>8 11 3 6 2.</_></rects> 30858 <tilted>0</tilted></feature> 30859 <threshold>9.4010001048445702e-003</threshold> 30860 <left_val>0.0558619983494282</left_val> 30861 <right_val>-0.8214359879493713</right_val></_></_> 30862 <_> 30863 <!-- tree 15 --> 30864 <_> 30865 <!-- root node --> 30866 <feature> 30867 <rects> 30868 <_>3 10 19 3 -1.</_> 30869 <_>3 11 19 1 3.</_></rects> 30870 <tilted>0</tilted></feature> 30871 <threshold>-8.6390003561973572e-003</threshold> 30872 <left_val>-0.9962059855461121</left_val> 30873 <right_val>0.1887499988079071</right_val></_></_> 30874 <_> 30875 <!-- tree 16 --> 30876 <_> 30877 <!-- root node --> 30878 <feature> 30879 <rects> 30880 <_>0 2 6 9 -1.</_> 30881 <_>0 5 6 3 3.</_></rects> 30882 <tilted>0</tilted></feature> 30883 <threshold>-0.0391930006444454</threshold> 30884 <left_val>-1.1945559978485107</left_val> 30885 <right_val>-0.0291980002075434</right_val></_></_> 30886 <_> 30887 <!-- tree 17 --> 30888 <_> 30889 <!-- root node --> 30890 <feature> 30891 <rects> 30892 <_>14 16 10 6 -1.</_> 30893 <_>14 18 10 2 3.</_></rects> 30894 <tilted>0</tilted></feature> 30895 <threshold>0.0248550008982420</threshold> 30896 <left_val>0.1498759984970093</left_val> 30897 <right_val>-0.5413780212402344</right_val></_></_> 30898 <_> 30899 <!-- tree 18 --> 30900 <_> 30901 <!-- root node --> 30902 <feature> 30903 <rects> 30904 <_>0 16 10 6 -1.</_> 30905 <_>0 18 10 2 3.</_></rects> 30906 <tilted>0</tilted></feature> 30907 <threshold>-0.0349950008094311</threshold> 30908 <left_val>-1.4210180044174194</left_val> 30909 <right_val>-0.0423140004277229</right_val></_></_> 30910 <_> 30911 <!-- tree 19 --> 30912 <_> 30913 <!-- root node --> 30914 <feature> 30915 <rects> 30916 <_>14 13 9 6 -1.</_> 30917 <_>14 15 9 2 3.</_></rects> 30918 <tilted>0</tilted></feature> 30919 <threshold>-0.0183789990842342</threshold> 30920 <left_val>-0.2824259996414185</left_val> 30921 <right_val>0.1558180004358292</right_val></_></_> 30922 <_> 30923 <!-- tree 20 --> 30924 <_> 30925 <!-- root node --> 30926 <feature> 30927 <rects> 30928 <_>0 16 18 3 -1.</_> 30929 <_>0 17 18 1 3.</_></rects> 30930 <tilted>0</tilted></feature> 30931 <threshold>-0.0135920001193881</threshold> 30932 <left_val>0.4731709957122803</left_val> 30933 <right_val>-0.2193720042705536</right_val></_></_> 30934 <_> 30935 <!-- tree 21 --> 30936 <_> 30937 <!-- root node --> 30938 <feature> 30939 <rects> 30940 <_>6 16 18 3 -1.</_> 30941 <_>6 17 18 1 3.</_></rects> 30942 <tilted>0</tilted></feature> 30943 <threshold>6.2629999592900276e-003</threshold> 30944 <left_val>-0.0597140006721020</left_val> 30945 <right_val>0.6062589883804321</right_val></_></_> 30946 <_> 30947 <!-- tree 22 --> 30948 <_> 30949 <!-- root node --> 30950 <feature> 30951 <rects> 30952 <_>0 18 9 6 -1.</_> 30953 <_>0 20 9 2 3.</_></rects> 30954 <tilted>0</tilted></feature> 30955 <threshold>-0.0184780005365610</threshold> 30956 <left_val>-0.8564720153808594</left_val> 30957 <right_val>-0.0137839997187257</right_val></_></_> 30958 <_> 30959 <!-- tree 23 --> 30960 <_> 30961 <!-- root node --> 30962 <feature> 30963 <rects> 30964 <_>14 13 9 6 -1.</_> 30965 <_>14 15 9 2 3.</_></rects> 30966 <tilted>0</tilted></feature> 30967 <threshold>0.0142360003665090</threshold> 30968 <left_val>0.1665479987859726</left_val> 30969 <right_val>-0.2771399915218353</right_val></_></_> 30970 <_> 30971 <!-- tree 24 --> 30972 <_> 30973 <!-- root node --> 30974 <feature> 30975 <rects> 30976 <_>6 2 6 9 -1.</_> 30977 <_>8 2 2 9 3.</_></rects> 30978 <tilted>0</tilted></feature> 30979 <threshold>-0.0325470007956028</threshold> 30980 <left_val>-1.1728240251541138</left_val> 30981 <right_val>-0.0401850007474422</right_val></_></_> 30982 <_> 30983 <!-- tree 25 --> 30984 <_> 30985 <!-- root node --> 30986 <feature> 30987 <rects> 30988 <_>15 8 4 12 -1.</_> 30989 <_>15 8 2 12 2.</_></rects> 30990 <tilted>0</tilted></feature> 30991 <threshold>-2.6410000864416361e-003</threshold> 30992 <left_val>0.2651430070400238</left_val> 30993 <right_val>-0.0563430003821850</right_val></_></_> 30994 <_> 30995 <!-- tree 26 --> 30996 <_> 30997 <!-- root node --> 30998 <feature> 30999 <rects> 31000 <_>8 13 8 8 -1.</_> 31001 <_>8 17 8 4 2.</_></rects> 31002 <tilted>0</tilted></feature> 31003 <threshold>-8.7799999164417386e-004</threshold> 31004 <left_val>0.0365560017526150</left_val> 31005 <right_val>-0.5507519841194153</right_val></_></_> 31006 <_> 31007 <!-- tree 27 --> 31008 <_> 31009 <!-- root node --> 31010 <feature> 31011 <rects> 31012 <_>4 20 18 3 -1.</_> 31013 <_>10 20 6 3 3.</_></rects> 31014 <tilted>0</tilted></feature> 31015 <threshold>0.0473719984292984</threshold> 31016 <left_val>-0.0426140017807484</left_val> 31017 <right_val>0.4819490015506744</right_val></_></_> 31018 <_> 31019 <!-- tree 28 --> 31020 <_> 31021 <!-- root node --> 31022 <feature> 31023 <rects> 31024 <_>5 8 4 12 -1.</_> 31025 <_>7 8 2 12 2.</_></rects> 31026 <tilted>0</tilted></feature> 31027 <threshold>-7.0790001191198826e-003</threshold> 31028 <left_val>0.2869899868965149</left_val> 31029 <right_val>-0.3292300105094910</right_val></_></_> 31030 <_> 31031 <!-- tree 29 --> 31032 <_> 31033 <!-- root node --> 31034 <feature> 31035 <rects> 31036 <_>7 7 12 3 -1.</_> 31037 <_>7 7 6 3 2.</_></rects> 31038 <tilted>0</tilted></feature> 31039 <threshold>-0.0431459993124008</threshold> 31040 <left_val>-1.4065419435501099</left_val> 31041 <right_val>0.1283639967441559</right_val></_></_> 31042 <_> 31043 <!-- tree 30 --> 31044 <_> 31045 <!-- root node --> 31046 <feature> 31047 <rects> 31048 <_>10 6 4 9 -1.</_> 31049 <_>12 6 2 9 2.</_></rects> 31050 <tilted>0</tilted></feature> 31051 <threshold>0.0205920003354549</threshold> 31052 <left_val>-0.2143529951572418</left_val> 31053 <right_val>0.5398179888725281</right_val></_></_> 31054 <_> 31055 <!-- tree 31 --> 31056 <_> 31057 <!-- root node --> 31058 <feature> 31059 <rects> 31060 <_>5 20 18 3 -1.</_> 31061 <_>11 20 6 3 3.</_></rects> 31062 <tilted>0</tilted></feature> 31063 <threshold>-0.0223670005798340</threshold> 31064 <left_val>0.3371829986572266</left_val> 31065 <right_val>0.0452120006084442</right_val></_></_> 31066 <_> 31067 <!-- tree 32 --> 31068 <_> 31069 <!-- root node --> 31070 <feature> 31071 <rects> 31072 <_>1 20 18 3 -1.</_> 31073 <_>7 20 6 3 3.</_></rects> 31074 <tilted>0</tilted></feature> 31075 <threshold>0.0500399991869926</threshold> 31076 <left_val>-0.2512170076370239</left_val> 31077 <right_val>0.4175049960613251</right_val></_></_> 31078 <_> 31079 <!-- tree 33 --> 31080 <_> 31081 <!-- root node --> 31082 <feature> 31083 <rects> 31084 <_>18 1 6 20 -1.</_> 31085 <_>21 1 3 10 2.</_> 31086 <_>18 11 3 10 2.</_></rects> 31087 <tilted>0</tilted></feature> 31088 <threshold>0.0617949999868870</threshold> 31089 <left_val>0.0400849990546703</left_val> 31090 <right_val>0.6877980232238770</right_val></_></_> 31091 <_> 31092 <!-- tree 34 --> 31093 <_> 31094 <!-- root node --> 31095 <feature> 31096 <rects> 31097 <_>0 1 6 20 -1.</_> 31098 <_>0 1 3 10 2.</_> 31099 <_>3 11 3 10 2.</_></rects> 31100 <tilted>0</tilted></feature> 31101 <threshold>-0.0418619997799397</threshold> 31102 <left_val>0.5302739739418030</left_val> 31103 <right_val>-0.2290199995040894</right_val></_></_> 31104 <_> 31105 <!-- tree 35 --> 31106 <_> 31107 <!-- root node --> 31108 <feature> 31109 <rects> 31110 <_>13 3 4 18 -1.</_> 31111 <_>15 3 2 9 2.</_> 31112 <_>13 12 2 9 2.</_></rects> 31113 <tilted>0</tilted></feature> 31114 <threshold>-3.1959998887032270e-003</threshold> 31115 <left_val>0.2516149878501892</left_val> 31116 <right_val>-0.2151460051536560</right_val></_></_> 31117 <_> 31118 <!-- tree 36 --> 31119 <_> 31120 <!-- root node --> 31121 <feature> 31122 <rects> 31123 <_>0 2 6 12 -1.</_> 31124 <_>0 6 6 4 3.</_></rects> 31125 <tilted>0</tilted></feature> 31126 <threshold>0.0242550000548363</threshold> 31127 <left_val>7.2320001199841499e-003</left_val> 31128 <right_val>-0.7251909971237183</right_val></_></_> 31129 <_> 31130 <!-- tree 37 --> 31131 <_> 31132 <!-- root node --> 31133 <feature> 31134 <rects> 31135 <_>12 9 12 6 -1.</_> 31136 <_>18 9 6 3 2.</_> 31137 <_>12 12 6 3 2.</_></rects> 31138 <tilted>0</tilted></feature> 31139 <threshold>-0.0173039995133877</threshold> 31140 <left_val>-0.4995819926261902</left_val> 31141 <right_val>0.1839450001716614</right_val></_></_> 31142 <_> 31143 <!-- tree 38 --> 31144 <_> 31145 <!-- root node --> 31146 <feature> 31147 <rects> 31148 <_>7 3 4 18 -1.</_> 31149 <_>7 3 2 9 2.</_> 31150 <_>9 12 2 9 2.</_></rects> 31151 <tilted>0</tilted></feature> 31152 <threshold>-4.1470001451671124e-003</threshold> 31153 <left_val>0.0852119997143745</left_val> 31154 <right_val>-0.4636470079421997</right_val></_></_> 31155 <_> 31156 <!-- tree 39 --> 31157 <_> 31158 <!-- root node --> 31159 <feature> 31160 <rects> 31161 <_>14 0 6 9 -1.</_> 31162 <_>16 0 2 9 3.</_></rects> 31163 <tilted>0</tilted></feature> 31164 <threshold>-0.0143699999898672</threshold> 31165 <left_val>-0.5225890278816223</left_val> 31166 <right_val>0.2389259934425354</right_val></_></_> 31167 <_> 31168 <!-- tree 40 --> 31169 <_> 31170 <!-- root node --> 31171 <feature> 31172 <rects> 31173 <_>0 9 12 6 -1.</_> 31174 <_>0 9 6 3 2.</_> 31175 <_>6 12 6 3 2.</_></rects> 31176 <tilted>0</tilted></feature> 31177 <threshold>-9.0399999171495438e-003</threshold> 31178 <left_val>-0.6325039863586426</left_val> 31179 <right_val>0.0325510017573833</right_val></_></_> 31180 <_> 31181 <!-- tree 41 --> 31182 <_> 31183 <!-- root node --> 31184 <feature> 31185 <rects> 31186 <_>14 4 8 20 -1.</_> 31187 <_>18 4 4 10 2.</_> 31188 <_>14 14 4 10 2.</_></rects> 31189 <tilted>0</tilted></feature> 31190 <threshold>-0.1237310022115707</threshold> 31191 <left_val>1.2856210470199585</left_val> 31192 <right_val>0.0765450000762939</right_val></_></_> 31193 <_> 31194 <!-- tree 42 --> 31195 <_> 31196 <!-- root node --> 31197 <feature> 31198 <rects> 31199 <_>2 4 8 20 -1.</_> 31200 <_>2 4 4 10 2.</_> 31201 <_>6 14 4 10 2.</_></rects> 31202 <tilted>0</tilted></feature> 31203 <threshold>-0.0822219997644424</threshold> 31204 <left_val>0.8320819735527039</left_val> 31205 <right_val>-0.1859059929847717</right_val></_></_> 31206 <_> 31207 <!-- tree 43 --> 31208 <_> 31209 <!-- root node --> 31210 <feature> 31211 <rects> 31212 <_>14 13 9 6 -1.</_> 31213 <_>14 15 9 2 3.</_></rects> 31214 <tilted>0</tilted></feature> 31215 <threshold>0.0656590014696121</threshold> 31216 <left_val>0.1129880025982857</left_val> 31217 <right_val>-30.</right_val></_></_> 31218 <_> 31219 <!-- tree 44 --> 31220 <_> 31221 <!-- root node --> 31222 <feature> 31223 <rects> 31224 <_>1 13 9 6 -1.</_> 31225 <_>1 15 9 2 3.</_></rects> 31226 <tilted>0</tilted></feature> 31227 <threshold>-0.0315829999744892</threshold> 31228 <left_val>-1.3485900163650513</left_val> 31229 <right_val>-0.0470970012247562</right_val></_></_> 31230 <_> 31231 <!-- tree 45 --> 31232 <_> 31233 <!-- root node --> 31234 <feature> 31235 <rects> 31236 <_>3 15 18 3 -1.</_> 31237 <_>9 15 6 3 3.</_></rects> 31238 <tilted>0</tilted></feature> 31239 <threshold>-0.0796360000967979</threshold> 31240 <left_val>-1.3533639907836914</left_val> 31241 <right_val>0.1566880047321320</right_val></_></_> 31242 <_> 31243 <!-- tree 46 --> 31244 <_> 31245 <!-- root node --> 31246 <feature> 31247 <rects> 31248 <_>5 13 9 6 -1.</_> 31249 <_>5 15 9 2 3.</_></rects> 31250 <tilted>0</tilted></feature> 31251 <threshold>-0.0188800003379583</threshold> 31252 <left_val>0.4030030071735382</left_val> 31253 <right_val>-0.2514890134334564</right_val></_></_> 31254 <_> 31255 <!-- tree 47 --> 31256 <_> 31257 <!-- root node --> 31258 <feature> 31259 <rects> 31260 <_>5 0 18 3 -1.</_> 31261 <_>5 1 18 1 3.</_></rects> 31262 <tilted>0</tilted></feature> 31263 <threshold>-5.0149997696280479e-003</threshold> 31264 <left_val>-0.2628709971904755</left_val> 31265 <right_val>0.1858250051736832</right_val></_></_> 31266 <_> 31267 <!-- tree 48 --> 31268 <_> 31269 <!-- root node --> 31270 <feature> 31271 <rects> 31272 <_>8 2 6 7 -1.</_> 31273 <_>11 2 3 7 2.</_></rects> 31274 <tilted>0</tilted></feature> 31275 <threshold>-0.0122180003672838</threshold> 31276 <left_val>0.5869240164756775</left_val> 31277 <right_val>-0.1942770034074783</right_val></_></_> 31278 <_> 31279 <!-- tree 49 --> 31280 <_> 31281 <!-- root node --> 31282 <feature> 31283 <rects> 31284 <_>9 1 9 6 -1.</_> 31285 <_>12 1 3 6 3.</_></rects> 31286 <tilted>0</tilted></feature> 31287 <threshold>1.2710000155493617e-003</threshold> 31288 <left_val>-0.1668899953365326</left_val> 31289 <right_val>0.2300689965486527</right_val></_></_> 31290 <_> 31291 <!-- tree 50 --> 31292 <_> 31293 <!-- root node --> 31294 <feature> 31295 <rects> 31296 <_>6 1 9 6 -1.</_> 31297 <_>9 1 3 6 3.</_></rects> 31298 <tilted>0</tilted></feature> 31299 <threshold>0.0297439992427826</threshold> 31300 <left_val>0.0125200003385544</left_val> 31301 <right_val>-0.6672359704971314</right_val></_></_> 31302 <_> 31303 <!-- tree 51 --> 31304 <_> 31305 <!-- root node --> 31306 <feature> 31307 <rects> 31308 <_>5 6 14 6 -1.</_> 31309 <_>12 6 7 3 2.</_> 31310 <_>5 9 7 3 2.</_></rects> 31311 <tilted>0</tilted></feature> 31312 <threshold>0.0281750001013279</threshold> 31313 <left_val>-0.0170600004494190</left_val> 31314 <right_val>0.6457939743995667</right_val></_></_> 31315 <_> 31316 <!-- tree 52 --> 31317 <_> 31318 <!-- root node --> 31319 <feature> 31320 <rects> 31321 <_>8 2 6 13 -1.</_> 31322 <_>10 2 2 13 3.</_></rects> 31323 <tilted>0</tilted></feature> 31324 <threshold>0.0303450003266335</threshold> 31325 <left_val>-0.2417870014905930</left_val> 31326 <right_val>0.3487890064716339</right_val></_></_> 31327 <_> 31328 <!-- tree 53 --> 31329 <_> 31330 <!-- root node --> 31331 <feature> 31332 <rects> 31333 <_>6 11 12 6 -1.</_> 31334 <_>12 11 6 3 2.</_> 31335 <_>6 14 6 3 2.</_></rects> 31336 <tilted>0</tilted></feature> 31337 <threshold>-0.0173259992152452</threshold> 31338 <left_val>-0.5359939932823181</left_val> 31339 <right_val>0.2099599987268448</right_val></_></_> 31340 <_> 31341 <!-- tree 54 --> 31342 <_> 31343 <!-- root node --> 31344 <feature> 31345 <rects> 31346 <_>3 1 18 15 -1.</_> 31347 <_>9 1 6 15 3.</_></rects> 31348 <tilted>0</tilted></feature> 31349 <threshold>-0.0841780006885529</threshold> 31350 <left_val>0.7509329915046692</left_val> 31351 <right_val>-0.1759320050477982</right_val></_></_> 31352 <_> 31353 <!-- tree 55 --> 31354 <_> 31355 <!-- root node --> 31356 <feature> 31357 <rects> 31358 <_>13 0 6 7 -1.</_> 31359 <_>13 0 3 7 2.</_></rects> 31360 <tilted>0</tilted></feature> 31361 <threshold>7.4950000271201134e-003</threshold> 31362 <left_val>-0.1618809998035431</left_val> 31363 <right_val>0.3065750002861023</right_val></_></_> 31364 <_> 31365 <!-- tree 56 --> 31366 <_> 31367 <!-- root node --> 31368 <feature> 31369 <rects> 31370 <_>3 3 16 6 -1.</_> 31371 <_>3 6 16 3 2.</_></rects> 31372 <tilted>0</tilted></feature> 31373 <threshold>0.0564949996769428</threshold> 31374 <left_val>-0.1731880009174347</left_val> 31375 <right_val>1.0016150474548340</right_val></_></_> 31376 <_> 31377 <!-- tree 57 --> 31378 <_> 31379 <!-- root node --> 31380 <feature> 31381 <rects> 31382 <_>12 1 3 12 -1.</_> 31383 <_>12 7 3 6 2.</_></rects> 31384 <tilted>0</tilted></feature> 31385 <threshold>-5.2939997985959053e-003</threshold> 31386 <left_val>0.2341759949922562</left_val> 31387 <right_val>-0.0653470009565353</right_val></_></_> 31388 <_> 31389 <!-- tree 58 --> 31390 <_> 31391 <!-- root node --> 31392 <feature> 31393 <rects> 31394 <_>7 7 6 9 -1.</_> 31395 <_>9 7 2 9 3.</_></rects> 31396 <tilted>0</tilted></feature> 31397 <threshold>-0.0149450004100800</threshold> 31398 <left_val>0.2501890063285828</left_val> 31399 <right_val>-0.3059119880199432</right_val></_></_> 31400 <_> 31401 <!-- tree 59 --> 31402 <_> 31403 <!-- root node --> 31404 <feature> 31405 <rects> 31406 <_>13 0 4 24 -1.</_> 31407 <_>13 0 2 24 2.</_></rects> 31408 <tilted>0</tilted></feature> 31409 <threshold>0.0549190007150173</threshold> 31410 <left_val>0.1312199980020523</left_val> 31411 <right_val>-0.9376509785652161</right_val></_></_> 31412 <_> 31413 <!-- tree 60 --> 31414 <_> 31415 <!-- root node --> 31416 <feature> 31417 <rects> 31418 <_>7 0 4 24 -1.</_> 31419 <_>9 0 2 24 2.</_></rects> 31420 <tilted>0</tilted></feature> 31421 <threshold>-0.0197219997644424</threshold> 31422 <left_val>-0.8397849798202515</left_val> 31423 <right_val>-0.0234730001538992</right_val></_></_> 31424 <_> 31425 <!-- tree 61 --> 31426 <_> 31427 <!-- root node --> 31428 <feature> 31429 <rects> 31430 <_>11 9 5 12 -1.</_> 31431 <_>11 13 5 4 3.</_></rects> 31432 <tilted>0</tilted></feature> 31433 <threshold>-0.0671589970588684</threshold> 31434 <left_val>2.3586840629577637</left_val> 31435 <right_val>0.0829709991812706</right_val></_></_> 31436 <_> 31437 <!-- tree 62 --> 31438 <_> 31439 <!-- root node --> 31440 <feature> 31441 <rects> 31442 <_>7 15 9 6 -1.</_> 31443 <_>7 17 9 2 3.</_></rects> 31444 <tilted>0</tilted></feature> 31445 <threshold>-0.0143259996548295</threshold> 31446 <left_val>0.1881449967622757</left_val> 31447 <right_val>-0.3122160136699677</right_val></_></_> 31448 <_> 31449 <!-- tree 63 --> 31450 <_> 31451 <!-- root node --> 31452 <feature> 31453 <rects> 31454 <_>5 7 18 6 -1.</_> 31455 <_>5 9 18 2 3.</_></rects> 31456 <tilted>0</tilted></feature> 31457 <threshold>0.0298410002142191</threshold> 31458 <left_val>0.1482509970664978</left_val> 31459 <right_val>-0.8468170166015625</right_val></_></_> 31460 <_> 31461 <!-- tree 64 --> 31462 <_> 31463 <!-- root node --> 31464 <feature> 31465 <rects> 31466 <_>8 9 5 12 -1.