1 <?xml version="1.0"?> 2 <!-- 3 19x23 lowerbody detector (see the detailed description below). 4 5 ////////////////////////////////////////////////////////////////////////// 6 | Contributors License Agreement 7 | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 8 | By downloading, copying, installing or using the software you agree 9 | to this license. 10 | If you do not agree to this license, do not download, install, 11 | copy or use the software. 12 | 13 | Copyright (c) 2004, Hannes Kruppa and Bernt Schiele (ETH Zurich, Switzerland). 14 | All rights reserved. 15 | 16 | Redistribution and use in source and binary forms, with or without 17 | modification, are permitted provided that the following conditions are 18 | met: 19 | 20 | * Redistributions of source code must retain the above copyright 21 | notice, this list of conditions and the following disclaimer. 22 | * Redistributions in binary form must reproduce the above 23 | copyright notice, this list of conditions and the following 24 | disclaimer in the documentation and/or other materials provided 25 | with the distribution. 26 | * The name of Contributor may not used to endorse or promote products 27 | derived from this software without specific prior written permission. 28 | 29 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 33 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 34 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 35 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 36 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 37 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 38 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 39 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to 40 | Top 41 ////////////////////////////////////////////////////////////////////////// 42 43 "Haar"-based Detectors For Pedestrian Detection 44 =============================================== 45 by Hannes Kruppa and Bernt Schiele, ETH Zurich, Switzerland 46 47 This archive provides the following three detectors: 48 - upper body detector (most fun, useful in many scenarios!) 49 - lower body detector 50 - full body detector 51 52 These detectors have been successfully applied to pedestrian detection 53 in still images. They can be directly passed as parameters to the 54 program HaarFaceDetect. 55 NOTE: These detectors deal with frontal and backside views but not 56 with side views (also see "Known limitations" below). 57 58 RESEARCHERS: 59 If you are using any of the detectors or involved ideas please cite 60 this paper (available at www.vision.ethz.ch/publications/): 61 62 @InProceedings{Kruppa03-bmvc, 63 author = "Hannes Kruppa, Modesto Castrillon-Santana and Bernt Schiele", 64 title = "Fast and Robust Face Finding via Local Context." 65 booktitle = "Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance" 66 year = "2003", 67 month = "October" 68 } 69 70 COMMERCIAL: 71 If you have any commercial interest in this work please contact 72 hkruppa (a] inf.ethz.ch 73 74 75 ADDITIONAL INFORMATION 76 ====================== 77 Check out the demo movie, e.g. using mplayer or any (Windows/Linux-) player 78 that can play back .mpg movies. 79 Under Linux that's: 80 > ffplay demo.mpg 81 or: 82 > mplayer demo.mpg 83 84 The movie shows a person walking towards the camera in a realistic 85 indoor setting. Using ffplay or mplayer you can pause and continue the 86 movie by pressing the space bar. 87 88 Detections coming from the different detectors are visualized using 89 different line styles: 90 upper body : dotted line 91 lower body : dashed line 92 full body : solid line 93 94 You will notice that successful detections containing the target do 95 not sit tightly on the body but also include some of the background 96 left and right. This is not a bug but accurately reflects the 97 employed training data which also includes portions of the background 98 to ensure proper silhouette representation. If you want to get a 99 feeling for the training data check out the CBCL data set: 100 http://www.ai.mit.edu/projects/cbcl/software-datasets/PedestrianData.html 101 102 There is also a small number of false alarms in this sequence. 103 NOTE: This is per frame detection, not tracking (which is also one of 104 the reasons why it is not mislead by the person's shadow on the back 105 wall). 106 107 On an Intel Xeon 1.7GHz machine the detectors operate at something 108 between 6Hz to 14 Hz (on 352 x 288 frames per second) depending on the 109 detector. The detectors work as well on much lower image resolutions 110 which is always an interesting possibility for speed-ups or 111 "coarse-to-fine" search strategies. 112 113 Additional information e.g. on training parameters, detector 114 combination, detecting other types of objects (e.g. cars) etc. is 115 available in my PhD thesis report (available end of June). Check out 116 www.vision.ethz.ch/kruppa/ 117 118 119 KNOWN LIMITATIONS 120 ================= 121 1) the detectors only support frontal and back views but not sideviews. 122 Sideviews are trickier and it makes a lot of sense to include additional 123 modalities for their detection, e.g. motion information. I recommend 124 Viola and Jones' ICCV 2003 paper if this further interests you. 125 126 2) dont expect these detectors to be as accurate as a frontal face detector. 127 A frontal face as a pattern is pretty distinct with respect to other 128 patterns occuring in the world (i.e. image "background"). This is not so 129 for upper, lower and especially full bodies, because they have to rely 130 on fragile silhouette information rather than internal (facial) features. 131 Still, we found especially the upper body detector to perform amazingly well. 132 In contrast to a face detector these detectors will also work at very low 133 image resolutions 134 135 Acknowledgements 136 ================ 137 Thanks to Martin Spengler, ETH Zurich, for providing the demo movie. 138 --> 139 <opencv_storage> 140 <haarcascade_lowerbody type_id="opencv-haar-classifier"> 141 <size>19 23</size> 142 <stages> 143 <_> 144 <!-- stage 0 --> 145 <trees> 146 <_> 147 <!-- tree 0 --> 148 <_> 149 <!-- root node --> 150 <feature> 151 <rects> 152 <_>3 4 12 16 -1.</_> 153 <_>7 4 4 16 3.</_></rects> 154 <tilted>0</tilted></feature> 155 <threshold>-0.0168698690831661</threshold> 156 <left_val>0.5465741753578186</left_val> 157 <right_val>-0.6367803812026978</right_val></_></_> 158 <_> 159 <!-- tree 1 --> 160 <_> 161 <!-- root node --> 162 <feature> 163 <rects> 164 <_>11 0 2 20 -1.</_> 165 <_>11 10 2 10 2.</_></rects> 166 <tilted>0</tilted></feature> 167 <threshold>2.5349899660795927e-003</threshold> 168 <left_val>-0.3760549128055573</left_val> 169 <right_val>0.3237810134887695</right_val></_></_> 170 <_> 171 <!-- tree 2 --> 172 <_> 173 <!-- root node --> 174 <feature> 175 <rects> 176 <_>4 1 4 22 -1.</_> 177 <_>4 12 4 11 2.</_></rects> 178 <tilted>0</tilted></feature> 179 <threshold>-0.0247094593942165</threshold> 180 <left_val>-0.6797912716865540</left_val> 181 <right_val>0.2050105929374695</right_val></_></_> 182 <_> 183 <!-- tree 3 --> 184 <_> 185 <!-- root node --> 186 <feature> 187 <rects> 188 <_>9 8 7 12 -1.</_> 189 <_>9 14 7 6 2.</_></rects> 190 <tilted>0</tilted></feature> 191 <threshold>0.0824368596076965</threshold> 192 <left_val>0.2058863937854767</left_val> 193 <right_val>-0.8493843078613281</right_val></_></_> 194 <_> 195 <!-- tree 4 --> 196 <_> 197 <!-- root node --> 198 <feature> 199 <rects> 200 <_>6 0 6 10 -1.</_> 201 <_>6 0 3 5 2.</_> 202 <_>9 5 3 5 2.</_></rects> 203 <tilted>0</tilted></feature> 204 <threshold>-8.2128931535407901e-004</threshold> 205 <left_val>0.3189192116260529</left_val> 206 <right_val>-0.4646945893764496</right_val></_></_> 207 <_> 208 <!-- tree 5 --> 209 <_> 210 <!-- root node --> 211 <feature> 212 <rects> 213 <_>1 18 18 5 -1.</_> 214 <_>1 18 9 5 2.</_></rects> 215 <tilted>0</tilted></feature> 216 <threshold>0.0230169594287872</threshold> 217 <left_val>0.1867029964923859</left_val> 218 <right_val>-0.7033089995384216</right_val></_></_> 219 <_> 220 <!-- tree 6 --> 221 <_> 222 <!-- root node --> 223 <feature> 224 <rects> 225 <_>4 20 10 3 -1.</_> 226 <_>9 20 5 3 2.</_></rects> 227 <tilted>0</tilted></feature> 228 <threshold>6.6386149264872074e-003</threshold> 229 <left_val>0.1637049019336700</left_val> 230 <right_val>-0.8460472226142883</right_val></_></_> 231 <_> 232 <!-- tree 7 --> 233 <_> 234 <!-- root node --> 235 <feature> 236 <rects> 237 <_>6 17 10 6 -1.</_> 238 <_>6 20 10 3 2.</_></rects> 239 <tilted>0</tilted></feature> 240 <threshold>7.6682120561599731e-004</threshold> 241 <left_val>-0.3985269069671631</left_val> 242 <right_val>0.2311332970857620</right_val></_></_> 243 <_> 244 <!-- tree 8 --> 245 <_> 246 <!-- root node --> 247 <feature> 248 <rects> 249 <_>0 0 4 20 -1.</_> 250 <_>0 10 4 10 2.</_></rects> 251 <tilted>0</tilted></feature> 252 <threshold>0.1173167973756790</threshold> 253 <left_val>0.1044503971934319</left_val> 254 <right_val>-0.8851094245910645</right_val></_></_> 255 <_> 256 <!-- tree 9 --> 257 <_> 258 <!-- root node --> 259 <feature> 260 <rects> 261 <_>3 0 16 14 -1.</_> 262 <_>3 7 16 7 2.</_></rects> 263 <tilted>0</tilted></feature> 264 <threshold>0.0154212303459644</threshold> 265 <left_val>-0.2785950899124146</left_val> 266 <right_val>0.2892192006111145</right_val></_></_> 267 <_> 268 <!-- tree 10 --> 269 <_> 270 <!-- root node --> 271 <feature> 272 <rects> 273 <_>5 1 4 13 -1.</_> 274 <_>7 1 2 13 2.</_></rects> 275 <tilted>0</tilted></feature> 276 <threshold>0.0340189486742020</threshold> 277 <left_val>-0.1428766995668411</left_val> 278 <right_val>0.7780153155326843</right_val></_></_> 279 <_> 280 <!-- tree 11 --> 281 <_> 282 <!-- root node --> 283 <feature> 284 <rects> 285 <_>1 8 18 12 -1.</_> 286 <_>10 8 9 6 2.</_> 287 <_>1 14 9 6 2.</_></rects> 288 <tilted>0</tilted></feature> 289 <threshold>0.0346388705074787</threshold> 290 <left_val>0.1864407956600189</left_val> 291 <right_val>-0.6032484173774719</right_val></_></_> 292 <_> 293 <!-- tree 12 --> 294 <_> 295 <!-- root node --> 296 <feature> 297 <rects> 298 <_>2 0 15 21 -1.</_> 299 <_>7 0 5 21 3.</_></rects> 300 <tilted>0</tilted></feature> 301 <threshold>-0.3750365972518921</threshold> 302 <left_val>0.9278184175491333</left_val> 303 <right_val>-0.1542160063982010</right_val></_></_> 304 <_> 305 <!-- tree 13 --> 306 <_> 307 <!-- root node --> 308 <feature> 309 <rects> 310 <_>1 5 18 18 -1.</_> 311 <_>10 5 9 9 2.</_> 312 <_>1 14 9 9 2.</_></rects> 313 <tilted>0</tilted></feature> 314 <threshold>-0.0560119710862637</threshold> 315 <left_val>-0.5859106779098511</left_val> 316 <right_val>0.1954751014709473</right_val></_></_> 317 <_> 318 <!-- tree 14 --> 319 <_> 320 <!-- root node --> 321 <feature> 322 <rects> 323 <_>2 19 15 3 -1.</_> 324 <_>7 19 5 3 3.</_></rects> 325 <tilted>0</tilted></feature> 326 <threshold>-1.4878909569233656e-003</threshold> 327 <left_val>0.2813934981822968</left_val> 328 <right_val>-0.4185301065444946</right_val></_></_> 329 <_> 330 <!-- tree 15 --> 331 <_> 332 <!-- root node --> 333 <feature> 334 <rects> 335 <_>7 20 12 3 -1.</_> 336 <_>7 20 6 3 2.</_></rects> 337 <tilted>0</tilted></feature> 338 <threshold>-0.0144956996664405</threshold> 339 <left_val>-0.7227396965026856</left_val> 340 <right_val>0.0942884609103203</right_val></_></_> 341 <_> 342 <!-- tree 16 --> 343 <_> 344 <!-- root node --> 345 <feature> 346 <rects> 347 <_>1 21 14 2 -1.</_> 348 <_>8 21 7 2 2.</_></rects> 349 <tilted>0</tilted></feature> 350 <threshold>-5.6178281083703041e-003</threshold> 351 <left_val>-0.5955196022987366</left_val> 352 <right_val>0.1520265042781830</right_val></_></_></trees> 353 <stage_threshold>-1.4308550357818604</stage_threshold> 354 <parent>-1</parent> 355 <next>-1</next></_> 356 <_> 357 <!-- stage 1 --> 358 <trees> 359 <_> 360 <!-- tree 0 --> 361 <_> 362 <!-- root node --> 363 <feature> 364 <rects> 365 <_>0 16 18 6 -1.</_> 366 <_>6 16 6 6 3.</_></rects> 367 <tilted>0</tilted></feature> 368 <threshold>-3.1839120201766491e-003</threshold> 369 <left_val>0.4002513885498047</left_val> 370 <right_val>-0.6847316026687622</right_val></_></_> 371 <_> 372 <!-- tree 1 --> 373 <_> 374 <!-- root node --> 375 <feature> 376 <rects> 377 <_>8 3 4 20 -1.</_> 378 <_>8 13 4 10 2.</_></rects> 379 <tilted>0</tilted></feature> 380 <threshold>3.5989920143038034e-003</threshold> 381 <left_val>-0.5189595222473145</left_val> 382 <right_val>0.3010114133358002</right_val></_></_> 383 <_> 384 <!-- tree 2 --> 385 <_> 386 <!-- root node --> 387 <feature> 388 <rects> 389 <_>0 19 18 3 -1.</_> 390 <_>9 19 9 3 2.</_></rects> 391 <tilted>0</tilted></feature> 392 <threshold>0.0188046302646399</threshold> 393 <left_val>0.1555491983890533</left_val> 394 <right_val>-0.8047717213630676</right_val></_></_> 395 <_> 396 <!-- tree 3 --> 397 <_> 398 <!-- root node --> 399 <feature> 400 <rects> 401 <_>5 21 14 2 -1.</_> 402 <_>5 21 7 2 2.</_></rects> 403 <tilted>0</tilted></feature> 404 <threshold>5.2497140131890774e-003</threshold> 405 <left_val>0.1378080993890762</left_val> 406 <right_val>-0.6076750755310059</right_val></_></_> 407 <_> 408 <!-- tree 4 --> 409 <_> 410 <!-- root node --> 411 <feature> 412 <rects> 413 <_>2 0 9 5 -1.</_> 414 <_>5 0 3 5 3.</_></rects> 415 <tilted>0</tilted></feature> 416 <threshold>-1.4204799663275480e-003</threshold> 417 <left_val>0.3231942951679230</left_val> 418 <right_val>-0.4340746104717255</right_val></_></_> 419 <_> 420 <!-- tree 5 --> 421 <_> 422 <!-- root node --> 423 <feature> 424 <rects> 425 <_>3 20 15 3 -1.</_> 426 <_>8 20 5 3 3.</_></rects> 427 <tilted>0</tilted></feature> 428 <threshold>-0.0251743495464325</threshold> 429 <left_val>-0.7078087925910950</left_val> 430 <right_val>0.0931063294410706</right_val></_></_> 431 <_> 432 <!-- tree 6 --> 433 <_> 434 <!-- root node --> 435 <feature> 436 <rects> 437 <_>3 9 6 14 -1.</_> 438 <_>5 9 2 14 3.</_></rects> 439 <tilted>0</tilted></feature> 440 <threshold>3.2285219058394432e-003</threshold> 441 <left_val>-0.3251047134399414</left_val> 442 <right_val>0.3357169926166534</right_val></_></_> 443 <_> 444 <!-- tree 7 --> 445 <_> 446 <!-- root node --> 447 <feature> 448 <rects> 449 <_>12 3 3 18 -1.</_> 450 <_>12 12 3 9 2.</_></rects> 451 <tilted>0</tilted></feature> 452 <threshold>0.0949934124946594</threshold> 453 <left_val>0.0824390873312950</left_val> 454 <right_val>-0.8754953742027283</right_val></_></_> 455 <_> 456 <!-- tree 8 --> 457 <_> 458 <!-- root node --> 459 <feature> 460 <rects> 461 <_>1 14 4 9 -1.</_> 462 <_>3 14 2 9 2.</_></rects> 463 <tilted>0</tilted></feature> 464 <threshold>-6.5919090993702412e-003</threshold> 465 <left_val>-0.7380419969558716</left_val> 466 <right_val>0.1385374963283539</right_val></_></_> 467 <_> 468 <!-- tree 9 --> 469 <_> 470 <!-- root node --> 471 <feature> 472 <rects> 473 <_>7 15 11 8 -1.</_> 474 <_>7 17 11 4 2.</_></rects> 475 <tilted>0</tilted></feature> 476 <threshold>-1.1146620381623507e-003</threshold> 477 <left_val>0.1791726946830750</left_val> 478 <right_val>-0.2795585989952087</right_val></_></_> 479 <_> 480 <!-- tree 10 --> 481 <_> 482 <!-- root node --> 483 <feature> 484 <rects> 485 <_>0 7 6 10 -1.</_> 486 <_>0 7 3 5 2.</_> 487 <_>3 12 3 5 2.</_></rects> 488 <tilted>0</tilted></feature> 489 <threshold>0.0133490199223161</threshold> 490 <left_val>0.1305782943964005</left_val> 491 <right_val>-0.6980267167091370</right_val></_></_> 492 <_> 493 <!-- tree 11 --> 494 <_> 495 <!-- root node --> 496 <feature> 497 <rects> 498 <_>10 6 4 13 -1.</_> 499 <_>10 6 2 13 2.</_></rects> 500 <tilted>0</tilted></feature> 501 <threshold>-0.0351814515888691</threshold> 502 <left_val>0.4653536081314087</left_val> 503 <right_val>-0.1069877967238426</right_val></_></_> 504 <_> 505 <!-- tree 12 --> 506 <_> 507 <!-- root node --> 508 <feature> 509 <rects> 510 <_>5 6 4 13 -1.</_> 511 <_>7 6 2 13 2.</_></rects> 512 <tilted>0</tilted></feature> 513 <threshold>0.0318745896220207</threshold> 514 <left_val>-0.1356538981199265</left_val> 515 <right_val>0.7904788851737976</right_val></_></_></trees> 516 <stage_threshold>-1.1907930374145508</stage_threshold> 517 <parent>0</parent> 518 <next>-1</next></_> 519 <_> 520 <!-- stage 2 --> 521 <trees> 522 <_> 523 <!-- tree 0 --> 524 <_> 525 <!-- root node --> 526 <feature> 527 <rects> 528 <_>8 2 6 8 -1.</_> 529 <_>8 2 6 4 2.</_></rects> 530 <tilted>1</tilted></feature> 531 <threshold>-0.0106474300846457</threshold> 532 <left_val>0.3807902932167053</left_val> 533 <right_val>-0.5867233872413635</right_val></_></_> 534 <_> 535 <!-- tree 1 --> 536 <_> 537 <!-- root node --> 538 <feature> 539 <rects> 540 <_>0 11 19 12 -1.</_> 541 <_>0 17 19 6 2.</_></rects> 542 <tilted>0</tilted></feature> 543 <threshold>-0.0732144936919212</threshold> 544 <left_val>-0.7955095171928406</left_val> 545 <right_val>0.1722325980663300</right_val></_></_> 546 <_> 547 <!-- tree 2 --> 548 <_> 549 <!-- root node --> 550 <feature> 551 <rects> 552 <_>0 18 6 5 -1.</_> 553 <_>3 18 3 5 2.</_></rects> 554 <tilted>0</tilted></feature> 555 <threshold>6.0464427806437016e-003</threshold> 556 <left_val>0.1653216034173966</left_val> 557 <right_val>-0.6937664747238159</right_val></_></_> 558 <_> 559 <!-- tree 3 --> 560 <_> 561 <!-- root node --> 562 <feature> 563 <rects> 564 <_>9 17 9 6 -1.</_> 565 <_>12 17 3 6 3.</_></rects> 566 <tilted>0</tilted></feature> 567 <threshold>7.3225022060796618e-004</threshold> 568 <left_val>-0.3324716091156006</left_val> 569 <right_val>0.2366997003555298</right_val></_></_> 570 <_> 571 <!-- tree 4 --> 572 <_> 573 <!-- root node --> 574 <feature> 575 <rects> 576 <_>0 20 15 3 -1.</_> 577 <_>5 20 5 3 3.</_></rects> 578 <tilted>0</tilted></feature> 579 <threshold>-0.0109900804236531</threshold> 580 <left_val>-0.6913688778877258</left_val> 581 <right_val>0.2105827033519745</right_val></_></_> 582 <_> 583 <!-- tree 5 --> 584 <_> 585 <!-- root node --> 586 <feature> 587 <rects> 588 <_>9 19 8 4 -1.</_> 589 <_>9 19 4 4 2.</_></rects> 590 <tilted>0</tilted></feature> 591 <threshold>-1.5282750246115029e-004</threshold> 592 <left_val>0.2030584961175919</left_val> 593 <right_val>-0.4655165970325470</right_val></_></_> 594 <_> 595 <!-- tree 6 --> 596 <_> 597 <!-- root node --> 598 <feature> 599 <rects> 600 <_>0 17 9 6 -1.</_> 601 <_>3 17 3 6 3.</_></rects> 602 <tilted>0</tilted></feature> 603 <threshold>2.4822261184453964e-004</threshold> 604 <left_val>-0.4212292134761810</left_val> 605 <right_val>0.2733530998229981</right_val></_></_> 606 <_> 607 <!-- tree 7 --> 608 <_> 609 <!-- root node --> 610 <feature> 611 <rects> 612 <_>14 17 5 6 -1.</_> 613 <_>14 20 5 3 2.</_></rects> 614 <tilted>0</tilted></feature> 615 <threshold>-8.4205856546759605e-003</threshold> 616 <left_val>-0.4374446868896484</left_val> 617 <right_val>0.0588318482041359</right_val></_></_> 618 <_> 619 <!-- tree 8 --> 620 <_> 621 <!-- root node --> 622 <feature> 623 <rects> 624 <_>2 2 15 14 -1.</_> 625 <_>7 2 5 14 3.</_></rects> 626 <tilted>0</tilted></feature> 627 <threshold>-0.3699279129505158</threshold> 628 <left_val>0.9107081890106201</left_val> 629 <right_val>-0.0872075408697128</right_val></_></_> 630 <_> 631 <!-- tree 9 --> 632 <_> 633 <!-- root node --> 634 <feature> 635 <rects> 636 <_>14 17 5 6 -1.</_> 637 <_>14 20 5 3 2.</_></rects> 638 <tilted>0</tilted></feature> 639 <threshold>6.1259930953383446e-003</threshold> 640 <left_val>0.1188673004508019</left_val> 641 <right_val>-0.1852017045021057</right_val></_></_> 642 <_> 643 <!-- tree 10 --> 644 <_> 645 <!-- root node --> 646 <feature> 647 <rects> 648 <_>0 17 5 6 -1.</_> 649 <_>0 20 5 3 2.</_></rects> 650 <tilted>0</tilted></feature> 651 <threshold>-6.0144090093672276e-003</threshold> 652 <left_val>-0.6305705904960632</left_val> 653 <right_val>0.1457718014717102</right_val></_></_> 654 <_> 655 <!-- tree 11 --> 656 <_> 657 <!-- root node --> 658 <feature> 659 <rects> 660 <_>3 0 13 8 -1.</_> 661 <_>3 4 13 4 2.</_></rects> 662 <tilted>0</tilted></feature> 663 <threshold>8.5623031482100487e-003</threshold> 664 <left_val>-0.2936938107013702</left_val> 665 <right_val>0.3241134881973267</right_val></_></_> 666 <_> 667 <!-- tree 12 --> 668 <_> 669 <!-- root node --> 670 <feature> 671 <rects> 672 <_>0 21 14 2 -1.</_> 673 <_>7 21 7 2 2.</_></rects> 674 <tilted>0</tilted></feature> 675 <threshold>-0.0139668500050902</threshold> 676 <left_val>-0.8065037131309509</left_val> 677 <right_val>0.1126779019832611</right_val></_></_> 678 <_> 679 <!-- tree 13 --> 680 <_> 681 <!-- root node --> 682 <feature> 683 <rects> 684 <_>8 4 4 15 -1.</_> 685 <_>9 4 2 15 2.</_></rects> 686 <tilted>0</tilted></feature> 687 <threshold>-0.0417344681918621</threshold> 688 <left_val>0.7749533057212830</left_val> 689 <right_val>-0.0788663029670715</right_val></_></_> 690 <_> 691 <!-- tree 14 --> 692 <_> 693 <!-- root node --> 694 <feature> 695 <rects> 696 <_>1 18 8 5 -1.</_> 697 <_>5 18 4 5 2.</_></rects> 698 <tilted>0</tilted></feature> 699 <threshold>-2.7996799326501787e-004</threshold> 700 <left_val>0.2778331041336060</left_val> 701 <right_val>-0.3519608974456787</right_val></_></_> 702 <_> 703 <!-- tree 15 --> 704 <_> 705 <!-- root node --> 706 <feature> 707 <rects> 708 <_>8 4 4 15 -1.</_> 709 <_>9 4 2 15 2.</_></rects> 710 <tilted>0</tilted></feature> 711 <threshold>0.0195885691791773</threshold> 712 <left_val>-0.0657596364617348</left_val> 713 <right_val>0.5241413712501526</right_val></_></_> 714 <_> 715 <!-- tree 16 --> 716 <_> 717 <!-- root node --> 718 <feature> 719 <rects> 720 <_>7 4 4 15 -1.</_> 721 <_>8 4 2 15 2.</_></rects> 722 <tilted>0</tilted></feature> 723 <threshold>9.2163113877177238e-003</threshold> 724 <left_val>-0.1552547961473465</left_val> 725 <right_val>0.5483539104461670</right_val></_></_> 726 <_> 727 <!-- tree 17 --> 728 <_> 729 <!-- root node --> 730 <feature> 731 <rects> 732 <_>11 11 8 8 -1.</_> 733 <_>15 11 4 4 2.</_> 734 <_>11 15 4 4 2.</_></rects> 735 <tilted>0</tilted></feature> 736 <threshold>-0.0214585699141026</threshold> 737 <left_val>-0.5225530862808228</left_val> 738 <right_val>0.0822082683444023</right_val></_></_> 739 <_> 740 <!-- tree 18 --> 741 <_> 742 <!-- root node --> 743 <feature> 744 <rects> 745 <_>4 13 6 7 -1.</_> 746 <_>6 13 2 7 3.</_></rects> 747 <tilted>0</tilted></feature> 748 <threshold>3.6805770359933376e-003</threshold> 749 <left_val>-0.2443412989377976</left_val> 750 <right_val>0.3612248897552490</right_val></_></_></trees> 751 <stage_threshold>-1.3129220008850098</stage_threshold> 752 <parent>1</parent> 753 <next>-1</next></_> 754 <_> 755 <!-- stage 3 --> 756 <trees> 757 <_> 758 <!-- tree 0 --> 759 <_> 760 <!-- root node --> 761 <feature> 762 <rects> 763 <_>3 1 8 13 -1.</_> 764 <_>7 1 4 13 2.</_></rects> 765 <tilted>0</tilted></feature> 766 <threshold>-8.3544738590717316e-003</threshold> 767 <left_val>0.2817318141460419</left_val> 768 <right_val>-0.4972813129425049</right_val></_></_> 769 <_> 770 <!-- tree 1 --> 771 <_> 772 <!-- root node --> 773 <feature> 774 <rects> 775 <_>5 21 14 2 -1.</_> 776 <_>5 21 7 2 2.</_></rects> 777 <tilted>0</tilted></feature> 778 <threshold>-5.5724289268255234e-003</threshold> 779 <left_val>-0.6550530195236206</left_val> 780 <right_val>0.1940605938434601</right_val></_></_> 781 <_> 782 <!-- tree 2 --> 783 <_> 784 <!-- root node --> 785 <feature> 786 <rects> 787 <_>0 21 18 2 -1.</_> 788 <_>9 21 9 2 2.</_></rects> 789 <tilted>0</tilted></feature> 790 <threshold>-5.7714767754077911e-003</threshold> 791 <left_val>-0.6223093867301941</left_val> 792 <right_val>0.2762239873409271</right_val></_></_> 793 <_> 794 <!-- tree 3 --> 795 <_> 796 <!-- root node --> 797 <feature> 798 <rects> 799 <_>7 18 8 5 -1.</_> 800 <_>7 18 4 5 2.</_></rects> 801 <tilted>0</tilted></feature> 802 <threshold>0.0229958891868591</threshold> 803 <left_val>0.0197985693812370</left_val> 804 <right_val>-0.7832453846931458</right_val></_></_> 805 <_> 806 <!-- tree 4 --> 807 <_> 808 <!-- root node --> 809 <feature> 810 <rects> 811 <_>4 17 8 6 -1.</_> 812 <_>8 17 4 6 2.</_></rects> 813 <tilted>0</tilted></feature> 814 <threshold>-1.1443760013207793e-003</threshold> 815 <left_val>0.2810871899127960</left_val> 816 <right_val>-0.4821484982967377</right_val></_></_> 817 <_> 818 <!-- tree 5 --> 819 <_> 820 <!-- root node --> 821 <feature> 822 <rects> 823 <_>10 2 7 10 -1.</_> 824 <_>10 2 7 5 2.</_></rects> 825 <tilted>1</tilted></feature> 826 <threshold>-0.2591750919818878</threshold> 827 <left_val>-0.6821495890617371</left_val> 828 <right_val>-3.3729869755916297e-004</right_val></_></_> 829 <_> 830 <!-- tree 6 --> 831 <_> 832 <!-- root node --> 833 <feature> 834 <rects> 835 <_>2 9 2 14 -1.</_> 836 <_>3 9 1 14 2.</_></rects> 837 <tilted>0</tilted></feature> 838 <threshold>-3.0133039690554142e-003</threshold> 839 <left_val>-0.6570441126823425</left_val> 840 <right_val>0.1369359940290451</right_val></_></_> 841 <_> 842 <!-- tree 7 --> 843 <_> 844 <!-- root node --> 845 <feature> 846 <rects> 847 <_>15 7 2 16 -1.</_> 848 <_>15 7 1 16 2.</_></rects> 849 <tilted>0</tilted></feature> 850 <threshold>5.4540671408176422e-003</threshold> 851 <left_val>0.0869318172335625</left_val> 852 <right_val>-0.7056797146797180</right_val></_></_> 853 <_> 854 <!-- tree 8 --> 855 <_> 856 <!-- root node --> 857 <feature> 858 <rects> 859 <_>1 8 4 15 -1.</_> 860 <_>3 8 2 15 2.</_></rects> 861 <tilted>0</tilted></feature> 862 <threshold>6.6230311058461666e-003</threshold> 863 <left_val>0.1663428992033005</left_val> 864 <right_val>-0.5177295804023743</right_val></_></_> 865 <_> 866 <!-- tree 9 --> 867 <_> 868 <!-- root node --> 869 <feature> 870 <rects> 871 <_>14 0 3 14 -1.</_> 872 <_>14 0 3 7 2.</_></rects> 873 <tilted>1</tilted></feature> 874 <threshold>-0.0125616695731878</threshold> 875 <left_val>0.0902904719114304</left_val> 876 <right_val>-0.1685097068548203</right_val></_></_> 877 <_> 878 <!-- tree 10 --> 879 <_> 880 <!-- root node --> 881 <feature> 882 <rects> 883 <_>9 6 8 9 -1.</_> 884 <_>9 6 4 9 2.</_></rects> 885 <tilted>1</tilted></feature> 886 <threshold>0.0428907386958599</threshold> 887 <left_val>0.1297781020402908</left_val> 888 <right_val>-0.5821806192398071</right_val></_></_> 889 <_> 890 <!-- tree 11 --> 891 <_> 892 <!-- root node --> 893 <feature> 894 <rects> 895 <_>8 15 11 8 -1.</_> 896 <_>8 17 11 4 2.</_></rects> 897 <tilted>0</tilted></feature> 898 <threshold>-1.3341030571609735e-003</threshold> 899 <left_val>0.1369432955980301</left_val> 900 <right_val>-0.1943780928850174</right_val></_></_> 901 <_> 902 <!-- tree 12 --> 903 <_> 904 <!-- root node --> 905 <feature> 906 <rects> 907 <_>5 7 4 10 -1.</_> 908 <_>7 7 2 10 2.</_></rects> 909 <tilted>0</tilted></feature> 910 <threshold>-0.0412474609911442</threshold> 911 <left_val>0.6854385137557983</left_val> 912 <right_val>-0.1303945034742355</right_val></_></_> 913 <_> 914 <!-- tree 13 --> 915 <_> 916 <!-- root node --> 917 <feature> 918 <rects> 919 <_>10 15 9 8 -1.</_> 920 <_>10 17 9 4 2.</_></rects> 921 <tilted>0</tilted></feature> 922 <threshold>-9.1503392904996872e-003</threshold> 923 <left_val>-0.1189543008804321</left_val> 924 <right_val>0.0675766989588737</right_val></_></_> 925 <_> 926 <!-- tree 14 --> 927 <_> 928 <!-- root node --> 929 <feature> 930 <rects> 931 <_>0 15 9 8 -1.</_> 932 <_>0 17 9 4 2.</_></rects> 933 <tilted>0</tilted></feature> 934 <threshold>-1.7151240026578307e-003</threshold> 935 <left_val>0.2647553980350494</left_val> 936 <right_val>-0.3048745095729828</right_val></_></_> 937 <_> 938 <!-- tree 15 --> 939 <_> 940 <!-- root node --> 941 <feature> 942 <rects> 943 <_>2 1 17 18 -1.</_> 944 <_>2 10 17 9 2.</_></rects> 945 <tilted>0</tilted></feature> 946 <threshold>0.2084320038557053</threshold> 947 <left_val>0.1240148991346359</left_val> 948 <right_val>-0.4701411128044128</right_val></_></_> 949 <_> 950 <!-- tree 16 --> 951 <_> 952 <!-- root node --> 953 <feature> 954 <rects> 955 <_>2 0 16 2 -1.</_> 956 <_>2 0 8 2 2.</_></rects> 957 <tilted>1</tilted></feature> 958 <threshold>0.0723939687013626</threshold> 959 <left_val>0.0969243794679642</left_val> 960 <right_val>-0.7734774947166443</right_val></_></_> 961 <_> 962 <!-- tree 17 --> 963 <_> 964 <!-- root node --> 965 <feature> 966 <rects> 967 <_>8 0 9 5 -1.</_> 968 <_>11 0 3 5 3.</_></rects> 969 <tilted>0</tilted></feature> 970 <threshold>-1.5335980569943786e-003</threshold> 971 <left_val>0.1799121946096420</left_val> 972 <right_val>-0.2578833103179932</right_val></_></_> 973 <_> 974 <!-- tree 18 --> 975 <_> 976 <!-- root node --> 977 <feature> 978 <rects> 979 <_>6 0 6 10 -1.</_> 980 <_>6 0 3 5 2.</_> 981 <_>9 5 3 5 2.</_></rects> 982 <tilted>0</tilted></feature> 983 <threshold>4.8640500754117966e-003</threshold> 984 <left_val>0.1139298006892204</left_val> 985 <right_val>-0.5517386794090271</right_val></_></_> 986 <_> 987 <!-- tree 19 --> 988 <_> 989 <!-- root node --> 990 <feature> 991 <rects> 992 <_>10 6 4 7 -1.</_> 993 <_>10 6 2 7 2.</_></rects> 994 <tilted>0</tilted></feature> 995 <threshold>-1.6523050144314766e-003</threshold> 996 <left_val>0.1515468955039978</left_val> 997 <right_val>-0.2290167957544327</right_val></_></_> 998 <_> 999 <!-- tree 20 --> 1000 <_> 1001 <!-- root node --> 1002 <feature> 1003 <rects> 1004 <_>2 4 15 11 -1.</_> 1005 <_>7 4 5 11 3.</_></rects> 1006 <tilted>0</tilted></feature> 1007 <threshold>0.0753487572073936</threshold> 1008 <left_val>-0.1463088989257813</left_val> 1009 <right_val>0.6810588240623474</right_val></_></_> 1010 <_> 1011 <!-- tree 21 --> 1012 <_> 1013 <!-- root node --> 1014 <feature> 1015 <rects> 1016 <_>15 15 4 8 -1.</_> 1017 <_>15 15 2 8 2.</_></rects> 1018 <tilted>0</tilted></feature> 1019 <threshold>-8.2630068063735962e-003</threshold> 1020 <left_val>-0.7278360128402710</left_val> 1021 <right_val>0.1028101965785027</right_val></_></_> 1022 <_> 1023 <!-- tree 22 --> 1024 <_> 1025 <!-- root node --> 1026 <feature> 1027 <rects> 1028 <_>0 15 4 8 -1.</_> 1029 <_>2 15 2 8 2.</_></rects> 1030 <tilted>0</tilted></feature> 1031 <threshold>-5.5124741047620773e-003</threshold> 1032 <left_val>-0.6305934786796570</left_val> 1033 <right_val>0.0932577997446060</right_val></_></_></trees> 1034 <stage_threshold>-1.3777279853820801</stage_threshold> 1035 <parent>2</parent> 1036 <next>-1</next></_> 1037 <_> 1038 <!-- stage 4 --> 1039 <trees> 1040 <_> 1041 <!-- tree 0 --> 1042 <_> 1043 <!-- root node --> 1044 <feature> 1045 <rects> 1046 <_>5 6 4 11 -1.</_> 1047 <_>7 6 2 11 2.</_></rects> 1048 <tilted>0</tilted></feature> 1049 <threshold>-9.3849105760455132e-003</threshold> 1050 <left_val>0.5250058174133301</left_val> 1051 <right_val>-0.4323106110095978</right_val></_></_> 1052 <_> 1053 <!-- tree 1 --> 1054 <_> 1055 <!-- root node --> 1056 <feature> 1057 <rects> 1058 <_>3 17 16 4 -1.</_> 1059 <_>7 17 8 4 2.</_></rects> 1060 <tilted>0</tilted></feature> 1061 <threshold>-1.3772470410913229e-003</threshold> 1062 <left_val>0.2069848030805588</left_val> 1063 <right_val>-0.4271875917911530</right_val></_></_> 1064 <_> 1065 <!-- tree 2 --> 1066 <_> 1067 <!-- root node --> 1068 <feature> 1069 <rects> 1070 <_>9 3 10 8 -1.</_> 1071 <_>9 3 5 8 2.</_></rects> 1072 <tilted>1</tilted></feature> 1073 <threshold>0.0263201091438532</threshold> 1074 <left_val>0.1582517027854919</left_val> 1075 <right_val>-0.6550952196121216</right_val></_></_> 1076 <_> 1077 <!-- tree 3 --> 1078 <_> 1079 <!-- root node --> 1080 <feature> 1081 <rects> 1082 <_>12 6 7 10 -1.</_> 1083 <_>12 6 7 5 2.</_></rects> 1084 <tilted>1</tilted></feature> 1085 <threshold>-0.0454887598752975</threshold> 1086 <left_val>-0.4951010942459106</left_val> 1087 <right_val>0.1799882054328919</right_val></_></_> 1088 <_> 1089 <!-- tree 4 --> 1090 <_> 1091 <!-- root node --> 1092 <feature> 1093 <rects> 1094 <_>2 0 6 5 -1.</_> 1095 <_>5 0 3 5 2.</_></rects> 1096 <tilted>0</tilted></feature> 1097 <threshold>-4.7006201930344105e-003</threshold> 1098 <left_val>0.3397116065025330</left_val> 1099 <right_val>-0.3691770136356354</right_val></_></_> 1100 <_> 1101 <!-- tree 5 --> 1102 <_> 1103 <!-- root node --> 1104 <feature> 1105 <rects> 1106 <_>4 18 14 3 -1.</_> 1107 <_>4 19 14 1 3.</_></rects> 1108 <tilted>0</tilted></feature> 1109 <threshold>-1.3270860072225332e-003</threshold> 1110 <left_val>0.3090786039829254</left_val> 1111 <right_val>-0.1977175027132034</right_val></_></_> 1112 <_> 1113 <!-- tree 6 --> 1114 <_> 1115 <!-- root node --> 1116 <feature> 1117 <rects> 1118 <_>2 20 14 3 -1.</_> 1119 <_>9 20 7 3 2.</_></rects> 1120 <tilted>0</tilted></feature> 1121 <threshold>9.3802614137530327e-003</threshold> 1122 <left_val>0.0944884493947029</left_val> 1123 <right_val>-0.7319809794425964</right_val></_></_> 1124 <_> 1125 <!-- tree 7 --> 1126 <_> 1127 <!-- root node --> 1128 <feature> 1129 <rects> 1130 <_>4 21 14 2 -1.</_> 1131 <_>4 21 7 2 2.</_></rects> 1132 <tilted>0</tilted></feature> 1133 <threshold>4.3565612286329269e-003</threshold> 1134 <left_val>0.1152020022273064</left_val> 1135 <right_val>-0.5400810241699219</right_val></_></_> 1136 <_> 1137 <!-- tree 8 --> 1138 <_> 1139 <!-- root node --> 1140 <feature> 1141 <rects> 1142 <_>8 8 3 14 -1.</_> 1143 <_>9 8 1 14 3.</_></rects> 1144 <tilted>0</tilted></feature> 1145 <threshold>8.1178937107324600e-003</threshold> 1146 <left_val>-0.1595630943775177</left_val> 1147 <right_val>0.5377786755561829</right_val></_></_> 1148 <_> 1149 <!-- tree 9 --> 1150 <_> 1151 <!-- root node --> 1152 <feature> 1153 <rects> 1154 <_>8 9 3 14 -1.</_> 1155 <_>9 9 1 14 3.</_></rects> 1156 <tilted>0</tilted></feature> 1157 <threshold>-8.7829083204269409e-003</threshold> 1158 <left_val>0.5663471817970276</left_val> 1159 <right_val>-0.1327937990427017</right_val></_></_> 1160 <_> 1161 <!-- tree 10 --> 1162 <_> 1163 <!-- root node --> 1164 <feature> 1165 <rects> 1166 <_>5 7 9 16 -1.</_> 1167 <_>5 11 9 8 2.</_></rects> 1168 <tilted>0</tilted></feature> 1169 <threshold>0.0219448506832123</threshold> 1170 <left_val>0.1590128988027573</left_val> 1171 <right_val>-0.5175182223320007</right_val></_></_> 1172 <_> 1173 <!-- tree 11 --> 1174 <_> 1175 <!-- root node --> 1176 <feature> 1177 <rects> 1178 <_>11 13 6 8 -1.</_> 1179 <_>11 17 6 4 2.</_></rects> 1180 <tilted>0</tilted></feature> 1181 <threshold>0.0495100989937782</threshold> 1182 <left_val>0.0110676400363445</left_val> 1183 <right_val>-0.4997246861457825</right_val></_></_> 1184 <_> 1185 <!-- tree 12 --> 1186 <_> 1187 <!-- root node --> 1188 <feature> 1189 <rects> 1190 <_>4 17 7 6 -1.</_> 1191 <_>4 19 7 2 3.</_></rects> 1192 <tilted>0</tilted></feature> 1193 <threshold>-2.1175360307097435e-003</threshold> 1194 <left_val>0.2649075984954834</left_val> 1195 <right_val>-0.2456562966108322</right_val></_></_> 1196 <_> 1197 <!-- tree 13 --> 1198 <_> 1199 <!-- root node --> 1200 <feature> 1201 <rects> 1202 <_>2 13 16 8 -1.</_> 1203 <_>10 13 8 4 2.</_> 1204 <_>2 17 8 4 2.</_></rects> 1205 <tilted>0</tilted></feature> 1206 <threshold>0.0103794699534774</threshold> 1207 <left_val>0.1262409985065460</left_val> 1208 <right_val>-0.4087724089622498</right_val></_></_> 1209 <_> 1210 <!-- tree 14 --> 1211 <_> 1212 <!-- root node --> 1213 <feature> 1214 <rects> 1215 <_>2 18 15 3 -1.</_> 1216 <_>2 19 15 1 3.</_></rects> 1217 <tilted>0</tilted></feature> 1218 <threshold>2.4977258872240782e-003</threshold> 1219 <left_val>-0.1972302049398422</left_val> 1220 <right_val>0.3886674940586090</right_val></_></_></trees> 1221 <stage_threshold>-1.0618749856948853</stage_threshold> 1222 <parent>3</parent> 1223 <next>-1</next></_> 1224 <_> 1225 <!-- stage 5 --> 1226 <trees> 1227 <_> 1228 <!-- tree 0 --> 1229 <_> 1230 <!-- root node --> 1231 <feature> 1232 <rects> 1233 <_>2 13 15 3 -1.</_> 1234 <_>7 13 5 3 3.</_></rects> 1235 <tilted>0</tilted></feature> 1236 <threshold>-6.1489548534154892e-003</threshold> 1237 <left_val>0.4018748104572296</left_val> 1238 <right_val>-0.5239737033843994</right_val></_></_> 1239 <_> 1240 <!-- tree 1 --> 1241 <_> 1242 <!-- root node --> 1243 <feature> 1244 <rects> 1245 <_>8 0 11 16 -1.</_> 1246 <_>8 4 11 8 2.</_></rects> 1247 <tilted>0</tilted></feature> 1248 <threshold>0.0504645407199860</threshold> 1249 <left_val>0.1304967999458313</left_val> 1250 <right_val>-0.5865144133567810</right_val></_></_> 1251 <_> 1252 <!-- tree 2 --> 1253 <_> 1254 <!-- root node --> 1255 <feature> 1256 <rects> 1257 <_>0 0 19 18 -1.</_> 1258 <_>0 6 19 6 3.</_></rects> 1259 <tilted>0</tilted></feature> 1260 <threshold>-0.0559062696993351</threshold> 1261 <left_val>-0.5122954249382019</left_val> 1262 <right_val>0.2439288944005966</right_val></_></_> 1263 <_> 1264 <!-- tree 3 --> 1265 <_> 1266 <!-- root node --> 1267 <feature> 1268 <rects> 1269 <_>8 0 11 16 -1.</_> 1270 <_>8 4 11 8 2.</_></rects> 1271 <tilted>0</tilted></feature> 1272 <threshold>0.1428150981664658</threshold> 1273 <left_val>-0.0151801602914929</left_val> 1274 <right_val>-0.6959391832351685</right_val></_></_> 1275 <_> 1276 <!-- tree 4 --> 1277 <_> 1278 <!-- root node --> 1279 <feature> 1280 <rects> 1281 <_>0 1 4 20 -1.</_> 1282 <_>0 6 4 10 2.</_></rects> 1283 <tilted>0</tilted></feature> 1284 <threshold>0.0411627702414989</threshold> 1285 <left_val>0.1367373019456863</left_val> 1286 <right_val>-0.6415883898735046</right_val></_></_> 1287 <_> 1288 <!-- tree 5 --> 1289 <_> 1290 <!-- root node --> 1291 <feature> 1292 <rects> 1293 <_>3 6 15 4 -1.</_> 1294 <_>8 6 5 4 3.</_></rects> 1295 <tilted>0</tilted></feature> 1296 <threshold>-0.0164687503129244</threshold> 1297 <left_val>0.2633903920650482</left_val> 1298 <right_val>-0.2208368033170700</right_val></_></_> 1299 <_> 1300 <!-- tree 6 --> 1301 <_> 1302 <!-- root node --> 1303 <feature> 1304 <rects> 1305 <_>0 9 18 6 -1.</_> 1306 <_>0 9 9 3 2.</_> 1307 <_>9 12 9 3 2.</_></rects> 1308 <tilted>0</tilted></feature> 1309 <threshold>0.0247631408274174</threshold> 1310 <left_val>0.1089773997664452</left_val> 1311 <right_val>-0.6521390080451965</right_val></_></_> 1312 <_> 1313 <!-- tree 7 --> 1314 <_> 1315 <!-- root node --> 1316 <feature> 1317 <rects> 1318 <_>8 5 3 14 -1.</_> 1319 <_>9 5 1 14 3.</_></rects> 1320 <tilted>0</tilted></feature> 1321 <threshold>4.3008858337998390e-003</threshold> 1322 <left_val>-0.1829963028430939</left_val> 1323 <right_val>0.4361422955989838</right_val></_></_> 1324 <_> 1325 <!-- tree 8 --> 1326 <_> 1327 <!-- root node --> 1328 <feature> 1329 <rects> 1330 <_>1 0 6 8 -1.</_> 1331 <_>3 0 2 8 3.</_></rects> 1332 <tilted>0</tilted></feature> 1333 <threshold>3.4035290591418743e-003</threshold> 1334 <left_val>-0.2436358034610748</left_val> 1335 <right_val>0.2822436988353729</right_val></_></_> 1336 <_> 1337 <!-- tree 9 --> 1338 <_> 1339 <!-- root node --> 1340 <feature> 1341 <rects> 1342 <_>1 6 18 6 -1.</_> 1343 <_>10 6 9 3 2.</_> 1344 <_>1 9 9 3 2.</_></rects> 1345 <tilted>0</tilted></feature> 1346 <threshold>-0.0222106203436852</threshold> 1347 <left_val>-0.5464575886726379</left_val> 1348 <right_val>0.1354296952486038</right_val></_></_> 1349 <_> 1350 <!-- tree 10 --> 1351 <_> 1352 <!-- root node --> 1353 <feature> 1354 <rects> 1355 <_>7 7 4 15 -1.</_> 1356 <_>8 7 2 15 2.</_></rects> 1357 <tilted>0</tilted></feature> 1358 <threshold>-0.0269680190831423</threshold> 1359 <left_val>0.6530094742774963</left_val> 1360 <right_val>-0.1429730951786041</right_val></_></_> 1361 <_> 1362 <!-- tree 11 --> 1363 <_> 1364 <!-- root node --> 1365 <feature> 1366 <rects> 1367 <_>11 5 8 10 -1.</_> 1368 <_>11 10 8 5 2.</_></rects> 1369 <tilted>0</tilted></feature> 1370 <threshold>-0.0349279083311558</threshold> 1371 <left_val>-0.5234662890434265</left_val> 1372 <right_val>0.1008457019925118</right_val></_></_> 1373 <_> 1374 <!-- tree 12 --> 1375 <_> 1376 <!-- root node --> 1377 <feature> 1378 <rects> 1379 <_>0 5 8 10 -1.</_> 1380 <_>0 10 8 5 2.</_></rects> 1381 <tilted>0</tilted></feature> 1382 <threshold>0.0362635813653469</threshold> 1383 <left_val>0.1511014997959137</left_val> 1384 <right_val>-0.5418584942817688</right_val></_></_> 1385 <_> 1386 <!-- tree 13 --> 1387 <_> 1388 <!-- root node --> 1389 <feature> 1390 <rects> 1391 <_>3 20 15 3 -1.</_> 1392 <_>8 20 5 3 3.</_></rects> 1393 <tilted>0</tilted></feature> 1394 <threshold>-0.0385267883539200</threshold> 1395 <left_val>-0.8694227933883667</left_val> 1396 <right_val>0.0371767692267895</right_val></_></_> 1397 <_> 1398 <!-- tree 14 --> 1399 <_> 1400 <!-- root node --> 1401 <feature> 1402 <rects> 1403 <_>2 16 9 5 -1.</_> 1404 <_>5 16 3 5 3.</_></rects> 1405 <tilted>0</tilted></feature> 1406 <threshold>2.5399168953299522e-003</threshold> 1407 <left_val>-0.2612588107585907</left_val> 1408 <right_val>0.2727844119071960</right_val></_></_> 1409 <_> 1410 <!-- tree 15 --> 1411 <_> 1412 <!-- root node --> 1413 <feature> 1414 <rects> 1415 <_>13 11 6 11 -1.</_> 1416 <_>13 11 3 11 2.</_></rects> 1417 <tilted>0</tilted></feature> 1418 <threshold>-0.0129311503842473</threshold> 1419 <left_val>-0.4950157999992371</left_val> 1420 <right_val>0.0913835167884827</right_val></_></_> 1421 <_> 1422 <!-- tree 16 --> 1423 <_> 1424 <!-- root node --> 1425 <feature> 1426 <rects> 1427 <_>5 8 4 11 -1.</_> 1428 <_>7 8 2 11 2.</_></rects> 1429 <tilted>0</tilted></feature> 1430 <threshold>0.0119813503697515</threshold> 1431 <left_val>-0.1205961033701897</left_val> 1432 <right_val>0.6384863853454590</right_val></_></_> 1433 <_> 1434 <!-- tree 17 --> 1435 <_> 1436 <!-- root node --> 1437 <feature> 1438 <rects> 1439 <_>5 7 12 5 -1.</_> 1440 <_>8 7 6 5 2.</_></rects> 1441 <tilted>0</tilted></feature> 1442 <threshold>-0.0743204131722450</threshold> 1443 <left_val>0.4659177958965302</left_val> 1444 <right_val>-0.0402656681835651</right_val></_></_></trees> 1445 <stage_threshold>-0.9546145796775818</stage_threshold> 1446 <parent>4</parent> 1447 <next>-1</next></_> 1448 <_> 1449 <!-- stage 6 --> 1450 <trees> 1451 <_> 1452 <!-- tree 0 --> 1453 <_> 1454 <!-- root node --> 1455 <feature> 1456 <rects> 1457 <_>2 11 15 3 -1.</_> 1458 <_>7 11 5 3 3.</_></rects> 1459 <tilted>0</tilted></feature> 1460 <threshold>-6.9070039317011833e-003</threshold> 1461 <left_val>0.4319767951965332</left_val> 1462 <right_val>-0.5171784758567810</right_val></_></_> 1463 <_> 1464 <!-- tree 1 --> 1465 <_> 1466 <!-- root node --> 1467 <feature> 1468 <rects> 1469 <_>1 1 18 3 -1.</_> 1470 <_>7 1 6 3 3.</_></rects> 1471 <tilted>0</tilted></feature> 1472 <threshold>-8.1628039479255676e-003</threshold> 1473 <left_val>0.2711654007434845</left_val> 1474 <right_val>-0.3280341029167175</right_val></_></_> 1475 <_> 1476 <!-- tree 2 --> 1477 <_> 1478 <!-- root node --> 1479 <feature> 1480 <rects> 1481 <_>5 1 14 4 -1.</_> 1482 <_>5 1 7 4 2.</_></rects> 1483 <tilted>1</tilted></feature> 1484 <threshold>0.0188525095582008</threshold> 1485 <left_val>0.1554879993200302</left_val> 1486 <right_val>-0.5524392724037170</right_val></_></_> 1487 <_> 1488 <!-- tree 3 --> 1489 <_> 1490 <!-- root node --> 1491 <feature> 1492 <rects> 1493 <_>1 9 18 10 -1.</_> 1494 <_>10 9 9 5 2.</_> 1495 <_>1 14 9 5 2.</_></rects> 1496 <tilted>0</tilted></feature> 1497 <threshold>0.0340793915092945</threshold> 1498 <left_val>0.1527225971221924</left_val> 1499 <right_val>-0.6531801223754883</right_val></_></_> 1500 <_> 1501 <!-- tree 4 --> 1502 <_> 1503 <!-- root node --> 1504 <feature> 1505 <rects> 1506 <_>7 9 3 14 -1.</_> 1507 <_>8 9 1 14 3.</_></rects> 1508 <tilted>0</tilted></feature> 1509 <threshold>-3.2038250938057899e-003</threshold> 1510 <left_val>0.3472546041011810</left_val> 1511 <right_val>-0.2773422896862030</right_val></_></_> 1512 <_> 1513 <!-- tree 5 --> 1514 <_> 1515 <!-- root node --> 1516 <feature> 1517 <rects> 1518 <_>8 7 4 14 -1.</_> 1519 <_>9 7 2 14 2.</_></rects> 1520 <tilted>0</tilted></feature> 1521 <threshold>2.1410689223557711e-003</threshold> 1522 <left_val>-0.0688882768154144</left_val> 1523 <right_val>0.2407948970794678</right_val></_></_> 1524 <_> 1525 <!-- tree 6 --> 1526 <_> 1527 <!-- root node --> 1528 <feature> 1529 <rects> 1530 <_>0 1 19 16 -1.</_> 1531 <_>0 9 19 8 2.</_></rects> 1532 <tilted>0</tilted></feature> 1533 <threshold>0.1462045013904572</threshold> 1534 <left_val>0.1576687991619110</left_val> 1535 <right_val>-0.5451586246490479</right_val></_></_> 1536 <_> 1537 <!-- tree 7 --> 1538 <_> 1539 <!-- root node --> 1540 <feature> 1541 <rects> 1542 <_>9 7 3 14 -1.</_> 1543 <_>10 7 1 14 3.</_></rects> 1544 <tilted>0</tilted></feature> 1545 <threshold>-6.2386798672378063e-003</threshold> 1546 <left_val>0.3289957940578461</left_val> 1547 <right_val>-0.1697064042091370</right_val></_></_> 1548 <_> 1549 <!-- tree 8 --> 1550 <_> 1551 <!-- root node --> 1552 <feature> 1553 <rects> 1554 <_>2 11 14 6 -1.</_> 1555 <_>2 11 7 3 2.</_> 1556 <_>9 14 7 3 2.</_></rects> 1557 <tilted>0</tilted></feature> 1558 <threshold>7.7623138204216957e-003</threshold> 1559 <left_val>0.1635251045227051</left_val> 1560 <right_val>-0.5187932848930359</right_val></_></_> 1561 <_> 1562 <!-- tree 9 --> 1563 <_> 1564 <!-- root node --> 1565 <feature> 1566 <rects> 1567 <_>9 7 3 14 -1.</_> 1568 <_>10 7 1 14 3.</_></rects> 1569 <tilted>0</tilted></feature> 1570 <threshold>3.7800080608576536e-003</threshold> 1571 <left_val>-0.1846437007188797</left_val> 1572 <right_val>0.4866007864475250</right_val></_></_> 1573 <_> 1574 <!-- tree 10 --> 1575 <_> 1576 <!-- root node --> 1577 <feature> 1578 <rects> 1579 <_>7 7 3 14 -1.</_> 1580 <_>8 7 1 14 3.</_></rects> 1581 <tilted>0</tilted></feature> 1582 <threshold>2.2303969599306583e-003</threshold> 1583 <left_val>-0.1705719977617264</left_val> 1584 <right_val>0.4774479866027832</right_val></_></_> 1585 <_> 1586 <!-- tree 11 --> 1587 <_> 1588 <!-- root node --> 1589 <feature> 1590 <rects> 1591 <_>7 17 5 6 -1.</_> 1592 <_>7 20 5 3 2.</_></rects> 1593 <tilted>0</tilted></feature> 1594 <threshold>2.4544890038669109e-003</threshold> 1595 <left_val>-0.3355064988136292</left_val> 1596 <right_val>0.2536926865577698</right_val></_></_> 1597 <_> 1598 <!-- tree 12 --> 1599 <_> 1600 <!-- root node --> 1601 <feature> 1602 <rects> 1603 <_>2 6 9 15 -1.</_> 1604 <_>5 11 3 5 9.</_></rects> 1605 <tilted>0</tilted></feature> 1606 <threshold>-0.0217074193060398</threshold> 1607 <left_val>-0.4832189083099365</left_val> 1608 <right_val>0.1607502996921539</right_val></_></_> 1609 <_> 1610 <!-- tree 13 --> 1611 <_> 1612 <!-- root node --> 1613 <feature> 1614 <rects> 1615 <_>8 0 6 10 -1.</_> 1616 <_>11 0 3 5 2.</_> 1617 <_>8 5 3 5 2.</_></rects> 1618 <tilted>0</tilted></feature> 1619 <threshold>0.0174219701439142</threshold> 1620 <left_val>0.0798779129981995</left_val> 1621 <right_val>-0.7513725757598877</right_val></_></_></trees> 1622 <stage_threshold>-1.1777880191802979</stage_threshold> 1623 <parent>5</parent> 1624 <next>-1</next></_> 1625 <_> 1626 <!-- stage 7 --> 1627 <trees> 1628 <_> 1629 <!-- tree 0 --> 1630 <_> 1631 <!-- root node --> 1632 <feature> 1633 <rects> 1634 <_>3 2 6 21 -1.</_> 1635 <_>5 9 2 7 9.</_></rects> 1636 <tilted>0</tilted></feature> 1637 <threshold>8.8802073150873184e-003</threshold> 1638 <left_val>-0.4468241035938263</left_val> 1639 <right_val>0.2606253027915955</right_val></_></_> 1640 <_> 1641 <!-- tree 1 --> 1642 <_> 1643 <!-- root node --> 1644 <feature> 1645 <rects> 1646 <_>9 19 10 4 -1.</_> 1647 <_>9 19 5 4 2.</_></rects> 1648 <tilted>0</tilted></feature> 1649 <threshold>-3.0198058811947703e-004</threshold> 1650 <left_val>0.1525840014219284</left_val> 1651 <right_val>-0.3520650863647461</right_val></_></_> 1652 <_> 1653 <!-- tree 2 --> 1654 <_> 1655 <!-- root node --> 1656 <feature> 1657 <rects> 1658 <_>2 8 4 8 -1.</_> 1659 <_>4 8 2 8 2.</_></rects> 1660 <tilted>0</tilted></feature> 1661 <threshold>6.7998501472175121e-003</threshold> 1662 <left_val>0.1225932016968727</left_val> 1663 <right_val>-0.6842743754386902</right_val></_></_> 1664 <_> 1665 <!-- tree 3 --> 1666 <_> 1667 <!-- root node --> 1668 <feature> 1669 <rects> 1670 <_>11 1 2 22 -1.</_> 1671 <_>11 12 2 11 2.</_></rects> 1672 <tilted>0</tilted></feature> 1673 <threshold>2.7802670374512672e-003</threshold> 1674 <left_val>-0.3368163108825684</left_val> 1675 <right_val>0.1851855963468552</right_val></_></_> 1676 <_> 1677 <!-- tree 4 --> 1678 <_> 1679 <!-- root node --> 1680 <feature> 1681 <rects> 1682 <_>0 20 15 3 -1.</_> 1683 <_>5 20 5 3 3.</_></rects> 1684 <tilted>0</tilted></feature> 1685 <threshold>-0.0115538202226162</threshold> 1686 <left_val>-0.6987134814262390</left_val> 1687 <right_val>0.1307960003614426</right_val></_></_> 1688 <_> 1689 <!-- tree 5 --> 1690 <_> 1691 <!-- root node --> 1692 <feature> 1693 <rects> 1694 <_>10 19 8 4 -1.</_> 1695 <_>10 19 4 4 2.</_></rects> 1696 <tilted>0</tilted></feature> 1697 <threshold>-0.0265632905066013</threshold> 1698 <left_val>-0.7027788162231445</left_val> 1699 <right_val>0.0177913308143616</right_val></_></_> 1700 <_> 1701 <!-- tree 6 --> 1702 <_> 1703 <!-- root node --> 1704 <feature> 1705 <rects> 1706 <_>1 19 8 4 -1.</_> 1707 <_>5 19 4 4 2.</_></rects> 1708 <tilted>0</tilted></feature> 1709 <threshold>-2.5158381322398782e-004</threshold> 1710 <left_val>0.2477948069572449</left_val> 1711 <right_val>-0.3978793025016785</right_val></_></_> 1712 <_> 1713 <!-- tree 7 --> 1714 <_> 1715 <!-- root node --> 1716 <feature> 1717 <rects> 1718 <_>9 0 6 7 -1.</_> 1719 <_>11 0 2 7 3.</_></rects> 1720 <tilted>0</tilted></feature> 1721 <threshold>0.0357483103871346</threshold> 1722 <left_val>-0.0380434393882751</left_val> 1723 <right_val>0.4797626137733460</right_val></_></_> 1724 <_> 1725 <!-- tree 8 --> 1726 <_> 1727 <!-- root node --> 1728 <feature> 1729 <rects> 1730 <_>4 0 6 7 -1.</_> 1731 <_>6 0 2 7 3.</_></rects> 1732 <tilted>0</tilted></feature> 1733 <threshold>-1.9973930902779102e-003</threshold> 1734 <left_val>0.2577486932277679</left_val> 1735 <right_val>-0.3199009895324707</right_val></_></_> 1736 <_> 1737 <!-- tree 9 --> 1738 <_> 1739 <!-- root node --> 1740 <feature> 1741 <rects> 1742 <_>13 2 3 10 -1.</_> 1743 <_>13 2 3 5 2.</_></rects> 1744 <tilted>1</tilted></feature> 1745 <threshold>-0.1100711002945900</threshold> 1746 <left_val>-0.4910286962985992</left_val> 1747 <right_val>0.0231046304106712</right_val></_></_> 1748 <_> 1749 <!-- tree 10 --> 1750 <_> 1751 <!-- root node --> 1752 <feature> 1753 <rects> 1754 <_>6 4 6 9 -1.</_> 1755 <_>9 4 3 9 2.</_></rects> 1756 <tilted>0</tilted></feature> 1757 <threshold>-2.2225650027394295e-003</threshold> 1758 <left_val>0.2382529973983765</left_val> 1759 <right_val>-0.2841553092002869</right_val></_></_> 1760 <_> 1761 <!-- tree 11 --> 1762 <_> 1763 <!-- root node --> 1764 <feature> 1765 <rects> 1766 <_>10 7 2 10 -1.</_> 1767 <_>10 7 1 10 2.</_></rects> 1768 <tilted>1</tilted></feature> 1769 <threshold>-7.7874241396784782e-003</threshold> 1770 <left_val>-0.3895137012004852</left_val> 1771 <right_val>0.0557628907263279</right_val></_></_> 1772 <_> 1773 <!-- tree 12 --> 1774 <_> 1775 <!-- root node --> 1776 <feature> 1777 <rects> 1778 <_>2 1 15 9 -1.</_> 1779 <_>7 1 5 9 3.</_></rects> 1780 <tilted>0</tilted></feature> 1781 <threshold>0.0564158596098423</threshold> 1782 <left_val>-0.0935217216610909</left_val> 1783 <right_val>0.7256116271018982</right_val></_></_> 1784 <_> 1785 <!-- tree 13 --> 1786 <_> 1787 <!-- root node --> 1788 <feature> 1789 <rects> 1790 <_>8 5 6 7 -1.</_> 1791 <_>10 5 2 7 3.</_></rects> 1792 <tilted>0</tilted></feature> 1793 <threshold>-3.5978010855615139e-003</threshold> 1794 <left_val>0.1945219039916992</left_val> 1795 <right_val>-0.1965128034353256</right_val></_></_> 1796 <_> 1797 <!-- tree 14 --> 1798 <_> 1799 <!-- root node --> 1800 <feature> 1801 <rects> 1802 <_>5 5 6 7 -1.</_> 1803 <_>7 5 2 7 3.</_></rects> 1804 <tilted>0</tilted></feature> 1805 <threshold>-7.2716898284852505e-003</threshold> 1806 <left_val>0.3416987061500549</left_val> 1807 <right_val>-0.2285155951976776</right_val></_></_> 1808 <_> 1809 <!-- tree 15 --> 1810 <_> 1811 <!-- root node --> 1812 <feature> 1813 <rects> 1814 <_>10 7 2 10 -1.</_> 1815 <_>10 7 1 10 2.</_></rects> 1816 <tilted>1</tilted></feature> 1817 <threshold>7.1941758506000042e-003</threshold> 1818 <left_val>0.0721488669514656</left_val> 1819 <right_val>-0.4531350135803223</right_val></_></_> 1820 <_> 1821 <!-- tree 16 --> 1822 <_> 1823 <!-- root node --> 1824 <feature> 1825 <rects> 1826 <_>9 7 10 2 -1.</_> 1827 <_>9 7 10 1 2.</_></rects> 1828 <tilted>1</tilted></feature> 1829 <threshold>-4.1034761816263199e-003</threshold> 1830 <left_val>-0.5133674740791321</left_val> 1831 <right_val>0.1332356929779053</right_val></_></_> 1832 <_> 1833 <!-- tree 17 --> 1834 <_> 1835 <!-- root node --> 1836 <feature> 1837 <rects> 1838 <_>13 16 4 7 -1.</_> 1839 <_>13 16 2 7 2.</_></rects> 1840 <tilted>0</tilted></feature> 1841 <threshold>-3.4210970625281334e-003</threshold> 1842 <left_val>-0.4238378107547760</left_val> 1843 <right_val>0.0848528072237968</right_val></_></_> 1844 <_> 1845 <!-- tree 18 --> 1846 <_> 1847 <!-- root node --> 1848 <feature> 1849 <rects> 1850 <_>6 9 4 10 -1.</_> 1851 <_>8 9 2 10 2.</_></rects> 1852 <tilted>0</tilted></feature> 1853 <threshold>4.1890922002494335e-003</threshold> 1854 <left_val>-0.1339855045080185</left_val> 1855 <right_val>0.4374955892562866</right_val></_></_> 1856 <_> 1857 <!-- tree 19 --> 1858 <_> 1859 <!-- root node --> 1860 <feature> 1861 <rects> 1862 <_>5 18 14 4 -1.</_> 1863 <_>12 18 7 2 2.</_> 1864 <_>5 20 7 2 2.</_></rects> 1865 <tilted>0</tilted></feature> 1866 <threshold>1.1827970156446099e-003</threshold> 1867 <left_val>-0.2973901033401489</left_val> 1868 <right_val>0.2212684005498886</right_val></_></_> 1869 <_> 1870 <!-- tree 20 --> 1871 <_> 1872 <!-- root node --> 1873 <feature> 1874 <rects> 1875 <_>5 1 12 3 -1.</_> 1876 <_>5 1 6 3 2.