1 <?xml version="1.0"?> 2 <!-- 3 Tree-based 20x20 right eye detector. 4 The detector is trained by 6665 positive samples from FERET, VALID and BioID face databases. 5 Created by Shiqi Yu (http://yushiqi.cn/research/eyedetection). 6 7 //////////////////////////////////////////////////////////////////////////////////////// 8 9 IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 10 11 By downloading, copying, installing or using the software you agree to this license. 12 If you do not agree to this license, do not download, install, 13 copy or use the software. 14 15 16 Intel License Agreement 17 For Open Source Computer Vision Library 18 19 Copyright (C) 2000, Intel Corporation, all rights reserved. 20 Third party copyrights are property of their respective owners. 21 22 Redistribution and use in source and binary forms, with or without modification, 23 are permitted provided that the following conditions are met: 24 25 * Redistribution's of source code must retain the above copyright notice, 26 this list of conditions and the following disclaimer. 27 28 * Redistribution's in binary form must reproduce the above copyright notice, 29 this list of conditions and the following disclaimer in the documentation 30 and/or other materials provided with the distribution. 31 32 * The name of Intel Corporation may not be used to endorse or promote products 33 derived from this software without specific prior written permission. 34 35 This software is provided by the copyright holders and contributors "as is" and 36 any express or implied warranties, including, but not limited to, the implied 37 warranties of merchantability and fitness for a particular purpose are disclaimed. 38 In no event shall the Intel Corporation or contributors be liable for any direct, 39 indirect, incidental, special, exemplary, or consequential damages 40 (including, but not limited to, procurement of substitute goods or services; 41 loss of use, data, or profits; or business interruption) however caused 42 and on any theory of liability, whether in contract, strict liability, 43 or tort (including negligence or otherwise) arising in any way out of 44 the use of this software, even if advised of the possibility of such damage. 45 --> 46 <opencv_storage> 47 <haarcascade_righteye type_id="opencv-haar-classifier"> 48 <size> 49 20 20</size> 50 <stages> 51 <_> 52 <!-- stage 0 --> 53 <trees> 54 <_> 55 <!-- tree 0 --> 56 <_> 57 <!-- root node --> 58 <feature> 59 <rects> 60 <_> 61 8 7 3 12 -1.</_> 62 <_> 63 8 11 3 4 3.</_></rects> 64 <tilted>0</tilted></feature> 65 <threshold>-0.0482105500996113</threshold> 66 <left_node>1</left_node> 67 <right_val>-0.8614044785499573</right_val></_> 68 <_> 69 <!-- node 1 --> 70 <feature> 71 <rects> 72 <_> 73 8 7 8 3 -1.</_> 74 <_> 75 10 9 4 3 2.</_></rects> 76 <tilted>1</tilted></feature> 77 <threshold>-0.0415761992335320</threshold> 78 <left_val>0.9176905751228333</left_val> 79 <right_val>-0.2128400951623917</right_val></_></_> 80 <_> 81 <!-- tree 1 --> 82 <_> 83 <!-- root node --> 84 <feature> 85 <rects> 86 <_> 87 9 13 2 6 -1.</_> 88 <_> 89 9 16 2 3 2.</_></rects> 90 <tilted>0</tilted></feature> 91 <threshold>9.3528684228658676e-03</threshold> 92 <left_val>-0.6978576779365540</left_val> 93 <right_node>1</right_node></_> 94 <_> 95 <!-- node 1 --> 96 <feature> 97 <rects> 98 <_> 99 8 2 12 8 -1.</_> 100 <_> 101 11 2 6 8 2.</_></rects> 102 <tilted>0</tilted></feature> 103 <threshold>-2.2144919785205275e-04</threshold> 104 <left_val>0.7952337265014648</left_val> 105 <right_val>-0.4894809126853943</right_val></_></_> 106 <_> 107 <!-- tree 2 --> 108 <_> 109 <!-- root node --> 110 <feature> 111 <rects> 112 <_> 113 14 0 6 6 -1.</_> 114 <_> 115 14 3 6 3 2.</_></rects> 116 <tilted>0</tilted></feature> 117 <threshold>-0.0218533501029015</threshold> 118 <left_val>0.7057464122772217</left_val> 119 <right_node>1</right_node></_> 120 <_> 121 <!-- node 1 --> 122 <feature> 123 <rects> 124 <_> 125 8 1 5 12 -1.</_> 126 <_> 127 8 4 5 6 2.</_></rects> 128 <tilted>0</tilted></feature> 129 <threshold>0.0996729284524918</threshold> 130 <left_val>-0.7066624164581299</left_val> 131 <right_val>0.7921097874641418</right_val></_></_> 132 <_> 133 <!-- tree 3 --> 134 <_> 135 <!-- root node --> 136 <feature> 137 <rects> 138 <_> 139 1 8 3 12 -1.</_> 140 <_> 141 1 12 3 4 3.</_></rects> 142 <tilted>0</tilted></feature> 143 <threshold>-0.0216648206114769</threshold> 144 <left_node>1</left_node> 145 <right_val>-0.6089860796928406</right_val></_> 146 <_> 147 <!-- node 1 --> 148 <feature> 149 <rects> 150 <_> 151 0 11 2 7 -1.</_> 152 <_> 153 1 11 1 7 2.</_></rects> 154 <tilted>0</tilted></feature> 155 <threshold>-7.5680727604776621e-04</threshold> 156 <left_val>0.7168570160865784</left_val> 157 <right_val>-0.3046456873416901</right_val></_></_> 158 <_> 159 <!-- tree 4 --> 160 <_> 161 <!-- root node --> 162 <feature> 163 <rects> 164 <_> 165 6 12 9 7 -1.</_> 166 <_> 167 9 12 3 7 3.</_></rects> 168 <tilted>0</tilted></feature> 169 <threshold>-0.0133330496028066</threshold> 170 <left_node>1</left_node> 171 <right_val>-0.4684469103813171</right_val></_> 172 <_> 173 <!-- node 1 --> 174 <feature> 175 <rects> 176 <_> 177 13 4 6 9 -1.</_> 178 <_> 179 15 4 2 9 3.</_></rects> 180 <tilted>0</tilted></feature> 181 <threshold>9.2925298959016800e-03</threshold> 182 <left_val>0.6423593163490295</left_val> 183 <right_val>-0.5118042826652527</right_val></_></_></trees> 184 <stage_threshold>-2.2325520515441895</stage_threshold> 185 <parent>-1</parent> 186 <next>-1</next></_> 187 <_> 188 <!-- stage 1 --> 189 <trees> 190 <_> 191 <!-- tree 0 --> 192 <_> 193 <!-- root node --> 194 <feature> 195 <rects> 196 <_> 197 4 7 12 12 -1.</_> 198 <_> 199 8 11 4 4 9.</_></rects> 200 <tilted>0</tilted></feature> 201 <threshold>-0.3394871950149536</threshold> 202 <left_val>0.7791326045989990</left_val> 203 <right_node>1</right_node></_> 204 <_> 205 <!-- node 1 --> 206 <feature> 207 <rects> 208 <_> 209 15 0 4 20 -1.</_> 210 <_> 211 15 5 4 10 2.