</_> 31467 <_>8 13 5 4 3.</_></rects> 31468 <tilted>0</tilted></feature> 31469 <threshold>0.0518830008804798</threshold> 31470 <left_val>-0.0437310002744198</left_val> 31471 <right_val>-1.3366169929504395</right_val></_></_> 31472 <_> 31473 <!-- tree 65 --> 31474 <_> 31475 <!-- root node --> 31476 <feature> 31477 <rects> 31478 <_>4 17 17 6 -1.</_> 31479 <_>4 19 17 2 3.</_></rects> 31480 <tilted>0</tilted></feature> 31481 <threshold>0.0411270000040531</threshold> 31482 <left_val>0.1766009926795960</left_val> 31483 <right_val>-0.6090409755706787</right_val></_></_> 31484 <_> 31485 <!-- tree 66 --> 31486 <_> 31487 <!-- root node --> 31488 <feature> 31489 <rects> 31490 <_>0 3 18 14 -1.</_> 31491 <_>0 3 9 7 2.</_> 31492 <_>9 10 9 7 2.</_></rects> 31493 <tilted>0</tilted></feature> 31494 <threshold>-0.1286509931087494</threshold> 31495 <left_val>-0.9870100021362305</left_val> 31496 <right_val>-0.0377850010991097</right_val></_></_> 31497 <_> 31498 <!-- tree 67 --> 31499 <_> 31500 <!-- root node --> 31501 <feature> 31502 <rects> 31503 <_>0 1 24 2 -1.</_> 31504 <_>0 2 24 1 2.</_></rects> 31505 <tilted>0</tilted></feature> 31506 <threshold>2.4170000106096268e-003</threshold> 31507 <left_val>-0.1611959934234619</left_val> 31508 <right_val>0.3267570137977600</right_val></_></_> 31509 <_> 31510 <!-- tree 68 --> 31511 <_> 31512 <!-- root node --> 31513 <feature> 31514 <rects> 31515 <_>0 15 18 3 -1.</_> 31516 <_>0 16 18 1 3.</_></rects> 31517 <tilted>0</tilted></feature> 31518 <threshold>7.7030002139508724e-003</threshold> 31519 <left_val>-0.2384150028228760</left_val> 31520 <right_val>0.2931939959526062</right_val></_></_> 31521 <_> 31522 <!-- tree 69 --> 31523 <_> 31524 <!-- root node --> 31525 <feature> 31526 <rects> 31527 <_>9 0 6 9 -1.</_> 31528 <_>11 0 2 9 3.</_></rects> 31529 <tilted>0</tilted></feature> 31530 <threshold>0.0455200001597404</threshold> 31531 <left_val>0.1442459970712662</left_val> 31532 <right_val>-1.5010160207748413</right_val></_></_> 31533 <_> 31534 <!-- tree 70 --> 31535 <_> 31536 <!-- root node --> 31537 <feature> 31538 <rects> 31539 <_>3 3 14 12 -1.</_> 31540 <_>3 9 14 6 2.</_></rects> 31541 <tilted>0</tilted></feature> 31542 <threshold>-0.0787009969353676</threshold> 31543 <left_val>-1.0394560098648071</left_val> 31544 <right_val>-0.0453759990632534</right_val></_></_> 31545 <_> 31546 <!-- tree 71 --> 31547 <_> 31548 <!-- root node --> 31549 <feature> 31550 <rects> 31551 <_>12 1 3 12 -1.</_> 31552 <_>12 7 3 6 2.</_></rects> 31553 <tilted>0</tilted></feature> 31554 <threshold>7.8619997948408127e-003</threshold> 31555 <left_val>0.1963360011577606</left_val> 31556 <right_val>-0.1447239965200424</right_val></_></_> 31557 <_> 31558 <!-- tree 72 --> 31559 <_> 31560 <!-- root node --> 31561 <feature> 31562 <rects> 31563 <_>8 0 6 9 -1.</_> 31564 <_>10 0 2 9 3.</_></rects> 31565 <tilted>0</tilted></feature> 31566 <threshold>-0.0134589998051524</threshold> 31567 <left_val>-0.9063469767570496</left_val> 31568 <right_val>-0.0380490012466908</right_val></_></_> 31569 <_> 31570 <!-- tree 73 --> 31571 <_> 31572 <!-- root node --> 31573 <feature> 31574 <rects> 31575 <_>10 6 6 10 -1.</_> 31576 <_>12 6 2 10 3.</_></rects> 31577 <tilted>0</tilted></feature> 31578 <threshold>0.0288270004093647</threshold> 31579 <left_val>-0.0294739995151758</left_val> 31580 <right_val>0.6005839705467224</right_val></_></_> 31581 <_> 31582 <!-- tree 74 --> 31583 <_> 31584 <!-- root node --> 31585 <feature> 31586 <rects> 31587 <_>5 0 6 9 -1.</_> 31588 <_>7 0 2 9 3.</_></rects> 31589 <tilted>0</tilted></feature> 31590 <threshold>-0.0273659992963076</threshold> 31591 <left_val>-0.9980400204658508</left_val> 31592 <right_val>-0.0386530011892319</right_val></_></_> 31593 <_> 31594 <!-- tree 75 --> 31595 <_> 31596 <!-- root node --> 31597 <feature> 31598 <rects> 31599 <_>2 0 21 7 -1.</_> 31600 <_>9 0 7 7 3.</_></rects> 31601 <tilted>0</tilted></feature> 31602 <threshold>-0.0729179978370667</threshold> 31603 <left_val>0.7336149811744690</left_val> 31604 <right_val>0.0574400015175343</right_val></_></_> 31605 <_> 31606 <!-- tree 76 --> 31607 <_> 31608 <!-- root node --> 31609 <feature> 31610 <rects> 31611 <_>6 11 12 5 -1.</_> 31612 <_>10 11 4 5 3.</_></rects> 31613 <tilted>0</tilted></feature> 31614 <threshold>-0.0139889996498823</threshold> 31615 <left_val>0.2789260149002075</left_val> 31616 <right_val>-0.2651630043983460</right_val></_></_> 31617 <_> 31618 <!-- tree 77 --> 31619 <_> 31620 <!-- root node --> 31621 <feature> 31622 <rects> 31623 <_>8 7 9 8 -1.</_> 31624 <_>11 7 3 8 3.</_></rects> 31625 <tilted>0</tilted></feature> 31626 <threshold>0.0432429984211922</threshold> 31627 <left_val>4.7760000452399254e-003</left_val> 31628 <right_val>0.3592590093612671</right_val></_></_> 31629 <_> 31630 <!-- tree 78 --> 31631 <_> 31632 <!-- root node --> 31633 <feature> 31634 <rects> 31635 <_>9 6 6 18 -1.</_> 31636 <_>9 6 3 9 2.</_> 31637 <_>12 15 3 9 2.</_></rects> 31638 <tilted>0</tilted></feature> 31639 <threshold>0.0295330006629229</threshold> 31640 <left_val>-0.2008399963378906</left_val> 31641 <right_val>0.5120289921760559</right_val></_></_> 31642 <_> 31643 <!-- tree 79 --> 31644 <_> 31645 <!-- root node --> 31646 <feature> 31647 <rects> 31648 <_>15 14 8 10 -1.</_> 31649 <_>19 14 4 5 2.</_> 31650 <_>15 19 4 5 2.</_></rects> 31651 <tilted>0</tilted></feature> 31652 <threshold>-0.0318970009684563</threshold> 31653 <left_val>0.6472169756889343</left_val> 31654 <right_val>-1.3760000001639128e-003</right_val></_></_> 31655 <_> 31656 <!-- tree 80 --> 31657 <_> 31658 <!-- root node --> 31659 <feature> 31660 <rects> 31661 <_>1 14 8 10 -1.</_> 31662 <_>1 14 4 5 2.</_> 31663 <_>5 19 4 5 2.</_></rects> 31664 <tilted>0</tilted></feature> 31665 <threshold>0.0378689989447594</threshold> 31666 <left_val>-0.1836380064487457</left_val> 31667 <right_val>0.6134309768676758</right_val></_></_> 31668 <_> 31669 <!-- tree 81 --> 31670 <_> 31671 <!-- root node --> 31672 <feature> 31673 <rects> 31674 <_>11 0 8 10 -1.</_> 31675 <_>15 0 4 5 2.</_> 31676 <_>11 5 4 5 2.</_></rects> 31677 <tilted>0</tilted></feature> 31678 <threshold>-0.0224179998040199</threshold> 31679 <left_val>-0.2918789982795715</left_val> 31680 <right_val>0.1819480061531067</right_val></_></_> 31681 <_> 31682 <!-- tree 82 --> 31683 <_> 31684 <!-- root node --> 31685 <feature> 31686 <rects> 31687 <_>5 0 8 10 -1.</_> 31688 <_>5 0 4 5 2.</_> 31689 <_>9 5 4 5 2.</_></rects> 31690 <tilted>0</tilted></feature> 31691 <threshold>0.0589589998126030</threshold> 31692 <left_val>-0.0664519965648651</left_val> 31693 <right_val>-1.9290030002593994</right_val></_></_> 31694 <_> 31695 <!-- tree 83 --> 31696 <_> 31697 <!-- root node --> 31698 <feature> 31699 <rects> 31700 <_>6 1 12 5 -1.</_> 31701 <_>6 1 6 5 2.</_></rects> 31702 <tilted>0</tilted></feature> 31703 <threshold>0.0312229990959167</threshold> 31704 <left_val>-0.0127320000901818</left_val> 31705 <right_val>0.6156079769134522</right_val></_></_> 31706 <_> 31707 <!-- tree 84 --> 31708 <_> 31709 <!-- root node --> 31710 <feature> 31711 <rects> 31712 <_>1 12 18 2 -1.</_> 31713 <_>10 12 9 2 2.</_></rects> 31714 <tilted>0</tilted></feature> 31715 <threshold>0.0374849997460842</threshold> 31716 <left_val>-0.2085690051317215</left_val> 31717 <right_val>0.4436399936676025</right_val></_></_> 31718 <_> 31719 <!-- tree 85 --> 31720 <_> 31721 <!-- root node --> 31722 <feature> 31723 <rects> 31724 <_>2 8 20 6 -1.</_> 31725 <_>12 8 10 3 2.</_> 31726 <_>2 11 10 3 2.</_></rects> 31727 <tilted>0</tilted></feature> 31728 <threshold>-0.0209660008549690</threshold> 31729 <left_val>-0.3571279942989349</left_val> 31730 <right_val>0.2425220012664795</right_val></_></_> 31731 <_> 31732 <!-- tree 86 --> 31733 <_> 31734 <!-- root node --> 31735 <feature> 31736 <rects> 31737 <_>7 6 9 7 -1.</_> 31738 <_>10 6 3 7 3.</_></rects> 31739 <tilted>0</tilted></feature> 31740 <threshold>-0.0254779998213053</threshold> 31741 <left_val>1.0846560001373291</left_val> 31742 <right_val>-0.1505440026521683</right_val></_></_> 31743 <_> 31744 <!-- tree 87 --> 31745 <_> 31746 <!-- root node --> 31747 <feature> 31748 <rects> 31749 <_>10 5 8 16 -1.</_> 31750 <_>14 5 4 8 2.</_> 31751 <_>10 13 4 8 2.</_></rects> 31752 <tilted>0</tilted></feature> 31753 <threshold>-7.2570000775158405e-003</threshold> 31754 <left_val>0.2130260020494461</left_val> 31755 <right_val>-0.1830819994211197</right_val></_></_> 31756 <_> 31757 <!-- tree 88 --> 31758 <_> 31759 <!-- root node --> 31760 <feature> 31761 <rects> 31762 <_>3 9 16 8 -1.</_> 31763 <_>3 9 8 4 2.</_> 31764 <_>11 13 8 4 2.</_></rects> 31765 <tilted>0</tilted></feature> 31766 <threshold>-0.0509830005466938</threshold> 31767 <left_val>0.5173680186271668</left_val> 31768 <right_val>-0.1883309930562973</right_val></_></_> 31769 <_> 31770 <!-- tree 89 --> 31771 <_> 31772 <!-- root node --> 31773 <feature> 31774 <rects> 31775 <_>7 8 10 4 -1.</_> 31776 <_>7 8 5 4 2.</_></rects> 31777 <tilted>0</tilted></feature> 31778 <threshold>-0.0206400007009506</threshold> 31779 <left_val>-0.4403020143508911</left_val> 31780 <right_val>0.2274599969387054</right_val></_></_> 31781 <_> 31782 <!-- tree 90 --> 31783 <_> 31784 <!-- root node --> 31785 <feature> 31786 <rects> 31787 <_>7 12 10 8 -1.</_> 31788 <_>7 12 5 4 2.</_> 31789 <_>12 16 5 4 2.</_></rects> 31790 <tilted>0</tilted></feature> 31791 <threshold>0.0106729995459318</threshold> 31792 <left_val>0.0350599996745586</left_val> 31793 <right_val>-0.5166500210762024</right_val></_></_> 31794 <_> 31795 <!-- tree 91 --> 31796 <_> 31797 <!-- root node --> 31798 <feature> 31799 <rects> 31800 <_>9 19 15 4 -1.</_> 31801 <_>14 19 5 4 3.</_></rects> 31802 <tilted>0</tilted></feature> 31803 <threshold>0.0318959988653660</threshold> 31804 <left_val>0.0132280001416802</left_val> 31805 <right_val>0.3491519987583160</right_val></_></_> 31806 <_> 31807 <!-- tree 92 --> 31808 <_> 31809 <!-- root node --> 31810 <feature> 31811 <rects> 31812 <_>1 0 18 9 -1.</_> 31813 <_>7 0 6 9 3.</_></rects> 31814 <tilted>0</tilted></feature> 31815 <threshold>-0.0238249991089106</threshold> 31816 <left_val>0.3411880135536194</left_val> 31817 <right_val>-0.2151020020246506</right_val></_></_> 31818 <_> 31819 <!-- tree 93 --> 31820 <_> 31821 <!-- root node --> 31822 <feature> 31823 <rects> 31824 <_>13 4 10 8 -1.</_> 31825 <_>18 4 5 4 2.</_> 31826 <_>13 8 5 4 2.</_></rects> 31827 <tilted>0</tilted></feature> 31828 <threshold>-6.0680001042783260e-003</threshold> 31829 <left_val>0.3293739855289459</left_val> 31830 <right_val>-0.2852379977703095</right_val></_></_> 31831 <_> 31832 <!-- tree 94 --> 31833 <_> 31834 <!-- root node --> 31835 <feature> 31836 <rects> 31837 <_>3 16 18 4 -1.</_> 31838 <_>9 16 6 4 3.</_></rects> 31839 <tilted>0</tilted></feature> 31840 <threshold>0.0238819997757673</threshold> 31841 <left_val>-0.2533380091190338</left_val> 31842 <right_val>0.2629610002040863</right_val></_></_> 31843 <_> 31844 <!-- tree 95 --> 31845 <_> 31846 <!-- root node --> 31847 <feature> 31848 <rects> 31849 <_>8 7 10 12 -1.</_> 31850 <_>13 7 5 6 2.</_> 31851 <_>8 13 5 6 2.</_></rects> 31852 <tilted>0</tilted></feature> 31853 <threshold>0.0279660001397133</threshold> 31854 <left_val>0.1404909938573837</left_val> 31855 <right_val>-0.4988709986209869</right_val></_></_> 31856 <_> 31857 <!-- tree 96 --> 31858 <_> 31859 <!-- root node --> 31860 <feature> 31861 <rects> 31862 <_>6 7 10 12 -1.</_> 31863 <_>6 7 5 6 2.</_> 31864 <_>11 13 5 6 2.</_></rects> 31865 <tilted>0</tilted></feature> 31866 <threshold>0.0146030001342297</threshold> 31867 <left_val>-0.0153959998860955</left_val> 31868 <right_val>-0.7695800065994263</right_val></_></_> 31869 <_> 31870 <!-- tree 97 --> 31871 <_> 31872 <!-- root node --> 31873 <feature> 31874 <rects> 31875 <_>4 6 18 7 -1.</_> 31876 <_>10 6 6 7 3.</_></rects> 31877 <tilted>0</tilted></feature> 31878 <threshold>0.1087239980697632</threshold> 31879 <left_val>0.1906960010528565</left_val> 31880 <right_val>-0.3239310085773468</right_val></_></_> 31881 <_> 31882 <!-- tree 98 --> 31883 <_> 31884 <!-- root node --> 31885 <feature> 31886 <rects> 31887 <_>0 17 18 3 -1.</_> 31888 <_>0 18 18 1 3.</_></rects> 31889 <tilted>0</tilted></feature> 31890 <threshold>-0.0140380002558231</threshold> 31891 <left_val>0.3492470085620880</left_val> 31892 <right_val>-0.2235870063304901</right_val></_></_> 31893 <_> 31894 <!-- tree 99 --> 31895 <_> 31896 <!-- root node --> 31897 <feature> 31898 <rects> 31899 <_>3 17 18 3 -1.</_> 31900 <_>3 18 18 1 3.</_></rects> 31901 <tilted>0</tilted></feature> 31902 <threshold>4.0440000593662262e-003</threshold> 31903 <left_val>-0.0383290015161037</left_val> 31904 <right_val>0.5117729902267456</right_val></_></_> 31905 <_> 31906 <!-- tree 100 --> 31907 <_> 31908 <!-- root node --> 31909 <feature> 31910 <rects> 31911 <_>2 4 6 10 -1.</_> 31912 <_>4 4 2 10 3.</_></rects> 31913 <tilted>0</tilted></feature> 31914 <threshold>-4.9769999459385872e-003</threshold> 31915 <left_val>-0.4288829863071442</left_val> 31916 <right_val>0.0491739995777607</right_val></_></_> 31917 <_> 31918 <!-- tree 101 --> 31919 <_> 31920 <!-- root node --> 31921 <feature> 31922 <rects> 31923 <_>16 0 8 24 -1.</_> 31924 <_>16 0 4 24 2.</_></rects> 31925 <tilted>0</tilted></feature> 31926 <threshold>-0.0851830020546913</threshold> 31927 <left_val>0.6662459969520569</left_val> 31928 <right_val>7.8079998493194580e-003</right_val></_></_> 31929 <_> 31930 <!-- tree 102 --> 31931 <_> 31932 <!-- root node --> 31933 <feature> 31934 <rects> 31935 <_>4 0 8 15 -1.</_> 31936 <_>8 0 4 15 2.</_></rects> 31937 <tilted>0</tilted></feature> 31938 <threshold>2.1559998858720064e-003</threshold> 31939 <left_val>-0.4913519918918610</left_val> 31940 <right_val>0.0695559978485107</right_val></_></_> 31941 <_> 31942 <!-- tree 103 --> 31943 <_> 31944 <!-- root node --> 31945 <feature> 31946 <rects> 31947 <_>16 0 8 24 -1.</_> 31948 <_>16 0 4 24 2.</_></rects> 31949 <tilted>0</tilted></feature> 31950 <threshold>0.3638449907302856</threshold> 31951 <left_val>0.1299709975719452</left_val> 31952 <right_val>-1.8949509859085083</right_val></_></_> 31953 <_> 31954 <!-- tree 104 --> 31955 <_> 31956 <!-- root node --> 31957 <feature> 31958 <rects> 31959 <_>1 4 18 9 -1.</_> 31960 <_>7 4 6 9 3.</_></rects> 31961 <tilted>0</tilted></feature> 31962 <threshold>0.2208250015974045</threshold> 31963 <left_val>-0.0572119988501072</left_val> 31964 <right_val>-1.4281120300292969</right_val></_></_> 31965 <_> 31966 <!-- tree 105 --> 31967 <_> 31968 <!-- root node --> 31969 <feature> 31970 <rects> 31971 <_>15 12 9 6 -1.</_> 31972 <_>15 14 9 2 3.</_></rects> 31973 <tilted>0</tilted></feature> 31974 <threshold>-0.0161400008946657</threshold> 31975 <left_val>-0.5758939981460571</left_val> 31976 <right_val>0.1806250065565109</right_val></_></_> 31977 <_> 31978 <!-- tree 106 --> 31979 <_> 31980 <!-- root node --> 31981 <feature> 31982 <rects> 31983 <_>3 9 18 6 -1.</_> 31984 <_>3 9 9 3 2.</_> 31985 <_>12 12 9 3 2.</_></rects> 31986 <tilted>0</tilted></feature> 31987 <threshold>-0.0483300015330315</threshold> 31988 <left_val>0.9730849862098694</left_val> 31989 <right_val>-0.1651300042867661</right_val></_></_> 31990 <_> 31991 <!-- tree 107 --> 31992 <_> 31993 <!-- root node --> 31994 <feature> 31995 <rects> 31996 <_>18 5 6 9 -1.</_> 31997 <_>18 8 6 3 3.</_></rects> 31998 <tilted>0</tilted></feature> 31999 <threshold>0.0175299998372793</threshold> 32000 <left_val>0.1793269962072372</left_val> 32001 <right_val>-0.2794890105724335</right_val></_></_> 32002 <_> 32003 <!-- tree 108 --> 32004 <_> 32005 <!-- root node --> 32006 <feature> 32007 <rects> 32008 <_>0 5 6 9 -1.</_> 32009 <_>0 8 6 3 3.</_></rects> 32010 <tilted>0</tilted></feature> 32011 <threshold>-0.0343099981546402</threshold> 32012 <left_val>-0.8107249736785889</left_val> 32013 <right_val>-0.0165960006415844</right_val></_></_> 32014 <_> 32015 <!-- tree 109 --> 32016 <_> 32017 <!-- root node --> 32018 <feature> 32019 <rects> 32020 <_>4 7 18 4 -1.</_> 32021 <_>13 7 9 2 2.</_> 32022 <_>4 9 9 2 2.</_></rects> 32023 <tilted>0</tilted></feature> 32024 <threshold>-4.5830002054572105e-003</threshold> 32025 <left_val>0.2790899872779846</left_val> 32026 <right_val>-7.4519999325275421e-003</right_val></_></_> 32027 <_> 32028 <!-- tree 110 --> 32029 <_> 32030 <!-- root node --> 32031 <feature> 32032 <rects> 32033 <_>2 1 12 20 -1.</_> 32034 <_>2 1 6 10 2.</_> 32035 <_>8 11 6 10 2.</_></rects> 32036 <tilted>0</tilted></feature> 32037 <threshold>0.1289640069007874</threshold> 32038 <left_val>-0.1350850015878677</left_val> 32039 <right_val>2.5411539077758789</right_val></_></_> 32040 <_> 32041 <!-- tree 111 --> 32042 <_> 32043 <!-- root node --> 32044 <feature> 32045 <rects> 32046 <_>17 0 6 23 -1.</_> 32047 <_>17 0 3 23 2.</_></rects> 32048 <tilted>0</tilted></feature> 32049 <threshold>0.0303610004484653</threshold> 32050 <left_val>-0.0684190019965172</left_val> 32051 <right_val>0.2873409986495972</right_val></_></_> 32052 <_> 32053 <!-- tree 112 --> 32054 <_> 32055 <!-- root node --> 32056 <feature> 32057 <rects> 32058 <_>1 6 2 18 -1.</_> 32059 <_>1 15 2 9 2.</_></rects> 32060 <tilted>0</tilted></feature> 32061 <threshold>0.0440860018134117</threshold> 32062 <left_val>-0.1813589930534363</left_val> 32063 <right_val>0.6541320085525513</right_val></_></_> 32064 <_> 32065 <!-- tree 113 --> 32066 <_> 32067 <!-- root node --> 32068 <feature> 32069 <rects> 32070 <_>8 8 10 6 -1.</_> 32071 <_>8 10 10 2 3.