</_></rects> 1877 <tilted>1</tilted></feature> 1878 <threshold>-0.0411965511739254</threshold> 1879 <left_val>-0.5073575973510742</left_val> 1880 <right_val>0.1324395984411240</right_val></_></_> 1881 <_> 1882 <!-- tree 21 --> 1883 <_> 1884 <!-- root node --> 1885 <feature> 1886 <rects> 1887 <_>11 0 2 22 -1.</_> 1888 <_>11 11 2 11 2.</_></rects> 1889 <tilted>0</tilted></feature> 1890 <threshold>2.9593890067189932e-003</threshold> 1891 <left_val>-0.1405262053012848</left_val> 1892 <right_val>0.0613608807325363</right_val></_></_> 1893 <_> 1894 <!-- tree 22 --> 1895 <_> 1896 <!-- root node --> 1897 <feature> 1898 <rects> 1899 <_>3 15 4 8 -1.</_> 1900 <_>5 15 2 8 2.</_></rects> 1901 <tilted>0</tilted></feature> 1902 <threshold>-5.0226859748363495e-003</threshold> 1903 <left_val>-0.4749597012996674</left_val> 1904 <right_val>0.1206915006041527</right_val></_></_> 1905 <_> 1906 <!-- tree 23 --> 1907 <_> 1908 <!-- root node --> 1909 <feature> 1910 <rects> 1911 <_>11 0 2 14 -1.</_> 1912 <_>11 0 1 14 2.</_></rects> 1913 <tilted>0</tilted></feature> 1914 <threshold>-0.0150978602468967</threshold> 1915 <left_val>0.2755539119243622</left_val> 1916 <right_val>-0.0537804514169693</right_val></_></_> 1917 <_> 1918 <!-- tree 24 --> 1919 <_> 1920 <!-- root node --> 1921 <feature> 1922 <rects> 1923 <_>6 0 2 14 -1.</_> 1924 <_>7 0 1 14 2.</_></rects> 1925 <tilted>0</tilted></feature> 1926 <threshold>-0.0271909702569246</threshold> 1927 <left_val>0.7599545717239380</left_val> 1928 <right_val>-0.0747931897640228</right_val></_></_> 1929 <_> 1930 <!-- tree 25 --> 1931 <_> 1932 <!-- root node --> 1933 <feature> 1934 <rects> 1935 <_>11 0 2 20 -1.</_> 1936 <_>11 0 1 20 2.</_></rects> 1937 <tilted>0</tilted></feature> 1938 <threshold>0.0198938790708780</threshold> 1939 <left_val>-6.7238640040159225e-003</left_val> 1940 <right_val>0.7397276759147644</right_val></_></_> 1941 <_> 1942 <!-- tree 26 --> 1943 <_> 1944 <!-- root node --> 1945 <feature> 1946 <rects> 1947 <_>1 19 16 4 -1.</_> 1948 <_>5 19 8 4 2.</_></rects> 1949 <tilted>0</tilted></feature> 1950 <threshold>7.7208830043673515e-003</threshold> 1951 <left_val>0.0930711627006531</left_val> 1952 <right_val>-0.6578025221824646</right_val></_></_> 1953 <_> 1954 <!-- tree 27 --> 1955 <_> 1956 <!-- root node --> 1957 <feature> 1958 <rects> 1959 <_>11 0 2 20 -1.</_> 1960 <_>11 0 1 20 2.</_></rects> 1961 <tilted>0</tilted></feature> 1962 <threshold>-1.1565990280359983e-003</threshold> 1963 <left_val>0.0946459174156189</left_val> 1964 <right_val>-0.1640790998935700</right_val></_></_> 1965 <_> 1966 <!-- tree 28 --> 1967 <_> 1968 <!-- root node --> 1969 <feature> 1970 <rects> 1971 <_>6 0 2 20 -1.</_> 1972 <_>7 0 1 20 2.</_></rects> 1973 <tilted>0</tilted></feature> 1974 <threshold>2.6069190353155136e-003</threshold> 1975 <left_val>-0.1387798041105270</left_val> 1976 <right_val>0.4734987020492554</right_val></_></_> 1977 <_> 1978 <!-- tree 29 --> 1979 <_> 1980 <!-- root node --> 1981 <feature> 1982 <rects> 1983 <_>11 0 2 22 -1.</_> 1984 <_>11 11 2 11 2.</_></rects> 1985 <tilted>0</tilted></feature> 1986 <threshold>-0.0535861104726791</threshold> 1987 <left_val>-0.3734964132308960</left_val> 1988 <right_val>0.0257285591214895</right_val></_></_> 1989 <_> 1990 <!-- tree 30 --> 1991 <_> 1992 <!-- root node --> 1993 <feature> 1994 <rects> 1995 <_>0 18 14 4 -1.</_> 1996 <_>0 18 7 2 2.</_> 1997 <_>7 20 7 2 2.</_></rects> 1998 <tilted>0</tilted></feature> 1999 <threshold>1.5184599906206131e-003</threshold> 2000 <left_val>-0.2247871011495590</left_val> 2001 <right_val>0.2357459962368012</right_val></_></_> 2002 <_> 2003 <!-- tree 31 --> 2004 <_> 2005 <!-- root node --> 2006 <feature> 2007 <rects> 2008 <_>1 1 18 8 -1.</_> 2009 <_>10 1 9 4 2.</_> 2010 <_>1 5 9 4 2.</_></rects> 2011 <tilted>0</tilted></feature> 2012 <threshold>-0.0370615608990192</threshold> 2013 <left_val>-0.6182711720466614</left_val> 2014 <right_val>0.0823480635881424</right_val></_></_> 2015 <_> 2016 <!-- tree 32 --> 2017 <_> 2018 <!-- root node --> 2019 <feature> 2020 <rects> 2021 <_>9 8 10 4 -1.</_> 2022 <_>9 8 10 2 2.</_></rects> 2023 <tilted>1</tilted></feature> 2024 <threshold>-0.0263117998838425</threshold> 2025 <left_val>-0.6005765795707703</left_val> 2026 <right_val>0.0777688696980476</right_val></_></_> 2027 <_> 2028 <!-- tree 33 --> 2029 <_> 2030 <!-- root node --> 2031 <feature> 2032 <rects> 2033 <_>3 7 15 3 -1.</_> 2034 <_>8 7 5 3 3.</_></rects> 2035 <tilted>0</tilted></feature> 2036 <threshold>-0.0879474282264709</threshold> 2037 <left_val>0.3884103894233704</left_val> 2038 <right_val>-0.0815455988049507</right_val></_></_></trees> 2039 <stage_threshold>-1.2834340333938599</stage_threshold> 2040 <parent>6</parent> 2041 <next>-1</next></_> 2042 <_> 2043 <!-- stage 8 --> 2044 <trees> 2045 <_> 2046 <!-- tree 0 --> 2047 <_> 2048 <!-- root node --> 2049 <feature> 2050 <rects> 2051 <_>8 1 6 8 -1.</_> 2052 <_>8 1 6 4 2.</_></rects> 2053 <tilted>1</tilted></feature> 2054 <threshold>-0.0290380306541920</threshold> 2055 <left_val>0.5063595771789551</left_val> 2056 <right_val>-0.4346269965171814</right_val></_></_> 2057 <_> 2058 <!-- tree 1 --> 2059 <_> 2060 <!-- root node --> 2061 <feature> 2062 <rects> 2063 <_>8 3 3 15 -1.</_> 2064 <_>9 3 1 15 3.</_></rects> 2065 <tilted>0</tilted></feature> 2066 <threshold>3.9044669829308987e-003</threshold> 2067 <left_val>-0.1900978982448578</left_val> 2068 <right_val>0.5184031724929810</right_val></_></_> 2069 <_> 2070 <!-- tree 2 --> 2071 <_> 2072 <!-- root node --> 2073 <feature> 2074 <rects> 2075 <_>1 14 9 6 -1.</_> 2076 <_>4 14 3 6 3.</_></rects> 2077 <tilted>0</tilted></feature> 2078 <threshold>2.9162769205868244e-003</threshold> 2079 <left_val>-0.3435131013393402</left_val> 2080 <right_val>0.2401631027460098</right_val></_></_> 2081 <_> 2082 <!-- tree 3 --> 2083 <_> 2084 <!-- root node --> 2085 <feature> 2086 <rects> 2087 <_>3 20 15 3 -1.</_> 2088 <_>8 20 5 3 3.</_></rects> 2089 <tilted>0</tilted></feature> 2090 <threshold>-8.9670084416866302e-003</threshold> 2091 <left_val>-0.4266715049743652</left_val> 2092 <right_val>0.1231655031442642</right_val></_></_> 2093 <_> 2094 <!-- tree 4 --> 2095 <_> 2096 <!-- root node --> 2097 <feature> 2098 <rects> 2099 <_>0 18 14 3 -1.</_> 2100 <_>0 19 14 1 3.</_></rects> 2101 <tilted>0</tilted></feature> 2102 <threshold>-2.4935540277510881e-003</threshold> 2103 <left_val>0.3608655035495758</left_val> 2104 <right_val>-0.1838146001100540</right_val></_></_> 2105 <_> 2106 <!-- tree 5 --> 2107 <_> 2108 <!-- root node --> 2109 <feature> 2110 <rects> 2111 <_>5 20 10 3 -1.</_> 2112 <_>5 20 5 3 2.</_></rects> 2113 <tilted>0</tilted></feature> 2114 <threshold>-4.8912568017840385e-003</threshold> 2115 <left_val>-0.6474984884262085</left_val> 2116 <right_val>0.1085670962929726</right_val></_></_> 2117 <_> 2118 <!-- tree 6 --> 2119 <_> 2120 <!-- root node --> 2121 <feature> 2122 <rects> 2123 <_>9 5 10 6 -1.</_> 2124 <_>9 5 5 6 2.</_></rects> 2125 <tilted>1</tilted></feature> 2126 <threshold>-4.0970719419419765e-003</threshold> 2127 <left_val>0.2214383035898209</left_val> 2128 <right_val>-0.3150557875633240</right_val></_></_> 2129 <_> 2130 <!-- tree 7 --> 2131 <_> 2132 <!-- root node --> 2133 <feature> 2134 <rects> 2135 <_>2 4 15 14 -1.</_> 2136 <_>7 4 5 14 3.</_></rects> 2137 <tilted>0</tilted></feature> 2138 <threshold>0.0439564995467663</threshold> 2139 <left_val>-0.1078016981482506</left_val> 2140 <right_val>0.7189350128173828</right_val></_></_> 2141 <_> 2142 <!-- tree 8 --> 2143 <_> 2144 <!-- root node --> 2145 <feature> 2146 <rects> 2147 <_>0 16 6 7 -1.</_> 2148 <_>3 16 3 7 2.</_></rects> 2149 <tilted>0</tilted></feature> 2150 <threshold>1.9277370302006602e-003</threshold> 2151 <left_val>0.2024773955345154</left_val> 2152 <right_val>-0.4038108885288239</right_val></_></_> 2153 <_> 2154 <!-- tree 9 --> 2155 <_> 2156 <!-- root node --> 2157 <feature> 2158 <rects> 2159 <_>7 18 12 5 -1.</_> 2160 <_>11 18 4 5 3.</_></rects> 2161 <tilted>0</tilted></feature> 2162 <threshold>9.4976946711540222e-003</threshold> 2163 <left_val>0.0434940196573734</left_val> 2164 <right_val>-0.2990806102752686</right_val></_></_> 2165 <_> 2166 <!-- tree 10 --> 2167 <_> 2168 <!-- root node --> 2169 <feature> 2170 <rects> 2171 <_>1 18 15 3 -1.</_> 2172 <_>1 19 15 1 3.</_></rects> 2173 <tilted>0</tilted></feature> 2174 <threshold>3.5389279946684837e-003</threshold> 2175 <left_val>-0.1510948985815048</left_val> 2176 <right_val>0.5186424255371094</right_val></_></_> 2177 <_> 2178 <!-- tree 11 --> 2179 <_> 2180 <!-- root node --> 2181 <feature> 2182 <rects> 2183 <_>4 19 12 4 -1.</_> 2184 <_>8 19 4 4 3.</_></rects> 2185 <tilted>0</tilted></feature> 2186 <threshold>-2.2064079530537128e-003</threshold> 2187 <left_val>0.2300644069910049</left_val> 2188 <right_val>-0.3319100141525269</right_val></_></_> 2189 <_> 2190 <!-- tree 12 --> 2191 <_> 2192 <!-- root node --> 2193 <feature> 2194 <rects> 2195 <_>5 0 3 12 -1.</_> 2196 <_>5 6 3 6 2.</_></rects> 2197 <tilted>0</tilted></feature> 2198 <threshold>3.9085410535335541e-003</threshold> 2199 <left_val>-0.3425331115722656</left_val> 2200 <right_val>0.2295188009738922</right_val></_></_> 2201 <_> 2202 <!-- tree 13 --> 2203 <_> 2204 <!-- root node --> 2205 <feature> 2206 <rects> 2207 <_>3 20 16 3 -1.</_> 2208 <_>3 20 8 3 2.</_></rects> 2209 <tilted>0</tilted></feature> 2210 <threshold>2.6973709464073181e-003</threshold> 2211 <left_val>0.1197668015956879</left_val> 2212 <right_val>-0.3532198965549469</right_val></_></_> 2213 <_> 2214 <!-- tree 14 --> 2215 <_> 2216 <!-- root node --> 2217 <feature> 2218 <rects> 2219 <_>0 15 15 8 -1.</_> 2220 <_>0 17 15 4 2.</_></rects> 2221 <tilted>0</tilted></feature> 2222 <threshold>-2.1321459207683802e-003</threshold> 2223 <left_val>0.1820628941059113</left_val> 2224 <right_val>-0.2843410074710846</right_val></_></_> 2225 <_> 2226 <!-- tree 15 --> 2227 <_> 2228 <!-- root node --> 2229 <feature> 2230 <rects> 2231 <_>12 14 4 7 -1.</_> 2232 <_>12 14 2 7 2.</_></rects> 2233 <tilted>0</tilted></feature> 2234 <threshold>2.6955150533467531e-003</threshold> 2235 <left_val>0.0745938420295715</left_val> 2236 <right_val>-0.3089664876461029</right_val></_></_> 2237 <_> 2238 <!-- tree 16 --> 2239 <_> 2240 <!-- root node --> 2241 <feature> 2242 <rects> 2243 <_>1 7 15 3 -1.</_> 2244 <_>6 7 5 3 3.</_></rects> 2245 <tilted>0</tilted></feature> 2246 <threshold>-6.0222679749131203e-003</threshold> 2247 <left_val>0.1804150044918060</left_val> 2248 <right_val>-0.2753166854381561</right_val></_></_> 2249 <_> 2250 <!-- tree 17 --> 2251 <_> 2252 <!-- root node --> 2253 <feature> 2254 <rects> 2255 <_>10 0 8 4 -1.</_> 2256 <_>10 0 4 4 2.</_></rects> 2257 <tilted>0</tilted></feature> 2258 <threshold>-8.9143458753824234e-003</threshold> 2259 <left_val>0.2416609972715378</left_val> 2260 <right_val>-0.1450612992048264</right_val></_></_> 2261 <_> 2262 <!-- tree 18 --> 2263 <_> 2264 <!-- root node --> 2265 <feature> 2266 <rects> 2267 <_>0 0 18 4 -1.</_> 2268 <_>6 0 6 4 3.</_></rects> 2269 <tilted>0</tilted></feature> 2270 <threshold>0.0234749391674995</threshold> 2271 <left_val>-0.1235461980104446</left_val> 2272 <right_val>0.6562504172325134</right_val></_></_> 2273 <_> 2274 <!-- tree 19 --> 2275 <_> 2276 <!-- root node --> 2277 <feature> 2278 <rects> 2279 <_>9 20 10 3 -1.</_> 2280 <_>9 20 5 3 2.</_></rects> 2281 <tilted>0</tilted></feature> 2282 <threshold>-5.6602950207889080e-003</threshold> 2283 <left_val>-0.3378525078296661</left_val> 2284 <right_val>0.1119455993175507</right_val></_></_></trees> 2285 <stage_threshold>-1.2891789674758911</stage_threshold> 2286 <parent>7</parent> 2287 <next>-1</next></_> 2288 <_> 2289 <!-- stage 9 --> 2290 <trees> 2291 <_> 2292 <!-- tree 0 --> 2293 <_> 2294 <!-- root node --> 2295 <feature> 2296 <rects> 2297 <_>2 4 15 16 -1.</_> 2298 <_>7 4 5 16 3.</_></rects> 2299 <tilted>0</tilted></feature> 2300 <threshold>-0.0696990936994553</threshold> 2301 <left_val>0.5078645944595337</left_val> 2302 <right_val>-0.4756268858909607</right_val></_></_> 2303 <_> 2304 <!-- tree 1 --> 2305 <_> 2306 <!-- root node --> 2307 <feature> 2308 <rects> 2309 <_>4 0 11 12 -1.</_> 2310 <_>4 6 11 6 2.</_></rects> 2311 <tilted>0</tilted></feature> 2312 <threshold>0.0216727796941996</threshold> 2313 <left_val>-0.2913419902324677</left_val> 2314 <right_val>0.3456152975559235</right_val></_></_> 2315 <_> 2316 <!-- tree 2 --> 2317 <_> 2318 <!-- root node --> 2319 <feature> 2320 <rects> 2321 <_>7 9 3 14 -1.</_> 2322 <_>8 9 1 14 3.</_></rects> 2323 <tilted>0</tilted></feature> 2324 <threshold>-4.7600260004401207e-003</threshold> 2325 <left_val>0.3647744059562683</left_val> 2326 <right_val>-0.1955150961875916</right_val></_></_> 2327 <_> 2328 <!-- tree 3 --> 2329 <_> 2330 <!-- root node --> 2331 <feature> 2332 <rects> 2333 <_>4 21 14 2 -1.</_> 2334 <_>4 21 7 2 2.</_></rects> 2335 <tilted>0</tilted></feature> 2336 <threshold>-4.6418169513344765e-003</threshold> 2337 <left_val>-0.5644559264183044</left_val> 2338 <right_val>0.0984866693615913</right_val></_></_> 2339 <_> 2340 <!-- tree 4 --> 2341 <_> 2342 <!-- root node --> 2343 <feature> 2344 <rects> 2345 <_>0 21 16 2 -1.</_> 2346 <_>8 21 8 2 2.</_></rects> 2347 <tilted>0</tilted></feature> 2348 <threshold>-6.0006938874721527e-003</threshold> 2349 <left_val>-0.6364598274230957</left_val> 2350 <right_val>0.1437917053699493</right_val></_></_> 2351 <_> 2352 <!-- tree 5 --> 2353 <_> 2354 <!-- root node --> 2355 <feature> 2356 <rects> 2357 <_>8 7 4 14 -1.</_> 2358 <_>9 7 2 14 2.</_></rects> 2359 <tilted>0</tilted></feature> 2360 <threshold>0.0190734695643187</threshold> 2361 <left_val>-0.0342182889580727</left_val> 2362 <right_val>0.5504329204559326</right_val></_></_> 2363 <_> 2364 <!-- tree 6 --> 2365 <_> 2366 <!-- root node --> 2367 <feature> 2368 <rects> 2369 <_>1 0 16 12 -1.</_> 2370 <_>5 0 8 12 2.</_></rects> 2371 <tilted>0</tilted></feature> 2372 <threshold>0.0479933805763721</threshold> 2373 <left_val>-0.0858895108103752</left_val> 2374 <right_val>0.7679023146629334</right_val></_></_> 2375 <_> 2376 <!-- tree 7 --> 2377 <_> 2378 <!-- root node --> 2379 <feature> 2380 <rects> 2381 <_>3 17 16 5 -1.</_> 2382 <_>7 17 8 5 2.</_></rects> 2383 <tilted>0</tilted></feature> 2384 <threshold>-3.6511209327727556e-003</threshold> 2385 <left_val>0.2018606960773468</left_val> 2386 <right_val>-0.2983267903327942</right_val></_></_> 2387 <_> 2388 <!-- tree 8 --> 2389 <_> 2390 <!-- root node --> 2391 <feature> 2392 <rects> 2393 <_>0 13 6 5 -1.</_> 2394 <_>3 13 3 5 2.</_></rects> 2395 <tilted>0</tilted></feature> 2396 <threshold>-1.4485770370811224e-003</threshold> 2397 <left_val>-0.5129324793815613</left_val> 2398 <right_val>0.1369569003582001</right_val></_></_> 2399 <_> 2400 <!-- tree 9 --> 2401 <_> 2402 <!-- root node --> 2403 <feature> 2404 <rects> 2405 <_>13 12 6 6 -1.</_> 2406 <_>13 12 3 6 2.</_></rects> 2407 <tilted>0</tilted></feature> 2408 <threshold>-3.3748829737305641e-003</threshold> 2409 <left_val>-0.4097512960433960</left_val> 2410 <right_val>0.1158144026994705</right_val></_></_> 2411 <_> 2412 <!-- tree 10 --> 2413 <_> 2414 <!-- root node --> 2415 <feature> 2416 <rects> 2417 <_>0 12 6 6 -1.</_> 2418 <_>3 12 3 6 2.</_></rects> 2419 <tilted>0</tilted></feature> 2420 <threshold>2.3586750030517578e-003</threshold> 2421 <left_val>0.1758242994546890</left_val> 2422 <right_val>-0.4543963074684143</right_val></_></_> 2423 <_> 2424 <!-- tree 11 --> 2425 <_> 2426 <!-- root node --> 2427 <feature> 2428 <rects> 2429 <_>8 7 4 14 -1.</_> 2430 <_>9 7 2 14 2.</_></rects> 2431 <tilted>0</tilted></feature> 2432 <threshold>-0.0220748297870159</threshold> 2433 <left_val>0.4677563905715942</left_val> 2434 <right_val>-0.0463588312268257</right_val></_></_> 2435 <_> 2436 <!-- tree 12 --> 2437 <_> 2438 <!-- root node --> 2439 <feature> 2440 <rects> 2441 <_>7 3 4 20 -1.</_> 2442 <_>7 13 4 10 2.</_></rects> 2443 <tilted>0</tilted></feature> 2444 <threshold>7.0953248068690300e-003</threshold> 2445 <left_val>-0.3210053145885468</left_val> 2446 <right_val>0.2211935073137283</right_val></_></_> 2447 <_> 2448 <!-- tree 13 --> 2449 <_> 2450 <!-- root node --> 2451 <feature> 2452 <rects> 2453 <_>8 6 4 15 -1.</_> 2454 <_>9 6 2 15 2.</_></rects> 2455 <tilted>0</tilted></feature> 2456 <threshold>-2.0119780674576759e-003</threshold> 2457 <left_val>0.0546017400920391</left_val> 2458 <right_val>-0.0978531017899513</right_val></_></_> 2459 <_> 2460 <!-- tree 14 --> 2461 <_> 2462 <!-- root node --> 2463 <feature> 2464 <rects> 2465 <_>7 6 4 15 -1.</_> 2466 <_>8 6 2 15 2.</_></rects> 2467 <tilted>0</tilted></feature> 2468 <threshold>4.9847508780658245e-003</threshold> 2469 <left_val>-0.1306326985359192</left_val> 2470 <right_val>0.5281507968902588</right_val></_></_> 2471 <_> 2472 <!-- tree 15 --> 2473 <_> 2474 <!-- root node --> 2475 <feature> 2476 <rects> 2477 <_>13 11 6 12 -1.</_> 2478 <_>16 11 3 6 2.</_> 2479 <_>13 17 3 6 2.</_></rects> 2480 <tilted>0</tilted></feature> 2481 <threshold>-5.3485459648072720e-003</threshold> 2482 <left_val>-0.4211553931236267</left_val> 2483 <right_val>0.1192715987563133</right_val></_></_> 2484 <_> 2485 <!-- tree 16 --> 2486 <_> 2487 <!-- root node --> 2488 <feature> 2489 <rects> 2490 <_>0 11 6 12 -1.</_> 2491 <_>0 11 3 6 2.</_> 2492 <_>3 17 3 6 2.</_></rects> 2493 <tilted>0</tilted></feature> 2494 <threshold>2.5243330746889114e-003</threshold> 2495 <left_val>0.1210566014051437</left_val> 2496 <right_val>-0.4517711997032166</right_val></_></_> 2497 <_> 2498 <!-- tree 17 --> 2499 <_> 2500 <!-- root node --> 2501 <feature> 2502 <rects> 2503 <_>11 2 2 14 -1.</_> 2504 <_>11 2 1 14 2.</_></rects> 2505 <tilted>0</tilted></feature> 2506 <threshold>-2.4893151130527258e-003</threshold> 2507 <left_val>0.1224960014224052</left_val> 2508 <right_val>-0.1120098009705544</right_val></_></_> 2509 <_> 2510 <!-- tree 18 --> 2511 <_> 2512 <!-- root node --> 2513 <feature> 2514 <rects> 2515 <_>6 2 2 14 -1.</_> 2516 <_>7 2 1 14 2.</_></rects> 2517 <tilted>0</tilted></feature> 2518 <threshold>4.3740491382777691e-003</threshold> 2519 <left_val>-0.1054932028055191</left_val> 2520 <right_val>0.6080614924430847</right_val></_></_> 2521 <_> 2522 <!-- tree 19 --> 2523 <_> 2524 <!-- root node --> 2525 <feature> 2526 <rects> 2527 <_>11 5 3 14 -1.</_> 2528 <_>12 5 1 14 3.</_></rects> 2529 <tilted>0</tilted></feature> 2530 <threshold>-7.3214988224208355e-003</threshold> 2531 <left_val>0.4761511087417603</left_val> 2532 <right_val>-0.0683909207582474</right_val></_></_></trees> 2533 <stage_threshold>-1.0202569961547852</stage_threshold> 2534 <parent>8</parent> 2535 <next>-1</next></_> 2536 <_> 2537 <!-- stage 10 --> 2538 <trees> 2539 <_> 2540 <!-- tree 0 --> 2541 <_> 2542 <!-- root node --> 2543 <feature> 2544 <rects> 2545 <_>2 4 15 10 -1.</_> 2546 <_>7 4 5 10 3.</_></rects> 2547 <tilted>0</tilted></feature> 2548 <threshold>-0.0422862395644188</threshold> 2549 <left_val>0.3674986064434052</left_val> 2550 <right_val>-0.4368098080158234</right_val></_></_> 2551 <_> 2552 <!-- tree 1 --> 2553 <_> 2554 <!-- root node --> 2555 <feature> 2556 <rects> 2557 <_>4 0 11 22 -1.</_> 2558 <_>4 11 11 11 2.</_></rects> 2559 <tilted>0</tilted></feature> 2560 <threshold>0.0388846993446350</threshold> 2561 <left_val>-0.3543888926506043</left_val> 2562 <right_val>0.2700921893119812</right_val></_></_> 2563 <_> 2564 <!-- tree 2 --> 2565 <_> 2566 <!-- root node --> 2567 <feature> 2568 <rects> 2569 <_>0 19 14 4 -1.</_> 2570 <_>0 19 7 2 2.</_> 2571 <_>7 21 7 2 2.</_></rects> 2572 <tilted>0</tilted></feature> 2573 <threshold>1.5983959892764688e-003</threshold> 2574 <left_val>-0.3220062851905823</left_val> 2575 <right_val>0.2540490031242371</right_val></_></_> 2576 <_> 2577 <!-- tree 3 --> 2578 <_> 2579 <!-- root node --> 2580 <feature> 2581 <rects> 2582 <_>8 0 4 7 -1.</_> 2583 <_>8 0 2 7 2.</_></rects> 2584 <tilted>0</tilted></feature> 2585 <threshold>3.9249849505722523e-003</threshold> 2586 <left_val>0.1647730022668839</left_val> 2587 <right_val>-0.4204387962818146</right_val></_></_> 2588 <_> 2589 <!-- tree 4 --> 2590 <_> 2591 <!-- root node --> 2592 <feature> 2593 <rects> 2594 <_>7 0 4 15 -1.</_> 2595 <_>8 0 2 15 2.</_></rects> 2596 <tilted>0</tilted></feature> 2597 <threshold>1.5850430354475975e-003</threshold> 2598 <left_val>-0.2550337016582489</left_val> 2599 <right_val>0.3155938982963562</right_val></_></_> 2600 <_> 2601 <!-- tree 5 --> 2602 <_> 2603 <!-- root node --> 2604 <feature> 2605 <rects> 2606 <_>5 21 14 2 -1.</_> 2607 <_>5 21 7 2 2.</_></rects> 2608 <tilted>0</tilted></feature> 2609 <threshold>-3.4282119013369083e-003</threshold> 2610 <left_val>-0.4007428884506226</left_val> 2611 <right_val>0.1199335008859634</right_val></_></_> 2612 <_> 2613 <!-- tree 6 --> 2614 <_> 2615 <!-- root node --> 2616 <feature> 2617 <rects> 2618 <_>7 9 3 14 -1.</_> 2619 <_>8 9 1 14 3.</_></rects> 2620 <tilted>0</tilted></feature> 2621 <threshold>-3.3538821153342724e-003</threshold> 2622 <left_val>0.3045963048934937</left_val> 2623 <right_val>-0.2231103032827377</right_val></_></_> 2624 <_> 2625 <!-- tree 7 --> 2626 <_> 2627 <!-- root node --> 2628 <feature> 2629 <rects> 2630 <_>12 9 2 14 -1.</_> 2631 <_>12 9 1 14 2.</_></rects> 2632 <tilted>0</tilted></feature> 2633 <threshold>-6.7664748057723045e-003</threshold> 2634 <left_val>0.3239651918411255</left_val> 2635 <right_val>-0.0929323807358742</right_val></_></_> 2636 <_> 2637 <!-- tree 8 --> 2638 <_> 2639 <!-- root node --> 2640 <feature> 2641 <rects> 2642 <_>5 9 2 14 -1.</_> 2643 <_>6 9 1 14 2.</_></rects> 2644 <tilted>0</tilted></feature> 2645 <threshold>-6.7180307814851403e-004</threshold> 2646 <left_val>-0.3245751857757568</left_val> 2647 <right_val>0.2180899977684021</right_val></_></_> 2648 <_> 2649 <!-- tree 9 --> 2650 <_> 2651 <!-- root node --> 2652 <feature> 2653 <rects> 2654 <_>3 20 15 3 -1.</_> 2655 <_>8 20 5 3 3.</_></rects> 2656 <tilted>0</tilted></feature> 2657 <threshold>2.8931829147040844e-003</threshold> 2658 <left_val>0.1253060996532440</left_val> 2659 <right_val>-0.4858247041702271</right_val></_></_> 2660 <_> 2661 <!-- tree 10 --> 2662 <_> 2663 <!-- root node --> 2664 <feature> 2665 <rects> 2666 <_>5 0 3 17 -1.</_> 2667 <_>6 0 1 17 3.</_></rects> 2668 <tilted>0</tilted></feature> 2669 <threshold>-3.3115309197455645e-003</threshold> 2670 <left_val>0.4053410887718201</left_val> 2671 <right_val>-0.2243286967277527</right_val></_></_> 2672 <_> 2673 <!-- tree 11 --> 2674 <_> 2675 <!-- root node --> 2676 <feature> 2677 <rects> 2678 <_>4 20 12 3 -1.</_> 2679 <_>4 20 6 3 2.</_></rects> 2680 <tilted>0</tilted></feature> 2681 <threshold>8.8509041815996170e-003</threshold> 2682 <left_val>0.1215557008981705</left_val> 2683 <right_val>-0.6024348139762878</right_val></_></_> 2684 <_> 2685 <!-- tree 12 --> 2686 <_> 2687 <!-- root node --> 2688 <feature> 2689 <rects> 2690 <_>5 2 3 14 -1.</_> 2691 <_>6 2 1 14 3.</_></rects> 2692 <tilted>0</tilted></feature> 2693 <threshold>5.4662628099322319e-003</threshold> 2694 <left_val>-0.1697811931371689</left_val> 2695 <right_val>0.4075261950492859</right_val></_></_> 2696 <_> 2697 <!-- tree 13 --> 2698 <_> 2699 <!-- root node --> 2700 <feature> 2701 <rects> 2702 <_>2 3 15 18 -1.</_> 2703 <_>7 3 5 18 3.</_></rects> 2704 <tilted>0</tilted></feature> 2705 <threshold>0.0475593917071819</threshold> 2706 <left_val>-0.0817370414733887</left_val> 2707 <right_val>0.6986511945724487</right_val></_></_> 2708 <_> 2709 <!-- tree 14 --> 2710 <_> 2711 <!-- root node --> 2712 <feature> 2713 <rects> 2714 <_>7 1 4 7 -1.</_> 2715 <_>9 1 2 7 2.</_></rects> 2716 <tilted>0</tilted></feature> 2717 <threshold>3.1745019368827343e-003</threshold> 2718 <left_val>0.1741981059312820</left_val> 2719 <right_val>-0.3723703026771545</right_val></_></_> 2720 <_> 2721 <!-- tree 15 --> 2722 <_> 2723 <!-- root node --> 2724 <feature> 2725 <rects> 2726 <_>8 0 9 5 -1.</_> 2727 <_>11 0 3 5 3.</_></rects> 2728 <tilted>0</tilted></feature> 2729 <threshold>-5.1520839333534241e-003</threshold> 2730 <left_val>0.2779935896396637</left_val> 2731 <right_val>-0.2531177997589111</right_val></_></_> 2732 <_> 2733 <!-- tree 16 --> 2734 <_> 2735 <!-- root node --> 2736 <feature> 2737 <rects> 2738 <_>7 0 4 7 -1.</_> 2739 <_>9 0 2 7 2.</_></rects> 2740 <tilted>0</tilted></feature> 2741 <threshold>-4.8141111619770527e-003</threshold> 2742 <left_val>-0.5846602916717529</left_val> 2743 <right_val>0.1589429974555969</right_val></_></_> 2744 <_> 2745 <!-- tree 17 --> 2746 <_> 2747 <!-- root node --> 2748 <feature> 2749 <rects> 2750 <_>5 3 12 19 -1.</_> 2751 <_>8 3 6 19 2.</_></rects> 2752 <tilted>0</tilted></feature> 2753 <threshold>0.0219671502709389</threshold> 2754 <left_val>-0.1005275994539261</left_val> 2755 <right_val>0.4737487137317658</right_val></_></_> 2756 <_> 2757 <!-- tree 18 --> 2758 <_> 2759 <!-- root node --> 2760 <feature> 2761 <rects> 2762 <_>2 3 12 19 -1.</_> 2763 <_>5 3 6 19 2.</_></rects> 2764 <tilted>0</tilted></feature> 2765 <threshold>-6.0128211043775082e-003</threshold> 2766 <left_val>0.1982019990682602</left_val> 2767 <right_val>-0.4217281937599182</right_val></_></_> 2768 <_> 2769 <!-- tree 19 --> 2770 <_> 2771 <!-- root node --> 2772 <feature> 2773 <rects> 2774 <_>13 8 2 14 -1.</_> 2775 <_>13 8 1 14 2.</_></rects> 2776 <tilted>0</tilted></feature> 2777 <threshold>4.5052049681544304e-003</threshold> 2778 <left_val>0.0170648097991943</left_val> 2779 <right_val>-0.4894779026508331</right_val></_></_> 2780 <_> 2781 <!-- tree 20 --> 2782 <_> 2783 <!-- root node --> 2784 <feature> 2785 <rects> 2786 <_>1 16 12 6 -1.</_> 2787 <_>1 18 12 2 3.</_></rects> 2788 <tilted>0</tilted></feature> 2789 <threshold>-1.3302109437063336e-003</threshold> 2790 <left_val>0.1867033988237381</left_val> 2791 <right_val>-0.2943766117095947</right_val></_></_> 2792 <_> 2793 <!-- tree 21 --> 2794 <_> 2795 <!-- root node --> 2796 <feature> 2797 <rects> 2798 <_>13 8 2 14 -1.</_> 2799 <_>13 8 1 14 2.</_></rects> 2800 <tilted>0</tilted></feature> 2801 <threshold>-7.3667510878294706e-004</threshold> 2802 <left_val>-0.1478880047798157</left_val> 2803 <right_val>0.1012130007147789</right_val></_></_> 2804 <_> 2805 <!-- tree 22 --> 2806 <_> 2807 <!-- root node --> 2808 <feature> 2809 <rects> 2810 <_>4 8 2 14 -1.</_> 2811 <_>5 8 1 14 2.</_></rects> 2812 <tilted>0</tilted></feature> 2813 <threshold>-1.4602739829570055e-003</threshold> 2814 <left_val>-0.4310795962810516</left_val> 2815 <right_val>0.1247986033558846</right_val></_></_> 2816 <_> 2817 <!-- tree 23 --> 2818 <_> 2819 <!-- root node --> 2820 <feature> 2821 <rects> 2822 <_>9 0 10 4 -1.</_> 2823 <_>9 0 5 4 2.</_></rects> 2824 <tilted>0</tilted></feature> 2825 <threshold>0.0341856293380260</threshold> 2826 <left_val>-0.0579336509108543</left_val> 2827 <right_val>0.5491775870323181</right_val></_></_></trees> 2828 <stage_threshold>-1.0336159467697144</stage_threshold> 2829 <parent>9</parent> 2830 <next>-1</next></_> 2831 <_> 2832 <!-- stage 11 --> 2833 <trees> 2834 <_> 2835 <!-- tree 0 --> 2836 <_> 2837 <!-- root node --> 2838 <feature> 2839 <rects> 2840 <_>6 1 7 22 -1.</_> 2841 <_>6 12 7 11 2.</_></rects> 2842 <tilted>0</tilted></feature> 2843 <threshold>0.0306651107966900</threshold> 2844 <left_val>-0.3995327949523926</left_val> 2845 <right_val>0.3361752927303314</right_val></_></_> 2846 <_> 2847 <!-- tree 1 --> 2848 <_> 2849 <!-- root node --> 2850 <feature> 2851 <rects> 2852 <_>7 17 10 6 -1.</_> 2853 <_>12 17 5 3 2.</_> 2854 <_>7 20 5 3 2.</_></rects> 2855 <tilted>0</tilted></feature> 2856 <threshold>2.8893710114061832e-003</threshold> 2857 <left_val>-0.3874526917934418</left_val> 2858 <right_val>0.3056752085685730</right_val></_></_> 2859 <_> 2860 <!-- tree 2 --> 2861 <_> 2862 <!-- root node --> 2863 <feature> 2864 <rects> 2865 <_>6 6 6 5 -1.</_> 2866 <_>9 6 3 5 2.</_></rects> 2867 <tilted>0</tilted></feature> 2868 <threshold>-1.1876110220327973e-003</threshold> 2869 <left_val>0.2215023934841156</left_val> 2870 <right_val>-0.2963232100009918</right_val></_></_> 2871 <_> 2872 <!-- tree 3 --> 2873 <_> 2874 <!-- root node --> 2875 <feature> 2876 <rects> 2877 <_>3 20 15 3 -1.</_> 2878 <_>8 20 5 3 3.</_></rects> 2879 <tilted>0</tilted></feature> 2880 <threshold>4.0173018351197243e-003</threshold> 2881 <left_val>0.1310252994298935</left_val> 2882 <right_val>-0.4880341887474060</right_val></_></_> 2883 <_> 2884 <!-- tree 4 --> 2885 <_> 2886 <!-- root node --> 2887 <feature> 2888 <rects> 2889 <_>1 0 15 8 -1.</_> 2890 <_>1 4 15 4 2.</_></rects> 2891 <tilted>0</tilted></feature> 2892 <threshold>4.4870697893202305e-003</threshold> 2893 <left_val>-0.3328250944614410</left_val> 2894 <right_val>0.1637607067823410</right_val></_></_> 2895 <_> 2896 <!-- tree 5 --> 2897 <_> 2898 <!-- root node --> 2899 <feature> 2900 <rects> 2901 <_>2 0 16 6 -1.</_> 2902 <_>6 0 8 6 2.</_></rects> 2903 <tilted>0</tilted></feature> 2904 <threshold>0.0325395204126835</threshold> 2905 <left_val>-0.0591645091772079</left_val> 2906 <right_val>0.6995337009429932</right_val></_></_> 2907 <_> 2908 <!-- tree 6 --> 2909 <_> 2910 <!-- root node --> 2911 <feature> 2912 <rects> 2913 <_>2 20 10 3 -1.</_> 2914 <_>7 20 5 3 2.</_></rects> 2915 <tilted>0</tilted></feature> 2916 <threshold>-8.9682880789041519e-003</threshold> 2917 <left_val>-0.5628954172134399</left_val> 2918 <right_val>0.1175632029771805</right_val></_></_> 2919 <_> 2920 <!-- tree 7 --> 2921 <_> 2922 <!-- root node --> 2923 <feature> 2924 <rects> 2925 <_>9 19 10 3 -1.</_> 2926 <_>9 19 5 3 2.</_></rects> 2927 <tilted>0</tilted></feature> 2928 <threshold>-6.1743397964164615e-004</threshold> 2929 <left_val>0.1540825068950653</left_val> 2930 <right_val>-0.2735001146793366</right_val></_></_> 2931 <_> 2932 <!-- tree 8 --> 2933 <_> 2934 <!-- root node --> 2935 <feature> 2936 <rects> 2937 <_>3 18 6 5 -1.</_> 2938 <_>6 18 3 5 2.</_></rects> 2939 <tilted>0</tilted></feature> 2940 <threshold>-3.1031211256049573e-004</threshold> 2941 <left_val>0.1801355034112930</left_val> 2942 <right_val>-0.3757258951663971</right_val></_></_> 2943 <_> 2944 <!-- tree 9 --> 2945 <_> 2946 <!-- root node --> 2947 <feature> 2948 <rects> 2949 <_>9 0 6 9 -1.</_> 2950 <_>11 0 2 9 3.</_></rects> 2951 <tilted>0</tilted></feature> 2952 <threshold>0.0287750307470560</threshold> 2953 <left_val>-0.0342009291052818</left_val> 2954 <right_val>0.2764536142349243</right_val></_></_> 2955 <_> 2956 <!-- tree 10 --> 2957 <_> 2958 <!-- root node --> 2959 <feature> 2960 <rects> 2961 <_>4 0 6 9 -1.</_> 2962 <_>6 0 2 9 3.</_></rects> 2963 <tilted>0</tilted></feature> 2964 <threshold>-6.1647972324863076e-004</threshold> 2965 <left_val>0.1795312017202377</left_val> 2966 <right_val>-0.3517831861972809</right_val></_></_> 2967 <_> 2968 <!-- tree 11 --> 2969 <_> 2970 <!-- root node --> 2971 <feature> 2972 <rects> 2973 <_>10 9 4 14 -1.</_> 2974 <_>12 9 2 7 2.</_> 2975 <_>10 16 2 7 2.</_></rects> 2976 <tilted>0</tilted></feature> 2977 <threshold>2.1818219684064388e-003</threshold> 2978 <left_val>-0.1453299969434738</left_val> 2979 <right_val>0.1490014046430588</right_val></_></_> 2980 <_> 2981 <!-- tree 12 --> 2982 <_> 2983 <!-- root node --> 2984 <feature> 2985 <rects> 2986 <_>2 11 4 7 -1.</_> 2987 <_>4 11 2 7 2.</_></rects> 2988 <tilted>0</tilted></feature> 2989 <threshold>-2.4263889063149691e-003</threshold> 2990 <left_val>-0.4698129892349243</left_val> 2991 <right_val>0.0952622294425964</right_val></_></_> 2992 <_> 2993 <!-- tree 13 --> 2994 <_> 2995 <!-- root node --> 2996 <feature> 2997 <rects> 2998 <_>12 13 4 9 -1.</_> 2999 <_>12 13 2 9 2.</_></rects> 3000 <tilted>0</tilted></feature> 3001 <threshold>0.0254382099956274</threshold> 3002 <left_val>-0.0215314608067274</left_val> 3003 <right_val>0.3326692879199982</right_val></_></_> 3004 <_> 3005 <!-- tree 14 --> 3006 <_> 3007 <!-- root node --> 3008 <feature> 3009 <rects> 3010 <_>3 13 4 9 -1.</_> 3011 <_>5 13 2 9 2.</_></rects> 3012 <tilted>0</tilted></feature> 3013 <threshold>7.9593079863116145e-004</threshold> 3014 <left_val>0.1225496977567673</left_val> 3015 <right_val>-0.3567976951599121</right_val></_></_> 3016 <_> 3017 <!-- tree 15 --> 3018 <_> 3019 <!-- root node --> 3020 <feature> 3021 <rects> 3022 <_>9 13 10 6 -1.</_> 3023 <_>14 13 5 3 2.</_> 3024 <_>9 16 5 3 2.</_></rects> 3025 <tilted>0</tilted></feature> 3026 <threshold>5.6763447355479002e-004</threshold> 3027 <left_val>-0.1369418948888779</left_val> 3028 <right_val>0.1081883981823921</right_val></_></_> 3029 <_> 3030 <!-- tree 16 --> 3031 <_> 3032 <!-- root node --> 3033 <feature> 3034 <rects> 3035 <_>2 10 15 10 -1.</_> 3036 <_>7 10 5 10 3.</_></rects> 3037 <tilted>0</tilted></feature> 3038 <threshold>8.7481308728456497e-003</threshold> 3039 <left_val>-0.0908498689532280</left_val> 3040 <right_val>0.5011237859725952</right_val></_></_> 3041 <_> 3042 <!-- tree 17 --> 3043 <_> 3044 <!-- root node --> 3045 <feature> 3046 <rects> 3047 <_>10 9 4 14 -1.</_> 3048 <_>12 9 2 7 2.</_> 3049 <_>10 16 2 7 2.</_></rects> 3050 <tilted>0</tilted></feature> 3051 <threshold>-4.7468831762671471e-003</threshold> 3052 <left_val>0.1162924990057945</left_val> 3053 <right_val>-0.0146517297253013</right_val></_></_> 3054 <_> 3055 <!-- tree 18 --> 3056 <_> 3057 <!-- root node --> 3058 <feature> 3059 <rects> 3060 <_>5 9 4 14 -1.</_> 3061 <_>5 9 2 7 2.</_> 3062 <_>7 16 2 7 2.</_></rects> 3063 <tilted>0</tilted></feature> 3064 <threshold>3.0644210055470467e-003</threshold> 3065 <left_val>-0.2273963987827301</left_val> 3066 <right_val>0.2778067886829376</right_val></_></_> 3067 <_> 3068 <!-- tree 19 --> 3069 <_> 3070 <!-- root node --> 3071 <feature> 3072 <rects> 3073 <_>12 16 4 7 -1.</_> 3074 <_>12 16 2 7 2.</_></rects> 3075 <tilted>0</tilted></feature> 3076 <threshold>3.1514191068708897e-003</threshold> 3077 <left_val>0.0357106812298298</left_val> 3078 <right_val>-0.3229677975177765</right_val></_></_> 3079 <_> 3080 <!-- tree 20 --> 3081 <_> 3082 <!-- root node --> 3083 <feature> 3084 <rects> 3085 <_>3 16 4 7 -1.</_> 3086 <_>5 16 2 7 2.</_></rects> 3087 <tilted>0</tilted></feature> 3088 <threshold>-3.8335900753736496e-003</threshold> 3089 <left_val>-0.4839541912078857</left_val> 3090 <right_val>0.0926896035671234</right_val></_></_> 3091 <_> 3092 <!-- tree 21 --> 3093 <_> 3094 <!-- root node --> 3095 <feature> 3096 <rects> 3097 <_>8 17 7 6 -1.</_> 3098 <_>8 19 7 2 3.</_></rects> 3099 <tilted>0</tilted></feature> 3100 <threshold>-3.6972409579902887e-003</threshold> 3101 <left_val>0.1635161042213440</left_val> 3102 <right_val>-0.1465732008218765</right_val></_></_> 3103 <_> 3104 <!-- tree 22 --> 3105 <_> 3106 <!-- root node --> 3107 <feature> 3108 <rects> 3109 <_>0 20 15 3 -1.</_> 3110 <_>5 20 5 3 3.</_></rects> 3111 <tilted>0</tilted></feature> 3112 <threshold>6.7644561640918255e-003</threshold> 3113 <left_val>0.0803429409861565</left_val> 3114 <right_val>-0.5027298927307129</right_val></_></_> 3115 <_> 3116 <!-- tree 23 --> 3117 <_> 3118 <!-- root node --> 3119 <feature> 3120 <rects> 3121 <_>9 15 6 8 -1.</_> 3122 <_>9 19 6 4 2.</_></rects> 3123 <tilted>0</tilted></feature> 3124 <threshold>5.7455507339909673e-004</threshold> 3125 <left_val>-0.1953101009130478</left_val> 3126 <right_val>0.1239494979381561</right_val></_></_> 3127 <_> 3128 <!-- tree 24 --> 3129 <_> 3130 <!-- root node --> 3131 <feature> 3132 <rects> 3133 <_>0 0 10 10 -1.</_> 3134 <_>0 0 5 5 2.</_> 3135 <_>5 5 5 5 2.</_></rects> 3136 <tilted>0</tilted></feature> 3137 <threshold>0.0100083099678159</threshold> 3138 <left_val>-0.1503013968467712</left_val> 3139 <right_val>0.2799001932144165</right_val></_></_> 3140 <_> 3141 <!-- tree 25 --> 3142 <_> 3143 <!-- root node --> 3144 <feature> 3145 <rects> 3146 <_>9 0 10 3 -1.</_> 3147 <_>9 0 5 3 2.</_></rects> 3148 <tilted>0</tilted></feature> 3149 <threshold>-7.2150952182710171e-003</threshold> 3150 <left_val>0.1688206046819687</left_val> 3151 <right_val>-0.1227921992540360</right_val></_></_> 3152 <_> 3153 <!-- tree 26 --> 3154 <_> 3155 <!-- root node --> 3156 <feature> 3157 <rects> 3158 <_>0 0 10 3 -1.</_> 3159 <_>5 0 5 3 2.</_></rects> 3160 <tilted>0</tilted></feature> 3161 <threshold>0.0113108502700925</threshold> 3162 <left_val>-0.0967869088053703</left_val> 3163 <right_val>0.6460161805152893</right_val></_></_> 3164 <_> 3165 <!-- tree 27 --> 3166 <_> 3167 <!-- root node --> 3168 <feature> 3169 <rects> 3170 <_>10 4 4 10 -1.</_> 3171 <_>10 4 2 10 2.</_></rects> 3172 <tilted>1</tilted></feature> 3173 <threshold>0.1004989966750145</threshold> 3174 <left_val>0.0206101592630148</left_val> 3175 <right_val>-0.9998857975006104</right_val></_></_> 3176 <_> 3177 <!-- tree 28 --> 3178 <_> 3179 <!-- root node --> 3180 <feature> 3181 <rects> 3182 <_>9 4 10 4 -1.</_> 3183 <_>9 4 10 2 2.</_></rects> 3184 <tilted>1</tilted></feature> 3185 <threshold>0.0132508603855968</threshold> 3186 <left_val>0.0931477174162865</left_val> 3187 <right_val>-0.4815680086612701</right_val></_></_> 3188 <_> 3189 <!-- tree 29 --> 3190 <_> 3191 <!-- root node --> 3192 <feature> 3193 <rects> 3194 <_>6 4 12 12 -1.</_> 3195 <_>10 8 4 4 9.</_></rects> 3196 <tilted>0</tilted></feature> 3197 <threshold>-0.3908531069755554</threshold> 3198 <left_val>0.7105782032012940</left_val> 3199 <right_val>-0.0165488403290510</right_val></_></_> 3200 <_> 3201 <!-- tree 30 --> 3202 <_> 3203 <!-- root node --> 3204 <feature> 3205 <rects> 3206 <_>1 4 12 12 -1.</_> 3207 <_>5 8 4 4 9.</_></rects> 3208 <tilted>0</tilted></feature> 3209 <threshold>0.0243321992456913</threshold> 3210 <left_val>0.1452821046113968</left_val> 3211 <right_val>-0.2836672067642212</right_val></_></_> 3212 <_> 3213 <!-- tree 31 --> 3214 <_> 3215 <!-- root node --> 3216 <feature> 3217 <rects> 3218 <_>5 6 9 8 -1.</_> 3219 <_>5 8 9 4 2.</_></rects> 3220 <tilted>0</tilted></feature> 3221 <threshold>1.0354409459978342e-003</threshold> 3222 <left_val>-0.2001737058162689</left_val> 3223 <right_val>0.1879425048828125</right_val></_></_> 3224 <_> 3225 <!-- tree 32 --> 3226 <_> 3227 <!-- root node --> 3228 <feature> 3229 <rects> 3230 <_>2 1 15 21 -1.</_> 3231 <_>7 8 5 7 9.</_></rects> 3232 <tilted>0</tilted></feature> 3233 <threshold>-0.7174789905548096</threshold> 3234 <left_val>0.6663712859153748</left_val> 3235 <right_val>-0.0526562593877316</right_val></_></_></trees> 3236 <stage_threshold>-1.0450899600982666</stage_threshold> 3237 <parent>10</parent> 3238 <next>-1</next></_> 3239 <_> 3240 <!-- stage 12 --> 3241 <trees> 3242 <_> 3243 <!-- tree 0 --> 3244 <_> 3245 <!-- root node --> 3246 <feature> 3247 <rects> 3248 <_>1 16 9 7 -1.</_> 3249 <_>4 16 3 7 3.</_></rects> 3250 <tilted>0</tilted></feature> 3251 <threshold>1.9620559178292751e-003</threshold> 3252 <left_val>-0.4107770025730133</left_val> 3253 <right_val>0.1889685988426209</right_val></_></_> 3254 <_> 3255 <!-- tree 1 --> 3256 <_> 3257 <!-- root node --> 3258 <feature> 3259 <rects> 3260 <_>4 5 12 18 -1.</_> 3261 <_>10 5 6 9 2.</_> 3262 <_>4 14 6 9 2.</_></rects> 3263 <tilted>0</tilted></feature> 3264 <threshold>0.0213313698768616</threshold> 3265 <left_val>0.0925990194082260</left_val> 3266 <right_val>-0.3966045081615448</right_val></_></_> 3267 <_> 3268 <!-- tree 2 --> 3269 <_> 3270 <!-- root node --> 3271 <feature> 3272 <rects> 3273 <_>1 20 15 3 -1.</_> 3274 <_>6 20 5 3 3.</_></rects> 3275 <tilted>0</tilted></feature> 3276 <threshold>-0.0230374503880739</threshold> 3277 <left_val>-0.7229393720626831</left_val> 3278 <right_val>0.0964117199182510</right_val></_></_> 3279 <_> 3280 <!-- tree 3 --> 3281 <_> 3282 <!-- root node --> 3283 <feature> 3284 <rects> 3285 <_>3 4 16 13 -1.</_> 3286 <_>7 4 8 13 2.</_></rects> 3287 <tilted>0</tilted></feature> 3288 <threshold>-0.0505212284624577</threshold> 3289 <left_val>0.1830200999975205</left_val> 3290 <right_val>-0.1948277950286865</right_val></_></_> 3291 <_> 3292 <!-- tree 4 --> 3293 <_> 3294 <!-- root node --> 3295 <feature> 3296 <rects> 3297 <_>9 3 10 8 -1.</_> 3298 <_>9 3 5 8 2.</_></rects> 3299 <tilted>1</tilted></feature> 3300 <threshold>0.0253309197723866</threshold> 3301 <left_val>0.1033475995063782</left_val> 3302 <right_val>-0.5801829099655151</right_val></_></_> 3303 <_> 3304 <!-- tree 5 --> 3305 <_> 3306 <!-- root node --> 3307 <feature> 3308 <rects> 3309 <_>11 19 8 4 -1.</_> 3310 <_>11 19 4 4 2.</_></rects> 3311 <tilted>0</tilted></feature> 3312 <threshold>-4.3120220652781427e-004</threshold> 3313 <left_val>0.1337451934814453</left_val> 3314 <right_val>-0.2130098044872284</right_val></_></_> 3315 <_> 3316 <!-- tree 6 --> 3317 <_> 3318 <!-- root node --> 3319 <feature> 3320 <rects> 3321 <_>0 19 8 4 -1.</_> 3322 <_>4 19 4 4 2.</_></rects> 3323 <tilted>0</tilted></feature> 3324 <threshold>-1.4295669643615838e-005</threshold> 3325 <left_val>0.1842049062252045</left_val> 3326 <right_val>-0.3030023872852325</right_val></_></_> 3327 <_> 3328 <!-- tree 7 --> 3329 <_> 3330 <!-- root node --> 3331 <feature> 3332 <rects> 3333 <_>8 0 9 5 -1.</_> 3334 <_>11 0 3 5 3.</_></rects> 3335 <tilted>0</tilted></feature> 3336 <threshold>-2.8645719867199659e-003</threshold> 3337 <left_val>0.1737179011106491</left_val> 3338 <right_val>-0.2161282002925873</right_val></_></_> 3339 <_> 3340 <!-- tree 8 --> 3341 <_> 3342 <!-- root node --> 3343 <feature> 3344 <rects> 3345 <_>6 0 6 22 -1.</_> 3346 <_>6 0 3 11 2.</_> 3347 <_>9 11 3 11 2.</_></rects> 3348 <tilted>0</tilted></feature> 3349 <threshold>0.0103225102648139</threshold> 3350 <left_val>0.1107133030891419</left_val> 3351 <right_val>-0.4240294992923737</right_val></_></_> 3352 <_> 3353 <!-- tree 9 --> 3354 <_> 3355 <!-- root node --> 3356 <feature> 3357 <rects> 3358 <_>8 7 3 14 -1.</_> 3359 <_>9 7 1 14 3.</_></rects> 3360 <tilted>0</tilted></feature> 3361 <threshold>0.0138795096427202</threshold> 3362 <left_val>-0.1099329963326454</left_val> 3363 <right_val>0.5545889735221863</right_val></_></_> 3364 <_> 3365 <!-- tree 10 --> 3366 <_> 3367 <!-- root node --> 3368 <feature> 3369 <rects> 3370 <_>5 8 2 14 -1.</_> 3371 <_>6 8 1 14 2.</_></rects> 3372 <tilted>0</tilted></feature> 3373 <threshold>-1.7010340234264731e-003</threshold> 3374 <left_val>-0.3140952885150909</left_val> 3375 <right_val>0.1547477990388870</right_val></_></_> 3376 <_> 3377 <!-- tree 11 --> 3378 <_> 3379 <!-- root node --> 3380 <feature> 3381 <rects> 3382 <_>13 11 3 10 -1.</_> 3383 <_>13 16 3 5 2.</_></rects> 3384 <tilted>0</tilted></feature> 3385 <threshold>-2.7375848731026053e-004</threshold> 3386 <left_val>0.1467469036579132</left_val> 3387 <right_val>-0.1281761974096298</right_val></_></_> 3388 <_> 3389 <!-- tree 12 --> 3390 <_> 3391 <!-- root node --> 3392 <feature> 3393 <rects> 3394 <_>1 0 16 5 -1.</_> 3395 <_>5 0 8 5 2.</_></rects> 3396 <tilted>0</tilted></feature> 3397 <threshold>0.0399773791432381</threshold> 3398 <left_val>-0.0635403394699097</left_val> 3399 <right_val>0.6068580150604248</right_val></_></_> 3400 <_> 3401 <!-- tree 13 --> 3402 <_> 3403 <!-- root node --> 3404 <feature> 3405 <rects> 3406 <_>9 0 10 7 -1.</_> 3407 <_>9 0 5 7 2.</_></rects> 3408 <tilted>0</tilted></feature> 3409 <threshold>-0.0126633998006582</threshold> 3410 <left_val>0.1098226010799408</left_val> 3411 <right_val>-0.1270720958709717</right_val></_></_> 3412 <_> 3413 <!-- tree 14 --> 3414 <_> 3415 <!-- root node --> 3416 <feature> 3417 <rects> 3418 <_>0 0 18 23 -1.</_> 3419 <_>9 0 9 23 2.</_></rects> 3420 <tilted>0</tilted></feature> 3421 <threshold>0.1018676012754440</threshold> 3422 <left_val>0.0885058715939522</left_val> 3423 <right_val>-0.5716562271118164</right_val></_></_> 3424 <_> 3425 <!-- tree 15 --> 3426 <_> 3427 <!-- root node --> 3428 <feature> 3429 <rects> 3430 <_>5 8 12 15 -1.</_> 3431 <_>9 13 4 5 9.</_></rects> 3432 <tilted>0</tilted></feature> 3433 <threshold>-1.0695089586079121e-003</threshold> 3434 <left_val>0.0345948897302151</left_val> 3435 <right_val>-0.0996183082461357</right_val></_></_> 3436 <_> 3437 <!-- tree 16 --> 3438 <_> 3439 <!-- root node --> 3440 <feature> 3441 <rects> 3442 <_>3 0 6 7 -1.</_> 3443 <_>5 0 2 7 3.</_></rects> 3444 <tilted>0</tilted></feature> 3445 <threshold>-3.4467370714992285e-003</threshold> 3446 <left_val>0.2287151962518692</left_val> 3447 <right_val>-0.1966446936130524</right_val></_></_> 3448 <_> 3449 <!-- tree 17 --> 3450 <_> 3451 <!-- root node --> 3452 <feature> 3453 <rects> 3454 <_>5 8 12 15 -1.</_> 3455 <_>9 13 4 5 9.</_></rects> 3456 <tilted>0</tilted></feature> 3457 <threshold>-0.1232940033078194</threshold> 3458 <left_val>-0.1082564964890480</left_val> 3459 <right_val>0.0247283894568682</right_val></_></_> 3460 <_> 3461 <!-- tree 18 --> 3462 <_> 3463 <!-- root node --> 3464 <feature> 3465 <rects> 3466 <_>5 2 4 13 -1.</_> 3467 <_>7 2 2 13 2.</_></rects> 3468 <tilted>0</tilted></feature> 3469 <threshold>-0.0588325895369053</threshold> 3470 <left_val>0.5579158067703247</left_val> 3471 <right_val>-0.0776306763291359</right_val></_></_> 3472 <_> 3473 <!-- tree 19 --> 3474 <_> 3475 <!-- root node --> 3476 <feature> 3477 <rects> 3478 <_>3 11 14 2 -1.</_> 3479 <_>3 11 7 2 2.</_></rects> 3480 <tilted>0</tilted></feature> 3481 <threshold>9.7795920446515083e-003</threshold> 3482 <left_val>0.0949514880776405</left_val> 3483 <right_val>-0.5376737117767334</right_val></_></_> 3484 <_> 3485 <!-- tree 20 --> 3486 <_> 3487 <!-- root node --> 3488 <feature> 3489 <rects> 3490 <_>2 12 15 7 -1.</_> 3491 <_>7 12 5 7 3.</_></rects> 3492 <tilted>0</tilted></feature> 3493 <threshold>0.0111165698617697</threshold> 3494 <left_val>-0.0892886072397232</left_val> 3495 <right_val>0.4669542908668518</right_val></_></_> 3496 <_> 3497 <!-- tree 21 --> 3498 <_> 3499 <!-- root node --> 3500 <feature> 3501 <rects> 3502 <_>5 8 12 15 -1.</_> 3503 <_>9 13 4 5 9.</_></rects> 3504 <tilted>0</tilted></feature> 3505 <threshold>-0.0153982602059841</threshold> 3506 <left_val>0.0904324874281883</left_val> 3507 <right_val>-0.1223379969596863</right_val></_></_> 3508 <_> 3509 <!-- tree 22 --> 3510 <_> 3511 <!-- root node --> 3512 <feature> 3513 <rects> 3514 <_>0 14 15 9 -1.</_> 3515 <_>5 14 5 9 3.</_></rects> 3516 <tilted>0</tilted></feature> 3517 <threshold>5.8570769615471363e-003</threshold> 3518 <left_val>0.1085970997810364</left_val> 3519 <right_val>-0.4096176028251648</right_val></_></_> 3520 <_> 3521 <!-- tree 23 --> 3522 <_> 3523 <!-- root node --> 3524 <feature> 3525 <rects> 3526 <_>6 15 12 8 -1.</_> 3527 <_>9 15 6 8 2.</_></rects> 3528 <tilted>0</tilted></feature> 3529 <threshold>0.0661747530102730</threshold> 3530 <left_val>-4.4282642193138599e-003</left_val> 3531 <right_val>-0.8805553913116455</right_val></_></_> 3532 <_> 3533 <!-- tree 24 --> 3534 <_> 3535 <!-- root node --> 3536 <feature> 3537 <rects> 3538 <_>1 15 12 8 -1.</_> 3539 <_>4 15 6 8 2.</_></rects> 3540 <tilted>0</tilted></feature> 3541 <threshold>-0.0106364898383617</threshold> 3542 <left_val>-0.4454157054424286</left_val> 3543 <right_val>0.1095374003052712</right_val></_></_> 3544 <_> 3545 <!-- tree 25 --> 3546 <_> 3547 <!-- root node --> 3548 <feature> 3549 <rects> 3550 <_>8 6 3 14 -1.</_> 3551 <_>9 6 1 14 3.</_></rects> 3552 <tilted>0</tilted></feature> 3553 <threshold>-0.0313635990023613</threshold> 3554 <left_val>0.8054689168930054</left_val> 3555 <right_val>-0.0498838908970356</right_val></_></_> 3556 <_> 3557 <!-- tree 26 --> 3558 <_> 3559 <!-- root node --> 3560 <feature> 3561 <rects> 3562 <_>4 5 4 14 -1.</_> 3563 <_>5 5 2 14 2.</_></rects> 3564 <tilted>0</tilted></feature> 3565 <threshold>9.8021561279892921e-004</threshold> 3566 <left_val>-0.2342832982540131</left_val> 3567 <right_val>0.1693440973758698</right_val></_></_> 3568 <_> 3569 <!-- tree 27 --> 3570 <_> 3571 <!-- root node --> 3572 <feature> 3573 <rects> 3574 <_>11 5 3 14 -1.</_> 3575 <_>12 5 1 14 3.</_></rects> 3576 <tilted>0</tilted></feature> 3577 <threshold>5.3463829681277275e-003</threshold> 3578 <left_val>-0.1072918027639389</left_val> 3579 <right_val>0.2544754147529602</right_val></_></_> 3580 <_> 3581 <!-- tree 28 --> 3582 <_> 3583 <!-- root node --> 3584 <feature> 3585 <rects> 3586 <_>1 10 6 9 -1.</_> 3587 <_>3 10 2 9 3.</_></rects> 3588 <tilted>0</tilted></feature> 3589 <threshold>-5.1919990219175816e-003</threshold> 3590 <left_val>-0.5149661898612976</left_val> 3591 <right_val>0.0851181373000145</right_val></_></_> 3592 <_> 3593 <!-- tree 29 --> 3594 <_> 3595 <!-- root node --> 3596 <feature> 3597 <rects> 3598 <_>2 8 16 10 -1.</_> 3599 <_>6 8 8 10 2.</_></rects> 3600 <tilted>0</tilted></feature> 3601 <threshold>0.0187216494232416</threshold> 3602 <left_val>-0.0840522125363350</left_val> 3603 <right_val>0.4783689975738525</right_val></_></_> 3604 <_> 3605 <!-- tree 30 --> 3606 <_> 3607 <!-- root node --> 3608 <feature> 3609 <rects> 3610 <_>6 17 6 6 -1.</_> 3611 <_>6 20 6 3 2.</_></rects> 3612 <tilted>0</tilted></feature> 3613 <threshold>3.7875440903007984e-003</threshold> 3614 <left_val>-0.2314565926790237</left_val> 3615 <right_val>0.1605298966169357</right_val></_></_> 3616 <_> 3617 <!-- tree 31 --> 3618 <_> 3619 <!-- root node --> 3620 <feature> 3621 <rects> 3622 <_>1 10 18 10 -1.</_> 3623 <_>10 10 9 5 2.</_> 3624 <_>1 15 9 5 2.</_></rects> 3625 <tilted>0</tilted></feature> 3626 <threshold>6.8765478208661079e-003</threshold> 3627 <left_val>0.0965593829751015</left_val> 3628 <right_val>-0.2383296042680740</right_val></_></_> 3629 <_> 3630 <!-- tree 32 --> 3631 <_> 3632 <!-- root node --> 3633 <feature> 3634 <rects> 3635 <_>6 0 7 4 -1.</_> 3636 <_>6 2 7 2 2.</_></rects> 3637 <tilted>0</tilted></feature> 3638 <threshold>-5.4661519825458527e-003</threshold> 3639 <left_val>-0.3787173032760620</left_val> 3640 <right_val>0.0878514871001244</right_val></_></_> 3641 <_> 3642 <!-- tree 33 --> 3643 <_> 3644 <!-- root node --> 3645 <feature> 3646 <rects> 3647 <_>0 6 19 3 -1.</_> 3648 <_>0 7 19 1 3.</_></rects> 3649 <tilted>0</tilted></feature> 3650 <threshold>-0.0158294495195150</threshold> 3651 <left_val>0.5215951204299927</left_val> 3652 <right_val>-0.0739168673753738</right_val></_></_> 3653 <_> 3654 <!-- tree 34 --> 3655 <_> 3656 <!-- root node --> 3657 <feature> 3658 <rects> 3659 <_>9 11 6 6 -1.</_> 3660 <_>9 11 3 6 2.</_></rects> 3661 <tilted>1</tilted></feature> 3662 <threshold>0.0127719901502132</threshold> 3663 <left_val>0.1065872982144356</left_val> 3664 <right_val>-0.3285045921802521</right_val></_></_> 3665 <_> 3666 <!-- tree 35 --> 3667 <_> 3668 <!-- root node --> 3669 <feature> 3670 <rects> 3671 <_>7 0 9 5 -1.</_> 3672 <_>10 0 3 5 3.</_></rects> 3673 <tilted>0</tilted></feature> 3674 <threshold>0.0470007807016373</threshold> 3675 <left_val>-0.0295480005443096</left_val> 3676 <right_val>0.4846934974193573</right_val></_></_> 3677 <_> 3678 <!-- tree 36 --> 3679 <_> 3680 <!-- root node --> 3681 <feature> 3682 <rects> 3683 <_>0 3 9 4 -1.</_> 3684 <_>0 5 9 2 2.</_></rects> 3685 <tilted>0</tilted></feature> 3686 <threshold>1.1224800255149603e-003</threshold> 3687 <left_val>-0.2139565944671631</left_val> 3688 <right_val>0.1540776044130325</right_val></_></_> 3689 <_> 3690 <!-- tree 37 --> 3691 <_> 3692 <!-- root node --> 3693 <feature> 3694 <rects> 3695 <_>1 18 17 2 -1.</_> 3696 <_>1 19 17 1 2.</_></rects> 3697 <tilted>0</tilted></feature> 3698 <threshold>-1.0136750061064959e-003</threshold> 3699 <left_val>0.2357473969459534</left_val> 3700 <right_val>-0.1453679949045181</right_val></_></_> 3701 <_> 3702 <!-- tree 38 --> 3703 <_> 3704 <!-- root node --> 3705 <feature> 3706 <rects> 3707 <_>7 3 4 8 -1.</_> 3708 <_>9 3 2 8 2.</_></rects> 3709 <tilted>0</tilted></feature> 3710 <threshold>5.2841319702565670e-003</threshold> 3711 <left_val>0.0805362164974213</left_val> 3712 <right_val>-0.3641724884510040</right_val></_></_> 3713 <_> 3714 <!-- tree 39 --> 3715 <_> 3716 <!-- root node --> 3717 <feature> 3718 <rects> 3719 <_>9 9 2 14 -1.</_> 3720 <_>9 9 1 14 2.</_></rects> 3721 <tilted>0</tilted></feature> 3722 <threshold>-0.0176086891442537</threshold> 3723 <left_val>0.5385882258415222</left_val> 3724 <right_val>-0.0357418507337570</right_val></_></_> 3725 <_> 3726 <!-- tree 40 --> 3727 <_> 3728 <!-- root node --> 3729 <feature> 3730 <rects> 3731 <_>8 8 3 14 -1.</_> 3732 <_>9 8 1 14 3.</_></rects> 3733 <tilted>0</tilted></feature> 3734 <threshold>0.0347106084227562</threshold> 3735 <left_val>-0.0432614609599113</left_val> 3736 <right_val>0.7781760096549988</right_val></_></_> 3737 <_> 3738 <!-- tree 41 --> 3739 <_> 3740 <!-- root node --> 3741 <feature> 3742 <rects> 3743 <_>10 1 9 4 -1.</_> 3744 <_>10 3 9 2 2.</_></rects> 3745 <tilted>0</tilted></feature> 3746 <threshold>0.0164503492414951</threshold> 3747 <left_val>0.0418150909245014</left_val> 3748 <right_val>-0.3491267859935761</right_val></_></_></trees> 3749 <stage_threshold>-1.0599969625473022</stage_threshold> 3750 <parent>11</parent> 3751 <next>-1</next></_> 3752 <_> 3753 <!-- stage 13 --> 3754 <trees> 3755 <_> 3756 <!-- tree 0 --> 3757 <_> 3758 <!-- root node --> 3759 <feature> 3760 <rects> 3761 <_>0 12 10 3 -1.</_> 3762 <_>5 12 5 3 2.</_></rects> 3763 <tilted>0</tilted></feature> 3764 <threshold>-1.7846419941633940e-003</threshold> 3765 <left_val>0.2201481014490128</left_val> 3766 <right_val>-0.3691265881061554</right_val></_></_> 3767 <_> 3768 <!-- tree 1 --> 3769 <_> 3770 <!-- root node --> 3771 <feature> 3772 <rects> 3773 <_>8 6 4 12 -1.</_> 3774 <_>8 12 4 6 2.</_></rects> 3775 <tilted>0</tilted></feature> 3776 <threshold>-6.1350408941507339e-004</threshold> 3777 <left_val>-0.3069599866867065</left_val> 3778 <right_val>0.0977177917957306</right_val></_></_> 3779 <_> 3780 <!-- tree 2 --> 3781 <_> 3782 <!-- root node --> 3783 <feature> 3784 <rects> 3785 <_>3 12 4 7 -1.</_> 3786 <_>5 12 2 7 2.</_></rects> 3787 <tilted>0</tilted></feature> 3788 <threshold>-2.5726810563355684e-003</threshold> 3789 <left_val>-0.3778905868530273</left_val> 3790 <right_val>0.1704214960336685</right_val></_></_> 3791 <_> 3792 <!