</_></rects> 212 <tilted>0</tilted></feature> 213 <threshold>-0.1367247998714447</threshold> 214 <left_val>0.2642127871513367</left_val> 215 <right_val>-0.8791009187698364</right_val></_></_> 216 <_> 217 <!-- tree 1 --> 218 <_> 219 <!-- root node --> 220 <feature> 221 <rects> 222 <_> 223 0 12 5 8 -1.</_> 224 <_> 225 0 16 5 4 2.</_></rects> 226 <tilted>0</tilted></feature> 227 <threshold>0.0313945002853870</threshold> 228 <left_val>-0.6995670199394226</left_val> 229 <right_node>1</right_node></_> 230 <_> 231 <!-- node 1 --> 232 <feature> 233 <rects> 234 <_> 235 8 2 12 8 -1.</_> 236 <_> 237 12 2 4 8 3.</_></rects> 238 <tilted>0</tilted></feature> 239 <threshold>-0.0108281401917338</threshold> 240 <left_val>0.7650449275970459</left_val> 241 <right_val>-0.4371921122074127</right_val></_></_> 242 <_> 243 <!-- tree 2 --> 244 <_> 245 <!-- root node --> 246 <feature> 247 <rects> 248 <_> 249 19 0 1 8 -1.</_> 250 <_> 251 19 4 1 4 2.</_></rects> 252 <tilted>0</tilted></feature> 253 <threshold>-4.2506768368184566e-03</threshold> 254 <left_node>1</left_node> 255 <right_val>-0.5756158232688904</right_val></_> 256 <_> 257 <!-- node 1 --> 258 <feature> 259 <rects> 260 <_> 261 9 7 3 12 -1.</_> 262 <_> 263 9 11 3 4 3.</_></rects> 264 <tilted>0</tilted></feature> 265 <threshold>-0.0226754695177078</threshold> 266 <left_val>0.7408059239387512</left_val> 267 <right_val>-0.3667725026607513</right_val></_></_> 268 <_> 269 <!-- tree 3 --> 270 <_> 271 <!-- root node --> 272 <feature> 273 <rects> 274 <_> 275 1 2 8 8 -1.</_> 276 <_> 277 1 6 8 4 2.</_></rects> 278 <tilted>0</tilted></feature> 279 <threshold>0.0391614809632301</threshold> 280 <left_node>1</left_node> 281 <right_val>0.6404516100883484</right_val></_> 282 <_> 283 <!-- node 1 --> 284 <feature> 285 <rects> 286 <_> 287 0 12 4 4 -1.</_> 288 <_> 289 2 12 2 4 2.</_></rects> 290 <tilted>0</tilted></feature> 291 <threshold>-3.1934089493006468e-03</threshold> 292 <left_val>0.1604758948087692</left_val> 293 <right_val>-0.7101097702980042</right_val></_></_> 294 <_> 295 <!-- tree 4 --> 296 <_> 297 <!-- root node --> 298 <feature> 299 <rects> 300 <_> 301 9 7 6 8 -1.</_> 302 <_> 303 9 7 3 4 2.</_> 304 <_> 305 12 11 3 4 2.</_></rects> 306 <tilted>0</tilted></feature> 307 <threshold>0.0253219902515411</threshold> 308 <left_node>1</left_node> 309 <right_val>0.4957486093044281</right_val></_> 310 <_> 311 <!-- node 1 --> 312 <feature> 313 <rects> 314 <_> 315 13 18 7 2 -1.</_> 316 <_> 317 13 19 7 1 2.</_></rects> 318 <tilted>0</tilted></feature> 319 <threshold>7.7583367237821221e-04</threshold> 320 <left_val>-0.7173789739608765</left_val> 321 <right_val>-0.0185817703604698</right_val></_></_></trees> 322 <stage_threshold>-2.1598019599914551</stage_threshold> 323 <parent>0</parent> 324 <next>-1</next></_> 325 <_> 326 <!-- stage 2 --> 327 <trees> 328 <_> 329 <!-- tree 0 --> 330 <_> 331 <!-- root node --> 332 <feature> 333 <rects> 334 <_> 335 4 7 12 12 -1.</_> 336 <_> 337 8 11 4 4 9.</_></rects> 338 <tilted>0</tilted></feature> 339 <threshold>-0.2655405998229980</threshold> 340 <left_node>1</left_node> 341 <right_val>-0.8471245169639587</right_val></_> 342 <_> 343 <!-- node 1 --> 344 <feature> 345 <rects> 346 <_> 347 0 8 5 12 -1.</_> 348 <_> 349 0 12 5 4 3.</_></rects> 350 <tilted>0</tilted></feature> 351 <threshold>-0.0225327797234058</threshold> 352 <left_val>0.8797718882560730</left_val> 353 <right_val>-0.3339469134807587</right_val></_></_> 354 <_> 355 <!-- tree 1 --> 356 <_> 357 <!-- root node --> 358 <feature> 359 <rects> 360 <_> 361 16 0 4 8 -1.</_> 362 <_> 363 18 0 2 8 2.</_></rects> 364 <tilted>0</tilted></feature> 365 <threshold>8.5310067515820265e-04</threshold> 366 <left_val>-0.8203244805335999</left_val> 367 <right_node>1</right_node></_> 368 <_> 369 <!-- node 1 --> 370 <feature> 371 <rects> 372 <_> 373 16 12 1 8 -1.</_> 374 <_> 375 16 16 1 4 2.</_></rects> 376 <tilted>0</tilted></feature> 377 <threshold>1.5820249973330647e-04</threshold> 378 <left_val>-0.7517635822296143</left_val> 379 <right_val>0.6776971220970154</right_val></_></_> 380 <_> 381 <!-- tree 2 --> 382 <_> 383 <!-- root node --> 384 <feature> 385 <rects> 386 <_> 387 9 1 9 9 -1.</_> 388 <_> 389 12 1 3 9 3.</_></rects> 390 <tilted>0</tilted></feature> 391 <threshold>-1.0837490117410198e-04</threshold> 392 <left_node>1</left_node> 393 <right_val>-0.8331400156021118</right_val></_> 394 <_> 395 <!-- node 1 --> 396 <feature> 397 <rects> 398 <_> 399 16 16 1 3 -1.</_> 400 <_> 401 15 17 1 1 3.</_></rects> 402 <tilted>1</tilted></feature> 403 <threshold>2.6810260023921728e-03</threshold> 404 <left_val>0.5384474992752075</left_val> 405 <right_val>-0.7653415799140930</right_val></_></_> 406 <_> 407 <!-- tree 3 --> 408 <_> 409 <!-- root node --> 410 <feature> 411 <rects> 412 <_> 413 2 14 2 4 -1.</_> 414 <_> 415 2 16 2 2 2.</_></rects> 416 <tilted>0</tilted></feature> 417 <threshold>8.5202371701598167e-04</threshold> 418 <left_val>-0.7751489877700806</left_val> 419 <right_node>1</right_node></_> 420 <_> 421 <!-- node 1 --> 422 <feature> 423 <rects> 424 <_> 425 6 12 9 3 -1.</_> 426 <_> 427 9 12 3 3 3.</_></rects> 428 <tilted>0</tilted></feature> 429 <threshold>-0.0122417397797108</threshold> 430 <left_val>0.6324015259742737</left_val> 431 <right_val>-0.6339520812034607</right_val></_></_> 432 <_> 433 <!-- tree 4 --> 434 <_> 435 <!-- root node --> 436 <feature> 437 <rects> 438 <_> 439 0 18 5 2 -1.</_> 440 <_> 441 0 19 5 1 2.</_></rects> 442 <tilted>0</tilted></feature> 443 <threshold>6.2314196838997304e-05</threshold> 444 <left_node>1</left_node> 445 <right_val>0.4429041147232056</right_val></_> 446 <_> 447 <!-- node 1 --> 448 <feature> 449 <rects> 450 <_> 451 1 7 18 12 -1.</_> 452 <_> 453 7 11 6 4 9.</_></rects> 454 <tilted>0</tilted></feature> 455 <threshold>-0.7191110849380493</threshold> 456 <left_val>0.8013592958450317</left_val> 457 <right_val>-0.5343109965324402</right_val></_></_> 458 <_> 459 <!-- tree 5 --> 460 <_> 461 <!-- root node --> 462 <feature> 463 <rects> 464 <_> 465 4 0 16 12 -1.</_> 466 <_> 467 4 0 8 6 2.</_> 468 <_> 469 12 6 8 6 2.