</_></rects> 32072 <tilted>0</tilted></feature> 32073 <threshold>3.0159999150782824e-003</threshold> 32074 <left_val>-0.1569049954414368</left_val> 32075 <right_val>0.2696380019187927</right_val></_></_> 32076 <_> 32077 <!-- tree 114 --> 32078 <_> 32079 <!-- root node --> 32080 <feature> 32081 <rects> 32082 <_>0 6 20 6 -1.</_> 32083 <_>0 6 10 3 2.</_> 32084 <_>10 9 10 3 2.</_></rects> 32085 <tilted>0</tilted></feature> 32086 <threshold>-0.0263369996100664</threshold> 32087 <left_val>0.2917560040950775</left_val> 32088 <right_val>-0.2527410089969635</right_val></_></_> 32089 <_> 32090 <!-- tree 115 --> 32091 <_> 32092 <!-- root node --> 32093 <feature> 32094 <rects> 32095 <_>11 12 12 5 -1.</_> 32096 <_>15 12 4 5 3.</_></rects> 32097 <tilted>0</tilted></feature> 32098 <threshold>-0.0278660003095865</threshold> 32099 <left_val>0.4438750147819519</left_val> 32100 <right_val>0.0550380013883114</right_val></_></_> 32101 <_> 32102 <!-- tree 116 --> 32103 <_> 32104 <!-- root node --> 32105 <feature> 32106 <rects> 32107 <_>0 4 3 19 -1.</_> 32108 <_>1 4 1 19 3.</_></rects> 32109 <tilted>0</tilted></feature> 32110 <threshold>0.0117250001057982</threshold> 32111 <left_val>-0.1934649944305420</left_val> 32112 <right_val>0.4665670096874237</right_val></_></_> 32113 <_> 32114 <!-- tree 117 --> 32115 <_> 32116 <!-- root node --> 32117 <feature> 32118 <rects> 32119 <_>19 1 3 18 -1.</_> 32120 <_>20 1 1 18 3.</_></rects> 32121 <tilted>0</tilted></feature> 32122 <threshold>1.5689999563619494e-003</threshold> 32123 <left_val>-8.2360003143548965e-003</left_val> 32124 <right_val>0.2570089995861054</right_val></_></_> 32125 <_> 32126 <!-- tree 118 --> 32127 <_> 32128 <!-- root node --> 32129 <feature> 32130 <rects> 32131 <_>2 1 3 18 -1.</_> 32132 <_>3 1 1 18 3.</_></rects> 32133 <tilted>0</tilted></feature> 32134 <threshold>-3.5550000611692667e-003</threshold> 32135 <left_val>-0.4243089854717255</left_val> 32136 <right_val>0.0711740031838417</right_val></_></_> 32137 <_> 32138 <!-- tree 119 --> 32139 <_> 32140 <!-- root node --> 32141 <feature> 32142 <rects> 32143 <_>3 10 18 3 -1.</_> 32144 <_>9 10 6 3 3.</_></rects> 32145 <tilted>0</tilted></feature> 32146 <threshold>-0.0316950008273125</threshold> 32147 <left_val>-0.8539350032806397</left_val> 32148 <right_val>0.1691620051860809</right_val></_></_> 32149 <_> 32150 <!-- tree 120 --> 32151 <_> 32152 <!-- root node --> 32153 <feature> 32154 <rects> 32155 <_>4 4 10 9 -1.</_> 32156 <_>9 4 5 9 2.</_></rects> 32157 <tilted>0</tilted></feature> 32158 <threshold>-0.0320970006287098</threshold> 32159 <left_val>0.8378490209579468</left_val> 32160 <right_val>-0.1759729981422424</right_val></_></_> 32161 <_> 32162 <!-- tree 121 --> 32163 <_> 32164 <!-- root node --> 32165 <feature> 32166 <rects> 32167 <_>7 13 14 7 -1.</_> 32168 <_>7 13 7 7 2.</_></rects> 32169 <tilted>0</tilted></feature> 32170 <threshold>0.1554419994354248</threshold> 32171 <left_val>0.0995500013232231</left_val> 32172 <right_val>2.3873300552368164</right_val></_></_> 32173 <_> 32174 <!-- tree 122 --> 32175 <_> 32176 <!-- root node --> 32177 <feature> 32178 <rects> 32179 <_>3 13 14 7 -1.</_> 32180 <_>10 13 7 7 2.</_></rects> 32181 <tilted>0</tilted></feature> 32182 <threshold>0.0880459994077683</threshold> 32183 <left_val>-0.1872529983520508</left_val> 32184 <right_val>0.6238430142402649</right_val></_></_> 32185 <_> 32186 <!-- tree 123 --> 32187 <_> 32188 <!-- root node --> 32189 <feature> 32190 <rects> 32191 <_>8 15 9 6 -1.</_> 32192 <_>11 15 3 6 3.</_></rects> 32193 <tilted>0</tilted></feature> 32194 <threshold>-1.6720000421628356e-003</threshold> 32195 <left_val>0.2500869929790497</left_val> 32196 <right_val>-0.0651189982891083</right_val></_></_> 32197 <_> 32198 <!-- tree 124 --> 32199 <_> 32200 <!-- root node --> 32201 <feature> 32202 <rects> 32203 <_>4 14 8 10 -1.</_> 32204 <_>4 14 4 5 2.</_> 32205 <_>8 19 4 5 2.</_></rects> 32206 <tilted>0</tilted></feature> 32207 <threshold>9.3409996479749680e-003</threshold> 32208 <left_val>-0.3537890017032623</left_val> 32209 <right_val>0.1071500033140183</right_val></_></_> 32210 <_> 32211 <!-- tree 125 --> 32212 <_> 32213 <!-- root node --> 32214 <feature> 32215 <rects> 32216 <_>10 14 4 10 -1.</_> 32217 <_>10 19 4 5 2.</_></rects> 32218 <tilted>0</tilted></feature> 32219 <threshold>0.0371380001306534</threshold> 32220 <left_val>0.1638700067996979</left_val> 32221 <right_val>-0.9171839952468872</right_val></_></_> 32222 <_> 32223 <!-- tree 126 --> 32224 <_> 32225 <!-- root node --> 32226 <feature> 32227 <rects> 32228 <_>3 8 5 16 -1.</_> 32229 <_>3 16 5 8 2.</_></rects> 32230 <tilted>0</tilted></feature> 32231 <threshold>0.0801839977502823</threshold> 32232 <left_val>-0.1481299996376038</left_val> 32233 <right_val>1.4895190000534058</right_val></_></_> 32234 <_> 32235 <!-- tree 127 --> 32236 <_> 32237 <!-- root node --> 32238 <feature> 32239 <rects> 32240 <_>15 10 9 6 -1.</_> 32241 <_>15 12 9 2 3.</_></rects> 32242 <tilted>0</tilted></feature> 32243 <threshold>-7.9100002767518163e-004</threshold> 32244 <left_val>-0.2132689952850342</left_val> 32245 <right_val>0.1967640072107315</right_val></_></_> 32246 <_> 32247 <!-- tree 128 --> 32248 <_> 32249 <!-- root node --> 32250 <feature> 32251 <rects> 32252 <_>0 10 9 6 -1.</_> 32253 <_>0 12 9 2 3.</_></rects> 32254 <tilted>0</tilted></feature> 32255 <threshold>-5.0400001928210258e-003</threshold> 32256 <left_val>-0.7131869792938232</left_val> 32257 <right_val>1.8240000354126096e-003</right_val></_></_> 32258 <_> 32259 <!-- tree 129 --> 32260 <_> 32261 <!-- root node --> 32262 <feature> 32263 <rects> 32264 <_>6 7 12 9 -1.</_> 32265 <_>6 10 12 3 3.</_></rects> 32266 <tilted>0</tilted></feature> 32267 <threshold>0.1196239963173866</threshold> 32268 <left_val>0.0330989994108677</left_val> 32269 <right_val>1.0441709756851196</right_val></_></_> 32270 <_> 32271 <!-- tree 130 --> 32272 <_> 32273 <!-- root node --> 32274 <feature> 32275 <rects> 32276 <_>9 10 5 8 -1.</_> 32277 <_>9 14 5 4 2.</_></rects> 32278 <tilted>0</tilted></feature> 32279 <threshold>-4.5280000194907188e-003</threshold> 32280 <left_val>-0.2730849981307983</left_val> 32281 <right_val>0.2722980082035065</right_val></_></_> 32282 <_> 32283 <!-- tree 131 --> 32284 <_> 32285 <!-- root node --> 32286 <feature> 32287 <rects> 32288 <_>12 1 3 12 -1.</_> 32289 <_>12 7 3 6 2.</_></rects> 32290 <tilted>0</tilted></feature> 32291 <threshold>-0.0296390000730753</threshold> 32292 <left_val>0.3622579872608185</left_val> 32293 <right_val>0.0567950010299683</right_val></_></_> 32294 <_> 32295 <!-- tree 132 --> 32296 <_> 32297 <!-- root node --> 32298 <feature> 32299 <rects> 32300 <_>8 15 6 9 -1.</_> 32301 <_>10 15 2 9 3.</_></rects> 32302 <tilted>0</tilted></feature> 32303 <threshold>0.0266500003635883</threshold> 32304 <left_val>-0.0480410009622574</left_val> 32305 <right_val>-0.9672350287437439</right_val></_></_> 32306 <_> 32307 <!-- tree 133 --> 32308 <_> 32309 <!-- root node --> 32310 <feature> 32311 <rects> 32312 <_>16 6 7 6 -1.</_> 32313 <_>16 9 7 3 2.</_></rects> 32314 <tilted>0</tilted></feature> 32315 <threshold>0.0444220006465912</threshold> 32316 <left_val>0.1305290013551712</left_val> 32317 <right_val>-0.3507730066776276</right_val></_></_> 32318 <_> 32319 <!-- tree 134 --> 32320 <_> 32321 <!-- root node --> 32322 <feature> 32323 <rects> 32324 <_>8 1 4 22 -1.</_> 32325 <_>10 1 2 22 2.</_></rects> 32326 <tilted>0</tilted></feature> 32327 <threshold>-0.0243599992245436</threshold> 32328 <left_val>-1.0766899585723877</left_val> 32329 <right_val>-0.0512229986488819</right_val></_></_> 32330 <_> 32331 <!-- tree 135 --> 32332 <_> 32333 <!-- root node --> 32334 <feature> 32335 <rects> 32336 <_>6 6 14 3 -1.</_> 32337 <_>6 6 7 3 2.</_></rects> 32338 <tilted>0</tilted></feature> 32339 <threshold>0.0197349991649389</threshold> 32340 <left_val>0.0262380000203848</left_val> 32341 <right_val>0.2807050049304962</right_val></_></_> 32342 <_> 32343 <!-- tree 136 --> 32344 <_> 32345 <!-- root node --> 32346 <feature> 32347 <rects> 32348 <_>0 18 19 3 -1.</_> 32349 <_>0 19 19 1 3.</_></rects> 32350 <tilted>0</tilted></feature> 32351 <threshold>5.4930001497268677e-003</threshold> 32352 <left_val>-0.2611129879951477</left_val> 32353 <right_val>0.2101140022277832</right_val></_></_> 32354 <_> 32355 <!-- tree 137 --> 32356 <_> 32357 <!-- root node --> 32358 <feature> 32359 <rects> 32360 <_>17 0 6 24 -1.</_> 32361 <_>17 0 3 24 2.</_></rects> 32362 <tilted>0</tilted></feature> 32363 <threshold>-0.2320030033588409</threshold> 32364 <left_val>-1.7748440504074097</left_val> 32365 <right_val>0.1148260012269020</right_val></_></_> 32366 <_> 32367 <!-- tree 138 --> 32368 <_> 32369 <!-- root node --> 32370 <feature> 32371 <rects> 32372 <_>0 13 15 6 -1.</_> 32373 <_>5 13 5 6 3.</_></rects> 32374 <tilted>0</tilted></feature> 32375 <threshold>-0.0256140008568764</threshold> 32376 <left_val>0.2990080118179321</left_val> 32377 <right_val>-0.2250249981880188</right_val></_></_> 32378 <_> 32379 <!-- tree 139 --> 32380 <_> 32381 <!-- root node --> 32382 <feature> 32383 <rects> 32384 <_>9 6 10 14 -1.</_> 32385 <_>14 6 5 7 2.</_> 32386 <_>9 13 5 7 2.</_></rects> 32387 <tilted>0</tilted></feature> 32388 <threshold>-6.4949998632073402e-003</threshold> 32389 <left_val>0.1956380009651184</left_val> 32390 <right_val>-0.0997629985213280</right_val></_></_> 32391 <_> 32392 <!-- tree 140 --> 32393 <_> 32394 <!-- root node --> 32395 <feature> 32396 <rects> 32397 <_>1 6 8 10 -1.</_> 32398 <_>1 6 4 5 2.</_> 32399 <_>5 11 4 5 2.</_></rects> 32400 <tilted>0</tilted></feature> 32401 <threshold>3.9840000681579113e-003</threshold> 32402 <left_val>-0.4302150011062622</left_val> 32403 <right_val>0.0812610015273094</right_val></_></_> 32404 <_> 32405 <!-- tree 141 --> 32406 <_> 32407 <!-- root node --> 32408 <feature> 32409 <rects> 32410 <_>7 6 12 5 -1.</_> 32411 <_>7 6 6 5 2.</_></rects> 32412 <tilted>0</tilted></feature> 32413 <threshold>-0.0358130000531673</threshold> 32414 <left_val>-0.5098739862442017</left_val> 32415 <right_val>0.1634590029716492</right_val></_></_> 32416 <_> 32417 <!-- tree 142 --> 32418 <_> 32419 <!-- root node --> 32420 <feature> 32421 <rects> 32422 <_>7 7 9 6 -1.</_> 32423 <_>10 7 3 6 3.</_></rects> 32424 <tilted>0</tilted></feature> 32425 <threshold>-0.0141690000891685</threshold> 32426 <left_val>0.7797809839248657</left_val> 32427 <right_val>-0.1747629940509796</right_val></_></_> 32428 <_> 32429 <!-- tree 143 --> 32430 <_> 32431 <!-- root node --> 32432 <feature> 32433 <rects> 32434 <_>7 8 14 14 -1.</_> 32435 <_>14 8 7 7 2.</_> 32436 <_>7 15 7 7 2.</_></rects> 32437 <tilted>0</tilted></feature> 32438 <threshold>-0.1264210045337677</threshold> 32439 <left_val>-0.6304789781570435</left_val> 32440 <right_val>0.1272830069065094</right_val></_></_> 32441 <_> 32442 <!-- tree 144 --> 32443 <_> 32444 <!-- root node --> 32445 <feature> 32446 <rects> 32447 <_>3 8 14 14 -1.</_> 32448 <_>3 8 7 7 2.</_> 32449 <_>10 15 7 7 2.</_></rects> 32450 <tilted>0</tilted></feature> 32451 <threshold>0.0686779990792274</threshold> 32452 <left_val>-0.0464479997754097</left_val> 32453 <right_val>-1.1128979921340942</right_val></_></_> 32454 <_> 32455 <!-- tree 145 --> 32456 <_> 32457 <!-- root node --> 32458 <feature> 32459 <rects> 32460 <_>9 8 13 4 -1.</_> 32461 <_>9 10 13 2 2.</_></rects> 32462 <tilted>0</tilted></feature> 32463 <threshold>0.0858649984002113</threshold> 32464 <left_val>0.1183540001511574</left_val> 32465 <right_val>-4.8235158920288086</right_val></_></_> 32466 <_> 32467 <!-- tree 146 --> 32468 <_> 32469 <!-- root node --> 32470 <feature> 32471 <rects> 32472 <_>3 2 6 12 -1.</_> 32473 <_>3 2 3 6 2.</_> 32474 <_>6 8 3 6 2.</_></rects> 32475 <tilted>0</tilted></feature> 32476 <threshold>0.0155119998380542</threshold> 32477 <left_val>-0.0174679998308420</left_val> 32478 <right_val>-0.6369339823722839</right_val></_></_> 32479 <_> 32480 <!-- tree 147 --> 32481 <_> 32482 <!-- root node --> 32483 <feature> 32484 <rects> 32485 <_>6 10 17 6 -1.</_> 32486 <_>6 13 17 3 2.</_></rects> 32487 <tilted>0</tilted></feature> 32488 <threshold>0.0810910016298294</threshold> 32489 <left_val>0.0861330032348633</left_val> 32490 <right_val>2.4559431076049805</right_val></_></_> 32491 <_> 32492 <!-- tree 148 --> 32493 <_> 32494 <!-- root node --> 32495 <feature> 32496 <rects> 32497 <_>1 10 17 6 -1.</_> 32498 <_>1 13 17 3 2.</_></rects> 32499 <tilted>0</tilted></feature> 32500 <threshold>0.0184950008988380</threshold> 32501 <left_val>0.0402290001511574</left_val> 32502 <right_val>-0.5085819959640503</right_val></_></_> 32503 <_> 32504 <!-- tree 149 --> 32505 <_> 32506 <!-- root node --> 32507 <feature> 32508 <rects> 32509 <_>16 7 8 9 -1.</_> 32510 <_>16 10 8 3 3.</_></rects> 32511 <tilted>0</tilted></feature> 32512 <threshold>-0.0863209962844849</threshold> 32513 <left_val>-1.9006760120391846</left_val> 32514 <right_val>0.1101910024881363</right_val></_></_> 32515 <_> 32516 <!-- tree 150 --> 32517 <_> 32518 <!-- root node --> 32519 <feature> 32520 <rects> 32521 <_>0 7 8 9 -1.</_> 32522 <_>0 10 8 3 3.</_></rects> 32523 <tilted>0</tilted></feature> 32524 <threshold>0.0723550021648407</threshold> 32525 <left_val>-0.0621119998395443</left_val> 32526 <right_val>-1.4165179729461670</right_val></_></_> 32527 <_> 32528 <!-- tree 151 --> 32529 <_> 32530 <!-- root node --> 32531 <feature> 32532 <rects> 32533 <_>0 9 24 10 -1.</_> 32534 <_>12 9 12 5 2.</_> 32535 <_>0 14 12 5 2.</_></rects> 32536 <tilted>0</tilted></feature> 32537 <threshold>-0.0781790018081665</threshold> 32538 <left_val>0.8884930014610291</left_val> 32539 <right_val>0.0423699989914894</right_val></_></_> 32540 <_> 32541 <!-- tree 152 --> 32542 <_> 32543 <!-- root node --> 32544 <feature> 32545 <rects> 32546 <_>3 2 15 8 -1.</_> 32547 <_>8 2 5 8 3.</_></rects> 32548 <tilted>0</tilted></feature> 32549 <threshold>0.0966819971799850</threshold> 32550 <left_val>-0.2209420055150986</left_val> 32551 <right_val>0.3357509970664978</right_val></_></_> 32552 <_> 32553 <!-- tree 153 --> 32554 <_> 32555 <!-- root node --> 32556 <feature> 32557 <rects> 32558 <_>4 2 18 8 -1.</_> 32559 <_>10 2 6 8 3.</_></rects> 32560 <tilted>0</tilted></feature> 32561 <threshold>-0.0398759990930557</threshold> 32562 <left_val>0.5780479907989502</left_val> 32563 <right_val>0.0453479997813702</right_val></_></_> 32564 <_> 32565 <!-- tree 154 --> 32566 <_> 32567 <!-- root node --> 32568 <feature> 32569 <rects> 32570 <_>0 1 18 4 -1.</_> 32571 <_>0 1 9 2 2.</_> 32572 <_>9 3 9 2 2.</_></rects> 32573 <tilted>0</tilted></feature> 32574 <threshold>-9.5349997282028198e-003</threshold> 32575 <left_val>-0.5417569875717163</left_val> 32576 <right_val>3.2399999909102917e-003</right_val></_></_> 32577 <_> 32578 <!-- tree 155 --> 32579 <_> 32580 <!-- root node --> 32581 <feature> 32582 <rects> 32583 <_>20 2 3 18 -1.</_> 32584 <_>21 2 1 18 3.</_></rects> 32585 <tilted>0</tilted></feature> 32586 <threshold>4.0600000647827983e-004</threshold> 32587 <left_val>-0.0815490037202835</left_val> 32588 <right_val>0.3583790063858032</right_val></_></_> 32589 <_> 32590 <!-- tree 156 --> 32591 <_> 32592 <!-- root node --> 32593 <feature> 32594 <rects> 32595 <_>1 3 3 19 -1.</_> 32596 <_>2 3 1 19 3.</_></rects> 32597 <tilted>0</tilted></feature> 32598 <threshold>0.0121079999953508</threshold> 32599 <left_val>-0.2028039991855621</left_val> 32600 <right_val>0.4376800060272217</right_val></_></_> 32601 <_> 32602 <!-- tree 157 --> 32603 <_> 32604 <!-- root node --> 32605 <feature> 32606 <rects> 32607 <_>18 8 6 16 -1.</_> 32608 <_>20 8 2 16 3.</_></rects> 32609 <tilted>0</tilted></feature> 32610 <threshold>-0.0208739992231131</threshold> 32611 <left_val>0.4146989881992340</left_val> 32612 <right_val>-0.0455680005252361</right_val></_></_> 32613 <_> 32614 <!-- tree 158 --> 32615 <_> 32616 <!-- root node --> 32617 <feature> 32618 <rects> 32619 <_>0 8 6 16 -1.</_> 32620 <_>2 8 2 16 3.</_></rects> 32621 <tilted>0</tilted></feature> 32622 <threshold>0.0578880012035370</threshold> 32623 <left_val>-0.0290099997073412</left_val> 32624 <right_val>-0.9182230234146118</right_val></_></_> 32625 <_> 32626 <!-- tree 159 --> 32627 <_> 32628 <!-- root node --> 32629 <feature> 32630 <rects> 32631 <_>8 18 11 6 -1.</_> 32632 <_>8 20 11 2 3.</_></rects> 32633 <tilted>0</tilted></feature> 32634 <threshold>1.3200000103097409e-004</threshold> 32635 <left_val>-0.1177240014076233</left_val> 32636 <right_val>0.2000000029802322</right_val></_></_> 32637 <_> 32638 <!-- tree 160 --> 32639 <_> 32640 <!-- root node --> 32641 <feature> 32642 <rects> 32643 <_>4 6 12 5 -1.</_> 32644 <_>8 6 4 5 3.</_></rects> 32645 <tilted>0</tilted></feature> 32646 <threshold>-0.0171370003372431</threshold> 32647 <left_val>0.3300479948520660</left_val> 32648 <right_val>-0.2305520027875900</right_val></_></_> 32649 <_> 32650 <!-- tree 161 --> 32651 <_> 32652 <!-- root node --> 32653 <feature> 32654 <rects> 32655 <_>7 6 12 5 -1.</_> 32656 <_>11 6 4 5 3.</_></rects> 32657 <tilted>0</tilted></feature> 32658 <threshold>0.0306550003588200</threshold> 32659 <left_val>-0.0215450003743172</left_val> 32660 <right_val>0.2687819898128510</right_val></_></_> 32661 <_> 32662 <!-- tree 162 --> 32663 <_> 32664 <!-- root node --> 32665 <feature> 32666 <rects> 32667 <_>6 3 9 6 -1.</_> 32668 <_>9 3 3 6 3.</_></rects> 32669 <tilted>0</tilted></feature> 32670 <threshold>-7.8699999721720815e-004</threshold> 32671 <left_val>-0.4410069882869721</left_val> 32672 <right_val>0.0491579994559288</right_val></_></_> 32673 <_> 32674 <!-- tree 163 --> 32675 <_> 32676 <!-- root node --> 32677 <feature> 32678 <rects> 32679 <_>7 6 12 5 -1.</_> 32680 <_>7 6 6 5 2.