-- tree 3 --> 3793 <_> 3794 <!-- root node --> 3795 <feature> 3796 <rects> 3797 <_>6 17 12 6 -1.</_> 3798 <_>12 17 6 3 2.</_> 3799 <_>6 20 6 3 2.</_></rects> 3800 <tilted>0</tilted></feature> 3801 <threshold>8.8661757763475180e-004</threshold> 3802 <left_val>-0.3792907893657684</left_val> 3803 <right_val>0.0932899713516235</right_val></_></_> 3804 <_> 3805 <!-- tree 4 --> 3806 <_> 3807 <!-- root node --> 3808 <feature> 3809 <rects> 3810 <_>0 16 18 6 -1.</_> 3811 <_>9 16 9 6 2.</_></rects> 3812 <tilted>0</tilted></feature> 3813 <threshold>0.0357162393629551</threshold> 3814 <left_val>0.0731693133711815</left_val> 3815 <right_val>-0.6179289817810059</right_val></_></_> 3816 <_> 3817 <!-- tree 5 --> 3818 <_> 3819 <!-- root node --> 3820 <feature> 3821 <rects> 3822 <_>12 0 4 14 -1.</_> 3823 <_>14 0 2 7 2.</_> 3824 <_>12 7 2 7 2.</_></rects> 3825 <tilted>0</tilted></feature> 3826 <threshold>0.0351628400385380</threshold> 3827 <left_val>-0.0123282503336668</left_val> 3828 <right_val>0.4489463865756989</right_val></_></_> 3829 <_> 3830 <!-- tree 6 --> 3831 <_> 3832 <!-- root node --> 3833 <feature> 3834 <rects> 3835 <_>1 21 14 2 -1.</_> 3836 <_>8 21 7 2 2.</_></rects> 3837 <tilted>0</tilted></feature> 3838 <threshold>-5.8216741308569908e-003</threshold> 3839 <left_val>-0.4950199127197266</left_val> 3840 <right_val>0.0880059525370598</right_val></_></_> 3841 <_> 3842 <!-- tree 7 --> 3843 <_> 3844 <!-- root node --> 3845 <feature> 3846 <rects> 3847 <_>9 19 8 4 -1.</_> 3848 <_>9 19 4 4 2.</_></rects> 3849 <tilted>0</tilted></feature> 3850 <threshold>-7.7909301035106182e-004</threshold> 3851 <left_val>0.1115411967039108</left_val> 3852 <right_val>-0.2831655144691467</right_val></_></_> 3853 <_> 3854 <!-- tree 8 --> 3855 <_> 3856 <!-- root node --> 3857 <feature> 3858 <rects> 3859 <_>1 0 12 4 -1.</_> 3860 <_>5 0 4 4 3.</_></rects> 3861 <tilted>0</tilted></feature> 3862 <threshold>-6.8164491094648838e-003</threshold> 3863 <left_val>0.1843418031930924</left_val> 3864 <right_val>-0.2372706979513168</right_val></_></_> 3865 <_> 3866 <!-- tree 9 --> 3867 <_> 3868 <!-- root node --> 3869 <feature> 3870 <rects> 3871 <_>10 1 8 5 -1.</_> 3872 <_>10 1 4 5 2.</_></rects> 3873 <tilted>0</tilted></feature> 3874 <threshold>9.0218139812350273e-003</threshold> 3875 <left_val>-0.0537735596299171</left_val> 3876 <right_val>0.2617498934268951</right_val></_></_> 3877 <_> 3878 <!-- tree 10 --> 3879 <_> 3880 <!-- root node --> 3881 <feature> 3882 <rects> 3883 <_>0 13 6 10 -1.</_> 3884 <_>2 13 2 10 3.</_></rects> 3885 <tilted>0</tilted></feature> 3886 <threshold>-6.7481878213584423e-003</threshold> 3887 <left_val>-0.5047510862350464</left_val> 3888 <right_val>0.0766144171357155</right_val></_></_> 3889 <_> 3890 <!-- tree 11 --> 3891 <_> 3892 <!-- root node --> 3893 <feature> 3894 <rects> 3895 <_>8 9 3 14 -1.</_> 3896 <_>9 9 1 14 3.</_></rects> 3897 <tilted>0</tilted></feature> 3898 <threshold>7.5771231204271317e-003</threshold> 3899 <left_val>-0.1192611008882523</left_val> 3900 <right_val>0.3421041965484619</right_val></_></_> 3901 <_> 3902 <!-- tree 12 --> 3903 <_> 3904 <!-- root node --> 3905 <feature> 3906 <rects> 3907 <_>9 7 10 2 -1.</_> 3908 <_>9 7 10 1 2.</_></rects> 3909 <tilted>1</tilted></feature> 3910 <threshold>-4.6335519291460514e-003</threshold> 3911 <left_val>-0.4908828139305115</left_val> 3912 <right_val>0.0695420205593109</right_val></_></_> 3913 <_> 3914 <!-- tree 13 --> 3915 <_> 3916 <!-- root node --> 3917 <feature> 3918 <rects> 3919 <_>2 16 15 3 -1.</_> 3920 <_>7 16 5 3 3.</_></rects> 3921 <tilted>0</tilted></feature> 3922 <threshold>4.1346959769725800e-003</threshold> 3923 <left_val>-0.0815914273262024</left_val> 3924 <right_val>0.4787966012954712</right_val></_></_> 3925 <_> 3926 <!-- tree 14 --> 3927 <_> 3928 <!-- root node --> 3929 <feature> 3930 <rects> 3931 <_>5 1 8 17 -1.</_> 3932 <_>9 1 4 17 2.</_></rects> 3933 <tilted>0</tilted></feature> 3934 <threshold>-9.8444558680057526e-003</threshold> 3935 <left_val>0.2012421041727066</left_val> 3936 <right_val>-0.2376928031444550</right_val></_></_> 3937 <_> 3938 <!-- tree 15 --> 3939 <_> 3940 <!-- root node --> 3941 <feature> 3942 <rects> 3943 <_>9 19 8 4 -1.</_> 3944 <_>9 19 4 4 2.</_></rects> 3945 <tilted>0</tilted></feature> 3946 <threshold>-0.0348970703780651</threshold> 3947 <left_val>-0.9102467894554138</left_val> 3948 <right_val>0.0185795407742262</right_val></_></_> 3949 <_> 3950 <!-- tree 16 --> 3951 <_> 3952 <!-- root node --> 3953 <feature> 3954 <rects> 3955 <_>2 19 8 4 -1.</_> 3956 <_>6 19 4 4 2.</_></rects> 3957 <tilted>0</tilted></feature> 3958 <threshold>-3.5042490344494581e-004</threshold> 3959 <left_val>0.1247946992516518</left_val> 3960 <right_val>-0.3071714937686920</right_val></_></_> 3961 <_> 3962 <!-- tree 17 --> 3963 <_> 3964 <!-- root node --> 3965 <feature> 3966 <rects> 3967 <_>10 0 8 7 -1.</_> 3968 <_>10 0 4 7 2.</_></rects> 3969 <tilted>0</tilted></feature> 3970 <threshold>-9.4668623059988022e-003</threshold> 3971 <left_val>0.1133294999599457</left_val> 3972 <right_val>-0.1611589044332504</right_val></_></_> 3973 <_> 3974 <!-- tree 18 --> 3975 <_> 3976 <!-- root node --> 3977 <feature> 3978 <rects> 3979 <_>1 0 8 7 -1.</_> 3980 <_>5 0 4 7 2.</_></rects> 3981 <tilted>0</tilted></feature> 3982 <threshold>0.0220534093677998</threshold> 3983 <left_val>-0.0797844007611275</left_val> 3984 <right_val>0.6073901057243347</right_val></_></_> 3985 <_> 3986 <!-- tree 19 --> 3987 <_> 3988 <!-- root node --> 3989 <feature> 3990 <rects> 3991 <_>12 16 7 4 -1.</_> 3992 <_>12 18 7 2 2.</_></rects> 3993 <tilted>0</tilted></feature> 3994 <threshold>-7.2947797889355570e-005</threshold> 3995 <left_val>0.1444911956787109</left_val> 3996 <right_val>-0.1370615065097809</right_val></_></_> 3997 <_> 3998 <!-- tree 20 --> 3999 <_> 4000 <!-- root node --> 4001 <feature> 4002 <rects> 4003 <_>7 0 4 14 -1.</_> 4004 <_>9 0 2 14 2.</_></rects> 4005 <tilted>0</tilted></feature> 4006 <threshold>-7.5134839862585068e-003</threshold> 4007 <left_val>-0.3074442148208618</left_val> 4008 <right_val>0.1027908027172089</right_val></_></_> 4009 <_> 4010 <!-- tree 21 --> 4011 <_> 4012 <!-- root node --> 4013 <feature> 4014 <rects> 4015 <_>2 18 15 3 -1.</_> 4016 <_>2 19 15 1 3.</_></rects> 4017 <tilted>0</tilted></feature> 4018 <threshold>0.0103119397535920</threshold> 4019 <left_val>-0.0702461972832680</left_val> 4020 <right_val>0.4830701053142548</right_val></_></_> 4021 <_> 4022 <!-- tree 22 --> 4023 <_> 4024 <!-- root node --> 4025 <feature> 4026 <rects> 4027 <_>7 1 4 7 -1.</_> 4028 <_>9 1 2 7 2.</_></rects> 4029 <tilted>0</tilted></feature> 4030 <threshold>9.4670448452234268e-003</threshold> 4031 <left_val>0.0702818036079407</left_val> 4032 <right_val>-0.4706951975822449</right_val></_></_> 4033 <_> 4034 <!-- tree 23 --> 4035 <_> 4036 <!-- root node --> 4037 <feature> 4038 <rects> 4039 <_>11 5 3 15 -1.</_> 4040 <_>12 5 1 15 3.</_></rects> 4041 <tilted>0</tilted></feature> 4042 <threshold>-0.0301162395626307</threshold> 4043 <left_val>0.5237855911254883</left_val> 4044 <right_val>-0.0371096692979336</right_val></_></_> 4045 <_> 4046 <!-- tree 24 --> 4047 <_> 4048 <!-- root node --> 4049 <feature> 4050 <rects> 4051 <_>0 10 6 10 -1.</_> 4052 <_>0 10 3 5 2.</_> 4053 <_>3 15 3 5 2.</_></rects> 4054 <tilted>0</tilted></feature> 4055 <threshold>-0.0126678496599197</threshold> 4056 <left_val>-0.6082589030265808</left_val> 4057 <right_val>0.0504446700215340</right_val></_></_> 4058 <_> 4059 <!-- tree 25 --> 4060 <_> 4061 <!-- root node --> 4062 <feature> 4063 <rects> 4064 <_>11 5 3 15 -1.</_> 4065 <_>12 5 1 15 3.</_></rects> 4066 <tilted>0</tilted></feature> 4067 <threshold>2.2987429983913898e-003</threshold> 4068 <left_val>-0.1180867999792099</left_val> 4069 <right_val>0.1739389002323151</right_val></_></_> 4070 <_> 4071 <!-- tree 26 --> 4072 <_> 4073 <!-- root node --> 4074 <feature> 4075 <rects> 4076 <_>5 5 3 15 -1.</_> 4077 <_>6 5 1 15 3.</_></rects> 4078 <tilted>0</tilted></feature> 4079 <threshold>2.5533209554851055e-003</threshold> 4080 <left_val>-0.1662597954273224</left_val> 4081 <right_val>0.1976895928382874</right_val></_></_> 4082 <_> 4083 <!-- tree 27 --> 4084 <_> 4085 <!-- root node --> 4086 <feature> 4087 <rects> 4088 <_>6 5 12 12 -1.</_> 4089 <_>6 5 6 12 2.</_></rects> 4090 <tilted>0</tilted></feature> 4091 <threshold>-0.3321819901466370</threshold> 4092 <left_val>-0.9540778994560242</left_val> 4093 <right_val>4.1291080415248871e-003</right_val></_></_> 4094 <_> 4095 <!-- tree 28 --> 4096 <_> 4097 <!-- root node --> 4098 <feature> 4099 <rects> 4100 <_>1 4 12 16 -1.</_> 4101 <_>7 4 6 16 2.</_></rects> 4102 <tilted>0</tilted></feature> 4103 <threshold>5.4485369473695755e-003</threshold> 4104 <left_val>-0.0912205427885056</left_val> 4105 <right_val>0.3983474969863892</right_val></_></_> 4106 <_> 4107 <!-- tree 29 --> 4108 <_> 4109 <!-- root node --> 4110 <feature> 4111 <rects> 4112 <_>11 4 6 7 -1.</_> 4113 <_>13 4 2 7 3.</_></rects> 4114 <tilted>0</tilted></feature> 4115 <threshold>4.7633191570639610e-003</threshold> 4116 <left_val>-0.1206988990306854</left_val> 4117 <right_val>0.1616933941841126</right_val></_></_> 4118 <_> 4119 <!-- tree 30 --> 4120 <_> 4121 <!-- root node --> 4122 <feature> 4123 <rects> 4124 <_>1 7 4 16 -1.</_> 4125 <_>1 7 2 8 2.</_> 4126 <_>3 15 2 8 2.</_></rects> 4127 <tilted>0</tilted></feature> 4128 <threshold>4.4371229596436024e-003</threshold> 4129 <left_val>0.0859281867742538</left_val> 4130 <right_val>-0.4442718923091888</right_val></_></_> 4131 <_> 4132 <!-- tree 31 --> 4133 <_> 4134 <!-- root node --> 4135 <feature> 4136 <rects> 4137 <_>11 1 2 22 -1.</_> 4138 <_>11 12 2 11 2.</_></rects> 4139 <tilted>0</tilted></feature> 4140 <threshold>2.7019889093935490e-003</threshold> 4141 <left_val>-0.1951121985912323</left_val> 4142 <right_val>0.0711416602134705</right_val></_></_> 4143 <_> 4144 <!-- tree 32 --> 4145 <_> 4146 <!-- root node --> 4147 <feature> 4148 <rects> 4149 <_>1 18 14 3 -1.</_> 4150 <_>1 19 14 1 3.</_></rects> 4151 <tilted>0</tilted></feature> 4152 <threshold>-1.4219670556485653e-003</threshold> 4153 <left_val>0.1908950060606003</left_val> 4154 <right_val>-0.1888048946857452</right_val></_></_> 4155 <_> 4156 <!-- tree 33 --> 4157 <_> 4158 <!-- root node --> 4159 <feature> 4160 <rects> 4161 <_>7 18 12 5 -1.</_> 4162 <_>11 18 4 5 3.</_></rects> 4163 <tilted>0</tilted></feature> 4164 <threshold>-6.9531630724668503e-003</threshold> 4165 <left_val>-0.2619152069091797</left_val> 4166 <right_val>0.0774881467223167</right_val></_></_> 4167 <_> 4168 <!-- tree 34 --> 4169 <_> 4170 <!-- root node --> 4171 <feature> 4172 <rects> 4173 <_>1 0 16 19 -1.</_> 4174 <_>5 0 8 19 2.</_></rects> 4175 <tilted>0</tilted></feature> 4176 <threshold>-0.2655436098575592</threshold> 4177 <left_val>0.4789358079433441</left_val> 4178 <right_val>-0.0788302570581436</right_val></_></_> 4179 <_> 4180 <!-- tree 35 --> 4181 <_> 4182 <!-- root node --> 4183 <feature> 4184 <rects> 4185 <_>6 17 12 6 -1.</_> 4186 <_>9 17 6 6 2.</_></rects> 4187 <tilted>0</tilted></feature> 4188 <threshold>5.4960828274488449e-003</threshold> 4189 <left_val>0.0647488087415695</left_val> 4190 <right_val>-0.4089879095554352</right_val></_></_> 4191 <_> 4192 <!-- tree 36 --> 4193 <_> 4194 <!-- root node --> 4195 <feature> 4196 <rects> 4197 <_>7 11 8 4 -1.</_> 4198 <_>7 11 4 4 2.</_></rects> 4199 <tilted>1</tilted></feature> 4200 <threshold>0.0160609297454357</threshold> 4201 <left_val>0.0948685035109520</left_val> 4202 <right_val>-0.3504076898097992</right_val></_></_> 4203 <_> 4204 <!-- tree 37 --> 4205 <_> 4206 <!-- root node --> 4207 <feature> 4208 <rects> 4209 <_>10 9 3 14 -1.</_> 4210 <_>11 9 1 14 3.</_></rects> 4211 <tilted>0</tilted></feature> 4212 <threshold>-3.5279421135783195e-003</threshold> 4213 <left_val>0.2270454019308090</left_val> 4214 <right_val>-0.1501103937625885</right_val></_></_> 4215 <_> 4216 <!-- tree 38 --> 4217 <_> 4218 <!-- root node --> 4219 <feature> 4220 <rects> 4221 <_>2 11 15 8 -1.</_> 4222 <_>7 11 5 8 3.</_></rects> 4223 <tilted>0</tilted></feature> 4224 <threshold>0.0151897203177214</threshold> 4225 <left_val>-0.0860336422920227</left_val> 4226 <right_val>0.5037524104118347</right_val></_></_> 4227 <_> 4228 <!-- tree 39 --> 4229 <_> 4230 <!-- root node --> 4231 <feature> 4232 <rects> 4233 <_>11 6 7 8 -1.</_> 4234 <_>11 6 7 4 2.</_></rects> 4235 <tilted>1</tilted></feature> 4236 <threshold>9.8117031157016754e-003</threshold> 4237 <left_val>0.0919458568096161</left_val> 4238 <right_val>-0.2713471055030823</right_val></_></_> 4239 <_> 4240 <!-- tree 40 --> 4241 <_> 4242 <!-- root node --> 4243 <feature> 4244 <rects> 4245 <_>8 6 8 7 -1.</_> 4246 <_>8 6 4 7 2.</_></rects> 4247 <tilted>1</tilted></feature> 4248 <threshold>-8.9835934340953827e-003</threshold> 4249 <left_val>-0.3572193086147308</left_val> 4250 <right_val>0.1156433001160622</right_val></_></_> 4251 <_> 4252 <!-- tree 41 --> 4253 <_> 4254 <!-- root node --> 4255 <feature> 4256 <rects> 4257 <_>10 9 3 14 -1.</_> 4258 <_>11 9 1 14 3.</_></rects> 4259 <tilted>0</tilted></feature> 4260 <threshold>0.0254724305123091</threshold> 4261 <left_val>-0.0388618782162666</left_val> 4262 <right_val>0.5070732235908508</right_val></_></_> 4263 <_> 4264 <!-- tree 42 --> 4265 <_> 4266 <!-- root node --> 4267 <feature> 4268 <rects> 4269 <_>6 9 3 14 -1.</_> 4270 <_>7 9 1 14 3.</_></rects> 4271 <tilted>0</tilted></feature> 4272 <threshold>1.3594819465652108e-003</threshold> 4273 <left_val>-0.1512742042541504</left_val> 4274 <right_val>0.2333243936300278</right_val></_></_> 4275 <_> 4276 <!-- tree 43 --> 4277 <_> 4278 <!-- root node --> 4279 <feature> 4280 <rects> 4281 <_>7 0 6 12 -1.</_> 4282 <_>7 0 3 12 2.</_></rects> 4283 <tilted>0</tilted></feature> 4284 <threshold>0.0146731296554208</threshold> 4285 <left_val>0.0763864815235138</left_val> 4286 <right_val>-0.4312626123428345</right_val></_></_> 4287 <_> 4288 <!-- tree 44 --> 4289 <_> 4290 <!-- root node --> 4291 <feature> 4292 <rects> 4293 <_>5 2 3 16 -1.</_> 4294 <_>6 2 1 16 3.</_></rects> 4295 <tilted>0</tilted></feature> 4296 <threshold>-0.0217572394758463</threshold> 4297 <left_val>0.6030660867691040</left_val> 4298 <right_val>-0.0579266697168350</right_val></_></_></trees> 4299 <stage_threshold>-1.0216469764709473</stage_threshold> 4300 <parent>12</parent> 4301 <next>-1</next></_> 4302 <_> 4303 <!-- stage 14 --> 4304 <trees> 4305 <_> 4306 <!-- tree 0 --> 4307 <_> 4308 <!-- root node --> 4309 <feature> 4310 <rects> 4311 <_>1 4 15 7 -1.</_> 4312 <_>6 4 5 7 3.</_></rects> 4313 <tilted>0</tilted></feature> 4314 <threshold>-0.0191228501498699</threshold> 4315 <left_val>0.2142305970191956</left_val> 4316 <right_val>-0.4017831087112427</right_val></_></_> 4317 <_> 4318 <!-- tree 1 --> 4319 <_> 4320 <!-- root node --> 4321 <feature> 4322 <rects> 4323 <_>12 13 4 8 -1.</_> 4324 <_>12 17 4 4 2.</_></rects> 4325 <tilted>0</tilted></feature> 4326 <threshold>-4.0749661275185645e-004</threshold> 4327 <left_val>0.1083780005574226</left_val> 4328 <right_val>-0.0978470072150230</right_val></_></_> 4329 <_> 4330 <!-- tree 2 --> 4331 <_> 4332 <!-- root node --> 4333 <feature> 4334 <rects> 4335 <_>2 11 12 12 -1.</_> 4336 <_>6 15 4 4 9.</_></rects> 4337 <tilted>0</tilted></feature> 4338 <threshold>0.0184195600450039</threshold> 4339 <left_val>0.0948170125484467</left_val> 4340 <right_val>-0.4482589960098267</right_val></_></_> 4341 <_> 4342 <!-- tree 3 --> 4343 <_> 4344 <!-- root node --> 4345 <feature> 4346 <rects> 4347 <_>12 15 5 6 -1.</_> 4348 <_>12 18 5 3 2.</_></rects> 4349 <tilted>0</tilted></feature> 4350 <threshold>-3.0946850893087685e-004</threshold> 4351 <left_val>0.1156722009181976</left_val> 4352 <right_val>-0.0692913383245468</right_val></_></_> 4353 <_> 4354 <!-- tree 4 --> 4355 <_> 4356 <!-- root node --> 4357 <feature> 4358 <rects> 4359 <_>0 0 19 16 -1.</_> 4360 <_>0 8 19 8 2.</_></rects> 4361 <tilted>0</tilted></feature> 4362 <threshold>0.0244168303906918</threshold> 4363 <left_val>-0.2640377879142761</left_val> 4364 <right_val>0.1458850950002670</right_val></_></_> 4365 <_> 4366 <!-- tree 5 --> 4367 <_> 4368 <!-- root node --> 4369 <feature> 4370 <rects> 4371 <_>4 20 15 3 -1.</_> 4372 <_>9 20 5 3 3.</_></rects> 4373 <tilted>0</tilted></feature> 4374 <threshold>3.9483308792114258e-003</threshold> 4375 <left_val>0.0787035673856735</left_val> 4376 <right_val>-0.3977065086364746</right_val></_></_> 4377 <_> 4378 <!-- tree 6 --> 4379 <_> 4380 <!-- root node --> 4381 <feature> 4382 <rects> 4383 <_>9 0 4 8 -1.</_> 4384 <_>9 0 4 4 2.</_></rects> 4385 <tilted>1</tilted></feature> 4386 <threshold>0.0154980598017573</threshold> 4387 <left_val>-0.0686233714222908</left_val> 4388 <right_val>0.6359875798225403</right_val></_></_> 4389 <_> 4390 <!-- tree 7 --> 4391 <_> 4392 <!-- root node --> 4393 <feature> 4394 <rects> 4395 <_>5 15 12 6 -1.</_> 4396 <_>11 15 6 3 2.</_> 4397 <_>5 18 6 3 2.</_></rects> 4398 <tilted>0</tilted></feature> 4399 <threshold>0.0103973699733615</threshold> 4400 <left_val>0.0531162582337856</left_val> 4401 <right_val>-0.2475759983062744</right_val></_></_> 4402 <_> 4403 <!-- tree 8 --> 4404 <_> 4405 <!-- root node --> 4406 <feature> 4407 <rects> 4408 <_>2 15 12 6 -1.</_> 4409 <_>2 15 6 3 2.</_> 4410 <_>8 18 6 3 2.</_></rects> 4411 <tilted>0</tilted></feature> 4412 <threshold>1.0350650409236550e-003</threshold> 4413 <left_val>-0.2295361012220383</left_val> 4414 <right_val>0.2162367999553680</right_val></_></_> 4415 <_> 4416 <!-- tree 9 --> 4417 <_> 4418 <!-- root node --> 4419 <feature> 4420 <rects> 4421 <_>8 0 9 5 -1.</_> 4422 <_>11 0 3 5 3.</_></rects> 4423 <tilted>0</tilted></feature> 4424 <threshold>-6.9717521546408534e-004</threshold> 4425 <left_val>0.1633094996213913</left_val> 4426 <right_val>-0.2793000042438507</right_val></_></_> 4427 <_> 4428 <!-- tree 10 --> 4429 <_> 4430 <!-- root node --> 4431 <feature> 4432 <rects> 4433 <_>0 19 14 4 -1.</_> 4434 <_>0 19 7 2 2.</_> 4435 <_>7 21 7 2 2.</_></rects> 4436 <tilted>0</tilted></feature> 4437 <threshold>1.1055100476369262e-003</threshold> 4438 <left_val>-0.2672117054462433</left_val> 4439 <right_val>0.1380949020385742</right_val></_></_> 4440 <_> 4441 <!-- tree 11 --> 4442 <_> 4443 <!-- root node --> 4444 <feature> 4445 <rects> 4446 <_>1 14 18 7 -1.</_> 4447 <_>1 14 9 7 2.</_></rects> 4448 <tilted>0</tilted></feature> 4449 <threshold>0.0181287601590157</threshold> 4450 <left_val>0.0786025226116180</left_val> 4451 <right_val>-0.3374832868576050</right_val></_></_> 4452 <_> 4453 <!-- tree 12 --> 4454 <_> 4455 <!-- root node --> 4456 <feature> 4457 <rects> 4458 <_>5 1 8 8 -1.</_> 4459 <_>5 1 4 4 2.</_> 4460 <_>9 5 4 4 2.</_></rects> 4461 <tilted>0</tilted></feature> 4462 <threshold>-1.4303029747679830e-003</threshold> 4463 <left_val>0.1566804945468903</left_val> 4464 <right_val>-0.2542249858379364</right_val></_></_> 4465 <_> 4466 <!-- tree 13 --> 4467 <_> 4468 <!-- root node --> 4469 <feature> 4470 <rects> 4471 <_>9 6 6 12 -1.</_> 4472 <_>9 6 3 12 2.</_></rects> 4473 <tilted>0</tilted></feature> 4474 <threshold>0.0106502203270793</threshold> 4475 <left_val>-0.0416386015713215</left_val> 4476 <right_val>0.3263407051563263</right_val></_></_> 4477 <_> 4478 <!-- tree 14 --> 4479 <_> 4480 <!-- root node --> 4481 <feature> 4482 <rects> 4483 <_>2 0 14 4 -1.</_> 4484 <_>9 0 7 4 2.</_></rects> 4485 <tilted>0</tilted></feature> 4486 <threshold>-1.0680139530450106e-003</threshold> 4487 <left_val>0.1799698024988174</left_val> 4488 <right_val>-0.2067306041717529</right_val></_></_> 4489 <_> 4490 <!-- tree 15 --> 4491 <_> 4492 <!-- root node --> 4493 <feature> 4494 <rects> 4495 <_>4 20 15 3 -1.</_> 4496 <_>9 20 5 3 3.</_></rects> 4497 <tilted>0</tilted></feature> 4498 <threshold>-8.0095082521438599e-003</threshold> 4499 <left_val>-0.2877897918224335</left_val> 4500 <right_val>0.0754924491047859</right_val></_></_> 4501 <_> 4502 <!-- tree 16 --> 4503 <_> 4504 <!-- root node --> 4505 <feature> 4506 <rects> 4507 <_>0 20 15 3 -1.</_> 4508 <_>5 20 5 3 3.</_></rects> 4509 <tilted>0</tilted></feature> 4510 <threshold>-0.0118575599044561</threshold> 4511 <left_val>-0.5548521280288696</left_val> 4512 <right_val>0.0474650003015995</right_val></_></_> 4513 <_> 4514 <!-- tree 17 --> 4515 <_> 4516 <!-- root node --> 4517 <feature> 4518 <rects> 4519 <_>2 6 16 9 -1.</_> 4520 <_>6 6 8 9 2.</_></rects> 4521 <tilted>0</tilted></feature> 4522 <threshold>-0.1944015026092529</threshold> 4523 <left_val>0.4956459999084473</left_val> 4524 <right_val>-0.0685222670435905</right_val></_></_> 4525 <_> 4526 <!-- tree 18 --> 4527 <_> 4528 <!-- root node --> 4529 <feature> 4530 <rects> 4531 <_>4 6 6 12 -1.</_> 4532 <_>7 6 3 12 2.</_></rects> 4533 <tilted>0</tilted></feature> 4534 <threshold>0.0127861695364118</threshold> 4535 <left_val>-0.0582010112702847</left_val> 4536 <right_val>0.5119485855102539</right_val></_></_> 4537 <_> 4538 <!-- tree 19 --> 4539 <_> 4540 <!-- root node --> 4541 <feature> 4542 <rects> 4543 <_>9 17 9 6 -1.</_> 4544 <_>12 17 3 6 3.</_></rects> 4545 <tilted>0</tilted></feature> 4546 <threshold>1.1360739590600133e-003</threshold> 4547 <left_val>-0.2121652960777283</left_val> 4548 <right_val>0.1463954001665115</right_val></_></_> 4549 <_> 4550 <!-- tree 20 --> 4551 <_> 4552 <!-- root node --> 4553 <feature> 4554 <rects> 4555 <_>4 7 4 9 -1.</_> 4556 <_>6 7 2 9 2.</_></rects> 4557 <tilted>0</tilted></feature> 4558 <threshold>-3.7541511119343340e-004</threshold> 4559 <left_val>0.1140606030821800</left_val> 4560 <right_val>-0.2793666124343872</right_val></_></_> 4561 <_> 4562 <!-- tree 21 --> 4563 <_> 4564 <!-- root node --> 4565 <feature> 4566 <rects> 4567 <_>13 6 2 16 -1.</_> 4568 <_>13 6 1 16 2.</_></rects> 4569 <tilted>0</tilted></feature> 4570 <threshold>6.2142009846866131e-003</threshold> 4571 <left_val>0.0285687893629074</left_val> 4572 <right_val>-0.3248505890369415</right_val></_></_> 4573 <_> 4574 <!-- tree 22 --> 4575 <_> 4576 <!-- root node --> 4577 <feature> 4578 <rects> 4579 <_>1 5 12 9 -1.</_> 4580 <_>7 5 6 9 2.</_></rects> 4581 <tilted>0</tilted></feature> 4582 <threshold>4.5166439376771450e-003</threshold> 4583 <left_val>-0.0955563783645630</left_val> 4584 <right_val>0.3603233993053436</right_val></_></_> 4585 <_> 4586 <!-- tree 23 --> 4587 <_> 4588 <!-- root node --> 4589 <feature> 4590 <rects> 4591 <_>13 6 2 16 -1.</_> 4592 <_>13 6 1 16 2.</_></rects> 4593 <tilted>0</tilted></feature> 4594 <threshold>-1.7354219453409314e-003</threshold> 4595 <left_val>-0.0808048769831657</left_val> 4596 <right_val>0.0538515709340572</right_val></_></_> 4597 <_> 4598 <!-- tree 24 --> 4599 <_> 4600 <!-- root node --> 4601 <feature> 4602 <rects> 4603 <_>4 6 2 16 -1.</_> 4604 <_>5 6 1 16 2.</_></rects> 4605 <tilted>0</tilted></feature> 4606 <threshold>-6.9608418270945549e-003</threshold> 4607 <left_val>-0.6013150811195374</left_val> 4608 <right_val>0.0455094911158085</right_val></_></_> 4609 <_> 4610 <!-- tree 25 --> 4611 <_> 4612 <!-- root node --> 4613 <feature> 4614 <rects> 4615 <_>12 0 3 15 -1.</_> 4616 <_>13 0 1 15 3.</_></rects> 4617 <tilted>0</tilted></feature> 4618 <threshold>8.7833311408758163e-003</threshold> 4619 <left_val>-0.0944979712367058</left_val> 4620 <right_val>0.3192416131496429</right_val></_></_> 4621 <_> 4622 <!-- tree 26 --> 4623 <_> 4624 <!-- root node --> 4625 <feature> 4626 <rects> 4627 <_>4 0 3 15 -1.</_> 4628 <_>5 0 1 15 3.</_></rects> 4629 <tilted>0</tilted></feature> 4630 <threshold>-2.0243569742888212e-003</threshold> 4631 <left_val>0.2673755884170532</left_val> 4632 <right_val>-0.1167927980422974</right_val></_></_> 4633 <_> 4634 <!-- tree 27 --> 4635 <_> 4636 <!-- root node --> 4637 <feature> 4638 <rects> 4639 <_>6 2 8 8 -1.</_> 4640 <_>8 2 4 8 2.</_></rects> 4641 <tilted>0</tilted></feature> 4642 <threshold>5.6362948380410671e-003</threshold> 4643 <left_val>0.0464910902082920</left_val> 4644 <right_val>-0.2398225963115692</right_val></_></_> 4645 <_> 4646 <!-- tree 28 --> 4647 <_> 4648 <!-- root node --> 4649 <feature> 4650 <rects> 4651 <_>6 0 6 5 -1.</_> 4652 <_>9 0 3 5 2.</_></rects> 4653 <tilted>0</tilted></feature> 4654 <threshold>-2.1751220338046551e-003</threshold> 4655 <left_val>-0.3183174133300781</left_val> 4656 <right_val>0.1163455024361610</right_val></_></_> 4657 <_> 4658 <!-- tree 29 --> 4659 <_> 4660 <!-- root node --> 4661 <feature> 4662 <rects> 4663 <_>4 7 11 16 -1.</_> 4664 <_>4 11 11 8 2.</_></rects> 4665 <tilted>0</tilted></feature> 4666 <threshold>0.0254248902201653</threshold> 4667 <left_val>0.0756000578403473</left_val> 4668 <right_val>-0.3735963106155396</right_val></_></_> 4669 <_> 4670 <!-- tree 30 --> 4671 <_> 4672 <!-- root node --> 4673 <feature> 4674 <rects> 4675 <_>7 8 5 8 -1.</_> 4676 <_>7 12 5 4 2.</_></rects> 4677 <tilted>0</tilted></feature> 4678 <threshold>3.9950129576027393e-004</threshold> 4679 <left_val>-0.2620686888694763</left_val> 4680 <right_val>0.1434555947780609</right_val></_></_> 4681 <_> 4682 <!-- tree 31 --> 4683 <_> 4684 <!-- root node --> 4685 <feature> 4686 <rects> 4687 <_>4 18 14 3 -1.</_> 4688 <_>4 19 14 1 3.</_></rects> 4689 <tilted>0</tilted></feature> 4690 <threshold>-3.9724060334265232e-003</threshold> 4691 <left_val>0.2039508968591690</left_val> 4692 <right_val>-0.1189631000161171</right_val></_></_> 4693 <_> 4694 <!-- tree 32 --> 4695 <_> 4696 <!-- root node --> 4697 <feature> 4698 <rects> 4699 <_>1 18 17 3 -1.</_> 4700 <_>1 19 17 1 3.</_></rects> 4701 <tilted>0</tilted></feature> 4702 <threshold>2.4637179449200630e-003</threshold> 4703 <left_val>-0.1368733942508698</left_val> 4704 <right_val>0.3409825861454010</right_val></_></_> 4705 <_> 4706 <!-- tree 33 --> 4707 <_> 4708 <!-- root node --> 4709 <feature> 4710 <rects> 4711 <_>9 20 10 3 -1.</_> 4712 <_>9 20 5 3 2.</_></rects> 4713 <tilted>0</tilted></feature> 4714 <threshold>0.0143977096304297</threshold> 4715 <left_val>0.0248468890786171</left_val> 4716 <right_val>-0.6541594862937927</right_val></_></_> 4717 <_> 4718 <!-- tree 34 --> 4719 <_> 4720 <!-- root node --> 4721 <feature> 4722 <rects> 4723 <_>1 21 14 2 -1.</_> 4724 <_>8 21 7 2 2.</_></rects> 4725 <tilted>0</tilted></feature> 4726 <threshold>-1.4848919818177819e-005</threshold> 4727 <left_val>0.1388493031263351</left_val> 4728 <right_val>-0.2107747942209244</right_val></_></_> 4729 <_> 4730 <!-- tree 35 --> 4731 <_> 4732 <!-- root node --> 4733 <feature> 4734 <rects> 4735 <_>4 18 14 3 -1.</_> 4736 <_>4 19 14 1 3.</_></rects> 4737 <tilted>0</tilted></feature> 4738 <threshold>-0.0383395105600357</threshold> 4739 <left_val>0.5866839289665222</left_val> 4740 <right_val>-0.0362458601593971</right_val></_></_> 4741 <_> 4742 <!-- tree 36 --> 4743 <_> 4744 <!-- root node --> 4745 <feature> 4746 <rects> 4747 <_>2 16 5 6 -1.</_> 4748 <_>2 19 5 3 2.</_></rects> 4749 <tilted>0</tilted></feature> 4750 <threshold>-5.4605712648481131e-004</threshold> 4751 <left_val>0.2125933021306992</left_val> 4752 <right_val>-0.1379106938838959</right_val></_></_> 4753 <_> 4754 <!-- tree 37 --> 4755 <_> 4756 <!-- root node --> 4757 <feature> 4758 <rects> 4759 <_>13 11 5 12 -1.</_> 4760 <_>13 15 5 4 3.</_></rects> 4761 <tilted>0</tilted></feature> 4762 <threshold>0.0130364997312427</threshold> 4763 <left_val>0.0506199710071087</left_val> 4764 <right_val>-0.2315009981393814</right_val></_></_> 4765 <_> 4766 <!-- tree 38 --> 4767 <_> 4768 <!-- root node --> 4769 <feature> 4770 <rects> 4771 <_>1 9 16 3 -1.</_> 4772 <_>1 10 16 1 3.</_></rects> 4773 <tilted>0</tilted></feature> 4774 <threshold>-2.4273560848087072e-003</threshold> 4775 <left_val>0.2430299967527390</left_val> 4776 <right_val>-0.1131595000624657</right_val></_></_> 4777 <_> 4778 <!-- tree 39 --> 4779 <_> 4780 <!-- root node --> 4781 <feature> 4782 <rects> 4783 <_>7 6 5 9 -1.</_> 4784 <_>7 9 5 3 3.</_></rects> 4785 <tilted>0</tilted></feature> 4786 <threshold>-6.3351681455969810e-003</threshold> 4787 <left_val>-0.3554948866367340</left_val> 4788 <right_val>0.0949484035372734</right_val></_></_> 4789 <_> 4790 <!-- tree 40 --> 4791 <_> 4792 <!-- root node --> 4793 <feature> 4794 <rects> 4795 <_>6 0 7 14 -1.</_> 4796 <_>6 7 7 7 2.</_></rects> 4797 <tilted>0</tilted></feature> 4798 <threshold>-0.0575108602643013</threshold> 4799 <left_val>0.4937813878059387</left_val> 4800 <right_val>-0.0606641210615635</right_val></_></_> 4801 <_> 4802 <!-- tree 41 --> 4803 <_> 4804 <!-- root node --> 4805 <feature> 4806 <rects> 4807 <_>11 16 6 7 -1.</_> 4808 <_>13 16 2 7 3.</_></rects> 4809 <tilted>0</tilted></feature> 4810 <threshold>6.8376341369003057e-004</threshold> 4811 <left_val>-0.1941725015640259</left_val> 4812 <right_val>0.1423459053039551</right_val></_></_> 4813 <_> 4814 <!-- tree 42 --> 4815 <_> 4816 <!-- root node --> 4817 <feature> 4818 <rects> 4819 <_>1 4 3 15 -1.</_> 4820 <_>2 4 1 15 3.</_></rects> 4821 <tilted>0</tilted></feature> 4822 <threshold>8.8113872334361076e-003</threshold> 4823 <left_val>0.0475620590150356</left_val> 4824 <right_val>-0.5841649174690247</right_val></_></_> 4825 <_> 4826 <!-- tree 43 --> 4827 <_> 4828 <!-- root node --> 4829 <feature> 4830 <rects> 4831 <_>10 0 8 8 -1.</_> 4832 <_>14 0 4 4 2.</_> 4833 <_>10 4 4 4 2.</_></rects> 4834 <tilted>0</tilted></feature> 4835 <threshold>0.0107881696894765</threshold> 4836 <left_val>-0.0468558892607689</left_val> 4837 <right_val>0.1654801070690155</right_val></_></_> 4838 <_> 4839 <!-- tree 44 --> 4840 <_> 4841 <!-- root node --> 4842 <feature> 4843 <rects> 4844 <_>1 9 3 14 -1.</_> 4845 <_>2 9 1 14 3.</_></rects> 4846 <tilted>0</tilted></feature> 4847 <threshold>-1.3571690069511533e-003</threshold> 4848 <left_val>-0.3251067996025085</left_val> 4849 <right_val>0.0940904766321182</right_val></_></_> 4850 <_> 4851 <!-- tree 45 --> 4852 <_> 4853 <!-- root node --> 4854 <feature> 4855 <rects> 4856 <_>13 13 5 9 -1.</_> 4857 <_>13 16 5 3 3.</_></rects> 4858 <tilted>0</tilted></feature> 4859 <threshold>-0.0101959798485041</threshold> 4860 <left_val>-0.1469684988260269</left_val> 4861 <right_val>0.0262460596859455</right_val></_></_> 4862 <_> 4863 <!-- tree 46 --> 4864 <_> 4865 <!-- root node --> 4866 <feature> 4867 <rects> 4868 <_>1 13 5 9 -1.</_> 4869 <_>1 16 5 3 3.</_></rects> 4870 <tilted>0</tilted></feature> 4871 <threshold>-1.2560819741338491e-003</threshold> 4872 <left_val>0.2285338044166565</left_val> 4873 <right_val>-0.1626566052436829</right_val></_></_> 4874 <_> 4875 <!-- tree 47 --> 4876 <_> 4877 <!-- root node --> 4878 <feature> 4879 <rects> 4880 <_>12 14 7 6 -1.</_> 4881 <_>12 16 7 2 3.</_></rects> 4882 <tilted>0</tilted></feature> 4883 <threshold>6.6750420955941081e-004</threshold> 4884 <left_val>-0.1343066990375519</left_val> 4885 <right_val>0.1398756951093674</right_val></_></_> 4886 <_> 4887 <!-- tree 48 --> 4888 <_> 4889 <!-- root node --> 4890 <feature> 4891 <rects> 4892 <_>4 14 9 6 -1.</_> 4893 <_>4 17 9 3 2.</_></rects> 4894 <tilted>0</tilted></feature> 4895 <threshold>2.0975170191377401e-003</threshold> 4896 <left_val>-0.1298761069774628</left_val> 4897 <right_val>0.1997846961021423</right_val></_></_></trees> 4898 <stage_threshold>-1.0149190425872803</stage_threshold> 4899 <parent>13</parent> 4900 <next>-1</next></_> 4901 <_> 4902 <!-- stage 15 --> 4903 <trees> 4904 <_> 4905 <!-- tree 0 --> 4906 <_> 4907 <!-- root node --> 4908 <feature> 4909 <rects> 4910 <_>2 13 10 3 -1.</_> 4911 <_>7 13 5 3 2.</_></rects> 4912 <tilted>0</tilted></feature> 4913 <threshold>-3.6917610559612513e-003</threshold> 4914 <left_val>0.2268279045820236</left_val> 4915 <right_val>-0.4116738140583038</right_val></_></_> 4916 <_> 4917 <!-- tree 1 --> 4918 <_> 4919 <!-- root node --> 4920 <feature> 4921 <rects> 4922 <_>9 0 10 5 -1.</_> 4923 <_>9 0 5 5 2.</_></rects> 4924 <tilted>0</tilted></feature> 4925 <threshold>-9.4609148800373077e-003</threshold> 4926 <left_val>0.1630502045154572</left_val> 4927 <right_val>-0.2294901013374329</right_val></_></_> 4928 <_> 4929 <!-- tree 2 --> 4930 <_> 4931 <!-- root node --> 4932 <feature> 4933 <rects> 4934 <_>1 8 2 15 -1.</_> 4935 <_>2 8 1 15 2.</_></rects> 4936 <tilted>0</tilted></feature> 4937 <threshold>3.3874800428748131e-003</threshold> 4938 <left_val>0.0776446908712387</left_val> 4939 <right_val>-0.4746511876583099</right_val></_></_> 4940 <_> 4941 <!-- tree 3 --> 4942 <_> 4943 <!-- root node --> 4944 <feature> 4945 <rects> 4946 <_>13 0 6 18 -1.</_> 4947 <_>15 0 2 18 3.</_></rects> 4948 <tilted>0</tilted></feature> 4949 <threshold>3.3596849534660578e-003</threshold> 4950 <left_val>-0.1472281068563461</left_val> 4951 <right_val>0.1375565975904465</right_val></_></_> 4952 <_> 4953 <!-- tree 4 --> 4954 <_> 4955 <!-- root node --> 4956 <feature> 4957 <rects> 4958 <_>0 21 14 2 -1.</_> 4959 <_>7 21 7 2 2.</_></rects> 4960 <tilted>0</tilted></feature> 4961 <threshold>-2.2649099119007587e-003</threshold> 4962 <left_val>-0.2902786135673523</left_val> 4963 <right_val>0.1226186975836754</right_val></_></_> 4964 <_> 4965 <!-- tree 5 --> 4966 <_> 4967 <!-- root node --> 4968 <feature> 4969 <rects> 4970 <_>9 19 8 4 -1.</_> 4971 <_>9 19 4 4 2.</_></rects> 4972 <tilted>0</tilted></feature> 4973 <threshold>-5.5420072749257088e-004</threshold> 4974 <left_val>0.1159199029207230</left_val> 4975 <right_val>-0.2306652963161469</right_val></_></_> 4976 <_> 4977 <!-- tree 6 --> 4978 <_> 4979 <!-- root node --> 4980 <feature> 4981 <rects> 4982 <_>1 21 16 2 -1.</_> 4983 <_>9 21 8 2 2.</_></rects> 4984 <tilted>0</tilted></feature> 4985 <threshold>1.9706019666045904e-003</threshold> 4986 <left_val>0.1180830001831055</left_val> 4987 <right_val>-0.3787943124771118</right_val></_></_> 4988 <_> 4989 <!-- tree 7 --> 4990 <_> 4991 <!-- root node --> 4992 <feature> 4993 <rects> 4994 <_>2 0 16 4 -1.</_> 4995 <_>6 0 8 4 2.</_></rects> 4996 <tilted>0</tilted></feature> 4997 <threshold>0.0175030808895826</threshold> 4998 <left_val>-0.0941615998744965</left_val> 4999 <right_val>0.4793323874473572</right_val></_></_> 5000 <_> 5001 <!-- tree 8 --> 5002 <_> 5003 <!-- root node --> 5004 <feature> 5005 <rects> 5006 <_>3 0 9 5 -1.</_> 5007 <_>6 0 3 5 3.</_></rects> 5008 <tilted>0</tilted></feature> 5009 <threshold>-2.9575270600616932e-003</threshold> 5010 <left_val>0.1733669936656952</left_val> 5011 <right_val>-0.3167332112789154</right_val></_></_> 5012 <_> 5013 <!-- tree 9 --> 5014 <_> 5015 <!-- root node --> 5016 <feature> 5017 <rects> 5018 <_>10 5 8 10 -1.</_> 5019 <_>10 5 8 5 2.</_></rects> 5020 <tilted>1</tilted></feature> 5021 <threshold>-0.2623870074748993</threshold> 5022 <left_val>-0.7440528869628906</left_val> 5023 <right_val>8.9512793347239494e-003</right_val></_></_> 5024 <_> 5025 <!-- tree 10 --> 5026 <_> 5027 <!-- root node --> 5028 <feature> 5029 <rects> 5030 <_>0 1 18 8 -1.</_> 5031 <_>0 5 18 4 2.</_></rects> 5032 <tilted>0</tilted></feature> 5033 <threshold>5.5493800900876522e-003</threshold> 5034 <left_val>-0.2408874034881592</left_val> 5035 <right_val>0.1421204060316086</right_val></_></_> 5036 <_> 5037 <!-- tree 11 --> 5038 <_> 5039 <!-- root node --> 5040 <feature> 5041 <rects> 5042 <_>10 5 8 10 -1.</_> 5043 <_>10 5 8 5 2.</_></rects> 5044 <tilted>1</tilted></feature> 5045 <threshold>-0.0148425698280334</threshold> 5046 <left_val>0.0551663115620613</left_val> 5047 <right_val>-0.0853630006313324</right_val></_></_> 5048 <_> 5049 <!-- tree 12 --> 5050 <_> 5051 <!-- root node --> 5052 <feature> 5053 <rects> 5054 <_>4 20 10 3 -1.</_> 5055 <_>9 20 5 3 2.</_></rects> 5056 <tilted>0</tilted></feature> 5057 <threshold>-0.0181934908032417</threshold> 5058 <left_val>-0.7538909912109375</left_val> 5059 <right_val>0.0440624989569187</right_val></_></_> 5060 <_> 5061 <!-- tree 13 --> 5062 <_> 5063 <!-- root node --> 5064 <feature> 5065 <rects> 5066 <_>4 18 14 3 -1.</_> 5067 <_>4 19 14 1 3.</_></rects> 5068 <tilted>0</tilted></feature> 5069 <threshold>-1.9381130114197731e-003</threshold> 5070 <left_val>0.1476213932037354</left_val> 5071 <right_val>-0.1421477049589157</right_val></_></_> 5072 <_> 5073 <!-- tree 14 --> 5074 <_> 5075 <!-- root node --> 5076 <feature> 5077 <rects> 5078 <_>2 16 6 7 -1.</_> 5079 <_>4 16 2 7 3.</_></rects> 5080 <tilted>0</tilted></feature> 5081 <threshold>-6.1375028453767300e-003</threshold> 5082 <left_val>-0.5417520999908447</left_val> 5083 <right_val>0.0528726913034916</right_val></_></_> 5084 <_> 5085 <!-- tree 15 --> 5086 <_> 5087 <!-- root node --> 5088 <feature> 5089 <rects> 5090 <_>4 18 14 3 -1.</_> 5091 <_>4 19 14 1 3.</_></rects> 5092 <tilted>0</tilted></feature> 5093 <threshold>0.0166300795972347</threshold> 5094 <left_val>-0.0600058101117611</left_val> 5095 <right_val>0.5229414105415344</right_val></_></_> 5096 <_> 5097 <!-- tree 16 --> 5098 <_> 5099 <!-- root node --> 5100 <feature> 5101 <rects> 5102 <_>6 0 6 7 -1.</_> 5103 <_>8 0 2 7 3.</_></rects> 5104 <tilted>0</tilted></feature> 5105 <threshold>-9.7470665350556374e-003</threshold> 5106 <left_val>-0.3177677094936371</left_val> 5107 <right_val>0.0940777286887169</right_val></_></_> 5108 <_> 5109 <!-- tree 17 --> 5110 <_> 5111 <!-- root node --> 5112 <feature> 5113 <rects> 5114 <_>2 2 15 12 -1.</_> 5115 <_>7 6 5 4 9.</_></rects> 5116 <tilted>0</tilted></feature> 5117 <threshold>-0.3915967941284180</threshold> 5118 <left_val>0.5155050158500671</left_val> 5119 <right_val>-0.0861782133579254</right_val></_></_> 5120 <_> 5121 <!-- tree 18 --> 5122 <_> 5123 <!-- root node --> 5124 <feature> 5125 <rects> 5126 <_>5 10 4 9 -1.</_> 5127 <_>7 10 2 9 2.</_></rects> 5128 <tilted>0</tilted></feature> 5129 <threshold>0.0104578603059053</threshold> 5130 <left_val>-0.0544422306120396</left_val> 5131 <right_val>0.5508633852005005</right_val></_></_> 5132 <_> 5133 <!-- tree 19 --> 5134 <_> 5135 <!-- root node --> 5136 <feature> 5137 <rects> 5138 <_>10 7 8 7 -1.</_> 5139 <_>12 9 4 7 2.</_></rects> 5140 <tilted>1</tilted></feature> 5141 <threshold>0.0924795866012573</threshold> 5142 <left_val>9.5865959301590919e-003</left_val> 5143 <right_val>-0.7520524263381958</right_val></_></_> 5144 <_> 5145 <!-- tree 20 --> 5146 <_> 5147 <!-- root node --> 5148 <feature> 5149 <rects> 5150 <_>0 1 18 18 -1.</_> 5151 <_>0 1 9 9 2.</_> 5152 <_>9 10 9 9 2.</_></rects> 5153 <tilted>0</tilted></feature> 5154 <threshold>-0.0133833298459649</threshold> 5155 <left_val>-0.2590928077697754</left_val> 5156 <right_val>0.1225519999861717</right_val></_></_> 5157 <_> 5158 <!-- tree 21 --> 5159 <_> 5160 <!-- root node --> 5161 <feature> 5162 <rects> 5163 <_>11 7 8 6 -1.</_> 5164 <_>9 9 8 2 3.</_></rects> 5165 <tilted>1</tilted></feature> 5166 <threshold>-0.0192979294806719</threshold> 5167 <left_val>-0.1868654936552048</left_val> 5168 <right_val>0.0426703803241253</right_val></_></_> 5169 <_> 5170 <!-- tree 22 --> 5171 <_> 5172 <!-- root node --> 5173 <feature> 5174 <rects> 5175 <_>7 9 3 14 -1.</_> 5176 <_>8 9 1 14 3.</_></rects> 5177 <tilted>0</tilted></feature> 5178 <threshold>-1.1118740076199174e-003</threshold> 5179 <left_val>0.1458609998226166</left_val> 5180 <right_val>-0.2274280935525894</right_val></_></_> 5181 <_> 5182 <!-- tree 23 --> 5183 <_> 5184 <!-- root node --> 5185 <feature> 5186 <rects> 5187 <_>11 7 8 6 -1.</_> 5188 <_>9 9 8 2 3.</_></rects> 5189 <tilted>1</tilted></feature> 5190 <threshold>0.0232090596109629</threshold> 5191 <left_val>0.0217691995203495</left_val> 5192 <right_val>-0.2400193065404892</right_val></_></_> 5193 <_> 5194 <!-- tree 24 --> 5195 <_> 5196 <!-- root node --> 5197 <feature> 5198 <rects> 5199 <_>1 0 8 4 -1.</_> 5200 <_>5 0 4 4 2.</_></rects> 5201 <tilted>0</tilted></feature> 5202 <threshold>6.9435071200132370e-003</threshold> 5203 <left_val>-0.0848145708441734</left_val> 5204 <right_val>0.3838810026645660</right_val></_></_> 5205 <_> 5206 <!-- tree 25 --> 5207 <_> 5208 <!-- root node --> 5209 <feature> 5210 <rects> 5211 <_>11 7 8 6 -1.</_> 5212 <_>9 9 8 2 3.</_></rects> 5213 <tilted>1</tilted></feature> 5214 <threshold>-0.1024966984987259</threshold> 5215 <left_val>-0.7061861157417297</left_val> 5216 <right_val>0.0125809498131275</right_val></_></_> 5217 <_> 5218 <!-- tree 26 --> 5219 <_> 5220 <!-- root node --> 5221 <feature> 5222 <rects> 5223 <_>8 7 6 8 -1.</_> 5224 <_>10 9 2 8 3.</_></rects> 5225 <tilted>1</tilted></feature> 5226 <threshold>-0.0140364300459623</threshold> 5227 <left_val>-0.3842788040637970</left_val> 5228 <right_val>0.0876787230372429</right_val></_></_> 5229 <_> 5230 <!-- tree 27 --> 5231 <_> 5232 <!-- root node --> 5233 <feature> 5234 <rects> 5235 <_>13 0 6 19 -1.</_> 5236 <_>15 0 2 19 3.</_></rects> 5237 <tilted>0</tilted></feature> 5238 <threshold>6.8071340210735798e-003</threshold> 5239 <left_val>-0.0759413465857506</left_val> 5240 <right_val>0.0760143324732780</right_val></_></_> 5241 <_> 5242 <!-- tree 28 --> 5243 <_> 5244 <!-- root node --> 5245 <feature> 5246 <rects> 5247 <_>0 0 6 19 -1.</_> 5248 <_>2 0 2 19 3.</_></rects> 5249 <tilted>0</tilted></feature> 5250 <threshold>4.8163239844143391e-003</threshold> 5251 <left_val>-0.1640291064977646</left_val> 5252 <right_val>0.2012411057949066</right_val></_></_> 5253 <_> 5254 <!-- tree 29 --> 5255 <_> 5256 <!-- root node --> 5257 <feature> 5258 <rects> 5259 <_>13 8 2 14 -1.</_> 5260 <_>13 8 1 14 2.</_></rects> 5261 <tilted>0</tilted></feature> 5262 <threshold>-3.0274710152298212e-003</threshold> 5263 <left_val>-0.2811872959136963</left_val> 5264 <right_val>0.0686712414026260</right_val></_></_> 5265 <_> 5266 <!-- tree 30 --> 5267 <_> 5268 <!-- root node --> 5269 <feature> 5270 <rects> 5271 <_>0 4 16 3 -1.</_> 5272 <_>0 5 16 1 3.</_></rects> 5273 <tilted>0</tilted></feature> 5274 <threshold>-1.6530510038137436e-003</threshold> 5275 <left_val>0.2142737954854965</left_val> 5276 <right_val>-0.1303835958242416</right_val></_></_> 5277 <_> 5278 <!-- tree 31 --> 5279 <_> 5280 <!-- root node --> 5281 <feature> 5282 <rects> 5283 <_>8 8 4 10 -1.</_> 5284 <_>8 13 4 5 2.</_></rects> 5285 <tilted>0</tilted></feature> 5286 <threshold>-3.9757499471306801e-003</threshold> 5287 <left_val>-0.2373799979686737</left_val> 5288 <right_val>0.0512905493378639</right_val></_></_> 5289 <_> 5290 <!-- tree 32 --> 5291 <_> 5292 <!-- root node --> 5293 <feature> 5294 <rects> 5295 <_>3 17 10 6 -1.</_> 5296 <_>3 17 5 3 2.</_> 5297 <_>8 20 5 3 2.</_></rects> 5298 <tilted>0</tilted></feature> 5299 <threshold>6.9589749909937382e-003</threshold> 5300 <left_val>-0.1324627995491028</left_val> 5301 <right_val>0.2370340973138809</right_val></_></_> 5302 <_> 5303 <!-- tree 33 --> 5304 <_> 5305 <!-- root node --> 5306 <feature> 5307 <rects> 5308 <_>13 8 2 14 -1.</_> 5309 <_>13 8 1 14 2.</_></rects> 5310 <tilted>0</tilted></feature> 5311 <threshold>7.2270620148628950e-004</threshold> 5312 <left_val>0.0504780709743500</left_val> 5313 <right_val>-0.1354480981826782</right_val></_></_> 5314 <_> 5315 <!-- tree 34 --> 5316 <_> 5317 <!-- root node --> 5318 <feature> 5319 <rects> 5320 <_>1 7 16 5 -1.</_> 5321 <_>5 7 8 5 2.</_></rects> 5322 <tilted>0</tilted></feature> 5323 <threshold>0.0150577295571566</threshold> 5324 <left_val>-0.0669544637203217</left_val> 5325 <right_val>0.4536899924278259</right_val></_></_> 5326 <_> 5327 <!-- tree 35 --> 5328 <_> 5329 <!-- root node --> 5330 <feature> 5331 <rects> 5332 <_>15 5 4 9 -1.</_> 5333 <_>15 5 2 9 2.</_></rects> 5334 <tilted>1</tilted></feature> 5335 <threshold>6.5838429145514965e-003</threshold> 5336 <left_val>0.0390546694397926</left_val> 5337 <right_val>-0.1951650977134705</right_val></_></_> 5338 <_> 5339 <!-- tree 36 --> 5340 <_> 5341 <!-- root node --> 5342 <feature> 5343 <rects> 5344 <_>6 0 3 14 -1.</_> 5345 <_>7 0 1 14 3.</_></rects> 5346 <tilted>0</tilted></feature> 5347 <threshold>-2.9128929600119591e-003</threshold> 5348 <left_val>0.1760496944189072</left_val> 5349 <right_val>-0.1563968956470490</right_val></_></_> 5350 <_> 5351 <!-- tree 37 --> 5352 <_> 5353 <!-- root node --> 5354 <feature> 5355 <rects> 5356 <_>6 4 12 12 -1.</_> 5357 <_>10 8 4 4 9.</_></rects> 5358 <tilted>0</tilted></feature> 5359 <threshold>0.6438639760017395</threshold> 5360 <left_val>-0.0117776999250054</left_val> 5361 <right_val>1.0000569820404053</right_val></_></_> 5362 <_> 5363 <!-- tree 38 --> 5364 <_> 5365 <!-- root node --> 5366 <feature> 5367 <rects> 5368 <_>7 3 4 9 -1.</_> 5369 <_>9 3 2 9 2.</_></rects> 5370 <tilted>0</tilted></feature> 5371 <threshold>5.1160277798771858e-003</threshold> 5372 <left_val>0.0954646691679955</left_val> 5373 <right_val>-0.3783237040042877</right_val></_></_> 5374 <_> 5375 <!-- tree 39 --> 5376 <_> 5377 <!-- root node --> 5378 <feature> 5379 <rects> 5380 <_>10 4 7 8 -1.</_> 5381 <_>10 6 7 4 2.</_></rects> 5382 <tilted>0</tilted></feature> 5383 <threshold>0.0683254972100258</threshold> 5384 <left_val>-3.9297499461099505e-004</left_val> 5385 <right_val>-0.9998624920845032</right_val></_></_> 5386 <_> 5387 <!-- tree 40 --> 5388 <_> 5389 <!-- root node --> 5390 <feature> 5391 <rects> 5392 <_>2 4 7 8 -1.</_> 5393 <_>2 6 7 4 2.</_></rects> 5394 <tilted>0</tilted></feature> 5395 <threshold>0.0440717190504074</threshold> 5396 <left_val>0.0287165492773056</left_val> 5397 <right_val>-0.9030649065971375</right_val></_></_> 5398 <_> 5399 <!-- tree 41 --> 5400 <_> 5401 <!-- root node --> 5402 <feature> 5403 <rects> 5404 <_>4 18 14 3 -1.</_> 5405 <_>4 19 14 1 3.</_></rects> 5406 <tilted>0</tilted></feature> 5407 <threshold>-0.0157125201076269</threshold> 5408 <left_val>0.2488802969455719</left_val> 5409 <right_val>-0.0530662611126900</right_val></_></_> 5410 <_> 5411 <!-- tree 42 --> 5412 <_> 5413 <!-- root node --> 5414 <feature> 5415 <rects> 5416 <_>4 9 2 14 -1.</_> 5417 <_>5 9 1 14 2.</_></rects> 5418 <tilted>0</tilted></feature> 5419 <threshold>-3.9486829191446304e-003</threshold> 5420 <left_val>-0.5021412968635559</left_val> 5421 <right_val>0.0520896092057228</right_val></_></_> 5422 <_> 5423 <!-- tree 43 --> 5424 <_> 5425 <!-- root node --> 5426 <feature> 5427 <rects> 5428 <_>12 15 7 8 -1.</_> 5429 <_>12 17 7 4 2.</_></rects> 5430 <tilted>0</tilted></feature> 5431 <threshold>1.1841469677165151e-003</threshold> 5432 <left_val>0.0621228888630867</left_val> 5433 <right_val>-0.1647989004850388</right_val></_></_> 5434 <_> 5435 <!-- tree 44 --> 5436 <_> 5437 <!-- root node --> 5438 <feature> 5439 <rects> 5440 <_>6 0 7 20 -1.</_> 5441 <_>6 5 7 10 2.</_></rects> 5442 <tilted>0</tilted></feature> 5443 <threshold>-0.1138570979237557</threshold> 5444 <left_val>0.5672857165336609</left_val> 5445 <right_val>-0.0388643182814121</right_val></_></_> 5446 <_> 5447 <!-- tree 45 --> 5448 <_> 5449 <!-- root node --> 5450 <feature> 5451 <rects> 5452 <_>2 1 16 4 -1.</_> 5453 <_>10 1 8 2 2.</_> 5454 <_>2 3 8 2 2.</_></rects> 5455 <tilted>0</tilted></feature> 5456 <threshold>6.2493737787008286e-003</threshold> 5457 <left_val>0.0878581404685974</left_val> 5458 <right_val>-0.2867594957351685</right_val></_></_> 5459 <_> 5460 <!-- tree 46 --> 5461 <_> 5462 <!-- root node --> 5463 <feature> 5464 <rects> 5465 <_>4 7 3 10 -1.</_> 5466 <_>4 12 3 5 2.</_></rects> 5467 <tilted>0</tilted></feature> 5468 <threshold>-2.3781529162079096e-003</threshold> 5469 <left_val>0.2668414115905762</left_val> 5470 <right_val>-0.0932913869619370</right_val></_></_> 5471 <_> 5472 <!-- tree 47 --> 5473 <_> 5474 <!-- root node --> 5475 <feature> 5476 <rects> 5477 <_>10 6 8 8 -1.</_> 5478 <_>12 8 4 8 2.</_></rects> 5479 <tilted>1</tilted></feature> 5480 <threshold>-0.0636205226182938</threshold> 5481 <left_val>0.1515336930751801</left_val> 5482 <right_val>-0.0153540298342705</right_val></_></_> 5483 <_> 5484 <!-- tree 48 --> 5485 <_> 5486 <!-- root node --> 5487 <feature> 5488 <rects> 5489 <_>3 10 12 8 -1.</_> 5490 <_>3 10 6 4 2.</_> 5491 <_>9 14 6 4 2.</_></rects> 5492 <tilted>0</tilted></feature> 5493 <threshold>7.9275481402873993e-003</threshold> 5494 <left_val>0.0882685184478760</left_val> 5495 <right_val>-0.3187279105186462</right_val></_></_> 5496 <_> 5497 <!-- tree 49 --> 5498 <_> 5499 <!-- root node --> 5500 <feature> 5501 <rects> 5502 <_>8 4 4 10 -1.</_> 5503 <_>8 9 4 5 2.</_></rects> 5504 <tilted>0</tilted></feature> 5505 <threshold>1.0556660126894712e-003</threshold> 5506 <left_val>-0.1022611036896706</left_val> 5507 <right_val>0.0605466999113560</right_val></_></_> 5508 <_> 5509 <!-- tree 50 --> 5510 <_> 5511 <!-- root node --> 5512 <feature> 5513 <rects> 5514 <_>7 7 5 9 -1.</_> 5515 <_>7 10 5 3 3.</_></rects> 5516 <tilted>0</tilted></feature> 5517 <threshold>9.1879200190305710e-003</threshold> 5518 <left_val>0.0809634029865265</left_val> 5519 <right_val>-0.3503153920173645</right_val></_></_> 5520 <_> 5521 <!-- tree 51 --> 5522 <_> 5523 <!-- root node --> 5524 <feature> 5525 <rects> 5526 <_>1 4 17 3 -1.</_> 5527 <_>1 5 17 1 3.</_></rects> 5528 <tilted>0</tilted></feature> 5529 <threshold>3.9727380499243736e-003</threshold> 5530 <left_val>-0.1033485010266304</left_val> 5531 <right_val>0.2745018899440765</right_val></_></_> 5532 <_> 5533 <!-- tree 52 --> 5534 <_> 5535 <!-- root node --> 5536 <feature> 5537 <rects> 5538 <_>2 3 14 3 -1.</_> 5539 <_>2 4 14 1 3.</_></rects> 5540 <tilted>0</tilted></feature> 5541 <threshold>1.7149309860542417e-003</threshold> 5542 <left_val>-0.1232967972755432</left_val> 5543 <right_val>0.2156181931495667</right_val></_></_></trees> 5544 <stage_threshold>-0.9315267801284790</stage_threshold> 5545 <parent>14</parent> 5546 <next>-1</next></_> 5547 <_> 5548 <!-- stage 16 --> 5549 <trees> 5550 <_> 5551 <!-- tree 0 --> 5552 <_> 5553 <!-- root node --> 5554 <feature> 5555 <rects> 5556 <_>2 7 14 2 -1.</_> 5557 <_>2 7 7 2 2.</_></rects> 5558 <tilted>1</tilted></feature> 5559 <threshold>-0.0145478900521994</threshold> 5560 <left_val>-0.5704287290573120</left_val> 5561 <right_val>0.1016409024596214</right_val></_></_> 5562 <_> 5563 <!-- tree 1 --> 5564 <_> 5565 <!-- root node --> 5566 <feature> 5567 <rects> 5568 <_>10 19 8 4 -1.</_> 5569 <_>10 19 4 4 2.</_></rects> 5570 <tilted>0</tilted></feature> 5571 <threshold>-1.2570459512062371e-004</threshold> 5572 <left_val>0.0775668919086456</left_val> 5573 <right_val>-0.2952415049076080</right_val></_></_> 5574 <_> 5575 <!-- tree 2 --> 5576 <_> 5577 <!-- root node --> 5578 <feature> 5579 <rects> 5580 <_>5 0 5 22 -1.</_> 5581 <_>5 11 5 11 2.</_></rects> 5582 <tilted>0</tilted></feature> 5583 <threshold>9.4022490084171295e-003</threshold> 5584 <left_val>-0.3261851966381073</left_val> 5585 <right_val>0.1368803977966309</right_val></_></_> 5586 <_> 5587 <!-- tree 3 --> 5588 <_> 5589 <!-- root node --> 5590 <feature> 5591 <rects> 5592 <_>10 19 8 4 -1.</_> 5593 <_>10 19 4 4 2.</_></rects> 5594 <tilted>0</tilted></feature> 5595 <threshold>-5.1469001919031143e-003</threshold> 5596 <left_val>-0.2248636037111282</left_val> 5597 <right_val>0.1488638967275620</right_val></_></_> 5598 <_> 5599 <!-- tree 4 --> 5600 <_> 5601 <!-- root node --> 5602 <feature> 5603 <rects> 5604 <_>1 19 8 4 -1.</_> 5605 <_>5 19 4 4 2.</_></rects> 5606 <tilted>0</tilted></feature> 5607 <threshold>-3.1212199246510863e-004</threshold> 5608 <left_val>0.1128714978694916</left_val> 5609 <right_val>-0.3288873136043549</right_val></_></_> 5610 <_> 5611 <!-- tree 5 --> 5612 <_> 5613 <!-- root node --> 5614 <feature> 5615 <rects> 5616 <_>8 12 4 9 -1.</_> 5617 <_>8 12 2 9 2.</_></rects> 5618 <tilted>0</tilted></feature> 5619 <threshold>0.0187426097691059</threshold> 5620 <left_val>-0.0180800706148148</left_val> 5621 <right_val>0.3011532127857208</right_val></_></_> 5622 <_> 5623 <!-- tree 6 --> 5624 <_> 5625 <!-- root node --> 5626 <feature> 5627 <rects> 5628 <_>1 16 9 5 -1.</_> 5629 <_>4 16 3 5 3.</_></rects> 5630 <tilted>0</tilted></feature> 5631 <threshold>2.9675778932869434e-003</threshold> 5632 <left_val>-0.2594884932041168</left_val> 5633 <right_val>0.1330806016921997</right_val></_></_> 5634 <_> 5635 <!-- tree 7 --> 5636 <_> 5637 <!-- root node --> 5638 <feature> 5639 <rects> 5640 <_>3 20 15 3 -1.</_> 5641 <_>8 20 5 3 3.</_></rects> 5642 <tilted>0</tilted></feature> 5643 <threshold>-0.0302950795739889</threshold> 5644 <left_val>-0.6004132032394409</left_val> 5645 <right_val>0.0335165485739708</right_val></_></_> 5646 <_> 5647 <!-- tree 8 --> 5648 <_> 5649 <!-- root node --> 5650 <feature> 5651 <rects> 5652 <_>3 8 10 14 -1.</_> 5653 <_>8 8 5 14 2.</_></rects> 5654 <tilted>0</tilted></feature> 5655 <threshold>6.4835487864911556e-003</threshold> 5656 <left_val>-0.0777680873870850</left_val> 5657 <right_val>0.4626832008361816</right_val></_></_> 5658 <_> 5659 <!-- tree 9 --> 5660 <_> 5661 <!-- root node --> 5662 <feature> 5663 <rects> 5664 <_>10 5 7 6 -1.</_> 5665 <_>10 5 7 3 2.</_></rects> 5666 <tilted>1</tilted></feature> 5667 <threshold>2.2889559622853994e-003</threshold> 5668 <left_val>0.0604118295013905</left_val> 5669 <right_val>-0.1749873012304306</right_val></_></_> 5670 <_> 5671 <!-- tree 10 --> 5672 <_> 5673 <!-- root node --> 5674 <feature> 5675 <rects> 5676 <_>9 5 6 7 -1.</_> 5677 <_>9 5 3 7 2.</_></rects> 5678 <tilted>1</tilted></feature> 5679 <threshold>-1.6078320331871510e-003</threshold> 5680 <left_val>-0.2955718040466309</left_val> 5681 <right_val>0.1544979065656662</right_val></_></_> 5682 <_> 5683 <!-- tree 11 --> 5684 <_> 5685 <!-- root node --> 5686 <feature> 5687 <rects> 5688 <_>10 4 9 10 -1.</_> 5689 <_>10 4 9 5 2.</_></rects> 5690 <tilted>1</tilted></feature> 5691 <threshold>-0.2334866970777512</threshold> 5692 <left_val>-0.6375194787979126</left_val> 5693 <right_val>0.0137483095750213</right_val></_></_> 5694 <_> 5695 <!-- tree 12 --> 5696 <_> 5697 <!-- root node --> 5698 <feature> 5699 <rects> 5700 <_>9 4 10 9 -1.</_> 5701 <_>9 4 5 9 2.