</_></rects> 470 <tilted>0</tilted></feature> 471 <threshold>-0.0242803394794464</threshold> 472 <left_node>1</left_node> 473 <right_val>-0.6779791712760925</right_val></_> 474 <_> 475 <!-- node 1 --> 476 <feature> 477 <rects> 478 <_> 479 8 3 2 5 -1.</_> 480 <_> 481 9 3 1 5 2.</_></rects> 482 <tilted>0</tilted></feature> 483 <threshold>3.4558640327304602e-03</threshold> 484 <left_val>0.4903061091899872</left_val> 485 <right_val>-0.8844798207283020</right_val></_></_> 486 <_> 487 <!-- tree 6 --> 488 <_> 489 <!-- root node --> 490 <feature> 491 <rects> 492 <_> 493 17 17 1 2 -1.</_> 494 <_> 495 17 17 1 1 2.</_></rects> 496 <tilted>1</tilted></feature> 497 <threshold>-6.2993327446747571e-05</threshold> 498 <left_node>1</left_node> 499 <right_val>-0.5788341760635376</right_val></_> 500 <_> 501 <!-- node 1 --> 502 <feature> 503 <rects> 504 <_> 505 18 16 1 3 -1.</_> 506 <_> 507 17 17 1 1 3.</_></rects> 508 <tilted>1</tilted></feature> 509 <threshold>-4.6443562023341656e-03</threshold> 510 <left_val>-0.8587880730628967</left_val> 511 <right_val>0.5245460271835327</right_val></_></_> 512 <_> 513 <!-- tree 7 --> 514 <_> 515 <!-- root node --> 516 <feature> 517 <rects> 518 <_> 519 0 9 2 6 -1.</_> 520 <_> 521 1 9 1 6 2.</_></rects> 522 <tilted>0</tilted></feature> 523 <threshold>-4.0299328247783706e-05</threshold> 524 <left_node>1</left_node> 525 <right_val>-0.5271345973014832</right_val></_> 526 <_> 527 <!-- node 1 --> 528 <feature> 529 <rects> 530 <_> 531 3 3 3 4 -1.</_> 532 <_> 533 4 3 1 4 3.</_></rects> 534 <tilted>0</tilted></feature> 535 <threshold>-3.7485519424080849e-03</threshold> 536 <left_val>-0.8562619090080261</left_val> 537 <right_val>0.4894461035728455</right_val></_></_></trees> 538 <stage_threshold>-2.3451159000396729</stage_threshold> 539 <parent>1</parent> 540 <next>-1</next></_> 541 <_> 542 <!-- stage 3 --> 543 <trees> 544 <_> 545 <!-- tree 0 --> 546 <_> 547 <!-- root node --> 548 <feature> 549 <rects> 550 <_> 551 4 7 12 12 -1.</_> 552 <_> 553 8 11 4 4 9.</_></rects> 554 <tilted>0</tilted></feature> 555 <threshold>-0.3837707936763763</threshold> 556 <left_val>0.7171502113342285</left_val> 557 <right_node>1</right_node></_> 558 <_> 559 <!-- node 1 --> 560 <feature> 561 <rects> 562 <_> 563 10 0 7 8 -1.</_> 564 <_> 565 10 4 7 4 2.</_></rects> 566 <tilted>0</tilted></feature> 567 <threshold>-0.1383703052997589</threshold> 568 <left_val>0.3439235985279083</left_val> 569 <right_val>-0.7993127703666687</right_val></_></_> 570 <_> 571 <!-- tree 1 --> 572 <_> 573 <!-- root node --> 574 <feature> 575 <rects> 576 <_> 577 18 0 2 9 -1.</_> 578 <_> 579 19 0 1 9 2.</_></rects> 580 <tilted>0</tilted></feature> 581 <threshold>3.3107071067206562e-04</threshold> 582 <left_val>-0.6835243105888367</left_val> 583 <right_node>1</right_node></_> 584 <_> 585 <!-- node 1 --> 586 <feature> 587 <rects> 588 <_> 589 4 13 1 4 -1.</_> 590 <_> 591 4 13 1 2 2.</_></rects> 592 <tilted>1</tilted></feature> 593 <threshold>-5.1273438148200512e-03</threshold> 594 <left_val>0.5825061798095703</left_val> 595 <right_val>-0.4095500111579895</right_val></_></_> 596 <_> 597 <!-- tree 2 --> 598 <_> 599 <!-- root node --> 600 <feature> 601 <rects> 602 <_> 603 10 8 6 2 -1.</_> 604 <_> 605 12 10 2 2 3.</_></rects> 606 <tilted>1</tilted></feature> 607 <threshold>-0.0261006802320480</threshold> 608 <left_node>1</left_node> 609 <right_val>-0.4371330142021179</right_val></_> 610 <_> 611 <!-- node 1 --> 612 <feature> 613 <rects> 614 <_> 615 14 11 4 7 -1.</_> 616 <_> 617 15 11 2 7 2.</_></rects> 618 <tilted>0</tilted></feature> 619 <threshold>-1.0628979653120041e-03</threshold> 620 <left_val>0.7068073749542236</left_val> 621 <right_val>-0.2681793868541718</right_val></_></_> 622 <_> 623 <!-- tree 3 --> 624 <_> 625 <!-- root node --> 626 <feature> 627 <rects> 628 <_> 629 4 0 13 8 -1.</_> 630 <_> 631 4 2 13 4 2.</_></rects> 632 <tilted>0</tilted></feature> 633 <threshold>-0.0978548526763916</threshold> 634 <left_val>0.7394003868103027</left_val> 635 <right_node>1</right_node></_> 636 <_> 637 <!-- node 1 --> 638 <feature> 639 <rects> 640 <_> 641 9 1 7 8 -1.</_> 642 <_> 643 9 5 7 4 2.</_></rects> 644 <tilted>0</tilted></feature> 645 <threshold>-0.1182982027530670</threshold> 646 <left_val>0.6381418108940125</left_val> 647 <right_val>-0.3872187137603760</right_val></_></_> 648 <_> 649 <!-- tree 4 --> 650 <_> 651 <!-- root node --> 652 <feature> 653 <rects> 654 <_> 655 7 0 12 9 -1.</_> 656 <_> 657 10 0 6 9 2.</_></rects> 658 <tilted>0</tilted></feature> 659 <threshold>-7.5409049168229103e-03</threshold> 660 <left_node>1</left_node> 661 <right_val>-0.4880301952362061</right_val></_> 662 <_> 663 <!-- node 1 --> 664 <feature> 665 <rects> 666 <_> 667 14 3 4 4 -1.</_> 668 <_> 669 15 3 2 4 2.</_></rects> 670 <tilted>0</tilted></feature> 671 <threshold>2.6851659640669823e-03</threshold> 672 <left_val>0.3908346891403198</left_val> 673 <right_val>-0.6556153893470764</right_val></_></_> 674 <_> 675 <!-- tree 5 --> 676 <_> 677 <!-- root node --> 678 <feature> 679 <rects> 680 <_> 681 0 16 4 4 -1.</_> 682 <_> 683 0 18 4 2 2.</_></rects> 684 <tilted>0</tilted></feature> 685 <threshold>1.6870240215212107e-03</threshold> 686 <left_val>-0.4989174902439117</left_val> 687 <right_node>1</right_node></_> 688 <_> 689 <!-- node 1 --> 690 <feature> 691 <rects> 692 <_> 693 3 17 2 1 -1.</_> 694 <_> 695 3 17 1 1 2.</_></rects> 696 <tilted>1</tilted></feature> 697 <threshold>-3.8136160001158714e-03</threshold> 698 <left_val>-0.6640558838844299</left_val> 699 <right_val>0.4065074920654297</right_val></_></_> 700 <_> 701 <!-- tree 6 --> 702 <_> 703 <!-- root node --> 704 <feature> 705 <rects> 706 <_> 707 17 16 1 3 -1.</_> 708 <_> 709 16 17 1 1 3.</_></rects> 710 <tilted>1</tilted></feature> 711 <threshold>2.0289309322834015e-03</threshold> 712 <left_node>1</left_node> 713 <right_val>-0.6998921036720276</right_val></_> 714 <_> 715 <!-- node 1 --> 716 <feature> 717 <rects> 718 <_> 719 11 10 6 4 -1.</_> 720 <_> 721 10 11 6 2 2.</_></rects> 722 <tilted>1</tilted></feature> 723 <threshold>-7.6308869756758213e-03</threshold> 724 <left_val>0.4320684075355530</left_val> 725 <right_val>-0.2966496944427490</right_val></_></_> 726 <_> 727 <!