</_></rects> 32681 <tilted>0</tilted></feature> 32682 <threshold>0.0880369991064072</threshold> 32683 <left_val>0.1178200021386147</left_val> 32684 <right_val>-2.8293309211730957</right_val></_></_> 32685 <_> 32686 <!-- tree 164 --> 32687 <_> 32688 <!-- root node --> 32689 <feature> 32690 <rects> 32691 <_>9 8 6 7 -1.</_> 32692 <_>12 8 3 7 2.</_></rects> 32693 <tilted>0</tilted></feature> 32694 <threshold>-0.0390289984643459</threshold> 32695 <left_val>0.9177719950675964</left_val> 32696 <right_val>-0.1582739949226379</right_val></_></_> 32697 <_> 32698 <!-- tree 165 --> 32699 <_> 32700 <!-- root node --> 32701 <feature> 32702 <rects> 32703 <_>8 2 9 6 -1.</_> 32704 <_>11 2 3 6 3.</_></rects> 32705 <tilted>0</tilted></feature> 32706 <threshold>0.0801059976220131</threshold> 32707 <left_val>0.1128920018672943</left_val> 32708 <right_val>-1.9937280416488647</right_val></_></_> 32709 <_> 32710 <!-- tree 166 --> 32711 <_> 32712 <!-- root node --> 32713 <feature> 32714 <rects> 32715 <_>8 14 6 9 -1.</_> 32716 <_>8 17 6 3 3.</_></rects> 32717 <tilted>0</tilted></feature> 32718 <threshold>0.0395389981567860</threshold> 32719 <left_val>-0.1435739994049072</left_val> 32720 <right_val>1.3085240125656128</right_val></_></_> 32721 <_> 32722 <!-- tree 167 --> 32723 <_> 32724 <!-- root node --> 32725 <feature> 32726 <rects> 32727 <_>8 2 9 6 -1.</_> 32728 <_>11 2 3 6 3.</_></rects> 32729 <tilted>0</tilted></feature> 32730 <threshold>0.0206840001046658</threshold> 32731 <left_val>0.2004809975624085</left_val> 32732 <right_val>-0.0441869981586933</right_val></_></_> 32733 <_> 32734 <!-- tree 168 --> 32735 <_> 32736 <!-- root node --> 32737 <feature> 32738 <rects> 32739 <_>4 3 16 20 -1.</_> 32740 <_>4 3 8 10 2.</_> 32741 <_>12 13 8 10 2.</_></rects> 32742 <tilted>0</tilted></feature> 32743 <threshold>-0.0670379996299744</threshold> 32744 <left_val>0.3261860013008118</left_val> 32745 <right_val>-0.2055040001869202</right_val></_></_> 32746 <_> 32747 <!-- tree 169 --> 32748 <_> 32749 <!-- root node --> 32750 <feature> 32751 <rects> 32752 <_>7 6 10 12 -1.</_> 32753 <_>12 6 5 6 2.</_> 32754 <_>7 12 5 6 2.</_></rects> 32755 <tilted>0</tilted></feature> 32756 <threshold>0.0468150004744530</threshold> 32757 <left_val>0.1582529991865158</left_val> 32758 <right_val>-0.9553509950637817</right_val></_></_> 32759 <_> 32760 <!-- tree 170 --> 32761 <_> 32762 <!-- root node --> 32763 <feature> 32764 <rects> 32765 <_>0 2 7 12 -1.</_> 32766 <_>0 6 7 4 3.</_></rects> 32767 <tilted>0</tilted></feature> 32768 <threshold>0.0784439966082573</threshold> 32769 <left_val>-0.0746510028839111</left_val> 32770 <right_val>-2.1161499023437500</right_val></_></_> 32771 <_> 32772 <!-- tree 171 --> 32773 <_> 32774 <!-- root node --> 32775 <feature> 32776 <rects> 32777 <_>12 17 11 6 -1.</_> 32778 <_>12 19 11 2 3.</_></rects> 32779 <tilted>0</tilted></feature> 32780 <threshold>0.0663800016045570</threshold> 32781 <left_val>0.1164190024137497</left_val> 32782 <right_val>-1.6113519668579102</right_val></_></_> 32783 <_> 32784 <!-- tree 172 --> 32785 <_> 32786 <!-- root node --> 32787 <feature> 32788 <rects> 32789 <_>4 7 12 8 -1.</_> 32790 <_>4 7 6 4 2.</_> 32791 <_>10 11 6 4 2.</_></rects> 32792 <tilted>0</tilted></feature> 32793 <threshold>0.0300539992749691</threshold> 32794 <left_val>-0.1656260043382645</left_val> 32795 <right_val>0.7002540230751038</right_val></_></_> 32796 <_> 32797 <!-- tree 173 --> 32798 <_> 32799 <!-- root node --> 32800 <feature> 32801 <rects> 32802 <_>8 11 8 10 -1.</_> 32803 <_>12 11 4 5 2.</_> 32804 <_>8 16 4 5 2.</_></rects> 32805 <tilted>0</tilted></feature> 32806 <threshold>0.0171199999749660</threshold> 32807 <left_val>0.2262769937515259</left_val> 32808 <right_val>-0.4011499881744385</right_val></_></_> 32809 <_> 32810 <!-- tree 174 --> 32811 <_> 32812 <!-- root node --> 32813 <feature> 32814 <rects> 32815 <_>9 1 4 9 -1.</_> 32816 <_>11 1 2 9 2.</_></rects> 32817 <tilted>0</tilted></feature> 32818 <threshold>0.0200730003416538</threshold> 32819 <left_val>-0.1938969939947128</left_val> 32820 <right_val>0.4442029893398285</right_val></_></_> 32821 <_> 32822 <!-- tree 175 --> 32823 <_> 32824 <!-- root node --> 32825 <feature> 32826 <rects> 32827 <_>14 0 3 22 -1.</_> 32828 <_>15 0 1 22 3.</_></rects> 32829 <tilted>0</tilted></feature> 32830 <threshold>0.0331019982695580</threshold> 32831 <left_val>0.1163749992847443</left_val> 32832 <right_val>-1.5771679878234863</right_val></_></_> 32833 <_> 32834 <!-- tree 176 --> 32835 <_> 32836 <!-- root node --> 32837 <feature> 32838 <rects> 32839 <_>7 0 3 22 -1.</_> 32840 <_>8 0 1 22 3.</_></rects> 32841 <tilted>0</tilted></feature> 32842 <threshold>-0.0148820001631975</threshold> 32843 <left_val>-0.8968030214309692</left_val> 32844 <right_val>-0.0420100018382072</right_val></_></_> 32845 <_> 32846 <!-- tree 177 --> 32847 <_> 32848 <!-- root node --> 32849 <feature> 32850 <rects> 32851 <_>4 7 18 4 -1.</_> 32852 <_>13 7 9 2 2.</_> 32853 <_>4 9 9 2 2.</_></rects> 32854 <tilted>0</tilted></feature> 32855 <threshold>-0.0102810002863407</threshold> 32856 <left_val>0.3560299873352051</left_val> 32857 <right_val>-0.0131240002810955</right_val></_></_> 32858 <_> 32859 <!-- tree 178 --> 32860 <_> 32861 <!-- root node --> 32862 <feature> 32863 <rects> 32864 <_>10 2 4 15 -1.</_> 32865 <_>10 7 4 5 3.</_></rects> 32866 <tilted>0</tilted></feature> 32867 <threshold>-0.0286950003355742</threshold> 32868 <left_val>-0.4603959918022156</left_val> 32869 <right_val>0.0268019996583462</right_val></_></_> 32870 <_> 32871 <!-- tree 179 --> 32872 <_> 32873 <!-- root node --> 32874 <feature> 32875 <rects> 32876 <_>12 1 3 12 -1.</_> 32877 <_>12 7 3 6 2.</_></rects> 32878 <tilted>0</tilted></feature> 32879 <threshold>-4.7189998440444469e-003</threshold> 32880 <left_val>0.2378879934549332</left_val> 32881 <right_val>-0.0655189976096153</right_val></_></_> 32882 <_> 32883 <!-- tree 180 --> 32884 <_> 32885 <!-- root node --> 32886 <feature> 32887 <rects> 32888 <_>0 0 18 13 -1.</_> 32889 <_>9 0 9 13 2.</_></rects> 32890 <tilted>0</tilted></feature> 32891 <threshold>0.3220160007476807</threshold> 32892 <left_val>-0.0284899994730949</left_val> 32893 <right_val>-0.8423460125923157</right_val></_></_> 32894 <_> 32895 <!-- tree 181 --> 32896 <_> 32897 <!-- root node --> 32898 <feature> 32899 <rects> 32900 <_>16 0 3 24 -1.</_> 32901 <_>17 0 1 24 3.</_></rects> 32902 <tilted>0</tilted></feature> 32903 <threshold>-0.0170450005680323</threshold> 32904 <left_val>-0.5093880295753479</left_val> 32905 <right_val>0.1605760008096695</right_val></_></_> 32906 <_> 32907 <!-- tree 182 --> 32908 <_> 32909 <!-- root node --> 32910 <feature> 32911 <rects> 32912 <_>5 0 3 24 -1.</_> 32913 <_>6 0 1 24 3.</_></rects> 32914 <tilted>0</tilted></feature> 32915 <threshold>-7.3469998314976692e-003</threshold> 32916 <left_val>-0.5415499806404114</left_val> 32917 <right_val>4.7320001758635044e-003</right_val></_></_> 32918 <_> 32919 <!-- tree 183 --> 32920 <_> 32921 <!-- root node --> 32922 <feature> 32923 <rects> 32924 <_>10 15 5 8 -1.</_> 32925 <_>10 19 5 4 2.</_></rects> 32926 <tilted>0</tilted></feature> 32927 <threshold>-0.0300019998103380</threshold> 32928 <left_val>-0.8878579735755920</left_val> 32929 <right_val>0.1362179964780808</right_val></_></_> 32930 <_> 32931 <!-- tree 184 --> 32932 <_> 32933 <!-- root node --> 32934 <feature> 32935 <rects> 32936 <_>2 18 18 2 -1.</_> 32937 <_>2 19 18 1 2.</_></rects> 32938 <tilted>0</tilted></feature> 32939 <threshold>-0.0112929996103048</threshold> 32940 <left_val>0.8061519861221314</left_val> 32941 <right_val>-0.1615950018167496</right_val></_></_> 32942 <_> 32943 <!-- tree 185 --> 32944 <_> 32945 <!-- root node --> 32946 <feature> 32947 <rects> 32948 <_>2 8 20 3 -1.</_> 32949 <_>2 9 20 1 3.</_></rects> 32950 <tilted>0</tilted></feature> 32951 <threshold>4.7749998047947884e-003</threshold> 32952 <left_val>0.0129680000245571</left_val> 32953 <right_val>0.5507990121841431</right_val></_></_> 32954 <_> 32955 <!-- tree 186 --> 32956 <_> 32957 <!-- root node --> 32958 <feature> 32959 <rects> 32960 <_>7 6 9 6 -1.</_> 32961 <_>7 8 9 2 3.</_></rects> 32962 <tilted>0</tilted></feature> 32963 <threshold>5.0710001960396767e-003</threshold> 32964 <left_val>-0.0457280017435551</left_val> 32965 <right_val>-1.0766259431838989</right_val></_></_> 32966 <_> 32967 <!-- tree 187 --> 32968 <_> 32969 <!-- root node --> 32970 <feature> 32971 <rects> 32972 <_>3 2 19 10 -1.</_> 32973 <_>3 7 19 5 2.</_></rects> 32974 <tilted>0</tilted></feature> 32975 <threshold>0.1934410035610199</threshold> 32976 <left_val>0.0712620019912720</left_val> 32977 <right_val>1.1694519519805908</right_val></_></_> 32978 <_> 32979 <!-- tree 188 --> 32980 <_> 32981 <!-- root node --> 32982 <feature> 32983 <rects> 32984 <_>2 7 19 3 -1.</_> 32985 <_>2 8 19 1 3.</_></rects> 32986 <tilted>0</tilted></feature> 32987 <threshold>5.3750001825392246e-003</threshold> 32988 <left_val>-0.1973620057106018</left_val> 32989 <right_val>0.3820689916610718</right_val></_></_> 32990 <_> 32991 <!-- tree 189 --> 32992 <_> 32993 <!-- root node --> 32994 <feature> 32995 <rects> 32996 <_>15 6 9 4 -1.</_> 32997 <_>15 8 9 2 2.</_></rects> 32998 <tilted>0</tilted></feature> 32999 <threshold>-0.0682760030031204</threshold> 33000 <left_val>-5.4372339248657227</left_val> 33001 <right_val>0.1115190014243126</right_val></_></_> 33002 <_> 33003 <!-- tree 190 --> 33004 <_> 33005 <!-- root node --> 33006 <feature> 33007 <rects> 33008 <_>2 2 18 8 -1.</_> 33009 <_>8 2 6 8 3.</_></rects> 33010 <tilted>0</tilted></feature> 33011 <threshold>-0.0349330008029938</threshold> 33012 <left_val>0.4479340016841888</left_val> 33013 <right_val>-0.1865790039300919</right_val></_></_> 33014 <_> 33015 <!-- tree 191 --> 33016 <_> 33017 <!-- root node --> 33018 <feature> 33019 <rects> 33020 <_>10 9 14 4 -1.</_> 33021 <_>10 9 7 4 2.</_></rects> 33022 <tilted>0</tilted></feature> 33023 <threshold>5.1219998858869076e-003</threshold> 33024 <left_val>-0.0148719996213913</left_val> 33025 <right_val>0.1841389983892441</right_val></_></_> 33026 <_> 33027 <!-- tree 192 --> 33028 <_> 33029 <!-- root node --> 33030 <feature> 33031 <rects> 33032 <_>4 4 6 16 -1.</_> 33033 <_>7 4 3 16 2.</_></rects> 33034 <tilted>0</tilted></feature> 33035 <threshold>0.0953119993209839</threshold> 33036 <left_val>-0.1511709988117218</left_val> 33037 <right_val>0.9499149918556213</right_val></_></_> 33038 <_> 33039 <!-- tree 193 --> 33040 <_> 33041 <!-- root node --> 33042 <feature> 33043 <rects> 33044 <_>15 8 9 16 -1.</_> 33045 <_>18 8 3 16 3.</_></rects> 33046 <tilted>0</tilted></feature> 33047 <threshold>-0.0628490000963211</threshold> 33048 <left_val>0.4647360146045685</left_val> 33049 <right_val>0.0384050011634827</right_val></_></_> 33050 <_> 33051 <!-- tree 194 --> 33052 <_> 33053 <!-- root node --> 33054 <feature> 33055 <rects> 33056 <_>0 8 9 16 -1.</_> 33057 <_>3 8 3 16 3.</_></rects> 33058 <tilted>0</tilted></feature> 33059 <threshold>-0.1704069972038269</threshold> 33060 <left_val>-1.6499999761581421</left_val> 33061 <right_val>-0.0632369965314865</right_val></_></_> 33062 <_> 33063 <!-- tree 195 --> 33064 <_> 33065 <!-- root node --> 33066 <feature> 33067 <rects> 33068 <_>18 0 6 14 -1.</_> 33069 <_>20 0 2 14 3.</_></rects> 33070 <tilted>0</tilted></feature> 33071 <threshold>0.0105839995667338</threshold> 33072 <left_val>-0.0383489988744259</left_val> 33073 <right_val>0.4191380143165588</right_val></_></_> 33074 <_> 33075 <!-- tree 196 --> 33076 <_> 33077 <!-- root node --> 33078 <feature> 33079 <rects> 33080 <_>0 0 6 14 -1.</_> 33081 <_>2 0 2 14 3.</_></rects> 33082 <tilted>0</tilted></feature> 33083 <threshold>-0.0415790006518364</threshold> 33084 <left_val>0.3446190059185028</left_val> 33085 <right_val>-0.2118770033121109</right_val></_></_> 33086 <_> 33087 <!-- tree 197 --> 33088 <_> 33089 <!-- root node --> 33090 <feature> 33091 <rects> 33092 <_>15 0 6 22 -1.</_> 33093 <_>17 0 2 22 3.</_></rects> 33094 <tilted>0</tilted></feature> 33095 <threshold>0.1271860003471375</threshold> 33096 <left_val>0.1239819973707199</left_val> 33097 <right_val>-2.1254889965057373</right_val></_></_> 33098 <_> 33099 <!-- tree 198 --> 33100 <_> 33101 <!-- root node --> 33102 <feature> 33103 <rects> 33104 <_>3 0 6 22 -1.</_> 33105 <_>5 0 2 22 3.</_></rects> 33106 <tilted>0</tilted></feature> 33107 <threshold>0.0825570002198219</threshold> 33108 <left_val>-0.0620240010321140</left_val> 33109 <right_val>-1.4875819683074951</right_val></_></_> 33110 <_> 33111 <!-- tree 199 --> 33112 <_> 33113 <!-- root node --> 33114 <feature> 33115 <rects> 33116 <_>12 2 12 20 -1.</_> 33117 <_>16 2 4 20 3.</_></rects> 33118 <tilted>0</tilted></feature> 33119 <threshold>0.0852930024266243</threshold> 33120 <left_val>0.0170879997313023</left_val> 33121 <right_val>0.3207660019397736</right_val></_></_> 33122 <_> 33123 <!-- tree 200 --> 33124 <_> 33125 <!-- root node --> 33126 <feature> 33127 <rects> 33128 <_>0 2 12 20 -1.</_> 33129 <_>4 2 4 20 3.</_></rects> 33130 <tilted>0</tilted></feature> 33131 <threshold>0.0555440001189709</threshold> 33132 <left_val>-0.2741400003433228</left_val> 33133 <right_val>0.1897639930248261</right_val></_></_> 33134 <_> 33135 <!-- tree 201 --> 33136 <_> 33137 <!-- root node --> 33138 <feature> 33139 <rects> 33140 <_>11 6 4 9 -1.</_> 33141 <_>11 6 2 9 2.</_></rects> 33142 <tilted>0</tilted></feature> 33143 <threshold>4.5650000683963299e-003</threshold> 33144 <left_val>-0.1792020052671433</left_val> 33145 <right_val>0.2796730101108551</right_val></_></_> 33146 <_> 33147 <!-- tree 202 --> 33148 <_> 33149 <!-- root node --> 33150 <feature> 33151 <rects> 33152 <_>9 0 6 16 -1.</_> 33153 <_>12 0 3 16 2.</_></rects> 33154 <tilted>0</tilted></feature> 33155 <threshold>0.0129979997873306</threshold> 33156 <left_val>-0.3229750096797943</left_val> 33157 <right_val>0.2694180011749268</right_val></_></_> 33158 <_> 33159 <!-- tree 203 --> 33160 <_> 33161 <!-- root node --> 33162 <feature> 33163 <rects> 33164 <_>12 1 3 12 -1.</_> 33165 <_>12 7 3 6 2.</_></rects> 33166 <tilted>0</tilted></feature> 33167 <threshold>0.0578919984400272</threshold> 33168 <left_val>0.1264439970254898</left_val> 33169 <right_val>-0.6071349978446960</right_val></_></_> 33170 <_> 33171 <!-- tree 204 --> 33172 <_> 33173 <!-- root node --> 33174 <feature> 33175 <rects> 33176 <_>3 4 18 6 -1.</_> 33177 <_>3 4 9 3 2.</_> 33178 <_>12 7 9 3 2.</_></rects> 33179 <tilted>0</tilted></feature> 33180 <threshold>-0.0228240005671978</threshold> 33181 <left_val>-0.4968209862709045</left_val> 33182 <right_val>0.0223769992589951</right_val></_></_> 33183 <_> 33184 <!-- tree 205 --> 33185 <_> 33186 <!-- root node --> 33187 <feature> 33188 <rects> 33189 <_>5 5 16 8 -1.</_> 33190 <_>13 5 8 4 2.</_> 33191 <_>5 9 8 4 2.</_></rects> 33192 <tilted>0</tilted></feature> 33193 <threshold>0.0483120009303093</threshold> 33194 <left_val>0.0436070002615452</left_val> 33195 <right_val>0.4853779971599579</right_val></_></_> 33196 <_> 33197 <!-- tree 206 --> 33198 <_> 33199 <!-- root node --> 33200 <feature> 33201 <rects> 33202 <_>0 13 10 6 -1.</_> 33203 <_>0 15 10 2 3.</_></rects> 33204 <tilted>0</tilted></feature> 33205 <threshold>0.0257140006870031</threshold> 33206 <left_val>-0.0429509989917278</left_val> 33207 <right_val>-0.9302350282669067</right_val></_></_> 33208 <_> 33209 <!-- tree 207 --> 33210 <_> 33211 <!-- root node --> 33212 <feature> 33213 <rects> 33214 <_>8 14 9 6 -1.</_> 33215 <_>8 16 9 2 3.</_></rects> 33216 <tilted>0</tilted></feature> 33217 <threshold>6.9269998930394650e-003</threshold> 33218 <left_val>-2.9680000152438879e-003</left_val> 33219 <right_val>0.3429630100727081</right_val></_></_> 33220 <_> 33221 <!-- tree 208 --> 33222 <_> 33223 <!-- root node --> 33224 <feature> 33225 <rects> 33226 <_>6 2 9 6 -1.</_> 33227 <_>9 2 3 6 3.</_></rects> 33228 <tilted>0</tilted></feature> 33229 <threshold>-0.0344469994306564</threshold> 33230 <left_val>-1.5299769639968872</left_val> 33231 <right_val>-0.0610149987041950</right_val></_></_> 33232 <_> 33233 <!-- tree 209 --> 33234 <_> 33235 <!-- root node --> 33236 <feature> 33237 <rects> 33238 <_>14 1 10 8 -1.</_> 33239 <_>19 1 5 4 2.</_> 33240 <_>14 5 5 4 2.</_></rects> 33241 <tilted>0</tilted></feature> 33242 <threshold>0.0293879993259907</threshold> 33243 <left_val>0.0375959984958172</left_val> 33244 <right_val>0.6417239904403687</right_val></_></_> 33245 <_> 33246 <!-- tree 210 --> 33247 <_> 33248 <!-- root node --> 33249 <feature> 33250 <rects> 33251 <_>9 1 3 12 -1.</_> 33252 <_>9 7 3 6 2.</_></rects> 33253 <tilted>0</tilted></feature> 33254 <threshold>-2.4319998919963837e-003</threshold> 33255 <left_val>0.0990889966487885</left_val> 33256 <right_val>-0.3968810141086578</right_val></_></_></trees> 33257 <stage_threshold>-3.3703000545501709</stage_threshold> 33258 <parent>22</parent> 33259 <next>-1</next></_> 33260 <_> 33261 <!-- stage 24 --> 33262 <trees> 33263 <_> 33264 <!-- tree 0 --> 33265 <_> 33266 <!-- root node --> 33267 <feature> 33268 <rects> 33269 <_>6 4 12 9 -1.</_> 33270 <_>6 7 12 3 3.</_></rects> 33271 <tilted>0</tilted></feature> 33272 <threshold>-0.0959440022706985</threshold> 33273 <left_val>0.6241909861564636</left_val> 33274 <right_val>-0.4587520062923431</right_val></_></_> 33275 <_> 33276 <!-- tree 1 --> 33277 <_> 33278 <!-- root node --> 33279 <feature> 33280 <rects> 33281 <_>6 5 12 6 -1.</_> 33282 <_>10 5 4 6 3.</_></rects> 33283 <tilted>0</tilted></feature> 33284 <threshold>0.0168340001255274</threshold> 33285 <left_val>-0.9307280182838440</left_val> 33286 <right_val>0.2156360000371933</right_val></_></_> 33287 <_> 33288 <!