</_></rects> 5702 <tilted>1</tilted></feature> 5703 <threshold>5.8999718166887760e-003</threshold> 5704 <left_val>0.1271378993988037</left_val> 5705 <right_val>-0.3268949091434479</right_val></_></_> 5706 <_> 5707 <!-- tree 13 --> 5708 <_> 5709 <!-- root node --> 5710 <feature> 5711 <rects> 5712 <_>12 15 7 8 -1.</_> 5713 <_>12 17 7 4 2.</_></rects> 5714 <tilted>0</tilted></feature> 5715 <threshold>0.0120737198740244</threshold> 5716 <left_val>0.0166142601519823</left_val> 5717 <right_val>-0.2270717024803162</right_val></_></_> 5718 <_> 5719 <!-- tree 14 --> 5720 <_> 5721 <!-- root node --> 5722 <feature> 5723 <rects> 5724 <_>0 15 7 8 -1.</_> 5725 <_>0 17 7 4 2.</_></rects> 5726 <tilted>0</tilted></feature> 5727 <threshold>-5.6356011191383004e-004</threshold> 5728 <left_val>0.1687919050455093</left_val> 5729 <right_val>-0.1960531026124954</right_val></_></_> 5730 <_> 5731 <!-- tree 15 --> 5732 <_> 5733 <!-- root node --> 5734 <feature> 5735 <rects> 5736 <_>0 16 19 4 -1.</_> 5737 <_>0 17 19 2 2.</_></rects> 5738 <tilted>0</tilted></feature> 5739 <threshold>1.7435080371797085e-003</threshold> 5740 <left_val>-0.1383100003004074</left_val> 5741 <right_val>0.2210350930690765</right_val></_></_> 5742 <_> 5743 <!-- tree 16 --> 5744 <_> 5745 <!-- root node --> 5746 <feature> 5747 <rects> 5748 <_>4 20 10 3 -1.</_> 5749 <_>9 20 5 3 2.</_></rects> 5750 <tilted>0</tilted></feature> 5751 <threshold>6.6066621802747250e-003</threshold> 5752 <left_val>0.0443545281887054</left_val> 5753 <right_val>-0.6736524105072022</right_val></_></_> 5754 <_> 5755 <!-- tree 17 --> 5756 <_> 5757 <!-- root node --> 5758 <feature> 5759 <rects> 5760 <_>9 8 4 15 -1.</_> 5761 <_>10 8 2 15 2.</_></rects> 5762 <tilted>0</tilted></feature> 5763 <threshold>-5.9419698081910610e-003</threshold> 5764 <left_val>0.1756900995969772</left_val> 5765 <right_val>-0.1369722038507462</right_val></_></_> 5766 <_> 5767 <!-- tree 18 --> 5768 <_> 5769 <!-- root node --> 5770 <feature> 5771 <rects> 5772 <_>4 7 4 14 -1.</_> 5773 <_>4 7 2 7 2.</_> 5774 <_>6 14 2 7 2.</_></rects> 5775 <tilted>0</tilted></feature> 5776 <threshold>4.9261527601629496e-004</threshold> 5777 <left_val>-0.2103513032197952</left_val> 5778 <right_val>0.1324183046817780</right_val></_></_> 5779 <_> 5780 <!-- tree 19 --> 5781 <_> 5782 <!-- root node --> 5783 <feature> 5784 <rects> 5785 <_>12 8 2 15 -1.</_> 5786 <_>12 8 1 15 2.</_></rects> 5787 <tilted>0</tilted></feature> 5788 <threshold>-3.6582869943231344e-003</threshold> 5789 <left_val>0.1542036980390549</left_val> 5790 <right_val>-0.1056322008371353</right_val></_></_> 5791 <_> 5792 <!-- tree 20 --> 5793 <_> 5794 <!-- root node --> 5795 <feature> 5796 <rects> 5797 <_>5 8 2 15 -1.</_> 5798 <_>6 8 1 15 2.</_></rects> 5799 <tilted>0</tilted></feature> 5800 <threshold>-1.4477679505944252e-003</threshold> 5801 <left_val>-0.2892096042633057</left_val> 5802 <right_val>0.1495039016008377</right_val></_></_> 5803 <_> 5804 <!-- tree 21 --> 5805 <_> 5806 <!-- root node --> 5807 <feature> 5808 <rects> 5809 <_>8 12 4 11 -1.</_> 5810 <_>8 12 2 11 2.</_></rects> 5811 <tilted>0</tilted></feature> 5812 <threshold>-1.0310580255463719e-003</threshold> 5813 <left_val>0.0885729715228081</left_val> 5814 <right_val>-0.0903758332133293</right_val></_></_> 5815 <_> 5816 <!-- tree 22 --> 5817 <_> 5818 <!-- root node --> 5819 <feature> 5820 <rects> 5821 <_>7 12 4 11 -1.</_> 5822 <_>9 12 2 11 2.</_></rects> 5823 <tilted>0</tilted></feature> 5824 <threshold>3.2927519641816616e-003</threshold> 5825 <left_val>-0.1108772978186607</left_val> 5826 <right_val>0.3000374138355255</right_val></_></_> 5827 <_> 5828 <!-- tree 23 --> 5829 <_> 5830 <!-- root node --> 5831 <feature> 5832 <rects> 5833 <_>10 4 3 10 -1.</_> 5834 <_>10 4 3 5 2.</_></rects> 5835 <tilted>1</tilted></feature> 5836 <threshold>-1.6668019816279411e-003</threshold> 5837 <left_val>-0.0620541088283062</left_val> 5838 <right_val>0.2265225946903229</right_val></_></_> 5839 <_> 5840 <!-- tree 24 --> 5841 <_> 5842 <!-- root node --> 5843 <feature> 5844 <rects> 5845 <_>3 16 4 7 -1.</_> 5846 <_>5 16 2 7 2.</_></rects> 5847 <tilted>0</tilted></feature> 5848 <threshold>1.3452100101858377e-003</threshold> 5849 <left_val>0.0920129716396332</left_val> 5850 <right_val>-0.3594416081905365</right_val></_></_> 5851 <_> 5852 <!-- tree 25 --> 5853 <_> 5854 <!-- root node --> 5855 <feature> 5856 <rects> 5857 <_>3 17 16 3 -1.</_> 5858 <_>3 18 16 1 3.</_></rects> 5859 <tilted>0</tilted></feature> 5860 <threshold>-0.0149815697222948</threshold> 5861 <left_val>0.3663609027862549</left_val> 5862 <right_val>-0.0645568072795868</right_val></_></_> 5863 <_> 5864 <!-- tree 26 --> 5865 <_> 5866 <!-- root node --> 5867 <feature> 5868 <rects> 5869 <_>0 12 4 10 -1.</_> 5870 <_>2 12 2 10 2.</_></rects> 5871 <tilted>0</tilted></feature> 5872 <threshold>6.2536462210118771e-003</threshold> 5873 <left_val>0.0693813636898994</left_val> 5874 <right_val>-0.4102383852005005</right_val></_></_> 5875 <_> 5876 <!-- tree 27 --> 5877 <_> 5878 <!-- root node --> 5879 <feature> 5880 <rects> 5881 <_>7 14 12 6 -1.</_> 5882 <_>10 14 6 6 2.</_></rects> 5883 <tilted>0</tilted></feature> 5884 <threshold>0.0509373992681503</threshold> 5885 <left_val>0.0178699307143688</left_val> 5886 <right_val>-0.6052407026290894</right_val></_></_> 5887 <_> 5888 <!-- tree 28 --> 5889 <_> 5890 <!-- root node --> 5891 <feature> 5892 <rects> 5893 <_>0 14 12 6 -1.</_> 5894 <_>3 14 6 6 2.</_></rects> 5895 <tilted>0</tilted></feature> 5896 <threshold>1.0756580159068108e-003</threshold> 5897 <left_val>-0.2377794981002808</left_val> 5898 <right_val>0.1422331929206848</right_val></_></_> 5899 <_> 5900 <!-- tree 29 --> 5901 <_> 5902 <!-- root node --> 5903 <feature> 5904 <rects> 5905 <_>7 0 12 4 -1.</_> 5906 <_>11 0 4 4 3.</_></rects> 5907 <tilted>0</tilted></feature> 5908 <threshold>-4.1086040437221527e-003</threshold> 5909 <left_val>0.1491537988185883</left_val> 5910 <right_val>-0.1921306997537613</right_val></_></_> 5911 <_> 5912 <!-- tree 30 --> 5913 <_> 5914 <!-- root node --> 5915 <feature> 5916 <rects> 5917 <_>7 0 4 10 -1.</_> 5918 <_>9 0 2 10 2.</_></rects> 5919 <tilted>0</tilted></feature> 5920 <threshold>-0.0133385201916099</threshold> 5921 <left_val>-0.4971103072166443</left_val> 5922 <right_val>0.0657551586627960</right_val></_></_> 5923 <_> 5924 <!-- tree 31 --> 5925 <_> 5926 <!-- root node --> 5927 <feature> 5928 <rects> 5929 <_>9 0 10 3 -1.</_> 5930 <_>9 0 5 3 2.</_></rects> 5931 <tilted>0</tilted></feature> 5932 <threshold>0.0319979712367058</threshold> 5933 <left_val>-0.0649275928735733</left_val> 5934 <right_val>0.6657704114913940</right_val></_></_> 5935 <_> 5936 <!-- tree 32 --> 5937 <_> 5938 <!-- root node --> 5939 <feature> 5940 <rects> 5941 <_>0 0 10 3 -1.</_> 5942 <_>5 0 5 3 2.</_></rects> 5943 <tilted>0</tilted></feature> 5944 <threshold>-0.0496860593557358</threshold> 5945 <left_val>0.5067688822746277</left_val> 5946 <right_val>-0.0646769106388092</right_val></_></_> 5947 <_> 5948 <!-- tree 33 --> 5949 <_> 5950 <!-- root node --> 5951 <feature> 5952 <rects> 5953 <_>6 5 8 8 -1.</_> 5954 <_>10 5 4 4 2.</_> 5955 <_>6 9 4 4 2.</_></rects> 5956 <tilted>0</tilted></feature> 5957 <threshold>6.0286428779363632e-003</threshold> 5958 <left_val>0.0882148966193199</left_val> 5959 <right_val>-0.2792361974716187</right_val></_></_> 5960 <_> 5961 <!-- tree 34 --> 5962 <_> 5963 <!-- root node --> 5964 <feature> 5965 <rects> 5966 <_>4 6 2 14 -1.</_> 5967 <_>5 6 1 14 2.</_></rects> 5968 <tilted>0</tilted></feature> 5969 <threshold>-6.9053061306476593e-003</threshold> 5970 <left_val>-0.6145234704017639</left_val> 5971 <right_val>0.0356314890086651</right_val></_></_> 5972 <_> 5973 <!-- tree 35 --> 5974 <_> 5975 <!-- root node --> 5976 <feature> 5977 <rects> 5978 <_>10 8 6 10 -1.</_> 5979 <_>12 8 2 10 3.</_></rects> 5980 <tilted>0</tilted></feature> 5981 <threshold>5.8130919933319092e-003</threshold> 5982 <left_val>-0.0936536267399788</left_val> 5983 <right_val>0.0998173579573631</right_val></_></_> 5984 <_> 5985 <!-- tree 36 --> 5986 <_> 5987 <!-- root node --> 5988 <feature> 5989 <rects> 5990 <_>3 8 6 10 -1.</_> 5991 <_>5 8 2 10 3.</_></rects> 5992 <tilted>0</tilted></feature> 5993 <threshold>-0.0110304197296500</threshold> 5994 <left_val>0.4579817056655884</left_val> 5995 <right_val>-0.0651249736547470</right_val></_></_> 5996 <_> 5997 <!-- tree 37 --> 5998 <_> 5999 <!-- root node --> 6000 <feature> 6001 <rects> 6002 <_>5 15 12 6 -1.</_> 6003 <_>9 15 4 6 3.</_></rects> 6004 <tilted>0</tilted></feature> 6005 <threshold>-1.5703570097684860e-003</threshold> 6006 <left_val>0.0471136607229710</left_val> 6007 <right_val>-0.1334746032953262</right_val></_></_> 6008 <_> 6009 <!-- tree 38 --> 6010 <_> 6011 <!-- root node --> 6012 <feature> 6013 <rects> 6014 <_>2 15 12 6 -1.</_> 6015 <_>6 15 4 6 3.</_></rects> 6016 <tilted>0</tilted></feature> 6017 <threshold>4.6482901088893414e-003</threshold> 6018 <left_val>0.0739326775074005</left_val> 6019 <right_val>-0.4214586019515991</right_val></_></_> 6020 <_> 6021 <!-- tree 39 --> 6022 <_> 6023 <!-- root node --> 6024 <feature> 6025 <rects> 6026 <_>8 5 5 8 -1.</_> 6027 <_>8 9 5 4 2.</_></rects> 6028 <tilted>0</tilted></feature> 6029 <threshold>5.0479872152209282e-004</threshold> 6030 <left_val>-0.2051727026700974</left_val> 6031 <right_val>0.0951282531023026</right_val></_></_> 6032 <_> 6033 <!-- tree 40 --> 6034 <_> 6035 <!-- root node --> 6036 <feature> 6037 <rects> 6038 <_>0 2 14 4 -1.</_> 6039 <_>7 2 7 4 2.</_></rects> 6040 <tilted>0</tilted></feature> 6041 <threshold>0.0261257607489824</threshold> 6042 <left_val>-0.0688169673085213</left_val> 6043 <right_val>0.4264478981494904</right_val></_></_> 6044 <_> 6045 <!-- tree 41 --> 6046 <_> 6047 <!-- root node --> 6048 <feature> 6049 <rects> 6050 <_>7 1 6 7 -1.</_> 6051 <_>9 1 2 7 3.</_></rects> 6052 <tilted>0</tilted></feature> 6053 <threshold>6.4811189658939838e-003</threshold> 6054 <left_val>0.1130238994956017</left_val> 6055 <right_val>-0.4702106118202210</right_val></_></_> 6056 <_> 6057 <!-- tree 42 --> 6058 <_> 6059 <!-- root node --> 6060 <feature> 6061 <rects> 6062 <_>6 2 4 17 -1.</_> 6063 <_>7 2 2 17 2.</_></rects> 6064 <tilted>0</tilted></feature> 6065 <threshold>-0.0454841814935207</threshold> 6066 <left_val>0.5410146713256836</left_val> 6067 <right_val>-0.0568048395216465</right_val></_></_> 6068 <_> 6069 <!-- tree 43 --> 6070 <_> 6071 <!-- root node --> 6072 <feature> 6073 <rects> 6074 <_>8 1 9 15 -1.</_> 6075 <_>11 6 3 5 9.</_></rects> 6076 <tilted>0</tilted></feature> 6077 <threshold>0.0689561367034912</threshold> 6078 <left_val>0.0344441197812557</left_val> 6079 <right_val>-0.1741154938936234</right_val></_></_> 6080 <_> 6081 <!-- tree 44 --> 6082 <_> 6083 <!-- root node --> 6084 <feature> 6085 <rects> 6086 <_>0 0 12 4 -1.</_> 6087 <_>4 0 4 4 3.</_></rects> 6088 <tilted>0</tilted></feature> 6089 <threshold>-2.0358948968350887e-003</threshold> 6090 <left_val>0.1336694061756134</left_val> 6091 <right_val>-0.2098592072725296</right_val></_></_> 6092 <_> 6093 <!-- tree 45 --> 6094 <_> 6095 <!-- root node --> 6096 <feature> 6097 <rects> 6098 <_>11 1 8 8 -1.</_> 6099 <_>11 5 8 4 2.</_></rects> 6100 <tilted>0</tilted></feature> 6101 <threshold>1.4390050200745463e-003</threshold> 6102 <left_val>-0.1644961982965469</left_val> 6103 <right_val>0.0988863483071327</right_val></_></_> 6104 <_> 6105 <!-- tree 46 --> 6106 <_> 6107 <!-- root node --> 6108 <feature> 6109 <rects> 6110 <_>0 1 8 8 -1.</_> 6111 <_>0 5 8 4 2.</_></rects> 6112 <tilted>0</tilted></feature> 6113 <threshold>0.0301804803311825</threshold> 6114 <left_val>0.0876353830099106</left_val> 6115 <right_val>-0.3946411907672882</right_val></_></_> 6116 <_> 6117 <!-- tree 47 --> 6118 <_> 6119 <!-- root node --> 6120 <feature> 6121 <rects> 6122 <_>10 8 3 14 -1.</_> 6123 <_>11 8 1 14 3.</_></rects> 6124 <tilted>0</tilted></feature> 6125 <threshold>-3.8663588929921389e-003</threshold> 6126 <left_val>0.1596461981534958</left_val> 6127 <right_val>-0.1184082999825478</right_val></_></_> 6128 <_> 6129 <!-- tree 48 --> 6130 <_> 6131 <!-- root node --> 6132 <feature> 6133 <rects> 6134 <_>9 4 10 3 -1.</_> 6135 <_>9 4 5 3 2.</_></rects> 6136 <tilted>1</tilted></feature> 6137 <threshold>0.0107534900307655</threshold> 6138 <left_val>-0.0571420602500439</left_val> 6139 <right_val>0.5012527704238892</right_val></_></_> 6140 <_> 6141 <!-- tree 49 --> 6142 <_> 6143 <!-- root node --> 6144 <feature> 6145 <rects> 6146 <_>11 8 2 11 -1.</_> 6147 <_>11 8 1 11 2.</_></rects> 6148 <tilted>1</tilted></feature> 6149 <threshold>0.0109781501814723</threshold> 6150 <left_val>0.0359851606190205</left_val> 6151 <right_val>-0.3864648044109345</right_val></_></_> 6152 <_> 6153 <!-- tree 50 --> 6154 <_> 6155 <!-- root node --> 6156 <feature> 6157 <rects> 6158 <_>3 13 4 8 -1.</_> 6159 <_>3 17 4 4 2.</_></rects> 6160 <tilted>0</tilted></feature> 6161 <threshold>-7.8152219066396356e-004</threshold> 6162 <left_val>0.1824809014797211</left_val> 6163 <right_val>-0.1643594950437546</right_val></_></_> 6164 <_> 6165 <!-- tree 51 --> 6166 <_> 6167 <!-- root node --> 6168 <feature> 6169 <rects> 6170 <_>10 11 8 12 -1.</_> 6171 <_>10 17 8 6 2.</_></rects> 6172 <tilted>0</tilted></feature> 6173 <threshold>-6.9936108775436878e-003</threshold> 6174 <left_val>-0.2655623853206635</left_val> 6175 <right_val>0.0944361016154289</right_val></_></_> 6176 <_> 6177 <!-- tree 52 --> 6178 <_> 6179 <!-- root node --> 6180 <feature> 6181 <rects> 6182 <_>6 8 3 14 -1.</_> 6183 <_>7 8 1 14 3.</_></rects> 6184 <tilted>0</tilted></feature> 6185 <threshold>0.0231257304549217</threshold> 6186 <left_val>-0.0591019392013550</left_val> 6187 <right_val>0.5735905766487122</right_val></_></_> 6188 <_> 6189 <!-- tree 53 --> 6190 <_> 6191 <!-- root node --> 6192 <feature> 6193 <rects> 6194 <_>10 9 2 10 -1.</_> 6195 <_>10 9 1 10 2.</_></rects> 6196 <tilted>1</tilted></feature> 6197 <threshold>-0.0170555207878351</threshold> 6198 <left_val>-0.5456724762916565</left_val> 6199 <right_val>0.0271531306207180</right_val></_></_> 6200 <_> 6201 <!-- tree 54 --> 6202 <_> 6203 <!-- root node --> 6204 <feature> 6205 <rects> 6206 <_>8 11 6 6 -1.</_> 6207 <_>8 11 3 6 2.</_></rects> 6208 <tilted>1</tilted></feature> 6209 <threshold>0.0151922898367047</threshold> 6210 <left_val>0.0925809815526009</left_val> 6211 <right_val>-0.2973513901233673</right_val></_></_></trees> 6212 <stage_threshold>-0.9398486018180847</stage_threshold> 6213 <parent>15</parent> 6214 <next>-1</next></_> 6215 <_> 6216 <!-- stage 17 --> 6217 <trees> 6218 <_> 6219 <!-- tree 0 --> 6220 <_> 6221 <!-- root node --> 6222 <feature> 6223 <rects> 6224 <_>1 6 16 4 -1.</_> 6225 <_>5 6 8 4 2.</_></rects> 6226 <tilted>0</tilted></feature> 6227 <threshold>-0.0215891394764185</threshold> 6228 <left_val>0.3377926051616669</left_val> 6229 <right_val>-0.2672545909881592</right_val></_></_> 6230 <_> 6231 <!-- tree 1 --> 6232 <_> 6233 <!-- root node --> 6234 <feature> 6235 <rects> 6236 <_>12 0 2 14 -1.</_> 6237 <_>12 7 2 7 2.</_></rects> 6238 <tilted>0</tilted></feature> 6239 <threshold>6.3885431736707687e-003</threshold> 6240 <left_val>-0.2675912976264954</left_val> 6241 <right_val>0.2143868952989578</right_val></_></_> 6242 <_> 6243 <!-- tree 2 --> 6244 <_> 6245 <!-- root node --> 6246 <feature> 6247 <rects> 6248 <_>7 9 3 14 -1.</_> 6249 <_>8 9 1 14 3.</_></rects> 6250 <tilted>0</tilted></feature> 6251 <threshold>-2.4394609499722719e-003</threshold> 6252 <left_val>0.1884108930826187</left_val> 6253 <right_val>-0.2349513024091721</right_val></_></_> 6254 <_> 6255 <!-- tree 3 --> 6256 <_> 6257 <!-- root node --> 6258 <feature> 6259 <rects> 6260 <_>11 7 2 11 -1.</_> 6261 <_>11 7 1 11 2.</_></rects> 6262 <tilted>1</tilted></feature> 6263 <threshold>3.9824391715228558e-003</threshold> 6264 <left_val>0.0466899089515209</left_val> 6265 <right_val>-0.1798482984304428</right_val></_></_> 6266 <_> 6267 <!-- tree 4 --> 6268 <_> 6269 <!-- root node --> 6270 <feature> 6271 <rects> 6272 <_>8 7 11 2 -1.</_> 6273 <_>8 7 11 1 2.</_></rects> 6274 <tilted>1</tilted></feature> 6275 <threshold>-3.1252959161065519e-004</threshold> 6276 <left_val>0.1726770997047424</left_val> 6277 <right_val>-0.1878277957439423</right_val></_></_> 6278 <_> 6279 <!-- tree 5 --> 6280 <_> 6281 <!-- root node --> 6282 <feature> 6283 <rects> 6284 <_>7 0 6 5 -1.</_> 6285 <_>7 0 3 5 2.</_></rects> 6286 <tilted>0</tilted></feature> 6287 <threshold>3.3181109465658665e-003</threshold> 6288 <left_val>0.1208112016320229</left_val> 6289 <right_val>-0.3237386941909790</right_val></_></_> 6290 <_> 6291 <!-- tree 6 --> 6292 <_> 6293 <!-- root node --> 6294 <feature> 6295 <rects> 6296 <_>5 0 9 5 -1.</_> 6297 <_>8 0 3 5 3.</_></rects> 6298 <tilted>0</tilted></feature> 6299 <threshold>-7.0711369626224041e-003</threshold> 6300 <left_val>-0.2749837934970856</left_val> 6301 <right_val>0.1386826932430267</right_val></_></_> 6302 <_> 6303 <!-- tree 7 --> 6304 <_> 6305 <!-- root node --> 6306 <feature> 6307 <rects> 6308 <_>7 17 10 6 -1.</_> 6309 <_>12 17 5 3 2.</_> 6310 <_>7 20 5 3 2.</_></rects> 6311 <tilted>0</tilted></feature> 6312 <threshold>4.4392608106136322e-003</threshold> 6313 <left_val>-0.2227901965379715</left_val> 6314 <right_val>0.1715514063835144</right_val></_></_> 6315 <_> 6316 <!-- tree 8 --> 6317 <_> 6318 <!-- root node --> 6319 <feature> 6320 <rects> 6321 <_>7 6 4 15 -1.</_> 6322 <_>8 6 2 15 2.</_></rects> 6323 <tilted>0</tilted></feature> 6324 <threshold>2.1352670155465603e-003</threshold> 6325 <left_val>-0.1132285967469215</left_val> 6326 <right_val>0.2842895984649658</right_val></_></_> 6327 <_> 6328 <!-- tree 9 --> 6329 <_> 6330 <!-- root node --> 6331 <feature> 6332 <rects> 6333 <_>5 11 10 3 -1.</_> 6334 <_>5 11 5 3 2.</_></rects> 6335 <tilted>0</tilted></feature> 6336 <threshold>-4.0205409750342369e-003</threshold> 6337 <left_val>-0.2454255074262619</left_val> 6338 <right_val>0.0949575006961823</right_val></_></_> 6339 <_> 6340 <!-- tree 10 --> 6341 <_> 6342 <!-- root node --> 6343 <feature> 6344 <rects> 6345 <_>8 7 3 14 -1.</_> 6346 <_>9 7 1 14 3.</_></rects> 6347 <tilted>0</tilted></feature> 6348 <threshold>-6.5228617750108242e-003</threshold> 6349 <left_val>0.3210678994655609</left_val> 6350 <right_val>-0.0973723679780960</right_val></_></_> 6351 <_> 6352 <!-- tree 11 --> 6353 <_> 6354 <!-- root node --> 6355 <feature> 6356 <rects> 6357 <_>10 8 2 10 -1.</_> 6358 <_>10 8 1 10 2.</_></rects> 6359 <tilted>1</tilted></feature> 6360 <threshold>4.4146090658614412e-005</threshold> 6361 <left_val>-0.1526933014392853</left_val> 6362 <right_val>0.0851288363337517</right_val></_></_> 6363 <_> 6364 <!-- tree 12 --> 6365 <_> 6366 <!-- root node --> 6367 <feature> 6368 <rects> 6369 <_>3 3 9 18 -1.</_> 6370 <_>6 9 3 6 9.</_></rects> 6371 <tilted>0</tilted></feature> 6372 <threshold>0.0476060397922993</threshold> 6373 <left_val>0.0793397575616837</left_val> 6374 <right_val>-0.2959941923618317</right_val></_></_> 6375 <_> 6376 <!-- tree 13 --> 6377 <_> 6378 <!-- root node --> 6379 <feature> 6380 <rects> 6381 <_>8 0 10 12 -1.</_> 6382 <_>13 0 5 6 2.</_> 6383 <_>8 6 5 6 2.</_></rects> 6384 <tilted>0</tilted></feature> 6385 <threshold>0.0409286618232727</threshold> 6386 <left_val>-0.0351422615349293</left_val> 6387 <right_val>0.3759357929229736</right_val></_></_> 6388 <_> 6389 <!-- tree 14 --> 6390 <_> 6391 <!-- root node --> 6392 <feature> 6393 <rects> 6394 <_>1 12 12 11 -1.</_> 6395 <_>4 12 6 11 2.</_></rects> 6396 <tilted>0</tilted></feature> 6397 <threshold>-0.0111618898808956</threshold> 6398 <left_val>-0.2674781084060669</left_val> 6399 <right_val>0.0891817882657051</right_val></_></_> 6400 <_> 6401 <!-- tree 15 --> 6402 <_> 6403 <!-- root node --> 6404 <feature> 6405 <rects> 6406 <_>2 4 15 9 -1.</_> 6407 <_>7 7 5 3 9.</_></rects> 6408 <tilted>0</tilted></feature> 6409 <threshold>-0.2988845109939575</threshold> 6410 <left_val>0.4801439940929413</left_val> 6411 <right_val>-0.0724850520491600</right_val></_></_> 6412 <_> 6413 <!-- tree 16 --> 6414 <_> 6415 <!-- root node --> 6416 <feature> 6417 <rects> 6418 <_>3 7 10 10 -1.</_> 6419 <_>8 7 5 10 2.</_></rects> 6420 <tilted>0</tilted></feature> 6421 <threshold>0.0115143600851297</threshold> 6422 <left_val>-0.0592182502150536</left_val> 6423 <right_val>0.4096263945102692</right_val></_></_> 6424 <_> 6425 <!-- tree 17 --> 6426 <_> 6427 <!-- root node --> 6428 <feature> 6429 <rects> 6430 <_>10 8 2 10 -1.</_> 6431 <_>10 8 1 10 2.</_></rects> 6432 <tilted>1</tilted></feature> 6433 <threshold>-2.6182739529758692e-003</threshold> 6434 <left_val>-0.1847873926162720</left_val> 6435 <right_val>0.0398015603423119</right_val></_></_> 6436 <_> 6437 <!-- tree 18 --> 6438 <_> 6439 <!-- root node --> 6440 <feature> 6441 <rects> 6442 <_>2 18 6 5 -1.</_> 6443 <_>5 18 3 5 2.</_></rects> 6444 <tilted>0</tilted></feature> 6445 <threshold>-1.2829460320062935e-004</threshold> 6446 <left_val>0.1071091964840889</left_val> 6447 <right_val>-0.2415527999401093</right_val></_></_> 6448 <_> 6449 <!-- tree 19 --> 6450 <_> 6451 <!-- root node --> 6452 <feature> 6453 <rects> 6454 <_>9 20 10 3 -1.</_> 6455 <_>9 20 5 3 2.</_></rects> 6456 <tilted>0</tilted></feature> 6457 <threshold>-6.9328160025179386e-003</threshold> 6458 <left_val>-0.2984572052955627</left_val> 6459 <right_val>0.0456579588353634</right_val></_></_> 6460 <_> 6461 <!-- tree 20 --> 6462 <_> 6463 <!-- root node --> 6464 <feature> 6465 <rects> 6466 <_>5 0 4 14 -1.</_> 6467 <_>5 0 2 7 2.</_> 6468 <_>7 7 2 7 2.</_></rects> 6469 <tilted>0</tilted></feature> 6470 <threshold>-6.3937888480722904e-003</threshold> 6471 <left_val>0.1836351007223129</left_val> 6472 <right_val>-0.1404941976070404</right_val></_></_> 6473 <_> 6474 <!-- tree 21 --> 6475 <_> 6476 <!-- root node --> 6477 <feature> 6478 <rects> 6479 <_>8 0 10 12 -1.</_> 6480 <_>13 0 5 6 2.</_> 6481 <_>8 6 5 6 2.</_></rects> 6482 <tilted>0</tilted></feature> 6483 <threshold>4.1702711023390293e-003</threshold> 6484 <left_val>-0.0518900193274021</left_val> 6485 <right_val>0.1021158024668694</right_val></_></_> 6486 <_> 6487 <!-- tree 22 --> 6488 <_> 6489 <!-- root node --> 6490 <feature> 6491 <rects> 6492 <_>2 0 8 18 -1.</_> 6493 <_>2 0 4 9 2.</_> 6494 <_>6 9 4 9 2.</_></rects> 6495 <tilted>0</tilted></feature> 6496 <threshold>0.0103909997269511</threshold> 6497 <left_val>-0.1342698931694031</left_val> 6498 <right_val>0.1913730949163437</right_val></_></_> 6499 <_> 6500 <!-- tree 23 --> 6501 <_> 6502 <!-- root node --> 6503 <feature> 6504 <rects> 6505 <_>10 0 8 4 -1.</_> 6506 <_>10 0 4 4 2.</_></rects> 6507 <tilted>0</tilted></feature> 6508 <threshold>0.0130047397688031</threshold> 6509 <left_val>-0.0459227189421654</left_val> 6510 <right_val>0.3052693009376526</right_val></_></_> 6511 <_> 6512 <!-- tree 24 --> 6513 <_> 6514 <!-- root node --> 6515 <feature> 6516 <rects> 6517 <_>9 9 9 2 -1.</_> 6518 <_>9 9 9 1 2.</_></rects> 6519 <tilted>1</tilted></feature> 6520 <threshold>-4.0645021945238113e-003</threshold> 6521 <left_val>-0.4847716093063355</left_val> 6522 <right_val>0.0693384632468224</right_val></_></_> 6523 <_> 6524 <!-- tree 25 --> 6525 <_> 6526 <!-- root node --> 6527 <feature> 6528 <rects> 6529 <_>15 7 3 10 -1.</_> 6530 <_>15 12 3 5 2.</_></rects> 6531 <tilted>0</tilted></feature> 6532 <threshold>-3.7050418904982507e-004</threshold> 6533 <left_val>0.1009071990847588</left_val> 6534 <right_val>-0.0689112767577171</right_val></_></_> 6535 <_> 6536 <!-- tree 26 --> 6537 <_> 6538 <!-- root node --> 6539 <feature> 6540 <rects> 6541 <_>1 7 3 10 -1.</_> 6542 <_>1 12 3 5 2.</_></rects> 6543 <tilted>0</tilted></feature> 6544 <threshold>8.8882551062852144e-004</threshold> 6545 <left_val>-0.1674278974533081</left_val> 6546 <right_val>0.1896588951349258</right_val></_></_> 6547 <_> 6548 <!-- tree 27 --> 6549 <_> 6550 <!-- root node --> 6551 <feature> 6552 <rects> 6553 <_>15 6 4 7 -1.</_> 6554 <_>15 6 2 7 2.</_></rects> 6555 <tilted>0</tilted></feature> 6556 <threshold>-4.8583559691905975e-003</threshold> 6557 <left_val>-0.4078938961029053</left_val> 6558 <right_val>0.0514833517372608</right_val></_></_> 6559 <_> 6560 <!-- tree 28 --> 6561 <_> 6562 <!-- root node --> 6563 <feature> 6564 <rects> 6565 <_>4 15 6 7 -1.</_> 6566 <_>6 15 2 7 3.</_></rects> 6567 <tilted>0</tilted></feature> 6568 <threshold>4.4327960349619389e-003</threshold> 6569 <left_val>-0.1426250934600830</left_val> 6570 <right_val>0.1898719072341919</right_val></_></_> 6571 <_> 6572 <!-- tree 29 --> 6573 <_> 6574 <!-- root node --> 6575 <feature> 6576 <rects> 6577 <_>2 2 16 20 -1.</_> 6578 <_>10 2 8 10 2.</_> 6579 <_>2 12 8 10 2.</_></rects> 6580 <tilted>0</tilted></feature> 6581 <threshold>0.0209997091442347</threshold> 6582 <left_val>0.0921537727117538</left_val> 6583 <right_val>-0.3077355027198792</right_val></_></_> 6584 <_> 6585 <!-- tree 30 --> 6586 <_> 6587 <!-- root node --> 6588 <feature> 6589 <rects> 6590 <_>4 17 7 6 -1.</_> 6591 <_>4 19 7 2 3.</_></rects> 6592 <tilted>0</tilted></feature> 6593 <threshold>-2.2740170825272799e-003</threshold> 6594 <left_val>0.1517627984285355</left_val> 6595 <right_val>-0.1652870029211044</right_val></_></_> 6596 <_> 6597 <!-- tree 31 --> 6598 <_> 6599 <!-- root node --> 6600 <feature> 6601 <rects> 6602 <_>3 15 15 6 -1.</_> 6603 <_>3 18 15 3 2.</_></rects> 6604 <tilted>0</tilted></feature> 6605 <threshold>-0.0150755401700735</threshold> 6606 <left_val>-0.3103924095630646</left_val> 6607 <right_val>0.0656969398260117</right_val></_></_> 6608 <_> 6609 <!-- tree 32 --> 6610 <_> 6611 <!-- root node --> 6612 <feature> 6613 <rects> 6614 <_>0 18 14 3 -1.</_> 6615 <_>0 19 14 1 3.</_></rects> 6616 <tilted>0</tilted></feature> 6617 <threshold>9.5290662720799446e-003</threshold> 6618 <left_val>-0.0676930174231529</left_val> 6619 <right_val>0.4069203138351440</right_val></_></_> 6620 <_> 6621 <!-- tree 33 --> 6622 <_> 6623 <!-- root node --> 6624 <feature> 6625 <rects> 6626 <_>9 20 10 3 -1.</_> 6627 <_>9 20 5 3 2.</_></rects> 6628 <tilted>0</tilted></feature> 6629 <threshold>1.2057139538228512e-003</threshold> 6630 <left_val>0.0431881882250309</left_val> 6631 <right_val>-0.1845436990261078</right_val></_></_> 6632 <_> 6633 <!-- tree 34 --> 6634 <_> 6635 <!-- root node --> 6636 <feature> 6637 <rects> 6638 <_>2 0 4 18 -1.</_> 6639 <_>2 0 2 9 2.</_> 6640 <_>4 9 2 9 2.</_></rects> 6641 <tilted>0</tilted></feature> 6642 <threshold>-0.0247570704668760</threshold> 6643 <left_val>0.6689097881317139</left_val> 6644 <right_val>-0.0344187095761299</right_val></_></_> 6645 <_> 6646 <!-- tree 35 --> 6647 <_> 6648 <!-- root node --> 6649 <feature> 6650 <rects> 6651 <_>10 2 6 8 -1.</_> 6652 <_>10 6 6 4 2.</_></rects> 6653 <tilted>0</tilted></feature> 6654 <threshold>3.0408669263124466e-003</threshold> 6655 <left_val>-0.1325615942478180</left_val> 6656 <right_val>0.0951310396194458</right_val></_></_> 6657 <_> 6658 <!-- tree 36 --> 6659 <_> 6660 <!-- root node --> 6661 <feature> 6662 <rects> 6663 <_>5 2 8 8 -1.</_> 6664 <_>5 2 4 4 2.</_> 6665 <_>9 6 4 4 2.</_></rects> 6666 <tilted>0</tilted></feature> 6667 <threshold>-1.5181970084086061e-003</threshold> 6668 <left_val>0.1293949931859970</left_val> 6669 <right_val>-0.1855853945016861</right_val></_></_> 6670 <_> 6671 <!-- tree 37 --> 6672 <_> 6673 <!-- root node --> 6674 <feature> 6675 <rects> 6676 <_>9 20 10 3 -1.</_> 6677 <_>9 20 5 3 2.</_></rects> 6678 <tilted>0</tilted></feature> 6679 <threshold>-0.0248453598469496</threshold> 6680 <left_val>-0.7301337718963623</left_val> 6681 <right_val>9.4545418396592140e-003</right_val></_></_> 6682 <_> 6683 <!-- tree 38 --> 6684 <_> 6685 <!-- root node --> 6686 <feature> 6687 <rects> 6688 <_>0 0 18 3 -1.</_> 6689 <_>6 0 6 3 3.</_></rects> 6690 <tilted>0</tilted></feature> 6691 <threshold>-8.1413304433226585e-003</threshold> 6692 <left_val>0.1152179986238480</left_val> 6693 <right_val>-0.1903814971446991</right_val></_></_> 6694 <_> 6695 <!-- tree 39 --> 6696 <_> 6697 <!-- root node --> 6698 <feature> 6699 <rects> 6700 <_>10 0 8 4 -1.</_> 6701 <_>10 0 4 4 2.</_></rects> 6702 <tilted>0</tilted></feature> 6703 <threshold>-4.2350329458713531e-003</threshold> 6704 <left_val>0.0727336332201958</left_val> 6705 <right_val>-0.1084188967943192</right_val></_></_> 6706 <_> 6707 <!-- tree 40 --> 6708 <_> 6709 <!-- root node --> 6710 <feature> 6711 <rects> 6712 <_>1 0 8 4 -1.</_> 6713 <_>5 0 4 4 2.</_></rects> 6714 <tilted>0</tilted></feature> 6715 <threshold>9.9135711789131165e-003</threshold> 6716 <left_val>-0.0842189565300941</left_val> 6717 <right_val>0.4761323928833008</right_val></_></_> 6718 <_> 6719 <!-- tree 41 --> 6720 <_> 6721 <!-- root node --> 6722 <feature> 6723 <rects> 6724 <_>9 20 10 3 -1.</_> 6725 <_>9 20 5 3 2.</_></rects> 6726 <tilted>0</tilted></feature> 6727 <threshold>-2.7879870031028986e-003</threshold> 6728 <left_val>-0.1284693926572800</left_val> 6729 <right_val>0.0657206624746323</right_val></_></_> 6730 <_> 6731 <!-- tree 42 --> 6732 <_> 6733 <!-- root node --> 6734 <feature> 6735 <rects> 6736 <_>9 9 8 2 -1.</_> 6737 <_>9 9 8 1 2.</_></rects> 6738 <tilted>1</tilted></feature> 6739 <threshold>2.6451589073985815e-003</threshold> 6740 <left_val>0.0892697572708130</left_val> 6741 <right_val>-0.2621667981147766</right_val></_></_> 6742 <_> 6743 <!-- tree 43 --> 6744 <_> 6745 <!-- root node --> 6746 <feature> 6747 <rects> 6748 <_>4 7 15 9 -1.</_> 6749 <_>9 7 5 9 3.</_></rects> 6750 <tilted>0</tilted></feature> 6751 <threshold>-0.0266834907233715</threshold> 6752 <left_val>0.0898707732558250</left_val> 6753 <right_val>-0.0969140902161598</right_val></_></_> 6754 <_> 6755 <!-- tree 44 --> 6756 <_> 6757 <!-- root node --> 6758 <feature> 6759 <rects> 6760 <_>8 8 3 14 -1.</_> 6761 <_>9 8 1 14 3.</_></rects> 6762 <tilted>0</tilted></feature> 6763 <threshold>3.1197380740195513e-003</threshold> 6764 <left_val>-0.1173174008727074</left_val> 6765 <right_val>0.2200486063957214</right_val></_></_> 6766 <_> 6767 <!-- tree 45 --> 6768 <_> 6769 <!-- root node --> 6770 <feature> 6771 <rects> 6772 <_>6 6 12 16 -1.</_> 6773 <_>9 6 6 16 2.</_></rects> 6774 <tilted>0</tilted></feature> 6775 <threshold>-0.2338829040527344</threshold> 6776 <left_val>-0.9090585708618164</left_val> 6777 <right_val>5.6871720589697361e-003</right_val></_></_> 6778 <_> 6779 <!-- tree 46 --> 6780 <_> 6781 <!-- root node --> 6782 <feature> 6783 <rects> 6784 <_>1 6 12 16 -1.</_> 6785 <_>4 6 6 16 2.</_></rects> 6786 <tilted>0</tilted></feature> 6787 <threshold>0.0109228203073144</threshold> 6788 <left_val>0.0850618407130241</left_val> 6789 <right_val>-0.3072564899921417</right_val></_></_> 6790 <_> 6791 <!-- tree 47 --> 6792 <_> 6793 <!-- root node --> 6794 <feature> 6795 <rects> 6796 <_>10 6 4 7 -1.</_> 6797 <_>10 6 2 7 2.</_></rects> 6798 <tilted>0</tilted></feature> 6799 <threshold>9.4858808442950249e-003</threshold> 6800 <left_val>-0.0223175697028637</left_val> 6801 <right_val>0.3374570906162262</right_val></_></_> 6802 <_> 6803 <!-- tree 48 --> 6804 <_> 6805 <!-- root node --> 6806 <feature> 6807 <rects> 6808 <_>2 15 5 6 -1.</_> 6809 <_>2 18 5 3 2.</_></rects> 6810 <tilted>0</tilted></feature> 6811 <threshold>-5.1413412438705564e-004</threshold> 6812 <left_val>0.1486065983772278</left_val> 6813 <right_val>-0.1559835970401764</right_val></_></_> 6814 <_> 6815 <!-- tree 49 --> 6816 <_> 6817 <!-- root node --> 6818 <feature> 6819 <rects> 6820 <_>7 19 12 4 -1.</_> 6821 <_>11 19 4 4 3.</_></rects> 6822 <tilted>0</tilted></feature> 6823 <threshold>6.5561588853597641e-003</threshold> 6824 <left_val>0.0666934326291084</left_val> 6825 <right_val>-0.2994574010372162</right_val></_></_> 6826 <_> 6827 <!-- tree 50 --> 6828 <_> 6829 <!-- root node --> 6830 <feature> 6831 <rects> 6832 <_>0 19 12 4 -1.</_> 6833 <_>4 19 4 4 3.</_></rects> 6834 <tilted>0</tilted></feature> 6835 <threshold>9.8293996416032314e-004</threshold> 6836 <left_val>-0.1992353945970535</left_val> 6837 <right_val>0.1481647938489914</right_val></_></_> 6838 <_> 6839 <!-- tree 51 --> 6840 <_> 6841 <!-- root node --> 6842 <feature> 6843 <rects> 6844 <_>10 9 4 7 -1.</_> 6845 <_>10 9 2 7 2.</_></rects> 6846 <tilted>0</tilted></feature> 6847 <threshold>-1.8866109894588590e-003</threshold> 6848 <left_val>0.0864623710513115</left_val> 6849 <right_val>-0.1610174030065537</right_val></_></_> 6850 <_> 6851 <!-- tree 52 --> 6852 <_> 6853 <!-- root node --> 6854 <feature> 6855 <rects> 6856 <_>5 9 4 9 -1.</_> 6857 <_>7 9 2 9 2.</_></rects> 6858 <tilted>0</tilted></feature> 6859 <threshold>2.7264489326626062e-003</threshold> 6860 <left_val>-0.0820490866899490</left_val> 6861 <right_val>0.3867950141429901</right_val></_></_></trees> 6862 <stage_threshold>-0.8253865242004395</stage_threshold> 6863 <parent>16</parent> 6864 <next>-1</next></_> 6865 <_> 6866 <!-- stage 18 --> 6867 <trees> 6868 <_> 6869 <!-- tree 0 --> 6870 <_> 6871 <!-- root node --> 6872 <feature> 6873 <rects> 6874 <_>5 3 4 17 -1.</_> 6875 <_>7 3 2 17 2.</_></rects> 6876 <tilted>0</tilted></feature> 6877 <threshold>-0.0126025201752782</threshold> 6878 <left_val>0.2242307066917419</left_val> 6879 <right_val>-0.3346217870712280</right_val></_></_> 6880 <_> 6881 <!-- tree 1 --> 6882 <_> 6883 <!-- root node --> 6884 <feature> 6885 <rects> 6886 <_>3 21 14 2 -1.</_> 6887 <_>3 21 7 2 2.</_></rects> 6888 <tilted>0</tilted></feature> 6889 <threshold>2.5659699458628893e-003</threshold> 6890 <left_val>0.0857565402984619</left_val> 6891 <right_val>-0.3237636089324951</right_val></_></_> 6892 <_> 6893 <!-- tree 2 --> 6894 <_> 6895 <!-- root node --> 6896 <feature> 6897 <rects> 6898 <_>0 19 12 3 -1.</_> 6899 <_>6 19 6 3 2.</_></rects> 6900 <tilted>0</tilted></feature> 6901 <threshold>-1.2003120500594378e-003</threshold> 6902 <left_val>0.1465037018060684</left_val> 6903 <right_val>-0.3030675053596497</right_val></_></_> 6904 <_> 6905 <!-- tree 3 --> 6906 <_> 6907 <!-- root node --> 6908 <feature> 6909 <rects> 6910 <_>9 0 3 22 -1.</_> 6911 <_>9 11 3 11 2.</_></rects> 6912 <tilted>0</tilted></feature> 6913 <threshold>4.7978968359529972e-003</threshold> 6914 <left_val>-0.2472590953111649</left_val> 6915 <right_val>0.0527058094739914</right_val></_></_> 6916 <_> 6917 <!-- tree 4 --> 6918 <_> 6919 <!-- root node --> 6920 <feature> 6921 <rects> 6922 <_>5 9 2 14 -1.</_> 6923 <_>6 9 1 14 2.</_></rects> 6924 <tilted>0</tilted></feature> 6925 <threshold>-5.9380318270996213e-004</threshold> 6926 <left_val>-0.1888304948806763</left_val> 6927 <right_val>0.1549035012722015</right_val></_></_> 6928 <_> 6929 <!-- tree 5 --> 6930 <_> 6931 <!-- root node --> 6932 <feature> 6933 <rects> 6934 <_>7 7 6 16 -1.</_> 6935 <_>7 11 6 8 2.</_></rects> 6936 <tilted>0</tilted></feature> 6937 <threshold>8.1017091870307922e-003</threshold> 6938 <left_val>0.1076487973332405</left_val> 6939 <right_val>-0.2473893016576767</right_val></_></_> 6940 <_> 6941 <!-- tree 6 --> 6942 <_> 6943 <!-- root node --> 6944 <feature> 6945 <rects> 6946 <_>1 12 4 8 -1.</_> 6947 <_>1 16 4 4 2.</_></rects> 6948 <tilted>0</tilted></feature> 6949 <threshold>-6.8427261430770159e-004</threshold> 6950 <left_val>0.1828285008668900</left_val> 6951 <right_val>-0.1655009984970093</right_val></_></_> 6952 <_> 6953 <!-- tree 7 --> 6954 <_> 6955 <!-- root node --> 6956 <feature> 6957 <rects> 6958 <_>2 12 15 3 -1.</_> 6959 <_>7 12 5 3 3.</_></rects> 6960 <tilted>0</tilted></feature> 6961 <threshold>4.5279348269104958e-003</threshold> 6962 <left_val>-0.0556687600910664</left_val> 6963 <right_val>0.4138269126415253</right_val></_></_> 6964 <_> 6965 <!-- tree 8 --> 6966 <_> 6967 <!-- root node --> 6968 <feature> 6969 <rects> 6970 <_>1 17 12 6 -1.</_> 6971 <_>1 17 6 3 2.</_> 6972 <_>7 20 6 3 2.</_></rects> 6973 <tilted>0</tilted></feature> 6974 <threshold>3.8289420772343874e-003</threshold> 6975 <left_val>-0.2222221940755844</left_val> 6976 <right_val>0.1528232991695404</right_val></_></_> 6977 <_> 6978 <!-- tree 9 --> 6979 <_> 6980 <!-- root node --> 6981 <feature> 6982 <rects> 6983 <_>8 0 4 9 -1.</_> 6984 <_>8 0 2 9 2.</_></rects> 6985 <tilted>0</tilted></feature> 6986 <threshold>-6.2229200266301632e-003</threshold> 6987 <left_val>-0.3235169053077698</left_val> 6988 <right_val>0.0683725476264954</right_val></_></_> 6989 <_> 6990 <!-- tree 10 --> 6991 <_> 6992 <!-- root node --> 6993 <feature> 6994 <rects> 6995 <_>7 0 4 9 -1.</_> 6996 <_>9 0 2 9 2.</_></rects> 6997 <tilted>0</tilted></feature> 6998 <threshold>-6.1763478443026543e-003</threshold> 6999 <left_val>-0.3991226851940155</left_val> 7000 <right_val>0.0777074694633484</right_val></_></_> 7001 <_> 7002 <!-- tree 11 --> 7003 <_> 7004 <!-- root node --> 7005 <feature> 7006 <rects> 7007 <_>7 1 5 20 -1.</_> 7008 <_>7 6 5 10 2.</_></rects> 7009 <tilted>0</tilted></feature> 7010 <threshold>-0.0878202617168427</threshold> 7011 <left_val>0.5857707858085632</left_val> 7012 <right_val>-0.0535846501588821</right_val></_></_> 7013 <_> 7014 <!-- tree 12 --> 7015 <_> 7016 <!-- root node --> 7017 <feature> 7018 <rects> 7019 <_>1 7 6 16 -1.</_> 7020 <_>3 7 2 16 3.</_></rects> 7021 <tilted>0</tilted></feature> 7022 <threshold>-6.8017458543181419e-003</threshold> 7023 <left_val>-0.4330711066722870</left_val> 7024 <right_val>0.0626938492059708</right_val></_></_> 7025 <_> 7026 <!-- tree 13 --> 7027 <_> 7028 <!-- root node --> 7029 <feature> 7030 <rects> 7031 <_>8 7 4 10 -1.</_> 7032 <_>8 12 4 5 2.</_></rects> 7033 <tilted>0</tilted></feature> 7034 <threshold>1.0741569567471743e-003</threshold> 7035 <left_val>-0.1196649000048637</left_val> 7036 <right_val>0.0553978495299816</right_val></_></_> 7037 <_> 7038 <!-- tree 14 --> 7039 <_> 7040 <!-- root node --> 7041 <feature> 7042 <rects> 7043 <_>1 3 12 12 -1.</_> 7044 <_>5 7 4 4 9.</_></rects> 7045 <tilted>0</tilted></feature> 7046 <threshold>-0.0304909199476242</threshold> 7047 <left_val>-0.2366324067115784</left_val> 7048 <right_val>0.1000299975275993</right_val></_></_> 7049 <_> 7050 <!-- tree 15 --> 7051 <_> 7052 <!-- root node --> 7053 <feature> 7054 <rects> 7055 <_>8 6 3 14 -1.</_> 7056 <_>9 6 1 14 3.</_></rects> 7057 <tilted>0</tilted></feature> 7058 <threshold>0.0518791191279888</threshold> 7059 <left_val>-0.0364188402891159</left_val> 7060 <right_val>0.7339289784431458</right_val></_></_> 7061 <_> 7062 <!-- tree 16 --> 7063 <_> 7064 <!-- root node --> 7065 <feature> 7066 <rects> 7067 <_>2 6 6 10 -1.</_> 7068 <_>2 6 3 5 2.</_> 7069 <_>5 11 3 5 2.</_></rects> 7070 <tilted>0</tilted></feature> 7071 <threshold>8.6805049795657396e-004</threshold> 7072 <left_val>-0.1770547926425934</left_val> 7073 <right_val>0.1498523950576782</right_val></_></_> 7074 <_> 7075 <!-- tree 17 --> 7076 <_> 7077 <!-- root node --> 7078 <feature> 7079 <rects> 7080 <_>8 6 4 14 -1.</_> 7081 <_>9 6 2 14 2.</_></rects> 7082 <tilted>0</tilted></feature> 7083 <threshold>4.8424140550196171e-003</threshold> 7084 <left_val>-0.0462082512676716</left_val> 7085 <right_val>0.1316252946853638</right_val></_></_> 7086 <_> 7087 <!-- tree 18 --> 7088 <_> 7089 <!-- root node --> 7090 <feature> 7091 <rects> 7092 <_>0 10 18 12 -1.</_> 7093 <_>0 10 9 6 2.</_> 7094 <_>9 16 9 6 2.</_></rects> 7095 <tilted>0</tilted></feature> 7096 <threshold>9.1674225404858589e-003</threshold> 7097 <left_val>0.0991810634732246</left_val> 7098 <right_val>-0.2029245048761368</right_val></_></_> 7099 <_> 7100 <!-- tree 19 --> 7101 <_> 7102 <!-- root node --> 7103 <feature> 7104 <rects> 7105 <_>8 6 4 14 -1.</_> 7106 <_>9 6 2 14 2.</_></rects> 7107 <tilted>0</tilted></feature> 7108 <threshold>-5.6356228888034821e-003</threshold> 7109 <left_val>0.0878601670265198</left_val> 7110 <right_val>-0.0374380908906460</right_val></_></_> 7111 <_> 7112 <!-- tree 20 --> 7113 <_> 7114 <!-- root node --> 7115 <feature> 7116 <rects> 7117 <_>7 6 4 14 -1.</_> 7118 <_>8 6 2 14 2.</_></rects> 7119 <tilted>0</tilted></feature> 7120 <threshold>-0.0383751504123211</threshold> 7121 <left_val>0.4972147941589356</left_val> 7122 <right_val>-0.0438151694834232</right_val></_></_> 7123 <_> 7124 <!-- tree 21 --> 7125 <_> 7126 <!-- root node --> 7127 <feature> 7128 <rects> 7129 <_>1 15 18 6 -1.</_> 7130 <_>1 15 9 6 2.</_></rects> 7131 <tilted>0</tilted></feature> 7132 <threshold>8.9894384145736694e-003</threshold> 7133 <left_val>0.0941265523433685</left_val> 7134 <right_val>-0.3022775053977966</right_val></_></_> 7135 <_> 7136 <!-- tree 22 --> 7137 <_> 7138 <!-- root node --> 7139 <feature> 7140 <rects> 7141 <_>1 17 6 5 -1.</_> 7142 <_>4 17 3 5 2.</_></rects> 7143 <tilted>0</tilted></feature> 7144 <threshold>-1.1650560190901160e-004</threshold> 7145 <left_val>0.1336105018854141</left_val> 7146 <right_val>-0.1893206983804703</right_val></_></_> 7147 <_> 7148 <!-- tree 23 --> 7149 <_> 7150 <!-- root node --> 7151 <feature> 7152 <rects> 7153 <_>6 17 12 6 -1.</_> 7154 <_>9 17 6 6 2.</_></rects> 7155 <tilted>0</tilted></feature> 7156 <threshold>-6.6462112590670586e-004</threshold> 7157 <left_val>0.0779727026820183</left_val> 7158 <right_val>-0.1350826025009155</right_val></_></_> 7159 <_> 7160 <!-- tree 24 --> 7161 <_> 7162 <!-- root node --> 7163 <feature> 7164 <rects> 7165 <_>1 15 12 8 -1.</_> 7166 <_>4 15 6 8 2.</_></rects> 7167 <tilted>0</tilted></feature> 7168 <threshold>-0.0126564903184772</threshold> 7169 <left_val>-0.3691301941871643</left_val> 7170 <right_val>0.0646138936281204</right_val></_></_> 7171 <_> 7172 <!-- tree 25 --> 7173 <_> 7174 <!-- root node --> 7175 <feature> 7176 <rects> 7177 <_>0 7 19 3 -1.</_> 7178 <_>0 8 19 1 3.</_></rects> 7179 <tilted>0</tilted></feature> 7180 <threshold>-4.3929531238973141e-003</threshold> 7181 <left_val>0.2669681906700134</left_val> 7182 <right_val>-0.0886500999331474</right_val></_></_> 7183 <_> 7184 <!-- tree 26 --> 7185 <_> 7186 <!-- root node --> 7187 <feature> 7188 <rects> 7189 <_>1 8 16 3 -1.</_> 7190 <_>1 9 16 1 3.</_></rects> 7191 <tilted>0</tilted></feature> 7192 <threshold>-1.2583639472723007e-003</threshold> 7193 <left_val>0.2061482965946198</left_val> 7194 <right_val>-0.1095243990421295</right_val></_></_> 7195 <_> 7196 <!-- tree 27 --> 7197 <_> 7198 <!-- root node --> 7199 <feature> 7200 <rects> 7201 <_>6 6 7 6 -1.</_> 7202 <_>6 8 7 2 3.</_></rects> 7203 <tilted>0</tilted></feature> 7204 <threshold>-0.0111319404095411</threshold> 7205 <left_val>-0.4135204851627350</left_val> 7206 <right_val>0.0628401264548302</right_val></_></_> 7207 <_> 7208 <!-- tree 28 --> 7209 <_> 7210 <!-- root node --> 7211 <feature> 7212 <rects> 7213 <_>4 7 10 14 -1.</_> 7214 <_>4 7 5 7 2.</_> 7215 <_>9 14 5 7 2.</_></rects> 7216 <tilted>0</tilted></feature> 7217 <threshold>3.0703889206051826e-003</threshold> 7218 <left_val>-0.1559177935123444</left_val> 7219 <right_val>0.1501820981502533</right_val></_></_> 7220 <_> 7221 <!-- tree 29 --> 7222 <_> 7223 <!-- root node --> 7224 <feature> 7225 <rects> 7226 <_>5 0 12 10 -1.</_> 7227 <_>5 0 6 10 2.</_></rects> 7228 <tilted>0</tilted></feature> 7229 <threshold>3.5361549817025661e-003</threshold> 7230 <left_val>0.0625734925270081</left_val> 7231 <right_val>-0.2186996936798096</right_val></_></_> 7232 <_> 7233 <!-- tree 30 --> 7234 <_> 7235 <!-- root node --> 7236 <feature> 7237 <rects> 7238 <_>2 0 15 13 -1.</_> 7239 <_>7 0 5 13 3.</_></rects> 7240 <tilted>0</tilted></feature> 7241 <threshold>0.0288646295666695</threshold> 7242 <left_val>-0.0695617496967316</left_val> 7243 <right_val>0.4489277899265289</right_val></_></_> 7244 <_> 7245 <!-- tree 31 --> 7246 <_> 7247 <!-- root node --> 7248 <feature> 7249 <rects> 7250 <_>5 6 12 6 -1.</_> 7251 <_>8 6 6 6 2.</_></rects> 7252 <tilted>0</tilted></feature> 7253 <threshold>-0.0710359066724777</threshold> 7254 <left_val>0.2099197953939438</left_val> 7255 <right_val>-0.0365628786385059</right_val></_></_> 7256 <_> 7257 <!-- tree 32 --> 7258 <_> 7259 <!-- root node --> 7260 <feature> 7261 <rects> 7262 <_>2 16 6 7 -1.</_> 7263 <_>4 16 2 7 3.</_></rects> 7264 <tilted>0</tilted></feature> 7265 <threshold>-1.1107679456472397e-003</threshold> 7266 <left_val>-0.3302016854286194</left_val> 7267 <right_val>0.0797589421272278</right_val></_></_> 7268 <_> 7269 <!-- tree 33 --> 7270 <_> 7271 <!-- root node --> 7272 <feature> 7273 <rects> 7274 <_>10 4 8 8 -1.</_> 7275 <_>12 6 4 8 2.</_></rects> 7276 <tilted>1</tilted></feature> 7277 <threshold>0.0791840478777885</threshold> 7278 <left_val>-0.0132260099053383</left_val> 7279 <right_val>0.3860366046428680</right_val></_></_> 7280 <_> 7281 <!-- tree 34 --> 7282 <_> 7283 <!-- root node --> 7284 <feature> 7285 <rects> 7286 <_>9 5 7 6 -1.</_> 7287 <_>7 7 7 2 3.</_></rects> 7288 <tilted>1</tilted></feature> 7289 <threshold>0.0133535098284483</threshold> 7290 <left_val>0.0584105588495731</left_val> 7291 <right_val>-0.3925077021121979</right_val></_></_> 7292 <_> 7293 <!-- tree 35 --> 7294 <_> 7295 <!-- root node --> 7296 <feature> 7297 <rects> 7298 <_>1 7 18 3 -1.</_> 7299 <_>1 8 18 1 3.</_></rects> 7300 <tilted>0</tilted></feature> 7301 <threshold>0.0500490516424179</threshold> 7302 <left_val>-0.0233182292431593</left_val> 7303 <right_val>0.7459377050399780</right_val></_></_> 7304 <_> 7305 <!-- tree 36 --> 7306 <_> 7307 <!-- root node --> 7308 <feature> 7309 <rects> 7310 <_>5 4 9 11 -1.</_> 7311 <_>8 4 3 11 3.</_></rects> 7312 <tilted>0</tilted></feature> 7313 <threshold>-0.2185900062322617</threshold> 7314 <left_val>-0.8458526730537415</left_val> 7315 <right_val>0.0259405300021172</right_val></_></_> 7316 <_> 7317 <!-- tree 37 --> 7318 <_> 7319 <!-- root node --> 7320 <feature> 7321 <rects> 7322 <_>13 0 6 7 -1.</_> 7323 <_>15 0 2 7 3.</_></rects> 7324 <tilted>0</tilted></feature> 7325 <threshold>0.0100641101598740</threshold> 7326 <left_val>-0.1095985025167465</left_val> 7327 <right_val>0.2106852978467941</right_val></_></_> 7328 <_> 7329 <!-- tree 38 --> 7330 <_> 7331 <!-- root node --> 7332 <feature> 7333 <rects> 7334 <_>3 11 12 6 -1.</_> 7335 <_>3 11 6 3 2.</_> 7336 <_>9 14 6 3 2.</_></rects> 7337 <tilted>0</tilted></feature> 7338 <threshold>7.5430879369378090e-003</threshold> 7339 <left_val>0.0535675399005413</left_val> 7340 <right_val>-0.3361727893352509</right_val></_></_> 7341 <_> 7342 <!-- tree 39 --> 7343 <_> 7344 <!-- root node --> 7345 <feature> 7346 <rects> 7347 <_>13 4 3 16 -1.</_> 7348 <_>14 4 1 16 3.</_></rects> 7349 <tilted>0</tilted></feature> 7350 <threshold>0.0158172100782394</threshold> 7351 <left_val>-0.0190422590821981</left_val> 7352 <right_val>0.2219689935445786</right_val></_></_> 7353 <_> 7354 <!-- tree 40 --> 7355 <_> 7356 <!-- root node --> 7357 <feature> 7358 <rects> 7359 <_>3 4 3 16 -1.</_> 7360 <_>4 4 1 16 3.</_></rects> 7361 <tilted>0</tilted></feature> 7362 <threshold>-1.7135319649241865e-004</threshold> 7363 <left_val>0.1766736954450607</left_val> 7364 <right_val>-0.1206853017210960</right_val></_></_> 7365 <_> 7366 <!-- tree 41 --> 7367 <_> 7368 <!-- root node --> 7369 <feature> 7370 <rects> 7371 <_>2 9 16 8 -1.</_> 7372 <_>10 9 8 4 2.</_> 7373 <_>2 13 8 4 2.</_></rects> 7374 <tilted>0</tilted></feature> 7375 <threshold>6.6670849919319153e-003</threshold> 7376 <left_val>0.0700718387961388</left_val> 7377 <right_val>-0.2213760018348694</right_val></_></_> 7378 <_> 7379 <!-- tree 42 --> 7380 <_> 7381 <!-- root node --> 7382 <feature> 7383 <rects> 7384 <_>3 0 3 19 -1.</_> 7385 <_>4 0 1 19 3.</_></rects> 7386 <tilted>0</tilted></feature> 7387 <threshold>2.7946738991886377e-003</threshold> 7388 <left_val>-0.1050923019647598</left_val> 7389 <right_val>0.1927739977836609</right_val></_></_> 7390 <_> 7391 <!-- tree 43 --> 7392 <_> 7393 <!-- root node --> 7394 <feature> 7395 <rects> 7396 <_>6 1 8 10 -1.</_> 7397 <_>8 1 4 10 2.</_></rects> 7398 <tilted>0</tilted></feature> 7399 <threshold>-1.5057970304042101e-003</threshold> 7400 <left_val>0.0600128881633282</left_val> 7401 <right_val>-0.1237851008772850</right_val></_></_> 7402 <_> 7403 <!-- tree 44 --> 7404 <_> 7405 <!-- root node --> 7406 <feature> 7407 <rects> 7408 <_>0 14 18 6 -1.</_> 7409 <_>6 14 6 6 3.</_></rects> 7410 <tilted>0</tilted></feature> 7411 <threshold>8.5329543799161911e-003</threshold> 7412 <left_val>-0.0476112402975559</left_val> 7413 <right_val>0.3998514115810394</right_val></_></_> 7414 <_> 7415 <!-- tree 45 --> 7416 <_> 7417 <!-- root node --> 7418 <feature> 7419 <rects> 7420 <_>4 6 15 9 -1.</_> 7421 <_>9 9 5 3 9.</_></rects> 7422 <tilted>0</tilted></feature> 7423 <threshold>0.0429394692182541</threshold> 7424 <left_val>0.0316113904118538</left_val> 7425 <right_val>-0.1973166018724442</right_val></_></_> 7426 <_> 7427 <!-- tree 46 --> 7428 <_> 7429 <!-- root node --> 7430 <feature> 7431 <rects> 7432 <_>0 14 15 8 -1.</_> 7433 <_>5 14 5 8 3.</_></rects> 7434 <tilted>0</tilted></feature> 7435 <threshold>0.0203082207590342</threshold> 7436 <left_val>0.0350551903247833</left_val> 7437 <right_val>-0.5196939706802368</right_val></_></_> 7438 <_> 7439 <!-- tree 47 --> 7440 <_> 7441 <!-- root node --> 7442 <feature> 7443 <rects> 7444 <_>3 20 15 3 -1.</_> 7445 <_>8 20 5 3 3.</_></rects> 7446 <tilted>0</tilted></feature> 7447 <threshold>-7.7673741616308689e-003</threshold> 7448 <left_val>-0.1881791949272156</left_val> 7449 <right_val>0.0568892285227776</right_val></_></_> 7450 <_> 7451 <!-- tree 48 --> 7452 <_> 7453 <!-- root node --> 7454 <feature> 7455 <rects> 7456 <_>0 15 18 2 -1.</_> 7457 <_>0 16 18 1 2.</_></rects> 7458 <tilted>0</tilted></feature> 7459 <threshold>2.1762759424746037e-003</threshold> 7460 <left_val>-0.0909481570124626</left_val> 7461 <right_val>0.2457586973905563</right_val></_></_> 7462 <_> 7463 <!-- tree 49 --> 7464 <_> 7465 <!-- root node --> 7466 <feature> 7467 <rects> 7468 <_>2 15 17 3 -1.</_> 7469 <_>2 16 17 1 3.</_></rects> 7470 <tilted>0</tilted></feature> 7471 <threshold>-0.0198136903345585</threshold> 7472 <left_val>0.5290442109107971</left_val> 7473 <right_val>-0.0387549512088299</right_val></_></_> 7474 <_> 7475 <!-- tree 50 --> 7476 <_> 7477 <!-- root node --> 7478 <feature> 7479 <rects> 7480 <_>0 0 19 4 -1.</_> 7481 <_>0 2 19 2 2.</_></rects> 7482 <tilted>0</tilted></feature> 7483 <threshold>0.0130351595580578</threshold> 7484 <left_val>0.0679188221693039</left_val> 7485 <right_val>-0.3041346967220306</right_val></_></_> 7486 <_> 7487 <!-- tree 51 --> 7488 <_> 7489 <!-- root node --> 7490 <feature> 7491 <rects> 7492 <_>4 0 12 4 -1.</_> 7493 <_>4 2 12 2 2.</_></rects> 7494 <tilted>0</tilted></feature> 7495 <threshold>-1.9664920400828123e-003</threshold> 7496 <left_val>-0.2062616944313049</left_val> 7497 <right_val>0.0961405932903290</right_val></_></_> 7498 <_> 7499 <!-- tree 52 --> 7500 <_> 7501 <!-- root node --> 7502 <feature> 7503 <rects> 7504 <_>3 0 3 21 -1.</_> 7505 <_>4 0 1 21 3.</_></rects> 7506 <tilted>0</tilted></feature> 7507 <threshold>-2.6359891053289175e-003</threshold> 7508 <left_val>0.2508524954319000</left_val> 7509 <right_val>-0.0832009613513947</right_val></_></_> 7510 <_> 7511 <!-- tree 53 --> 7512 <_> 7513 <!-- root node --> 7514 <feature> 7515 <rects> 7516 <_>6 18 8 4 -1.</_> 7517 <_>6 20 8 2 2.</_></rects> 7518 <tilted>0</tilted></feature> 7519 <threshold>-2.2968810517340899e-003</threshold> 7520 <left_val>0.2963468134403229</left_val> 7521 <right_val>-0.0587436892092228</right_val></_></_> 7522 <_> 7523 <!-- tree 54 --> 7524 <_> 7525 <!-- root node --> 7526 <feature> 7527 <rects> 7528 <_>1 18 14 3 -1.</_> 7529 <_>1 19 14 1 3.</_></rects> 7530 <tilted>0</tilted></feature> 7531 <threshold>-3.8644939195364714e-003</threshold> 7532 <left_val>0.1941155046224594</left_val> 7533 <right_val>-0.1082755997776985</right_val></_></_> 7534 <_> 7535 <!-- tree 55 --> 7536 <_> 7537 <!-- root node --> 7538 <feature> 7539 <rects> 7540 <_>9 18 9 5 -1.</_> 7541 <_>12 18 3 5 3.</_></rects> 7542 <tilted>0</tilted></feature> 7543 <threshold>4.4517841160995886e-005</threshold> 7544 <left_val>-0.2445186972618103</left_val> 7545 <right_val>0.1029302999377251</right_val></_></_> 7546 <_> 7547 <!-- tree 56 --> 7548 <_> 7549 <!-- root node --> 7550 <feature> 7551 <rects> 7552 <_>0 18 19 3 -1.</_> 7553 <_>0 19 19 1 3.</_></rects> 7554 <tilted>0</tilted></feature> 7555 <threshold>1.9567341078072786e-003</threshold> 7556 <left_val>-0.1051924973726273</left_val> 7557 <right_val>0.2249999940395355</right_val></_></_> 7558 <_> 7559 <!-- tree 57 --> 7560 <_> 7561 <!-- root node --> 7562 <feature> 7563 <rects> 7564 <_>13 8 3 14 -1.</_> 7565 <_>14 8 1 14 3.</_></rects> 7566 <tilted>0</tilted></feature> 7567 <threshold>0.0141881098970771</threshold> 7568 <left_val>0.0321007184684277</left_val> 7569 <right_val>-0.5914242267608643</right_val></_></_> 7570 <_> 7571 <!-- tree 58 --> 7572 <_> 7573 <!-- root node --> 7574 <feature> 7575 <rects> 7576 <_>2 6 12 7 -1.</_> 7577 <_>5 6 6 7 2.</_></rects> 7578 <tilted>0</tilted></feature> 7579 <threshold>-1.3274629600346088e-004</threshold> 7580 <left_val>0.0745778530836105</left_val> 7581 <right_val>-0.2765459120273590</right_val></_></_> 7582 <_> 7583 <!-- tree 59 --> 7584 <_> 7585 <!-- root node --> 7586 <feature> 7587 <rects> 7588 <_>2 6 16 16 -1.</_> 7589 <_>6 6 8 16 2.</_></rects> 7590 <tilted>0</tilted></feature> 7591 <threshold>0.0209963805973530</threshold> 7592 <left_val>-0.0457354895770550</left_val> 7593 <right_val>0.3294773101806641</right_val></_></_></trees> 7594 <stage_threshold>-0.8346493840217590</stage_threshold> 7595 <parent>17</parent> 7596 <next>-1</next></_> 7597 <_> 7598 <!-- stage 19 --> 7599 <trees> 7600 <_> 7601 <!-- tree 0 --> 7602 <_> 7603 <!-- root node --> 7604 <feature> 7605 <rects> 7606 <_>0 1 16 20 -1.</_> 7607 <_>4 1 8 20 2.</_></rects> 7608 <tilted>0</tilted></feature> 7609 <threshold>-0.0398410782217979</threshold> 7610 <left_val>0.1518651992082596</left_val> 7611 <right_val>-0.2905524969100952</right_val></_></_> 7612 <_> 7613 <!-- tree 1 --> 7614 <_> 7615 <!-- root node --> 7616 <feature> 7617 <rects> 7618 <_>12 9 4 14 -1.