-- tree 7 --> 728 <_> 729 <!-- root node --> 730 <feature> 731 <rects> 732 <_> 733 19 0 1 4 -1.</_> 734 <_> 735 19 2 1 2 2.</_></rects> 736 <tilted>0</tilted></feature> 737 <threshold>-3.3815231290645897e-04</threshold> 738 <left_node>1</left_node> 739 <right_val>-0.4680854082107544</right_val></_> 740 <_> 741 <!-- node 1 --> 742 <feature> 743 <rects> 744 <_> 745 17 0 3 3 -1.</_> 746 <_> 747 18 1 1 1 9.</_></rects> 748 <tilted>0</tilted></feature> 749 <threshold>7.5163291767239571e-03</threshold> 750 <left_val>0.3652149140834808</left_val> 751 <right_val>-0.7601454257965088</right_val></_></_> 752 <_> 753 <!-- tree 8 --> 754 <_> 755 <!-- root node --> 756 <feature> 757 <rects> 758 <_> 759 2 1 12 6 -1.</_> 760 <_> 761 2 4 12 3 2.</_></rects> 762 <tilted>0</tilted></feature> 763 <threshold>0.0614795088768005</threshold> 764 <left_node>1</left_node> 765 <right_val>0.5699062943458557</right_val></_> 766 <_> 767 <!-- node 1 --> 768 <feature> 769 <rects> 770 <_> 771 19 2 1 16 -1.</_> 772 <_> 773 15 6 1 8 2.</_></rects> 774 <tilted>1</tilted></feature> 775 <threshold>-0.0462865792214870</threshold> 776 <left_val>0.2262506037950516</left_val> 777 <right_val>-0.4533078074455261</right_val></_></_> 778 <_> 779 <!-- tree 9 --> 780 <_> 781 <!-- root node --> 782 <feature> 783 <rects> 784 <_> 785 12 2 4 6 -1.</_> 786 <_> 787 13 2 2 6 2.</_></rects> 788 <tilted>0</tilted></feature> 789 <threshold>4.6903551556169987e-03</threshold> 790 <left_node>1</left_node> 791 <right_val>-0.7728670835494995</right_val></_> 792 <_> 793 <!-- node 1 --> 794 <feature> 795 <rects> 796 <_> 797 11 3 3 3 -1.</_> 798 <_> 799 12 3 1 3 3.</_></rects> 800 <tilted>0</tilted></feature> 801 <threshold>1.8803169950842857e-03</threshold> 802 <left_val>0.2734912037849426</left_val> 803 <right_val>-0.6666783094406128</right_val></_></_></trees> 804 <stage_threshold>-2.3431489467620850</stage_threshold> 805 <parent>2</parent> 806 <next>-1</next></_> 807 <_> 808 <!-- stage 4 --> 809 <trees> 810 <_> 811 <!-- tree 0 --> 812 <_> 813 <!-- root node --> 814 <feature> 815 <rects> 816 <_> 817 1 7 18 12 -1.</_> 818 <_> 819 7 11 6 4 9.</_></rects> 820 <tilted>0</tilted></feature> 821 <threshold>-0.5542067289352417</threshold> 822 <left_node>1</left_node> 823 <right_val>-0.6062026023864746</right_val></_> 824 <_> 825 <!-- node 1 --> 826 <feature> 827 <rects> 828 <_> 829 8 1 12 9 -1.</_> 830 <_> 831 12 1 4 9 3.</_></rects> 832 <tilted>0</tilted></feature> 833 <threshold>-6.9329799152910709e-03</threshold> 834 <left_val>0.7854202985763550</left_val> 835 <right_val>-0.3552212119102478</right_val></_></_> 836 <_> 837 <!-- tree 1 --> 838 <_> 839 <!-- root node --> 840 <feature> 841 <rects> 842 <_> 843 18 0 2 10 -1.</_> 844 <_> 845 18 5 2 5 2.</_></rects> 846 <tilted>0</tilted></feature> 847 <threshold>-0.0211699604988098</threshold> 848 <left_val>0.5294768810272217</left_val> 849 <right_node>1</right_node></_> 850 <_> 851 <!-- node 1 --> 852 <feature> 853 <rects> 854 <_> 855 4 5 12 15 -1.</_> 856 <_> 857 8 10 4 5 9.</_></rects> 858 <tilted>0</tilted></feature> 859 <threshold>-0.6742839813232422</threshold> 860 <left_val>0.4606522023677826</left_val> 861 <right_val>-0.7005820870399475</right_val></_></_> 862 <_> 863 <!-- tree 2 --> 864 <_> 865 <!-- root node --> 866 <feature> 867 <rects> 868 <_> 869 1 8 4 12 -1.</_> 870 <_> 871 1 12 4 4 3.</_></rects> 872 <tilted>0</tilted></feature> 873 <threshold>-0.0427250787615776</threshold> 874 <left_node>1</left_node> 875 <right_val>-0.5990480780601501</right_val></_> 876 <_> 877 <!-- node 1 --> 878 <feature> 879 <rects> 880 <_> 881 6 13 8 2 -1.</_> 882 <_> 883 8 13 4 2 2.</_></rects> 884 <tilted>0</tilted></feature> 885 <threshold>-0.0101093295961618</threshold> 886 <left_val>0.6810922026634216</left_val> 887 <right_val>-0.2073187977075577</right_val></_></_> 888 <_> 889 <!-- tree 3 --> 890 <_> 891 <!-- root node --> 892 <feature> 893 <rects> 894 <_> 895 16 0 4 15 -1.</_> 896 <_> 897 18 0 2 15 2.</_></rects> 898 <tilted>0</tilted></feature> 899 <threshold>6.5861130133271217e-03</threshold> 900 <left_val>-0.5242084860801697</left_val> 901 <right_node>1</right_node></_> 902 <_> 903 <!-- node 1 --> 904 <feature> 905 <rects> 906 <_> 907 14 0 4 8 -1.</_> 908 <_> 909 15 0 2 8 2.</_></rects> 910 <tilted>0</tilted></feature> 911 <threshold>-7.6380418613553047e-03</threshold> 912 <left_val>-0.7016978263854980</left_val> 913 <right_val>0.4410013854503632</right_val></_></_> 914 <_> 915 <!-- tree 4 --> 916 <_> 917 <!-- root node --> 918 <feature> 919 <rects> 920 <_> 921 5 0 8 9 -1.</_> 922 <_> 923 5 3 8 3 3.</_></rects> 924 <tilted>0</tilted></feature> 925 <threshold>-0.0976815819740295</threshold> 926 <left_val>0.5770874023437500</left_val> 927 <right_node>1</right_node></_> 928 <_> 929 <!-- node 1 --> 930 <feature> 931 <rects> 932 <_> 933 8 0 6 6 -1.</_> 934 <_> 935 10 0 2 6 3.</_></rects> 936 <tilted>0</tilted></feature> 937 <threshold>0.0101973600685596</threshold> 938 <left_val>-0.0985185503959656</left_val> 939 <right_val>-0.8811169862747192</right_val></_></_> 940 <_> 941 <!-- tree 5 --> 942 <_> 943 <!-- root node --> 944 <feature> 945 <rects> 946 <_> 947 10 17 3 3 -1.</_> 948 <_> 949 11 17 1 3 3.</_></rects> 950 <tilted>0</tilted></feature> 951 <threshold>-2.5724549777805805e-03</threshold> 952 <left_val>-0.8323333859443665</left_val> 953 <right_node>1</right_node></_> 954 <_> 955 <!-- node 1 --> 956 <feature> 957 <rects> 958 <_> 959 10 17 4 3 -1.</_> 960 <_> 961 11 17 2 3 2.</_></rects> 962 <tilted>0</tilted></feature> 963 <threshold>2.6594230439513922e-03</threshold> 964 <left_val>0.3099535107612610</left_val> 965 <right_val>-0.8160917758941650</right_val></_></_> 966 <_> 967 <!-- tree 6 --> 968 <_> 969 <!-- root node --> 970 <feature> 971 <rects> 972 <_> 973 14 12 4 4 -1.</_> 974 <_> 975 15 12 2 4 2.</_></rects> 976 <tilted>0</tilted></feature> 977 <threshold>-1.0042720241472125e-03</threshold> 978 <left_node>1</left_node> 979 <right_val>-0.4355852007865906</right_val></_> 980 <_> 981 <!