-- tree 2 --> 33289 <_> 33290 <!-- root node --> 33291 <feature> 33292 <rects> 33293 <_>1 1 8 5 -1.</_> 33294 <_>5 1 4 5 2.</_></rects> 33295 <tilted>0</tilted></feature> 33296 <threshold>0.0260499995201826</threshold> 33297 <left_val>-0.4053229987621307</left_val> 33298 <right_val>0.4225659966468811</right_val></_></_> 33299 <_> 33300 <!-- tree 3 --> 33301 <_> 33302 <!-- root node --> 33303 <feature> 33304 <rects> 33305 <_>12 12 6 8 -1.</_> 33306 <_>12 16 6 4 2.</_></rects> 33307 <tilted>0</tilted></feature> 33308 <threshold>3.6500001442618668e-004</threshold> 33309 <left_val>0.0952880010008812</left_val> 33310 <right_val>-0.6329810023307800</right_val></_></_> 33311 <_> 33312 <!-- tree 4 --> 33313 <_> 33314 <!-- root node --> 33315 <feature> 33316 <rects> 33317 <_>3 12 12 6 -1.</_> 33318 <_>3 14 12 2 3.</_></rects> 33319 <tilted>0</tilted></feature> 33320 <threshold>-6.6940002143383026e-003</threshold> 33321 <left_val>0.3724380135536194</left_val> 33322 <right_val>-0.3033240139484406</right_val></_></_> 33323 <_> 33324 <!-- tree 5 --> 33325 <_> 33326 <!-- root node --> 33327 <feature> 33328 <rects> 33329 <_>9 18 12 6 -1.</_> 33330 <_>15 18 6 3 2.</_> 33331 <_>9 21 6 3 2.</_></rects> 33332 <tilted>0</tilted></feature> 33333 <threshold>0.0188740007579327</threshold> 33334 <left_val>-0.2335720062255859</left_val> 33335 <right_val>0.4033069908618927</right_val></_></_> 33336 <_> 33337 <!-- tree 6 --> 33338 <_> 33339 <!-- root node --> 33340 <feature> 33341 <rects> 33342 <_>4 13 6 6 -1.</_> 33343 <_>4 16 6 3 2.</_></rects> 33344 <tilted>0</tilted></feature> 33345 <threshold>-1.6300000424962491e-004</threshold> 33346 <left_val>0.0428869985044003</left_val> 33347 <right_val>-0.7779679894447327</right_val></_></_> 33348 <_> 33349 <!-- tree 7 --> 33350 <_> 33351 <!-- root node --> 33352 <feature> 33353 <rects> 33354 <_>11 3 7 18 -1.</_> 33355 <_>11 12 7 9 2.</_></rects> 33356 <tilted>0</tilted></feature> 33357 <threshold>-0.0762590020895004</threshold> 33358 <left_val>-0.4962849915027618</left_val> 33359 <right_val>0.1633539944887161</right_val></_></_> 33360 <_> 33361 <!-- tree 8 --> 33362 <_> 33363 <!-- root node --> 33364 <feature> 33365 <rects> 33366 <_>3 9 18 3 -1.</_> 33367 <_>9 9 6 3 3.</_></rects> 33368 <tilted>0</tilted></feature> 33369 <threshold>0.0501490011811256</threshold> 33370 <left_val>0.0327470004558563</left_val> 33371 <right_val>-0.8004789948463440</right_val></_></_> 33372 <_> 33373 <!-- tree 9 --> 33374 <_> 33375 <!-- root node --> 33376 <feature> 33377 <rects> 33378 <_>5 3 19 2 -1.</_> 33379 <_>5 4 19 1 2.</_></rects> 33380 <tilted>0</tilted></feature> 33381 <threshold>-2.9239999130368233e-003</threshold> 33382 <left_val>-0.5000280141830444</left_val> 33383 <right_val>0.2548060119152069</right_val></_></_> 33384 <_> 33385 <!-- tree 10 --> 33386 <_> 33387 <!-- root node --> 33388 <feature> 33389 <rects> 33390 <_>4 2 12 6 -1.</_> 33391 <_>4 2 6 3 2.</_> 33392 <_>10 5 6 3 2.</_></rects> 33393 <tilted>0</tilted></feature> 33394 <threshold>0.0162439998239279</threshold> 33395 <left_val>0.0389130003750324</left_val> 33396 <right_val>-0.7072489857673645</right_val></_></_> 33397 <_> 33398 <!-- tree 11 --> 33399 <_> 33400 <!-- root node --> 33401 <feature> 33402 <rects> 33403 <_>9 6 6 9 -1.</_> 33404 <_>11 6 2 9 3.</_></rects> 33405 <tilted>0</tilted></feature> 33406 <threshold>0.0378119982779026</threshold> 33407 <left_val>-0.0662679970264435</left_val> 33408 <right_val>0.7386879920959473</right_val></_></_> 33409 <_> 33410 <!-- tree 12 --> 33411 <_> 33412 <!-- root node --> 33413 <feature> 33414 <rects> 33415 <_>8 6 6 9 -1.</_> 33416 <_>10 6 2 9 3.</_></rects> 33417 <tilted>0</tilted></feature> 33418 <threshold>-0.0123199997469783</threshold> 33419 <left_val>0.4869639873504639</left_val> 33420 <right_val>-0.2448559999465942</right_val></_></_> 33421 <_> 33422 <!-- tree 13 --> 33423 <_> 33424 <!-- root node --> 33425 <feature> 33426 <rects> 33427 <_>16 9 5 15 -1.</_> 33428 <_>16 14 5 5 3.</_></rects> 33429 <tilted>0</tilted></feature> 33430 <threshold>0.0580039992928505</threshold> 33431 <left_val>0.1345909982919693</left_val> 33432 <right_val>-0.1323210000991821</right_val></_></_> 33433 <_> 33434 <!-- tree 14 --> 33435 <_> 33436 <!-- root node --> 33437 <feature> 33438 <rects> 33439 <_>3 9 5 15 -1.</_> 33440 <_>3 14 5 5 3.</_></rects> 33441 <tilted>0</tilted></feature> 33442 <threshold>4.8630000092089176e-003</threshold> 33443 <left_val>-0.4417290091514587</left_val> 33444 <right_val>0.1400559991598129</right_val></_></_> 33445 <_> 33446 <!-- tree 15 --> 33447 <_> 33448 <!-- root node --> 33449 <feature> 33450 <rects> 33451 <_>6 6 14 6 -1.</_> 33452 <_>13 6 7 3 2.</_> 33453 <_>6 9 7 3 2.</_></rects> 33454 <tilted>0</tilted></feature> 33455 <threshold>0.0456909984350204</threshold> 33456 <left_val>0.0312179997563362</left_val> 33457 <right_val>0.8981829881668091</right_val></_></_> 33458 <_> 33459 <!-- tree 16 --> 33460 <_> 33461 <!-- root node --> 33462 <feature> 33463 <rects> 33464 <_>8 6 3 14 -1.</_> 33465 <_>8 13 3 7 2.</_></rects> 33466 <tilted>0</tilted></feature> 33467 <threshold>0.0213210005313158</threshold> 33468 <left_val>0.0120080001652241</left_val> 33469 <right_val>-0.8606619834899902</right_val></_></_> 33470 <_> 33471 <!-- tree 17 --> 33472 <_> 33473 <!-- root node --> 33474 <feature> 33475 <rects> 33476 <_>0 16 24 5 -1.</_> 33477 <_>8 16 8 5 3.</_></rects> 33478 <tilted>0</tilted></feature> 33479 <threshold>0.1567910015583038</threshold> 33480 <left_val>0.0140559999272227</left_val> 33481 <right_val>0.8533290028572083</right_val></_></_> 33482 <_> 33483 <!-- tree 18 --> 33484 <_> 33485 <!-- root node --> 33486 <feature> 33487 <rects> 33488 <_>0 20 20 3 -1.</_> 33489 <_>10 20 10 3 2.</_></rects> 33490 <tilted>0</tilted></feature> 33491 <threshold>-0.0103289997205138</threshold> 33492 <left_val>0.2902280092239380</left_val> 33493 <right_val>-0.2947880029678345</right_val></_></_> 33494 <_> 33495 <!-- tree 19 --> 33496 <_> 33497 <!-- root node --> 33498 <feature> 33499 <rects> 33500 <_>5 10 18 2 -1.</_> 33501 <_>5 11 18 1 2.</_></rects> 33502 <tilted>0</tilted></feature> 33503 <threshold>2.4290001019835472e-003</threshold> 33504 <left_val>-0.4043990075588226</left_val> 33505 <right_val>0.1940020024776459</right_val></_></_> 33506 <_> 33507 <!-- tree 20 --> 33508 <_> 33509 <!-- root node --> 33510 <feature> 33511 <rects> 33512 <_>0 6 6 10 -1.</_> 33513 <_>2 6 2 10 3.</_></rects> 33514 <tilted>0</tilted></feature> 33515 <threshold>-0.0233389995992184</threshold> 33516 <left_val>0.3294520080089569</left_val> 33517 <right_val>-0.2571269869804382</right_val></_></_> 33518 <_> 33519 <!-- tree 21 --> 33520 <_> 33521 <!-- root node --> 33522 <feature> 33523 <rects> 33524 <_>2 1 20 3 -1.</_> 33525 <_>2 2 20 1 3.</_></rects> 33526 <tilted>0</tilted></feature> 33527 <threshold>-6.8970001302659512e-003</threshold> 33528 <left_val>-0.5335299968719482</left_val> 33529 <right_val>0.2163520008325577</right_val></_></_> 33530 <_> 33531 <!-- tree 22 --> 33532 <_> 33533 <!-- root node --> 33534 <feature> 33535 <rects> 33536 <_>9 13 6 11 -1.</_> 33537 <_>11 13 2 11 3.</_></rects> 33538 <tilted>0</tilted></feature> 33539 <threshold>-0.0344030000269413</threshold> 33540 <left_val>-1.4425489902496338</left_val> 33541 <right_val>-0.0446829982101917</right_val></_></_> 33542 <_> 33543 <!-- tree 23 --> 33544 <_> 33545 <!-- root node --> 33546 <feature> 33547 <rects> 33548 <_>9 15 6 8 -1.</_> 33549 <_>9 19 6 4 2.</_></rects> 33550 <tilted>0</tilted></feature> 33551 <threshold>-0.0212350003421307</threshold> 33552 <left_val>-0.7901750206947327</left_val> 33553 <right_val>0.1908410042524338</right_val></_></_> 33554 <_> 33555 <!-- tree 24 --> 33556 <_> 33557 <!-- root node --> 33558 <feature> 33559 <rects> 33560 <_>9 12 6 9 -1.</_> 33561 <_>9 15 6 3 3.</_></rects> 33562 <tilted>0</tilted></feature> 33563 <threshold>2.0620001014322042e-003</threshold> 33564 <left_val>-0.2693119943141937</left_val> 33565 <right_val>0.3148800134658814</right_val></_></_> 33566 <_> 33567 <!-- tree 25 --> 33568 <_> 33569 <!-- root node --> 33570 <feature> 33571 <rects> 33572 <_>5 11 18 2 -1.</_> 33573 <_>5 12 18 1 2.</_></rects> 33574 <tilted>0</tilted></feature> 33575 <threshold>-4.2190002277493477e-003</threshold> 33576 <left_val>-0.5446439981460571</left_val> 33577 <right_val>0.1657460033893585</right_val></_></_> 33578 <_> 33579 <!-- tree 26 --> 33580 <_> 33581 <!-- root node --> 33582 <feature> 33583 <rects> 33584 <_>2 6 15 6 -1.</_> 33585 <_>2 8 15 2 3.</_></rects> 33586 <tilted>0</tilted></feature> 33587 <threshold>-0.0143349999561906</threshold> 33588 <left_val>0.0221050009131432</left_val> 33589 <right_val>-0.6234250068664551</right_val></_></_> 33590 <_> 33591 <!-- tree 27 --> 33592 <_> 33593 <!-- root node --> 33594 <feature> 33595 <rects> 33596 <_>6 0 18 3 -1.</_> 33597 <_>6 1 18 1 3.</_></rects> 33598 <tilted>0</tilted></feature> 33599 <threshold>-8.2120001316070557e-003</threshold> 33600 <left_val>-0.4988499879837036</left_val> 33601 <right_val>0.1923709958791733</right_val></_></_> 33602 <_> 33603 <!-- tree 28 --> 33604 <_> 33605 <!-- root node --> 33606 <feature> 33607 <rects> 33608 <_>5 0 3 18 -1.</_> 33609 <_>6 0 1 18 3.</_></rects> 33610 <tilted>0</tilted></feature> 33611 <threshold>-9.3350000679492950e-003</threshold> 33612 <left_val>-0.7913119792938232</left_val> 33613 <right_val>-0.0141439996659756</right_val></_></_> 33614 <_> 33615 <!-- tree 29 --> 33616 <_> 33617 <!-- root node --> 33618 <feature> 33619 <rects> 33620 <_>18 3 6 10 -1.</_> 33621 <_>20 3 2 10 3.</_></rects> 33622 <tilted>0</tilted></feature> 33623 <threshold>-0.0379379987716675</threshold> 33624 <left_val>0.7984129786491394</left_val> 33625 <right_val>-0.0337990000844002</right_val></_></_> 33626 <_> 33627 <!-- tree 30 --> 33628 <_> 33629 <!-- root node --> 33630 <feature> 33631 <rects> 33632 <_>0 3 6 10 -1.</_> 33633 <_>2 3 2 10 3.</_></rects> 33634 <tilted>0</tilted></feature> 33635 <threshold>4.7059999778866768e-003</threshold> 33636 <left_val>-0.3316340148448944</left_val> 33637 <right_val>0.2072629928588867</right_val></_></_> 33638 <_> 33639 <!-- tree 31 --> 33640 <_> 33641 <!-- root node --> 33642 <feature> 33643 <rects> 33644 <_>10 5 8 9 -1.</_> 33645 <_>10 5 4 9 2.</_></rects> 33646 <tilted>0</tilted></feature> 33647 <threshold>-4.4499998912215233e-003</threshold> 33648 <left_val>-0.2725630104541779</left_val> 33649 <right_val>0.1840219944715500</right_val></_></_> 33650 <_> 33651 <!-- tree 32 --> 33652 <_> 33653 <!-- root node --> 33654 <feature> 33655 <rects> 33656 <_>6 5 8 9 -1.</_> 33657 <_>10 5 4 9 2.</_></rects> 33658 <tilted>0</tilted></feature> 33659 <threshold>5.2189999260008335e-003</threshold> 33660 <left_val>-0.5309600234031677</left_val> 33661 <right_val>0.0526079982519150</right_val></_></_> 33662 <_> 33663 <!-- tree 33 --> 33664 <_> 33665 <!-- root node --> 33666 <feature> 33667 <rects> 33668 <_>3 2 20 3 -1.</_> 33669 <_>3 3 20 1 3.</_></rects> 33670 <tilted>0</tilted></feature> 33671 <threshold>-9.5399999991059303e-003</threshold> 33672 <left_val>-0.5648540258407593</left_val> 33673 <right_val>0.1926939934492111</right_val></_></_> 33674 <_> 33675 <!-- tree 34 --> 33676 <_> 33677 <!-- root node --> 33678 <feature> 33679 <rects> 33680 <_>5 2 13 4 -1.</_> 33681 <_>5 4 13 2 2.</_></rects> 33682 <tilted>0</tilted></feature> 33683 <threshold>0.0449699983000755</threshold> 33684 <left_val>-0.1741150021553040</left_val> 33685 <right_val>0.9538260102272034</right_val></_></_> 33686 <_> 33687 <!-- tree 35 --> 33688 <_> 33689 <!-- root node --> 33690 <feature> 33691 <rects> 33692 <_>17 0 7 14 -1.</_> 33693 <_>17 7 7 7 2.</_></rects> 33694 <tilted>0</tilted></feature> 33695 <threshold>0.0142090003937483</threshold> 33696 <left_val>-0.0919490009546280</left_val> 33697 <right_val>0.2483610063791275</right_val></_></_> 33698 <_> 33699 <!-- tree 36 --> 33700 <_> 33701 <!-- root node --> 33702 <feature> 33703 <rects> 33704 <_>0 0 7 14 -1.</_> 33705 <_>0 7 7 7 2.</_></rects> 33706 <tilted>0</tilted></feature> 33707 <threshold>0.1638019979000092</threshold> 33708 <left_val>-0.0584970004856586</left_val> 33709 <right_val>-1.6404409408569336</right_val></_></_> 33710 <_> 33711 <!-- tree 37 --> 33712 <_> 33713 <!-- root node --> 33714 <feature> 33715 <rects> 33716 <_>9 11 10 6 -1.</_> 33717 <_>9 11 5 6 2.</_></rects> 33718 <tilted>0</tilted></feature> 33719 <threshold>2.5579999200999737e-003</threshold> 33720 <left_val>0.2344799935817719</left_val> 33721 <right_val>-0.0927340015769005</right_val></_></_> 33722 <_> 33723 <!-- tree 38 --> 33724 <_> 33725 <!-- root node --> 33726 <feature> 33727 <rects> 33728 <_>5 11 10 6 -1.</_> 33729 <_>10 11 5 6 2.</_></rects> 33730 <tilted>0</tilted></feature> 33731 <threshold>-3.8499999791383743e-003</threshold> 33732 <left_val>0.1788070052862167</left_val> 33733 <right_val>-0.3584409952163696</right_val></_></_> 33734 <_> 33735 <!-- tree 39 --> 33736 <_> 33737 <!-- root node --> 33738 <feature> 33739 <rects> 33740 <_>11 6 3 18 -1.</_> 33741 <_>11 12 3 6 3.</_></rects> 33742 <tilted>0</tilted></feature> 33743 <threshold>-0.0252219997346401</threshold> 33744 <left_val>-0.4290300011634827</left_val> 33745 <right_val>0.2024450004100800</right_val></_></_> 33746 <_> 33747 <!-- tree 40 --> 33748 <_> 33749 <!-- root node --> 33750 <feature> 33751 <rects> 33752 <_>0 16 18 3 -1.</_> 33753 <_>0 17 18 1 3.</_></rects> 33754 <tilted>0</tilted></feature> 33755 <threshold>-0.0194150004535913</threshold> 33756 <left_val>0.5801630020141602</left_val> 33757 <right_val>-0.1880639940500259</right_val></_></_> 33758 <_> 33759 <!-- tree 41 --> 33760 <_> 33761 <!-- root node --> 33762 <feature> 33763 <rects> 33764 <_>6 16 18 3 -1.</_> 33765 <_>6 17 18 1 3.</_></rects> 33766 <tilted>0</tilted></feature> 33767 <threshold>0.0144199999049306</threshold> 33768 <left_val>0.0328469984233379</left_val> 33769 <right_val>0.8198050260543823</right_val></_></_> 33770 <_> 33771 <!-- tree 42 --> 33772 <_> 33773 <!-- root node --> 33774 <feature> 33775 <rects> 33776 <_>4 6 9 10 -1.</_> 33777 <_>4 11 9 5 2.</_></rects> 33778 <tilted>0</tilted></feature> 33779 <threshold>0.0515829995274544</threshold> 33780 <left_val>0.0691760033369064</left_val> 33781 <right_val>-0.4586629867553711</right_val></_></_> 33782 <_> 33783 <!-- tree 43 --> 33784 <_> 33785 <!-- root node --> 33786 <feature> 33787 <rects> 33788 <_>9 7 15 4 -1.</_> 33789 <_>9 9 15 2 2.</_></rects> 33790 <tilted>0</tilted></feature> 33791 <threshold>-0.0379600003361702</threshold> 33792 <left_val>-1.2553000450134277</left_val> 33793 <right_val>0.1433289945125580</right_val></_></_> 33794 <_> 33795 <!-- tree 44 --> 33796 <_> 33797 <!-- root node --> 33798 <feature> 33799 <rects> 33800 <_>5 6 12 6 -1.</_> 33801 <_>5 6 6 3 2.</_> 33802 <_>11 9 6 3 2.</_></rects> 33803 <tilted>0</tilted></feature> 33804 <threshold>-0.0295609999448061</threshold> 33805 <left_val>0.5315179824829102</left_val> 33806 <right_val>-0.2059649974107742</right_val></_></_> 33807 <_> 33808 <!-- tree 45 --> 33809 <_> 33810 <!-- root node --> 33811 <feature> 33812 <rects> 33813 <_>6 1 12 9 -1.</_> 33814 <_>6 4 12 3 3.</_></rects> 33815 <tilted>0</tilted></feature> 33816 <threshold>-0.0391109995543957</threshold> 33817 <left_val>1.1658719778060913</left_val> 33818 <right_val>0.0538970008492470</right_val></_></_> 33819 <_> 33820 <!-- tree 46 --> 33821 <_> 33822 <!-- root node --> 33823 <feature> 33824 <rects> 33825 <_>7 9 6 12 -1.</_> 33826 <_>7 9 3 6 2.</_> 33827 <_>10 15 3 6 2.</_></rects> 33828 <tilted>0</tilted></feature> 33829 <threshold>-0.0291590001434088</threshold> 33830 <left_val>0.3930760025978088</left_val> 33831 <right_val>-0.2218450009822846</right_val></_></_> 33832 <_> 33833 <!-- tree 47 --> 33834 <_> 33835 <!-- root node --> 33836 <feature> 33837 <rects> 33838 <_>11 5 13 6 -1.</_> 33839 <_>11 7 13 2 3.</_></rects> 33840 <tilted>0</tilted></feature> 33841 <threshold>-0.0836170017719269</threshold> 33842 <left_val>-0.7374449968338013</left_val> 33843 <right_val>0.1426820009946823</right_val></_></_> 33844 <_> 33845 <!-- tree 48 --> 33846 <_> 33847 <!-- root node --> 33848 <feature> 33849 <rects> 33850 <_>1 11 22 13 -1.</_> 33851 <_>12 11 11 13 2.</_></rects> 33852 <tilted>0</tilted></feature> 33853 <threshold>0.4200400114059448</threshold> 33854 <left_val>-0.1427740007638931</left_val> 33855 <right_val>1.7894840240478516</right_val></_></_> 33856 <_> 33857 <!-- tree 49 --> 33858 <_> 33859 <!-- root node --> 33860 <feature> 33861 <rects> 33862 <_>18 8 6 6 -1.</_> 33863 <_>18 11 6 3 2.</_></rects> 33864 <tilted>0</tilted></feature> 33865 <threshold>0.0600050017237663</threshold> 33866 <left_val>0.1197670027613640</left_val> 33867 <right_val>-1.8886189460754395</right_val></_></_> 33868 <_> 33869 <!-- tree 50 --> 33870 <_> 33871 <!-- root node --> 33872 <feature> 33873 <rects> 33874 <_>0 8 6 6 -1.</_> 33875 <_>0 11 6 3 2.</_></rects> 33876 <tilted>0</tilted></feature> 33877 <threshold>-0.0189810004085302</threshold> 33878 <left_val>-1.4148449897766113</left_val> 33879 <right_val>-0.0565229989588261</right_val></_></_> 33880 <_> 33881 <!-- tree 51 --> 33882 <_> 33883 <!-- root node --> 33884 <feature> 33885 <rects> 33886 <_>0 6 24 3 -1.</_> 33887 <_>0 7 24 1 3.</_></rects> 33888 <tilted>0</tilted></feature> 33889 <threshold>-6.0049998573958874e-003</threshold> 33890 <left_val>0.4417079985141754</left_val> 33891 <right_val>-0.1020080000162125</right_val></_></_> 33892 <_> 33893 <!-- tree 52 --> 33894 <_> 33895 <!