</_> 7619 <_>14 9 2 7 2.</_> 7620 <_>12 16 2 7 2.</_></rects> 7621 <tilted>0</tilted></feature> 7622 <threshold>1.1327869724482298e-003</threshold> 7623 <left_val>-0.1192163005471230</left_val> 7624 <right_val>0.1209888979792595</right_val></_></_> 7625 <_> 7626 <!-- tree 2 --> 7627 <_> 7628 <!-- root node --> 7629 <feature> 7630 <rects> 7631 <_>3 9 4 14 -1.</_> 7632 <_>3 9 2 7 2.</_> 7633 <_>5 16 2 7 2.</_></rects> 7634 <tilted>0</tilted></feature> 7635 <threshold>1.0022070491686463e-003</threshold> 7636 <left_val>0.1208863034844399</left_val> 7637 <right_val>-0.2562133073806763</right_val></_></_> 7638 <_> 7639 <!-- tree 3 --> 7640 <_> 7641 <!-- root node --> 7642 <feature> 7643 <rects> 7644 <_>11 11 6 10 -1.</_> 7645 <_>14 11 3 5 2.</_> 7646 <_>11 16 3 5 2.</_></rects> 7647 <tilted>0</tilted></feature> 7648 <threshold>0.0638662278652191</threshold> 7649 <left_val>0.0476281009614468</left_val> 7650 <right_val>-0.8615034818649292</right_val></_></_> 7651 <_> 7652 <!-- tree 4 --> 7653 <_> 7654 <!-- root node --> 7655 <feature> 7656 <rects> 7657 <_>2 11 6 10 -1.</_> 7658 <_>2 11 3 5 2.</_> 7659 <_>5 16 3 5 2.</_></rects> 7660 <tilted>0</tilted></feature> 7661 <threshold>-3.0986019410192966e-003</threshold> 7662 <left_val>-0.3197580873966217</left_val> 7663 <right_val>0.0914346873760223</right_val></_></_> 7664 <_> 7665 <!-- tree 5 --> 7666 <_> 7667 <!-- root node --> 7668 <feature> 7669 <rects> 7670 <_>2 8 16 9 -1.</_> 7671 <_>6 8 8 9 2.</_></rects> 7672 <tilted>0</tilted></feature> 7673 <threshold>6.5784230828285217e-003</threshold> 7674 <left_val>-0.0804730504751205</left_val> 7675 <right_val>0.3612303137779236</right_val></_></_> 7676 <_> 7677 <!-- tree 6 --> 7678 <_> 7679 <!-- root node --> 7680 <feature> 7681 <rects> 7682 <_>2 17 10 6 -1.</_> 7683 <_>2 17 5 3 2.</_> 7684 <_>7 20 5 3 2.</_></rects> 7685 <tilted>0</tilted></feature> 7686 <threshold>4.5082601718604565e-003</threshold> 7687 <left_val>-0.1821575015783310</left_val> 7688 <right_val>0.1467249989509583</right_val></_></_> 7689 <_> 7690 <!-- tree 7 --> 7691 <_> 7692 <!-- root node --> 7693 <feature> 7694 <rects> 7695 <_>11 7 8 7 -1.</_> 7696 <_>13 9 4 7 2.</_></rects> 7697 <tilted>1</tilted></feature> 7698 <threshold>-0.0165262408554554</threshold> 7699 <left_val>-0.1295465975999832</left_val> 7700 <right_val>0.0665224194526672</right_val></_></_> 7701 <_> 7702 <!-- tree 8 --> 7703 <_> 7704 <!-- root node --> 7705 <feature> 7706 <rects> 7707 <_>8 7 7 8 -1.</_> 7708 <_>6 9 7 4 2.</_></rects> 7709 <tilted>1</tilted></feature> 7710 <threshold>-4.1868099942803383e-003</threshold> 7711 <left_val>-0.2655260860919952</left_val> 7712 <right_val>0.1123768016695976</right_val></_></_> 7713 <_> 7714 <!-- tree 9 --> 7715 <_> 7716 <!-- root node --> 7717 <feature> 7718 <rects> 7719 <_>7 7 6 16 -1.</_> 7720 <_>7 11 6 8 2.</_></rects> 7721 <tilted>0</tilted></feature> 7722 <threshold>5.6613027118146420e-004</threshold> 7723 <left_val>0.1182264983654022</left_val> 7724 <right_val>-0.1611967980861664</right_val></_></_> 7725 <_> 7726 <!-- tree 10 --> 7727 <_> 7728 <!-- root node --> 7729 <feature> 7730 <rects> 7731 <_>7 4 4 10 -1.</_> 7732 <_>7 9 4 5 2.</_></rects> 7733 <tilted>0</tilted></feature> 7734 <threshold>2.0279800519347191e-003</threshold> 7735 <left_val>-0.2261843979358673</left_val> 7736 <right_val>0.1126369982957840</right_val></_></_> 7737 <_> 7738 <!-- tree 11 --> 7739 <_> 7740 <!-- root node --> 7741 <feature> 7742 <rects> 7743 <_>5 0 9 5 -1.</_> 7744 <_>8 0 3 5 3.</_></rects> 7745 <tilted>0</tilted></feature> 7746 <threshold>-0.0119691500440240</threshold> 7747 <left_val>-0.2752344012260437</left_val> 7748 <right_val>0.0836038663983345</right_val></_></_> 7749 <_> 7750 <!-- tree 12 --> 7751 <_> 7752 <!-- root node --> 7753 <feature> 7754 <rects> 7755 <_>1 1 16 18 -1.</_> 7756 <_>5 1 8 18 2.</_></rects> 7757 <tilted>0</tilted></feature> 7758 <threshold>-0.2841173112392426</threshold> 7759 <left_val>0.4021610915660858</left_val> 7760 <right_val>-0.0779717490077019</right_val></_></_> 7761 <_> 7762 <!-- tree 13 --> 7763 <_> 7764 <!-- root node --> 7765 <feature> 7766 <rects> 7767 <_>5 21 14 2 -1.</_> 7768 <_>5 21 7 2 2.</_></rects> 7769 <tilted>0</tilted></feature> 7770 <threshold>-3.6587871145457029e-003</threshold> 7771 <left_val>-0.2972385883331299</left_val> 7772 <right_val>0.0634847134351730</right_val></_></_> 7773 <_> 7774 <!-- tree 14 --> 7775 <_> 7776 <!-- root node --> 7777 <feature> 7778 <rects> 7779 <_>0 20 18 3 -1.</_> 7780 <_>6 20 6 3 3.</_></rects> 7781 <tilted>0</tilted></feature> 7782 <threshold>9.2046172358095646e-004</threshold> 7783 <left_val>0.0778728201985359</left_val> 7784 <right_val>-0.2953908145427704</right_val></_></_> 7785 <_> 7786 <!-- tree 15 --> 7787 <_> 7788 <!-- root node --> 7789 <feature> 7790 <rects> 7791 <_>8 9 3 14 -1.</_> 7792 <_>9 9 1 14 3.</_></rects> 7793 <tilted>0</tilted></feature> 7794 <threshold>0.0135717596858740</threshold> 7795 <left_val>-0.0724307671189308</left_val> 7796 <right_val>0.3484975099563599</right_val></_></_> 7797 <_> 7798 <!-- tree 16 --> 7799 <_> 7800 <!-- root node --> 7801 <feature> 7802 <rects> 7803 <_>2 4 13 2 -1.</_> 7804 <_>2 4 13 1 2.</_></rects> 7805 <tilted>1</tilted></feature> 7806 <threshold>-3.1399999279528856e-003</threshold> 7807 <left_val>-0.2208877950906754</left_val> 7808 <right_val>0.1007215976715088</right_val></_></_> 7809 <_> 7810 <!-- tree 17 --> 7811 <_> 7812 <!-- root node --> 7813 <feature> 7814 <rects> 7815 <_>6 0 10 16 -1.</_> 7816 <_>11 0 5 8 2.</_> 7817 <_>6 8 5 8 2.</_></rects> 7818 <tilted>0</tilted></feature> 7819 <threshold>6.9894008338451385e-003</threshold> 7820 <left_val>0.0591882094740868</left_val> 7821 <right_val>-0.1413722038269043</right_val></_></_> 7822 <_> 7823 <!-- tree 18 --> 7824 <_> 7825 <!-- root node --> 7826 <feature> 7827 <rects> 7828 <_>2 14 5 6 -1.</_> 7829 <_>2 17 5 3 2.</_></rects> 7830 <tilted>0</tilted></feature> 7831 <threshold>-5.9609091840684414e-004</threshold> 7832 <left_val>0.1356392949819565</left_val> 7833 <right_val>-0.1508132964372635</right_val></_></_> 7834 <_> 7835 <!-- tree 19 --> 7836 <_> 7837 <!-- root node --> 7838 <feature> 7839 <rects> 7840 <_>12 8 4 8 -1.</_> 7841 <_>12 12 4 4 2.</_></rects> 7842 <tilted>0</tilted></feature> 7843 <threshold>1.6805849736556411e-003</threshold> 7844 <left_val>-0.0783482566475868</left_val> 7845 <right_val>0.0773573666810989</right_val></_></_> 7846 <_> 7847 <!-- tree 20 --> 7848 <_> 7849 <!-- root node --> 7850 <feature> 7851 <rects> 7852 <_>3 8 4 8 -1.</_> 7853 <_>3 12 4 4 2.</_></rects> 7854 <tilted>0</tilted></feature> 7855 <threshold>-5.7250040117651224e-004</threshold> 7856 <left_val>0.2357279956340790</left_val> 7857 <right_val>-0.1159436032176018</right_val></_></_> 7858 <_> 7859 <!-- tree 21 --> 7860 <_> 7861 <!-- root node --> 7862 <feature> 7863 <rects> 7864 <_>14 6 3 10 -1.</_> 7865 <_>14 11 3 5 2.</_></rects> 7866 <tilted>0</tilted></feature> 7867 <threshold>0.0434741601347923</threshold> 7868 <left_val>8.2836961373686790e-003</left_val> 7869 <right_val>-0.3742831051349640</right_val></_></_> 7870 <_> 7871 <!-- tree 22 --> 7872 <_> 7873 <!-- root node --> 7874 <feature> 7875 <rects> 7876 <_>2 6 3 10 -1.</_> 7877 <_>2 11 3 5 2.</_></rects> 7878 <tilted>0</tilted></feature> 7879 <threshold>6.0316640883684158e-004</threshold> 7880 <left_val>-0.1784690022468567</left_val> 7881 <right_val>0.1618576049804688</right_val></_></_> 7882 <_> 7883 <!-- tree 23 --> 7884 <_> 7885 <!-- root node --> 7886 <feature> 7887 <rects> 7888 <_>7 5 12 16 -1.</_> 7889 <_>7 9 12 8 2.</_></rects> 7890 <tilted>0</tilted></feature> 7891 <threshold>0.0268817208707333</threshold> 7892 <left_val>0.0724194422364235</left_val> 7893 <right_val>-0.1797195971012116</right_val></_></_> 7894 <_> 7895 <!-- tree 24 --> 7896 <_> 7897 <!-- root node --> 7898 <feature> 7899 <rects> 7900 <_>6 11 4 9 -1.</_> 7901 <_>8 11 2 9 2.</_></rects> 7902 <tilted>0</tilted></feature> 7903 <threshold>-0.0492738783359528</threshold> 7904 <left_val>0.4638639986515045</left_val> 7905 <right_val>-0.0502769388258457</right_val></_></_> 7906 <_> 7907 <!-- tree 25 --> 7908 <_> 7909 <!-- root node --> 7910 <feature> 7911 <rects> 7912 <_>7 18 10 5 -1.</_> 7913 <_>7 18 5 5 2.</_></rects> 7914 <tilted>0</tilted></feature> 7915 <threshold>-0.0672252029180527</threshold> 7916 <left_val>-1.</left_val> 7917 <right_val>0.0135324001312256</right_val></_></_> 7918 <_> 7919 <!-- tree 26 --> 7920 <_> 7921 <!-- root node --> 7922 <feature> 7923 <rects> 7924 <_>4 0 11 14 -1.</_> 7925 <_>4 7 11 7 2.</_></rects> 7926 <tilted>0</tilted></feature> 7927 <threshold>0.2020377069711685</threshold> 7928 <left_val>-0.0387481003999710</left_val> 7929 <right_val>0.5721197724342346</right_val></_></_> 7930 <_> 7931 <!-- tree 27 --> 7932 <_> 7933 <!-- root node --> 7934 <feature> 7935 <rects> 7936 <_>8 1 9 15 -1.</_> 7937 <_>11 6 3 5 9.</_></rects> 7938 <tilted>0</tilted></feature> 7939 <threshold>0.0314897485077381</threshold> 7940 <left_val>0.0454889088869095</left_val> 7941 <right_val>-0.1253937035799027</right_val></_></_> 7942 <_> 7943 <!-- tree 28 --> 7944 <_> 7945 <!-- root node --> 7946 <feature> 7947 <rects> 7948 <_>0 6 5 8 -1.</_> 7949 <_>0 10 5 4 2.</_></rects> 7950 <tilted>0</tilted></feature> 7951 <threshold>-5.7097017997875810e-004</threshold> 7952 <left_val>0.1961971074342728</left_val> 7953 <right_val>-0.1094473972916603</right_val></_></_> 7954 <_> 7955 <!-- tree 29 --> 7956 <_> 7957 <!-- root node --> 7958 <feature> 7959 <rects> 7960 <_>15 0 4 13 -1.</_> 7961 <_>15 0 2 13 2.</_></rects> 7962 <tilted>1</tilted></feature> 7963 <threshold>-7.8234989196062088e-003</threshold> 7964 <left_val>0.0679543614387512</left_val> 7965 <right_val>-0.0720759630203247</right_val></_></_> 7966 <_> 7967 <!-- tree 30 --> 7968 <_> 7969 <!-- root node --> 7970 <feature> 7971 <rects> 7972 <_>4 0 13 4 -1.</_> 7973 <_>4 0 13 2 2.</_></rects> 7974 <tilted>1</tilted></feature> 7975 <threshold>-0.0215553902089596</threshold> 7976 <left_val>-0.2889066040515900</left_val> 7977 <right_val>0.0998060181736946</right_val></_></_> 7978 <_> 7979 <!-- tree 31 --> 7980 <_> 7981 <!-- root node --> 7982 <feature> 7983 <rects> 7984 <_>6 3 9 5 -1.</_> 7985 <_>9 3 3 5 3.</_></rects> 7986 <tilted>0</tilted></feature> 7987 <threshold>-0.0837671980261803</threshold> 7988 <left_val>-0.4368507862091065</left_val> 7989 <right_val>0.0107926502823830</right_val></_></_> 7990 <_> 7991 <!-- tree 32 --> 7992 <_> 7993 <!-- root node --> 7994 <feature> 7995 <rects> 7996 <_>4 3 9 5 -1.</_> 7997 <_>7 3 3 5 3.</_></rects> 7998 <tilted>0</tilted></feature> 7999 <threshold>-3.5752300173044205e-003</threshold> 8000 <left_val>0.1119166985154152</left_val> 8001 <right_val>-0.1946146041154862</right_val></_></_> 8002 <_> 8003 <!-- tree 33 --> 8004 <_> 8005 <!-- root node --> 8006 <feature> 8007 <rects> 8008 <_>7 1 12 4 -1.</_> 8009 <_>7 1 6 4 2.</_></rects> 8010 <tilted>0</tilted></feature> 8011 <threshold>0.0122654195874929</threshold> 8012 <left_val>-0.0657282173633575</left_val> 8013 <right_val>0.3273935914039612</right_val></_></_> 8014 <_> 8015 <!-- tree 34 --> 8016 <_> 8017 <!-- root node --> 8018 <feature> 8019 <rects> 8020 <_>0 2 6 12 -1.</_> 8021 <_>0 8 6 6 2.</_></rects> 8022 <tilted>0</tilted></feature> 8023 <threshold>2.8762801084667444e-003</threshold> 8024 <left_val>-0.1872380971908569</left_val> 8025 <right_val>0.1124698966741562</right_val></_></_> 8026 <_> 8027 <!-- tree 35 --> 8028 <_> 8029 <!-- root node --> 8030 <feature> 8031 <rects> 8032 <_>5 0 12 5 -1.</_> 8033 <_>5 0 6 5 2.</_></rects> 8034 <tilted>0</tilted></feature> 8035 <threshold>7.4190571904182434e-003</threshold> 8036 <left_val>0.0515259206295013</left_val> 8037 <right_val>-0.2661541998386383</right_val></_></_> 8038 <_> 8039 <!-- tree 36 --> 8040 <_> 8041 <!-- root node --> 8042 <feature> 8043 <rects> 8044 <_>2 0 14 5 -1.</_> 8045 <_>9 0 7 5 2.</_></rects> 8046 <tilted>0</tilted></feature> 8047 <threshold>-4.9716630019247532e-003</threshold> 8048 <left_val>0.1538427025079727</left_val> 8049 <right_val>-0.1514144986867905</right_val></_></_> 8050 <_> 8051 <!-- tree 37 --> 8052 <_> 8053 <!-- root node --> 8054 <feature> 8055 <rects> 8056 <_>9 1 4 14 -1.</_> 8057 <_>10 1 2 14 2.</_></rects> 8058 <tilted>0</tilted></feature> 8059 <threshold>0.0202948991209269</threshold> 8060 <left_val>-0.0195327997207642</left_val> 8061 <right_val>0.3057104945182800</right_val></_></_> 8062 <_> 8063 <!-- tree 38 --> 8064 <_> 8065 <!-- root node --> 8066 <feature> 8067 <rects> 8068 <_>3 5 9 8 -1.</_> 8069 <_>3 7 9 4 2.</_></rects> 8070 <tilted>0</tilted></feature> 8071 <threshold>0.0134690199047327</threshold> 8072 <left_val>0.0623453184962273</left_val> 8073 <right_val>-0.3634374141693115</right_val></_></_> 8074 <_> 8075 <!-- tree 39 --> 8076 <_> 8077 <!-- root node --> 8078 <feature> 8079 <rects> 8080 <_>2 7 16 9 -1.</_> 8081 <_>6 7 8 9 2.</_></rects> 8082 <tilted>0</tilted></feature> 8083 <threshold>6.8610929884016514e-003</threshold> 8084 <left_val>-0.0624873489141464</left_val> 8085 <right_val>0.2882091104984283</right_val></_></_> 8086 <_> 8087 <!-- tree 40 --> 8088 <_> 8089 <!-- root node --> 8090 <feature> 8091 <rects> 8092 <_>0 19 14 2 -1.</_> 8093 <_>7 19 7 2 2.</_></rects> 8094 <tilted>0</tilted></feature> 8095 <threshold>-5.9594889171421528e-004</threshold> 8096 <left_val>0.0855377390980721</left_val> 8097 <right_val>-0.2408138066530228</right_val></_></_> 8098 <_> 8099 <!-- tree 41 --> 8100 <_> 8101 <!-- root node --> 8102 <feature> 8103 <rects> 8104 <_>8 20 10 3 -1.</_> 8105 <_>8 20 5 3 2.</_></rects> 8106 <tilted>0</tilted></feature> 8107 <threshold>-0.0401498712599278</threshold> 8108 <left_val>-1.</left_val> 8109 <right_val>1.5480610309168696e-003</right_val></_></_> 8110 <_> 8111 <!-- tree 42 --> 8112 <_> 8113 <!-- root node --> 8114 <feature> 8115 <rects> 8116 <_>1 20 10 3 -1.</_> 8117 <_>6 20 5 3 2.</_></rects> 8118 <tilted>0</tilted></feature> 8119 <threshold>-2.7885669842362404e-003</threshold> 8120 <left_val>-0.2233868986368179</left_val> 8121 <right_val>0.1100115999579430</right_val></_></_> 8122 <_> 8123 <!-- tree 43 --> 8124 <_> 8125 <!-- root node --> 8126 <feature> 8127 <rects> 8128 <_>15 8 3 10 -1.</_> 8129 <_>16 9 1 10 3.</_></rects> 8130 <tilted>1</tilted></feature> 8131 <threshold>-7.9318676143884659e-003</threshold> 8132 <left_val>0.1304326951503754</left_val> 8133 <right_val>-0.0288591794669628</right_val></_></_> 8134 <_> 8135 <!-- tree 44 --> 8136 <_> 8137 <!-- root node --> 8138 <feature> 8139 <rects> 8140 <_>0 21 16 2 -1.</_> 8141 <_>8 21 8 2 2.</_></rects> 8142 <tilted>0</tilted></feature> 8143 <threshold>-2.9607459509861656e-005</threshold> 8144 <left_val>0.1187603995203972</left_val> 8145 <right_val>-0.1701882034540176</right_val></_></_> 8146 <_> 8147 <!-- tree 45 --> 8148 <_> 8149 <!-- root node --> 8150 <feature> 8151 <rects> 8152 <_>4 6 15 3 -1.</_> 8153 <_>4 7 15 1 3.</_></rects> 8154 <tilted>0</tilted></feature> 8155 <threshold>2.6092668995261192e-003</threshold> 8156 <left_val>-0.0698777809739113</left_val> 8157 <right_val>0.1503650993108749</right_val></_></_> 8158 <_> 8159 <!-- tree 46 --> 8160 <_> 8161 <!-- root node --> 8162 <feature> 8163 <rects> 8164 <_>6 4 3 14 -1.</_> 8165 <_>7 4 1 14 3.</_></rects> 8166 <tilted>0</tilted></feature> 8167 <threshold>-0.0459702089428902</threshold> 8168 <left_val>0.5632215142250061</left_val> 8169 <right_val>-0.0363181307911873</right_val></_></_> 8170 <_> 8171 <!-- tree 47 --> 8172 <_> 8173 <!-- root node --> 8174 <feature> 8175 <rects> 8176 <_>7 18 10 5 -1.</_> 8177 <_>7 18 5 5 2.</_></rects> 8178 <tilted>0</tilted></feature> 8179 <threshold>9.0047682169824839e-004</threshold> 8180 <left_val>0.0324610583484173</left_val> 8181 <right_val>-0.1897388994693756</right_val></_></_> 8182 <_> 8183 <!-- tree 48 --> 8184 <_> 8185 <!-- root node --> 8186 <feature> 8187 <rects> 8188 <_>2 18 10 5 -1.</_> 8189 <_>7 18 5 5 2.</_></rects> 8190 <tilted>0</tilted></feature> 8191 <threshold>-0.0517124086618423</threshold> 8192 <left_val>-0.8504551053047180</left_val> 8193 <right_val>0.0206797402352095</right_val></_></_> 8194 <_> 8195 <!-- tree 49 --> 8196 <_> 8197 <!-- root node --> 8198 <feature> 8199 <rects> 8200 <_>6 0 10 16 -1.</_> 8201 <_>11 0 5 8 2.</_> 8202 <_>6 8 5 8 2.</_></rects> 8203 <tilted>0</tilted></feature> 8204 <threshold>-0.1417240947484970</threshold> 8205 <left_val>-0.9100450873374939</left_val> 8206 <right_val>3.8531969767063856e-003</right_val></_></_> 8207 <_> 8208 <!-- tree 50 --> 8209 <_> 8210 <!-- root node --> 8211 <feature> 8212 <rects> 8213 <_>3 0 10 16 -1.</_> 8214 <_>3 0 5 8 2.</_> 8215 <_>8 8 5 8 2.</_></rects> 8216 <tilted>0</tilted></feature> 8217 <threshold>-0.0697711929678917</threshold> 8218 <left_val>0.4214478135108948</left_val> 8219 <right_val>-0.0551622696220875</right_val></_></_> 8220 <_> 8221 <!-- tree 51 --> 8222 <_> 8223 <!-- root node --> 8224 <feature> 8225 <rects> 8226 <_>6 0 7 4 -1.</_> 8227 <_>6 2 7 2 2.</_></rects> 8228 <tilted>0</tilted></feature> 8229 <threshold>-7.5836889445781708e-003</threshold> 8230 <left_val>-0.4218929111957550</left_val> 8231 <right_val>0.0619645304977894</right_val></_></_> 8232 <_> 8233 <!-- tree 52 --> 8234 <_> 8235 <!-- root node --> 8236 <feature> 8237 <rects> 8238 <_>0 2 19 3 -1.</_> 8239 <_>0 3 19 1 3.</_></rects> 8240 <tilted>0</tilted></feature> 8241 <threshold>-1.2404819717630744e-003</threshold> 8242 <left_val>0.1755862981081009</left_val> 8243 <right_val>-0.1354064047336578</right_val></_></_> 8244 <_> 8245 <!-- tree 53 --> 8246 <_> 8247 <!-- root node --> 8248 <feature> 8249 <rects> 8250 <_>7 0 12 4 -1.</_> 8251 <_>7 2 12 2 2.</_></rects> 8252 <tilted>0</tilted></feature> 8253 <threshold>0.0106146996840835</threshold> 8254 <left_val>0.0450832396745682</left_val> 8255 <right_val>-0.2576557099819183</right_val></_></_> 8256 <_> 8257 <!-- tree 54 --> 8258 <_> 8259 <!-- root node --> 8260 <feature> 8261 <rects> 8262 <_>0 2 15 3 -1.</_> 8263 <_>0 3 15 1 3.</_></rects> 8264 <tilted>0</tilted></feature> 8265 <threshold>1.7647630302235484e-003</threshold> 8266 <left_val>-0.1100924983620644</left_val> 8267 <right_val>0.2404121011495590</right_val></_></_> 8268 <_> 8269 <!-- tree 55 --> 8270 <_> 8271 <!-- root node --> 8272 <feature> 8273 <rects> 8274 <_>1 5 18 3 -1.</_> 8275 <_>1 6 18 1 3.</_></rects> 8276 <tilted>0</tilted></feature> 8277 <threshold>3.7170480936765671e-003</threshold> 8278 <left_val>-0.0769208222627640</left_val> 8279 <right_val>0.2011951953172684</right_val></_></_> 8280 <_> 8281 <!-- tree 56 --> 8282 <_> 8283 <!-- root node --> 8284 <feature> 8285 <rects> 8286 <_>3 0 12 6 -1.</_> 8287 <_>3 2 12 2 3.</_></rects> 8288 <tilted>0</tilted></feature> 8289 <threshold>0.0152806797996163</threshold> 8290 <left_val>0.0586051195859909</left_val> 8291 <right_val>-0.3622012138366699</right_val></_></_> 8292 <_> 8293 <!-- tree 57 --> 8294 <_> 8295 <!-- root node --> 8296 <feature> 8297 <rects> 8298 <_>5 0 10 10 -1.</_> 8299 <_>5 5 10 5 2.</_></rects> 8300 <tilted>0</tilted></feature> 8301 <threshold>-0.0816356167197227</threshold> 8302 <left_val>0.5281978845596314</left_val> 8303 <right_val>-0.0436089709401131</right_val></_></_> 8304 <_> 8305 <!-- tree 58 --> 8306 <_> 8307 <!-- root node --> 8308 <feature> 8309 <rects> 8310 <_>5 1 9 4 -1.</_> 8311 <_>5 3 9 2 2.</_></rects> 8312 <tilted>0</tilted></feature> 8313 <threshold>-2.4431939236819744e-003</threshold> 8314 <left_val>-0.2436936050653458</left_val> 8315 <right_val>0.0843842774629593</right_val></_></_> 8316 <_> 8317 <!-- tree 59 --> 8318 <_> 8319 <!-- root node --> 8320 <feature> 8321 <rects> 8322 <_>5 2 12 6 -1.</_> 8323 <_>5 4 12 2 3.</_></rects> 8324 <tilted>0</tilted></feature> 8325 <threshold>-1.2289900332689285e-003</threshold> 8326 <left_val>0.1033272966742516</left_val> 8327 <right_val>-0.0974423289299011</right_val></_></_> 8328 <_> 8329 <!-- tree 60 --> 8330 <_> 8331 <!-- root node --> 8332 <feature> 8333 <rects> 8334 <_>1 15 9 6 -1.</_> 8335 <_>1 17 9 2 3.</_></rects> 8336 <tilted>0</tilted></feature> 8337 <threshold>6.9271848769858479e-004</threshold> 8338 <left_val>-0.1136775016784668</left_val> 8339 <right_val>0.1612184941768646</right_val></_></_> 8340 <_> 8341 <!-- tree 61 --> 8342 <_> 8343 <!-- root node --> 8344 <feature> 8345 <rects> 8346 <_>5 13 14 9 -1.</_> 8347 <_>5 16 14 3 3.</_></rects> 8348 <tilted>0</tilted></feature> 8349 <threshold>9.9380649626255035e-003</threshold> 8350 <left_val>0.0527746789157391</left_val> 8351 <right_val>-0.1522282063961029</right_val></_></_> 8352 <_> 8353 <!-- tree 62 --> 8354 <_> 8355 <!-- root node --> 8356 <feature> 8357 <rects> 8358 <_>8 12 8 3 -1.</_> 8359 <_>7 13 8 1 3.</_></rects> 8360 <tilted>1</tilted></feature> 8361 <threshold>-0.0183777492493391</threshold> 8362 <left_val>0.4680078923702240</left_val> 8363 <right_val>-0.0424112305045128</right_val></_></_> 8364 <_> 8365 <!-- tree 63 --> 8366 <_> 8367 <!-- root node --> 8368 <feature> 8369 <rects> 8370 <_>12 8 2 15 -1.</_> 8371 <_>12 8 1 15 2.</_></rects> 8372 <tilted>0</tilted></feature> 8373 <threshold>-3.0569550581276417e-003</threshold> 8374 <left_val>0.1286662966012955</left_val> 8375 <right_val>-0.0983085632324219</right_val></_></_> 8376 <_> 8377 <!-- tree 64 --> 8378 <_> 8379 <!-- root node --> 8380 <feature> 8381 <rects> 8382 <_>5 8 2 15 -1.</_> 8383 <_>6 8 1 15 2.</_></rects> 8384 <tilted>0</tilted></feature> 8385 <threshold>-1.8440110143274069e-003</threshold> 8386 <left_val>-0.2759248912334442</left_val> 8387 <right_val>0.1005029976367950</right_val></_></_> 8388 <_> 8389 <!-- tree 65 --> 8390 <_> 8391 <!-- root node --> 8392 <feature> 8393 <rects> 8394 <_>11 5 3 14 -1.</_> 8395 <_>12 5 1 14 3.</_></rects> 8396 <tilted>0</tilted></feature> 8397 <threshold>5.6205368600785732e-003</threshold> 8398 <left_val>-0.0707162171602249</left_val> 8399 <right_val>0.1673406958580017</right_val></_></_> 8400 <_> 8401 <!-- tree 66 --> 8402 <_> 8403 <!-- root node --> 8404 <feature> 8405 <rects> 8406 <_>5 8 2 14 -1.</_> 8407 <_>6 8 1 14 2.</_></rects> 8408 <tilted>0</tilted></feature> 8409 <threshold>3.4157470799982548e-003</threshold> 8410 <left_val>0.0523780882358551</left_val> 8411 <right_val>-0.5098274946212769</right_val></_></_> 8412 <_> 8413 <!-- tree 67 --> 8414 <_> 8415 <!-- root node --> 8416 <feature> 8417 <rects> 8418 <_>11 6 3 14 -1.</_> 8419 <_>12 6 1 14 3.</_></rects> 8420 <tilted>0</tilted></feature> 8421 <threshold>-3.0376210343092680e-003</threshold> 8422 <left_val>0.1424362957477570</left_val> 8423 <right_val>-0.0630370602011681</right_val></_></_></trees> 8424 <stage_threshold>-0.7035266757011414</stage_threshold> 8425 <parent>18</parent> 8426 <next>-1</next></_> 8427 <_> 8428 <!-- stage 20 --> 8429 <trees> 8430 <_> 8431 <!-- tree 0 --> 8432 <_> 8433 <!-- root node --> 8434 <feature> 8435 <rects> 8436 <_>0 0 8 22 -1.</_> 8437 <_>0 0 4 11 2.</_> 8438 <_>4 11 4 11 2.</_></rects> 8439 <tilted>0</tilted></feature> 8440 <threshold>0.0101266400888562</threshold> 8441 <left_val>-0.2186378985643387</left_val> 8442 <right_val>0.1751348972320557</right_val></_></_> 8443 <_> 8444 <!-- tree 1 --> 8445 <_> 8446 <!-- root node --> 8447 <feature> 8448 <rects> 8449 <_>13 10 4 8 -1.</_> 8450 <_>13 10 2 8 2.</_></rects> 8451 <tilted>0</tilted></feature> 8452 <threshold>-2.6893198955804110e-003</threshold> 8453 <left_val>-0.3282296955585480</left_val> 8454 <right_val>0.0998382568359375</right_val></_></_> 8455 <_> 8456 <!-- tree 2 --> 8457 <_> 8458 <!-- root node --> 8459 <feature> 8460 <rects> 8461 <_>1 13 16 7 -1.</_> 8462 <_>5 13 8 7 2.</_></rects> 8463 <tilted>0</tilted></feature> 8464 <threshold>-0.0155735304579139</threshold> 8465 <left_val>0.1959401965141296</left_val> 8466 <right_val>-0.2253597974777222</right_val></_></_> 8467 <_> 8468 <!-- tree 3 --> 8469 <_> 8470 <!-- root node --> 8471 <feature> 8472 <rects> 8473 <_>13 10 4 8 -1.</_> 8474 <_>13 10 2 8 2.</_></rects> 8475 <tilted>0</tilted></feature> 8476 <threshold>4.9326270818710327e-003</threshold> 8477 <left_val>0.0499884709715843</left_val> 8478 <right_val>-0.5317537784576416</right_val></_></_> 8479 <_> 8480 <!-- tree 4 --> 8481 <_> 8482 <!-- root node --> 8483 <feature> 8484 <rects> 8485 <_>2 10 4 8 -1.</_> 8486 <_>4 10 2 8 2.</_></rects> 8487 <tilted>0</tilted></feature> 8488 <threshold>-7.6638202881440520e-004</threshold> 8489 <left_val>-0.2692666947841644</left_val> 8490 <right_val>0.1175142973661423</right_val></_></_> 8491 <_> 8492 <!-- tree 5 --> 8493 <_> 8494 <!-- root node --> 8495 <feature> 8496 <rects> 8497 <_>5 7 10 6 -1.</_> 8498 <_>10 7 5 3 2.</_> 8499 <_>5 10 5 3 2.</_></rects> 8500 <tilted>0</tilted></feature> 8501 <threshold>-1.2552300177048892e-004</threshold> 8502 <left_val>0.0691107884049416</left_val> 8503 <right_val>-0.0817273929715157</right_val></_></_> 8504 <_> 8505 <!-- tree 6 --> 8506 <_> 8507 <!-- root node --> 8508 <feature> 8509 <rects> 8510 <_>0 19 8 4 -1.</_> 8511 <_>4 19 4 4 2.</_></rects> 8512 <tilted>0</tilted></feature> 8513 <threshold>-1.4519299838866573e-005</threshold> 8514 <left_val>0.1148395016789436</left_val> 8515 <right_val>-0.2301712930202484</right_val></_></_> 8516 <_> 8517 <!-- tree 7 --> 8518 <_> 8519 <!-- root node --> 8520 <feature> 8521 <rects> 8522 <_>3 15 15 3 -1.</_> 8523 <_>3 16 15 1 3.</_></rects> 8524 <tilted>0</tilted></feature> 8525 <threshold>-0.0161138400435448</threshold> 8526 <left_val>0.5095658898353577</left_val> 8527 <right_val>-0.0374940298497677</right_val></_></_> 8528 <_> 8529 <!-- tree 8 --> 8530 <_> 8531 <!-- root node --> 8532 <feature> 8533 <rects> 8534 <_>7 2 4 16 -1.</_> 8535 <_>7 2 2 8 2.</_> 8536 <_>9 10 2 8 2.</_></rects> 8537 <tilted>0</tilted></feature> 8538 <threshold>5.5138790048658848e-003</threshold> 8539 <left_val>-0.0787875503301620</left_val> 8540 <right_val>0.2377143949270248</right_val></_></_> 8541 <_> 8542 <!-- tree 9 --> 8543 <_> 8544 <!-- root node --> 8545 <feature> 8546 <rects> 8547 <_>8 6 4 12 -1.</_> 8548 <_>8 10 4 4 3.</_></rects> 8549 <tilted>0</tilted></feature> 8550 <threshold>0.0877638235688210</threshold> 8551 <left_val>0.0138639798387885</left_val> 8552 <right_val>-0.8977738022804260</right_val></_></_> 8553 <_> 8554 <!-- tree 10 --> 8555 <_> 8556 <!-- root node --> 8557 <feature> 8558 <rects> 8559 <_>7 6 4 12 -1.</_> 8560 <_>7 10 4 4 3.</_></rects> 8561 <tilted>0</tilted></feature> 8562 <threshold>-0.0128255700692534</threshold> 8563 <left_val>-0.3950499892234802</left_val> 8564 <right_val>0.0555463284254074</right_val></_></_> 8565 <_> 8566 <!-- tree 11 --> 8567 <_> 8568 <!-- root node --> 8569 <feature> 8570 <rects> 8571 <_>3 15 14 2 -1.</_> 8572 <_>3 16 14 1 2.</_></rects> 8573 <tilted>0</tilted></feature> 8574 <threshold>8.2099979044869542e-004</threshold> 8575 <left_val>-0.1266397982835770</left_val> 8576 <right_val>0.1908162981271744</right_val></_></_> 8577 <_> 8578 <!-- tree 12 --> 8579 <_> 8580 <!-- root node --> 8581 <feature> 8582 <rects> 8583 <_>0 15 17 8 -1.</_> 8584 <_>0 17 17 4 2.</_></rects> 8585 <tilted>0</tilted></feature> 8586 <threshold>-1.2775770155712962e-003</threshold> 8587 <left_val>0.1106508001685143</left_val> 8588 <right_val>-0.1980109959840775</right_val></_></_> 8589 <_> 8590 <!-- tree 13 --> 8591 <_> 8592 <!-- root node --> 8593 <feature> 8594 <rects> 8595 <_>10 3 9 10 -1.</_> 8596 <_>10 3 9 5 2.</_></rects> 8597 <tilted>1</tilted></feature> 8598 <threshold>-0.2522971928119659</threshold> 8599 <left_val>-0.8103982806205750</left_val> 8600 <right_val>8.3870543166995049e-003</right_val></_></_> 8601 <_> 8602 <!-- tree 14 --> 8603 <_> 8604 <!-- root node --> 8605 <feature> 8606 <rects> 8607 <_>7 8 4 10 -1.</_> 8608 <_>7 13 4 5 2.</_></rects> 8609 <tilted>0</tilted></feature> 8610 <threshold>7.0347747532650828e-004</threshold> 8611 <left_val>-0.2138054966926575</left_val> 8612 <right_val>0.0986735969781876</right_val></_></_> 8613 <_> 8614 <!-- tree 15 --> 8615 <_> 8616 <!-- root node --> 8617 <feature> 8618 <rects> 8619 <_>7 8 7 15 -1.</_> 8620 <_>7 13 7 5 3.</_></rects> 8621 <tilted>0</tilted></feature> 8622 <threshold>0.0107174804434180</threshold> 8623 <left_val>0.0844704434275627</left_val> 8624 <right_val>-0.2606374919414520</right_val></_></_> 8625 <_> 8626 <!-- tree 16 --> 8627 <_> 8628 <!-- root node --> 8629 <feature> 8630 <rects> 8631 <_>1 0 16 20 -1.</_> 8632 <_>5 0 8 20 2.</_></rects> 8633 <tilted>0</tilted></feature> 8634 <threshold>5.1081487908959389e-003</threshold> 8635 <left_val>-0.0557322204113007</left_val> 8636 <right_val>0.4144786000251770</right_val></_></_> 8637 <_> 8638 <!-- tree 17 --> 8639 <_> 8640 <!-- root node --> 8641 <feature> 8642 <rects> 8643 <_>9 18 9 5 -1.</_> 8644 <_>12 18 3 5 3.</_></rects> 8645 <tilted>0</tilted></feature> 8646 <threshold>-0.0190061591565609</threshold> 8647 <left_val>-0.3747524917125702</left_val> 8648 <right_val>7.9524833709001541e-003</right_val></_></_> 8649 <_> 8650 <!-- tree 18 --> 8651 <_> 8652 <!-- root node --> 8653 <feature> 8654 <rects> 8655 <_>1 18 9 5 -1.</_> 8656 <_>4 18 3 5 3.</_></rects> 8657 <tilted>0</tilted></feature> 8658 <threshold>1.1136929970234632e-003</threshold> 8659 <left_val>-0.2265014946460724</left_val> 8660 <right_val>0.1078938990831375</right_val></_></_> 8661 <_> 8662 <!-- tree 19 --> 8663 <_> 8664 <!-- root node --> 8665 <feature> 8666 <rects> 8667 <_>8 7 8 12 -1.</_> 8668 <_>12 7 4 6 2.</_> 8669 <_>8 13 4 6 2.</_></rects> 8670 <tilted>0</tilted></feature> 8671 <threshold>0.0111417695879936</threshold> 8672 <left_val>-0.0420547984540462</left_val> 8673 <right_val>0.1369771063327789</right_val></_></_> 8674 <_> 8675 <!-- tree 20 --> 8676 <_> 8677 <!-- root node --> 8678 <feature> 8679 <rects> 8680 <_>2 9 4 13 -1.</_> 8681 <_>4 9 2 13 2.</_></rects> 8682 <tilted>0</tilted></feature> 8683 <threshold>1.2054879916831851e-003</threshold> 8684 <left_val>0.0921059772372246</left_val> 8685 <right_val>-0.2308367937803268</right_val></_></_> 8686 <_> 8687 <!-- tree 21 --> 8688 <_> 8689 <!-- root node --> 8690 <feature> 8691 <rects> 8692 <_>12 14 7 4 -1.</_> 8693 <_>12 16 7 2 2.</_></rects> 8694 <tilted>0</tilted></feature> 8695 <threshold>-2.0797130127903074e-004</threshold> 8696 <left_val>0.0842105969786644</left_val> 8697 <right_val>-0.0669676810503006</right_val></_></_> 8698 <_> 8699 <!-- tree 22 --> 8700 <_> 8701 <!-- root node --> 8702 <feature> 8703 <rects> 8704 <_>0 6 18 3 -1.</_> 8705 <_>0 7 18 1 3.</_></rects> 8706 <tilted>0</tilted></feature> 8707 <threshold>-0.0164126493036747</threshold> 8708 <left_val>0.4226919114589691</left_val> 8709 <right_val>-0.0496386997401714</right_val></_></_> 8710 <_> 8711 <!-- tree 23 --> 8712 <_> 8713 <!-- root node --> 8714 <feature> 8715 <rects> 8716 <_>1 16 18 7 -1.</_> 8717 <_>1 16 9 7 2.</_></rects> 8718 <tilted>0</tilted></feature> 8719 <threshold>7.0363390259444714e-003</threshold> 8720 <left_val>0.0905506610870361</left_val> 8721 <right_val>-0.2732287049293518</right_val></_></_> 8722 <_> 8723 <!-- tree 24 --> 8724 <_> 8725 <!-- root node --> 8726 <feature> 8727 <rects> 8728 <_>0 18 15 5 -1.</_> 8729 <_>5 18 5 5 3.</_></rects> 8730 <tilted>0</tilted></feature> 8731 <threshold>-8.4774550050497055e-003</threshold> 8732 <left_val>-0.1900486946105957</left_val> 8733 <right_val>0.1041653975844383</right_val></_></_> 8734 <_> 8735 <!-- tree 25 --> 8736 <_> 8737 <!-- root node --> 8738 <feature> 8739 <rects> 8740 <_>10 5 4 8 -1.</_> 8741 <_>10 5 2 8 2.</_></rects> 8742 <tilted>0</tilted></feature> 8743 <threshold>-0.0877996310591698</threshold> 8744 <left_val>-1.</left_val> 8745 <right_val>4.5551471412181854e-003</right_val></_></_> 8746 <_> 8747 <!-- tree 26 --> 8748 <_> 8749 <!-- root node --> 8750 <feature> 8751 <rects> 8752 <_>5 5 4 8 -1.</_> 8753 <_>7 5 2 8 2.</_></rects> 8754 <tilted>0</tilted></feature> 8755 <threshold>-0.0467311106622219</threshold> 8756 <left_val>0.4160776138305664</left_val> 8757 <right_val>-0.0679246112704277</right_val></_></_> 8758 <_> 8759 <!-- tree 27 --> 8760 <_> 8761 <!-- root node --> 8762 <feature> 8763 <rects> 8764 <_>7 0 6 5 -1.</_> 8765 <_>7 0 3 5 2.</_></rects> 8766 <tilted>0</tilted></feature> 8767 <threshold>7.4915830045938492e-003</threshold> 8768 <left_val>0.0475161895155907</left_val> 8769 <right_val>-0.4430620074272156</right_val></_></_> 8770 <_> 8771 <!-- tree 28 --> 8772 <_> 8773 <!-- root node --> 8774 <feature> 8775 <rects> 8776 <_>6 2 2 15 -1.</_> 8777 <_>7 2 1 15 2.</_></rects> 8778 <tilted>0</tilted></feature> 8779 <threshold>8.6966790258884430e-003</threshold> 8780 <left_val>-0.0394231490790844</left_val> 8781 <right_val>0.5218827724456787</right_val></_></_> 8782 <_> 8783 <!-- tree 29 --> 8784 <_> 8785 <!-- root node --> 8786 <feature> 8787 <rects> 8788 <_>4 0 12 4 -1.</_> 8789 <_>4 0 6 4 2.</_></rects> 8790 <tilted>0</tilted></feature> 8791 <threshold>-6.4137862063944340e-003</threshold> 8792 <left_val>-0.2474942952394486</left_val> 8793 <right_val>0.1135025024414063</right_val></_></_> 8794 <_> 8795 <!-- tree 30 --> 8796 <_> 8797 <!-- root node --> 8798 <feature> 8799 <rects> 8800 <_>5 0 2 14 -1.</_> 8801 <_>5 7 2 7 2.</_></rects> 8802 <tilted>0</tilted></feature> 8803 <threshold>6.4909840002655983e-003</threshold> 8804 <left_val>-0.2023759037256241</left_val> 8805 <right_val>0.1188730970025063</right_val></_></_> 8806 <_> 8807 <!-- tree 31 --> 8808 <_> 8809 <!-- root node --> 8810 <feature> 8811 <rects> 8812 <_>5 16 14 4 -1.</_> 8813 <_>5 17 14 2 2.</_></rects> 8814 <tilted>0</tilted></feature> 8815 <threshold>1.1677639558911324e-003</threshold> 8816 <left_val>-0.0981874391436577</left_val> 8817 <right_val>0.1447045952081680</right_val></_></_> 8818 <_> 8819 <!-- tree 32 --> 8820 <_> 8821 <!-- root node --> 8822 <feature> 8823 <rects> 8824 <_>2 9 2 14 -1.</_> 8825 <_>3 9 1 14 2.</_></rects> 8826 <tilted>0</tilted></feature> 8827 <threshold>8.0650653690099716e-003</threshold> 8828 <left_val>0.0308064296841621</left_val> 8829 <right_val>-0.5741053819656372</right_val></_></_> 8830 <_> 8831 <!-- tree 33 --> 8832 <_> 8833 <!-- root node --> 8834 <feature> 8835 <rects> 8836 <_>12 0 4 7 -1.</_> 8837 <_>12 0 2 7 2.</_></rects> 8838 <tilted>0</tilted></feature> 8839 <threshold>-6.1450549401342869e-003</threshold> 8840 <left_val>0.1421328037977219</left_val> 8841 <right_val>-0.1215547993779182</right_val></_></_> 8842 <_> 8843 <!-- tree 34 --> 8844 <_> 8845 <!-- root node --> 8846 <feature> 8847 <rects> 8848 <_>3 0 4 7 -1.</_> 8849 <_>5 0 2 7 2.</_></rects> 8850 <tilted>0</tilted></feature> 8851 <threshold>3.3926900941878557e-003</threshold> 8852 <left_val>-0.0694254636764526</left_val> 8853 <right_val>0.3794550001621246</right_val></_></_> 8854 <_> 8855 <!-- tree 35 --> 8856 <_> 8857 <!-- root node --> 8858 <feature> 8859 <rects> 8860 <_>8 0 9 15 -1.</_> 8861 <_>11 5 3 5 9.</_></rects> 8862 <tilted>0</tilted></feature> 8863 <threshold>0.2586125135421753</threshold> 8864 <left_val>-8.0964984372258186e-003</left_val> 8865 <right_val>0.5732439160346985</right_val></_></_> 8866 <_> 8867 <!-- tree 36 --> 8868 <_> 8869 <!-- root node --> 8870 <feature> 8871 <rects> 8872 <_>2 0 9 15 -1.</_> 8873 <_>5 5 3 5 9.</_></rects> 8874 <tilted>0</tilted></feature> 8875 <threshold>0.0463276505470276</threshold> 8876 <left_val>0.0934282690286636</left_val> 8877 <right_val>-0.2927432060241699</right_val></_></_> 8878 <_> 8879 <!-- tree 37 --> 8880 <_> 8881 <!-- root node --> 8882 <feature> 8883 <rects> 8884 <_>16 5 2 16 -1.</_> 8885 <_>16 5 1 16 2.</_></rects> 8886 <tilted>1</tilted></feature> 8887 <threshold>-1.4053919585421681e-005</threshold> 8888 <left_val>0.0595843009650707</left_val> 8889 <right_val>-0.1219384968280792</right_val></_></_> 8890 <_> 8891 <!-- tree 38 --> 8892 <_> 8893 <!-- root node --> 8894 <feature> 8895 <rects> 8896 <_>3 5 16 2 -1.</_> 8897 <_>3 5 16 1 2.</_></rects> 8898 <tilted>1</tilted></feature> 8899 <threshold>-5.5521689355373383e-003</threshold> 8900 <left_val>-0.3026813864707947</left_val> 8901 <right_val>0.0794819965958595</right_val></_></_> 8902 <_> 8903 <!-- tree 39 --> 8904 <_> 8905 <!-- root node --> 8906 <feature> 8907 <rects> 8908 <_>9 11 6 9 -1.</_> 8909 <_>11 11 2 9 3.</_></rects> 8910 <tilted>0</tilted></feature> 8911 <threshold>-0.0719741806387901</threshold> 8912 <left_val>0.5986248850822449</left_val> 8913 <right_val>-0.0324142388999462</right_val></_></_> 8914 <_> 8915 <!-- tree 40 --> 8916 <_> 8917 <!-- root node --> 8918 <feature> 8919 <rects> 8920 <_>7 6 8 4 -1.</_> 8921 <_>7 6 4 4 2.</_></rects> 8922 <tilted>1</tilted></feature> 8923 <threshold>-1.1097419774159789e-003</threshold> 8924 <left_val>-0.2228900045156479</left_val> 8925 <right_val>0.0948095768690109</right_val></_></_> 8926 <_> 8927 <!-- tree 41 --> 8928 <_> 8929 <!-- root node --> 8930 <feature> 8931 <rects> 8932 <_>10 0 8 8 -1.</_> 8933 <_>14 0 4 4 2.</_> 8934 <_>10 4 4 4 2.</_></rects> 8935 <tilted>0</tilted></feature> 8936 <threshold>0.0110122803598642</threshold> 8937 <left_val>-0.0509547106921673</left_val> 8938 <right_val>0.2199670970439911</right_val></_></_> 8939 <_> 8940 <!-- tree 42 --> 8941 <_> 8942 <!-- root node --> 8943 <feature> 8944 <rects> 8945 <_>3 0 12 4 -1.</_> 8946 <_>7 0 4 4 3.</_></rects> 8947 <tilted>0</tilted></feature> 8948 <threshold>-0.1066353023052216</threshold> 8949 <left_val>-0.7825710773468018</left_val> 8950 <right_val>0.0230757091194391</right_val></_></_> 8951 <_> 8952 <!-- tree 43 --> 8953 <_> 8954 <!-- root node --> 8955 <feature> 8956 <rects> 8957 <_>9 11 6 9 -1.</_> 8958 <_>11 11 2 9 3.</_></rects> 8959 <tilted>0</tilted></feature> 8960 <threshold>0.0268266107887030</threshold> 8961 <left_val>-0.0333343781530857</left_val> 8962 <right_val>0.3282557129859924</right_val></_></_> 8963 <_> 8964 <!-- tree 44 --> 8965 <_> 8966 <!-- root node --> 8967 <feature> 8968 <rects> 8969 <_>3 10 4 10 -1.</_> 8970 <_>5 10 2 10 2.</_></rects> 8971 <tilted>0</tilted></feature> 8972 <threshold>0.0164807792752981</threshold> 8973 <left_val>0.0247930791229010</left_val> 8974 <right_val>-0.7910236716270447</right_val></_></_> 8975 <_> 8976 <!-- tree 45 --> 8977 <_> 8978 <!-- root node --> 8979 <feature> 8980 <rects> 8981 <_>11 12 6 5 -1.</_> 8982 <_>11 12 3 5 2.</_></rects> 8983 <tilted>0</tilted></feature> 8984 <threshold>1.4533529756590724e-003</threshold> 8985 <left_val>-0.0473778210580349</left_val> 8986 <right_val>0.1829988956451416</right_val></_></_> 8987 <_> 8988 <!-- tree 46 --> 8989 <_> 8990 <!-- root node --> 8991 <feature> 8992 <rects> 8993 <_>4 11 6 9 -1.</_> 8994 <_>6 11 2 9 3.</_></rects> 8995 <tilted>0</tilted></feature> 8996 <threshold>0.0465367212891579</threshold> 8997 <left_val>-0.0422177799046040</left_val> 8998 <right_val>0.4720196127891541</right_val></_></_> 8999 <_> 9000 <!-- tree 47 --> 9001 <_> 9002 <!-- root node --> 9003 <feature> 9004 <rects> 9005 <_>12 12 7 4 -1.</_> 9006 <_>12 12 7 2 2.</_></rects> 9007 <tilted>1</tilted></feature> 9008 <threshold>0.0136040495708585</threshold> 9009 <left_val>0.0715431720018387</left_val> 9010 <right_val>-0.2817555963993073</right_val></_></_> 9011 <_> 9012 <!-- tree 48 --> 9013 <_> 9014 <!-- root node --> 9015 <feature> 9016 <rects> 9017 <_>1 0 8 8 -1.</_> 9018 <_>1 0 4 4 2.</_> 9019 <_>5 4 4 4 2.</_></rects> 9020 <tilted>0</tilted></feature> 9021 <threshold>2.9868748970329762e-003</threshold> 9022 <left_val>-0.1201931983232498</left_val> 9023 <right_val>0.1516525000333786</right_val></_></_> 9024 <_> 9025 <!-- tree 49 --> 9026 <_> 9027 <!-- root node --> 9028 <feature> 9029 <rects> 9030 <_>10 4 9 10 -1.</_> 9031 <_>10 4 9 5 2.</_></rects> 9032 <tilted>1</tilted></feature> 9033 <threshold>0.0754555836319923</threshold> 9034 <left_val>7.6729329302906990e-003</left_val> 9035 <right_val>-0.3756060004234314</right_val></_></_> 9036 <_> 9037 <!-- tree 50 --> 9038 <_> 9039 <!-- root node --> 9040 <feature> 9041 <rects> 9042 <_>1 1 12 8 -1.</_> 9043 <_>1 1 6 4 2.</_> 9044 <_>7 5 6 4 2.</_></rects> 9045 <tilted>0</tilted></feature> 9046 <threshold>-2.1207109093666077e-003</threshold> 9047 <left_val>0.1162438988685608</left_val> 9048 <right_val>-0.1518730968236923</right_val></_></_> 9049 <_> 9050 <!-- tree 51 --> 9051 <_> 9052 <!-- root node --> 9053 <feature> 9054 <rects> 9055 <_>2 14 16 2 -1.</_> 9056 <_>2 14 8 2 2.</_></rects> 9057 <tilted>0</tilted></feature> 9058 <threshold>4.6092201955616474e-003</threshold> 9059 <left_val>0.0523151606321335</left_val> 9060 <right_val>-0.2305060029029846</right_val></_></_> 9061 <_> 9062 <!-- tree 52 --> 9063 <_> 9064 <!-- root node --> 9065 <feature> 9066 <rects> 9067 <_>7 3 4 14 -1.</_> 9068 <_>8 3 2 14 2.</_></rects> 9069 <tilted>0</tilted></feature> 9070 <threshold>1.0207670275121927e-003</threshold> 9071 <left_val>-0.1138001009821892</left_val> 9072 <right_val>0.1762644052505493</right_val></_></_> 9073 <_> 9074 <!-- tree 53 --> 9075 <_> 9076 <!-- root node --> 9077 <feature> 9078 <rects> 9079 <_>7 1 6 7 -1.</_> 9080 <_>9 1 2 7 3.</_></rects> 9081 <tilted>0</tilted></feature> 9082 <threshold>6.2532532028853893e-003</threshold> 9083 <left_val>0.0616743601858616</left_val> 9084 <right_val>-0.3491523861885071</right_val></_></_> 9085 <_> 9086 <!-- tree 54 --> 9087 <_> 9088 <!-- root node --> 9089 <feature> 9090 <rects> 9091 <_>3 10 4 12 -1.</_> 9092 <_>3 14 4 4 3.</_></rects> 9093 <tilted>0</tilted></feature> 9094 <threshold>0.0283224005252123</threshold> 9095 <left_val>-0.0399581491947174</left_val> 9096 <right_val>0.5239297747612000</right_val></_></_> 9097 <_> 9098 <!-- tree 55 --> 9099 <_> 9100 <!-- root node --> 9101 <feature> 9102 <rects> 9103 <_>8 4 6 7 -1.</_> 9104 <_>10 4 2 7 3.</_></rects> 9105 <tilted>0</tilted></feature> 9106 <threshold>-0.0163423605263233</threshold> 9107 <left_val>-0.1256355941295624</left_val> 9108 <right_val>0.0400417409837246</right_val></_></_> 9109 <_> 9110 <!-- tree 56 --> 9111 <_> 9112 <!-- root node --> 9113 <feature> 9114 <rects> 9115 <_>5 4 6 7 -1.</_> 9116 <_>7 4 2 7 3.</_></rects> 9117 <tilted>0</tilted></feature> 9118 <threshold>-1.8282469827681780e-003</threshold> 9119 <left_val>0.0911350324749947</left_val> 9120 <right_val>-0.1922471970319748</right_val></_></_> 9121 <_> 9122 <!-- tree 57 --> 9123 <_> 9124 <!-- root node --> 9125 <feature> 9126 <rects> 9127 <_>5 7 14 8 -1.</_> 9128 <_>5 7 7 8 2.</_></rects> 9129 <tilted>0</tilted></feature> 9130 <threshold>0.0446169190108776</threshold> 9131 <left_val>-0.0175829101353884</left_val> 9132 <right_val>0.3028193116188049</right_val></_></_> 9133 <_> 9134 <!-- tree 58 --> 9135 <_> 9136 <!-- root node --> 9137 <feature> 9138 <rects> 9139 <_>2 12 6 5 -1.</_> 9140 <_>5 12 3 5 2.</_></rects> 9141 <tilted>0</tilted></feature> 9142 <threshold>3.5677649429999292e-004</threshold> 9143 <left_val>-0.0878974124789238</left_val> 9144 <right_val>0.2233915030956268</right_val></_></_> 9145 <_> 9146 <!-- tree 59 --> 9147 <_> 9148 <!-- root node --> 9149 <feature> 9150 <rects> 9151 <_>12 9 4 7 -1.</_> 9152 <_>12 9 2 7 2.</_></rects> 9153 <tilted>0</tilted></feature> 9154 <threshold>-4.5413200859911740e-004</threshold> 9155 <left_val>0.0655228272080421</left_val> 9156 <right_val>-0.0996793806552887</right_val></_></_> 9157 <_> 9158 <!-- tree 60 --> 9159 <_> 9160 <!-- root node --> 9161 <feature> 9162 <rects> 9163 <_>3 9 4 7 -1.</_> 9164 <_>5 9 2 7 2.</_></rects> 9165 <tilted>0</tilted></feature> 9166 <threshold>1.5353029593825340e-003</threshold> 9167 <left_val>0.0685900002717972</left_val> 9168 <right_val>-0.2972837090492249</right_val></_></_> 9169 <_> 9170 <!-- tree 61 --> 9171 <_> 9172 <!-- root node --> 9173 <feature> 9174 <rects> 9175 <_>13 2 4 12 -1.</_> 9176 <_>13 6 4 4 3.</_></rects> 9177 <tilted>0</tilted></feature> 9178 <threshold>2.1600390318781137e-003</threshold> 9179 <left_val>-0.0897365286946297</left_val> 9180 <right_val>0.0802845433354378</right_val></_></_> 9181 <_> 9182 <!-- tree 62 --> 9183 <_> 9184 <!-- root node --> 9185 <feature> 9186 <rects> 9187 <_>2 2 4 12 -1.</_> 9188 <_>2 6 4 4 3.</_></rects> 9189 <tilted>0</tilted></feature> 9190 <threshold>-5.9745612088590860e-004</threshold> 9191 <left_val>0.2187386006116867</left_val> 9192 <right_val>-0.1139852032065392</right_val></_></_> 9193 <_> 9194 <!-- tree 63 --> 9195 <_> 9196 <!-- root node --> 9197 <feature> 9198 <rects> 9199 <_>2 2 16 8 -1.</_> 9200 <_>10 2 8 4 2.</_> 9201 <_>2 6 8 4 2.</_></rects> 9202 <tilted>0</tilted></feature> 9203 <threshold>-0.0123560503125191</threshold> 9204 <left_val>-0.2935076057910919</left_val> 9205 <right_val>0.0644203200936317</right_val></_></_> 9206 <_> 9207 <!-- tree 64 --> 9208 <_> 9209 <!-- root node --> 9210 <feature> 9211 <rects> 9212 <_>2 2 15 9 -1.</_> 9213 <_>7 5 5 3 9.</_></rects> 9214 <tilted>0</tilted></feature> 9215 <threshold>-0.3267093002796173</threshold> 9216 <left_val>0.3892014920711517</left_val> 9217 <right_val>-0.0491654090583324</right_val></_></_> 9218 <_> 9219 <!-- tree 65 --> 9220 <_> 9221 <!-- root node --> 9222 <feature> 9223 <rects> 9224 <_>8 7 3 12 -1.</_> 9225 <_>8 13 3 6 2.</_></rects> 9226 <tilted>0</tilted></feature> 9227 <threshold>8.7828626856207848e-003</threshold> 9228 <left_val>0.0861861929297447</left_val> 9229 <right_val>-0.2263184934854507</right_val></_></_> 9230 <_> 9231 <!-- tree 66 --> 9232 <_> 9233 <!-- root node --> 9234 <feature> 9235 <rects> 9236 <_>2 0 3 15 -1.</_> 9237 <_>3 0 1 15 3.</_></rects> 9238 <tilted>0</tilted></feature> 9239 <threshold>3.3569689840078354e-003</threshold> 9240 <left_val>-0.0911942869424820</left_val> 9241 <right_val>0.2126410007476807</right_val></_></_></trees> 9242 <stage_threshold>-0.7464476823806763</stage_threshold> 9243 <parent>19</parent> 9244 <next>-1</next></_> 9245 <_> 9246 <!-- stage 21 --> 9247 <trees> 9248 <_> 9249 <!-- tree 0 --> 9250 <_> 9251 <!-- root node --> 9252 <feature> 9253 <rects> 9254 <_>1 8 16 4 -1.</_> 9255 <_>5 8 8 4 2.</_></rects> 9256 <tilted>0</tilted></feature> 9257 <threshold>-0.0152904996648431</threshold> 9258 <left_val>0.1601132005453110</left_val> 9259 <right_val>-0.2151194065809250</right_val></_></_> 9260 <_> 9261 <!-- tree 1 --> 9262 <_> 9263 <!-- root node --> 9264 <feature> 9265 <rects> 9266 <_>6 0 8 8 -1.</_> 9267 <_>10 0 4 4 2.</_> 9268 <_>6 4 4 4 2.</_></rects> 9269 <tilted>0</tilted></feature> 9270 <threshold>-5.9956451877951622e-003</threshold> 9271 <left_val>-0.1829978972673416</left_val> 9272 <right_val>0.0378865003585815</right_val></_></_> 9273 <_> 9274 <!-- tree 2 --> 9275 <_> 9276 <!-- root node --> 9277 <feature> 9278 <rects> 9279 <_>8 9 2 14 -1.</_> 9280 <_>9 9 1 14 2.</_></rects> 9281 <tilted>0</tilted></feature> 9282 <threshold>6.2301359139382839e-004</threshold> 9283 <left_val>-0.1219919994473457</left_val> 9284 <right_val>0.2116325050592423</right_val></_></_> 9285 <_> 9286 <!-- tree 3 --> 9287 <_> 9288 <!-- root node --> 9289 <feature> 9290 <rects> 9291 <_>8 5 3 10 -1.</_> 9292 <_>8 10 3 5 2.</_></rects> 9293 <tilted>0</tilted></feature> 9294 <threshold>5.8087380602955818e-004</threshold> 9295 <left_val>-0.2274738997220993</left_val> 9296 <right_val>0.0769580379128456</right_val></_></_> 9297 <_> 9298 <!-- tree 4 --> 9299 <_> 9300 <!-- root node --> 9301 <feature> 9302 <rects> 9303 <_>8 9 3 14 -1.</_> 9304 <_>9 9 1 14 3.</_></rects> 9305 <tilted>0</tilted></feature> 9306 <threshold>-2.8277048841118813e-003</threshold> 9307 <left_val>0.2759746015071869</left_val> 9308 <right_val>-0.0789423063397408</right_val></_></_> 9309 <_> 9310 <!-- tree 5 --> 9311 <_> 9312 <!-- root node --> 9313 <feature> 9314 <rects> 9315 <_>6 7 12 16 -1.</_> 9316 <_>6 11 12 8 2.</_></rects> 9317 <tilted>0</tilted></feature> 9318 <threshold>0.0210963208228350</threshold> 9319 <left_val>0.0412959195673466</left_val> 9320 <right_val>-0.3293308019638062</right_val></_></_> 9321 <_> 9322 <!-- tree 6 --> 9323 <_> 9324 <!-- root node --> 9325 <feature> 9326 <rects> 9327 <_>4 0 3 16 -1.</_> 9328 <_>5 0 1 16 3.</_></rects> 9329 <tilted>0</tilted></feature> 9330 <threshold>-2.2117430344223976e-003</threshold> 9331 <left_val>0.2467256933450699</left_val> 9332 <right_val>-0.0731216669082642</right_val></_></_> 9333 <_> 9334 <!-- tree 7 --> 9335 <_> 9336 <!-- root node --> 9337 <feature> 9338 <rects> 9339 <_>13 9 4 11 -1.</_> 9340 <_>13 9 2 11 2.</_></rects> 9341 <tilted>0</tilted></feature> 9342 <threshold>-2.3275949060916901e-003</threshold> 9343 <left_val>-0.2282510995864868</left_val> 9344 <right_val>0.0792851969599724</right_val></_></_> 9345 <_> 9346 <!-- tree 8 --> 9347 <_> 9348 <!-- root node --> 9349 <feature> 9350 <rects> 9351 <_>0 18 14 3 -1.</_> 9352 <_>7 18 7 3 2.</_></rects> 9353 <tilted>0</tilted></feature> 9354 <threshold>-4.4754869304597378e-003</threshold> 9355 <left_val>0.1174404993653297</left_val> 9356 <right_val>-0.1980140954256058</right_val></_></_> 9357 <_> 9358 <!-- tree 9 --> 9359 <_> 9360 <!-- root node --> 9361 <feature> 9362 <rects> 9363 <_>6 9 12 11 -1.</_> 9364 <_>9 9 6 11 2.</_></rects> 9365 <tilted>0</tilted></feature> 9366 <threshold>-2.5716619566082954e-003</threshold> 9367 <left_val>0.0376587100327015</left_val> 9368 <right_val>-0.1214805990457535</right_val></_></_> 9369 <_> 9370 <!-- tree 10 --> 9371 <_> 9372 <!-- root node --> 9373 <feature> 9374 <rects> 9375 <_>1 7 16 9 -1.</_> 9376 <_>5 7 8 9 2.</_></rects> 9377 <tilted>0</tilted></feature> 9378 <threshold>1.5387970488518476e-003</threshold> 9379 <left_val>-0.0559732504189014</left_val> 9380 <right_val>0.3692342936992645</right_val></_></_> 9381 <_> 9382 <!-- tree 11 --> 9383 <_> 9384 <!-- root node --> 9385 <feature> 9386 <rects> 9387 <_>11 6 4 7 -1.</_> 9388 <_>11 6 2 7 2.</_></rects> 9389 <tilted>0</tilted></feature> 9390 <threshold>-0.0330665186047554</threshold> 9391 <left_val>0.3916000127792358</left_val> 9392 <right_val>-0.0778629407286644</right_val></_></_> 9393 <_> 9394 <!-- tree 12 --> 9395 <_> 9396 <!-- root node --> 9397 <feature> 9398 <rects> 9399 <_>3 11 12 12 -1.</_> 9400 <_>7 15 4 4 9.</_></rects> 9401 <tilted>0</tilted></feature> 9402 <threshold>-0.0857277214527130</threshold> 9403 <left_val>-0.2517474889755249</left_val> 9404 <right_val>0.1354355067014694</right_val></_></_> 9405 <_> 9406 <!-- tree 13 --> 9407 <_> 9408 <!-- root node --> 9409 <feature> 9410 <rects> 9411 <_>11 6 4 7 -1.</_> 9412 <_>11 6 2 7 2.</_></rects> 9413 <tilted>0</tilted></feature> 9414 <threshold>-7.0333289913833141e-003</threshold> 9415 <left_val>0.1332871019840241</left_val> 9416 <right_val>-0.1566464006900787</right_val></_></_> 9417 <_> 9418 <!-- tree 14 --> 9419 <_> 9420 <!-- root node --> 9421 <feature> 9422 <rects> 9423 <_>4 0 6 10 -1.</_> 9424 <_>6 0 2 10 3.</_></rects> 9425 <tilted>0</tilted></feature> 9426 <threshold>-6.8310517235659063e-005</threshold> 9427 <left_val>0.0994542017579079</left_val> 9428 <right_val>-0.2341298013925552</right_val></_></_> 9429 <_> 9430 <!-- tree 15 --> 9431 <_> 9432 <!-- root node --> 9433 <feature> 9434 <rects> 9435 <_>13 9 2 14 -1.</_> 9436 <_>13 9 1 14 2.</_></rects> 9437 <tilted>0</tilted></feature> 9438 <threshold>-6.0546118766069412e-004</threshold> 9439 <left_val>-0.1774266958236694</left_val> 9440 <right_val>0.1001781001687050</right_val></_></_> 9441 <_> 9442 <!-- tree 16 --> 9443 <_> 9444 <!-- root node --> 9445 <feature> 9446 <rects> 9447 <_>4 9 2 14 -1.</_> 9448 <_>5 9 1 14 2.</_></rects> 9449 <tilted>0</tilted></feature> 9450 <threshold>-2.2480569314211607e-003</threshold> 9451 <left_val>-0.3642463982105255</left_val> 9452 <right_val>0.0535012595355511</right_val></_></_> 9453 <_> 9454 <!-- tree 17 --> 9455 <_> 9456 <!-- root node --> 9457 <feature> 9458 <rects> 9459 <_>7 7 6 16 -1.</_> 9460 <_>7 11 6 8 2.</_></rects> 9461 <tilted>0</tilted></feature> 9462 <threshold>-1.5090550296008587e-003</threshold> 9463 <left_val>0.0775750502943993</left_val> 9464 <right_val>-0.0949207171797752</right_val></_></_> 9465 <_> 9466 <!-- tree 18 --> 9467 <_> 9468 <!-- root node --> 9469 <feature> 9470 <rects> 9471 <_>2 16 4 7 -1.</_> 9472 <_>4 16 2 7 2.</_></rects> 9473 <tilted>0</tilted></feature> 9474 <threshold>-5.8666180848376825e-005</threshold> 9475 <left_val>0.1258593946695328</left_val> 9476 <right_val>-0.1452981978654862</right_val></_></_> 9477 <_> 9478 <!-- tree 19 --> 9479 <_> 9480 <!-- root node --> 9481 <feature> 9482 <rects> 9483 <_>9 17 9 6 -1.</_> 9484 <_>12 17 3 6 3.</_></rects> 9485 <tilted>0</tilted></feature> 9486 <threshold>3.5532109905034304e-003</threshold> 9487 <left_val>-0.0986266136169434</left_val> 9488 <right_val>0.0743262469768524</right_val></_></_> 9489 <_> 9490 <!-- tree 20 --> 9491 <_> 9492 <!-- root node --> 9493 <feature> 9494 <rects> 9495 <_>2 16 6 7 -1.</_> 9496 <_>4 16 2 7 3.</_></rects> 9497 <tilted>0</tilted></feature> 9498 <threshold>-1.4601859729737043e-003</threshold> 9499 <left_val>-0.3302684128284454</left_val> 9500 <right_val>0.0638134628534317</right_val></_></_> 9501 <_> 9502 <!-- tree 21 --> 9503 <_> 9504 <!-- root node --> 9505 <feature> 9506 <rects> 9507 <_>14 13 5 6 -1.</_> 9508 <_>14 16 5 3 2.</_></rects> 9509 <tilted>0</tilted></feature> 9510 <threshold>-2.3586049792356789e-004</threshold> 9511 <left_val>0.1084676012396812</left_val> 9512 <right_val>-0.1057104989886284</right_val></_></_> 9513 <_> 9514 <!-- tree 22 --> 9515 <_> 9516 <!-- root node --> 9517 <feature> 9518 <rects> 9519 <_>0 0 12 6 -1.</_> 9520 <_>6 0 6 6 2.</_></rects> 9521 <tilted>0</tilted></feature> 9522 <threshold>0.0147560602054000</threshold> 9523 <left_val>-0.0594728402793407</left_val> 9524 <right_val>0.3779289126396179</right_val></_></_> 9525 <_> 9526 <!-- tree 23 --> 9527 <_> 9528 <!-- root node --> 9529 <feature> 9530 <rects> 9531 <_>4 0 14 7 -1.</_> 9532 <_>4 0 7 7 2.