-- node 1 --> 982 <feature> 983 <rects> 984 <_> 985 8 18 4 2 -1.</_> 986 <_> 987 9 18 2 2 2.</_></rects> 988 <tilted>0</tilted></feature> 989 <threshold>2.6080000679939985e-03</threshold> 990 <left_val>0.3356660008430481</left_val> 991 <right_val>-0.8188933134078979</right_val></_></_> 992 <_> 993 <!-- tree 7 --> 994 <_> 995 <!-- root node --> 996 <feature> 997 <rects> 998 <_> 999 6 1 4 5 -1.</_> 1000 <_> 1001 7 1 2 5 2.</_></rects> 1002 <tilted>0</tilted></feature> 1003 <threshold>4.9724509008228779e-03</threshold> 1004 <left_node>1</left_node> 1005 <right_val>-0.7704818248748779</right_val></_> 1006 <_> 1007 <!-- node 1 --> 1008 <feature> 1009 <rects> 1010 <_> 1011 2 0 6 5 -1.</_> 1012 <_> 1013 4 0 2 5 3.</_></rects> 1014 <tilted>0</tilted></feature> 1015 <threshold>0.0122432401403785</threshold> 1016 <left_val>0.2253420054912567</left_val> 1017 <right_val>-0.6869555115699768</right_val></_></_></trees> 1018 <stage_threshold>-2.1268370151519775</stage_threshold> 1019 <parent>3</parent> 1020 <next>-1</next></_> 1021 <_> 1022 <!-- stage 5 --> 1023 <trees> 1024 <_> 1025 <!-- tree 0 --> 1026 <_> 1027 <!-- root node --> 1028 <feature> 1029 <rects> 1030 <_> 1031 8 7 8 3 -1.</_> 1032 <_> 1033 10 9 4 3 2.</_></rects> 1034 <tilted>1</tilted></feature> 1035 <threshold>-0.0577849298715591</threshold> 1036 <left_node>1</left_node> 1037 <right_val>-0.7051600813865662</right_val></_> 1038 <_> 1039 <!-- node 1 --> 1040 <feature> 1041 <rects> 1042 <_> 1043 14 12 4 3 -1.</_> 1044 <_> 1045 15 12 2 3 2.</_></rects> 1046 <tilted>0</tilted></feature> 1047 <threshold>-1.7517809756100178e-03</threshold> 1048 <left_val>0.8565592169761658</left_val> 1049 <right_val>-0.0924034193158150</right_val></_></_> 1050 <_> 1051 <!-- tree 1 --> 1052 <_> 1053 <!-- root node --> 1054 <feature> 1055 <rects> 1056 <_> 1057 10 10 3 4 -1.</_> 1058 <_> 1059 9 11 3 2 2.</_></rects> 1060 <tilted>1</tilted></feature> 1061 <threshold>-0.0115223797038198</threshold> 1062 <left_node>1</left_node> 1063 <right_val>-0.4274964034557343</right_val></_> 1064 <_> 1065 <!-- node 1 --> 1066 <feature> 1067 <rects> 1068 <_> 1069 17 0 2 6 -1.</_> 1070 <_> 1071 17 3 2 3 2.</_></rects> 1072 <tilted>0</tilted></feature> 1073 <threshold>-3.8323760963976383e-03</threshold> 1074 <left_val>0.7591353058815002</left_val> 1075 <right_val>-0.1089404970407486</right_val></_></_> 1076 <_> 1077 <!-- tree 2 --> 1078 <_> 1079 <!-- root node --> 1080 <feature> 1081 <rects> 1082 <_> 1083 1 9 6 9 -1.</_> 1084 <_> 1085 3 12 2 3 9.</_></rects> 1086 <tilted>0</tilted></feature> 1087 <threshold>-0.0809223875403404</threshold> 1088 <left_node>1</left_node> 1089 <right_val>-0.3136476874351501</right_val></_> 1090 <_> 1091 <!-- node 1 --> 1092 <feature> 1093 <rects> 1094 <_> 1095 5 11 8 4 -1.</_> 1096 <_> 1097 9 11 4 4 2.</_></rects> 1098 <tilted>0</tilted></feature> 1099 <threshold>-6.2537011690437794e-03</threshold> 1100 <left_val>0.6999592185020447</left_val> 1101 <right_val>-0.1180569007992744</right_val></_></_> 1102 <_> 1103 <!-- tree 3 --> 1104 <_> 1105 <!-- root node --> 1106 <feature> 1107 <rects> 1108 <_> 1109 1 0 16 6 -1.</_> 1110 <_> 1111 1 3 16 3 2.</_></rects> 1112 <tilted>0</tilted></feature> 1113 <threshold>-0.1222786009311676</threshold> 1114 <left_val>0.5207250118255615</left_val> 1115 <right_node>1</right_node></_> 1116 <_> 1117 <!-- node 1 --> 1118 <feature> 1119 <rects> 1120 <_> 1121 2 0 14 6 -1.</_> 1122 <_> 1123 2 2 14 2 3.</_></rects> 1124 <tilted>0</tilted></feature> 1125 <threshold>-0.0641681104898453</threshold> 1126 <left_val>0.3927274942398071</left_val> 1127 <right_val>-0.4219441115856171</right_val></_></_> 1128 <_> 1129 <!-- tree 4 --> 1130 <_> 1131 <!-- root node --> 1132 <feature> 1133 <rects> 1134 <_> 1135 0 11 2 9 -1.</_> 1136 <_> 1137 1 11 1 9 2.</_></rects> 1138 <tilted>0</tilted></feature> 1139 <threshold>-5.3712888620793819e-04</threshold> 1140 <left_node>1</left_node> 1141 <right_val>-0.4952454864978790</right_val></_> 1142 <_> 1143 <!-- node 1 --> 1144 <feature> 1145 <rects> 1146 <_> 1147 18 11 1 8 -1.</_> 1148 <_> 1149 18 11 1 4 2.</_></rects> 1150 <tilted>1</tilted></feature> 1151 <threshold>-2.8175620827823877e-03</threshold> 1152 <left_val>0.4135014116764069</left_val> 1153 <right_val>-0.3891927897930145</right_val></_></_> 1154 <_> 1155 <!-- tree 5 --> 1156 <_> 1157 <!-- root node --> 1158 <feature> 1159 <rects> 1160 <_> 1161 10 12 3 2 -1.</_> 1162 <_> 1163 11 12 1 2 3.</_></rects> 1164 <tilted>0</tilted></feature> 1165 <threshold>-3.6368549335747957e-03</threshold> 1166 <left_val>0.6761502027511597</left_val> 1167 <right_node>1</right_node></_> 1168 <_> 1169 <!-- node 1 --> 1170 <feature> 1171 <rects> 1172 <_> 1173 11 13 3 1 -1.</_> 1174 <_> 1175 12 13 1 1 3.</_></rects> 1176 <tilted>0</tilted></feature> 1177 <threshold>-1.3223909772932529e-03</threshold> 1178 <left_val>0.4342699944972992</left_val> 1179 <right_val>-0.3764213025569916</right_val></_></_> 1180 <_> 1181 <!-- tree 6 --> 1182 <_> 1183 <!-- root node --> 1184 <feature> 1185 <rects> 1186 <_> 1187 15 0 4 8 -1.</_> 1188 <_> 1189 17 0 2 8 2.</_></rects> 1190 <tilted>0</tilted></feature> 1191 <threshold>3.7143539520911872e-04</threshold> 1192 <left_val>-0.5563088059425354</left_val> 1193 <right_node>1</right_node></_> 1194 <_> 1195 <!-- node 1 --> 1196 <feature> 1197 <rects> 1198 <_> 1199 12 17 4 3 -1.</_> 1200 <_> 1201 14 17 2 3 2.</_></rects> 1202 <tilted>0</tilted></feature> 1203 <threshold>-5.0255712121725082e-03</threshold> 1204 <left_val>-0.5232859253883362</left_val> 1205 <right_val>0.3464682102203369</right_val></_></_> 1206 <_> 1207 <!-- tree 7 --> 1208 <_> 1209 <!-- root node --> 1210 <feature> 1211 <rects> 1212 <_> 1213 15 17 1 2 -1.</_> 1214 <_> 1215 15 17 1 1 2.</_></rects> 1216 <tilted>1</tilted></feature> 1217 <threshold>-9.2711612523999065e-05</threshold> 1218 <left_node>1</left_node> 1219 <right_val>-0.4965266883373260</right_val></_> 1220 <_> 1221 <!-- node 1 --> 1222 <feature> 1223 <rects> 1224 <_> 1225 15 16 1 3 -1.</_> 1226 <_> 1227 14 17 1 1 3.