-- root node --> 33896 <feature> 33897 <rects> 33898 <_>0 5 10 6 -1.</_> 33899 <_>0 7 10 2 3.</_></rects> 33900 <tilted>0</tilted></feature> 33901 <threshold>-0.0582140013575554</threshold> 33902 <left_val>-1.3918470144271851</left_val> 33903 <right_val>-0.0482689999043942</right_val></_></_> 33904 <_> 33905 <!-- tree 53 --> 33906 <_> 33907 <!-- root node --> 33908 <feature> 33909 <rects> 33910 <_>6 7 18 3 -1.</_> 33911 <_>6 8 18 1 3.</_></rects> 33912 <tilted>0</tilted></feature> 33913 <threshold>-0.0122710000723600</threshold> 33914 <left_val>0.5131769776344299</left_val> 33915 <right_val>-0.0936969965696335</right_val></_></_> 33916 <_> 33917 <!-- tree 54 --> 33918 <_> 33919 <!-- root node --> 33920 <feature> 33921 <rects> 33922 <_>0 0 10 6 -1.</_> 33923 <_>0 2 10 2 3.</_></rects> 33924 <tilted>0</tilted></feature> 33925 <threshold>0.0465859994292259</threshold> 33926 <left_val>-0.0574840009212494</left_val> 33927 <right_val>-1.4283169507980347</right_val></_></_> 33928 <_> 33929 <!-- tree 55 --> 33930 <_> 33931 <!-- root node --> 33932 <feature> 33933 <rects> 33934 <_>19 0 3 19 -1.</_> 33935 <_>20 0 1 19 3.</_></rects> 33936 <tilted>0</tilted></feature> 33937 <threshold>1.2110000243410468e-003</threshold> 33938 <left_val>-0.0808919966220856</left_val> 33939 <right_val>0.3233320116996765</right_val></_></_> 33940 <_> 33941 <!-- tree 56 --> 33942 <_> 33943 <!-- root node --> 33944 <feature> 33945 <rects> 33946 <_>4 6 12 16 -1.</_> 33947 <_>4 6 6 8 2.</_> 33948 <_>10 14 6 8 2.</_></rects> 33949 <tilted>0</tilted></feature> 33950 <threshold>-0.0886420011520386</threshold> 33951 <left_val>-0.8644909858703613</left_val> 33952 <right_val>-0.0331469997763634</right_val></_></_> 33953 <_> 33954 <!-- tree 57 --> 33955 <_> 33956 <!-- root node --> 33957 <feature> 33958 <rects> 33959 <_>19 6 4 18 -1.</_> 33960 <_>21 6 2 9 2.</_> 33961 <_>19 15 2 9 2.</_></rects> 33962 <tilted>0</tilted></feature> 33963 <threshold>-0.0231849998235703</threshold> 33964 <left_val>0.5216220021247864</left_val> 33965 <right_val>-0.0161680001765490</right_val></_></_> 33966 <_> 33967 <!-- tree 58 --> 33968 <_> 33969 <!-- root node --> 33970 <feature> 33971 <rects> 33972 <_>1 6 4 18 -1.</_> 33973 <_>1 6 2 9 2.</_> 33974 <_>3 15 2 9 2.</_></rects> 33975 <tilted>0</tilted></feature> 33976 <threshold>0.0430900007486343</threshold> 33977 <left_val>-0.1615380048751831</left_val> 33978 <right_val>1.0915000438690186</right_val></_></_> 33979 <_> 33980 <!-- tree 59 --> 33981 <_> 33982 <!-- root node --> 33983 <feature> 33984 <rects> 33985 <_>3 21 18 3 -1.</_> 33986 <_>3 22 18 1 3.</_></rects> 33987 <tilted>0</tilted></feature> 33988 <threshold>2.0599999697878957e-004</threshold> 33989 <left_val>-0.1709149926900864</left_val> 33990 <right_val>0.3123669922351837</right_val></_></_> 33991 <_> 33992 <!-- tree 60 --> 33993 <_> 33994 <!-- root node --> 33995 <feature> 33996 <rects> 33997 <_>0 19 9 4 -1.</_> 33998 <_>0 21 9 2 2.</_></rects> 33999 <tilted>0</tilted></feature> 34000 <threshold>8.9159999042749405e-003</threshold> 34001 <left_val>-6.7039998248219490e-003</left_val> 34002 <right_val>-0.6881039738655090</right_val></_></_> 34003 <_> 34004 <!-- tree 61 --> 34005 <_> 34006 <!-- root node --> 34007 <feature> 34008 <rects> 34009 <_>12 18 12 6 -1.</_> 34010 <_>18 18 6 3 2.</_> 34011 <_>12 21 6 3 2.</_></rects> 34012 <tilted>0</tilted></feature> 34013 <threshold>-0.0177529994398355</threshold> 34014 <left_val>0.6329280138015747</left_val> 34015 <right_val>-4.2360001243650913e-003</right_val></_></_> 34016 <_> 34017 <!-- tree 62 --> 34018 <_> 34019 <!-- root node --> 34020 <feature> 34021 <rects> 34022 <_>7 18 9 4 -1.</_> 34023 <_>7 20 9 2 2.</_></rects> 34024 <tilted>0</tilted></feature> 34025 <threshold>6.2299999408423901e-003</threshold> 34026 <left_val>-0.3363719880580902</left_val> 34027 <right_val>0.1279059946537018</right_val></_></_> 34028 <_> 34029 <!-- tree 63 --> 34030 <_> 34031 <!-- root node --> 34032 <feature> 34033 <rects> 34034 <_>12 16 10 8 -1.</_> 34035 <_>17 16 5 4 2.</_> 34036 <_>12 20 5 4 2.</_></rects> 34037 <tilted>0</tilted></feature> 34038 <threshold>0.0227700006216764</threshold> 34039 <left_val>-0.0347039997577667</left_val> 34040 <right_val>0.3914180099964142</right_val></_></_> 34041 <_> 34042 <!-- tree 64 --> 34043 <_> 34044 <!-- root node --> 34045 <feature> 34046 <rects> 34047 <_>2 16 10 8 -1.</_> 34048 <_>2 16 5 4 2.</_> 34049 <_>7 20 5 4 2.</_></rects> 34050 <tilted>0</tilted></feature> 34051 <threshold>-0.0215349998325109</threshold> 34052 <left_val>0.6476510167121887</left_val> 34053 <right_val>-0.2009779959917069</right_val></_></_> 34054 <_> 34055 <!-- tree 65 --> 34056 <_> 34057 <!-- root node --> 34058 <feature> 34059 <rects> 34060 <_>14 0 10 12 -1.</_> 34061 <_>19 0 5 6 2.</_> 34062 <_>14 6 5 6 2.</_></rects> 34063 <tilted>0</tilted></feature> 34064 <threshold>0.0617589987814426</threshold> 34065 <left_val>0.0542970001697540</left_val> 34066 <right_val>0.9070010185241699</right_val></_></_> 34067 <_> 34068 <!-- tree 66 --> 34069 <_> 34070 <!-- root node --> 34071 <feature> 34072 <rects> 34073 <_>0 0 10 12 -1.</_> 34074 <_>0 0 5 6 2.</_> 34075 <_>5 6 5 6 2.</_></rects> 34076 <tilted>0</tilted></feature> 34077 <threshold>-0.0780699998140335</threshold> 34078 <left_val>0.6552339792251587</left_val> 34079 <right_val>-0.1975439935922623</right_val></_></_> 34080 <_> 34081 <!-- tree 67 --> 34082 <_> 34083 <!-- root node --> 34084 <feature> 34085 <rects> 34086 <_>15 14 9 6 -1.</_> 34087 <_>15 16 9 2 3.</_></rects> 34088 <tilted>0</tilted></feature> 34089 <threshold>0.0113150002434850</threshold> 34090 <left_val>0.1938530057668686</left_val> 34091 <right_val>-0.5170729756355286</right_val></_></_> 34092 <_> 34093 <!-- tree 68 --> 34094 <_> 34095 <!-- root node --> 34096 <feature> 34097 <rects> 34098 <_>0 14 9 6 -1.</_> 34099 <_>0 16 9 2 3.</_></rects> 34100 <tilted>0</tilted></feature> 34101 <threshold>-0.0255900006741285</threshold> 34102 <left_val>-0.9309650063514710</left_val> 34103 <right_val>-0.0315469987690449</right_val></_></_> 34104 <_> 34105 <!-- tree 69 --> 34106 <_> 34107 <!-- root node --> 34108 <feature> 34109 <rects> 34110 <_>14 14 10 6 -1.</_> 34111 <_>14 16 10 2 3.</_></rects> 34112 <tilted>0</tilted></feature> 34113 <threshold>-0.0380589999258518</threshold> 34114 <left_val>-0.6832690238952637</left_val> 34115 <right_val>0.1270910054445267</right_val></_></_> 34116 <_> 34117 <!-- tree 70 --> 34118 <_> 34119 <!-- root node --> 34120 <feature> 34121 <rects> 34122 <_>0 14 10 6 -1.</_> 34123 <_>0 16 10 2 3.</_></rects> 34124 <tilted>0</tilted></feature> 34125 <threshold>9.7970003262162209e-003</threshold> 34126 <left_val>0.0155239999294281</left_val> 34127 <right_val>-0.6334789991378784</right_val></_></_> 34128 <_> 34129 <!-- tree 71 --> 34130 <_> 34131 <!-- root node --> 34132 <feature> 34133 <rects> 34134 <_>5 18 18 2 -1.</_> 34135 <_>5 19 18 1 2.</_></rects> 34136 <tilted>0</tilted></feature> 34137 <threshold>-0.0138419996947050</threshold> 34138 <left_val>1.0060529708862305</left_val> 34139 <right_val>0.0628129988908768</right_val></_></_> 34140 <_> 34141 <!-- tree 72 --> 34142 <_> 34143 <!-- root node --> 34144 <feature> 34145 <rects> 34146 <_>0 18 18 3 -1.</_> 34147 <_>0 19 18 1 3.</_></rects> 34148 <tilted>0</tilted></feature> 34149 <threshold>8.3459997549653053e-003</threshold> 34150 <left_val>-0.2338320016860962</left_val> 34151 <right_val>0.3098269999027252</right_val></_></_> 34152 <_> 34153 <!-- tree 73 --> 34154 <_> 34155 <!-- root node --> 34156 <feature> 34157 <rects> 34158 <_>3 5 18 12 -1.</_> 34159 <_>12 5 9 6 2.</_> 34160 <_>3 11 9 6 2.</_></rects> 34161 <tilted>0</tilted></feature> 34162 <threshold>-0.0714399963617325</threshold> 34163 <left_val>-0.7250540256500244</left_val> 34164 <right_val>0.1714829951524735</right_val></_></_> 34165 <_> 34166 <!-- tree 74 --> 34167 <_> 34168 <!-- root node --> 34169 <feature> 34170 <rects> 34171 <_>5 3 7 9 -1.</_> 34172 <_>5 6 7 3 3.</_></rects> 34173 <tilted>0</tilted></feature> 34174 <threshold>0.0100060002878308</threshold> 34175 <left_val>-0.2207199931144714</left_val> 34176 <right_val>0.3526619970798492</right_val></_></_> 34177 <_> 34178 <!-- tree 75 --> 34179 <_> 34180 <!-- root node --> 34181 <feature> 34182 <rects> 34183 <_>4 0 19 15 -1.</_> 34184 <_>4 5 19 5 3.</_></rects> 34185 <tilted>0</tilted></feature> 34186 <threshold>0.1100530028343201</threshold> 34187 <left_val>0.1666200011968613</left_val> 34188 <right_val>-0.7431899905204773</right_val></_></_> 34189 <_> 34190 <!-- tree 76 --> 34191 <_> 34192 <!-- root node --> 34193 <feature> 34194 <rects> 34195 <_>3 0 16 4 -1.</_> 34196 <_>3 2 16 2 2.</_></rects> 34197 <tilted>0</tilted></feature> 34198 <threshold>0.0353109985589981</threshold> 34199 <left_val>-0.2398270070552826</left_val> 34200 <right_val>0.4143599867820740</right_val></_></_> 34201 <_> 34202 <!-- tree 77 --> 34203 <_> 34204 <!-- root node --> 34205 <feature> 34206 <rects> 34207 <_>4 12 16 12 -1.</_> 34208 <_>4 12 8 12 2.</_></rects> 34209 <tilted>0</tilted></feature> 34210 <threshold>-0.1117469966411591</threshold> 34211 <left_val>0.5104539990425110</left_val> 34212 <right_val>2.2319999989122152e-003</right_val></_></_> 34213 <_> 34214 <!-- tree 78 --> 34215 <_> 34216 <!-- root node --> 34217 <feature> 34218 <rects> 34219 <_>4 3 12 15 -1.</_> 34220 <_>10 3 6 15 2.</_></rects> 34221 <tilted>0</tilted></feature> 34222 <threshold>-0.1136780008673668</threshold> 34223 <left_val>0.9047520160675049</left_val> 34224 <right_val>-0.1661529988050461</right_val></_></_> 34225 <_> 34226 <!-- tree 79 --> 34227 <_> 34228 <!-- root node --> 34229 <feature> 34230 <rects> 34231 <_>16 4 2 19 -1.</_> 34232 <_>16 4 1 19 2.</_></rects> 34233 <tilted>0</tilted></feature> 34234 <threshold>0.0166679993271828</threshold> 34235 <left_val>0.1402450054883957</left_val> 34236 <right_val>-0.5217850208282471</right_val></_></_> 34237 <_> 34238 <!-- tree 80 --> 34239 <_> 34240 <!-- root node --> 34241 <feature> 34242 <rects> 34243 <_>6 4 2 19 -1.</_> 34244 <_>7 4 1 19 2.</_></rects> 34245 <tilted>0</tilted></feature> 34246 <threshold>-8.0340001732110977e-003</threshold> 34247 <left_val>-0.6617839932441711</left_val> 34248 <right_val>3.7640000227838755e-003</right_val></_></_> 34249 <_> 34250 <!-- tree 81 --> 34251 <_> 34252 <!-- root node --> 34253 <feature> 34254 <rects> 34255 <_>13 14 8 10 -1.</_> 34256 <_>17 14 4 5 2.</_> 34257 <_>13 19 4 5 2.</_></rects> 34258 <tilted>0</tilted></feature> 34259 <threshold>-0.0330969989299774</threshold> 34260 <left_val>0.8018590211868286</left_val> 34261 <right_val>0.0593850016593933</right_val></_></_> 34262 <_> 34263 <!-- tree 82 --> 34264 <_> 34265 <!-- root node --> 34266 <feature> 34267 <rects> 34268 <_>3 14 8 10 -1.</_> 34269 <_>3 14 4 5 2.</_> 34270 <_>7 19 4 5 2.</_></rects> 34271 <tilted>0</tilted></feature> 34272 <threshold>0.0125479996204376</threshold> 34273 <left_val>-0.3354550004005432</left_val> 34274 <right_val>0.1457860022783279</right_val></_></_> 34275 <_> 34276 <!-- tree 83 --> 34277 <_> 34278 <!-- root node --> 34279 <feature> 34280 <rects> 34281 <_>12 6 3 18 -1.</_> 34282 <_>12 12 3 6 3.</_></rects> 34283 <tilted>0</tilted></feature> 34284 <threshold>-0.0420739986002445</threshold> 34285 <left_val>-0.5550910234451294</left_val> 34286 <right_val>0.1326660066843033</right_val></_></_> 34287 <_> 34288 <!-- tree 84 --> 34289 <_> 34290 <!-- root node --> 34291 <feature> 34292 <rects> 34293 <_>5 11 12 6 -1.</_> 34294 <_>5 11 6 3 2.</_> 34295 <_>11 14 6 3 2.</_></rects> 34296 <tilted>0</tilted></feature> 34297 <threshold>0.0252219997346401</threshold> 34298 <left_val>-0.0616319999098778</left_val> 34299 <right_val>-1.3678770065307617</right_val></_></_> 34300 <_> 34301 <!-- tree 85 --> 34302 <_> 34303 <!-- root node --> 34304 <feature> 34305 <rects> 34306 <_>10 5 8 10 -1.</_> 34307 <_>14 5 4 5 2.</_> 34308 <_>10 10 4 5 2.</_></rects> 34309 <tilted>0</tilted></feature> 34310 <threshold>-0.0242689996957779</threshold> 34311 <left_val>0.3418509960174561</left_val> 34312 <right_val>-7.4160001240670681e-003</right_val></_></_> 34313 <_> 34314 <!-- tree 86 --> 34315 <_> 34316 <!-- root node --> 34317 <feature> 34318 <rects> 34319 <_>6 4 12 10 -1.</_> 34320 <_>6 4 6 5 2.</_> 34321 <_>12 9 6 5 2.</_></rects> 34322 <tilted>0</tilted></feature> 34323 <threshold>-0.0122800003737211</threshold> 34324 <left_val>0.2774580121040344</left_val> 34325 <right_val>-0.3103390038013458</right_val></_></_> 34326 <_> 34327 <!-- tree 87 --> 34328 <_> 34329 <!-- root node --> 34330 <feature> 34331 <rects> 34332 <_>6 8 18 10 -1.</_> 34333 <_>15 8 9 5 2.</_> 34334 <_>6 13 9 5 2.</_></rects> 34335 <tilted>0</tilted></feature> 34336 <threshold>-0.1137709990143776</threshold> 34337 <left_val>1.1719540357589722</left_val> 34338 <right_val>0.0836810022592545</right_val></_></_> 34339 <_> 34340 <!-- tree 88 --> 34341 <_> 34342 <!-- root node --> 34343 <feature> 34344 <rects> 34345 <_>0 8 18 10 -1.</_> 34346 <_>0 8 9 5 2.</_> 34347 <_>9 13 9 5 2.</_></rects> 34348 <tilted>0</tilted></feature> 34349 <threshold>-0.0847719982266426</threshold> 34350 <left_val>0.8169479966163635</left_val> 34351 <right_val>-0.1783750057220459</right_val></_></_> 34352 <_> 34353 <!-- tree 89 --> 34354 <_> 34355 <!-- root node --> 34356 <feature> 34357 <rects> 34358 <_>12 6 3 18 -1.</_> 34359 <_>12 12 3 6 3.</_></rects> 34360 <tilted>0</tilted></feature> 34361 <threshold>-0.0245520006865263</threshold> 34362 <left_val>-0.1862729936838150</left_val> 34363 <right_val>0.1434009969234467</right_val></_></_> 34364 <_> 34365 <!-- tree 90 --> 34366 <_> 34367 <!-- root node --> 34368 <feature> 34369 <rects> 34370 <_>0 14 18 3 -1.</_> 34371 <_>0 15 18 1 3.</_></rects> 34372 <tilted>0</tilted></feature> 34373 <threshold>-9.0269995853304863e-003</threshold> 34374 <left_val>0.3265919983386993</left_val> 34375 <right_val>-0.2354129999876022</right_val></_></_> 34376 <_> 34377 <!-- tree 91 --> 34378 <_> 34379 <!-- root node --> 34380 <feature> 34381 <rects> 34382 <_>12 6 3 18 -1.</_> 34383 <_>12 12 3 6 3.</_></rects> 34384 <tilted>0</tilted></feature> 34385 <threshold>0.0111779998987913</threshold> 34386 <left_val>0.1976120024919510</left_val> 34387 <right_val>-0.0217010006308556</right_val></_></_> 34388 <_> 34389 <!-- tree 92 --> 34390 <_> 34391 <!-- root node --> 34392 <feature> 34393 <rects> 34394 <_>9 6 3 18 -1.</_> 34395 <_>9 12 3 6 3.</_></rects> 34396 <tilted>0</tilted></feature> 34397 <threshold>-0.0293669998645782</threshold> 34398 <left_val>-0.9341480135917664</left_val> 34399 <right_val>-0.0217049997299910</right_val></_></_> 34400 <_> 34401 <!-- tree 93 --> 34402 <_> 34403 <!-- root node --> 34404 <feature> 34405 <rects> 34406 <_>6 14 18 3 -1.</_> 34407 <_>6 15 18 1 3.</_></rects> 34408 <tilted>0</tilted></feature> 34409 <threshold>6.3640000298619270e-003</threshold> 34410 <left_val>0.0255730003118515</left_val> 34411 <right_val>0.4641279876232147</right_val></_></_> 34412 <_> 34413 <!-- tree 94 --> 34414 <_> 34415 <!-- root node --> 34416 <feature> 34417 <rects> 34418 <_>0 5 18 3 -1.</_> 34419 <_>0 6 18 1 3.</_></rects> 34420 <tilted>0</tilted></feature> 34421 <threshold>0.0140260001644492</threshold> 34422 <left_val>-0.2122859954833984</left_val> 34423 <right_val>0.4007880091667175</right_val></_></_> 34424 <_> 34425 <!-- tree 95 --> 34426 <_> 34427 <!-- root node --> 34428 <feature> 34429 <rects> 34430 <_>2 5 22 3 -1.</_> 34431 <_>2 6 22 1 3.</_></rects> 34432 <tilted>0</tilted></feature> 34433 <threshold>-0.0133419996127486</threshold> 34434 <left_val>0.7420269846916199</left_val> 34435 <right_val>0.0290019996464252</right_val></_></_> 34436 <_> 34437 <!-- tree 96 --> 34438 <_> 34439 <!-- root node --> 34440 <feature> 34441 <rects> 34442 <_>0 0 21 10 -1.</_> 34443 <_>7 0 7 10 3.</_></rects> 34444 <tilted>0</tilted></feature> 34445 <threshold>0.2842279970645905</threshold> 34446 <left_val>-0.1924359947443008</left_val> 34447 <right_val>0.4363119900226593</right_val></_></_> 34448 <_> 34449 <!-- tree 97 --> 34450 <_> 34451 <!-- root node --> 34452 <feature> 34453 <rects> 34454 <_>6 3 18 17 -1.</_> 34455 <_>12 3 6 17 3.</_></rects> 34456 <tilted>0</tilted></feature> 34457 <threshold>-0.2372400015592575</threshold> 34458 <left_val>0.6973639726638794</left_val> 34459 <right_val>0.0693079978227615</right_val></_></_> 34460 <_> 34461 <!-- tree 98 --> 34462 <_> 34463 <!-- root node --> 34464 <feature> 34465 <rects> 34466 <_>0 3 18 17 -1.</_> 34467 <_>6 3 6 17 3.</_></rects> 34468 <tilted>0</tilted></feature> 34469 <threshold>-0.1116970032453537</threshold> 34470 <left_val>0.3914720118045807</left_val> 34471 <right_val>-0.2092200070619583</right_val></_></_> 34472 <_> 34473 <!-- tree 99 --> 34474 <_> 34475 <!-- root node --> 34476 <feature> 34477 <rects> 34478 <_>0 12 24 11 -1.</_> 34479 <_>8 12 8 11 3.</_></rects> 34480 <tilted>0</tilted></feature> 34481 <threshold>0.1278750002384186</threshold> 34482 <left_val>-0.0725559964776039</left_val> 34483 <right_val>0.3608820140361786</right_val></_></_> 34484 <_> 34485 <!-- tree 100 --> 34486 <_> 34487 <!-- root node --> 34488 <feature> 34489 <rects> 34490 <_>4 10 16 6 -1.</_> 34491 <_>4 13 16 3 2.</_></rects> 34492 <tilted>0</tilted></feature> 34493 <threshold>-0.0629009976983070</threshold> 34494 <left_val>0.9542499780654907</left_val> 34495 <right_val>-0.1540279984474182</right_val></_></_> 34496 <_> 34497 <!-- tree 101 --> 34498 <_> 34499 <!-- root node --> 34500 <feature> 34501 <rects> 34502 <_>12 8 6 8 -1.</_> 34503 <_>12 12 6 4 2.