</_></rects> 9533 <tilted>0</tilted></feature> 9534 <threshold>-0.1679531037807465</threshold> 9535 <left_val>-0.6677346825599670</left_val> 9536 <right_val>0.0174049306660891</right_val></_></_> 9537 <_> 9538 <!-- tree 24 --> 9539 <_> 9540 <!-- root node --> 9541 <feature> 9542 <rects> 9543 <_>5 0 9 22 -1.</_> 9544 <_>5 11 9 11 2.</_></rects> 9545 <tilted>0</tilted></feature> 9546 <threshold>0.0320176705718040</threshold> 9547 <left_val>-0.2372045069932938</left_val> 9548 <right_val>0.0962059274315834</right_val></_></_> 9549 <_> 9550 <!-- tree 25 --> 9551 <_> 9552 <!-- root node --> 9553 <feature> 9554 <rects> 9555 <_>11 8 8 4 -1.</_> 9556 <_>11 10 8 2 2.</_></rects> 9557 <tilted>0</tilted></feature> 9558 <threshold>-6.1111792456358671e-004</threshold> 9559 <left_val>0.1356689035892487</left_val> 9560 <right_val>-0.0681219324469566</right_val></_></_> 9561 <_> 9562 <!-- tree 26 --> 9563 <_> 9564 <!-- root node --> 9565 <feature> 9566 <rects> 9567 <_>9 0 4 8 -1.</_> 9568 <_>9 0 2 8 2.</_></rects> 9569 <tilted>1</tilted></feature> 9570 <threshold>-0.0115860402584076</threshold> 9571 <left_val>-0.2976146042346954</left_val> 9572 <right_val>0.0648532509803772</right_val></_></_> 9573 <_> 9574 <!-- tree 27 --> 9575 <_> 9576 <!-- root node --> 9577 <feature> 9578 <rects> 9579 <_>5 17 14 2 -1.</_> 9580 <_>5 18 14 1 2.</_></rects> 9581 <tilted>0</tilted></feature> 9582 <threshold>-1.1290679685771465e-003</threshold> 9583 <left_val>0.1352047026157379</left_val> 9584 <right_val>-0.0906935036182404</right_val></_></_> 9585 <_> 9586 <!-- tree 28 --> 9587 <_> 9588 <!-- root node --> 9589 <feature> 9590 <rects> 9591 <_>1 17 14 3 -1.</_> 9592 <_>1 18 14 1 3.</_></rects> 9593 <tilted>0</tilted></feature> 9594 <threshold>1.8352170009166002e-003</threshold> 9595 <left_val>-0.0966946035623550</left_val> 9596 <right_val>0.1872598975896835</right_val></_></_> 9597 <_> 9598 <!-- tree 29 --> 9599 <_> 9600 <!-- root node --> 9601 <feature> 9602 <rects> 9603 <_>6 1 12 12 -1.</_> 9604 <_>10 5 4 4 9.</_></rects> 9605 <tilted>0</tilted></feature> 9606 <threshold>-0.2758424878120422</threshold> 9607 <left_val>0.2746022045612335</left_val> 9608 <right_val>-0.0161767099052668</right_val></_></_> 9609 <_> 9610 <!-- tree 30 --> 9611 <_> 9612 <!-- root node --> 9613 <feature> 9614 <rects> 9615 <_>1 1 12 12 -1.</_> 9616 <_>5 5 4 4 9.</_></rects> 9617 <tilted>0</tilted></feature> 9618 <threshold>-0.0524872802197933</threshold> 9619 <left_val>-0.2629503011703491</left_val> 9620 <right_val>0.0842792764306068</right_val></_></_> 9621 <_> 9622 <!-- tree 31 --> 9623 <_> 9624 <!-- root node --> 9625 <feature> 9626 <rects> 9627 <_>6 0 7 18 -1.</_> 9628 <_>6 9 7 9 2.</_></rects> 9629 <tilted>0</tilted></feature> 9630 <threshold>-0.0284090805798769</threshold> 9631 <left_val>0.4403317868709564</left_val> 9632 <right_val>-0.0467363409698009</right_val></_></_> 9633 <_> 9634 <!-- tree 32 --> 9635 <_> 9636 <!-- root node --> 9637 <feature> 9638 <rects> 9639 <_>0 0 12 9 -1.</_> 9640 <_>3 0 6 9 2.</_></rects> 9641 <tilted>0</tilted></feature> 9642 <threshold>0.0122342295944691</threshold> 9643 <left_val>0.0713919028639793</left_val> 9644 <right_val>-0.2946347892284393</right_val></_></_> 9645 <_> 9646 <!-- tree 33 --> 9647 <_> 9648 <!-- root node --> 9649 <feature> 9650 <rects> 9651 <_>9 9 3 14 -1.</_> 9652 <_>10 9 1 14 3.</_></rects> 9653 <tilted>0</tilted></feature> 9654 <threshold>0.0377520881593227</threshold> 9655 <left_val>-0.0325071401894093</left_val> 9656 <right_val>0.6229391098022461</right_val></_></_> 9657 <_> 9658 <!-- tree 34 --> 9659 <_> 9660 <!-- root node --> 9661 <feature> 9662 <rects> 9663 <_>7 5 5 9 -1.</_> 9664 <_>7 8 5 3 3.</_></rects> 9665 <tilted>0</tilted></feature> 9666 <threshold>-0.0130063397809863</threshold> 9667 <left_val>-0.3561950922012329</left_val> 9668 <right_val>0.0570859201252460</right_val></_></_> 9669 <_> 9670 <!-- tree 35 --> 9671 <_> 9672 <!-- root node --> 9673 <feature> 9674 <rects> 9675 <_>9 9 3 14 -1.</_> 9676 <_>10 9 1 14 3.</_></rects> 9677 <tilted>0</tilted></feature> 9678 <threshold>-3.7061918992549181e-003</threshold> 9679 <left_val>0.1748504936695099</left_val> 9680 <right_val>-0.1050686985254288</right_val></_></_> 9681 <_> 9682 <!-- tree 36 --> 9683 <_> 9684 <!-- root node --> 9685 <feature> 9686 <rects> 9687 <_>7 9 3 14 -1.</_> 9688 <_>8 9 1 14 3.</_></rects> 9689 <tilted>0</tilted></feature> 9690 <threshold>-4.8177209682762623e-003</threshold> 9691 <left_val>0.1476109027862549</left_val> 9692 <right_val>-0.1370013058185577</right_val></_></_> 9693 <_> 9694 <!-- tree 37 --> 9695 <_> 9696 <!-- root node --> 9697 <feature> 9698 <rects> 9699 <_>12 10 5 8 -1.</_> 9700 <_>12 10 5 4 2.</_></rects> 9701 <tilted>1</tilted></feature> 9702 <threshold>-0.0307267196476460</threshold> 9703 <left_val>-0.2143260985612869</left_val> 9704 <right_val>0.0345353297889233</right_val></_></_> 9705 <_> 9706 <!-- tree 38 --> 9707 <_> 9708 <!-- root node --> 9709 <feature> 9710 <rects> 9711 <_>8 6 10 7 -1.</_> 9712 <_>8 6 5 7 2.</_></rects> 9713 <tilted>1</tilted></feature> 9714 <threshold>0.0100443996489048</threshold> 9715 <left_val>0.0824728682637215</left_val> 9716 <right_val>-0.2132944017648697</right_val></_></_> 9717 <_> 9718 <!-- tree 39 --> 9719 <_> 9720 <!-- root node --> 9721 <feature> 9722 <rects> 9723 <_>12 15 7 4 -1.</_> 9724 <_>12 17 7 2 2.</_></rects> 9725 <tilted>0</tilted></feature> 9726 <threshold>3.3808979787863791e-004</threshold> 9727 <left_val>-0.0563683994114399</left_val> 9728 <right_val>0.0840506926178932</right_val></_></_> 9729 <_> 9730 <!-- tree 40 --> 9731 <_> 9732 <!-- root node --> 9733 <feature> 9734 <rects> 9735 <_>0 15 7 4 -1.</_> 9736 <_>0 17 7 2 2.</_></rects> 9737 <tilted>0</tilted></feature> 9738 <threshold>-3.4935539588332176e-004</threshold> 9739 <left_val>0.1551014035940170</left_val> 9740 <right_val>-0.1546518951654434</right_val></_></_> 9741 <_> 9742 <!-- tree 41 --> 9743 <_> 9744 <!-- root node --> 9745 <feature> 9746 <rects> 9747 <_>15 6 2 16 -1.</_> 9748 <_>15 6 1 16 2.</_></rects> 9749 <tilted>0</tilted></feature> 9750 <threshold>8.5416442016139627e-004</threshold> 9751 <left_val>0.0748112127184868</left_val> 9752 <right_val>-0.2076193988323212</right_val></_></_> 9753 <_> 9754 <!-- tree 42 --> 9755 <_> 9756 <!-- root node --> 9757 <feature> 9758 <rects> 9759 <_>3 9 4 8 -1.</_> 9760 <_>3 13 4 4 2.</_></rects> 9761 <tilted>0</tilted></feature> 9762 <threshold>-7.4278831016272306e-004</threshold> 9763 <left_val>0.2069537043571472</left_val> 9764 <right_val>-0.1131504029035568</right_val></_></_> 9765 <_> 9766 <!-- tree 43 --> 9767 <_> 9768 <!-- root node --> 9769 <feature> 9770 <rects> 9771 <_>0 14 19 3 -1.</_> 9772 <_>0 15 19 1 3.</_></rects> 9773 <tilted>0</tilted></feature> 9774 <threshold>-0.0418039113283157</threshold> 9775 <left_val>0.7737541794776917</left_val> 9776 <right_val>-0.0273915994912386</right_val></_></_> 9777 <_> 9778 <!-- tree 44 --> 9779 <_> 9780 <!-- root node --> 9781 <feature> 9782 <rects> 9783 <_>1 12 4 7 -1.</_> 9784 <_>3 12 2 7 2.</_></rects> 9785 <tilted>0</tilted></feature> 9786 <threshold>-8.9303712593391538e-004</threshold> 9787 <left_val>-0.2892684936523438</left_val> 9788 <right_val>0.0834253132343292</right_val></_></_> 9789 <_> 9790 <!-- tree 45 --> 9791 <_> 9792 <!-- root node --> 9793 <feature> 9794 <rects> 9795 <_>14 12 4 11 -1.</_> 9796 <_>14 12 2 11 2.</_></rects> 9797 <tilted>0</tilted></feature> 9798 <threshold>2.0034189801663160e-003</threshold> 9799 <left_val>0.0578995198011398</left_val> 9800 <right_val>-0.2181786000728607</right_val></_></_> 9801 <_> 9802 <!-- tree 46 --> 9803 <_> 9804 <!-- root node --> 9805 <feature> 9806 <rects> 9807 <_>0 8 5 6 -1.</_> 9808 <_>0 11 5 3 2.</_></rects> 9809 <tilted>0</tilted></feature> 9810 <threshold>7.4933562427759171e-004</threshold> 9811 <left_val>-0.1360622048377991</left_val> 9812 <right_val>0.1615003049373627</right_val></_></_> 9813 <_> 9814 <!-- tree 47 --> 9815 <_> 9816 <!-- root node --> 9817 <feature> 9818 <rects> 9819 <_>4 0 14 3 -1.</_> 9820 <_>4 0 7 3 2.</_></rects> 9821 <tilted>0</tilted></feature> 9822 <threshold>-0.0896454229950905</threshold> 9823 <left_val>-0.9571774005889893</left_val> 9824 <right_val>5.8882208541035652e-003</right_val></_></_> 9825 <_> 9826 <!-- tree 48 --> 9827 <_> 9828 <!-- root node --> 9829 <feature> 9830 <rects> 9831 <_>1 0 14 3 -1.</_> 9832 <_>8 0 7 3 2.</_></rects> 9833 <tilted>0</tilted></feature> 9834 <threshold>-6.5244808793067932e-003</threshold> 9835 <left_val>0.1452196985483170</left_val> 9836 <right_val>-0.1611984968185425</right_val></_></_> 9837 <_> 9838 <!-- tree 49 --> 9839 <_> 9840 <!-- root node --> 9841 <feature> 9842 <rects> 9843 <_>12 3 7 4 -1.</_> 9844 <_>12 5 7 2 2.</_></rects> 9845 <tilted>0</tilted></feature> 9846 <threshold>-2.8723690193146467e-003</threshold> 9847 <left_val>0.1067081019282341</left_val> 9848 <right_val>-0.0305057391524315</right_val></_></_> 9849 <_> 9850 <!-- tree 50 --> 9851 <_> 9852 <!-- root node --> 9853 <feature> 9854 <rects> 9855 <_>0 3 7 4 -1.</_> 9856 <_>0 5 7 2 2.</_></rects> 9857 <tilted>0</tilted></feature> 9858 <threshold>2.2762219887226820e-003</threshold> 9859 <left_val>-0.1457338035106659</left_val> 9860 <right_val>0.1559064984321594</right_val></_></_> 9861 <_> 9862 <!-- tree 51 --> 9863 <_> 9864 <!-- root node --> 9865 <feature> 9866 <rects> 9867 <_>10 8 4 7 -1.</_> 9868 <_>10 8 2 7 2.</_></rects> 9869 <tilted>0</tilted></feature> 9870 <threshold>4.3706637807190418e-003</threshold> 9871 <left_val>-0.0243692994117737</left_val> 9872 <right_val>0.2072412967681885</right_val></_></_> 9873 <_> 9874 <!-- tree 52 --> 9875 <_> 9876 <!-- root node --> 9877 <feature> 9878 <rects> 9879 <_>1 12 4 11 -1.</_> 9880 <_>3 12 2 11 2.</_></rects> 9881 <tilted>0</tilted></feature> 9882 <threshold>1.1989739723503590e-003</threshold> 9883 <left_val>0.0884619429707527</left_val> 9884 <right_val>-0.2253641039133072</right_val></_></_> 9885 <_> 9886 <!-- tree 53 --> 9887 <_> 9888 <!-- root node --> 9889 <feature> 9890 <rects> 9891 <_>2 10 16 4 -1.</_> 9892 <_>2 11 16 2 2.</_></rects> 9893 <tilted>0</tilted></feature> 9894 <threshold>-6.1923090834170580e-004</threshold> 9895 <left_val>0.1510809063911438</left_val> 9896 <right_val>-0.0991063416004181</right_val></_></_> 9897 <_> 9898 <!-- tree 54 --> 9899 <_> 9900 <!-- root node --> 9901 <feature> 9902 <rects> 9903 <_>7 11 9 3 -1.</_> 9904 <_>6 12 9 1 3.</_></rects> 9905 <tilted>1</tilted></feature> 9906 <threshold>-1.0555429616943002e-003</threshold> 9907 <left_val>0.1539929956197739</left_val> 9908 <right_val>-0.1441050022840500</right_val></_></_> 9909 <_> 9910 <!-- tree 55 --> 9911 <_> 9912 <!-- root node --> 9913 <feature> 9914 <rects> 9915 <_>5 6 12 16 -1.</_> 9916 <_>8 6 6 16 2.</_></rects> 9917 <tilted>0</tilted></feature> 9918 <threshold>0.0231018904596567</threshold> 9919 <left_val>-0.0261075291782618</left_val> 9920 <right_val>0.2587516903877258</right_val></_></_> 9921 <_> 9922 <!-- tree 56 --> 9923 <_> 9924 <!-- root node --> 9925 <feature> 9926 <rects> 9927 <_>2 6 14 4 -1.</_> 9928 <_>2 6 7 2 2.</_> 9929 <_>9 8 7 2 2.</_></rects> 9930 <tilted>0</tilted></feature> 9931 <threshold>6.7337458021938801e-003</threshold> 9932 <left_val>0.0646296367049217</left_val> 9933 <right_val>-0.3229981958866119</right_val></_></_> 9934 <_> 9935 <!-- tree 57 --> 9936 <_> 9937 <!-- root node --> 9938 <feature> 9939 <rects> 9940 <_>5 6 10 6 -1.</_> 9941 <_>10 6 5 3 2.</_> 9942 <_>5 9 5 3 2.</_></rects> 9943 <tilted>0</tilted></feature> 9944 <threshold>1.4084229478612542e-003</threshold> 9945 <left_val>0.0857550725340843</left_val> 9946 <right_val>-0.1494754999876022</right_val></_></_> 9947 <_> 9948 <!-- tree 58 --> 9949 <_> 9950 <!-- root node --> 9951 <feature> 9952 <rects> 9953 <_>0 9 2 14 -1.</_> 9954 <_>1 9 1 14 2.</_></rects> 9955 <tilted>0</tilted></feature> 9956 <threshold>-2.3923629487399012e-004</threshold> 9957 <left_val>0.1870089024305344</left_val> 9958 <right_val>-0.1094153001904488</right_val></_></_> 9959 <_> 9960 <!-- tree 59 --> 9961 <_> 9962 <!-- root node --> 9963 <feature> 9964 <rects> 9965 <_>10 18 9 5 -1.</_> 9966 <_>13 18 3 5 3.</_></rects> 9967 <tilted>0</tilted></feature> 9968 <threshold>2.2198690567165613e-004</threshold> 9969 <left_val>-0.1951756030321121</left_val> 9970 <right_val>0.0595878586173058</right_val></_></_> 9971 <_> 9972 <!-- tree 60 --> 9973 <_> 9974 <!-- root node --> 9975 <feature> 9976 <rects> 9977 <_>4 9 10 3 -1.</_> 9978 <_>3 10 10 1 3.</_></rects> 9979 <tilted>1</tilted></feature> 9980 <threshold>2.8156230691820383e-003</threshold> 9981 <left_val>-0.0895278826355934</left_val> 9982 <right_val>0.2289431989192963</right_val></_></_> 9983 <_> 9984 <!-- tree 61 --> 9985 <_> 9986 <!-- root node --> 9987 <feature> 9988 <rects> 9989 <_>10 18 9 5 -1.</_> 9990 <_>13 18 3 5 3.</_></rects> 9991 <tilted>0</tilted></feature> 9992 <threshold>7.8730508685112000e-003</threshold> 9993 <left_val>0.0641397014260292</left_val> 9994 <right_val>-0.1717485934495926</right_val></_></_> 9995 <_> 9996 <!-- tree 62 --> 9997 <_> 9998 <!-- root node --> 9999 <feature> 10000 <rects> 10001 <_>0 18 9 5 -1.</_> 10002 <_>3 18 3 5 3.</_></rects> 10003 <tilted>0</tilted></feature> 10004 <threshold>1.0448540560901165e-003</threshold> 10005 <left_val>-0.2092723995447159</left_val> 10006 <right_val>0.1102280989289284</right_val></_></_> 10007 <_> 10008 <!-- tree 63 --> 10009 <_> 10010 <!-- root node --> 10011 <feature> 10012 <rects> 10013 <_>5 8 12 9 -1.</_> 10014 <_>9 8 4 9 3.</_></rects> 10015 <tilted>0</tilted></feature> 10016 <threshold>-0.1804109960794449</threshold> 10017 <left_val>0.2546054124832153</left_val> 10018 <right_val>-0.0315802395343781</right_val></_></_> 10019 <_> 10020 <!-- tree 64 --> 10021 <_> 10022 <!-- root node --> 10023 <feature> 10024 <rects> 10025 <_>2 8 12 9 -1.</_> 10026 <_>6 8 4 9 3.</_></rects> 10027 <tilted>0</tilted></feature> 10028 <threshold>-0.1891681998968124</threshold> 10029 <left_val>-0.8143904805183411</left_val> 10030 <right_val>0.0302127506583929</right_val></_></_> 10031 <_> 10032 <!-- tree 65 --> 10033 <_> 10034 <!-- root node --> 10035 <feature> 10036 <rects> 10037 <_>9 6 4 14 -1.</_> 10038 <_>10 6 2 14 2.</_></rects> 10039 <tilted>0</tilted></feature> 10040 <threshold>-0.0489343404769897</threshold> 10041 <left_val>0.4832926988601685</left_val> 10042 <right_val>-0.0318133905529976</right_val></_></_> 10043 <_> 10044 <!-- tree 66 --> 10045 <_> 10046 <!-- root node --> 10047 <feature> 10048 <rects> 10049 <_>2 20 15 3 -1.</_> 10050 <_>7 20 5 3 3.</_></rects> 10051 <tilted>0</tilted></feature> 10052 <threshold>-6.2278551049530506e-003</threshold> 10053 <left_val>-0.2246308028697968</left_val> 10054 <right_val>0.0932022929191589</right_val></_></_> 10055 <_> 10056 <!-- tree 67 --> 10057 <_> 10058 <!-- root node --> 10059 <feature> 10060 <rects> 10061 <_>5 4 9 5 -1.</_> 10062 <_>8 4 3 5 3.</_></rects> 10063 <tilted>0</tilted></feature> 10064 <threshold>-3.6263489164412022e-003</threshold> 10065 <left_val>0.0972399637103081</left_val> 10066 <right_val>-0.2209493964910507</right_val></_></_> 10067 <_> 10068 <!-- tree 68 --> 10069 <_> 10070 <!-- root node --> 10071 <feature> 10072 <rects> 10073 <_>6 6 4 14 -1.</_> 10074 <_>7 6 2 14 2.</_></rects> 10075 <tilted>0</tilted></feature> 10076 <threshold>0.0206885300576687</threshold> 10077 <left_val>-0.0390446893870831</left_val> 10078 <right_val>0.6966891884803772</right_val></_></_> 10079 <_> 10080 <!-- tree 69 --> 10081 <_> 10082 <!-- root node --> 10083 <feature> 10084 <rects> 10085 <_>10 0 2 14 -1.</_> 10086 <_>10 0 1 14 2.</_></rects> 10087 <tilted>0</tilted></feature> 10088 <threshold>-6.5703191794455051e-003</threshold> 10089 <left_val>-0.1591935008764267</left_val> 10090 <right_val>0.0376973897218704</right_val></_></_> 10091 <_> 10092 <!-- tree 70 --> 10093 <_> 10094 <!-- root node --> 10095 <feature> 10096 <rects> 10097 <_>7 0 2 14 -1.</_> 10098 <_>8 0 1 14 2.</_></rects> 10099 <tilted>0</tilted></feature> 10100 <threshold>-2.7691440191119909e-003</threshold> 10101 <left_val>-0.2177779972553253</left_val> 10102 <right_val>0.1107555031776428</right_val></_></_> 10103 <_> 10104 <!-- tree 71 --> 10105 <_> 10106 <!-- root node --> 10107 <feature> 10108 <rects> 10109 <_>12 0 4 8 -1.</_> 10110 <_>12 0 2 8 2.</_></rects> 10111 <tilted>0</tilted></feature> 10112 <threshold>-2.5391899980604649e-003</threshold> 10113 <left_val>0.0767533034086227</left_val> 10114 <right_val>-0.1212102025747299</right_val></_></_> 10115 <_> 10116 <!-- tree 72 --> 10117 <_> 10118 <!-- root node --> 10119 <feature> 10120 <rects> 10121 <_>0 3 14 3 -1.</_> 10122 <_>0 4 14 1 3.</_></rects> 10123 <tilted>0</tilted></feature> 10124 <threshold>0.0145228998735547</threshold> 10125 <left_val>-0.0469354689121246</left_val> 10126 <right_val>0.4432204961776733</right_val></_></_> 10127 <_> 10128 <!-- tree 73 --> 10129 <_> 10130 <!-- root node --> 10131 <feature> 10132 <rects> 10133 <_>5 20 10 3 -1.</_> 10134 <_>5 20 5 3 2.</_></rects> 10135 <tilted>0</tilted></feature> 10136 <threshold>-4.8549640923738480e-003</threshold> 10137 <left_val>-0.4104030132293701</left_val> 10138 <right_val>0.0472962893545628</right_val></_></_> 10139 <_> 10140 <!-- tree 74 --> 10141 <_> 10142 <!-- root node --> 10143 <feature> 10144 <rects> 10145 <_>6 18 7 4 -1.</_> 10146 <_>6 20 7 2 2.</_></rects> 10147 <tilted>0</tilted></feature> 10148 <threshold>-3.6202149931341410e-003</threshold> 10149 <left_val>0.3670789897441864</left_val> 10150 <right_val>-0.0505831092596054</right_val></_></_></trees> 10151 <stage_threshold>-0.7803025245666504</stage_threshold> 10152 <parent>20</parent> 10153 <next>-1</next></_> 10154 <_> 10155 <!-- stage 22 --> 10156 <trees> 10157 <_> 10158 <!-- tree 0 --> 10159 <_> 10160 <!-- root node --> 10161 <feature> 10162 <rects> 10163 <_>3 6 6 9 -1.</_> 10164 <_>5 6 2 9 3.</_></rects> 10165 <tilted>0</tilted></feature> 10166 <threshold>9.7794737666845322e-003</threshold> 10167 <left_val>-0.1987376958131790</left_val> 10168 <right_val>0.1875499039888382</right_val></_></_> 10169 <_> 10170 <!-- tree 1 --> 10171 <_> 10172 <!-- root node --> 10173 <feature> 10174 <rects> 10175 <_>13 0 6 7 -1.</_> 10176 <_>15 0 2 7 3.</_></rects> 10177 <tilted>0</tilted></feature> 10178 <threshold>2.5764610618352890e-003</threshold> 10179 <left_val>-0.1654404997825623</left_val> 10180 <right_val>0.1196829974651337</right_val></_></_> 10181 <_> 10182 <!-- tree 2 --> 10183 <_> 10184 <!-- root node --> 10185 <feature> 10186 <rects> 10187 <_>3 13 4 10 -1.</_> 10188 <_>5 13 2 10 2.</_></rects> 10189 <tilted>0</tilted></feature> 10190 <threshold>6.6844018874689937e-004</threshold> 10191 <left_val>0.0811874270439148</left_val> 10192 <right_val>-0.2695421874523163</right_val></_></_> 10193 <_> 10194 <!-- tree 3 --> 10195 <_> 10196 <!-- root node --> 10197 <feature> 10198 <rects> 10199 <_>12 12 4 10 -1.</_> 10200 <_>12 12 2 10 2.</_></rects> 10201 <tilted>0</tilted></feature> 10202 <threshold>1.8919180147349834e-003</threshold> 10203 <left_val>0.0823986902832985</left_val> 10204 <right_val>-0.1956467032432556</right_val></_></_> 10205 <_> 10206 <!-- tree 4 --> 10207 <_> 10208 <!-- root node --> 10209 <feature> 10210 <rects> 10211 <_>3 12 4 7 -1.</_> 10212 <_>5 12 2 7 2.</_></rects> 10213 <tilted>0</tilted></feature> 10214 <threshold>-8.2977651618421078e-004</threshold> 10215 <left_val>-0.2138116955757141</left_val> 10216 <right_val>0.1015295982360840</right_val></_></_> 10217 <_> 10218 <!-- tree 5 --> 10219 <_> 10220 <!-- root node --> 10221 <feature> 10222 <rects> 10223 <_>13 0 6 14 -1.</_> 10224 <_>15 0 2 14 3.</_></rects> 10225 <tilted>0</tilted></feature> 10226 <threshold>-2.5124829262495041e-003</threshold> 10227 <left_val>0.2649702131748200</left_val> 10228 <right_val>-0.0817281305789948</right_val></_></_> 10229 <_> 10230 <!-- tree 6 --> 10231 <_> 10232 <!-- root node --> 10233 <feature> 10234 <rects> 10235 <_>0 0 6 12 -1.</_> 10236 <_>2 0 2 12 3.</_></rects> 10237 <tilted>0</tilted></feature> 10238 <threshold>4.9220919609069824e-003</threshold> 10239 <left_val>-0.1383789926767349</left_val> 10240 <right_val>0.1704742014408112</right_val></_></_> 10241 <_> 10242 <!-- tree 7 --> 10243 <_> 10244 <!-- root node --> 10245 <feature> 10246 <rects> 10247 <_>5 19 14 4 -1.</_> 10248 <_>12 19 7 2 2.</_> 10249 <_>5 21 7 2 2.</_></rects> 10250 <tilted>0</tilted></feature> 10251 <threshold>1.5432259533554316e-003</threshold> 10252 <left_val>-0.2348349988460541</left_val> 10253 <right_val>0.1262467950582504</right_val></_></_> 10254 <_> 10255 <!-- tree 8 --> 10256 <_> 10257 <!-- root node --> 10258 <feature> 10259 <rects> 10260 <_>0 12 9 10 -1.</_> 10261 <_>0 17 9 5 2.</_></rects> 10262 <tilted>0</tilted></feature> 10263 <threshold>-7.5272549875080585e-003</threshold> 10264 <left_val>-0.2190258055925369</left_val> 10265 <right_val>0.0782149434089661</right_val></_></_> 10266 <_> 10267 <!-- tree 9 --> 10268 <_> 10269 <!-- root node --> 10270 <feature> 10271 <rects> 10272 <_>14 13 5 6 -1.</_> 10273 <_>14 16 5 3 2.</_></rects> 10274 <tilted>0</tilted></feature> 10275 <threshold>-3.2087319414131343e-004</threshold> 10276 <left_val>0.0998033136129379</left_val> 10277 <right_val>-0.1005263030529022</right_val></_></_> 10278 <_> 10279 <!-- tree 10 --> 10280 <_> 10281 <!-- root node --> 10282 <feature> 10283 <rects> 10284 <_>0 16 8 4 -1.</_> 10285 <_>0 18 8 2 2.</_></rects> 10286 <tilted>0</tilted></feature> 10287 <threshold>-5.6291592773050070e-004</threshold> 10288 <left_val>0.1458780020475388</left_val> 10289 <right_val>-0.1319447010755539</right_val></_></_> 10290 <_> 10291 <!-- tree 11 --> 10292 <_> 10293 <!-- root node --> 10294 <feature> 10295 <rects> 10296 <_>3 16 16 3 -1.</_> 10297 <_>3 17 16 1 3.</_></rects> 10298 <tilted>0</tilted></feature> 10299 <threshold>-0.0342483595013618</threshold> 10300 <left_val>0.7317953109741211</left_val> 10301 <right_val>-0.0257543697953224</right_val></_></_> 10302 <_> 10303 <!-- tree 12 --> 10304 <_> 10305 <!-- root node --> 10306 <feature> 10307 <rects> 10308 <_>6 0 6 7 -1.</_> 10309 <_>8 0 2 7 3.</_></rects> 10310 <tilted>0</tilted></feature> 10311 <threshold>5.5207060649991035e-003</threshold> 10312 <left_val>0.0738294273614883</left_val> 10313 <right_val>-0.2461594045162201</right_val></_></_> 10314 <_> 10315 <!-- tree 13 --> 10316 <_> 10317 <!-- root node --> 10318 <feature> 10319 <rects> 10320 <_>2 0 16 5 -1.</_> 10321 <_>6 0 8 5 2.</_></rects> 10322 <tilted>0</tilted></feature> 10323 <threshold>0.0336631610989571</threshold> 10324 <left_val>-0.0507508292794228</left_val> 10325 <right_val>0.5105447769165039</right_val></_></_> 10326 <_> 10327 <!-- tree 14 --> 10328 <_> 10329 <!-- root node --> 10330 <feature> 10331 <rects> 10332 <_>0 0 17 10 -1.</_> 10333 <_>0 5 17 5 2.</_></rects> 10334 <tilted>0</tilted></feature> 10335 <threshold>0.0106051396578550</threshold> 10336 <left_val>-0.1959338039159775</left_val> 10337 <right_val>0.0961627289652824</right_val></_></_> 10338 <_> 10339 <!-- tree 15 --> 10340 <_> 10341 <!-- root node --> 10342 <feature> 10343 <rects> 10344 <_>8 1 3 15 -1.</_> 10345 <_>9 1 1 15 3.</_></rects> 10346 <tilted>0</tilted></feature> 10347 <threshold>3.6454470828175545e-003</threshold> 10348 <left_val>-0.1027477011084557</left_val> 10349 <right_val>0.1802129000425339</right_val></_></_> 10350 <_> 10351 <!-- tree 16 --> 10352 <_> 10353 <!-- root node --> 10354 <feature> 10355 <rects> 10356 <_>0 2 8 20 -1.</_> 10357 <_>0 7 8 10 2.</_></rects> 10358 <tilted>0</tilted></feature> 10359 <threshold>0.0316587202250957</threshold> 10360 <left_val>0.0774153470993042</left_val> 10361 <right_val>-0.2349832057952881</right_val></_></_> 10362 <_> 10363 <!-- tree 17 --> 10364 <_> 10365 <!-- root node --> 10366 <feature> 10367 <rects> 10368 <_>8 7 4 10 -1.</_> 10369 <_>8 12 4 5 2.</_></rects> 10370 <tilted>0</tilted></feature> 10371 <threshold>0.0604964494705200</threshold> 10372 <left_val>7.9810861498117447e-003</left_val> 10373 <right_val>-0.5812633037567139</right_val></_></_> 10374 <_> 10375 <!-- tree 18 --> 10376 <_> 10377 <!-- root node --> 10378 <feature> 10379 <rects> 10380 <_>7 7 4 10 -1.</_> 10381 <_>7 12 4 5 2.</_></rects> 10382 <tilted>0</tilted></feature> 10383 <threshold>-2.1451190696097910e-004</threshold> 10384 <left_val>-0.2714141011238098</left_val> 10385 <right_val>0.0724482312798500</right_val></_></_> 10386 <_> 10387 <!-- tree 19 --> 10388 <_> 10389 <!-- root node --> 10390 <feature> 10391 <rects> 10392 <_>11 0 3 17 -1.</_> 10393 <_>12 0 1 17 3.</_></rects> 10394 <tilted>0</tilted></feature> 10395 <threshold>-8.9069753885269165e-003</threshold> 10396 <left_val>0.1086466014385223</left_val> 10397 <right_val>-0.0378909781575203</right_val></_></_> 10398 <_> 10399 <!-- tree 20 --> 10400 <_> 10401 <!-- root node --> 10402 <feature> 10403 <rects> 10404 <_>5 0 3 17 -1.</_> 10405 <_>6 0 1 17 3.</_></rects> 10406 <tilted>0</tilted></feature> 10407 <threshold>-3.1367139890789986e-003</threshold> 10408 <left_val>0.2319408059120178</left_val> 10409 <right_val>-0.0832429975271225</right_val></_></_> 10410 <_> 10411 <!-- tree 21 --> 10412 <_> 10413 <!-- root node --> 10414 <feature> 10415 <rects> 10416 <_>12 9 3 14 -1.</_> 10417 <_>13 9 1 14 3.</_></rects> 10418 <tilted>0</tilted></feature> 10419 <threshold>-8.2477089017629623e-004</threshold> 10420 <left_val>0.1375737041234970</left_val> 10421 <right_val>-0.0407095216214657</right_val></_></_> 10422 <_> 10423 <!-- tree 22 --> 10424 <_> 10425 <!-- root node --> 10426 <feature> 10427 <rects> 10428 <_>6 2 6 10 -1.</_> 10429 <_>9 2 3 10 2.</_></rects> 10430 <tilted>0</tilted></feature> 10431 <threshold>-3.8041090010665357e-004</threshold> 10432 <left_val>0.0996559485793114</left_val> 10433 <right_val>-0.2011525034904480</right_val></_></_> 10434 <_> 10435 <!-- tree 23 --> 10436 <_> 10437 <!-- root node --> 10438 <feature> 10439 <rects> 10440 <_>4 21 14 2 -1.</_> 10441 <_>4 21 7 2 2.</_></rects> 10442 <tilted>0</tilted></feature> 10443 <threshold>3.0412159394472837e-003</threshold> 10444 <left_val>0.0486063882708550</left_val> 10445 <right_val>-0.2926115989685059</right_val></_></_> 10446 <_> 10447 <!-- tree 24 --> 10448 <_> 10449 <!-- root node --> 10450 <feature> 10451 <rects> 10452 <_>5 0 8 4 -1.</_> 10453 <_>9 0 4 4 2.</_></rects> 10454 <tilted>0</tilted></feature> 10455 <threshold>-2.7135149575769901e-003</threshold> 10456 <left_val>-0.2040290981531143</left_val> 10457 <right_val>0.0872701928019524</right_val></_></_> 10458 <_> 10459 <!-- tree 25 --> 10460 <_> 10461 <!-- root node --> 10462 <feature> 10463 <rects> 10464 <_>10 0 4 8 -1.</_> 10465 <_>10 0 4 4 2.</_></rects> 10466 <tilted>1</tilted></feature> 10467 <threshold>-0.1145422011613846</threshold> 10468 <left_val>0.2634224891662598</left_val> 10469 <right_val>-0.0289768297225237</right_val></_></_> 10470 <_> 10471 <!-- tree 26 --> 10472 <_> 10473 <!-- root node --> 10474 <feature> 10475 <rects> 10476 <_>3 0 12 6 -1.</_> 10477 <_>3 0 6 3 2.</_> 10478 <_>9 3 6 3 2.</_></rects> 10479 <tilted>0</tilted></feature> 10480 <threshold>-7.9219061881303787e-003</threshold> 10481 <left_val>-0.2395422011613846</left_val> 10482 <right_val>0.0784254595637321</right_val></_></_> 10483 <_> 10484 <!-- tree 27 --> 10485 <_> 10486 <!-- root node --> 10487 <feature> 10488 <rects> 10489 <_>8 8 6 8 -1.</_> 10490 <_>10 8 2 8 3.</_></rects> 10491 <tilted>0</tilted></feature> 10492 <threshold>-0.0642724037170410</threshold> 10493 <left_val>0.3865104913711548</left_val> 10494 <right_val>-0.0349812805652618</right_val></_></_> 10495 <_> 10496 <!-- tree 28 --> 10497 <_> 10498 <!-- root node --> 10499 <feature> 10500 <rects> 10501 <_>1 13 12 8 -1.</_> 10502 <_>4 13 6 8 2.</_></rects> 10503 <tilted>0</tilted></feature> 10504 <threshold>0.0208201594650745</threshold> 10505 <left_val>0.0366767384111881</left_val> 10506 <right_val>-0.5090972185134888</right_val></_></_> 10507 <_> 10508 <!-- tree 29 --> 10509 <_> 10510 <!-- root node --> 10511 <feature> 10512 <rects> 10513 <_>8 8 6 8 -1.</_> 10514 <_>10 8 2 8 3.</_></rects> 10515 <tilted>0</tilted></feature> 10516 <threshold>4.7503421083092690e-003</threshold> 10517 <left_val>-0.0491715185344219</left_val> 10518 <right_val>0.1854227036237717</right_val></_></_> 10519 <_> 10520 <!-- tree 30 --> 10521 <_> 10522 <!-- root node --> 10523 <feature> 10524 <rects> 10525 <_>5 8 6 8 -1.</_> 10526 <_>7 8 2 8 3.</_></rects> 10527 <tilted>0</tilted></feature> 10528 <threshold>-0.0935890376567841</threshold> 10529 <left_val>0.6282237768173218</left_val> 10530 <right_val>-0.0251404698938131</right_val></_></_> 10531 <_> 10532 <!-- tree 31 --> 10533 <_> 10534 <!-- root node --> 10535 <feature> 10536 <rects> 10537 <_>7 13 8 10 -1.</_> 10538 <_>9 13 4 10 2.</_></rects> 10539 <tilted>0</tilted></feature> 10540 <threshold>-6.8223377456888556e-004</threshold> 10541 <left_val>0.0400907993316650</left_val> 10542 <right_val>-0.1025065034627914</right_val></_></_> 10543 <_> 10544 <!-- tree 32 --> 10545 <_> 10546 <!-- root node --> 10547 <feature> 10548 <rects> 10549 <_>4 14 8 9 -1.</_> 10550 <_>6 14 4 9 2.</_></rects> 10551 <tilted>0</tilted></feature> 10552 <threshold>-8.3058718591928482e-003</threshold> 10553 <left_val>-0.2162594944238663</left_val> 10554 <right_val>0.0855050235986710</right_val></_></_> 10555 <_> 10556 <!-- tree 33 --> 10557 <_> 10558 <!-- root node --> 10559 <feature> 10560 <rects> 10561 <_>9 15 9 5 -1.</_> 10562 <_>12 15 3 5 3.</_></rects> 10563 <tilted>0</tilted></feature> 10564 <threshold>5.5919620208442211e-003</threshold> 10565 <left_val>-0.0657242611050606</left_val> 10566 <right_val>0.0619394518435001</right_val></_></_> 10567 <_> 10568 <!-- tree 34 --> 10569 <_> 10570 <!-- root node --> 10571 <feature> 10572 <rects> 10573 <_>7 15 4 7 -1.</_> 10574 <_>9 15 2 7 2.</_></rects> 10575 <tilted>0</tilted></feature> 10576 <threshold>1.8336649518460035e-003</threshold> 10577 <left_val>-0.1032480970025063</left_val> 10578 <right_val>0.2513414919376373</right_val></_></_> 10579 <_> 10580 <!-- tree 35 --> 10581 <_> 10582 <!-- root node --> 10583 <feature> 10584 <rects> 10585 <_>4 19 12 4 -1.</_> 10586 <_>4 19 6 4 2.</_></rects> 10587 <tilted>0</tilted></feature> 10588 <threshold>-4.4351099058985710e-003</threshold> 10589 <left_val>-0.1510027945041657</left_val> 10590 <right_val>0.0373230092227459</right_val></_></_> 10591 <_> 10592 <!-- tree 36 --> 10593 <_> 10594 <!-- root node --> 10595 <feature> 10596 <rects> 10597 <_>6 15 6 8 -1.</_> 10598 <_>8 15 2 8 3.</_></rects> 10599 <tilted>0</tilted></feature> 10600 <threshold>-4.7271270304918289e-003</threshold> 10601 <left_val>0.1350070983171463</left_val> 10602 <right_val>-0.1525021940469742</right_val></_></_> 10603 <_> 10604 <!-- tree 37 --> 10605 <_> 10606 <!-- root node --> 10607 <feature> 10608 <rects> 10609 <_>8 5 8 8 -1.</_> 10610 <_>12 5 4 4 2.</_> 10611 <_>8 9 4 4 2.</_></rects> 10612 <tilted>0</tilted></feature> 10613 <threshold>5.3573452169075608e-004</threshold> 10614 <left_val>-0.0609647706151009</left_val> 10615 <right_val>0.0719967335462570</right_val></_></_> 10616 <_> 10617 <!-- tree 38 --> 10618 <_> 10619 <!-- root node --> 10620 <feature> 10621 <rects> 10622 <_>0 14 7 4 -1.</_> 10623 <_>0 16 7 2 2.</_></rects> 10624 <tilted>0</tilted></feature> 10625 <threshold>-1.3135100016370416e-004</threshold> 10626 <left_val>0.1290217936038971</left_val> 10627 <right_val>-0.1310760974884033</right_val></_></_> 10628 <_> 10629 <!-- tree 39 --> 10630 <_> 10631 <!-- root node --> 10632 <feature> 10633 <rects> 10634 <_>10 2 4 8 -1.</_> 10635 <_>11 3 2 8 2.</_></rects> 10636 <tilted>1</tilted></feature> 10637 <threshold>4.0799290873110294e-003</threshold> 10638 <left_val>0.0494333095848560</left_val> 10639 <right_val>-0.1946709007024765</right_val></_></_> 10640 <_> 10641 <!-- tree 40 --> 10642 <_> 10643 <!-- root node --> 10644 <feature> 10645 <rects> 10646 <_>1 12 17 3 -1.</_> 10647 <_>1 13 17 1 3.</_></rects> 10648 <tilted>0</tilted></feature> 10649 <threshold>-3.1066180672496557e-003</threshold> 10650 <left_val>0.2398454993963242</left_val> 10651 <right_val>-0.0712815672159195</right_val></_></_> 10652 <_> 10653 <!-- tree 41 --> 10654 <_> 10655 <!-- root node --> 10656 <feature> 10657 <rects> 10658 <_>13 8 4 15 -1.</_> 10659 <_>14 8 2 15 2.</_></rects> 10660 <tilted>0</tilted></feature> 10661 <threshold>0.0109994001686573</threshold> 10662 <left_val>0.0290179308503866</left_val> 10663 <right_val>-0.3850468099117279</right_val></_></_> 10664 <_> 10665 <!-- tree 42 --> 10666 <_> 10667 <!-- root node --> 10668 <feature> 10669 <rects> 10670 <_>2 12 14 3 -1.</_> 10671 <_>2 13 14 1 3.</_></rects> 10672 <tilted>0</tilted></feature> 10673 <threshold>1.5001590363681316e-003</threshold> 10674 <left_val>-0.0836524367332459</left_val> 10675 <right_val>0.1814112961292267</right_val></_></_> 10676 <_> 10677 <!-- tree 43 --> 10678 <_> 10679 <!-- root node --> 10680 <feature> 10681 <rects> 10682 <_>6 12 7 6 -1.</_> 10683 <_>6 14 7 2 3.</_></rects> 10684 <tilted>0</tilted></feature> 10685 <threshold>0.0137001499533653</threshold> 10686 <left_val>0.0367532595992088</left_val> 10687 <right_val>-0.4508658945560455</right_val></_></_> 10688 <_> 10689 <!-- tree 44 --> 10690 <_> 10691 <!-- root node --> 10692 <feature> 10693 <rects> 10694 <_>2 2 12 6 -1.</_> 10695 <_>2 2 6 3 2.</_> 10696 <_>8 5 6 3 2.</_></rects> 10697 <tilted>0</tilted></feature> 10698 <threshold>3.9507630281150341e-003</threshold> 10699 <left_val>-0.0694171115756035</left_val> 10700 <right_val>0.2154071033000946</right_val></_></_> 10701 <_> 10702 <!-- tree 45 --> 10703 <_> 10704 <!-- root node --> 10705 <feature> 10706 <rects> 10707 <_>11 0 8 5 -1.</_> 10708 <_>11 0 4 5 2.</_></rects> 10709 <tilted>0</tilted></feature> 10710 <threshold>-8.5161393508315086e-003</threshold> 10711 <left_val>0.1070408970117569</left_val> 10712 <right_val>-0.1485738009214401</right_val></_></_> 10713 <_> 10714 <!-- tree 46 --> 10715 <_> 10716 <!-- root node --> 10717 <feature> 10718 <rects> 10719 <_>0 0 8 5 -1.</_> 10720 <_>4 0 4 5 2.</_></rects> 10721 <tilted>0</tilted></feature> 10722 <threshold>1.7032850300893188e-003</threshold> 10723 <left_val>-0.0818965211510658</left_val> 10724 <right_val>0.3239806890487671</right_val></_></_> 10725 <_> 10726 <!-- tree 47 --> 10727 <_> 10728 <!-- root node --> 10729 <feature> 10730 <rects> 10731 <_>1 2 18 20 -1.</_> 10732 <_>1 2 9 20 2.</_></rects> 10733 <tilted>0</tilted></feature> 10734 <threshold>-0.0108529301360250</threshold> 10735 <left_val>-0.1314232945442200</left_val> 10736 <right_val>0.0999901890754700</right_val></_></_> 10737 <_> 10738 <!-- tree 48 --> 10739 <_> 10740 <!-- root node --> 10741 <feature> 10742 <rects> 10743 <_>9 5 10 8 -1.</_> 10744 <_>9 5 5 8 2.</_></rects> 10745 <tilted>1</tilted></feature> 10746 <threshold>-3.7832378875464201e-003</threshold> 10747 <left_val>0.0975966379046440</left_val> 10748 <right_val>-0.1608145982027054</right_val></_></_> 10749 <_> 10750 <!-- tree 49 --> 10751 <_> 10752 <!-- root node --> 10753 <feature> 10754 <rects> 10755 <_>7 8 7 10 -1.</_> 10756 <_>7 13 7 5 2.</_></rects> 10757 <tilted>0</tilted></feature> 10758 <threshold>0.0132632600143552</threshold> 10759 <left_val>0.0681890770792961</left_val> 10760 <right_val>-0.1482066065073013</right_val></_></_> 10761 <_> 10762 <!-- tree 50 --> 10763 <_> 10764 <!-- root node --> 10765 <feature> 10766 <rects> 10767 <_>7 7 4 14 -1.</_> 10768 <_>8 7 2 14 2.</_></rects> 10769 <tilted>0</tilted></feature> 10770 <threshold>-0.0442763008177280</threshold> 10771 <left_val>0.5388399958610535</left_val> 10772 <right_val>-0.0347698815166950</right_val></_></_> 10773 <_> 10774 <!-- tree 51 --> 10775 <_> 10776 <!-- root node --> 10777 <feature> 10778 <rects> 10779 <_>15 7 4 16 -1.</_> 10780 <_>15 7 2 16 2.</_></rects> 10781 <tilted>0</tilted></feature> 10782 <threshold>-0.0164764393121004</threshold> 10783 <left_val>-0.6934183835983276</left_val> 10784 <right_val>0.0302859302610159</right_val></_></_> 10785 <_> 10786 <!-- tree 52 --> 10787 <_> 10788 <!-- root node --> 10789 <feature> 10790 <rects> 10791 <_>0 0 12 7 -1.</_> 10792 <_>4 0 4 7 3.</_></rects> 10793 <tilted>0</tilted></feature> 10794 <threshold>0.0150639601051807</threshold> 10795 <left_val>0.0503653511404991</left_val> 10796 <right_val>-0.3221526145935059</right_val></_></_> 10797 <_> 10798 <!-- tree 53 --> 10799 <_> 10800 <!-- root node --> 10801 <feature> 10802 <rects> 10803 <_>11 7 4 7 -1.</_> 10804 <_>11 7 2 7 2.</_></rects> 10805 <tilted>1</tilted></feature> 10806 <threshold>0.0532300695776939</threshold> 10807 <left_val>4.0058908052742481e-003</left_val> 10808 <right_val>-1.0000929832458496</right_val></_></_> 10809 <_> 10810 <!-- tree 54 --> 10811 <_> 10812 <!-- root node --> 10813 <feature> 10814 <rects> 10815 <_>4 4 6 15 -1.</_> 10816 <_>7 4 3 15 2.</_></rects> 10817 <tilted>0</tilted></feature> 10818 <threshold>-0.1228208988904953</threshold> 10819 <left_val>0.4043856859207153</left_val> 10820 <right_val>-0.0546611696481705</right_val></_></_> 10821 <_> 10822 <!-- tree 55 --> 10823 <_> 10824 <!-- root node --> 10825 <feature> 10826 <rects> 10827 <_>6 10 9 13 -1.</_> 10828 <_>9 10 3 13 3.</_></rects> 10829 <tilted>0</tilted></feature> 10830 <threshold>-0.0802053213119507</threshold> 10831 <left_val>-0.1891590952873230</left_val> 10832 <right_val>0.0357042886316776</right_val></_></_> 10833 <_> 10834 <!-- tree 56 --> 10835 <_> 10836 <!-- root node --> 10837 <feature> 10838 <rects> 10839 <_>1 14 4 7 -1.</_> 10840 <_>3 14 2 7 2.</_></rects> 10841 <tilted>0</tilted></feature> 10842 <threshold>-1.1679669842123985e-003</threshold> 10843 <left_val>-0.2764140069484711</left_val> 10844 <right_val>0.0599743984639645</right_val></_></_> 10845 <_> 10846 <!-- tree 57 --> 10847 <_> 10848 <!-- root node --> 10849 <feature> 10850 <rects> 10851 <_>11 1 3 14 -1.</_> 10852 <_>12 1 1 14 3.</_></rects> 10853 <tilted>0</tilted></feature> 10854 <threshold>-3.1197320204228163e-003</threshold> 10855 <left_val>0.1130719035863876</left_val> 10856 <right_val>-0.0728807300329208</right_val></_></_> 10857 <_> 10858 <!-- tree 58 --> 10859 <_> 10860 <!-- root node --> 10861 <feature> 10862 <rects> 10863 <_>5 11 4 8 -1.</_> 10864 <_>7 11 2 8 2.</_></rects> 10865 <tilted>0</tilted></feature> 10866 <threshold>3.6612390540540218e-003</threshold> 10867 <left_val>-0.0478285700082779</left_val> 10868 <right_val>0.3906736969947815</right_val></_></_> 10869 <_> 10870 <!-- tree 59 --> 10871 <_> 10872 <!-- root node --> 10873 <feature> 10874 <rects> 10875 <_>11 6 4 7 -1.</_> 10876 <_>11 6 2 7 2.</_></rects> 10877 <tilted>0</tilted></feature> 10878 <threshold>4.6034730039536953e-003</threshold> 10879 <left_val>-0.0474484190344810</left_val> 10880 <right_val>0.3614696860313416</right_val></_></_> 10881 <_> 10882 <!-- tree 60 --> 10883 <_> 10884 <!-- root node --> 10885 <feature> 10886 <rects> 10887 <_>4 6 4 7 -1.</_> 10888 <_>6 6 2 7 2.</_></rects> 10889 <tilted>0</tilted></feature> 10890 <threshold>-1.0733479866757989e-003</threshold> 10891 <left_val>0.1126487031579018</left_val> 10892 <right_val>-0.2907496094703674</right_val></_></_> 10893 <_> 10894 <!-- tree 61 --> 10895 <_> 10896 <!-- root node --> 10897 <feature> 10898 <rects> 10899 <_>7 5 9 9 -1.</_> 10900 <_>10 5 3 9 3.</_></rects> 10901 <tilted>0</tilted></feature> 10902 <threshold>-0.0183106902986765</threshold> 10903 <left_val>0.0967293530702591</left_val> 10904 <right_val>-0.1015082001686096</right_val></_></_> 10905 <_> 10906 <!-- tree 62 --> 10907 <_> 10908 <!-- root node --> 10909 <feature> 10910 <rects> 10911 <_>2 1 12 12 -1.</_> 10912 <_>6 5 4 4 9.</_></rects> 10913 <tilted>0</tilted></feature> 10914 <threshold>-0.0681947395205498</threshold> 10915 <left_val>-0.2204868942499161</left_val> 10916 <right_val>0.1097799018025398</right_val></_></_> 10917 <_> 10918 <!-- tree 63 --> 10919 <_> 10920 <!-- root node --> 10921 <feature> 10922 <rects> 10923 <_>4 19 14 4 -1.</_> 10924 <_>11 19 7 2 2.</_> 10925 <_>4 21 7 2 2.</_></rects> 10926 <tilted>0</tilted></feature> 10927 <threshold>8.9977607131004333e-003</threshold> 10928 <left_val>-0.0296524409204721</left_val> 10929 <right_val>0.1505921930074692</right_val></_></_> 10930 <_> 10931 <!-- tree 64 --> 10932 <_> 10933 <!-- root node --> 10934 <feature> 10935 <rects> 10936 <_>1 19 14 4 -1.</_> 10937 <_>1 19 7 2 2.</_> 10938 <_>8 21 7 2 2.</_></rects> 10939 <tilted>0</tilted></feature> 10940 <threshold>2.6954131317324936e-004</threshold> 10941 <left_val>-0.1991785019636154</left_val> 10942 <right_val>0.0946779921650887</right_val></_></_> 10943 <_> 10944 <!-- tree 65 --> 10945 <_> 10946 <!-- root node --> 10947 <feature> 10948 <rects> 10949 <_>9 18 9 5 -1.</_> 10950 <_>12 18 3 5 3.</_></rects> 10951 <tilted>0</tilted></feature> 10952 <threshold>5.9090729337185621e-004</threshold> 10953 <left_val>-0.1324030011892319</left_val> 10954 <right_val>0.0630881786346436</right_val></_></_> 10955 <_> 10956 <!-- tree 66 --> 10957 <_> 10958 <!-- root node --> 10959 <feature> 10960 <rects> 10961 <_>1 18 9 5 -1.</_> 10962 <_>4 18 3 5 3.</_></rects> 10963 <tilted>0</tilted></feature> 10964 <threshold>5.5691739544272423e-003</threshold> 10965 <left_val>0.1031828969717026</left_val> 10966 <right_val>-0.1927673965692520</right_val></_></_> 10967 <_> 10968 <!-- tree 67 --> 10969 <_> 10970 <!-- root node --> 10971 <feature> 10972 <rects> 10973 <_>11 4 8 6 -1.</_> 10974 <_>11 4 4 6 2.</_></rects> 10975 <tilted>1</tilted></feature> 10976 <threshold>-0.0994341298937798</threshold> 10977 <left_val>0.2591108083724976</left_val> 10978 <right_val>-0.0439478717744350</right_val></_></_> 10979 <_> 10980 <!-- tree 68 --> 10981 <_> 10982 <!-- root node --> 10983 <feature> 10984 <rects> 10985 <_>6 8 7 6 -1.</_> 10986 <_>6 10 7 2 3.</_></rects> 10987 <tilted>0</tilted></feature> 10988 <threshold>-9.6295922994613647e-003</threshold> 10989 <left_val>-0.3687196969985962</left_val> 10990 <right_val>0.0465061701834202</right_val></_></_> 10991 <_> 10992 <!-- tree 69 --> 10993 <_> 10994 <!-- root node --> 10995 <feature> 10996 <rects> 10997 <_>5 17 14 2 -1.</_> 10998 <_>5 18 14 1 2.</_></rects> 10999 <tilted>0</tilted></feature> 11000 <threshold>-1.7397940391674638e-003</threshold> 11001 <left_val>0.1373603940010071</left_val> 11002 <right_val>-0.0698224827647209</right_val></_></_> 11003 <_> 11004 <!-- tree 70 --> 11005 <_> 11006 <!-- root node --> 11007 <feature> 11008 <rects> 11009 <_>6 6 9 3 -1.</_> 11010 <_>5 7 9 1 3.</_></rects> 11011 <tilted>1</tilted></feature> 11012 <threshold>-0.0132694300264120</threshold> 11013 <left_val>0.4521614909172058</left_val> 11014 <right_val>-0.0384612381458282</right_val></_></_> 11015 <_> 11016 <!-- tree 71 --> 11017 <_> 11018 <!-- root node --> 11019 <feature> 11020 <rects> 11021 <_>13 9 4 11 -1.</_> 11022 <_>13 9 2 11 2.</_></rects> 11023 <tilted>0</tilted></feature> 11024 <threshold>2.5604839902371168e-003</threshold> 11025 <left_val>0.0548587813973427</left_val> 11026 <right_val>-0.2496352940797806</right_val></_></_> 11027 <_> 11028 <!-- tree 72 --> 11029 <_> 11030 <!-- root node --> 11031 <feature> 11032 <rects> 11033 <_>2 9 4 11 -1.</_> 11034 <_>4 9 2 11 2.</_></rects> 11035 <tilted>0</tilted></feature> 11036 <threshold>-1.9173050532117486e-003</threshold> 11037 <left_val>-0.2573320865631104</left_val> 11038 <right_val>0.0674813836812973</right_val></_></_> 11039 <_> 11040 <!-- tree 73 --> 11041 <_> 11042 <!-- root node --> 11043 <feature> 11044 <rects> 11045 <_>12 0 3 14 -1.</_> 11046 <_>13 0 1 14 3.</_></rects> 11047 <tilted>0</tilted></feature> 11048 <threshold>-0.0374616496264935</threshold> 11049 <left_val>0.5966824889183044</left_val> 11050 <right_val>-0.0181210804730654</right_val></_></_> 11051 <_> 11052 <!-- tree 74 --> 11053 <_> 11054 <!-- root node --> 11055 <feature> 11056 <rects> 11057 <_>4 0 3 14 -1.</_> 11058 <_>5 0 1 14 3.</_></rects> 11059 <tilted>0</tilted></feature> 11060 <threshold>-1.9658938981592655e-003</threshold> 11061 <left_val>0.1950152069330216</left_val> 11062 <right_val>-0.0900263413786888</right_val></_></_> 11063 <_> 11064 <!-- tree 75 --> 11065 <_> 11066 <!-- root node --> 11067 <feature> 11068 <rects> 11069 <_>7 10 5 6 -1.</_> 11070 <_>7 13 5 3 2.</_></rects> 11071 <tilted>0</tilted></feature> 11072 <threshold>-3.2596408855170012e-003</threshold> 11073 <left_val>-0.3564716875553131</left_val> 11074 <right_val>0.0464952811598778</right_val></_></_> 11075 <_> 11076 <!-- tree 76 --> 11077 <_> 11078 <!-- root node --> 11079 <feature> 11080 <rects> 11081 <_>0 12 17 4 -1.</_> 11082 <_>0 14 17 2 2.</_></rects> 11083 <tilted>0</tilted></feature> 11084 <threshold>-0.0120436502620578</threshold> 11085 <left_val>0.3750874996185303</left_val> 11086 <right_val>-0.0530721992254257</right_val></_></_> 11087 <_> 11088 <!-- tree 77 --> 11089 <_> 11090 <!-- root node --> 11091 <feature> 11092 <rects> 11093 <_>10 5 6 10 -1.</_> 11094 <_>12 7 2 10 3.</_></rects> 11095 <tilted>1</tilted></feature> 11096 <threshold>4.1690650396049023e-003</threshold> 11097 <left_val>-0.0418457612395287</left_val> 11098 <right_val>0.1117779016494751</right_val></_></_> 11099 <_> 11100 <!-- tree 78 --> 11101 <_> 11102 <!-- root node --> 11103 <feature> 11104 <rects> 11105 <_>2 9 12 12 -1.</_> 11106 <_>6 13 4 4 9.</_></rects> 11107 <tilted>0</tilted></feature> 11108 <threshold>0.0142144998535514</threshold> 11109 <left_val>0.0719657614827156</left_val> 11110 <right_val>-0.2677752077579498</right_val></_></_></trees> 11111 <stage_threshold>-0.8136615157127380</stage_threshold> 11112 <parent>21</parent> 11113 <next>-1</next></_> 11114 <_> 11115 <!-- stage 23 --> 11116 <trees> 11117 <_> 11118 <!-- tree 0 --> 11119 <_> 11120 <!-- root node --> 11121 <feature> 11122 <rects> 11123 <_>1 15 12 8 -1.</_> 11124 <_>7 15 6 8 2.</_></rects> 11125 <tilted>0</tilted></feature> 11126 <threshold>-0.0122309699654579</threshold> 11127 <left_val>0.1456761062145233</left_val> 11128 <right_val>-0.2404517978429794</right_val></_></_> 11129 <_> 11130 <!-- tree 1 --> 11131 <_> 11132 <!-- root node --> 11133 <feature> 11134 <rects> 11135 <_>6 0 8 8 -1.</_> 11136 <_>10 0 4 4 2.</_> 11137 <_>6 4 4 4 2.</_></rects> 11138 <tilted>0</tilted></feature> 11139 <threshold>-5.5717672221362591e-003</threshold> 11140 <left_val>-0.1878961026668549</left_val> 11141 <right_val>0.0405967086553574</right_val></_></_> 11142 <_> 11143 <!-- tree 2 --> 11144 <_> 11145 <!-- root node --> 11146 <feature> 11147 <rects> 11148 <_>0 15 7 8 -1.</_> 11149 <_>0 17 7 4 2.</_></rects> 11150 <tilted>0</tilted></feature> 11151 <threshold>-5.5606552632525563e-004</threshold> 11152 <left_val>0.1664956957101822</left_val> 11153 <right_val>-0.1181783974170685</right_val></_></_> 11154 <_> 11155 <!-- tree 3 --> 11156 <_> 11157 <!-- root node --> 11158 <feature> 11159 <rects> 11160 <_>8 7 4 8 -1.</_> 11161 <_>8 11 4 4 2.</_></rects> 11162 <tilted>0</tilted></feature> 11163 <threshold>8.3173572784289718e-004</threshold> 11164 <left_val>-0.1422403007745743</left_val> 11165 <right_val>0.0416161604225636</right_val></_></_> 11166 <_> 11167 <!-- tree 4 --> 11168 <_> 11169 <!-- root node --> 11170 <feature> 11171 <rects> 11172 <_>5 8 2 14 -1.</_> 11173 <_>6 8 1 14 2.</_></rects> 11174 <tilted>0</tilted></feature> 11175 <threshold>-8.7869318667799234e-004</threshold> 11176 <left_val>-0.1643044948577881</left_val> 11177 <right_val>0.1552329063415527</right_val></_></_> 11178 <_> 11179 <!-- tree 5 --> 11180 <_> 11181 <!-- root node --> 11182 <feature> 11183 <rects> 11184 <_>12 8 7 4 -1.</_> 11185 <_>12 10 7 2 2.</_></rects> 11186 <tilted>0</tilted></feature> 11187 <threshold>-0.0136414803564548</threshold> 11188 <left_val>0.3086752891540527</left_val> 11189 <right_val>-0.0271722692996264</right_val></_></_> 11190 <_> 11191 <!-- tree 6 --> 11192 <_> 11193 <!-- root node --> 11194 <feature> 11195 <rects> 11196 <_>0 13 14 4 -1.</_> 11197 <_>0 13 7 2 2.</_> 11198 <_>7 15 7 2 2.</_></rects> 11199 <tilted>0</tilted></feature> 11200 <threshold>1.4917860426066909e-005</threshold> 11201 <left_val>-0.1559205055236816</left_val> 11202 <right_val>0.1017657965421677</right_val></_></_> 11203 <_> 11204 <!-- tree 7 --> 11205 <_> 11206 <!-- root node --> 11207 <feature> 11208 <rects> 11209 <_>6 13 7 8 -1.</_> 11210 <_>6 15 7 4 2.</_></rects> 11211 <tilted>0</tilted></feature> 11212 <threshold>8.7703643366694450e-003</threshold> 11213 <left_val>0.0615828782320023</left_val> 11214 <right_val>-0.3054605126380920</right_val></_></_> 11215 <_> 11216 <!-- tree 8 --> 11217 <_> 11218 <!-- root node --> 11219 <feature> 11220 <rects> 11221 <_>7 7 4 15 -1.</_> 11222 <_>8 7 2 15 2.</_></rects> 11223 <tilted>0</tilted></feature> 11224 <threshold>7.5755198486149311e-003</threshold> 11225 <left_val>-0.0687598735094070</left_val> 11226 <right_val>0.2967574894428253</right_val></_></_> 11227 <_> 11228 <!-- tree 9 --> 11229 <_> 11230 <!-- root node --> 11231 <feature> 11232 <rects> 11233 <_>11 16 5 6 -1.</_> 11234 <_>11 19 5 3 2.</_></rects> 11235 <tilted>0</tilted></feature> 11236 <threshold>0.0498411618173122</threshold> 11237 <left_val>0.0101279104128480</left_val> 11238 <right_val>-0.7921342253684998</right_val></_></_> 11239 <_> 11240 <!-- tree 10 --> 11241 <_> 11242 <!-- root node --> 11243 <feature> 11244 <rects> 11245 <_>4 0 6 10 -1.</_> 11246 <_>4 0 3 5 2.</_> 11247 <_>7 5 3 5 2.</_></rects> 11248 <tilted>0</tilted></feature> 11249 <threshold>-0.0110908197239041</threshold> 11250 <left_val>0.1833902001380920</left_val> 11251 <right_val>-0.1011369973421097</right_val></_></_> 11252 <_> 11253 <!-- tree 11 --> 11254 <_> 11255 <!-- root node --> 11256 <feature> 11257 <rects> 11258 <_>11 10 7 6 -1.</_> 11259 <_>9 12 7 2 3.</_></rects> 11260 <tilted>1</tilted></feature> 11261 <threshold>-0.0859370827674866</threshold> 11262 <left_val>-0.4199456870555878</left_val> 11263 <right_val>0.0155684798955917</right_val></_></_> 11264 <_> 11265 <!-- tree 12 --> 11266 <_> 11267 <!-- root node --> 11268 <feature> 11269 <rects> 11270 <_>2 0 14 2 -1.</_> 11271 <_>9 0 7 2 2.</_></rects> 11272 <tilted>0</tilted></feature> 11273 <threshold>-1.0151329915970564e-003</threshold> 11274 <left_val>0.1147446036338806</left_val> 11275 <right_val>-0.1609168052673340</right_val></_></_> 11276 <_> 11277 <!-- tree 13 --> 11278 <_> 11279 <!-- root node --> 11280 <feature> 11281 <rects> 11282 <_>1 10 18 8 -1.</_> 11283 <_>10 10 9 4 2.</_> 11284 <_>1 14 9 4 2.</_></rects> 11285 <tilted>0</tilted></feature> 11286 <threshold>-0.0134702501818538</threshold> 11287 <left_val>-0.3062644898891449</left_val> 11288 <right_val>0.0531861409544945</right_val></_></_> 11289 <_> 11290 <!-- tree 14 --> 11291 <_> 11292 <!-- root node --> 11293 <feature> 11294 <rects> 11295 <_>1 18 15 3 -1.</_> 11296 <_>1 19 15 1 3.</_></rects> 11297 <tilted>0</tilted></feature> 11298 <threshold>0.0166351106017828</threshold> 11299 <left_val>-0.0434589385986328</left_val> 11300 <right_val>0.4404331147670746</right_val></_></_> 11301 <_> 11302 <!-- tree 15 --> 11303 <_> 11304 <!-- root node --> 11305 <feature> 11306 <rects> 11307 <_>4 18 14 3 -1.</_> 11308 <_>4 19 14 1 3.</_></rects> 11309 <tilted>0</tilted></feature> 11310 <threshold>-2.2650870960205793e-003</threshold> 11311 <left_val>0.1598511934280396</left_val> 11312 <right_val>-0.1272598057985306</right_val></_></_> 11313 <_> 11314 <!-- tree 16 --> 11315 <_> 11316 <!-- root node --> 11317 <feature> 11318 <rects> 11319 <_>0 3 19 18 -1.</_> 11320 <_>0 9 19 6 3.</_></rects> 11321 <tilted>0</tilted></feature> 11322 <threshold>0.0702881664037704</threshold> 11323 <left_val>0.0648916289210320</left_val> 11324 <right_val>-0.2349617928266525</right_val></_></_> 11325 <_> 11326 <!-- tree 17 --> 11327 <_> 11328 <!-- root node --> 11329 <feature> 11330 <rects> 11331 <_>4 0 11 20 -1.</_> 11332 <_>4 10 11 10 2.</_></rects> 11333 <tilted>0</tilted></feature> 11334 <threshold>0.0291863791644573</threshold> 11335 <left_val>-0.2092027962207794</left_val> 11336 <right_val>0.0892578735947609</right_val></_></_> 11337 <_> 11338 <!-- tree 18 --> 11339 <_> 11340 <!-- root node --> 11341 <feature> 11342 <rects> 11343 <_>5 0 9 18 -1.</_> 11344 <_>5 9 9 9 2.</_></rects> 11345 <tilted>0</tilted></feature> 11346 <threshold>-5.0624469295144081e-003</threshold> 11347 <left_val>0.3437409102916718</left_val> 11348 <right_val>-0.0620930492877960</right_val></_></_> 11349 <_> 11350 <!-- tree 19 --> 11351 <_> 11352 <!-- root node --> 11353 <feature> 11354 <rects> 11355 <_>9 0 4 20 -1.</_> 11356 <_>9 10 4 10 2.</_></rects> 11357 <tilted>0</tilted></feature> 11358 <threshold>2.9356318991631269e-003</threshold> 11359 <left_val>-0.1424936950206757</left_val> 11360 <right_val>0.0454122610390186</right_val></_></_> 11361 <_> 11362 <!-- tree 20 --> 11363 <_> 11364 <!-- root node --> 11365 <feature> 11366 <rects> 11367 <_>1 11 6 6 -1.</_> 11368 <_>1 14 6 3 2.</_></rects> 11369 <tilted>0</tilted></feature> 11370 <threshold>-6.7740739323198795e-003</threshold> 11371 <left_val>0.3164179921150208</left_val> 11372 <right_val>-0.0496016293764114</right_val></_></_> 11373 <_> 11374 <!-- tree 21 --> 11375 <_> 11376 <!-- root node --> 11377 <feature> 11378 <rects> 11379 <_>12 16 6 6 -1.</_> 11380 <_>12 19 6 3 2.</_></rects> 11381 <tilted>0</tilted></feature> 11382 <threshold>-1.4607170305680484e-004</threshold> 11383 <left_val>0.1075204983353615</left_val> 11384 <right_val>-0.1154003962874413</right_val></_></_> 11385 <_> 11386 <!-- tree 22 --> 11387 <_> 11388 <!-- root node --> 11389 <feature> 11390 <rects> 11391 <_>3 8 2 14 -1.</_> 11392 <_>4 8 1 14 2.