</_></rects> 1228 <tilted>1</tilted></feature> 1229 <threshold>1.9847028888761997e-03</threshold> 1230 <left_val>0.3340164124965668</left_val> 1231 <right_val>-0.6244689226150513</right_val></_></_> 1232 <_> 1233 <!-- tree 8 --> 1234 <_> 1235 <!-- root node --> 1236 <feature> 1237 <rects> 1238 <_> 1239 3 0 14 8 -1.</_> 1240 <_> 1241 3 2 14 4 2.</_></rects> 1242 <tilted>0</tilted></feature> 1243 <threshold>0.0472034402191639</threshold> 1244 <left_node>1</left_node> 1245 <right_val>0.5756261944770813</right_val></_> 1246 <_> 1247 <!-- node 1 --> 1248 <feature> 1249 <rects> 1250 <_> 1251 18 1 1 2 -1.</_> 1252 <_> 1253 18 2 1 1 2.</_></rects> 1254 <tilted>0</tilted></feature> 1255 <threshold>-6.8562600063160062e-05</threshold> 1256 <left_val>0.0261726602911949</left_val> 1257 <right_val>-0.6084907054901123</right_val></_></_> 1258 <_> 1259 <!-- tree 9 --> 1260 <_> 1261 <!-- root node --> 1262 <feature> 1263 <rects> 1264 <_> 1265 6 0 8 3 -1.</_> 1266 <_> 1267 8 0 4 3 2.</_></rects> 1268 <tilted>0</tilted></feature> 1269 <threshold>7.5034219771623611e-03</threshold> 1270 <left_node>1</left_node> 1271 <right_val>-0.6857675909996033</right_val></_> 1272 <_> 1273 <!-- node 1 --> 1274 <feature> 1275 <rects> 1276 <_> 1277 9 4 1 9 -1.</_> 1278 <_> 1279 9 7 1 3 3.</_></rects> 1280 <tilted>0</tilted></feature> 1281 <threshold>6.3834791071712971e-03</threshold> 1282 <left_val>-0.1731251031160355</left_val> 1283 <right_val>0.3856042921543121</right_val></_></_></trees> 1284 <stage_threshold>-2.0604379177093506</stage_threshold> 1285 <parent>4</parent> 1286 <next>-1</next></_> 1287 <_> 1288 <!-- stage 6 --> 1289 <trees> 1290 <_> 1291 <!-- tree 0 --> 1292 <_> 1293 <!-- root node --> 1294 <feature> 1295 <rects> 1296 <_> 1297 6 13 9 2 -1.</_> 1298 <_> 1299 9 13 3 2 3.</_></rects> 1300 <tilted>0</tilted></feature> 1301 <threshold>-0.0155844502151012</threshold> 1302 <left_node>1</left_node> 1303 <right_val>-0.6664896011352539</right_val></_> 1304 <_> 1305 <!-- node 1 --> 1306 <feature> 1307 <rects> 1308 <_> 1309 0 13 5 6 -1.</_> 1310 <_> 1311 0 16 5 3 2.</_></rects> 1312 <tilted>0</tilted></feature> 1313 <threshold>0.0145570198073983</threshold> 1314 <left_val>-0.4374513030052185</left_val> 1315 <right_val>0.7222781777381897</right_val></_></_> 1316 <_> 1317 <!-- tree 1 --> 1318 <_> 1319 <!-- root node --> 1320 <feature> 1321 <rects> 1322 <_> 1323 13 12 6 4 -1.</_> 1324 <_> 1325 15 12 2 4 3.</_></rects> 1326 <tilted>0</tilted></feature> 1327 <threshold>-5.7889888994395733e-03</threshold> 1328 <left_node>1</left_node> 1329 <right_val>-0.4318324029445648</right_val></_> 1330 <_> 1331 <!-- node 1 --> 1332 <feature> 1333 <rects> 1334 <_> 1335 4 6 12 2 -1.</_> 1336 <_> 1337 8 10 4 2 3.</_></rects> 1338 <tilted>1</tilted></feature> 1339 <threshold>-0.0819367691874504</threshold> 1340 <left_val>0.6846765279769897</left_val> 1341 <right_val>-0.2254672944545746</right_val></_></_> 1342 <_> 1343 <!-- tree 2 --> 1344 <_> 1345 <!-- root node --> 1346 <feature> 1347 <rects> 1348 <_> 1349 19 0 1 8 -1.</_> 1350 <_> 1351 19 4 1 4 2.</_></rects> 1352 <tilted>0</tilted></feature> 1353 <threshold>-4.2995368130505085e-03</threshold> 1354 <left_node>1</left_node> 1355 <right_val>-0.5240963101387024</right_val></_> 1356 <_> 1357 <!-- node 1 --> 1358 <feature> 1359 <rects> 1360 <_> 1361 8 2 12 8 -1.</_> 1362 <_> 1363 11 2 6 8 2.</_></rects> 1364 <tilted>0</tilted></feature> 1365 <threshold>-0.0137366401031613</threshold> 1366 <left_val>0.6162620782852173</left_val> 1367 <right_val>-0.3589316010475159</right_val></_></_> 1368 <_> 1369 <!-- tree 3 --> 1370 <_> 1371 <!-- root node --> 1372 <feature> 1373 <rects> 1374 <_> 1375 0 12 4 4 -1.</_> 1376 <_> 1377 2 12 2 4 2.</_></rects> 1378 <tilted>0</tilted></feature> 1379 <threshold>-4.8069912008941174e-03</threshold> 1380 <left_node>1</left_node> 1381 <right_val>-0.4238238930702209</right_val></_> 1382 <_> 1383 <!-- node 1 --> 1384 <feature> 1385 <rects> 1386 <_> 1387 7 8 13 9 -1.</_> 1388 <_> 1389 7 11 13 3 3.</_></rects> 1390 <tilted>0</tilted></feature> 1391 <threshold>-0.0771310999989510</threshold> 1392 <left_val>0.6059936285018921</left_val> 1393 <right_val>-0.3155533075332642</right_val></_></_> 1394 <_> 1395 <!-- tree 4 --> 1396 <_> 1397 <!-- root node --> 1398 <feature> 1399 <rects> 1400 <_> 1401 18 1 2 6 -1.</_> 1402 <_> 1403 19 1 1 6 2.</_></rects> 1404 <tilted>0</tilted></feature> 1405 <threshold>4.4640208943746984e-04</threshold> 1406 <left_val>-0.4920611083507538</left_val> 1407 <right_node>1</right_node></_> 1408 <_> 1409 <!-- node 1 --> 1410 <feature> 1411 <rects> 1412 <_> 1413 7 4 5 8 -1.</_> 1414 <_> 1415 7 6 5 4 2.</_></rects> 1416 <tilted>0</tilted></feature> 1417 <threshold>0.0348415784537792</threshold> 1418 <left_val>-0.0410178899765015</left_val> 1419 <right_val>0.6133087873458862</right_val></_></_> 1420 <_> 1421 <!-- tree 5 --> 1422 <_> 1423 <!-- root node --> 1424 <feature> 1425 <rects> 1426 <_> 1427 11 18 9 2 -1.</_> 1428 <_> 1429 11 19 9 1 2.</_></rects> 1430 <tilted>0</tilted></feature> 1431 <threshold>8.2969048526138067e-04</threshold> 1432 <left_val>-0.4547941982746124</left_val> 1433 <right_node>1</right_node></_> 1434 <_> 1435 <!-- node 1 --> 1436 <feature> 1437 <rects> 1438 <_> 1439 10 7 2 3 -1.</_> 1440 <_> 1441 11 7 1 3 2.</_></rects> 1442 <tilted>0</tilted></feature> 1443 <threshold>-7.8510129242204130e-05</threshold> 1444 <left_val>0.4000732898712158</left_val> 1445 <right_val>-0.2088876962661743</right_val></_></_> 1446 <_> 1447 <!-- tree 6 --> 1448 <_> 1449 <!-- root node --> 1450 <feature> 1451 <rects> 1452 <_> 1453 4 18 6 2 -1.</_> 1454 <_> 1455 6 18 2 2 3.</_></rects> 1456 <tilted>0</tilted></feature> 1457 <threshold>4.6054688282310963e-03</threshold> 1458 <left_node>1</left_node> 1459 <right_val>-0.6793137788772583</right_val></_> 1460 <_> 1461 <!-- node 1 --> 1462 <feature> 1463 <rects> 1464 <_> 1465 6 13 6 7 -1.</_> 1466 <_> 1467 8 13 2 7 3.</_></rects> 1468 <tilted>0</tilted></feature> 1469 <threshold>-7.1904482319951057e-03</threshold> 1470 <left_val>0.4706067144870758</left_val> 1471 <right_val>-0.1413861066102982</right_val></_></_> 1472 <_> 1473 <!