</_></rects> 34504 <tilted>0</tilted></feature> 34505 <threshold>0.0174390003085136</threshold> 34506 <left_val>-0.0511349998414516</left_val> 34507 <right_val>0.2775030136108398</right_val></_></_> 34508 <_> 34509 <!-- tree 102 --> 34510 <_> 34511 <!-- root node --> 34512 <feature> 34513 <rects> 34514 <_>6 14 8 7 -1.</_> 34515 <_>10 14 4 7 2.</_></rects> 34516 <tilted>0</tilted></feature> 34517 <threshold>1.2319999514147639e-003</threshold> 34518 <left_val>0.0756279975175858</left_val> 34519 <right_val>-0.3645609915256500</right_val></_></_> 34520 <_> 34521 <!-- tree 103 --> 34522 <_> 34523 <!-- root node --> 34524 <feature> 34525 <rects> 34526 <_>15 10 6 14 -1.</_> 34527 <_>18 10 3 7 2.</_> 34528 <_>15 17 3 7 2.</_></rects> 34529 <tilted>0</tilted></feature> 34530 <threshold>0.0274950005114079</threshold> 34531 <left_val>0.0518440008163452</left_val> 34532 <right_val>0.4156259894371033</right_val></_></_> 34533 <_> 34534 <!-- tree 104 --> 34535 <_> 34536 <!-- root node --> 34537 <feature> 34538 <rects> 34539 <_>3 10 6 14 -1.</_> 34540 <_>3 10 3 7 2.</_> 34541 <_>6 17 3 7 2.</_></rects> 34542 <tilted>0</tilted></feature> 34543 <threshold>-0.0435439981520176</threshold> 34544 <left_val>0.7196999788284302</left_val> 34545 <right_val>-0.1713220030069351</right_val></_></_> 34546 <_> 34547 <!-- tree 105 --> 34548 <_> 34549 <!-- root node --> 34550 <feature> 34551 <rects> 34552 <_>6 12 18 2 -1.</_> 34553 <_>6 13 18 1 2.</_></rects> 34554 <tilted>0</tilted></feature> 34555 <threshold>0.0110259996727109</threshold> 34556 <left_val>0.1435460001230240</left_val> 34557 <right_val>-0.6540300250053406</right_val></_></_> 34558 <_> 34559 <!-- tree 106 --> 34560 <_> 34561 <!-- root node --> 34562 <feature> 34563 <rects> 34564 <_>5 8 10 6 -1.</_> 34565 <_>5 10 10 2 3.</_></rects> 34566 <tilted>0</tilted></feature> 34567 <threshold>0.0208659991621971</threshold> 34568 <left_val>0.0400890000164509</left_val> 34569 <right_val>-0.4574329853057861</right_val></_></_> 34570 <_> 34571 <!-- tree 107 --> 34572 <_> 34573 <!-- root node --> 34574 <feature> 34575 <rects> 34576 <_>12 11 9 4 -1.</_> 34577 <_>12 13 9 2 2.</_></rects> 34578 <tilted>0</tilted></feature> 34579 <threshold>-0.0223040003329515</threshold> 34580 <left_val>0.5385500192642212</left_val> 34581 <right_val>0.0716629996895790</right_val></_></_> 34582 <_> 34583 <!-- tree 108 --> 34584 <_> 34585 <!-- root node --> 34586 <feature> 34587 <rects> 34588 <_>0 11 9 6 -1.</_> 34589 <_>0 13 9 2 3.</_></rects> 34590 <tilted>0</tilted></feature> 34591 <threshold>0.0324920006096363</threshold> 34592 <left_val>-0.0459919981658459</left_val> 34593 <right_val>-1.0047069787979126</right_val></_></_> 34594 <_> 34595 <!-- tree 109 --> 34596 <_> 34597 <!-- root node --> 34598 <feature> 34599 <rects> 34600 <_>11 2 3 18 -1.</_> 34601 <_>12 2 1 18 3.</_></rects> 34602 <tilted>0</tilted></feature> 34603 <threshold>0.0122699998319149</threshold> 34604 <left_val>0.0343349985778332</left_val> 34605 <right_val>0.4243179857730866</right_val></_></_> 34606 <_> 34607 <!-- tree 110 --> 34608 <_> 34609 <!-- root node --> 34610 <feature> 34611 <rects> 34612 <_>10 2 3 18 -1.</_> 34613 <_>11 2 1 18 3.</_></rects> 34614 <tilted>0</tilted></feature> 34615 <threshold>8.3820000290870667e-003</threshold> 34616 <left_val>-0.2585060000419617</left_val> 34617 <right_val>0.2626349925994873</right_val></_></_> 34618 <_> 34619 <!-- tree 111 --> 34620 <_> 34621 <!-- root node --> 34622 <feature> 34623 <rects> 34624 <_>9 12 6 10 -1.</_> 34625 <_>11 12 2 10 3.</_></rects> 34626 <tilted>0</tilted></feature> 34627 <threshold>0.0373539999127388</threshold> 34628 <left_val>0.1569249927997589</left_val> 34629 <right_val>-1.0429090261459351</right_val></_></_> 34630 <_> 34631 <!-- tree 112 --> 34632 <_> 34633 <!-- root node --> 34634 <feature> 34635 <rects> 34636 <_>1 10 6 9 -1.</_> 34637 <_>1 13 6 3 3.</_></rects> 34638 <tilted>0</tilted></feature> 34639 <threshold>-0.0141110001131892</threshold> 34640 <left_val>-0.7317770123481751</left_val> 34641 <right_val>-0.0202769991010427</right_val></_></_> 34642 <_> 34643 <!-- tree 113 --> 34644 <_> 34645 <!-- root node --> 34646 <feature> 34647 <rects> 34648 <_>6 9 16 6 -1.</_> 34649 <_>14 9 8 3 2.</_> 34650 <_>6 12 8 3 2.</_></rects> 34651 <tilted>0</tilted></feature> 34652 <threshold>0.0570669993758202</threshold> 34653 <left_val>0.0833600014448166</left_val> 34654 <right_val>1.5661499500274658</right_val></_></_> 34655 <_> 34656 <!-- tree 114 --> 34657 <_> 34658 <!-- root node --> 34659 <feature> 34660 <rects> 34661 <_>1 8 9 6 -1.</_> 34662 <_>1 10 9 2 3.</_></rects> 34663 <tilted>0</tilted></feature> 34664 <threshold>4.9680001102387905e-003</threshold> 34665 <left_val>-0.3531819880008698</left_val> 34666 <right_val>0.1469839960336685</right_val></_></_> 34667 <_> 34668 <!-- tree 115 --> 34669 <_> 34670 <!-- root node --> 34671 <feature> 34672 <rects> 34673 <_>7 7 16 6 -1.</_> 34674 <_>7 9 16 2 3.</_></rects> 34675 <tilted>0</tilted></feature> 34676 <threshold>-0.0244929995387793</threshold> 34677 <left_val>0.2832590043544769</left_val> 34678 <right_val>-3.4640000667423010e-003</right_val></_></_> 34679 <_> 34680 <!-- tree 116 --> 34681 <_> 34682 <!-- root node --> 34683 <feature> 34684 <rects> 34685 <_>0 0 18 3 -1.</_> 34686 <_>0 1 18 1 3.</_></rects> 34687 <tilted>0</tilted></feature> 34688 <threshold>-0.0112549997866154</threshold> 34689 <left_val>-0.8401749730110169</left_val> 34690 <right_val>-0.0362519994378090</right_val></_></_> 34691 <_> 34692 <!-- tree 117 --> 34693 <_> 34694 <!-- root node --> 34695 <feature> 34696 <rects> 34697 <_>10 0 6 9 -1.</_> 34698 <_>12 0 2 9 3.</_></rects> 34699 <tilted>0</tilted></feature> 34700 <threshold>0.0345330014824867</threshold> 34701 <left_val>0.1499850004911423</left_val> 34702 <right_val>-0.8736709952354431</right_val></_></_> 34703 <_> 34704 <!-- tree 118 --> 34705 <_> 34706 <!-- root node --> 34707 <feature> 34708 <rects> 34709 <_>9 5 6 6 -1.</_> 34710 <_>12 5 3 6 2.</_></rects> 34711 <tilted>0</tilted></feature> 34712 <threshold>0.0243030004203320</threshold> 34713 <left_val>-0.1878750026226044</left_val> 34714 <right_val>0.5948399901390076</right_val></_></_> 34715 <_> 34716 <!-- tree 119 --> 34717 <_> 34718 <!-- root node --> 34719 <feature> 34720 <rects> 34721 <_>10 6 4 18 -1.</_> 34722 <_>12 6 2 9 2.</_> 34723 <_>10 15 2 9 2.</_></rects> 34724 <tilted>0</tilted></feature> 34725 <threshold>-7.8790001571178436e-003</threshold> 34726 <left_val>0.4431569874286652</left_val> 34727 <right_val>-0.0565709993243217</right_val></_></_> 34728 <_> 34729 <!-- tree 120 --> 34730 <_> 34731 <!-- root node --> 34732 <feature> 34733 <rects> 34734 <_>8 0 6 9 -1.</_> 34735 <_>10 0 2 9 3.</_></rects> 34736 <tilted>0</tilted></feature> 34737 <threshold>0.0351420007646084</threshold> 34738 <left_val>-0.0564949996769428</left_val> 34739 <right_val>-1.3617190122604370</right_val></_></_> 34740 <_> 34741 <!-- tree 121 --> 34742 <_> 34743 <!-- root node --> 34744 <feature> 34745 <rects> 34746 <_>9 1 6 9 -1.</_> 34747 <_>9 4 6 3 3.</_></rects> 34748 <tilted>0</tilted></feature> 34749 <threshold>4.6259998343884945e-003</threshold> 34750 <left_val>-0.3116169869899750</left_val> 34751 <right_val>0.2544769942760468</right_val></_></_> 34752 <_> 34753 <!-- tree 122 --> 34754 <_> 34755 <!-- root node --> 34756 <feature> 34757 <rects> 34758 <_>1 0 18 9 -1.</_> 34759 <_>1 3 18 3 3.</_></rects> 34760 <tilted>0</tilted></feature> 34761 <threshold>-0.0831310003995895</threshold> 34762 <left_val>1.6424349546432495</left_val> 34763 <right_val>-0.1442939937114716</right_val></_></_> 34764 <_> 34765 <!-- tree 123 --> 34766 <_> 34767 <!-- root node --> 34768 <feature> 34769 <rects> 34770 <_>0 3 24 3 -1.</_> 34771 <_>0 4 24 1 3.</_></rects> 34772 <tilted>0</tilted></feature> 34773 <threshold>-0.0140159996226430</threshold> 34774 <left_val>-0.7781950235366821</left_val> 34775 <right_val>0.1717330068349838</right_val></_></_> 34776 <_> 34777 <!-- tree 124 --> 34778 <_> 34779 <!-- root node --> 34780 <feature> 34781 <rects> 34782 <_>6 14 9 4 -1.</_> 34783 <_>6 16 9 2 2.</_></rects> 34784 <tilted>0</tilted></feature> 34785 <threshold>1.2450000504031777e-003</threshold> 34786 <left_val>-0.2319139987230301</left_val> 34787 <right_val>0.2852790057659149</right_val></_></_> 34788 <_> 34789 <!-- tree 125 --> 34790 <_> 34791 <!-- root node --> 34792 <feature> 34793 <rects> 34794 <_>8 9 8 10 -1.</_> 34795 <_>12 9 4 5 2.</_> 34796 <_>8 14 4 5 2.</_></rects> 34797 <tilted>0</tilted></feature> 34798 <threshold>-0.0168030001223087</threshold> 34799 <left_val>-0.3596509993076325</left_val> 34800 <right_val>0.2041299939155579</right_val></_></_> 34801 <_> 34802 <!-- tree 126 --> 34803 <_> 34804 <!-- root node --> 34805 <feature> 34806 <rects> 34807 <_>5 2 13 9 -1.</_> 34808 <_>5 5 13 3 3.</_></rects> 34809 <tilted>0</tilted></feature> 34810 <threshold>-0.0767479985952377</threshold> 34811 <left_val>0.7805050015449524</left_val> 34812 <right_val>-0.1561280041933060</right_val></_></_> 34813 <_> 34814 <!-- tree 127 --> 34815 <_> 34816 <!-- root node --> 34817 <feature> 34818 <rects> 34819 <_>4 4 16 9 -1.</_> 34820 <_>4 7 16 3 3.</_></rects> 34821 <tilted>0</tilted></feature> 34822 <threshold>-0.2367199957370758</threshold> 34823 <left_val>1.1813700199127197</left_val> 34824 <right_val>0.0781119987368584</right_val></_></_> 34825 <_> 34826 <!-- tree 128 --> 34827 <_> 34828 <!-- root node --> 34829 <feature> 34830 <rects> 34831 <_>4 4 14 9 -1.</_> 34832 <_>4 7 14 3 3.</_></rects> 34833 <tilted>0</tilted></feature> 34834 <threshold>-0.1005740016698837</threshold> 34835 <left_val>-0.4710409939289093</left_val> 34836 <right_val>0.0791729986667633</right_val></_></_> 34837 <_> 34838 <!-- tree 129 --> 34839 <_> 34840 <!-- root node --> 34841 <feature> 34842 <rects> 34843 <_>8 5 9 6 -1.</_> 34844 <_>8 7 9 2 3.</_></rects> 34845 <tilted>0</tilted></feature> 34846 <threshold>1.3239999534562230e-003</threshold> 34847 <left_val>0.2226269990205765</left_val> 34848 <right_val>-0.3709979951381683</right_val></_></_> 34849 <_> 34850 <!-- tree 130 --> 34851 <_> 34852 <!-- root node --> 34853 <feature> 34854 <rects> 34855 <_>1 7 16 6 -1.</_> 34856 <_>1 9 16 2 3.</_></rects> 34857 <tilted>0</tilted></feature> 34858 <threshold>0.0221529994159937</threshold> 34859 <left_val>-0.0386490002274513</left_val> 34860 <right_val>-0.9227499961853027</right_val></_></_> 34861 <_> 34862 <!-- tree 131 --> 34863 <_> 34864 <!-- root node --> 34865 <feature> 34866 <rects> 34867 <_>10 5 13 9 -1.</_> 34868 <_>10 8 13 3 3.</_></rects> 34869 <tilted>0</tilted></feature> 34870 <threshold>-0.1124619990587235</threshold> 34871 <left_val>0.4189960062503815</left_val> 34872 <right_val>0.0804110020399094</right_val></_></_> 34873 <_> 34874 <!-- tree 132 --> 34875 <_> 34876 <!-- root node --> 34877 <feature> 34878 <rects> 34879 <_>1 5 13 9 -1.</_> 34880 <_>1 8 13 3 3.</_></rects> 34881 <tilted>0</tilted></feature> 34882 <threshold>0.0164810009300709</threshold> 34883 <left_val>-0.1675669997930527</left_val> 34884 <right_val>0.7184240221977234</right_val></_></_> 34885 <_> 34886 <!-- tree 133 --> 34887 <_> 34888 <!-- root node --> 34889 <feature> 34890 <rects> 34891 <_>0 4 24 6 -1.</_> 34892 <_>12 4 12 3 2.</_> 34893 <_>0 7 12 3 2.</_></rects> 34894 <tilted>0</tilted></feature> 34895 <threshold>0.0681139975786209</threshold> 34896 <left_val>0.1571989953517914</left_val> 34897 <right_val>-0.8768110275268555</right_val></_></_> 34898 <_> 34899 <!-- tree 134 --> 34900 <_> 34901 <!-- root node --> 34902 <feature> 34903 <rects> 34904 <_>1 14 10 9 -1.</_> 34905 <_>1 17 10 3 3.</_></rects> 34906 <tilted>0</tilted></feature> 34907 <threshold>0.0160119999200106</threshold> 34908 <left_val>-4.1600000113248825e-003</left_val> 34909 <right_val>-0.5932779908180237</right_val></_></_> 34910 <_> 34911 <!-- tree 135 --> 34912 <_> 34913 <!-- root node --> 34914 <feature> 34915 <rects> 34916 <_>5 17 18 3 -1.</_> 34917 <_>5 18 18 1 3.</_></rects> 34918 <tilted>0</tilted></feature> 34919 <threshold>4.6640001237392426e-003</threshold> 34920 <left_val>-0.0301539991050959</left_val> 34921 <right_val>0.4834530055522919</right_val></_></_> 34922 <_> 34923 <!-- tree 136 --> 34924 <_> 34925 <!-- root node --> 34926 <feature> 34927 <rects> 34928 <_>0 16 18 3 -1.</_> 34929 <_>0 17 18 1 3.</_></rects> 34930 <tilted>0</tilted></feature> 34931 <threshold>6.7579997703433037e-003</threshold> 34932 <left_val>-0.2266740053892136</left_val> 34933 <right_val>0.3366230130195618</right_val></_></_> 34934 <_> 34935 <!-- tree 137 --> 34936 <_> 34937 <!-- root node --> 34938 <feature> 34939 <rects> 34940 <_>9 17 9 6 -1.</_> 34941 <_>9 19 9 2 3.</_></rects> 34942 <tilted>0</tilted></feature> 34943 <threshold>4.7289999201893806e-003</threshold> 34944 <left_val>-0.0603739991784096</left_val> 34945 <right_val>0.3145810067653656</right_val></_></_> 34946 <_> 34947 <!-- tree 138 --> 34948 <_> 34949 <!-- root node --> 34950 <feature> 34951 <rects> 34952 <_>1 20 22 4 -1.</_> 34953 <_>1 20 11 2 2.</_> 34954 <_>12 22 11 2 2.</_></rects> 34955 <tilted>0</tilted></feature> 34956 <threshold>2.5869999080896378e-003</threshold> 34957 <left_val>-0.2987259924411774</left_val> 34958 <right_val>0.1778749972581863</right_val></_></_> 34959 <_> 34960 <!-- tree 139 --> 34961 <_> 34962 <!-- root node --> 34963 <feature> 34964 <rects> 34965 <_>8 14 8 6 -1.</_> 34966 <_>8 17 8 3 2.</_></rects> 34967 <tilted>0</tilted></feature> 34968 <threshold>2.8989999555051327e-003</threshold> 34969 <left_val>0.2189020067453384</left_val> 34970 <right_val>-0.2956709861755371</right_val></_></_> 34971 <_> 34972 <!-- tree 140 --> 34973 <_> 34974 <!-- root node --> 34975 <feature> 34976 <rects> 34977 <_>8 6 8 15 -1.</_> 34978 <_>8 11 8 5 3.</_></rects> 34979 <tilted>0</tilted></feature> 34980 <threshold>-0.0300539992749691</threshold> 34981 <left_val>1.2150429487228394</left_val> 34982 <right_val>-0.1435499936342239</right_val></_></_> 34983 <_> 34984 <!-- tree 141 --> 34985 <_> 34986 <!-- root node --> 34987 <feature> 34988 <rects> 34989 <_>5 4 18 3 -1.</_> 34990 <_>5 5 18 1 3.</_></rects> 34991 <tilted>0</tilted></feature> 34992 <threshold>0.0141810001805425</threshold> 34993 <left_val>0.0124519998207688</left_val> 34994 <right_val>0.5549010038375855</right_val></_></_> 34995 <_> 34996 <!-- tree 142 --> 34997 <_> 34998 <!-- root node --> 34999 <feature> 35000 <rects> 35001 <_>9 3 5 10 -1.</_> 35002 <_>9 8 5 5 2.</_></rects> 35003 <tilted>0</tilted></feature> 35004 <threshold>-0.0605270005762577</threshold> 35005 <left_val>-1.4933999776840210</left_val> 35006 <right_val>-0.0652270019054413</right_val></_></_> 35007 <_> 35008 <!-- tree 143 --> 35009 <_> 35010 <!-- root node --> 35011 <feature> 35012 <rects> 35013 <_>6 8 12 3 -1.</_> 35014 <_>6 8 6 3 2.</_></rects> 35015 <tilted>0</tilted></feature> 35016 <threshold>-0.0198829993605614</threshold> 35017 <left_val>-0.3852640092372894</left_val> 35018 <right_val>0.1976120024919510</right_val></_></_> 35019 <_> 35020 <!-- tree 144 --> 35021 <_> 35022 <!-- root node --> 35023 <feature> 35024 <rects> 35025 <_>2 6 18 6 -1.</_> 35026 <_>2 6 9 3 2.</_> 35027 <_>11 9 9 3 2.</_></rects> 35028 <tilted>0</tilted></feature> 35029 <threshold>0.0312189999967813</threshold> 35030 <left_val>-0.2128120064735413</left_val> 35031 <right_val>0.2944650053977966</right_val></_></_> 35032 <_> 35033 <!-- tree 145 --> 35034 <_> 35035 <!-- root node --> 35036 <feature> 35037 <rects> 35038 <_>10 6 4 18 -1.</_> 35039 <_>12 6 2 9 2.</_> 35040 <_>10 15 2 9 2.</_></rects> 35041 <tilted>0</tilted></feature> 35042 <threshold>0.0182719994336367</threshold> 35043 <left_val>9.7200000891461968e-004</left_val> 35044 <right_val>0.6681420207023621</right_val></_></_> 35045 <_> 35046 <!-- tree 146 --> 35047 <_> 35048 <!-- root node --> 35049 <feature> 35050 <rects> 35051 <_>7 5 6 6 -1.</_> 35052 <_>10 5 3 6 2.</_></rects> 35053 <tilted>0</tilted></feature> 35054 <threshold>1.1089999461546540e-003</threshold> 35055 <left_val>-0.6246790289878845</left_val> 35056 <right_val>-1.6599999507889152e-003</right_val></_></_> 35057 <_> 35058 <!-- tree 147 --> 35059 <_> 35060 <!-- root node --> 35061 <feature> 35062 <rects> 35063 <_>14 5 2 18 -1.</_> 35064 <_>14 14 2 9 2.</_></rects> 35065 <tilted>0</tilted></feature> 35066 <threshold>-0.0367139987647533</threshold> 35067 <left_val>-0.4233390092849731</left_val> 35068 <right_val>0.1208470016717911</right_val></_></_> 35069 <_> 35070 <!-- tree 148 --> 35071 <_> 35072 <!-- root node --> 35073 <feature> 35074 <rects> 35075 <_>8 5 2 18 -1.</_> 35076 <_>8 14 2 9 2.</_></rects> 35077 <tilted>0</tilted></feature> 35078 <threshold>0.0120440004393458</threshold> 35079 <left_val>0.0258820001035929</left_val> 35080 <right_val>-0.5073239803314209</right_val></_></_> 35081 <_> 35082 <!-- tree 149 --> 35083 <_> 35084 <!-- root node --> 35085 <feature> 35086 <rects> 35087 <_>9 2 10 6 -1.</_> 35088 <_>9 2 5 6 2.</_></rects> 35089 <tilted>0</tilted></feature> 35090 <threshold>0.0747490003705025</threshold> 35091 <left_val>0.1318469941616058</left_val> 35092 <right_val>-0.2173960059881210</right_val></_></_> 35093 <_> 35094 <!-- tree 150 --> 35095 <_> 35096 <!-- root node --> 35097 <feature> 35098 <rects> 35099 <_>3 1 18 12 -1.</_> 35100 <_>12 1 9 12 2.</_></rects> 35101 <tilted>0</tilted></feature> 35102 <threshold>-0.2347320020198822</threshold> 35103 <left_val>1.1775610446929932</left_val> 35104 <right_val>-0.1511469930410385</right_val></_></_> 35105 <_> 35106 <!-- tree 151 --> 35107 <_> 35108 <!-- root node --> 35109 <feature> 35110 <rects> 35111 <_>5 2 17 22 -1.