</_></rects> 11393 <tilted>0</tilted></feature> 11394 <threshold>-3.5684450995177031e-003</threshold> 11395 <left_val>-0.4167262911796570</left_val> 11396 <right_val>0.0422028191387653</right_val></_></_> 11397 <_> 11398 <!-- tree 23 --> 11399 <_> 11400 <!-- root node --> 11401 <feature> 11402 <rects> 11403 <_>7 11 5 12 -1.</_> 11404 <_>7 15 5 4 3.</_></rects> 11405 <tilted>0</tilted></feature> 11406 <threshold>-2.0149808842688799e-003</threshold> 11407 <left_val>0.1086013019084930</left_val> 11408 <right_val>-0.1634970009326935</right_val></_></_> 11409 <_> 11410 <!-- tree 24 --> 11411 <_> 11412 <!-- root node --> 11413 <feature> 11414 <rects> 11415 <_>5 11 5 12 -1.</_> 11416 <_>5 14 5 6 2.</_></rects> 11417 <tilted>0</tilted></feature> 11418 <threshold>-8.7240645661950111e-003</threshold> 11419 <left_val>-0.2200064063072205</left_val> 11420 <right_val>0.0909270271658897</right_val></_></_> 11421 <_> 11422 <!-- tree 25 --> 11423 <_> 11424 <!-- root node --> 11425 <feature> 11426 <rects> 11427 <_>13 0 4 16 -1.</_> 11428 <_>15 0 2 8 2.</_> 11429 <_>13 8 2 8 2.</_></rects> 11430 <tilted>0</tilted></feature> 11431 <threshold>7.3565947823226452e-003</threshold> 11432 <left_val>-0.1033570021390915</left_val> 11433 <right_val>0.1605197042226791</right_val></_></_> 11434 <_> 11435 <!-- tree 26 --> 11436 <_> 11437 <!-- root node --> 11438 <feature> 11439 <rects> 11440 <_>1 0 12 8 -1.</_> 11441 <_>7 0 6 8 2.</_></rects> 11442 <tilted>0</tilted></feature> 11443 <threshold>3.4252731129527092e-003</threshold> 11444 <left_val>-0.0696356371045113</left_val> 11445 <right_val>0.3149088025093079</right_val></_></_> 11446 <_> 11447 <!-- tree 27 --> 11448 <_> 11449 <!-- root node --> 11450 <feature> 11451 <rects> 11452 <_>13 11 6 7 -1.</_> 11453 <_>15 11 2 7 3.</_></rects> 11454 <tilted>0</tilted></feature> 11455 <threshold>-5.7803248055279255e-003</threshold> 11456 <left_val>-0.4363917112350464</left_val> 11457 <right_val>0.0361275486648083</right_val></_></_> 11458 <_> 11459 <!-- tree 28 --> 11460 <_> 11461 <!-- root node --> 11462 <feature> 11463 <rects> 11464 <_>0 8 7 8 -1.</_> 11465 <_>0 10 7 4 2.</_></rects> 11466 <tilted>0</tilted></feature> 11467 <threshold>-2.9641189612448215e-003</threshold> 11468 <left_val>0.2179728001356125</left_val> 11469 <right_val>-0.0778759419918060</right_val></_></_> 11470 <_> 11471 <!-- tree 29 --> 11472 <_> 11473 <!-- root node --> 11474 <feature> 11475 <rects> 11476 <_>6 6 7 6 -1.</_> 11477 <_>6 8 7 2 3.</_></rects> 11478 <tilted>0</tilted></feature> 11479 <threshold>0.0240286793559790</threshold> 11480 <left_val>0.0259409602731466</left_val> 11481 <right_val>-0.5764058828353882</right_val></_></_> 11482 <_> 11483 <!-- tree 30 --> 11484 <_> 11485 <!-- root node --> 11486 <feature> 11487 <rects> 11488 <_>7 1 4 14 -1.</_> 11489 <_>7 8 4 7 2.</_></rects> 11490 <tilted>0</tilted></feature> 11491 <threshold>0.0815144777297974</threshold> 11492 <left_val>-0.0343803800642490</left_val> 11493 <right_val>0.5795750021934509</right_val></_></_> 11494 <_> 11495 <!-- tree 31 --> 11496 <_> 11497 <!-- root node --> 11498 <feature> 11499 <rects> 11500 <_>13 17 6 6 -1.</_> 11501 <_>13 17 3 6 2.</_></rects> 11502 <tilted>0</tilted></feature> 11503 <threshold>6.7858170950785279e-004</threshold> 11504 <left_val>0.1039874032139778</left_val> 11505 <right_val>-0.2383109033107758</right_val></_></_> 11506 <_> 11507 <!-- tree 32 --> 11508 <_> 11509 <!-- root node --> 11510 <feature> 11511 <rects> 11512 <_>5 11 4 12 -1.</_> 11513 <_>5 17 4 6 2.</_></rects> 11514 <tilted>0</tilted></feature> 11515 <threshold>0.0426395200192928</threshold> 11516 <left_val>-0.0411679707467556</left_val> 11517 <right_val>0.4055674970149994</right_val></_></_> 11518 <_> 11519 <!-- tree 33 --> 11520 <_> 11521 <!-- root node --> 11522 <feature> 11523 <rects> 11524 <_>13 17 6 6 -1.</_> 11525 <_>13 17 3 6 2.</_></rects> 11526 <tilted>0</tilted></feature> 11527 <threshold>-4.0414459072053432e-003</threshold> 11528 <left_val>-0.3865289092063904</left_val> 11529 <right_val>0.0530535802245140</right_val></_></_> 11530 <_> 11531 <!-- tree 34 --> 11532 <_> 11533 <!-- root node --> 11534 <feature> 11535 <rects> 11536 <_>0 8 2 14 -1.</_> 11537 <_>0 15 2 7 2.</_></rects> 11538 <tilted>0</tilted></feature> 11539 <threshold>0.0422803089022636</threshold> 11540 <left_val>0.0150585295632482</left_val> 11541 <right_val>-0.9662395715713501</right_val></_></_> 11542 <_> 11543 <!-- tree 35 --> 11544 <_> 11545 <!-- root node --> 11546 <feature> 11547 <rects> 11548 <_>13 18 6 5 -1.</_> 11549 <_>13 18 3 5 2.</_></rects> 11550 <tilted>0</tilted></feature> 11551 <threshold>-7.3401766712777317e-005</threshold> 11552 <left_val>0.0844386368989944</left_val> 11553 <right_val>-0.1046855002641678</right_val></_></_> 11554 <_> 11555 <!-- tree 36 --> 11556 <_> 11557 <!-- root node --> 11558 <feature> 11559 <rects> 11560 <_>4 0 2 14 -1.</_> 11561 <_>5 0 1 14 2.</_></rects> 11562 <tilted>0</tilted></feature> 11563 <threshold>4.7503020614385605e-003</threshold> 11564 <left_val>-0.0381354913115501</left_val> 11565 <right_val>0.4306662976741791</right_val></_></_> 11566 <_> 11567 <!-- tree 37 --> 11568 <_> 11569 <!-- root node --> 11570 <feature> 11571 <rects> 11572 <_>13 11 6 8 -1.</_> 11573 <_>15 11 2 8 3.</_></rects> 11574 <tilted>0</tilted></feature> 11575 <threshold>1.7291309777647257e-003</threshold> 11576 <left_val>0.0757335871458054</left_val> 11577 <right_val>-0.1538420021533966</right_val></_></_> 11578 <_> 11579 <!-- tree 38 --> 11580 <_> 11581 <!-- root node --> 11582 <feature> 11583 <rects> 11584 <_>1 11 3 12 -1.</_> 11585 <_>1 17 3 6 2.</_></rects> 11586 <tilted>0</tilted></feature> 11587 <threshold>-4.8985757166519761e-004</threshold> 11588 <left_val>0.1372247934341431</left_val> 11589 <right_val>-0.1263125985860825</right_val></_></_> 11590 <_> 11591 <!-- tree 39 --> 11592 <_> 11593 <!-- root node --> 11594 <feature> 11595 <rects> 11596 <_>12 18 6 5 -1.</_> 11597 <_>12 18 3 5 2.</_></rects> 11598 <tilted>0</tilted></feature> 11599 <threshold>-2.2209450253285468e-004</threshold> 11600 <left_val>0.0511391386389732</left_val> 11601 <right_val>-0.0666613131761551</right_val></_></_> 11602 <_> 11603 <!-- tree 40 --> 11604 <_> 11605 <!-- root node --> 11606 <feature> 11607 <rects> 11608 <_>0 15 4 8 -1.</_> 11609 <_>0 19 4 4 2.</_></rects> 11610 <tilted>0</tilted></feature> 11611 <threshold>1.1202819878235459e-003</threshold> 11612 <left_val>-0.1096849963068962</left_val> 11613 <right_val>0.1561145037412643</right_val></_></_> 11614 <_> 11615 <!-- tree 41 --> 11616 <_> 11617 <!-- root node --> 11618 <feature> 11619 <rects> 11620 <_>13 11 6 8 -1.</_> 11621 <_>15 11 2 8 3.</_></rects> 11622 <tilted>0</tilted></feature> 11623 <threshold>-0.0205960292369127</threshold> 11624 <left_val>-0.4542526006698608</left_val> 11625 <right_val>5.6112911552190781e-003</right_val></_></_> 11626 <_> 11627 <!-- tree 42 --> 11628 <_> 11629 <!-- root node --> 11630 <feature> 11631 <rects> 11632 <_>0 11 6 8 -1.</_> 11633 <_>2 11 2 8 3.</_></rects> 11634 <tilted>0</tilted></feature> 11635 <threshold>-5.1287859678268433e-003</threshold> 11636 <left_val>-0.3942252993583679</left_val> 11637 <right_val>0.0441448204219341</right_val></_></_> 11638 <_> 11639 <!-- tree 43 --> 11640 <_> 11641 <!-- root node --> 11642 <feature> 11643 <rects> 11644 <_>5 17 14 3 -1.</_> 11645 <_>5 18 14 1 3.</_></rects> 11646 <tilted>0</tilted></feature> 11647 <threshold>-4.3597300536930561e-003</threshold> 11648 <left_val>0.1939166039228439</left_val> 11649 <right_val>-0.0659493282437325</right_val></_></_> 11650 <_> 11651 <!-- tree 44 --> 11652 <_> 11653 <!-- root node --> 11654 <feature> 11655 <rects> 11656 <_>0 15 7 6 -1.</_> 11657 <_>0 17 7 2 3.</_></rects> 11658 <tilted>0</tilted></feature> 11659 <threshold>4.7703061136417091e-004</threshold> 11660 <left_val>-0.1190071031451225</left_val> 11661 <right_val>0.1637544035911560</right_val></_></_> 11662 <_> 11663 <!-- tree 45 --> 11664 <_> 11665 <!-- root node --> 11666 <feature> 11667 <rects> 11668 <_>10 8 4 10 -1.</_> 11669 <_>10 8 2 10 2.</_></rects> 11670 <tilted>1</tilted></feature> 11671 <threshold>-0.0109937703236938</threshold> 11672 <left_val>-0.2991574108600617</left_val> 11673 <right_val>0.0287935007363558</right_val></_></_> 11674 <_> 11675 <!-- tree 46 --> 11676 <_> 11677 <!-- root node --> 11678 <feature> 11679 <rects> 11680 <_>1 11 16 7 -1.</_> 11681 <_>5 11 8 7 2.</_></rects> 11682 <tilted>0</tilted></feature> 11683 <threshold>8.1108389422297478e-003</threshold> 11684 <left_val>-0.0481459498405457</left_val> 11685 <right_val>0.3839995861053467</right_val></_></_> 11686 <_> 11687 <!-- tree 47 --> 11688 <_> 11689 <!-- root node --> 11690 <feature> 11691 <rects> 11692 <_>5 0 9 16 -1.</_> 11693 <_>8 0 3 16 3.</_></rects> 11694 <tilted>0</tilted></feature> 11695 <threshold>-3.6698309704661369e-003</threshold> 11696 <left_val>0.0887120366096497</left_val> 11697 <right_val>-0.3065086007118225</right_val></_></_> 11698 <_> 11699 <!-- tree 48 --> 11700 <_> 11701 <!-- root node --> 11702 <feature> 11703 <rects> 11704 <_>6 6 2 14 -1.</_> 11705 <_>7 6 1 14 2.</_></rects> 11706 <tilted>0</tilted></feature> 11707 <threshold>1.3895990559831262e-003</threshold> 11708 <left_val>-0.0551562011241913</left_val> 11709 <right_val>0.3510990142822266</right_val></_></_> 11710 <_> 11711 <!-- tree 49 --> 11712 <_> 11713 <!-- root node --> 11714 <feature> 11715 <rects> 11716 <_>11 5 4 15 -1.</_> 11717 <_>12 5 2 15 2.</_></rects> 11718 <tilted>0</tilted></feature> 11719 <threshold>1.2493750546127558e-003</threshold> 11720 <left_val>-0.1802306026220322</left_val> 11721 <right_val>0.1349010020494461</right_val></_></_> 11722 <_> 11723 <!-- tree 50 --> 11724 <_> 11725 <!-- root node --> 11726 <feature> 11727 <rects> 11728 <_>9 8 10 4 -1.</_> 11729 <_>9 8 10 2 2.</_></rects> 11730 <tilted>1</tilted></feature> 11731 <threshold>5.5981278419494629e-003</threshold> 11732 <left_val>0.0797642469406128</left_val> 11733 <right_val>-0.2784745991230011</right_val></_></_> 11734 <_> 11735 <!-- tree 51 --> 11736 <_> 11737 <!-- root node --> 11738 <feature> 11739 <rects> 11740 <_>8 1 4 14 -1.</_> 11741 <_>8 1 2 14 2.</_></rects> 11742 <tilted>0</tilted></feature> 11743 <threshold>-0.0381334796547890</threshold> 11744 <left_val>0.3515341877937317</left_val> 11745 <right_val>-0.0170894302427769</right_val></_></_> 11746 <_> 11747 <!-- tree 52 --> 11748 <_> 11749 <!-- root node --> 11750 <feature> 11751 <rects> 11752 <_>7 1 4 14 -1.</_> 11753 <_>9 1 2 14 2.</_></rects> 11754 <tilted>0</tilted></feature> 11755 <threshold>-4.6064890921115875e-003</threshold> 11756 <left_val>-0.2219419926404953</left_val> 11757 <right_val>0.1067579984664917</right_val></_></_> 11758 <_> 11759 <!-- tree 53 --> 11760 <_> 11761 <!-- root node --> 11762 <feature> 11763 <rects> 11764 <_>1 14 18 9 -1.</_> 11765 <_>7 17 6 3 9.</_></rects> 11766 <tilted>0</tilted></feature> 11767 <threshold>-0.2379301041364670</threshold> 11768 <left_val>0.4007951021194458</left_val> 11769 <right_val>-0.0621518082916737</right_val></_></_> 11770 <_> 11771 <!-- tree 54 --> 11772 <_> 11773 <!-- root node --> 11774 <feature> 11775 <rects> 11776 <_>6 9 7 9 -1.</_> 11777 <_>6 12 7 3 3.</_></rects> 11778 <tilted>0</tilted></feature> 11779 <threshold>0.0120104104280472</threshold> 11780 <left_val>0.0586469210684299</left_val> 11781 <right_val>-0.3523482978343964</right_val></_></_> 11782 <_> 11783 <!-- tree 55 --> 11784 <_> 11785 <!-- root node --> 11786 <feature> 11787 <rects> 11788 <_>1 11 18 2 -1.</_> 11789 <_>1 12 18 1 2.</_></rects> 11790 <tilted>0</tilted></feature> 11791 <threshold>8.4618777036666870e-003</threshold> 11792 <left_val>-0.0414554998278618</left_val> 11793 <right_val>0.3936221897602081</right_val></_></_> 11794 <_> 11795 <!-- tree 56 --> 11796 <_> 11797 <!-- root node --> 11798 <feature> 11799 <rects> 11800 <_>7 7 4 16 -1.</_> 11801 <_>7 11 4 8 2.</_></rects> 11802 <tilted>0</tilted></feature> 11803 <threshold>-0.0144825996831059</threshold> 11804 <left_val>-0.2704995870590210</left_val> 11805 <right_val>0.0694004967808723</right_val></_></_> 11806 <_> 11807 <!-- tree 57 --> 11808 <_> 11809 <!-- root node --> 11810 <feature> 11811 <rects> 11812 <_>2 10 15 3 -1.</_> 11813 <_>2 11 15 1 3.</_></rects> 11814 <tilted>0</tilted></feature> 11815 <threshold>2.5672810152173042e-003</threshold> 11816 <left_val>-0.0823579877614975</left_val> 11817 <right_val>0.2295956015586853</right_val></_></_> 11818 <_> 11819 <!-- tree 58 --> 11820 <_> 11821 <!-- root node --> 11822 <feature> 11823 <rects> 11824 <_>6 12 7 9 -1.</_> 11825 <_>6 15 7 3 3.</_></rects> 11826 <tilted>0</tilted></feature> 11827 <threshold>6.8167857825756073e-003</threshold> 11828 <left_val>0.0852120667695999</left_val> 11829 <right_val>-0.2281312048435211</right_val></_></_> 11830 <_> 11831 <!-- tree 59 --> 11832 <_> 11833 <!-- root node --> 11834 <feature> 11835 <rects> 11836 <_>4 10 15 3 -1.</_> 11837 <_>4 11 15 1 3.</_></rects> 11838 <tilted>0</tilted></feature> 11839 <threshold>-6.4145028591156006e-004</threshold> 11840 <left_val>0.1326024979352951</left_val> 11841 <right_val>-0.0810919627547264</right_val></_></_> 11842 <_> 11843 <!-- tree 60 --> 11844 <_> 11845 <!-- root node --> 11846 <feature> 11847 <rects> 11848 <_>0 19 14 4 -1.</_> 11849 <_>0 19 7 2 2.</_> 11850 <_>7 21 7 2 2.</_></rects> 11851 <tilted>0</tilted></feature> 11852 <threshold>3.8798429886810482e-004</threshold> 11853 <left_val>-0.2180052995681763</left_val> 11854 <right_val>0.0829776674509048</right_val></_></_> 11855 <_> 11856 <!-- tree 61 --> 11857 <_> 11858 <!-- root node --> 11859 <feature> 11860 <rects> 11861 <_>5 17 14 3 -1.</_> 11862 <_>5 18 14 1 3.</_></rects> 11863 <tilted>0</tilted></feature> 11864 <threshold>0.0263080000877380</threshold> 11865 <left_val>-0.0255589094012976</left_val> 11866 <right_val>0.5898965001106262</right_val></_></_> 11867 <_> 11868 <!-- tree 62 --> 11869 <_> 11870 <!-- root node --> 11871 <feature> 11872 <rects> 11873 <_>1 7 3 14 -1.</_> 11874 <_>2 7 1 14 3.</_></rects> 11875 <tilted>0</tilted></feature> 11876 <threshold>2.0907879807054996e-003</threshold> 11877 <left_val>0.0576117411255836</left_val> 11878 <right_val>-0.3028649091720581</right_val></_></_> 11879 <_> 11880 <!-- tree 63 --> 11881 <_> 11882 <!-- root node --> 11883 <feature> 11884 <rects> 11885 <_>9 0 6 7 -1.</_> 11886 <_>11 0 2 7 3.</_></rects> 11887 <tilted>0</tilted></feature> 11888 <threshold>-0.0111323697492480</threshold> 11889 <left_val>-0.1382286995649338</left_val> 11890 <right_val>0.0422580800950527</right_val></_></_> 11891 <_> 11892 <!-- tree 64 --> 11893 <_> 11894 <!-- root node --> 11895 <feature> 11896 <rects> 11897 <_>4 0 6 7 -1.</_> 11898 <_>6 0 2 7 3.</_></rects> 11899 <tilted>0</tilted></feature> 11900 <threshold>-1.5296150231733918e-003</threshold> 11901 <left_val>0.0917496979236603</left_val> 11902 <right_val>-0.2218109965324402</right_val></_></_> 11903 <_> 11904 <!-- tree 65 --> 11905 <_> 11906 <!-- root node --> 11907 <feature> 11908 <rects> 11909 <_>6 5 8 6 -1.</_> 11910 <_>6 5 4 6 2.</_></rects> 11911 <tilted>0</tilted></feature> 11912 <threshold>6.7247601691633463e-004</threshold> 11913 <left_val>-0.0670843496918678</left_val> 11914 <right_val>0.0797620713710785</right_val></_></_> 11915 <_> 11916 <!-- tree 66 --> 11917 <_> 11918 <!-- root node --> 11919 <feature> 11920 <rects> 11921 <_>5 2 3 16 -1.</_> 11922 <_>6 2 1 16 3.</_></rects> 11923 <tilted>0</tilted></feature> 11924 <threshold>0.0103866597637534</threshold> 11925 <left_val>-0.0746211707592011</left_val> 11926 <right_val>0.2291668951511383</right_val></_></_> 11927 <_> 11928 <!-- tree 67 --> 11929 <_> 11930 <!-- root node --> 11931 <feature> 11932 <rects> 11933 <_>15 4 4 15 -1.</_> 11934 <_>16 4 2 15 2.</_></rects> 11935 <tilted>0</tilted></feature> 11936 <threshold>6.2723900191485882e-004</threshold> 11937 <left_val>-0.0865005999803543</left_val> 11938 <right_val>0.0978149101138115</right_val></_></_> 11939 <_> 11940 <!-- tree 68 --> 11941 <_> 11942 <!-- root node --> 11943 <feature> 11944 <rects> 11945 <_>6 12 6 5 -1.</_> 11946 <_>6 12 3 5 2.</_></rects> 11947 <tilted>1</tilted></feature> 11948 <threshold>0.0153247797861695</threshold> 11949 <left_val>0.0800943300127983</left_val> 11950 <right_val>-0.2201195061206818</right_val></_></_> 11951 <_> 11952 <!-- tree 69 --> 11953 <_> 11954 <!-- root node --> 11955 <feature> 11956 <rects> 11957 <_>8 9 3 14 -1.</_> 11958 <_>9 9 1 14 3.</_></rects> 11959 <tilted>0</tilted></feature> 11960 <threshold>-8.7603963911533356e-003</threshold> 11961 <left_val>0.3129082024097443</left_val> 11962 <right_val>-0.0593733415007591</right_val></_></_> 11963 <_> 11964 <!-- tree 70 --> 11965 <_> 11966 <!-- root node --> 11967 <feature> 11968 <rects> 11969 <_>0 16 7 4 -1.</_> 11970 <_>0 18 7 2 2.</_></rects> 11971 <tilted>0</tilted></feature> 11972 <threshold>-2.3745700309518725e-004</threshold> 11973 <left_val>0.1185595989227295</left_val> 11974 <right_val>-0.1451420038938522</right_val></_></_> 11975 <_> 11976 <!-- tree 71 --> 11977 <_> 11978 <!-- root node --> 11979 <feature> 11980 <rects> 11981 <_>5 16 14 3 -1.</_> 11982 <_>5 17 14 1 3.</_></rects> 11983 <tilted>0</tilted></feature> 11984 <threshold>-1.0718279518187046e-003</threshold> 11985 <left_val>0.1256764978170395</left_val> 11986 <right_val>-0.0531019382178783</right_val></_></_> 11987 <_> 11988 <!-- tree 72 --> 11989 <_> 11990 <!-- root node --> 11991 <feature> 11992 <rects> 11993 <_>0 4 4 15 -1.</_> 11994 <_>1 4 2 15 2.</_></rects> 11995 <tilted>0</tilted></feature> 11996 <threshold>5.3873867727816105e-004</threshold> 11997 <left_val>-0.1071565970778465</left_val> 11998 <right_val>0.1603776067495346</right_val></_></_> 11999 <_> 12000 <!-- tree 73 --> 12001 <_> 12002 <!-- root node --> 12003 <feature> 12004 <rects> 12005 <_>10 2 8 6 -1.</_> 12006 <_>10 4 8 2 3.</_></rects> 12007 <tilted>0</tilted></feature> 12008 <threshold>-0.0692686364054680</threshold> 12009 <left_val>-0.7929406762123108</left_val> 12010 <right_val>8.2057341933250427e-003</right_val></_></_> 12011 <_> 12012 <!-- tree 74 --> 12013 <_> 12014 <!-- root node --> 12015 <feature> 12016 <rects> 12017 <_>1 2 8 6 -1.</_> 12018 <_>1 4 8 2 3.</_></rects> 12019 <tilted>0</tilted></feature> 12020 <threshold>0.0104301301762462</threshold> 12021 <left_val>0.0516202002763748</left_val> 12022 <right_val>-0.3347268998622894</right_val></_></_> 12023 <_> 12024 <!-- tree 75 --> 12025 <_> 12026 <!-- root node --> 12027 <feature> 12028 <rects> 12029 <_>10 6 4 16 -1.</_> 12030 <_>12 6 2 8 2.</_> 12031 <_>10 14 2 8 2.</_></rects> 12032 <tilted>0</tilted></feature> 12033 <threshold>0.0718889087438583</threshold> 12034 <left_val>1.5941270394250751e-003</left_val> 12035 <right_val>-0.8584092855453491</right_val></_></_> 12036 <_> 12037 <!-- tree 76 --> 12038 <_> 12039 <!-- root node --> 12040 <feature> 12041 <rects> 12042 <_>7 1 4 18 -1.</_> 12043 <_>7 1 2 9 2.</_> 12044 <_>9 10 2 9 2.</_></rects> 12045 <tilted>0</tilted></feature> 12046 <threshold>0.0202174205332994</threshold> 12047 <left_val>-0.0398174002766609</left_val> 12048 <right_val>0.4635106027126312</right_val></_></_> 12049 <_> 12050 <!-- tree 77 --> 12051 <_> 12052 <!-- root node --> 12053 <feature> 12054 <rects> 12055 <_>8 4 4 7 -1.</_> 12056 <_>8 4 2 7 2.</_></rects> 12057 <tilted>0</tilted></feature> 12058 <threshold>5.8006029576063156e-003</threshold> 12059 <left_val>-0.0217013899236918</left_val> 12060 <right_val>0.0990401431918144</right_val></_></_> 12061 <_> 12062 <!-- tree 78 --> 12063 <_> 12064 <!-- root node --> 12065 <feature> 12066 <rects> 12067 <_>7 4 4 7 -1.</_> 12068 <_>9 4 2 7 2.</_></rects> 12069 <tilted>0</tilted></feature> 12070 <threshold>0.0352612100541592</threshold> 12071 <left_val>0.0170828700065613</left_val> 12072 <right_val>-1.0000469684600830</right_val></_></_> 12073 <_> 12074 <!-- tree 79 --> 12075 <_> 12076 <!-- root node --> 12077 <feature> 12078 <rects> 12079 <_>7 0 12 14 -1.</_> 12080 <_>7 0 6 14 2.</_></rects> 12081 <tilted>0</tilted></feature> 12082 <threshold>-0.4525587856769562</threshold> 12083 <left_val>-0.9129211902618408</left_val> 12084 <right_val>5.2670161239802837e-003</right_val></_></_> 12085 <_> 12086 <!-- tree 80 --> 12087 <_> 12088 <!-- root node --> 12089 <feature> 12090 <rects> 12091 <_>2 1 2 14 -1.</_> 12092 <_>3 1 1 14 2.</_></rects> 12093 <tilted>0</tilted></feature> 12094 <threshold>-7.5286221690475941e-003</threshold> 12095 <left_val>-0.5258156061172485</left_val> 12096 <right_val>0.0220447406172752</right_val></_></_></trees> 12097 <stage_threshold>-30.8131999969482420</stage_threshold> 12098 <parent>22</parent> 12099 <next>-1</next></_> 12100 <_> 12101 <!-- stage 24 --> 12102 <trees> 12103 <_> 12104 <!-- tree 0 --> 12105 <_> 12106 <!-- root node --> 12107 <feature> 12108 <rects> 12109 <_>0 18 14 4 -1.</_> 12110 <_>0 18 7 2 2.</_> 12111 <_>7 20 7 2 2.</_></rects> 12112 <tilted>0</tilted></feature> 12113 <threshold>2.9085609130561352e-003</threshold> 12114 <left_val>-0.2019598037004471</left_val> 12115 <right_val>0.1611853986978531</right_val></_></_> 12116 <_> 12117 <!-- tree 1 --> 12118 <_> 12119 <!-- root node --> 12120 <feature> 12121 <rects> 12122 <_>6 0 8 8 -1.</_> 12123 <_>10 0 4 4 2.</_> 12124 <_>6 4 4 4 2.</_></rects> 12125 <tilted>0</tilted></feature> 12126 <threshold>-6.4552230760455132e-003</threshold> 12127 <left_val>-0.1867610067129135</left_val> 12128 <right_val>0.0353596508502960</right_val></_></_> 12129 <_> 12130 <!-- tree 2 --> 12131 <_> 12132 <!-- root node --> 12133 <feature> 12134 <rects> 12135 <_>4 9 6 10 -1.</_> 12136 <_>4 9 3 5 2.</_> 12137 <_>7 14 3 5 2.</_></rects> 12138 <tilted>0</tilted></feature> 12139 <threshold>2.7815890498459339e-003</threshold> 12140 <left_val>-0.1222874969244003</left_val> 12141 <right_val>0.2036256939172745</right_val></_></_> 12142 <_> 12143 <!-- tree 3 --> 12144 <_> 12145 <!-- root node --> 12146 <feature> 12147 <rects> 12148 <_>1 17 18 6 -1.</_> 12149 <_>10 17 9 3 2.</_> 12150 <_>1 20 9 3 2.</_></rects> 12151 <tilted>0</tilted></feature> 12152 <threshold>-7.6125850901007652e-003</threshold> 12153 <left_val>-0.3696570992469788</left_val> 12154 <right_val>0.0395666286349297</right_val></_></_> 12155 <_> 12156 <!-- tree 4 --> 12157 <_> 12158 <!-- root node --> 12159 <feature> 12160 <rects> 12161 <_>5 0 6 21 -1.</_> 12162 <_>7 7 2 7 9.</_></rects> 12163 <tilted>0</tilted></feature> 12164 <threshold>-0.2590085864067078</threshold> 12165 <left_val>0.6431263089179993</left_val> 12166 <right_val>3.1312569626607001e-004</right_val></_></_> 12167 <_> 12168 <!-- tree 5 --> 12169 <_> 12170 <!-- root node --> 12171 <feature> 12172 <rects> 12173 <_>6 7 12 7 -1.</_> 12174 <_>6 7 6 7 2.</_></rects> 12175 <tilted>0</tilted></feature> 12176 <threshold>4.6097189188003540e-003</threshold> 12177 <left_val>-0.0272621605545282</left_val> 12178 <right_val>0.2189165055751801</right_val></_></_> 12179 <_> 12180 <!-- tree 6 --> 12181 <_> 12182 <!-- root node --> 12183 <feature> 12184 <rects> 12185 <_>7 0 12 3 -1.</_> 12186 <_>7 0 6 3 2.</_></rects> 12187 <tilted>1</tilted></feature> 12188 <threshold>-0.0141355004161596</threshold> 12189 <left_val>0.0760067924857140</left_val> 12190 <right_val>-0.2603108882904053</right_val></_></_> 12191 <_> 12192 <!-- tree 7 --> 12193 <_> 12194 <!-- root node --> 12195 <feature> 12196 <rects> 12197 <_>5 0 9 5 -1.</_> 12198 <_>8 0 3 5 3.</_></rects> 12199 <tilted>0</tilted></feature> 12200 <threshold>-5.9708990156650543e-003</threshold> 12201 <left_val>-0.1914646029472351</left_val> 12202 <right_val>0.1107890009880066</right_val></_></_> 12203 <_> 12204 <!-- tree 8 --> 12205 <_> 12206 <!-- root node --> 12207 <feature> 12208 <rects> 12209 <_>7 9 3 14 -1.</_> 12210 <_>8 9 1 14 3.</_></rects> 12211 <tilted>0</tilted></feature> 12212 <threshold>-1.0699110571295023e-003</threshold> 12213 <left_val>0.0901270583271980</left_val> 12214 <right_val>-0.1987635940313339</right_val></_></_> 12215 <_> 12216 <!-- tree 9 --> 12217 <_> 12218 <!-- root node --> 12219 <feature> 12220 <rects> 12221 <_>3 14 16 9 -1.</_> 12222 <_>3 17 16 3 3.</_></rects> 12223 <tilted>0</tilted></feature> 12224 <threshold>0.0153157301247120</threshold> 12225 <left_val>0.0518833696842194</left_val> 12226 <right_val>-0.3106929957866669</right_val></_></_> 12227 <_> 12228 <!-- tree 10 --> 12229 <_> 12230 <!-- root node --> 12231 <feature> 12232 <rects> 12233 <_>1 17 6 6 -1.</_> 12234 <_>4 17 3 6 2.</_></rects> 12235 <tilted>0</tilted></feature> 12236 <threshold>-7.3937349952757359e-005</threshold> 12237 <left_val>0.1055530980229378</left_val> 12238 <right_val>-0.1676875054836273</right_val></_></_> 12239 <_> 12240 <!-- tree 11 --> 12241 <_> 12242 <!-- root node --> 12243 <feature> 12244 <rects> 12245 <_>5 1 10 20 -1.</_> 12246 <_>5 6 10 10 2.</_></rects> 12247 <tilted>0</tilted></feature> 12248 <threshold>-0.0818768888711929</threshold> 12249 <left_val>0.4605309963226318</left_val> 12250 <right_val>-0.0382763482630253</right_val></_></_> 12251 <_> 12252 <!-- tree 12 --> 12253 <_> 12254 <!-- root node --> 12255 <feature> 12256 <rects> 12257 <_>1 16 12 7 -1.</_> 12258 <_>4 16 6 7 2.</_></rects> 12259 <tilted>0</tilted></feature> 12260 <threshold>-8.8246334344148636e-003</threshold> 12261 <left_val>-0.3310768008232117</left_val> 12262 <right_val>0.0696745663881302</right_val></_></_> 12263 <_> 12264 <!-- tree 13 --> 12265 <_> 12266 <!-- root node --> 12267 <feature> 12268 <rects> 12269 <_>5 0 9 4 -1.</_> 12270 <_>5 2 9 2 2.</_></rects> 12271 <tilted>0</tilted></feature> 12272 <threshold>-3.7569031119346619e-003</threshold> 12273 <left_val>-0.2756631076335907</left_val> 12274 <right_val>0.0693756267428398</right_val></_></_> 12275 <_> 12276 <!-- tree 14 --> 12277 <_> 12278 <!-- root node --> 12279 <feature> 12280 <rects> 12281 <_>3 0 13 6 -1.</_> 12282 <_>3 2 13 2 3.</_></rects> 12283 <tilted>0</tilted></feature> 12284 <threshold>-3.6343189422041178e-003</threshold> 12285 <left_val>0.1665885001420975</left_val> 12286 <right_val>-0.1203157976269722</right_val></_></_> 12287 <_> 12288 <!-- tree 15 --> 12289 <_> 12290 <!-- root node --> 12291 <feature> 12292 <rects> 12293 <_>11 13 7 8 -1.</_> 12294 <_>11 15 7 4 2.</_></rects> 12295 <tilted>0</tilted></feature> 12296 <threshold>0.0219794902950525</threshold> 12297 <left_val>-0.0223163496702909</left_val> 12298 <right_val>0.3440257906913757</right_val></_></_> 12299 <_> 12300 <!-- tree 16 --> 12301 <_> 12302 <!-- root node --> 12303 <feature> 12304 <rects> 12305 <_>3 0 4 8 -1.</_> 12306 <_>3 4 4 4 2.</_></rects> 12307 <tilted>0</tilted></feature> 12308 <threshold>0.0613865517079830</threshold> 12309 <left_val>0.0179060008376837</left_val> 12310 <right_val>-0.8812987208366394</right_val></_></_> 12311 <_> 12312 <!-- tree 17 --> 12313 <_> 12314 <!-- root node --> 12315 <feature> 12316 <rects> 12317 <_>9 17 9 6 -1.</_> 12318 <_>12 17 3 6 3.</_></rects> 12319 <tilted>0</tilted></feature> 12320 <threshold>0.0270617399364710</threshold> 12321 <left_val>-0.0324443504214287</left_val> 12322 <right_val>0.2886644899845123</right_val></_></_> 12323 <_> 12324 <!-- tree 18 --> 12325 <_> 12326 <!-- root node --> 12327 <feature> 12328 <rects> 12329 <_>6 5 7 6 -1.</_> 12330 <_>6 7 7 2 3.</_></rects> 12331 <tilted>0</tilted></feature> 12332 <threshold>-9.5964036881923676e-003</threshold> 12333 <left_val>-0.3074331879615784</left_val> 12334 <right_val>0.0524994805455208</right_val></_></_> 12335 <_> 12336 <!-- tree 19 --> 12337 <_> 12338 <!-- root node --> 12339 <feature> 12340 <rects> 12341 <_>8 17 7 6 -1.</_> 12342 <_>8 19 7 2 3.</_></rects> 12343 <tilted>0</tilted></feature> 12344 <threshold>-1.7550870543345809e-003</threshold> 12345 <left_val>0.1043424978852272</left_val> 12346 <right_val>-0.1112620979547501</right_val></_></_> 12347 <_> 12348 <!-- tree 20 --> 12349 <_> 12350 <!-- root node --> 12351 <feature> 12352 <rects> 12353 <_>5 12 5 8 -1.</_> 12354 <_>5 16 5 4 2.</_></rects> 12355 <tilted>0</tilted></feature> 12356 <threshold>1.6808100044727325e-003</threshold> 12357 <left_val>-0.1171241998672485</left_val> 12358 <right_val>0.1560686975717545</right_val></_></_> 12359 <_> 12360 <!-- tree 21 --> 12361 <_> 12362 <!-- root node --> 12363 <feature> 12364 <rects> 12365 <_>0 15 19 2 -1.</_> 12366 <_>0 16 19 1 2.</_></rects> 12367 <tilted>0</tilted></feature> 12368 <threshold>-1.3623350532725453e-003</threshold> 12369 <left_val>0.2263745963573456</left_val> 12370 <right_val>-0.0864548012614250</right_val></_></_> 12371 <_> 12372 <!-- tree 22 --> 12373 <_> 12374 <!-- root node --> 12375 <feature> 12376 <rects> 12377 <_>6 7 7 4 -1.</_> 12378 <_>6 9 7 2 2.</_></rects> 12379 <tilted>0</tilted></feature> 12380 <threshold>-3.6580429878085852e-003</threshold> 12381 <left_val>-0.3982911109924316</left_val> 12382 <right_val>0.0471435897052288</right_val></_></_> 12383 <_> 12384 <!-- tree 23 --> 12385 <_> 12386 <!-- root node --> 12387 <feature> 12388 <rects> 12389 <_>9 0 2 21 -1.</_> 12390 <_>9 7 2 7 3.</_></rects> 12391 <tilted>0</tilted></feature> 12392 <threshold>0.0526687204837799</threshold> 12393 <left_val>-0.0196967907249928</left_val> 12394 <right_val>0.4299823939800263</right_val></_></_> 12395 <_> 12396 <!-- tree 24 --> 12397 <_> 12398 <!-- root node --> 12399 <feature> 12400 <rects> 12401 <_>0 19 15 4 -1.</_> 12402 <_>5 19 5 4 3.</_></rects> 12403 <tilted>0</tilted></feature> 12404 <threshold>-3.4802549635060132e-004</threshold> 12405 <left_val>0.0911152362823486</left_val> 12406 <right_val>-0.2048067003488541</right_val></_></_> 12407 <_> 12408 <!-- tree 25 --> 12409 <_> 12410 <!-- root node --> 12411 <feature> 12412 <rects> 12413 <_>9 20 10 3 -1.</_> 12414 <_>9 20 5 3 2.</_></rects> 12415 <tilted>0</tilted></feature> 12416 <threshold>1.2204200029373169e-003</threshold> 12417 <left_val>0.0330615118145943</left_val> 12418 <right_val>-0.1732486933469772</right_val></_></_> 12419 <_> 12420 <!-- tree 26 --> 12421 <_> 12422 <!-- root node --> 12423 <feature> 12424 <rects> 12425 <_>0 17 15 3 -1.</_> 12426 <_>0 18 15 1 3.</_></rects> 12427 <tilted>0</tilted></feature> 12428 <threshold>-9.4577670097351074e-003</threshold> 12429 <left_val>0.2977420091629028</left_val> 12430 <right_val>-0.0589791312813759</right_val></_></_> 12431 <_> 12432 <!-- tree 27 --> 12433 <_> 12434 <!-- root node --> 12435 <feature> 12436 <rects> 12437 <_>12 13 6 5 -1.</_> 12438 <_>12 13 3 5 2.</_></rects> 12439 <tilted>0</tilted></feature> 12440 <threshold>-1.7641530139371753e-003</threshold> 12441 <left_val>-0.0963047668337822</left_val> 12442 <right_val>0.0653046369552612</right_val></_></_> 12443 <_> 12444 <!-- tree 28 --> 12445 <_> 12446 <!-- root node --> 12447 <feature> 12448 <rects> 12449 <_>6 7 7 6 -1.</_> 12450 <_>6 9 7 2 3.</_></rects> 12451 <tilted>0</tilted></feature> 12452 <threshold>8.1057827919721603e-003</threshold> 12453 <left_val>0.0571583695709705</left_val> 12454 <right_val>-0.3112392127513886</right_val></_></_> 12455 <_> 12456 <!-- tree 29 --> 12457 <_> 12458 <!-- root node --> 12459 <feature> 12460 <rects> 12461 <_>3 15 14 3 -1.</_> 12462 <_>3 16 14 1 3.</_></rects> 12463 <tilted>0</tilted></feature> 12464 <threshold>0.0139634003862739</threshold> 12465 <left_val>-0.0352346412837505</left_val> 12466 <right_val>0.3571985065937042</right_val></_></_> 12467 <_> 12468 <!-- tree 30 --> 12469 <_> 12470 <!-- root node --> 12471 <feature> 12472 <rects> 12473 <_>0 20 10 3 -1.</_> 12474 <_>5 20 5 3 2.</_></rects> 12475 <tilted>0</tilted></feature> 12476 <threshold>-3.1854680273681879e-003</threshold> 12477 <left_val>-0.2152840048074722</left_val> 12478 <right_val>0.0760408788919449</right_val></_></_> 12479 <_> 12480 <!-- tree 31 --> 12481 <_> 12482 <!-- root node --> 12483 <feature> 12484 <rects> 12485 <_>6 7 8 4 -1.</_> 12486 <_>6 7 4 4 2.</_></rects> 12487 <tilted>0</tilted></feature> 12488 <threshold>-4.3546650558710098e-003</threshold> 12489 <left_val>-0.0838922932744026</left_val> 12490 <right_val>0.0282906908541918</right_val></_></_> 12491 <_> 12492 <!-- tree 32 --> 12493 <_> 12494 <!-- root node --> 12495 <feature> 12496 <rects> 12497 <_>1 17 7 6 -1.</_> 12498 <_>1 19 7 2 3.</_></rects> 12499 <tilted>0</tilted></feature> 12500 <threshold>-1.6740639694035053e-003</threshold> 12501 <left_val>0.1514583975076675</left_val> 12502 <right_val>-0.1175632029771805</right_val></_></_> 12503 <_> 12504 <!-- tree 33 --> 12505 <_> 12506 <!-- root node --> 12507 <feature> 12508 <rects> 12509 <_>7 17 12 4 -1.</_> 12510 <_>11 17 4 4 3.</_></rects> 12511 <tilted>0</tilted></feature> 12512 <threshold>-2.7018489781767130e-003</threshold> 12513 <left_val>0.1383357048034668</left_val> 12514 <right_val>-0.0508328303694725</right_val></_></_> 12515 <_> 12516 <!-- tree 34 --> 12517 <_> 12518 <!-- root node --> 12519 <feature> 12520 <rects> 12521 <_>3 15 6 7 -1.</_> 12522 <_>5 15 2 7 3.</_></rects> 12523 <tilted>0</tilted></feature> 12524 <threshold>2.2117499611340463e-004</threshold> 12525 <left_val>-0.2396084964275360</left_val> 12526 <right_val>0.0750043466687202</right_val></_></_> 12527 <_> 12528 <!-- tree 35 --> 12529 <_> 12530 <!-- root node --> 12531 <feature> 12532 <rects> 12533 <_>6 7 12 7 -1.</_> 12534 <_>6 7 6 7 2.</_></rects> 12535 <tilted>0</tilted></feature> 12536 <threshold>0.0227732006460428</threshold> 12537 <left_val>-0.0224336292594671</left_val> 12538 <right_val>0.3704926073551178</right_val></_></_> 12539 <_> 12540 <!-- tree 36 --> 12541 <_> 12542 <!-- root node --> 12543 <feature> 12544 <rects> 12545 <_>1 9 12 12 -1.</_> 12546 <_>1 13 12 4 3.</_></rects> 12547 <tilted>0</tilted></feature> 12548 <threshold>9.5928199589252472e-003</threshold> 12549 <left_val>0.0972054377198219</left_val> 12550 <right_val>-0.1773710995912552</right_val></_></_> 12551 <_> 12552 <!-- tree 37 --> 12553 <_> 12554 <!-- root node --> 12555 <feature> 12556 <rects> 12557 <_>12 6 5 9 -1.</_> 12558 <_>12 9 5 3 3.</_></rects> 12559 <tilted>0</tilted></feature> 12560 <threshold>3.3168029040098190e-003</threshold> 12561 <left_val>-0.0564143583178520</left_val> 12562 <right_val>0.0919384211301804</right_val></_></_> 12563 <_> 12564 <!-- tree 38 --> 12565 <_> 12566 <!-- root node --> 12567 <feature> 12568 <rects> 12569 <_>2 6 5 9 -1.</_> 12570 <_>2 9 5 3 3.</_></rects> 12571 <tilted>0</tilted></feature> 12572 <threshold>-2.3929888848215342e-003</threshold> 12573 <left_val>0.2107668071985245</left_val> 12574 <right_val>-0.0928803533315659</right_val></_></_> 12575 <_> 12576 <!-- tree 39 --> 12577 <_> 12578 <!-- root node --> 12579 <feature> 12580 <rects> 12581 <_>12 6 6 7 -1.</_> 12582 <_>14 8 2 7 3.</_></rects> 12583 <tilted>1</tilted></feature> 12584 <threshold>-0.0107665704563260</threshold> 12585 <left_val>-0.1297437995672226</left_val> 12586 <right_val>0.0599589087069035</right_val></_></_> 12587 <_> 12588 <!-- tree 40 --> 12589 <_> 12590 <!-- root node --> 12591 <feature> 12592 <rects> 12593 <_>5 9 8 10 -1.</_> 12594 <_>5 9 4 5 2.</_> 12595 <_>9 14 4 5 2.</_></rects> 12596 <tilted>0</tilted></feature> 12597 <threshold>9.9714798852801323e-004</threshold> 12598 <left_val>-0.1427922993898392</left_val> 12599 <right_val>0.1427970975637436</right_val></_></_> 12600 <_> 12601 <!-- tree 41 --> 12602 <_> 12603 <!-- root node --> 12604 <feature> 12605 <rects> 12606 <_>2 11 16 6 -1.</_> 12607 <_>10 11 8 3 2.</_> 12608 <_>2 14 8 3 2.</_></rects> 12609 <tilted>0</tilted></feature> 12610 <threshold>-6.6825798712670803e-003</threshold> 12611 <left_val>-0.2381983995437622</left_val> 12612 <right_val>0.0481196604669094</right_val></_></_> 12613 <_> 12614 <!-- tree 42 --> 12615 <_> 12616 <!-- root node --> 12617 <feature> 12618 <rects> 12619 <_>8 4 3 16 -1.</_> 12620 <_>9 4 1 16 3.</_></rects> 12621 <tilted>0</tilted></feature> 12622 <threshold>-3.7201410159468651e-003</threshold> 12623 <left_val>0.1995317935943604</left_val> 12624 <right_val>-0.0907835736870766</right_val></_></_> 12625 <_> 12626 <!-- tree 43 --> 12627 <_> 12628 <!-- root node --> 12629 <feature> 12630 <rects> 12631 <_>8 9 4 14 -1.</_> 12632 <_>9 9 2 14 2.</_></rects> 12633 <tilted>0</tilted></feature> 12634 <threshold>-0.0185534097254276</threshold> 12635 <left_val>-0.2662154138088226</left_val> 12636 <right_val>0.0228727497160435</right_val></_></_> 12637 <_> 12638 <!-- tree 44 --> 12639 <_> 12640 <!-- root node --> 12641 <feature> 12642 <rects> 12643 <_>7 9 4 14 -1.</_> 12644 <_>8 9 2 14 2.</_></rects> 12645 <tilted>0</tilted></feature> 12646 <threshold>3.0256200116127729e-003</threshold> 12647 <left_val>-0.0911061316728592</left_val> 12648 <right_val>0.2455954998731613</right_val></_></_> 12649 <_> 12650 <!-- tree 45 --> 12651 <_> 12652 <!-- root node --> 12653 <feature> 12654 <rects> 12655 <_>7 17 12 4 -1.</_> 12656 <_>11 17 4 4 3.</_></rects> 12657 <tilted>0</tilted></feature> 12658 <threshold>-0.0621463097631931</threshold> 12659 <left_val>-1.</left_val> 12660 <right_val>5.2797337993979454e-003</right_val></_></_> 12661 <_> 12662 <!-- tree 46 --> 12663 <_> 12664 <!-- root node --> 12665 <feature> 12666 <rects> 12667 <_>0 17 12 4 -1.</_> 12668 <_>4 17 4 4 3.</_></rects> 12669 <tilted>0</tilted></feature> 12670 <threshold>1.7690609674900770e-003</threshold> 12671 <left_val>-0.1937965005636215</left_val> 12672 <right_val>0.0956961065530777</right_val></_></_> 12673 <_> 12674 <!-- tree 47 --> 12675 <_> 12676 <!-- root node --> 12677 <feature> 12678 <rects> 12679 <_>13 12 6 10 -1.</_> 12680 <_>16 12 3 5 2.</_> 12681 <_>13 17 3 5 2.</_></rects> 12682 <tilted>0</tilted></feature> 12683 <threshold>-4.3277359509374946e-005</threshold> 12684 <left_val>0.1137404963374138</left_val> 12685 <right_val>-0.1350484937429428</right_val></_></_> 12686 <_> 12687 <!-- tree 48 --> 12688 <_> 12689 <!-- root node --> 12690 <feature> 12691 <rects> 12692 <_>0 17 6 6 -1.</_> 12693 <_>3 17 3 6 2.</_></rects> 12694 <tilted>0</tilted></feature> 12695 <threshold>1.2779419776052237e-003</threshold> 12696 <left_val>0.0796061605215073</left_val> 12697 <right_val>-0.2359701991081238</right_val></_></_> 12698 <_> 12699 <!-- tree 49 --> 12700 <_> 12701 <!-- root node --> 12702 <feature> 12703 <rects> 12704 <_>12 4 6 8 -1.</_> 12705 <_>12 4 3 8 2.</_></rects> 12706 <tilted>1</tilted></feature> 12707 <threshold>-0.0447424799203873</threshold> 12708 <left_val>0.1855715066194534</left_val> 12709 <right_val>-0.0341678299009800</right_val></_></_> 12710 <_> 12711 <!-- tree 50 --> 12712 <_> 12713 <!-- root node --> 12714 <feature> 12715 <rects> 12716 <_>3 6 10 15 -1.</_> 12717 <_>8 6 5 15 2.</_></rects> 12718 <tilted>0</tilted></feature> 12719 <threshold>2.7726130792871118e-004</threshold> 12720 <left_val>-0.0579377189278603</left_val> 12721 <right_val>0.2890321910381317</right_val></_></_> 12722 <_> 12723 <!-- tree 51 --> 12724 <_> 12725 <!-- root node --> 12726 <feature> 12727 <rects> 12728 <_>10 10 7 4 -1.</_> 12729 <_>10 10 7 2 2.</_></rects> 12730 <tilted>1</tilted></feature> 12731 <threshold>0.0562254711985588</threshold> 12732 <left_val>0.0138407899066806</left_val> 12733 <right_val>-0.7719973921775818</right_val></_></_> 12734 <_> 12735 <!-- tree 52 --> 12736 <_> 12737 <!-- root node --> 12738 <feature> 12739 <rects> 12740 <_>1 9 9 7 -1.</_> 12741 <_>4 9 3 7 3.</_></rects> 12742 <tilted>0</tilted></feature> 12743 <threshold>8.6825769394636154e-003</threshold> 12744 <left_val>-0.1826308965682983</left_val> 12745 <right_val>0.1142326965928078</right_val></_></_> 12746 <_> 12747 <!-- tree 53 --> 12748 <_> 12749 <!-- root node --> 12750 <feature> 12751 <rects> 12752 <_>1 17 18 6 -1.</_> 12753 <_>10 17 9 3 2.</_> 12754 <_>1 20 9 3 2.</_></rects> 12755 <tilted>0</tilted></feature> 12756 <threshold>-2.4038869887590408e-003</threshold> 12757 <left_val>-0.1900413930416107</left_val> 12758 <right_val>0.0659285634756088</right_val></_></_> 12759 <_> 12760 <!-- tree 54 --> 12761 <_> 12762 <!-- root node --> 12763 <feature> 12764 <rects> 12765 <_>6 0 13 3 -1.</_> 12766 <_>5 1 13 1 3.</_></rects> 12767 <tilted>1</tilted></feature> 12768 <threshold>0.0128402197733521</threshold> 12769 <left_val>-0.0362791009247303</left_val> 12770 <right_val>0.4551934003829956</right_val></_></_> 12771 <_> 12772 <!-- tree 55 --> 12773 <_> 12774 <!-- root node --> 12775 <feature> 12776 <rects> 12777 <_>10 0 3 9 -1.</_> 12778 <_>11 1 1 9 3.</_></rects> 12779 <tilted>1</tilted></feature> 12780 <threshold>1.1061480036005378e-003</threshold> 12781 <left_val>-0.0630546882748604</left_val> 12782 <right_val>0.0816094726324081</right_val></_></_> 12783 <_> 12784 <!-- tree 56 --> 12785 <_> 12786 <!-- root node --> 12787 <feature> 12788 <rects> 12789 <_>9 0 9 3 -1.</_> 12790 <_>8 1 9 1 3.</_></rects> 12791 <tilted>1</tilted></feature> 12792 <threshold>-4.6486179344356060e-003</threshold> 12793 <left_val>-0.2710854113101959</left_val> 12794 <right_val>0.0801677033305168</right_val></_></_> 12795 <_> 12796 <!-- tree 57 --> 12797 <_> 12798 <!-- root node --> 12799 <feature> 12800 <rects> 12801 <_>7 1 12 12 -1.</_> 12802 <_>13 1 6 6 2.</_> 12803 <_>7 7 6 6 2.</_></rects> 12804 <tilted>0</tilted></feature> 12805 <threshold>6.4021991565823555e-003</threshold> 12806 <left_val>-0.0669465884566307</left_val> 12807 <right_val>0.1063491031527519</right_val></_></_> 12808 <_> 12809 <!-- tree 58 --> 12810 <_> 12811 <!-- root node --> 12812 <feature> 12813 <rects> 12814 <_>7 4 8 6 -1.</_> 12815 <_>7 4 8 3 2.</_></rects> 12816 <tilted>1</tilted></feature> 12817 <threshold>-0.0823703780770302</threshold> 12818 <left_val>0.3451730012893677</left_val> 12819 <right_val>-0.0484684295952320</right_val></_></_> 12820 <_> 12821 <!-- tree 59 --> 12822 <_> 12823 <!-- root node --> 12824 <feature> 12825 <rects> 12826 <_>11 11 8 4 -1.</_> 12827 <_>11 11 8 2 2.</_></rects> 12828 <tilted>1</tilted></feature> 12829 <threshold>-0.0374298281967640</threshold> 12830 <left_val>-0.6963095068931580</left_val> 12831 <right_val>0.0130543801933527</right_val></_></_> 12832 <_> 12833 <!-- tree 60 --> 12834 <_> 12835 <!-- root node --> 12836 <feature> 12837 <rects> 12838 <_>8 11 4 8 -1.</_> 12839 <_>8 11 2 8 2.</_></rects> 12840 <tilted>1</tilted></feature> 12841 <threshold>0.0105004003271461</threshold> 12842 <left_val>0.0960282832384110</left_val> 12843 <right_val>-0.2636274099349976</right_val></_></_> 12844 <_> 12845 <!-- tree 61 --> 12846 <_> 12847 <!-- root node --> 12848 <feature> 12849 <rects> 12850 <_>10 10 7 4 -1.</_> 12851 <_>10 10 7 2 2.</_></rects> 12852 <tilted>1</tilted></feature> 12853 <threshold>0.0688512399792671</threshold> 12854 <left_val>3.7341150455176830e-003</left_val> 12855 <right_val>-0.9998915791511536</right_val></_></_> 12856 <_> 12857 <!-- tree 62 --> 12858 <_> 12859 <!-- root node --> 12860 <feature> 12861 <rects> 12862 <_>9 10 4 7 -1.</_> 12863 <_>9 10 2 7 2.</_></rects> 12864 <tilted>1</tilted></feature> 12865 <threshold>1.0171310277655721e-003</threshold> 12866 <left_val>-0.2350011020898819</left_val> 12867 <right_val>0.0910971835255623</right_val></_></_> 12868 <_> 12869 <!-- tree 63 --> 12870 <_> 12871 <!-- root node --> 12872 <feature> 12873 <rects> 12874 <_>8 7 3 14 -1.</_> 12875 <_>9 7 1 14 3.</_></rects> 12876 <tilted>0</tilted></feature> 12877 <threshold>-0.0290579497814178</threshold> 12878 <left_val>0.5997784733772278</left_val> 12879 <right_val>-0.0368990004062653</right_val></_></_> 12880 <_> 12881 <!-- tree 64 --> 12882 <_> 12883 <!-- root node --> 12884 <feature> 12885 <rects> 12886 <_>8 6 10 7 -1.</_> 12887 <_>8 6 5 7 2.</_></rects> 12888 <tilted>1</tilted></feature> 12889 <threshold>0.0220227297395468</threshold> 12890 <left_val>0.0580346509814262</left_val> 12891 <right_val>-0.3274875879287720</right_val></_></_> 12892 <_> 12893 <!-- tree 65 --> 12894 <_> 12895 <!-- root node --> 12896 <feature> 12897 <rects> 12898 <_>3 6 16 3 -1.</_> 12899 <_>3 7 16 1 3.</_></rects> 12900 <tilted>0</tilted></feature> 12901 <threshold>-4.3123541399836540e-003</threshold> 12902 <left_val>0.2215394973754883</left_val> 12903 <right_val>-0.0613320209085941</right_val></_></_> 12904 <_> 12905 <!-- tree 66 --> 12906 <_> 12907 <!-- root node --> 12908 <feature> 12909 <rects> 12910 <_>4 5 2 17 -1.</_> 12911 <_>5 5 1 17 2.</_></rects> 12912 <tilted>0</tilted></feature> 12913 <threshold>0.0109497103840113</threshold> 12914 <left_val>0.0218373797833920</left_val> 12915 <right_val>-0.7466219067573547</right_val></_></_> 12916 <_> 12917 <!-- tree 67 --> 12918 <_> 12919 <!-- root node --> 12920 <feature> 12921 <rects> 12922 <_>12 0 6 18 -1.</_> 12923 <_>15 0 3 9 2.</_> 12924 <_>12 9 3 9 2.</_></rects> 12925 <tilted>0</tilted></feature> 12926 <threshold>0.0436107404530048</threshold> 12927 <left_val>-0.0450989492237568</left_val> 12928 <right_val>0.2810913920402527</right_val></_></_> 12929 <_> 12930 <!-- tree 68 --> 12931 <_> 12932 <!-- root node --> 12933 <feature> 12934 <rects> 12935 <_>3 4 6 16 -1.</_> 12936 <_>3 4 3 8 2.</_> 12937 <_>6 12 3 8 2.</_></rects> 12938 <tilted>0</tilted></feature> 12939 <threshold>0.0772521793842316</threshold> 12940 <left_val>0.0208017807453871</left_val> 12941 <right_val>-0.8664823770523071</right_val></_></_> 12942 <_> 12943 <!-- tree 69 --> 12944 <_> 12945 <!-- root node --> 12946 <feature> 12947 <rects> 12948 <_>12 0 6 18 -1.</_> 12949 <_>15 0 3 9 2.</_> 12950 <_>12 9 3 9 2.</_></rects> 12951 <tilted>0</tilted></feature> 12952 <threshold>-0.0240238904953003</threshold> 12953 <left_val>0.3988442122936249</left_val> 12954 <right_val>-0.0352271199226379</right_val></_></_> 12955 <_> 12956 <!-- tree 70 --> 12957 <_> 12958 <!-- root node --> 12959 <feature> 12960 <rects> 12961 <_>0 1 16 4 -1.</_> 12962 <_>0 1 8 2 2.</_> 12963 <_>8 3 8 2 2.</_></rects> 12964 <tilted>0</tilted></feature> 12965 <threshold>0.0195597801357508</threshold> 12966 <left_val>0.0359447300434113</left_val> 12967 <right_val>-0.5146911740303040</right_val></_></_> 12968 <_> 12969 <!-- tree 71 --> 12970 <_> 12971 <!-- root node --> 12972 <feature> 12973 <rects> 12974 <_>6 12 12 5 -1.</_> 12975 <_>6 12 6 5 2.</_></rects> 12976 <tilted>0</tilted></feature> 12977 <threshold>0.0259172990918159</threshold> 12978 <left_val>-0.0129426699131727</left_val> 12979 <right_val>0.4169597029685974</right_val></_></_> 12980 <_> 12981 <!-- tree 72 --> 12982 <_> 12983 <!-- root node --> 12984 <feature> 12985 <rects> 12986 <_>3 7 3 10 -1.</_> 12987 <_>3 12 3 5 2.</_></rects> 12988 <tilted>0</tilted></feature> 12989 <threshold>-4.6949301031418145e-004</threshold> 12990 <left_val>0.1666599959135056</left_val> 12991 <right_val>-0.0906800404191017</right_val></_></_> 12992 <_> 12993 <!-- tree 73 --> 12994 <_> 12995 <!-- root node --> 12996 <feature> 12997 <rects> 12998 <_>11 3 7 12 -1.</_> 12999 <_>11 7 7 4 3.</_></rects> 13000 <tilted>0</tilted></feature> 13001 <threshold>-0.0845900326967239</threshold> 13002 <left_val>-0.5928378105163574</left_val> 13003 <right_val>7.2113061323761940e-003</right_val></_></_> 13004 <_> 13005 <!-- tree 74 --> 13006 <_> 13007 <!-- root node --> 13008 <feature> 13009 <rects> 13010 <_>0 6 8 6 -1.</_> 13011 <_>0 8 8 2 3.</_></rects> 13012 <tilted>0</tilted></feature> 13013 <threshold>-8.9234940242022276e-004</threshold> 13014 <left_val>0.1745820045471191</left_val> 13015 <right_val>-0.1007250994443893</right_val></_></_> 13016 <_> 13017 <!-- tree 75 --> 13018 <_> 13019 <!-- root node --> 13020 <feature> 13021 <rects> 13022 <_>12 3 7 6 -1.</_> 13023 <_>12 5 7 2 3.</_></rects> 13024 <tilted>0</tilted></feature> 13025 <threshold>-0.0240093506872654</threshold> 13026 <left_val>-0.3913143873214722</left_val> 13027 <right_val>0.0223610401153564</right_val></_></_> 13028 <_> 13029 <!-- tree 76 --> 13030 <_> 13031 <!-- root node --> 13032 <feature> 13033 <rects> 13034 <_>0 3 7 6 -1.</_> 13035 <_>0 5 7 2 3.</_></rects> 13036 <tilted>0</tilted></feature> 13037 <threshold>-4.7586968867108226e-004</threshold> 13038 <left_val>0.1830610036849976</left_val> 13039 <right_val>-0.1254113018512726</right_val></_></_> 13040 <_> 13041 <!-- tree 77 --> 13042 <_> 13043 <!-- root node --> 13044 <feature> 13045 <rects> 13046 <_>13 10 6 8 -1.</_> 13047 <_>15 10 2 8 3.</_></rects> 13048 <tilted>0</tilted></feature> 13049 <threshold>2.9483099933713675e-003</threshold> 13050 <left_val>0.0653010532259941</left_val> 13051 <right_val>-0.2038708031177521</right_val></_></_> 13052 <_> 13053 <!-- tree 78 --> 13054 <_> 13055 <!-- root node --> 13056 <feature> 13057 <rects> 13058 <_>0 17 14 2 -1.</_> 13059 <_>0 18 14 1 2.</_></rects> 13060 <tilted>0</tilted></feature> 13061 <threshold>3.6947780754417181e-003</threshold> 13062 <left_val>-0.0608783215284348</left_val> 13063 <right_val>0.3040302097797394</right_val></_></_> 13064 <_> 13065 <!-- tree 79 --> 13066 <_> 13067 <!-- root node --> 13068 <feature> 13069 <rects> 13070 <_>13 10 6 8 -1.</_> 13071 <_>15 10 2 8 3.</_></rects> 13072 <tilted>0</tilted></feature> 13073 <threshold>-2.9413169249892235e-003</threshold> 13074 <left_val>-0.3028449118137360</left_val> 13075 <right_val>0.0475504994392395</right_val></_></_> 13076 <_> 13077 <!-- tree 80 --> 13078 <_> 13079 <!-- root node --> 13080 <feature> 13081 <rects> 13082 <_>0 17 14 2 -1.</_> 13083 <_>0 18 14 1 2.</_></rects> 13084 <tilted>0</tilted></feature> 13085 <threshold>-7.1274640504270792e-004</threshold> 13086 <left_val>0.1620078980922699</left_val> 13087 <right_val>-0.1182216033339500</right_val></_></_> 13088 <_> 13089 <!-- tree 81 --> 13090 <_> 13091 <!-- root node --> 13092 <feature> 13093 <rects> 13094 <_>6 0 8 8 -1.</_> 13095 <_>10 0 4 4 2.</_> 13096 <_>6 4 4 4 2.</_></rects> 13097 <tilted>0</tilted></feature> 13098 <threshold>0.0243097506463528</threshold> 13099 <left_val>-0.0114427898079157</left_val> 13100 <right_val>0.2045395970344544</right_val></_></_> 13101 <_> 13102 <!-- tree 82 --> 13103 <_> 13104 <!-- root node --> 13105 <feature> 13106 <rects> 13107 <_>0 10 6 8 -1.</_> 13108 <_>2 10 2 8 3.</_></rects> 13109 <tilted>0</tilted></feature> 13110 <threshold>-9.1473112115636468e-004</threshold> 13111 <left_val>-0.2070782929658890</left_val> 13112 <right_val>0.0757013410329819</right_val></_></_> 13113 <_> 13114 <!-- tree 83 --> 13115 <_> 13116 <!-- root node --> 13117 <feature> 13118 <rects> 13119 <_>13 0 3 14 -1.</_> 13120 <_>14 0 1 14 3.</_></rects> 13121 <tilted>0</tilted></feature> 13122 <threshold>-3.6473390646278858e-003</threshold> 13123 <left_val>0.2409386038780212</left_val> 13124 <right_val>-0.0835655629634857</right_val></_></_> 13125 <_> 13126 <!-- tree 84 --> 13127 <_> 13128 <!-- root node --> 13129 <feature> 13130 <rects> 13131 <_>6 0 6 7 -1.</_> 13132 <_>8 0 2 7 3.</_></rects> 13133 <tilted>0</tilted></feature> 13134 <threshold>0.0125132203102112</threshold> 13135 <left_val>0.0415360406041145</left_val> 13136 <right_val>-0.3748772144317627</right_val></_></_> 13137 <_> 13138 <!-- tree 85 --> 13139 <_> 13140 <!-- root node --> 13141 <feature> 13142 <rects> 13143 <_>6 0 8 8 -1.</_> 13144 <_>10 0 4 4 2.</_> 13145 <_>6 4 4 4 2.</_></rects> 13146 <tilted>0</tilted></feature> 13147 <threshold>6.2148571014404297e-003</threshold> 13148 <left_val>0.0204341299831867</left_val> 13149 <right_val>-0.0900578498840332</right_val></_></_> 13150 <_> 13151 <!-- tree 86 --> 13152 <_> 13153 <!-- root node --> 13154 <feature> 13155 <rects> 13156 <_>5 0 8 8 -1.</_> 13157 <_>5 0 4 4 2.</_> 13158 <_>9 4 4 4 2.</_></rects> 13159 <tilted>0</tilted></feature> 13160 <threshold>-2.0954229403287172e-003</threshold> 13161 <left_val>0.1162526011466980</left_val> 13162 <right_val>-0.1856177002191544</right_val></_></_> 13163 <_> 13164 <!-- tree 87 --> 13165 <_> 13166 <!-- root node --> 13167 <feature> 13168 <rects> 13169 <_>3 7 16 7 -1.</_> 13170 <_>3 7 8 7 2.</_></rects> 13171 <tilted>0</tilted></feature> 13172 <threshold>-0.2117325067520142</threshold> 13173 <left_val>-1.</left_val> 13174 <right_val>2.4372090119868517e-003</right_val></_></_> 13175 <_> 13176 <!-- tree 88 --> 13177 <_> 13178 <!-- root node --> 13179 <feature> 13180 <rects> 13181 <_>0 7 16 7 -1.</_> 13182 <_>8 7 8 7 2.</_></rects> 13183 <tilted>0</tilted></feature> 13184 <threshold>1.0188589803874493e-003</threshold> 13185 <left_val>-0.0756839662790298</left_val> 13186 <right_val>0.2955543100833893</right_val></_></_></trees> 13187 <stage_threshold>-30.7800998687744140</stage_threshold> 13188 <parent>23</parent> 13189 <next>-1</next></_> 13190 <_> 13191 <!-- stage 25 --> 13192 <trees> 13193 <_> 13194 <!-- tree 0 --> 13195 <_> 13196 <!-- root node --> 13197 <feature> 13198 <rects> 13199 <_>2 11 10 8 -1.</_> 13200 <_>7 11 5 8 2.</_></rects> 13201 <tilted>0</tilted></feature> 13202 <threshold>-0.0244226008653641</threshold> 13203 <left_val>0.2044697999954224</left_val> 13204 <right_val>-0.2229966968297958</right_val></_></_> 13205 <_> 13206 <!-- tree 1 --> 13207 <_> 13208 <!-- root node --> 13209 <feature> 13210 <rects> 13211 <_>12 8 6 9 -1.</_> 13212 <_>14 8 2 9 3.</_></rects> 13213 <tilted>0</tilted></feature> 13214 <threshold>1.0574000189080834e-003</threshold> 13215 <left_val>-0.1435517072677612</left_val> 13216 <right_val>0.0856035426259041</right_val></_></_> 13217 <_> 13218 <!-- tree 2 --> 13219 <_> 13220 <!-- root node --> 13221 <feature> 13222 <rects> 13223 <_>1 8 6 9 -1.</_> 13224 <_>3 8 2 9 3.</_></rects> 13225 <tilted>0</tilted></feature> 13226 <threshold>2.5123930536210537e-003</threshold> 13227 <left_val>0.1099767982959747</left_val> 13228 <right_val>-0.2304480969905853</right_val></_></_> 13229 <_> 13230 <!-- tree 3 --> 13231 <_> 13232 <!-- root node --> 13233 <feature> 13234 <rects> 13235 <_>4 3 14 11 -1.</_> 13236 <_>4 3 7 11 2.</_></rects> 13237 <tilted>0</tilted></feature> 13238 <threshold>0.1211273968219757</threshold> 13239 <left_val>0.0332675017416477</left_val> 13240 <right_val>-0.9991015195846558</right_val></_></_> 13241 <_> 13242 <!