-- tree 7 --> 1474 <_> 1475 <!-- root node --> 1476 <feature> 1477 <rects> 1478 <_> 1479 5 18 6 2 -1.</_> 1480 <_> 1481 7 18 2 2 3.</_></rects> 1482 <tilted>0</tilted></feature> 1483 <threshold>-5.5724480189383030e-03</threshold> 1484 <left_val>-0.7052550911903381</left_val> 1485 <right_node>1</right_node></_> 1486 <_> 1487 <!-- node 1 --> 1488 <feature> 1489 <rects> 1490 <_> 1491 18 5 2 2 -1.</_> 1492 <_> 1493 18 6 2 1 2.</_></rects> 1494 <tilted>0</tilted></feature> 1495 <threshold>-7.0458237314596772e-04</threshold> 1496 <left_val>0.3609785139560699</left_val> 1497 <right_val>-0.1836154013872147</right_val></_></_> 1498 <_> 1499 <!-- tree 8 --> 1500 <_> 1501 <!-- root node --> 1502 <feature> 1503 <rects> 1504 <_> 1505 6 2 9 4 -1.</_> 1506 <_> 1507 6 4 9 2 2.</_></rects> 1508 <tilted>0</tilted></feature> 1509 <threshold>0.0185950603336096</threshold> 1510 <left_node>1</left_node> 1511 <right_val>0.4176576137542725</right_val></_> 1512 <_> 1513 <!-- node 1 --> 1514 <feature> 1515 <rects> 1516 <_> 1517 13 0 7 4 -1.</_> 1518 <_> 1519 13 0 7 2 2.</_></rects> 1520 <tilted>1</tilted></feature> 1521 <threshold>0.0500725507736206</threshold> 1522 <left_val>-0.4186944961547852</left_val> 1523 <right_val>0.2818650901317596</right_val></_></_> 1524 <_> 1525 <!-- tree 9 --> 1526 <_> 1527 <!-- root node --> 1528 <feature> 1529 <rects> 1530 <_> 1531 13 9 3 6 -1.</_> 1532 <_> 1533 11 11 3 2 3.</_></rects> 1534 <tilted>1</tilted></feature> 1535 <threshold>-0.0203559193760157</threshold> 1536 <left_node>1</left_node> 1537 <right_val>-0.3649415075778961</right_val></_> 1538 <_> 1539 <!-- node 1 --> 1540 <feature> 1541 <rects> 1542 <_> 1543 16 8 4 6 -1.</_> 1544 <_> 1545 16 11 4 3 2.</_></rects> 1546 <tilted>0</tilted></feature> 1547 <threshold>-0.0286865197122097</threshold> 1548 <left_val>-0.5386778712272644</left_val> 1549 <right_val>0.3476788103580475</right_val></_></_> 1550 <_> 1551 <!-- tree 10 --> 1552 <_> 1553 <!-- root node --> 1554 <feature> 1555 <rects> 1556 <_> 1557 19 2 1 2 -1.</_> 1558 <_> 1559 19 3 1 1 2.</_></rects> 1560 <tilted>0</tilted></feature> 1561 <threshold>-7.1101690991781652e-05</threshold> 1562 <left_node>1</left_node> 1563 <right_val>-0.4015679061412811</right_val></_> 1564 <_> 1565 <!-- node 1 --> 1566 <feature> 1567 <rects> 1568 <_> 1569 19 1 1 3 -1.</_> 1570 <_> 1571 19 2 1 1 3.</_></rects> 1572 <tilted>0</tilted></feature> 1573 <threshold>2.0686469506472349e-03</threshold> 1574 <left_val>0.3296366035938263</left_val> 1575 <right_val>-0.7095105051994324</right_val></_></_> 1576 <_> 1577 <!-- tree 11 --> 1578 <_> 1579 <!-- root node --> 1580 <feature> 1581 <rects> 1582 <_> 1583 13 12 2 4 -1.</_> 1584 <_> 1585 13 12 1 2 2.</_> 1586 <_> 1587 14 14 1 2 2.</_></rects> 1588 <tilted>0</tilted></feature> 1589 <threshold>1.1430920567363501e-03</threshold> 1590 <left_node>1</left_node> 1591 <right_val>0.4417298138141632</right_val></_> 1592 <_> 1593 <!-- node 1 --> 1594 <feature> 1595 <rects> 1596 <_> 1597 14 9 3 5 -1.</_> 1598 <_> 1599 15 10 1 5 3.</_></rects> 1600 <tilted>1</tilted></feature> 1601 <threshold>-8.8636036962270737e-03</threshold> 1602 <left_val>0.1842613071203232</left_val> 1603 <right_val>-0.4127517044544220</right_val></_></_></trees> 1604 <stage_threshold>-2.3187489509582520</stage_threshold> 1605 <parent>5</parent> 1606 <next>-1</next></_> 1607 <_> 1608 <!-- stage 7 --> 1609 <trees> 1610 <_> 1611 <!-- tree 0 --> 1612 <_> 1613 <!-- root node --> 1614 <feature> 1615 <rects> 1616 <_> 1617 8 7 8 3 -1.</_> 1618 <_> 1619 10 9 4 3 2.</_></rects> 1620 <tilted>1</tilted></feature> 1621 <threshold>-0.0776376426219940</threshold> 1622 <left_node>1</left_node> 1623 <right_val>-0.4932152926921844</right_val></_> 1624 <_> 1625 <!-- node 1 --> 1626 <feature> 1627 <rects> 1628 <_> 1629 7 7 9 4 -1.</_> 1630 <_> 1631 6 8 9 2 2.</_></rects> 1632 <tilted>1</tilted></feature> 1633 <threshold>-8.4830820560455322e-03</threshold> 1634 <left_val>0.7813854217529297</left_val> 1635 <right_val>-0.3606229126453400</right_val></_></_> 1636 <_> 1637 <!-- tree 1 --> 1638 <_> 1639 <!-- root node --> 1640 <feature> 1641 <rects> 1642 <_> 1643 0 11 2 6 -1.</_> 1644 <_> 1645 1 11 1 6 2.</_></rects> 1646 <tilted>0</tilted></feature> 1647 <threshold>-1.7180460272356868e-03</threshold> 1648 <left_node>1</left_node> 1649 <right_val>-0.4769004881381989</right_val></_> 1650 <_> 1651 <!-- node 1 --> 1652 <feature> 1653 <rects> 1654 <_> 1655 0 13 5 6 -1.</_> 1656 <_> 1657 0 16 5 3 2.</_></rects> 1658 <tilted>0</tilted></feature> 1659 <threshold>0.0247409492731094</threshold> 1660 <left_val>-0.3242008090019226</left_val> 1661 <right_val>0.5928000211715698</right_val></_></_> 1662 <_> 1663 <!-- tree 2 --> 1664 <_> 1665 <!-- root node --> 1666 <feature> 1667 <rects> 1668 <_> 1669 16 2 4 6 -1.</_> 1670 <_> 1671 18 2 2 6 2.</_></rects> 1672 <tilted>0</tilted></feature> 1673 <threshold>3.3028100151568651e-03</threshold> 1674 <left_val>-0.5399159789085388</left_val> 1675 <right_node>1</right_node></_> 1676 <_> 1677 <!-- node 1 --> 1678 <feature> 1679 <rects> 1680 <_> 1681 13 5 6 7 -1.</_> 1682 <_> 1683 15 7 2 7 3.</_></rects> 1684 <tilted>1</tilted></feature> 1685 <threshold>-0.0346220396459103</threshold> 1686 <left_val>0.5207672715187073</left_val> 1687 <right_val>-0.3353079855442047</right_val></_></_> 1688 <_> 1689 <!-- tree 3 --> 1690 <_> 1691 <!-- root node --> 1692 <feature> 1693 <rects> 1694 <_> 1695 19 2 1 4 -1.</_> 1696 <_> 1697 19 4 1 2 2.</_></rects> 1698 <tilted>0</tilted></feature> 1699 <threshold>-7.1505777304992080e-04</threshold> 1700 <left_node>1</left_node> 1701 <right_val>-0.4898169934749603</right_val></_> 1702 <_> 1703 <!-- node 1 --> 1704 <feature> 1705 <rects> 1706 <_> 1707 14 1 6 2 -1.</_> 1708 <_> 1709 16 1 2 2 3.</_></rects> 1710 <tilted>0</tilted></feature> 1711 <threshold>-9.0145105496048927e-03</threshold> 1712 <left_val>-0.7796980142593384</left_val> 1713 <right_val>0.3658635914325714</right_val></_></_> 1714 <_> 1715 <!