</_> 35112 <_>5 13 17 11 2.</_></rects> 35113 <tilted>0</tilted></feature> 35114 <threshold>0.1409649997949600</threshold> 35115 <left_val>0.0339910015463829</left_val> 35116 <right_val>0.3992309868335724</right_val></_></_> 35117 <_> 35118 <!-- tree 152 --> 35119 <_> 35120 <!-- root node --> 35121 <feature> 35122 <rects> 35123 <_>4 0 12 6 -1.</_> 35124 <_>4 2 12 2 3.</_></rects> 35125 <tilted>0</tilted></feature> 35126 <threshold>6.1789997853338718e-003</threshold> 35127 <left_val>-0.3180670142173767</left_val> 35128 <right_val>0.1168169975280762</right_val></_></_> 35129 <_> 35130 <!-- tree 153 --> 35131 <_> 35132 <!-- root node --> 35133 <feature> 35134 <rects> 35135 <_>6 9 16 6 -1.</_> 35136 <_>14 9 8 3 2.</_> 35137 <_>6 12 8 3 2.</_></rects> 35138 <tilted>0</tilted></feature> 35139 <threshold>-0.0572169981896877</threshold> 35140 <left_val>0.8439909815788269</left_val> 35141 <right_val>0.0838890001177788</right_val></_></_> 35142 <_> 35143 <!-- tree 154 --> 35144 <_> 35145 <!-- root node --> 35146 <feature> 35147 <rects> 35148 <_>9 0 5 18 -1.</_> 35149 <_>9 9 5 9 2.</_></rects> 35150 <tilted>0</tilted></feature> 35151 <threshold>-0.0552270002663136</threshold> 35152 <left_val>0.3688830137252808</left_val> 35153 <right_val>-0.1891340017318726</right_val></_></_> 35154 <_> 35155 <!-- tree 155 --> 35156 <_> 35157 <!-- root node --> 35158 <feature> 35159 <rects> 35160 <_>12 0 6 9 -1.</_> 35161 <_>14 0 2 9 3.</_></rects> 35162 <tilted>0</tilted></feature> 35163 <threshold>-0.0215830001980066</threshold> 35164 <left_val>-0.5216180086135864</left_val> 35165 <right_val>0.1577260047197342</right_val></_></_> 35166 <_> 35167 <!-- tree 156 --> 35168 <_> 35169 <!-- root node --> 35170 <feature> 35171 <rects> 35172 <_>6 0 6 9 -1.</_> 35173 <_>8 0 2 9 3.</_></rects> 35174 <tilted>0</tilted></feature> 35175 <threshold>0.0257479995489120</threshold> 35176 <left_val>-0.0599219985306263</left_val> 35177 <right_val>-1.0674990415573120</right_val></_></_> 35178 <_> 35179 <!-- tree 157 --> 35180 <_> 35181 <!-- root node --> 35182 <feature> 35183 <rects> 35184 <_>9 1 6 12 -1.</_> 35185 <_>11 1 2 12 3.</_></rects> 35186 <tilted>0</tilted></feature> 35187 <threshold>-0.0130989998579025</threshold> 35188 <left_val>0.7895839810371399</left_val> 35189 <right_val>0.0520999990403652</right_val></_></_> 35190 <_> 35191 <!-- tree 158 --> 35192 <_> 35193 <!-- root node --> 35194 <feature> 35195 <rects> 35196 <_>5 9 13 4 -1.</_> 35197 <_>5 11 13 2 2.</_></rects> 35198 <tilted>0</tilted></feature> 35199 <threshold>2.2799998987466097e-003</threshold> 35200 <left_val>-1.1704430580139160</left_val> 35201 <right_val>-0.0593569986522198</right_val></_></_> 35202 <_> 35203 <!-- tree 159 --> 35204 <_> 35205 <!-- root node --> 35206 <feature> 35207 <rects> 35208 <_>5 8 19 3 -1.</_> 35209 <_>5 9 19 1 3.</_></rects> 35210 <tilted>0</tilted></feature> 35211 <threshold>8.8060004636645317e-003</threshold> 35212 <left_val>0.0417179986834526</left_val> 35213 <right_val>0.6635259985923767</right_val></_></_> 35214 <_> 35215 <!-- tree 160 --> 35216 <_> 35217 <!-- root node --> 35218 <feature> 35219 <rects> 35220 <_>9 9 6 8 -1.</_> 35221 <_>9 13 6 4 2.</_></rects> 35222 <tilted>0</tilted></feature> 35223 <threshold>-8.9699998497962952e-003</threshold> 35224 <left_val>-0.3586269915103912</left_val> 35225 <right_val>0.0604580007493496</right_val></_></_> 35226 <_> 35227 <!-- tree 161 --> 35228 <_> 35229 <!-- root node --> 35230 <feature> 35231 <rects> 35232 <_>11 9 4 15 -1.</_> 35233 <_>11 14 4 5 3.</_></rects> 35234 <tilted>0</tilted></feature> 35235 <threshold>4.0230001322925091e-003</threshold> 35236 <left_val>0.2097939997911453</left_val> 35237 <right_val>-0.2480600029230118</right_val></_></_> 35238 <_> 35239 <!-- tree 162 --> 35240 <_> 35241 <!-- root node --> 35242 <feature> 35243 <rects> 35244 <_>2 0 6 14 -1.</_> 35245 <_>2 0 3 7 2.</_> 35246 <_>5 7 3 7 2.</_></rects> 35247 <tilted>0</tilted></feature> 35248 <threshold>0.0250170007348061</threshold> 35249 <left_val>-0.1879590004682541</left_val> 35250 <right_val>0.3954710066318512</right_val></_></_> 35251 <_> 35252 <!-- tree 163 --> 35253 <_> 35254 <!-- root node --> 35255 <feature> 35256 <rects> 35257 <_>15 1 6 14 -1.</_> 35258 <_>18 1 3 7 2.</_> 35259 <_>15 8 3 7 2.</_></rects> 35260 <tilted>0</tilted></feature> 35261 <threshold>-5.9009999968111515e-003</threshold> 35262 <left_val>0.2566390037536621</left_val> 35263 <right_val>-0.0949190035462379</right_val></_></_> 35264 <_> 35265 <!-- tree 164 --> 35266 <_> 35267 <!-- root node --> 35268 <feature> 35269 <rects> 35270 <_>3 1 6 14 -1.</_> 35271 <_>3 1 3 7 2.</_> 35272 <_>6 8 3 7 2.</_></rects> 35273 <tilted>0</tilted></feature> 35274 <threshold>4.3850000947713852e-003</threshold> 35275 <left_val>0.0331390015780926</left_val> 35276 <right_val>-0.4607540071010590</right_val></_></_> 35277 <_> 35278 <!-- tree 165 --> 35279 <_> 35280 <!-- root node --> 35281 <feature> 35282 <rects> 35283 <_>3 20 18 4 -1.</_> 35284 <_>12 20 9 2 2.</_> 35285 <_>3 22 9 2 2.</_></rects> 35286 <tilted>0</tilted></feature> 35287 <threshold>-0.0337719991803169</threshold> 35288 <left_val>-0.9888160228729248</left_val> 35289 <right_val>0.1463689953088760</right_val></_></_> 35290 <_> 35291 <!-- tree 166 --> 35292 <_> 35293 <!-- root node --> 35294 <feature> 35295 <rects> 35296 <_>5 0 4 20 -1.</_> 35297 <_>5 0 2 10 2.</_> 35298 <_>7 10 2 10 2.</_></rects> 35299 <tilted>0</tilted></feature> 35300 <threshold>0.0445230007171631</threshold> 35301 <left_val>-0.1328669935464859</left_val> 35302 <right_val>1.5796790122985840</right_val></_></_> 35303 <_> 35304 <!-- tree 167 --> 35305 <_> 35306 <!-- root node --> 35307 <feature> 35308 <rects> 35309 <_>16 8 8 12 -1.</_> 35310 <_>20 8 4 6 2.</_> 35311 <_>16 14 4 6 2.</_></rects> 35312 <tilted>0</tilted></feature> 35313 <threshold>-0.0409290008246899</threshold> 35314 <left_val>0.3387709856033325</left_val> 35315 <right_val>0.0749709978699684</right_val></_></_> 35316 <_> 35317 <!-- tree 168 --> 35318 <_> 35319 <!-- root node --> 35320 <feature> 35321 <rects> 35322 <_>0 8 8 12 -1.</_> 35323 <_>0 8 4 6 2.</_> 35324 <_>4 14 4 6 2.</_></rects> 35325 <tilted>0</tilted></feature> 35326 <threshold>0.0393519997596741</threshold> 35327 <left_val>-0.1832789927721024</left_val> 35328 <right_val>0.4698069989681244</right_val></_></_> 35329 <_> 35330 <!-- tree 169 --> 35331 <_> 35332 <!-- root node --> 35333 <feature> 35334 <rects> 35335 <_>13 13 10 8 -1.</_> 35336 <_>18 13 5 4 2.</_> 35337 <_>13 17 5 4 2.</_></rects> 35338 <tilted>0</tilted></feature> 35339 <threshold>-0.0703229978680611</threshold> 35340 <left_val>-0.9832270145416260</left_val> 35341 <right_val>0.1180810034275055</right_val></_></_> 35342 <_> 35343 <!-- tree 170 --> 35344 <_> 35345 <!-- root node --> 35346 <feature> 35347 <rects> 35348 <_>1 13 10 8 -1.</_> 35349 <_>1 13 5 4 2.</_> 35350 <_>6 17 5 4 2.</_></rects> 35351 <tilted>0</tilted></feature> 35352 <threshold>0.0357430018484592</threshold> 35353 <left_val>-0.0330509990453720</left_val> 35354 <right_val>-0.8361089825630188</right_val></_></_> 35355 <_> 35356 <!-- tree 171 --> 35357 <_> 35358 <!-- root node --> 35359 <feature> 35360 <rects> 35361 <_>15 8 4 15 -1.</_> 35362 <_>15 13 4 5 3.</_></rects> 35363 <tilted>0</tilted></feature> 35364 <threshold>-0.0429619997739792</threshold> 35365 <left_val>1.1670809984207153</left_val> 35366 <right_val>0.0806920006871223</right_val></_></_> 35367 <_> 35368 <!-- tree 172 --> 35369 <_> 35370 <!-- root node --> 35371 <feature> 35372 <rects> 35373 <_>5 8 4 15 -1.</_> 35374 <_>5 13 4 5 3.</_></rects> 35375 <tilted>0</tilted></feature> 35376 <threshold>-0.0210079997777939</threshold> 35377 <left_val>0.6386979818344116</left_val> 35378 <right_val>-0.1762630045413971</right_val></_></_> 35379 <_> 35380 <!-- tree 173 --> 35381 <_> 35382 <!-- root node --> 35383 <feature> 35384 <rects> 35385 <_>6 11 16 12 -1.</_> 35386 <_>6 15 16 4 3.</_></rects> 35387 <tilted>0</tilted></feature> 35388 <threshold>-0.1574220061302185</threshold> 35389 <left_val>-0.2330249994993210</left_val> 35390 <right_val>0.1251749992370606</right_val></_></_> 35391 <_> 35392 <!-- tree 174 --> 35393 <_> 35394 <!-- root node --> 35395 <feature> 35396 <rects> 35397 <_>2 11 16 12 -1.</_> 35398 <_>2 15 16 4 3.</_></rects> 35399 <tilted>0</tilted></feature> 35400 <threshold>7.8659998252987862e-003</threshold> 35401 <left_val>-0.2203799933195114</left_val> 35402 <right_val>0.2719680070877075</right_val></_></_> 35403 <_> 35404 <!-- tree 175 --> 35405 <_> 35406 <!-- root node --> 35407 <feature> 35408 <rects> 35409 <_>14 12 7 9 -1.</_> 35410 <_>14 15 7 3 3.</_></rects> 35411 <tilted>0</tilted></feature> 35412 <threshold>0.0236220005899668</threshold> 35413 <left_val>0.1612730026245117</left_val> 35414 <right_val>-0.4332900047302246</right_val></_></_> 35415 <_> 35416 <!-- tree 176 --> 35417 <_> 35418 <!-- root node --> 35419 <feature> 35420 <rects> 35421 <_>10 1 3 21 -1.</_> 35422 <_>10 8 3 7 3.</_></rects> 35423 <tilted>0</tilted></feature> 35424 <threshold>0.0746920034289360</threshold> 35425 <left_val>-0.1699199974536896</left_val> 35426 <right_val>0.5888490080833435</right_val></_></_> 35427 <_> 35428 <!-- tree 177 --> 35429 <_> 35430 <!-- root node --> 35431 <feature> 35432 <rects> 35433 <_>13 11 9 4 -1.</_> 35434 <_>13 13 9 2 2.</_></rects> 35435 <tilted>0</tilted></feature> 35436 <threshold>-6.4799998654052615e-004</threshold> 35437 <left_val>0.2584289908409119</left_val> 35438 <right_val>-0.0359119996428490</right_val></_></_> 35439 <_> 35440 <!-- tree 178 --> 35441 <_> 35442 <!-- root node --> 35443 <feature> 35444 <rects> 35445 <_>3 10 17 9 -1.</_> 35446 <_>3 13 17 3 3.</_></rects> 35447 <tilted>0</tilted></feature> 35448 <threshold>-0.0162909999489784</threshold> 35449 <left_val>-0.7676439881324768</left_val> 35450 <right_val>-0.0204729996621609</right_val></_></_> 35451 <_> 35452 <!-- tree 179 --> 35453 <_> 35454 <!-- root node --> 35455 <feature> 35456 <rects> 35457 <_>13 8 8 15 -1.</_> 35458 <_>13 13 8 5 3.</_></rects> 35459 <tilted>0</tilted></feature> 35460 <threshold>-0.0331339985132217</threshold> 35461 <left_val>-0.2718009948730469</left_val> 35462 <right_val>0.1432570070028305</right_val></_></_> 35463 <_> 35464 <!-- tree 180 --> 35465 <_> 35466 <!-- root node --> 35467 <feature> 35468 <rects> 35469 <_>3 8 8 15 -1.</_> 35470 <_>3 13 8 5 3.</_></rects> 35471 <tilted>0</tilted></feature> 35472 <threshold>0.0487979985773563</threshold> 35473 <left_val>0.0764089971780777</left_val> 35474 <right_val>-0.4144519865512848</right_val></_></_> 35475 <_> 35476 <!-- tree 181 --> 35477 <_> 35478 <!-- root node --> 35479 <feature> 35480 <rects> 35481 <_>11 14 10 8 -1.</_> 35482 <_>16 14 5 4 2.</_> 35483 <_>11 18 5 4 2.</_></rects> 35484 <tilted>0</tilted></feature> 35485 <threshold>2.2869999520480633e-003</threshold> 35486 <left_val>-0.0386289991438389</left_val> 35487 <right_val>0.2075379937887192</right_val></_></_> 35488 <_> 35489 <!-- tree 182 --> 35490 <_> 35491 <!-- root node --> 35492 <feature> 35493 <rects> 35494 <_>0 18 22 6 -1.</_> 35495 <_>0 18 11 3 2.</_> 35496 <_>11 21 11 3 2.</_></rects> 35497 <tilted>0</tilted></feature> 35498 <threshold>0.0453040003776550</threshold> 35499 <left_val>-0.1777790039777756</left_val> 35500 <right_val>0.6346139907836914</right_val></_></_> 35501 <_> 35502 <!-- tree 183 --> 35503 <_> 35504 <!-- root node --> 35505 <feature> 35506 <rects> 35507 <_>0 16 24 4 -1.</_> 35508 <_>0 16 12 4 2.</_></rects> 35509 <tilted>0</tilted></feature> 35510 <threshold>0.1070580035448074</threshold> 35511 <left_val>0.1897229999303818</left_val> 35512 <right_val>-0.5123620033264160</right_val></_></_> 35513 <_> 35514 <!-- tree 184 --> 35515 <_> 35516 <!-- root node --> 35517 <feature> 35518 <rects> 35519 <_>6 20 12 3 -1.</_> 35520 <_>12 20 6 3 2.</_></rects> 35521 <tilted>0</tilted></feature> 35522 <threshold>-0.0405250005424023</threshold> 35523 <left_val>0.7061499953269959</left_val> 35524 <right_val>-0.1780329942703247</right_val></_></_> 35525 <_> 35526 <!-- tree 185 --> 35527 <_> 35528 <!-- root node --> 35529 <feature> 35530 <rects> 35531 <_>18 12 6 12 -1.</_> 35532 <_>21 12 3 6 2.</_> 35533 <_>18 18 3 6 2.</_></rects> 35534 <tilted>0</tilted></feature> 35535 <threshold>0.0319689996540546</threshold> 35536 <left_val>0.0681499987840652</left_val> 35537 <right_val>0.6873310208320618</right_val></_></_> 35538 <_> 35539 <!-- tree 186 --> 35540 <_> 35541 <!-- root node --> 35542 <feature> 35543 <rects> 35544 <_>0 12 6 12 -1.</_> 35545 <_>0 12 3 6 2.</_> 35546 <_>3 18 3 6 2.</_></rects> 35547 <tilted>0</tilted></feature> 35548 <threshold>-0.0576170012354851</threshold> 35549 <left_val>0.7517049908638001</left_val> 35550 <right_val>-0.1576499938964844</right_val></_></_> 35551 <_> 35552 <!-- tree 187 --> 35553 <_> 35554 <!-- root node --> 35555 <feature> 35556 <rects> 35557 <_>15 17 9 6 -1.</_> 35558 <_>15 19 9 2 3.</_></rects> 35559 <tilted>0</tilted></feature> 35560 <threshold>0.0135939996689558</threshold> 35561 <left_val>0.1941190063953400</left_val> 35562 <right_val>-0.2456189990043640</right_val></_></_> 35563 <_> 35564 <!-- tree 188 --> 35565 <_> 35566 <!-- root node --> 35567 <feature> 35568 <rects> 35569 <_>1 6 22 10 -1.</_> 35570 <_>1 6 11 5 2.</_> 35571 <_>12 11 11 5 2.</_></rects> 35572 <tilted>0</tilted></feature> 35573 <threshold>0.0713960006833076</threshold> 35574 <left_val>-0.0468810014426708</left_val> 35575 <right_val>-0.8819829821586609</right_val></_></_> 35576 <_> 35577 <!-- tree 189 --> 35578 <_> 35579 <!-- root node --> 35580 <feature> 35581 <rects> 35582 <_>15 17 9 6 -1.</_> 35583 <_>15 19 9 2 3.</_></rects> 35584 <tilted>0</tilted></feature> 35585 <threshold>-0.0148959998041391</threshold> 35586 <left_val>-0.4453240036964417</left_val> 35587 <right_val>0.1767989993095398</right_val></_></_> 35588 <_> 35589 <!-- tree 190 --> 35590 <_> 35591 <!-- root node --> 35592 <feature> 35593 <rects> 35594 <_>0 18 18 2 -1.</_> 35595 <_>0 19 18 1 2.</_></rects> 35596 <tilted>0</tilted></feature> 35597 <threshold>-0.0100260004401207</threshold> 35598 <left_val>0.6512269973754883</left_val> 35599 <right_val>-0.1670999974012375</right_val></_></_> 35600 <_> 35601 <!-- tree 191 --> 35602 <_> 35603 <!-- root node --> 35604 <feature> 35605 <rects> 35606 <_>3 15 19 3 -1.</_> 35607 <_>3 16 19 1 3.</_></rects> 35608 <tilted>0</tilted></feature> 35609 <threshold>3.7589999847114086e-003</threshold> 35610 <left_val>-0.0583010017871857</left_val> 35611 <right_val>0.3448329865932465</right_val></_></_> 35612 <_> 35613 <!-- tree 192 --> 35614 <_> 35615 <!-- root node --> 35616 <feature> 35617 <rects> 35618 <_>0 13 18 3 -1.</_> 35619 <_>0 14 18 1 3.</_></rects> 35620 <tilted>0</tilted></feature> 35621 <threshold>0.0162630006670952</threshold> 35622 <left_val>-0.1558150053024292</left_val> 35623 <right_val>0.8643270134925842</right_val></_></_> 35624 <_> 35625 <!-- tree 193 --> 35626 <_> 35627 <!-- root node --> 35628 <feature> 35629 <rects> 35630 <_>15 17 9 6 -1.</_> 35631 <_>15 19 9 2 3.</_></rects> 35632 <tilted>0</tilted></feature> 35633 <threshold>-0.0401760004460812</threshold> 35634 <left_val>-0.6102859973907471</left_val> 35635 <right_val>0.1179639995098114</right_val></_></_> 35636 <_> 35637 <!-- tree 194 --> 35638 <_> 35639 <!-- root node --> 35640 <feature> 35641 <rects> 35642 <_>0 17 9 6 -1.</_> 35643 <_>0 19 9 2 3.</_></rects> 35644 <tilted>0</tilted></feature> 35645 <threshold>0.0270809996873140</threshold> 35646 <left_val>-0.0496019981801510</left_val> 35647 <right_val>-0.8999000191688538</right_val></_></_> 35648 <_> 35649 <!-- tree 195 --> 35650 <_> 35651 <!-- root node --> 35652 <feature> 35653 <rects> 35654 <_>12 17 9 6 -1.</_> 35655 <_>12 19 9 2 3.</_></rects> 35656 <tilted>0</tilted></feature> 35657 <threshold>0.0524200014770031</threshold> 35658 <left_val>0.1129719987511635</left_val> 35659 <right_val>-1.0833640098571777</right_val></_></_> 35660 <_> 35661 <!-- tree 196 --> 35662 <_> 35663 <!-- root node --> 35664 <feature> 35665 <rects> 35666 <_>3 17 9 6 -1.</_> 35667 <_>3 19 9 2 3.</_></rects> 35668 <tilted>0</tilted></feature> 35669 <threshold>-0.0191600006073713</threshold> 35670 <left_val>-0.7988010048866272</left_val> 35671 <right_val>-0.0340790003538132</right_val></_></_> 35672 <_> 35673 <!-- tree 197 --> 35674 <_> 35675 <!-- root node --> 35676 <feature> 35677 <rects> 35678 <_>16 2 3 20 -1.</_> 35679 <_>17 2 1 20 3.</_></rects> 35680 <tilted>0</tilted></feature> 35681 <threshold>-3.7730000913143158e-003</threshold> 35682 <left_val>-0.1912409961223602</left_val> 35683 <right_val>0.2153519988059998</right_val></_></_> 35684 <_> 35685 <!-- tree 198 --> 35686 <_> 35687 <!-- root node --> 35688 <feature> 35689 <rects> 35690 <_>0 13 24 8 -1.</_> 35691 <_>0 17 24 4 2.</_></rects> 35692 <tilted>0</tilted></feature> 35693 <threshold>0.0757620036602020</threshold> 35694 <left_val>-0.1342169940471649</left_val> 35695 <right_val>1.6807060241699219</right_val></_></_> 35696 <_> 35697 <!-- tree 199 --> 35698 <_> 35699 <!-- root node --> 35700 <feature> 35701 <rects> 35702 <_>9 1 6 22 -1.</_> 35703 <_>12 1 3 11 2.</_> 35704 <_>9 12 3 11 2.</_></rects> 35705 <tilted>0</tilted></feature> 35706 <threshold>-0.0221730004996061</threshold> 35707 <left_val>0.4860099852085114</left_val> 35708 <right_val>3.6160000599920750e-003</right_val></_></_></trees> 35709 <stage_threshold>-2.9928278923034668</stage_threshold> 35710 <parent>23</parent> 35711 <next>-1</next></_></stages></haarcascade_frontalface_default> 35712 </opencv_storage> 35713