-- tree 4 --> 13243 <_> 13244 <!-- root node --> 13245 <feature> 13246 <rects> 13247 <_>5 5 13 3 -1.</_> 13248 <_>4 6 13 1 3.</_></rects> 13249 <tilted>1</tilted></feature> 13250 <threshold>2.9103590641170740e-003</threshold> 13251 <left_val>-0.1039192974567413</left_val> 13252 <right_val>0.1929288059473038</right_val></_></_> 13253 <_> 13254 <!-- tree 5 --> 13255 <_> 13256 <!-- root node --> 13257 <feature> 13258 <rects> 13259 <_>7 0 6 9 -1.</_> 13260 <_>9 0 2 9 3.</_></rects> 13261 <tilted>0</tilted></feature> 13262 <threshold>-8.6717177182435989e-003</threshold> 13263 <left_val>-0.2708722054958344</left_val> 13264 <right_val>0.0997629016637802</right_val></_></_> 13265 <_> 13266 <!-- tree 6 --> 13267 <_> 13268 <!-- root node --> 13269 <feature> 13270 <rects> 13271 <_>1 0 14 12 -1.</_> 13272 <_>1 0 7 6 2.</_> 13273 <_>8 6 7 6 2.</_></rects> 13274 <tilted>0</tilted></feature> 13275 <threshold>6.1140959151089191e-003</threshold> 13276 <left_val>-0.1151710003614426</left_val> 13277 <right_val>0.2042921930551529</right_val></_></_> 13278 <_> 13279 <!-- tree 7 --> 13280 <_> 13281 <!-- root node --> 13282 <feature> 13283 <rects> 13284 <_>10 0 8 4 -1.</_> 13285 <_>10 0 4 4 2.</_></rects> 13286 <tilted>0</tilted></feature> 13287 <threshold>0.0205909907817841</threshold> 13288 <left_val>-0.0331075787544250</left_val> 13289 <right_val>0.4637545943260193</right_val></_></_> 13290 <_> 13291 <!-- tree 8 --> 13292 <_> 13293 <!-- root node --> 13294 <feature> 13295 <rects> 13296 <_>3 10 4 12 -1.</_> 13297 <_>5 10 2 12 2.</_></rects> 13298 <tilted>0</tilted></feature> 13299 <threshold>1.1507490416988730e-003</threshold> 13300 <left_val>0.0760146230459213</left_val> 13301 <right_val>-0.2748520970344544</right_val></_></_> 13302 <_> 13303 <!-- tree 9 --> 13304 <_> 13305 <!-- root node --> 13306 <feature> 13307 <rects> 13308 <_>11 0 2 22 -1.</_> 13309 <_>11 11 2 11 2.</_></rects> 13310 <tilted>0</tilted></feature> 13311 <threshold>6.5449788235127926e-003</threshold> 13312 <left_val>-0.1126658990979195</left_val> 13313 <right_val>0.0500315688550472</right_val></_></_> 13314 <_> 13315 <!-- tree 10 --> 13316 <_> 13317 <!-- root node --> 13318 <feature> 13319 <rects> 13320 <_>0 19 14 4 -1.</_> 13321 <_>0 19 7 2 2.</_> 13322 <_>7 21 7 2 2.</_></rects> 13323 <tilted>0</tilted></feature> 13324 <threshold>1.6102850204333663e-003</threshold> 13325 <left_val>-0.1879495978355408</left_val> 13326 <right_val>0.1123441010713577</right_val></_></_> 13327 <_> 13328 <!-- tree 11 --> 13329 <_> 13330 <!-- root node --> 13331 <feature> 13332 <rects> 13333 <_>10 8 2 8 -1.</_> 13334 <_>10 8 1 8 2.</_></rects> 13335 <tilted>1</tilted></feature> 13336 <threshold>2.8527909889817238e-003</threshold> 13337 <left_val>0.0404574684798718</left_val> 13338 <right_val>-0.0847164615988731</right_val></_></_> 13339 <_> 13340 <!-- tree 12 --> 13341 <_> 13342 <!-- root node --> 13343 <feature> 13344 <rects> 13345 <_>5 0 4 14 -1.</_> 13346 <_>5 0 2 7 2.</_> 13347 <_>7 7 2 7 2.</_></rects> 13348 <tilted>0</tilted></feature> 13349 <threshold>-4.0883300825953484e-003</threshold> 13350 <left_val>0.1250918954610825</left_val> 13351 <right_val>-0.1485010981559753</right_val></_></_> 13352 <_> 13353 <!-- tree 13 --> 13354 <_> 13355 <!-- root node --> 13356 <feature> 13357 <rects> 13358 <_>8 4 4 10 -1.</_> 13359 <_>8 9 4 5 2.</_></rects> 13360 <tilted>0</tilted></feature> 13361 <threshold>1.6648479504510760e-003</threshold> 13362 <left_val>-0.1034672036767006</left_val> 13363 <right_val>0.0535852313041687</right_val></_></_> 13364 <_> 13365 <!-- tree 14 --> 13366 <_> 13367 <!-- root node --> 13368 <feature> 13369 <rects> 13370 <_>9 8 8 2 -1.</_> 13371 <_>9 8 8 1 2.</_></rects> 13372 <tilted>1</tilted></feature> 13373 <threshold>-3.1635090708732605e-003</threshold> 13374 <left_val>-0.3372938930988312</left_val> 13375 <right_val>0.0611929185688496</right_val></_></_> 13376 <_> 13377 <!-- tree 15 --> 13378 <_> 13379 <!-- root node --> 13380 <feature> 13381 <rects> 13382 <_>0 7 19 3 -1.</_> 13383 <_>0 8 19 1 3.</_></rects> 13384 <tilted>0</tilted></feature> 13385 <threshold>-0.0109225995838642</threshold> 13386 <left_val>0.4523848891258240</left_val> 13387 <right_val>-0.0579033792018890</right_val></_></_> 13388 <_> 13389 <!-- tree 16 --> 13390 <_> 13391 <!-- root node --> 13392 <feature> 13393 <rects> 13394 <_>0 8 19 2 -1.</_> 13395 <_>0 9 19 1 2.</_></rects> 13396 <tilted>0</tilted></feature> 13397 <threshold>-3.3356929197907448e-003</threshold> 13398 <left_val>0.3388097882270813</left_val> 13399 <right_val>-0.0644701123237610</right_val></_></_> 13400 <_> 13401 <!-- tree 17 --> 13402 <_> 13403 <!-- root node --> 13404 <feature> 13405 <rects> 13406 <_>1 6 18 4 -1.</_> 13407 <_>10 6 9 2 2.</_> 13408 <_>1 8 9 2 2.</_></rects> 13409 <tilted>0</tilted></feature> 13410 <threshold>-0.0300145000219345</threshold> 13411 <left_val>-0.8283550143241882</left_val> 13412 <right_val>0.0246961191296577</right_val></_></_> 13413 <_> 13414 <!-- tree 18 --> 13415 <_> 13416 <!-- root node --> 13417 <feature> 13418 <rects> 13419 <_>2 1 8 18 -1.</_> 13420 <_>6 1 4 18 2.</_></rects> 13421 <tilted>0</tilted></feature> 13422 <threshold>-0.3011043965816498</threshold> 13423 <left_val>-0.8342905044555664</left_val> 13424 <right_val>0.0143693098798394</right_val></_></_> 13425 <_> 13426 <!-- tree 19 --> 13427 <_> 13428 <!-- root node --> 13429 <feature> 13430 <rects> 13431 <_>6 11 10 12 -1.</_> 13432 <_>11 11 5 6 2.</_> 13433 <_>6 17 5 6 2.</_></rects> 13434 <tilted>0</tilted></feature> 13435 <threshold>-4.2447918094694614e-003</threshold> 13436 <left_val>-0.1228173971176148</left_val> 13437 <right_val>0.0281341001391411</right_val></_></_> 13438 <_> 13439 <!-- tree 20 --> 13440 <_> 13441 <!-- root node --> 13442 <feature> 13443 <rects> 13444 <_>3 7 9 11 -1.</_> 13445 <_>6 7 3 11 3.</_></rects> 13446 <tilted>0</tilted></feature> 13447 <threshold>7.7825621701776981e-003</threshold> 13448 <left_val>-0.0692223086953163</left_val> 13449 <right_val>0.2581450939178467</right_val></_></_> 13450 <_> 13451 <!-- tree 21 --> 13452 <_> 13453 <!-- root node --> 13454 <feature> 13455 <rects> 13456 <_>9 0 6 14 -1.</_> 13457 <_>11 0 2 14 3.</_></rects> 13458 <tilted>0</tilted></feature> 13459 <threshold>-0.0127267101779580</threshold> 13460 <left_val>0.1074585989117622</left_val> 13461 <right_val>-0.0765758231282234</right_val></_></_> 13462 <_> 13463 <!-- tree 22 --> 13464 <_> 13465 <!-- root node --> 13466 <feature> 13467 <rects> 13468 <_>2 16 12 7 -1.</_> 13469 <_>6 16 4 7 3.</_></rects> 13470 <tilted>0</tilted></feature> 13471 <threshold>4.7346940264105797e-003</threshold> 13472 <left_val>0.0441278591752052</left_val> 13473 <right_val>-0.3804568052291870</right_val></_></_> 13474 <_> 13475 <!-- tree 23 --> 13476 <_> 13477 <!-- root node --> 13478 <feature> 13479 <rects> 13480 <_>2 15 15 6 -1.</_> 13481 <_>7 15 5 6 3.</_></rects> 13482 <tilted>0</tilted></feature> 13483 <threshold>3.4512639977037907e-003</threshold> 13484 <left_val>-0.0429472103714943</left_val> 13485 <right_val>0.4607483148574829</right_val></_></_> 13486 <_> 13487 <!-- tree 24 --> 13488 <_> 13489 <!-- root node --> 13490 <feature> 13491 <rects> 13492 <_>5 2 8 7 -1.</_> 13493 <_>7 2 4 7 2.</_></rects> 13494 <tilted>0</tilted></feature> 13495 <threshold>5.6996050989255309e-004</threshold> 13496 <left_val>0.0669261217117310</left_val> 13497 <right_val>-0.2968584895133972</right_val></_></_> 13498 <_> 13499 <!-- tree 25 --> 13500 <_> 13501 <!-- root node --> 13502 <feature> 13503 <rects> 13504 <_>8 0 4 14 -1.</_> 13505 <_>9 0 2 14 2.</_></rects> 13506 <tilted>0</tilted></feature> 13507 <threshold>-0.0538890995085239</threshold> 13508 <left_val>-1.</left_val> 13509 <right_val>3.9760880172252655e-003</right_val></_></_> 13510 <_> 13511 <!-- tree 26 --> 13512 <_> 13513 <!-- root node --> 13514 <feature> 13515 <rects> 13516 <_>7 0 4 14 -1.</_> 13517 <_>8 0 2 14 2.</_></rects> 13518 <tilted>0</tilted></feature> 13519 <threshold>1.0263220174238086e-003</threshold> 13520 <left_val>-0.1113893017172813</left_val> 13521 <right_val>0.1776421070098877</right_val></_></_> 13522 <_> 13523 <!-- tree 27 --> 13524 <_> 13525 <!-- root node --> 13526 <feature> 13527 <rects> 13528 <_>7 18 12 5 -1.</_> 13529 <_>11 18 4 5 3.</_></rects> 13530 <tilted>0</tilted></feature> 13531 <threshold>0.0393744409084320</threshold> 13532 <left_val>0.0129774296656251</left_val> 13533 <right_val>-0.6366993784904480</right_val></_></_> 13534 <_> 13535 <!-- tree 28 --> 13536 <_> 13537 <!-- root node --> 13538 <feature> 13539 <rects> 13540 <_>1 18 15 3 -1.</_> 13541 <_>1 19 15 1 3.</_></rects> 13542 <tilted>0</tilted></feature> 13543 <threshold>0.0187779795378447</threshold> 13544 <left_val>-0.0393345691263676</left_val> 13545 <right_val>0.4599016904830933</right_val></_></_> 13546 <_> 13547 <!-- tree 29 --> 13548 <_> 13549 <!-- root node --> 13550 <feature> 13551 <rects> 13552 <_>9 17 9 6 -1.</_> 13553 <_>12 17 3 6 3.</_></rects> 13554 <tilted>0</tilted></feature> 13555 <threshold>1.5851920470595360e-003</threshold> 13556 <left_val>-0.1091786995530129</left_val> 13557 <right_val>0.0562477894127369</right_val></_></_> 13558 <_> 13559 <!-- tree 30 --> 13560 <_> 13561 <!-- root node --> 13562 <feature> 13563 <rects> 13564 <_>7 8 9 6 -1.</_> 13565 <_>5 10 9 2 3.</_></rects> 13566 <tilted>1</tilted></feature> 13567 <threshold>-0.0108577404171228</threshold> 13568 <left_val>-0.2017634063959122</left_val> 13569 <right_val>0.0906854569911957</right_val></_></_> 13570 <_> 13571 <!-- tree 31 --> 13572 <_> 13573 <!-- root node --> 13574 <feature> 13575 <rects> 13576 <_>11 10 4 9 -1.</_> 13577 <_>12 11 2 9 2.</_></rects> 13578 <tilted>1</tilted></feature> 13579 <threshold>0.0443992614746094</threshold> 13580 <left_val>1.9891490228474140e-003</left_val> 13581 <right_val>-0.9998115897178650</right_val></_></_> 13582 <_> 13583 <!-- tree 32 --> 13584 <_> 13585 <!-- root node --> 13586 <feature> 13587 <rects> 13588 <_>8 10 9 4 -1.</_> 13589 <_>7 11 9 2 2.</_></rects> 13590 <tilted>1</tilted></feature> 13591 <threshold>-1.7311190022155643e-003</threshold> 13592 <left_val>0.1469902992248535</left_val> 13593 <right_val>-0.1406953930854797</right_val></_></_> 13594 <_> 13595 <!-- tree 33 --> 13596 <_> 13597 <!-- root node --> 13598 <feature> 13599 <rects> 13600 <_>15 3 2 16 -1.</_> 13601 <_>15 11 2 8 2.</_></rects> 13602 <tilted>0</tilted></feature> 13603 <threshold>-1.6609770245850086e-003</threshold> 13604 <left_val>0.1619053035974503</left_val> 13605 <right_val>-0.0555355995893478</right_val></_></_> 13606 <_> 13607 <!-- tree 34 --> 13608 <_> 13609 <!-- root node --> 13610 <feature> 13611 <rects> 13612 <_>1 17 5 6 -1.</_> 13613 <_>1 20 5 3 2.</_></rects> 13614 <tilted>0</tilted></feature> 13615 <threshold>-4.3332851491868496e-003</threshold> 13616 <left_val>-0.3397156894207001</left_val> 13617 <right_val>0.0432091988623142</right_val></_></_> 13618 <_> 13619 <!-- tree 35 --> 13620 <_> 13621 <!-- root node --> 13622 <feature> 13623 <rects> 13624 <_>12 16 5 6 -1.</_> 13625 <_>12 19 5 3 2.</_></rects> 13626 <tilted>0</tilted></feature> 13627 <threshold>-4.4786658691009507e-005</threshold> 13628 <left_val>0.1021749004721642</left_val> 13629 <right_val>-0.1028980985283852</right_val></_></_> 13630 <_> 13631 <!-- tree 36 --> 13632 <_> 13633 <!-- root node --> 13634 <feature> 13635 <rects> 13636 <_>5 2 3 14 -1.</_> 13637 <_>6 2 1 14 3.</_></rects> 13638 <tilted>0</tilted></feature> 13639 <threshold>-0.0122559396550059</threshold> 13640 <left_val>0.4633125960826874</left_val> 13641 <right_val>-0.0388291291892529</right_val></_></_> 13642 <_> 13643 <!-- tree 37 --> 13644 <_> 13645 <!-- root node --> 13646 <feature> 13647 <rects> 13648 <_>9 17 9 6 -1.</_> 13649 <_>12 17 3 6 3.</_></rects> 13650 <tilted>0</tilted></feature> 13651 <threshold>0.0317283906042576</threshold> 13652 <left_val>-0.0109189599752426</left_val> 13653 <right_val>0.1925213038921356</right_val></_></_> 13654 <_> 13655 <!-- tree 38 --> 13656 <_> 13657 <!-- root node --> 13658 <feature> 13659 <rects> 13660 <_>6 1 6 9 -1.</_> 13661 <_>8 1 2 9 3.</_></rects> 13662 <tilted>0</tilted></feature> 13663 <threshold>8.6054168641567230e-003</threshold> 13664 <left_val>0.0539623089134693</left_val> 13665 <right_val>-0.3383587002754211</right_val></_></_> 13666 <_> 13667 <!-- tree 39 --> 13668 <_> 13669 <!-- root node --> 13670 <feature> 13671 <rects> 13672 <_>7 7 10 5 -1.</_> 13673 <_>7 7 5 5 2.</_></rects> 13674 <tilted>0</tilted></feature> 13675 <threshold>2.4249579291790724e-003</threshold> 13676 <left_val>-0.0438760593533516</left_val> 13677 <right_val>0.2497778981924057</right_val></_></_> 13678 <_> 13679 <!-- tree 40 --> 13680 <_> 13681 <!-- root node --> 13682 <feature> 13683 <rects> 13684 <_>6 0 4 20 -1.</_> 13685 <_>6 0 2 10 2.</_> 13686 <_>8 10 2 10 2.</_></rects> 13687 <tilted>0</tilted></feature> 13688 <threshold>-1.9957860931754112e-003</threshold> 13689 <left_val>0.1139840036630631</left_val> 13690 <right_val>-0.1792531013488770</right_val></_></_> 13691 <_> 13692 <!-- tree 41 --> 13693 <_> 13694 <!-- root node --> 13695 <feature> 13696 <rects> 13697 <_>13 10 3 9 -1.</_> 13698 <_>14 11 1 9 3.</_></rects> 13699 <tilted>1</tilted></feature> 13700 <threshold>0.0460425093770027</threshold> 13701 <left_val>2.0680939778685570e-003</left_val> 13702 <right_val>-0.8767393231391907</right_val></_></_> 13703 <_> 13704 <!-- tree 42 --> 13705 <_> 13706 <!-- root node --> 13707 <feature> 13708 <rects> 13709 <_>6 10 9 3 -1.</_> 13710 <_>5 11 9 1 3.</_></rects> 13711 <tilted>1</tilted></feature> 13712 <threshold>2.4898271076381207e-003</threshold> 13713 <left_val>-0.0695956125855446</left_val> 13714 <right_val>0.2614254057407379</right_val></_></_> 13715 <_> 13716 <!-- tree 43 --> 13717 <_> 13718 <!-- root node --> 13719 <feature> 13720 <rects> 13721 <_>5 21 14 2 -1.</_> 13722 <_>5 21 7 2 2.</_></rects> 13723 <tilted>0</tilted></feature> 13724 <threshold>1.0052820434793830e-003</threshold> 13725 <left_val>0.0455016605556011</left_val> 13726 <right_val>-0.1239958032965660</right_val></_></_> 13727 <_> 13728 <!-- tree 44 --> 13729 <_> 13730 <!-- root node --> 13731 <feature> 13732 <rects> 13733 <_>8 6 3 14 -1.</_> 13734 <_>9 6 1 14 3.</_></rects> 13735 <tilted>0</tilted></feature> 13736 <threshold>9.0297553688287735e-003</threshold> 13737 <left_val>-0.0712724104523659</left_val> 13738 <right_val>0.2291935980319977</right_val></_></_> 13739 <_> 13740 <!-- tree 45 --> 13741 <_> 13742 <!-- root node --> 13743 <feature> 13744 <rects> 13745 <_>8 1 4 9 -1.</_> 13746 <_>8 1 2 9 2.</_></rects> 13747 <tilted>0</tilted></feature> 13748 <threshold>0.0120284901931882</threshold> 13749 <left_val>0.0202303305268288</left_val> 13750 <right_val>-0.3405298888683319</right_val></_></_> 13751 <_> 13752 <!-- tree 46 --> 13753 <_> 13754 <!-- root node --> 13755 <feature> 13756 <rects> 13757 <_>7 1 4 9 -1.</_> 13758 <_>9 1 2 9 2.</_></rects> 13759 <tilted>0</tilted></feature> 13760 <threshold>2.3313730489462614e-003</threshold> 13761 <left_val>0.0872593373060226</left_val> 13762 <right_val>-0.2319519072771072</right_val></_></_> 13763 <_> 13764 <!-- tree 47 --> 13765 <_> 13766 <!-- root node --> 13767 <feature> 13768 <rects> 13769 <_>7 17 12 6 -1.</_> 13770 <_>13 17 6 3 2.</_> 13771 <_>7 20 6 3 2.</_></rects> 13772 <tilted>0</tilted></feature> 13773 <threshold>9.5184362726286054e-004</threshold> 13774 <left_val>-0.2316880971193314</left_val> 13775 <right_val>0.0550221912562847</right_val></_></_> 13776 <_> 13777 <!-- tree 48 --> 13778 <_> 13779 <!-- root node --> 13780 <feature> 13781 <rects> 13782 <_>3 4 10 6 -1.</_> 13783 <_>8 4 5 6 2.</_></rects> 13784 <tilted>0</tilted></feature> 13785 <threshold>9.6378661692142487e-003</threshold> 13786 <left_val>-0.0416555590927601</left_val> 13787 <right_val>0.4292826056480408</right_val></_></_> 13788 <_> 13789 <!-- tree 49 --> 13790 <_> 13791 <!-- root node --> 13792 <feature> 13793 <rects> 13794 <_>15 0 4 8 -1.</_> 13795 <_>15 4 4 4 2.</_></rects> 13796 <tilted>0</tilted></feature> 13797 <threshold>0.0135669801384211</threshold> 13798 <left_val>0.0456696599721909</left_val> 13799 <right_val>-0.2250124067068100</right_val></_></_> 13800 <_> 13801 <!-- tree 50 --> 13802 <_> 13803 <!-- root node --> 13804 <feature> 13805 <rects> 13806 <_>3 5 6 8 -1.</_> 13807 <_>5 5 2 8 3.</_></rects> 13808 <tilted>0</tilted></feature> 13809 <threshold>0.0336535014212132</threshold> 13810 <left_val>-0.0678615793585777</left_val> 13811 <right_val>0.3696761131286621</right_val></_></_> 13812 <_> 13813 <!-- tree 51 --> 13814 <_> 13815 <!-- root node --> 13816 <feature> 13817 <rects> 13818 <_>15 0 4 8 -1.</_> 13819 <_>15 4 4 4 2.</_></rects> 13820 <tilted>0</tilted></feature> 13821 <threshold>-0.0603950209915638</threshold> 13822 <left_val>-0.9088736176490784</left_val> 13823 <right_val>3.8193699438124895e-003</right_val></_></_> 13824 <_> 13825 <!-- tree 52 --> 13826 <_> 13827 <!-- root node --> 13828 <feature> 13829 <rects> 13830 <_>0 0 4 8 -1.</_> 13831 <_>0 4 4 4 2.</_></rects> 13832 <tilted>0</tilted></feature> 13833 <threshold>1.3169209705665708e-003</threshold> 13834 <left_val>-0.1594133973121643</left_val> 13835 <right_val>0.1476655006408691</right_val></_></_> 13836 <_> 13837 <!-- tree 53 --> 13838 <_> 13839 <!-- root node --> 13840 <feature> 13841 <rects> 13842 <_>7 0 9 5 -1.</_> 13843 <_>10 0 3 5 3.</_></rects> 13844 <tilted>0</tilted></feature> 13845 <threshold>-9.7704064100980759e-003</threshold> 13846 <left_val>-0.1284841001033783</left_val> 13847 <right_val>0.0478323996067047</right_val></_></_> 13848 <_> 13849 <!-- tree 54 --> 13850 <_> 13851 <!-- root node --> 13852 <feature> 13853 <rects> 13854 <_>3 0 6 5 -1.</_> 13855 <_>6 0 3 5 2.</_></rects> 13856 <tilted>0</tilted></feature> 13857 <threshold>-4.5100511051714420e-003</threshold> 13858 <left_val>0.1257490962743759</left_val> 13859 <right_val>-0.2196446955204010</right_val></_></_> 13860 <_> 13861 <!-- tree 55 --> 13862 <_> 13863 <!-- root node --> 13864 <feature> 13865 <rects> 13866 <_>5 21 14 2 -1.</_> 13867 <_>5 21 7 2 2.</_></rects> 13868 <tilted>0</tilted></feature> 13869 <threshold>-2.0346629898995161e-003</threshold> 13870 <left_val>-0.1857440024614334</left_val> 13871 <right_val>0.0491770915687084</right_val></_></_> 13872 <_> 13873 <!-- tree 56 --> 13874 <_> 13875 <!-- root node --> 13876 <feature> 13877 <rects> 13878 <_>9 3 8 9 -1.</_> 13879 <_>9 3 4 9 2.</_></rects> 13880 <tilted>1</tilted></feature> 13881 <threshold>0.0132943904027343</threshold> 13882 <left_val>0.0914972424507141</left_val> 13883 <right_val>-0.2134393006563187</right_val></_></_> 13884 <_> 13885 <!-- tree 57 --> 13886 <_> 13887 <!-- root node --> 13888 <feature> 13889 <rects> 13890 <_>6 1 12 8 -1.</_> 13891 <_>12 1 6 4 2.</_> 13892 <_>6 5 6 4 2.</_></rects> 13893 <tilted>0</tilted></feature> 13894 <threshold>-0.0400542505085468</threshold> 13895 <left_val>0.3177005946636200</left_val> 13896 <right_val>-0.0310807693749666</right_val></_></_> 13897 <_> 13898 <!-- tree 58 --> 13899 <_> 13900 <!-- root node --> 13901 <feature> 13902 <rects> 13903 <_>4 10 10 11 -1.</_> 13904 <_>9 10 5 11 2.</_></rects> 13905 <tilted>0</tilted></feature> 13906 <threshold>0.0254929903894663</threshold> 13907 <left_val>0.0388770401477814</left_val> 13908 <right_val>-0.4565899074077606</right_val></_></_> 13909 <_> 13910 <!-- tree 59 --> 13911 <_> 13912 <!-- root node --> 13913 <feature> 13914 <rects> 13915 <_>12 1 3 15 -1.</_> 13916 <_>13 1 1 15 3.</_></rects> 13917 <tilted>0</tilted></feature> 13918 <threshold>-0.0380896888673306</threshold> 13919 <left_val>0.6661549806594849</left_val> 13920 <right_val>-0.0198953393846750</right_val></_></_> 13921 <_> 13922 <!-- tree 60 --> 13923 <_> 13924 <!-- root node --> 13925 <feature> 13926 <rects> 13927 <_>4 3 8 12 -1.</_> 13928 <_>8 3 4 12 2.</_></rects> 13929 <tilted>0</tilted></feature> 13930 <threshold>-0.2130831927061081</threshold> 13931 <left_val>-0.8653417825698853</left_val> 13932 <right_val>0.0208984296768904</right_val></_></_> 13933 <_> 13934 <!-- tree 61 --> 13935 <_> 13936 <!-- root node --> 13937 <feature> 13938 <rects> 13939 <_>8 2 10 8 -1.</_> 13940 <_>8 2 5 8 2.</_></rects> 13941 <tilted>0</tilted></feature> 13942 <threshold>-0.0897275432944298</threshold> 13943 <left_val>0.2572591900825501</left_val> 13944 <right_val>-0.0462616682052612</right_val></_></_> 13945 <_> 13946 <!-- tree 62 --> 13947 <_> 13948 <!-- root node --> 13949 <feature> 13950 <rects> 13951 <_>0 4 19 6 -1.</_> 13952 <_>0 6 19 2 3.</_></rects> 13953 <tilted>0</tilted></feature> 13954 <threshold>0.0250757001340389</threshold> 13955 <left_val>0.0412595085799694</left_val> 13956 <right_val>-0.3766664862632752</right_val></_></_> 13957 <_> 13958 <!-- tree 63 --> 13959 <_> 13960 <!-- root node --> 13961 <feature> 13962 <rects> 13963 <_>4 0 11 16 -1.</_> 13964 <_>4 4 11 8 2.</_></rects> 13965 <tilted>0</tilted></feature> 13966 <threshold>0.0233661495149136</threshold> 13967 <left_val>-0.0722028315067291</left_val> 13968 <right_val>0.2473703026771545</right_val></_></_> 13969 <_> 13970 <!-- tree 64 --> 13971 <_> 13972 <!-- root node --> 13973 <feature> 13974 <rects> 13975 <_>4 1 6 5 -1.</_> 13976 <_>7 1 3 5 2.</_></rects> 13977 <tilted>0</tilted></feature> 13978 <threshold>2.8038409072905779e-004</threshold> 13979 <left_val>-0.0794735476374626</left_val> 13980 <right_val>0.2247823029756546</right_val></_></_> 13981 <_> 13982 <!-- tree 65 --> 13983 <_> 13984 <!-- root node --> 13985 <feature> 13986 <rects> 13987 <_>3 5 14 18 -1.</_> 13988 <_>10 5 7 9 2.</_> 13989 <_>3 14 7 9 2.</_></rects> 13990 <tilted>0</tilted></feature> 13991 <threshold>8.2364194095134735e-003</threshold> 13992 <left_val>0.0512110106647015</left_val> 13993 <right_val>-0.1332865953445435</right_val></_></_> 13994 <_> 13995 <!-- tree 66 --> 13996 <_> 13997 <!-- root node --> 13998 <feature> 13999 <rects> 14000 <_>1 17 5 6 -1.</_> 14001 <_>1 20 5 3 2.</_></rects> 14002 <tilted>0</tilted></feature> 14003 <threshold>0.0539227798581123</threshold> 14004 <left_val>0.0171083994209766</left_val> 14005 <right_val>-0.8925604224205017</right_val></_></_> 14006 <_> 14007 <!-- tree 67 --> 14008 <_> 14009 <!-- root node --> 14010 <feature> 14011 <rects> 14012 <_>13 0 4 14 -1.</_> 14013 <_>15 0 2 7 2.</_> 14014 <_>13 7 2 7 2.</_></rects> 14015 <tilted>0</tilted></feature> 14016 <threshold>2.7015779633074999e-003</threshold> 14017 <left_val>-0.1840559989213944</left_val> 14018 <right_val>0.1283039003610611</right_val></_></_> 14019 <_> 14020 <!-- tree 68 --> 14021 <_> 14022 <!-- root node --> 14023 <feature> 14024 <rects> 14025 <_>2 0 4 14 -1.</_> 14026 <_>2 0 2 7 2.</_> 14027 <_>4 7 2 7 2.</_></rects> 14028 <tilted>0</tilted></feature> 14029 <threshold>-0.0165056902915239</threshold> 14030 <left_val>0.6223918199539185</left_val> 14031 <right_val>-0.0264136902987957</right_val></_></_> 14032 <_> 14033 <!-- tree 69 --> 14034 <_> 14035 <!-- root node --> 14036 <feature> 14037 <rects> 14038 <_>10 2 2 10 -1.</_> 14039 <_>10 2 1 10 2.</_></rects> 14040 <tilted>1</tilted></feature> 14041 <threshold>-1.8418730469420552e-003</threshold> 14042 <left_val>-0.1264680027961731</left_val> 14043 <right_val>0.0486908517777920</right_val></_></_> 14044 <_> 14045 <!-- tree 70 --> 14046 <_> 14047 <!-- root node --> 14048 <feature> 14049 <rects> 14050 <_>9 1 9 3 -1.</_> 14051 <_>8 2 9 1 3.</_></rects> 14052 <tilted>1</tilted></feature> 14053 <threshold>5.1953629590570927e-003</threshold> 14054 <left_val>0.0456537008285522</left_val> 14055 <right_val>-0.3251998126506805</right_val></_></_> 14056 <_> 14057 <!-- tree 71 --> 14058 <_> 14059 <!-- root node --> 14060 <feature> 14061 <rects> 14062 <_>6 2 10 6 -1.</_> 14063 <_>11 2 5 3 2.</_> 14064 <_>6 5 5 3 2.</_></rects> 14065 <tilted>0</tilted></feature> 14066 <threshold>5.0785308703780174e-003</threshold> 14067 <left_val>0.0407032594084740</left_val> 14068 <right_val>-0.2062076926231384</right_val></_></_> 14069 <_> 14070 <!-- tree 72 --> 14071 <_> 14072 <!-- root node --> 14073 <feature> 14074 <rects> 14075 <_>1 12 9 6 -1.</_> 14076 <_>1 14 9 2 3.</_></rects> 14077 <tilted>0</tilted></feature> 14078 <threshold>5.0687040202319622e-003</threshold> 14079 <left_val>-0.0764562487602234</left_val> 14080 <right_val>0.2586740851402283</right_val></_></_> 14081 <_> 14082 <!-- tree 73 --> 14083 <_> 14084 <!-- root node --> 14085 <feature> 14086 <rects> 14087 <_>6 2 10 6 -1.</_> 14088 <_>11 2 5 3 2.</_> 14089 <_>6 5 5 3 2.</_></rects> 14090 <tilted>0</tilted></feature> 14091 <threshold>-0.0118923196569085</threshold> 14092 <left_val>-0.2236621975898743</left_val> 14093 <right_val>0.0308554098010063</right_val></_></_> 14094 <_> 14095 <!-- tree 74 --> 14096 <_> 14097 <!-- root node --> 14098 <feature> 14099 <rects> 14100 <_>3 2 10 6 -1.</_> 14101 <_>3 2 5 3 2.</_> 14102 <_>8 5 5 3 2.</_></rects> 14103 <tilted>0</tilted></feature> 14104 <threshold>2.4257500190287828e-003</threshold> 14105 <left_val>-0.0715978890657425</left_val> 14106 <right_val>0.2610881924629211</right_val></_></_> 14107 <_> 14108 <!-- tree 75 --> 14109 <_> 14110 <!-- root node --> 14111 <feature> 14112 <rects> 14113 <_>7 0 5 20 -1.</_> 14114 <_>7 5 5 10 2.</_></rects> 14115 <tilted>0</tilted></feature> 14116 <threshold>-0.0119903795421124</threshold> 14117 <left_val>0.2267847955226898</left_val> 14118 <right_val>-0.1030550971627235</right_val></_></_> 14119 <_> 14120 <!-- tree 76 --> 14121 <_> 14122 <!-- root node --> 14123 <feature> 14124 <rects> 14125 <_>2 10 12 7 -1.</_> 14126 <_>5 10 6 7 2.</_></rects> 14127 <tilted>0</tilted></feature> 14128 <threshold>-0.0227722004055977</threshold> 14129 <left_val>-0.2377014011144638</left_val> 14130 <right_val>0.0766308531165123</right_val></_></_></trees> 14131 <stage_threshold>-30.6944007873535160</stage_threshold> 14132 <parent>24</parent> 14133 <next>-1</next></_> 14134 <_> 14135 <!-- stage 26 --> 14136 <trees> 14137 <_> 14138 <!-- tree 0 --> 14139 <_> 14140 <!-- root node --> 14141 <feature> 14142 <rects> 14143 <_>0 18 14 4 -1.</_> 14144 <_>0 18 7 2 2.</_> 14145 <_>7 20 7 2 2.</_></rects> 14146 <tilted>0</tilted></feature> 14147 <threshold>3.3625920768827200e-003</threshold> 14148 <left_val>-0.1826844066381455</left_val> 14149 <right_val>0.1593551933765411</right_val></_></_> 14150 <_> 14151 <!-- tree 1 --> 14152 <_> 14153 <!-- root node --> 14154 <feature> 14155 <rects> 14156 <_>9 7 3 15 -1.</_> 14157 <_>10 7 1 15 3.</_></rects> 14158 <tilted>0</tilted></feature> 14159 <threshold>4.4937757775187492e-003</threshold> 14160 <left_val>-0.0894381925463676</left_val> 14161 <right_val>0.2842231094837189</right_val></_></_> 14162 <_> 14163 <!-- tree 2 --> 14164 <_> 14165 <!-- root node --> 14166 <feature> 14167 <rects> 14168 <_>6 8 6 5 -1.</_> 14169 <_>9 8 3 5 2.</_></rects> 14170 <tilted>0</tilted></feature> 14171 <threshold>-8.8971032528206706e-004</threshold> 14172 <left_val>0.0956655889749527</left_val> 14173 <right_val>-0.1940706968307495</right_val></_></_> 14174 <_> 14175 <!-- tree 3 --> 14176 <_> 14177 <!-- root node --> 14178 <feature> 14179 <rects> 14180 <_>9 4 2 17 -1.</_> 14181 <_>9 4 1 17 2.</_></rects> 14182 <tilted>0</tilted></feature> 14183 <threshold>2.6789100375026464e-003</threshold> 14184 <left_val>-0.1015266999602318</left_val> 14185 <right_val>0.1786416023969650</right_val></_></_> 14186 <_> 14187 <!-- tree 4 --> 14188 <_> 14189 <!-- root node --> 14190 <feature> 14191 <rects> 14192 <_>8 4 2 17 -1.</_> 14193 <_>9 4 1 17 2.</_></rects> 14194 <tilted>0</tilted></feature> 14195 <threshold>-4.0554129518568516e-003</threshold> 14196 <left_val>-0.2333766072988510</left_val> 14197 <right_val>0.1227973997592926</right_val></_></_> 14198 <_> 14199 <!-- tree 5 --> 14200 <_> 14201 <!-- root node --> 14202 <feature> 14203 <rects> 14204 <_>8 18 9 5 -1.</_> 14205 <_>11 18 3 5 3.</_></rects> 14206 <tilted>0</tilted></feature> 14207 <threshold>-0.0177422501146793</threshold> 14208 <left_val>0.1919087022542954</left_val> 14209 <right_val>-0.0317107290029526</right_val></_></_> 14210 <_> 14211 <!-- tree 6 --> 14212 <_> 14213 <!-- root node --> 14214 <feature> 14215 <rects> 14216 <_>2 18 9 5 -1.</_> 14217 <_>5 18 3 5 3.</_></rects> 14218 <tilted>0</tilted></feature> 14219 <threshold>3.0996970599517226e-004</threshold> 14220 <left_val>-0.1934470981359482</left_val> 14221 <right_val>0.0995416790246964</right_val></_></_> 14222 <_> 14223 <!-- tree 7 --> 14224 <_> 14225 <!-- root node --> 14226 <feature> 14227 <rects> 14228 <_>12 18 6 5 -1.</_> 14229 <_>12 18 3 5 2.</_></rects> 14230 <tilted>0</tilted></feature> 14231 <threshold>-3.7737619131803513e-003</threshold> 14232 <left_val>-0.2029885053634644</left_val> 14233 <right_val>0.0793160125613213</right_val></_></_> 14234 <_> 14235 <!-- tree 8 --> 14236 <_> 14237 <!-- root node --> 14238 <feature> 14239 <rects> 14240 <_>5 15 6 5 -1.</_> 14241 <_>8 15 3 5 2.</_></rects> 14242 <tilted>0</tilted></feature> 14243 <threshold>1.4448439469560981e-003</threshold> 14244 <left_val>-0.0598114915192127</left_val> 14245 <right_val>0.4137539863586426</right_val></_></_> 14246 <_> 14247 <!-- tree 9 --> 14248 <_> 14249 <!-- root node --> 14250 <feature> 14251 <rects> 14252 <_>13 0 6 10 -1.</_> 14253 <_>15 0 2 10 3.</_></rects> 14254 <tilted>0</tilted></feature> 14255 <threshold>4.1589159518480301e-003</threshold> 14256 <left_val>-0.0929341092705727</left_val> 14257 <right_val>0.0775753483176231</right_val></_></_> 14258 <_> 14259 <!-- tree 10 --> 14260 <_> 14261 <!-- root node --> 14262 <feature> 14263 <rects> 14264 <_>2 14 10 9 -1.</_> 14265 <_>2 17 10 3 3.</_></rects> 14266 <tilted>0</tilted></feature> 14267 <threshold>9.7764004021883011e-003</threshold> 14268 <left_val>0.0530273914337158</left_val> 14269 <right_val>-0.3643518090248108</right_val></_></_> 14270 <_> 14271 <!-- tree 11 --> 14272 <_> 14273 <!-- root node --> 14274 <feature> 14275 <rects> 14276 <_>13 0 6 10 -1.</_> 14277 <_>15 0 2 10 3.</_></rects> 14278 <tilted>0</tilted></feature> 14279 <threshold>-2.8739850968122482e-003</threshold> 14280 <left_val>0.1272812038660049</left_val> 14281 <right_val>-0.0321823507547379</right_val></_></_> 14282 <_> 14283 <!-- tree 12 --> 14284 <_> 14285 <!-- root node --> 14286 <feature> 14287 <rects> 14288 <_>0 0 6 10 -1.</_> 14289 <_>2 0 2 10 3.</_></rects> 14290 <tilted>0</tilted></feature> 14291 <threshold>4.3552028946578503e-003</threshold> 14292 <left_val>-0.1447207033634186</left_val> 14293 <right_val>0.1417167931795120</right_val></_></_> 14294 <_> 14295 <!-- tree 13 --> 14296 <_> 14297 <!-- root node --> 14298 <feature> 14299 <rects> 14300 <_>12 5 3 12 -1.</_> 14301 <_>12 5 3 6 2.</_></rects> 14302 <tilted>1</tilted></feature> 14303 <threshold>-0.1213203966617584</threshold> 14304 <left_val>0.1528424024581909</left_val> 14305 <right_val>-0.0269485209137201</right_val></_></_> 14306 <_> 14307 <!-- tree 14 --> 14308 <_> 14309 <!-- root node --> 14310 <feature> 14311 <rects> 14312 <_>6 18 7 4 -1.</_> 14313 <_>6 20 7 2 2.</_></rects> 14314 <tilted>0</tilted></feature> 14315 <threshold>7.5531532056629658e-003</threshold> 14316 <left_val>0.1015343964099884</left_val> 14317 <right_val>-0.1871580034494400</right_val></_></_> 14318 <_> 14319 <!-- tree 15 --> 14320 <_> 14321 <!-- root node --> 14322 <feature> 14323 <rects> 14324 <_>14 7 4 12 -1.</_> 14325 <_>15 8 2 12 2.</_></rects> 14326 <tilted>1</tilted></feature> 14327 <threshold>4.8978552222251892e-003</threshold> 14328 <left_val>0.0280349906533957</left_val> 14329 <right_val>-0.1422438025474548</right_val></_></_> 14330 <_> 14331 <!-- tree 16 --> 14332 <_> 14333 <!-- root node --> 14334 <feature> 14335 <rects> 14336 <_>5 7 12 4 -1.</_> 14337 <_>4 8 12 2 2.</_></rects> 14338 <tilted>1</tilted></feature> 14339 <threshold>-1.8711129669100046e-003</threshold> 14340 <left_val>0.1512988954782486</left_val> 14341 <right_val>-0.1391292959451675</right_val></_></_> 14342 <_> 14343 <!-- tree 17 --> 14344 <_> 14345 <!-- root node --> 14346 <feature> 14347 <rects> 14348 <_>14 13 5 9 -1.</_> 14349 <_>14 16 5 3 3.</_></rects> 14350 <tilted>0</tilted></feature> 14351 <threshold>0.0418676994740963</threshold> 14352 <left_val>0.0182305499911308</left_val> 14353 <right_val>-0.5677195787429810</right_val></_></_> 14354 <_> 14355 <!-- tree 18 --> 14356 <_> 14357 <!-- root node --> 14358 <feature> 14359 <rects> 14360 <_>0 13 5 9 -1.</_> 14361 <_>0 16 5 3 3.</_></rects> 14362 <tilted>0</tilted></feature> 14363 <threshold>-8.4031058941036463e-004</threshold> 14364 <left_val>0.1539203971624374</left_val> 14365 <right_val>-0.1211211010813713</right_val></_></_> 14366 <_> 14367 <!-- tree 19 --> 14368 <_> 14369 <!-- root node --> 14370 <feature> 14371 <rects> 14372 <_>12 14 7 6 -1.</_> 14373 <_>12 16 7 2 3.</_></rects> 14374 <tilted>0</tilted></feature> 14375 <threshold>3.6289851414039731e-004</threshold> 14376 <left_val>-0.0799135863780975</left_val> 14377 <right_val>0.0700974836945534</right_val></_></_> 14378 <_> 14379 <!-- tree 20 --> 14380 <_> 14381 <!-- root node --> 14382 <feature> 14383 <rects> 14384 <_>1 16 6 6 -1.</_> 14385 <_>1 19 6 3 2.</_></rects> 14386 <tilted>0</tilted></feature> 14387 <threshold>-4.4498889474198222e-004</threshold> 14388 <left_val>0.1678467988967896</left_val> 14389 <right_val>-0.1380593031644821</right_val></_></_> 14390 <_> 14391 <!-- tree 21 --> 14392 <_> 14393 <!-- root node --> 14394 <feature> 14395 <rects> 14396 <_>7 0 9 4 -1.</_> 14397 <_>7 2 9 2 2.</_></rects> 14398 <tilted>0</tilted></feature> 14399 <threshold>2.2194290068000555e-003</threshold> 14400 <left_val>0.0584531389176846</left_val> 14401 <right_val>-0.1237479001283646</right_val></_></_> 14402 <_> 14403 <!-- tree 22 --> 14404 <_> 14405 <!-- root node --> 14406 <feature> 14407 <rects> 14408 <_>0 9 18 3 -1.</_> 14409 <_>0 10 18 1 3.</_></rects> 14410 <tilted>0</tilted></feature> 14411 <threshold>-2.5759059935808182e-003</threshold> 14412 <left_val>0.2261949926614761</left_val> 14413 <right_val>-0.0862514376640320</right_val></_></_> 14414 <_> 14415 <!-- tree 23 --> 14416 <_> 14417 <!-- root node --> 14418 <feature> 14419 <rects> 14420 <_>9 17 9 6 -1.</_> 14421 <_>12 17 3 6 3.</_></rects> 14422 <tilted>0</tilted></feature> 14423 <threshold>0.0589898116886616</threshold> 14424 <left_val>6.9204131141304970e-003</left_val> 14425 <right_val>-0.7336757779121399</right_val></_></_> 14426 <_> 14427 <!-- tree 24 --> 14428 <_> 14429 <!-- root node --> 14430 <feature> 14431 <rects> 14432 <_>2 14 15 9 -1.</_> 14433 <_>7 17 5 3 9.</_></rects> 14434 <tilted>0</tilted></feature> 14435 <threshold>-0.2788914144039154</threshold> 14436 <left_val>0.4672810137271881</left_val> 14437 <right_val>-0.0386128611862659</right_val></_></_> 14438 <_> 14439 <!-- tree 25 --> 14440 <_> 14441 <!-- root node --> 14442 <feature> 14443 <rects> 14444 <_>9 13 8 8 -1.</_> 14445 <_>9 17 8 4 2.</_></rects> 14446 <tilted>0</tilted></feature> 14447 <threshold>-5.3824000060558319e-003</threshold> 14448 <left_val>-0.1693985015153885</left_val> 14449 <right_val>0.0613945387303829</right_val></_></_> 14450 <_> 14451 <!-- tree 26 --> 14452 <_> 14453 <!-- root node --> 14454 <feature> 14455 <rects> 14456 <_>4 9 2 14 -1.</_> 14457 <_>5 9 1 14 2.</_></rects> 14458 <tilted>0</tilted></feature> 14459 <threshold>-8.9165568351745605e-004</threshold> 14460 <left_val>-0.2486791014671326</left_val> 14461 <right_val>0.0765902772545815</right_val></_></_> 14462 <_> 14463 <!-- tree 27 --> 14464 <_> 14465 <!-- root node --> 14466 <feature> 14467 <rects> 14468 <_>12 10 4 13 -1.</_> 14469 <_>12 10 2 13 2.</_></rects> 14470 <tilted>0</tilted></feature> 14471 <threshold>0.0120718898251653</threshold> 14472 <left_val>8.9360373094677925e-003</left_val> 14473 <right_val>-0.2702870965003967</right_val></_></_> 14474 <_> 14475 <!-- tree 28 --> 14476 <_> 14477 <!-- root node --> 14478 <feature> 14479 <rects> 14480 <_>3 10 4 13 -1.</_> 14481 <_>5 10 2 13 2.</_></rects> 14482 <tilted>0</tilted></feature> 14483 <threshold>3.8453561137430370e-004</threshold> 14484 <left_val>0.0994883030653000</left_val> 14485 <right_val>-0.2152262926101685</right_val></_></_> 14486 <_> 14487 <!-- tree 29 --> 14488 <_> 14489 <!-- root node --> 14490 <feature> 14491 <rects> 14492 <_>5 5 14 2 -1.</_> 14493 <_>5 5 7 2 2.</_></rects> 14494 <tilted>0</tilted></feature> 14495 <threshold>-2.2118990309536457e-003</threshold> 14496 <left_val>0.0407863892614841</left_val> 14497 <right_val>-0.1156380996108055</right_val></_></_> 14498 <_> 14499 <!-- tree 30 --> 14500 <_> 14501 <!-- root node --> 14502 <feature> 14503 <rects> 14504 <_>0 5 14 2 -1.</_> 14505 <_>7 5 7 2 2.</_></rects> 14506 <tilted>0</tilted></feature> 14507 <threshold>0.0209608208388090</threshold> 14508 <left_val>-0.0313559286296368</left_val> 14509 <right_val>0.7100617885589600</right_val></_></_> 14510 <_> 14511 <!-- tree 31 --> 14512 <_> 14513 <!-- root node --> 14514 <feature> 14515 <rects> 14516 <_>13 12 6 10 -1.</_> 14517 <_>16 12 3 5 2.</_> 14518 <_>13 17 3 5 2.</_></rects> 14519 <tilted>0</tilted></feature> 14520 <threshold>-3.9021030534058809e-003</threshold> 14521 <left_val>-0.1746001988649368</left_val> 14522 <right_val>0.0407753512263298</right_val></_></_> 14523 <_> 14524 <!-- tree 32 --> 14525 <_> 14526 <!-- root node --> 14527 <feature> 14528 <rects> 14529 <_>0 12 6 10 -1.</_> 14530 <_>0 12 3 5 2.</_> 14531 <_>3 17 3 5 2.</_></rects> 14532 <tilted>0</tilted></feature> 14533 <threshold>-4.5169141230871901e-005</threshold> 14534 <left_val>0.1210518032312393</left_val> 14535 <right_val>-0.1661822050809860</right_val></_></_> 14536 <_> 14537 <!-- tree 33 --> 14538 <_> 14539 <!-- root node --> 14540 <feature> 14541 <rects> 14542 <_>12 8 5 12 -1.</_> 14543 <_>12 11 5 6 2.</_></rects> 14544 <tilted>0</tilted></feature> 14545 <threshold>0.0691956728696823</threshold> 14546 <left_val>7.6447450555860996e-003</left_val> 14547 <right_val>-0.5921157002449036</right_val></_></_> 14548 <_> 14549 <!-- tree 34 --> 14550 <_> 14551 <!-- root node --> 14552 <feature> 14553 <rects> 14554 <_>2 8 5 12 -1.</_> 14555 <_>2 11 5 6 2.</_></rects> 14556 <tilted>0</tilted></feature> 14557 <threshold>-1.1615910334512591e-003</threshold> 14558 <left_val>0.2258497029542923</left_val> 14559 <right_val>-0.0917727723717690</right_val></_></_> 14560 <_> 14561 <!-- tree 35 --> 14562 <_> 14563 <!-- root node --> 14564 <feature> 14565 <rects> 14566 <_>6 8 7 4 -1.</_> 14567 <_>6 10 7 2 2.</_></rects> 14568 <tilted>0</tilted></feature> 14569 <threshold>4.5347518607741222e-005</threshold> 14570 <left_val>-0.2086371928453445</left_val> 14571 <right_val>0.0903640612959862</right_val></_></_> 14572 <_> 14573 <!-- tree 36 --> 14574 <_> 14575 <!-- root node --> 14576 <feature> 14577 <rects> 14578 <_>0 17 14 3 -1.</_> 14579 <_>0 18 14 1 3.</_></rects> 14580 <tilted>0</tilted></feature> 14581 <threshold>-0.0190451499074697</threshold> 14582 <left_val>0.4234400987625122</left_val> 14583 <right_val>-0.0460181795060635</right_val></_></_> 14584 <_> 14585 <!-- tree 37 --> 14586 <_> 14587 <!-- root node --> 14588 <feature> 14589 <rects> 14590 <_>12 7 2 15 -1.</_> 14591 <_>12 7 1 15 2.</_></rects> 14592 <tilted>0</tilted></feature> 14593 <threshold>4.1966438293457031e-003</threshold> 14594 <left_val>-0.0283696707338095</left_val> 14595 <right_val>0.3080070912837982</right_val></_></_> 14596 <_> 14597 <!-- tree 38 --> 14598 <_> 14599 <!-- root node --> 14600 <feature> 14601 <rects> 14602 <_>1 17 9 6 -1.</_> 14603 <_>4 17 3 6 3.</_></rects> 14604 <tilted>0</tilted></feature> 14605 <threshold>2.5357000413350761e-004</threshold> 14606 <left_val>-0.2897196114063263</left_val> 14607 <right_val>0.0753742232918739</right_val></_></_> 14608 <_> 14609 <!-- tree 39 --> 14610 <_> 14611 <!-- root node --> 14612 <feature> 14613 <rects> 14614 <_>10 6 9 7 -1.</_> 14615 <_>13 9 3 7 3.</_></rects> 14616 <tilted>1</tilted></feature> 14617 <threshold>0.1081790998578072</threshold> 14618 <left_val>-0.0142864296212792</left_val> 14619 <right_val>0.7282333970069885</right_val></_></_> 14620 <_> 14621 <!-- tree 40 --> 14622 <_> 14623 <!-- root node --> 14624 <feature> 14625 <rects> 14626 <_>9 6 7 9 -1.</_> 14627 <_>6 9 7 3 3.</_></rects> 14628 <tilted>1</tilted></feature> 14629 <threshold>-5.5140778422355652e-003</threshold> 14630 <left_val>-0.1885464936494827</left_val> 14631 <right_val>0.1137854978442192</right_val></_></_> 14632 <_> 14633 <!-- tree 41 --> 14634 <_> 14635 <!-- root node --> 14636 <feature> 14637 <rects> 14638 <_>5 8 10 4 -1.</_> 14639 <_>5 10 10 2 2.</_></rects> 14640 <tilted>0</tilted></feature> 14641 <threshold>5.5264509283006191e-003</threshold> 14642 <left_val>0.0708340182900429</left_val> 14643 <right_val>-0.1839759945869446</right_val></_></_> 14644 <_> 14645 <!-- tree 42 --> 14646 <_> 14647 <!-- root node --> 14648 <feature> 14649 <rects> 14650 <_>0 6 6 14 -1.</_> 14651 <_>0 13 6 7 2.</_></rects> 14652 <tilted>0</tilted></feature> 14653 <threshold>6.4198831096291542e-003</threshold> 14654 <left_val>-0.1144948005676270</left_val> 14655 <right_val>0.1912039071321487</right_val></_></_> 14656 <_> 14657 <!-- tree 43 --> 14658 <_> 14659 <!-- root node --> 14660 <feature> 14661 <rects> 14662 <_>1 1 18 22 -1.</_> 14663 <_>10 1 9 11 2.</_> 14664 <_>1 12 9 11 2.</_></rects> 14665 <tilted>0</tilted></feature> 14666 <threshold>0.1931422054767609</threshold> 14667 <left_val>0.0140662295743823</left_val> 14668 <right_val>-0.6977211833000183</right_val></_></_> 14669 <_> 14670 <!-- tree 44 --> 14671 <_> 14672 <!-- root node --> 14673 <feature> 14674 <rects> 14675 <_>1 5 17 3 -1.</_> 14676 <_>1 6 17 1 3.</_></rects> 14677 <tilted>0</tilted></feature> 14678 <threshold>0.0406702086329460</threshold> 14679 <left_val>-0.0242790896445513</left_val> 14680 <right_val>0.7882817983627319</right_val></_></_> 14681 <_> 14682 <!-- tree 45 --> 14683 <_> 14684 <!-- root node --> 14685 <feature> 14686 <rects> 14687 <_>13 12 6 5 -1.</_> 14688 <_>13 12 3 5 2.</_></rects> 14689 <tilted>0</tilted></feature> 14690 <threshold>-2.1965131163597107e-003</threshold> 14691 <left_val>-0.2010557949542999</left_val> 14692 <right_val>0.0510505102574825</right_val></_></_> 14693 <_> 14694 <!-- tree 46 --> 14695 <_> 14696 <!-- root node --> 14697 <feature> 14698 <rects> 14699 <_>0 5 16 3 -1.</_> 14700 <_>0 6 16 1 3.</_></rects> 14701 <tilted>0</tilted></feature> 14702 <threshold>-4.7381771728396416e-003</threshold> 14703 <left_val>0.2522231042385101</left_val> 14704 <right_val>-0.0734292268753052</right_val></_></_> 14705 <_> 14706 <!-- tree 47 --> 14707 <_> 14708 <!-- root node --> 14709 <feature> 14710 <rects> 14711 <_>12 6 6 17 -1.</_> 14712 <_>12 6 3 17 2.</_></rects> 14713 <tilted>0</tilted></feature> 14714 <threshold>0.0717736408114433</threshold> 14715 <left_val>-9.0609909966588020e-003</left_val> 14716 <right_val>0.9294689893722534</right_val></_></_> 14717 <_> 14718 <!-- tree 48 --> 14719 <_> 14720 <!-- root node --> 14721 <feature> 14722 <rects> 14723 <_>1 6 6 17 -1.</_> 14724 <_>4 6 3 17 2.</_></rects> 14725 <tilted>0</tilted></feature> 14726 <threshold>6.9466611603274941e-004</threshold> 14727 <left_val>0.1062569022178650</left_val> 14728 <right_val>-0.1916245967149735</right_val></_></_> 14729 <_> 14730 <!-- tree 49 --> 14731 <_> 14732 <!-- root node --> 14733 <feature> 14734 <rects> 14735 <_>1 15 18 2 -1.</_> 14736 <_>1 15 9 2 2.</_></rects> 14737 <tilted>0</tilted></feature> 14738 <threshold>2.6388010010123253e-003</threshold> 14739 <left_val>0.0633307173848152</left_val> 14740 <right_val>-0.2040408998727799</right_val></_></_> 14741 <_> 14742 <!-- tree 50 --> 14743 <_> 14744 <!-- root node --> 14745 <feature> 14746 <rects> 14747 <_>0 5 2 16 -1.</_> 14748 <_>1 5 1 16 2.</_></rects> 14749 <tilted>0</tilted></feature> 14750 <threshold>-3.1406691414304078e-004</threshold> 14751 <left_val>0.1799051016569138</left_val> 14752 <right_val>-0.0984959602355957</right_val></_></_> 14753 <_> 14754 <!-- tree 51 --> 14755 <_> 14756 <!-- root node --> 14757 <feature> 14758 <rects> 14759 <_>15 12 4 10 -1.</_> 14760 <_>15 17 4 5 2.</_></rects> 14761 <tilted>0</tilted></feature> 14762 <threshold>-5.8691151207312942e-004</threshold> 14763 <left_val>0.0850712582468987</left_val> 14764 <right_val>-0.0769745409488678</right_val></_></_> 14765 <_> 14766 <!-- tree 52 --> 14767 <_> 14768 <!-- root node --> 14769 <feature> 14770 <rects> 14771 <_>1 5 16 3 -1.</_> 14772 <_>1 6 16 1 3.</_></rects> 14773 <tilted>0</tilted></feature> 14774 <threshold>1.0376359568908811e-003</threshold> 14775 <left_val>-0.1109630987048149</left_val> 14776 <right_val>0.1598507016897202</right_val></_></_> 14777 <_> 14778 <!-- tree 53 --> 14779 <_> 14780 <!-- root node --> 14781 <feature> 14782 <rects> 14783 <_>6 9 9 12 -1.</_> 14784 <_>6 12 9 6 2.</_></rects> 14785 <tilted>0</tilted></feature> 14786 <threshold>1.6373570542782545e-003</threshold> 14787 <left_val>0.1112873032689095</left_val> 14788 <right_val>-0.1235273033380508</right_val></_></_> 14789 <_> 14790 <!-- tree 54 --> 14791 <_> 14792 <!-- root node --> 14793 <feature> 14794 <rects> 14795 <_>3 13 4 8 -1.</_> 14796 <_>3 17 4 4 2.</_></rects> 14797 <tilted>0</tilted></feature> 14798 <threshold>-7.3773309122771025e-004</threshold> 14799 <left_val>0.1289086043834686</left_val> 14800 <right_val>-0.1429457962512970</right_val></_></_> 14801 <_> 14802 <!-- tree 55 --> 14803 <_> 14804 <!-- root node --> 14805 <feature> 14806 <rects> 14807 <_>9 13 8 8 -1.</_> 14808 <_>9 17 8 4 2.</_></rects> 14809 <tilted>0</tilted></feature> 14810 <threshold>-0.0168414507061243</threshold> 14811 <left_val>-0.2423107028007507</left_val> 14812 <right_val>0.0205974709242582</right_val></_></_> 14813 <_> 14814 <!-- tree 56 --> 14815 <_> 14816 <!-- root node --> 14817 <feature> 14818 <rects> 14819 <_>5 0 8 10 -1.</_> 14820 <_>5 0 4 5 2.</_> 14821 <_>9 5 4 5 2.</_></rects> 14822 <tilted>0</tilted></feature> 14823 <threshold>-0.0305906906723976</threshold> 14824 <left_val>0.3351395130157471</left_val> 14825 <right_val>-0.0471835695207119</right_val></_></_> 14826 <_> 14827 <!-- tree 57 --> 14828 <_> 14829 <!-- root node --> 14830 <feature> 14831 <rects> 14832 <_>1 4 18 6 -1.</_> 14833 <_>10 4 9 3 2.</_> 14834 <_>1 7 9 3 2.</_></rects> 14835 <tilted>0</tilted></feature> 14836 <threshold>0.0102145401760936</threshold> 14837 <left_val>0.0554971992969513</left_val> 14838 <right_val>-0.2340593934059143</right_val></_></_> 14839 <_> 14840 <!-- tree 58 --> 14841 <_> 14842 <!-- root node --> 14843 <feature> 14844 <rects> 14845 <_>3 16 9 6 -1.</_> 14846 <_>3 18 9 2 3.</_></rects> 14847 <tilted>0</tilted></feature> 14848 <threshold>-1.1853770120069385e-003</threshold> 14849 <left_val>0.0920741632580757</left_val> 14850 <right_val>-0.1734714061021805</right_val></_></_> 14851 <_> 14852 <!-- tree 59 --> 14853 <_> 14854 <!-- root node --> 14855 <feature> 14856 <rects> 14857 <_>3 17 14 4 -1.</_> 14858 <_>3 18 14 2 2.</_></rects> 14859 <tilted>0</tilted></feature> 14860 <threshold>1.1729650432243943e-003</threshold> 14861 <left_val>-0.0840759426355362</left_val> 14862 <right_val>0.2068953067064285</right_val></_></_> 14863 <_> 14864 <!-- tree 60 --> 14865 <_> 14866 <!-- root node --> 14867 <feature> 14868 <rects> 14869 <_>2 3 9 6 -1.</_> 14870 <_>2 5 9 2 3.</_></rects> 14871 <tilted>0</tilted></feature> 14872 <threshold>0.0108941700309515</threshold> 14873 <left_val>0.0564759410917759</left_val> 14874 <right_val>-0.3167718052864075</right_val></_></_> 14875 <_> 14876 <!-- tree 61 --> 14877 <_> 14878 <!-- root node --> 14879 <feature> 14880 <rects> 14881 <_>0 3 19 3 -1.</_> 14882 <_>0 4 19 1 3.</_></rects> 14883 <tilted>0</tilted></feature> 14884 <threshold>-2.0437049679458141e-003</threshold> 14885 <left_val>0.1879636943340302</left_val> 14886 <right_val>-0.0988890230655670</right_val></_></_> 14887 <_> 14888 <!-- tree 62 --> 14889 <_> 14890 <!-- root node --> 14891 <feature> 14892 <rects> 14893 <_>1 3 16 4 -1.</_> 14894 <_>1 4 16 2 2.</_></rects> 14895 <tilted>0</tilted></feature> 14896 <threshold>-5.7676038704812527e-003</threshold> 14897 <left_val>-0.2518925964832306</left_val> 14898 <right_val>0.0751082673668861</right_val></_></_> 14899 <_> 14900 <!-- tree 63 --> 14901 <_> 14902 <!-- root node --> 14903 <feature> 14904 <rects> 14905 <_>11 0 6 14 -1.</_> 14906 <_>14 0 3 7 2.</_> 14907 <_>11 7 3 7 2.</_></rects> 14908 <tilted>0</tilted></feature> 14909 <threshold>0.0696244835853577</threshold> 14910 <left_val>-0.0176613796502352</left_val> 14911 <right_val>0.4339039921760559</right_val></_></_> 14912 <_> 14913 <!-- tree 64 --> 14914 <_> 14915 <!-- root node --> 14916 <feature> 14917 <rects> 14918 <_>0 17 9 6 -1.</_> 14919 <_>3 17 3 6 3.</_></rects> 14920 <tilted>0</tilted></feature> 14921 <threshold>-3.1853429391048849e-004</threshold> 14922 <left_val>-0.2937808036804199</left_val> 14923 <right_val>0.0581624209880829</right_val></_></_> 14924 <_> 14925 <!-- tree 65 --> 14926 <_> 14927 <!-- root node --> 14928 <feature> 14929 <rects> 14930 <_>7 16 8 7 -1.</_> 14931 <_>9 16 4 7 2.</_></rects> 14932 <tilted>0</tilted></feature> 14933 <threshold>1.7543470021337271e-003</threshold> 14934 <left_val>0.0268584899604321</left_val> 14935 <right_val>-0.1522563993930817</right_val></_></_> 14936 <_> 14937 <!-- tree 66 --> 14938 <_> 14939 <!-- root node --> 14940 <feature> 14941 <rects> 14942 <_>3 14 10 5 -1.</_> 14943 <_>8 14 5 5 2.</_></rects> 14944 <tilted>0</tilted></feature> 14945 <threshold>1.2951970566064119e-003</threshold> 14946 <left_val>-0.0717691183090210</left_val> 14947 <right_val>0.3810122907161713</right_val></_></_> 14948 <_> 14949 <!-- tree 67 --> 14950 <_> 14951 <!-- root node --> 14952 <feature> 14953 <rects> 14954 <_>12 9 3 14 -1.</_> 14955 <_>13 9 1 14 3.</_></rects> 14956 <tilted>0</tilted></feature> 14957 <threshold>0.0205491408705711</threshold> 14958 <left_val>-0.0231714304536581</left_val> 14959 <right_val>0.2722831964492798</right_val></_></_> 14960 <_> 14961 <!-- tree 68 --> 14962 <_> 14963 <!-- root node --> 14964 <feature> 14965 <rects> 14966 <_>4 9 3 14 -1.</_> 14967 <_>5 9 1 14 3.</_></rects> 14968 <tilted>0</tilted></feature> 14969 <threshold>2.7475480455905199e-003</threshold> 14970 <left_val>0.0672073066234589</left_val> 14971 <right_val>-0.2716295123100281</right_val></_></_> 14972 <_> 14973 <!-- tree 69 --> 14974 <_> 14975 <!-- root node --> 14976 <feature> 14977 <rects> 14978 <_>10 9 6 14 -1.</_> 14979 <_>13 9 3 7 2.</_> 14980 <_>10 16 3 7 2.</_></rects> 14981 <tilted>0</tilted></feature> 14982 <threshold>5.2633951418101788e-003</threshold> 14983 <left_val>-0.1393160969018936</left_val> 14984 <right_val>0.1182122975587845</right_val></_></_> 14985 <_> 14986 <!-- tree 70 --> 14987 <_> 14988 <!-- root node --> 14989 <feature> 14990 <rects> 14991 <_>6 0 6 5 -1.</_> 14992 <_>9 0 3 5 2.</_></rects> 14993 <tilted>0</tilted></feature> 14994 <threshold>-5.2199261263012886e-003</threshold> 14995 <left_val>-0.3321351110935211</left_val> 14996 <right_val>0.0473291911184788</right_val></_></_> 14997 <_> 14998 <!-- tree 71 --> 14999 <_> 15000 <!-- root node --> 15001 <feature> 15002 <rects> 15003 <_>7 0 6 8 -1.</_> 15004 <_>7 4 6 4 2.</_></rects> 15005 <tilted>0</tilted></feature> 15006 <threshold>9.9096707999706268e-003</threshold> 15007 <left_val>-0.0697067826986313</left_val> 15008 <right_val>0.1995428055524826</right_val></_></_> 15009 <_> 15010 <!-- tree 72 --> 15011 <_> 15012 <!-- root node --> 15013 <feature> 15014 <rects> 15015 <_>2 0 11 21 -1.</_> 15016 <_>2 7 11 7 3.</_></rects> 15017 <tilted>0</tilted></feature> 15018 <threshold>-0.1033437997102737</threshold> 15019 <left_val>0.4241856038570404</left_val> 15020 <right_val>-0.0398962683975697</right_val></_></_> 15021 <_> 15022 <!-- tree 73 --> 15023 <_> 15024 <!-- root node --> 15025 <feature> 15026 <rects> 15027 <_>8 8 4 12 -1.</_> 15028 <_>8 12 4 4 3.</_></rects> 15029 <tilted>0</tilted></feature> 15030 <threshold>-0.0133223198354244</threshold> 15031 <left_val>-0.2550886869430542</left_val> 15032 <right_val>0.0413510315120220</right_val></_></_> 15033 <_> 15034 <!-- tree 74 --> 15035 <_> 15036 <!-- root node --> 15037 <feature> 15038 <rects> 15039 <_>3 9 6 14 -1.</_> 15040 <_>3 9 3 7 2.</_> 15041 <_>6 16 3 7 2.</_></rects> 15042 <tilted>0</tilted></feature> 15043 <threshold>1.7832260346040130e-003</threshold> 15044 <left_val>-0.1766443997621536</left_val> 15045 <right_val>0.1033623963594437</right_val></_></_> 15046 <_> 15047 <!-- tree 75 --> 15048 <_> 15049 <!-- root node --> 15050 <feature> 15051 <rects> 15052 <_>10 7 8 7 -1.</_> 15053 <_>12 7 4 7 2.</_></rects> 15054 <tilted>0</tilted></feature> 15055 <threshold>0.0632823333144188</threshold> 15056 <left_val>0.0123956799507141</left_val> 15057 <right_val>-0.4635525047779083</right_val></_></_> 15058 <_> 15059 <!-- tree 76 --> 15060 <_> 15061 <!-- root node --> 15062 <feature> 15063 <rects> 15064 <_>1 7 8 7 -1.</_> 15065 <_>3 7 4 7 2.</_></rects> 15066 <tilted>0</tilted></feature> 15067 <threshold>-5.1022358238697052e-003</threshold> 15068 <left_val>0.4067063927650452</left_val> 15069 <right_val>-0.0501934513449669</right_val></_></_> 15070 <_> 15071 <!-- tree 77 --> 15072 <_> 15073 <!-- root node --> 15074 <feature> 15075 <rects> 15076 <_>5 2 9 20 -1.</_> 15077 <_>8 2 3 20 3.</_></rects> 15078 <tilted>0</tilted></feature> 15079 <threshold>0.0398915298283100</threshold> 15080 <left_val>0.0372191295027733</left_val> 15081 <right_val>-0.5569645166397095</right_val></_></_></trees> 15082 <stage_threshold>-30.6646995544433590</stage_threshold> 15083 <parent>25</parent> 15084 <next>-1</next></_></stages></haarcascade_lowerbody> 15085 </opencv_storage> 15086