-- tree 4 --> 1716 <_> 1717 <!-- root node --> 1718 <feature> 1719 <rects> 1720 <_> 1721 14 12 4 5 -1.</_> 1722 <_> 1723 15 12 2 5 2.</_></rects> 1724 <tilted>0</tilted></feature> 1725 <threshold>-1.0250939521938562e-03</threshold> 1726 <left_node>1</left_node> 1727 <right_val>-0.4697051048278809</right_val></_> 1728 <_> 1729 <!-- node 1 --> 1730 <feature> 1731 <rects> 1732 <_> 1733 18 15 2 3 -1.</_> 1734 <_> 1735 17 16 2 1 3.</_></rects> 1736 <tilted>1</tilted></feature> 1737 <threshold>-5.5693178437650204e-03</threshold> 1738 <left_val>-0.6969562172889709</left_val> 1739 <right_val>0.3502543866634369</right_val></_></_> 1740 <_> 1741 <!-- tree 5 --> 1742 <_> 1743 <!-- root node --> 1744 <feature> 1745 <rects> 1746 <_> 1747 14 16 3 4 -1.</_> 1748 <_> 1749 14 18 3 2 2.</_></rects> 1750 <tilted>0</tilted></feature> 1751 <threshold>1.3235070509836078e-03</threshold> 1752 <left_val>-0.4470798075199127</left_val> 1753 <right_node>1</right_node></_> 1754 <_> 1755 <!-- node 1 --> 1756 <feature> 1757 <rects> 1758 <_> 1759 16 16 1 2 -1.</_> 1760 <_> 1761 16 16 1 1 2.</_></rects> 1762 <tilted>1</tilted></feature> 1763 <threshold>-3.3737940248101950e-03</threshold> 1764 <left_val>-0.5619515180587769</left_val> 1765 <right_val>0.3183380961418152</right_val></_></_> 1766 <_> 1767 <!-- tree 6 --> 1768 <_> 1769 <!-- root node --> 1770 <feature> 1771 <rects> 1772 <_> 1773 18 0 1 2 -1.</_> 1774 <_> 1775 18 1 1 1 2.</_></rects> 1776 <tilted>0</tilted></feature> 1777 <threshold>-6.4095242123585194e-05</threshold> 1778 <left_node>1</left_node> 1779 <right_val>-0.3547363877296448</right_val></_> 1780 <_> 1781 <!-- node 1 --> 1782 <feature> 1783 <rects> 1784 <_> 1785 9 8 1 6 -1.</_> 1786 <_> 1787 9 11 1 3 2.</_></rects> 1788 <tilted>0</tilted></feature> 1789 <threshold>-2.7294119354337454e-03</threshold> 1790 <left_val>0.4128524065017700</left_val> 1791 <right_val>-0.3141682147979736</right_val></_></_> 1792 <_> 1793 <!-- tree 7 --> 1794 <_> 1795 <!-- root node --> 1796 <feature> 1797 <rects> 1798 <_> 1799 18 5 2 1 -1.</_> 1800 <_> 1801 19 5 1 1 2.</_></rects> 1802 <tilted>0</tilted></feature> 1803 <threshold>6.3087652961257845e-05</threshold> 1804 <left_val>-0.3594656884670258</left_val> 1805 <right_node>1</right_node></_> 1806 <_> 1807 <!-- node 1 --> 1808 <feature> 1809 <rects> 1810 <_> 1811 14 3 6 4 -1.</_> 1812 <_> 1813 16 3 2 4 3.</_></rects> 1814 <tilted>0</tilted></feature> 1815 <threshold>-0.0154360998421907</threshold> 1816 <left_val>-0.6132907867431641</left_val> 1817 <right_val>0.3430199921131134</right_val></_></_> 1818 <_> 1819 <!-- tree 8 --> 1820 <_> 1821 <!-- root node --> 1822 <feature> 1823 <rects> 1824 <_> 1825 8 18 4 2 -1.</_> 1826 <_> 1827 9 18 2 2 2.</_></rects> 1828 <tilted>0</tilted></feature> 1829 <threshold>-2.1025019232183695e-03</threshold> 1830 <left_val>-0.7696225047111511</left_val> 1831 <right_node>1</right_node></_> 1832 <_> 1833 <!-- node 1 --> 1834 <feature> 1835 <rects> 1836 <_> 1837 6 13 9 7 -1.</_> 1838 <_> 1839 9 13 3 7 3.</_></rects> 1840 <tilted>0</tilted></feature> 1841 <threshold>-0.0168495699763298</threshold> 1842 <left_val>0.3656980991363525</left_val> 1843 <right_val>-0.2121037989854813</right_val></_></_> 1844 <_> 1845 <!-- tree 9 --> 1846 <_> 1847 <!-- root node --> 1848 <feature> 1849 <rects> 1850 <_> 1851 1 16 2 2 -1.</_> 1852 <_> 1853 1 17 2 1 2.</_></rects> 1854 <tilted>0</tilted></feature> 1855 <threshold>5.6847798987291753e-05</threshold> 1856 <left_val>-0.4046655893325806</left_val> 1857 <right_node>1</right_node></_> 1858 <_> 1859 <!-- node 1 --> 1860 <feature> 1861 <rects> 1862 <_> 1863 0 16 3 4 -1.</_> 1864 <_> 1865 0 17 3 2 2.</_></rects> 1866 <tilted>0</tilted></feature> 1867 <threshold>5.9984489344060421e-03</threshold> 1868 <left_val>0.2850377857685089</left_val> 1869 <right_val>-0.5875617861747742</right_val></_></_> 1870 <_> 1871 <!-- tree 10 --> 1872 <_> 1873 <!-- root node --> 1874 <feature> 1875 <rects> 1876 <_> 1877 8 1 4 5 -1.</_> 1878 <_> 1879 9 1 2 5 2.</_></rects> 1880 <tilted>0</tilted></feature> 1881 <threshold>6.1389962211251259e-03</threshold> 1882 <left_node>1</left_node> 1883 <right_val>-0.8718982934951782</right_val></_> 1884 <_> 1885 <!-- node 1 --> 1886 <feature> 1887 <rects> 1888 <_> 1889 10 1 6 9 -1.</_> 1890 <_> 1891 12 1 2 9 3.</_></rects> 1892 <tilted>0</tilted></feature> 1893 <threshold>-2.8117469628341496e-04</threshold> 1894 <left_val>0.2518250942230225</left_val> 1895 <right_val>-0.3186821937561035</right_val></_></_> 1896 <_> 1897 <!-- tree 11 --> 1898 <_> 1899 <!-- root node --> 1900 <feature> 1901 <rects> 1902 <_> 1903 10 8 10 4 -1.</_> 1904 <_> 1905 10 10 10 2 2.</_></rects> 1906 <tilted>0</tilted></feature> 1907 <threshold>-4.5429798774421215e-03</threshold> 1908 <left_node>1</left_node> 1909 <right_val>-0.3672421872615814</right_val></_> 1910 <_> 1911 <!-- node 1 --> 1912 <feature> 1913 <rects> 1914 <_> 1915 15 8 5 4 -1.</_> 1916 <_> 1917 15 10 5 2 2.</_></rects> 1918 <tilted>0</tilted></feature> 1919 <threshold>-0.0321671105921268</threshold> 1920 <left_val>-0.7948120236396790</left_val> 1921 <right_val>0.2888720035552979</right_val></_></_> 1922 <_> 1923 <!-- tree 12 --> 1924 <_> 1925 <!-- root node --> 1926 <feature> 1927 <rects> 1928 <_> 1929 17 1 3 2 -1.</_> 1930 <_> 1931 18 2 1 2 3.</_></rects> 1932 <tilted>1</tilted></feature> 1933 <threshold>5.0912089645862579e-03</threshold> 1934 <left_node>1</left_node> 1935 <right_val>-0.7147749066352844</right_val></_> 1936 <_> 1937 <!-- node 1 --> 1938 <feature> 1939 <rects> 1940 <_> 1941 13 11 3 5 -1.</_> 1942 <_> 1943 14 11 1 5 3.</_></rects> 1944 <tilted>0</tilted></feature> 1945 <threshold>-1.5173070132732391e-03</threshold> 1946 <left_val>0.4451462924480438</left_val> 1947 <right_val>-0.0952073410153389</right_val></_></_> 1948 <_> 1949 <!-- tree 13 --> 1950 <_> 1951 <!-- root node --> 1952 <feature> 1953 <rects> 1954 <_> 1955 8 7 4 3 -1.</_> 1956 <_> 1957 10 7 2 3 2.</_></rects> 1958 <tilted>0</tilted></feature> 1959 <threshold>-6.0079508693888783e-04</threshold> 1960 <left_node>1</left_node> 1961 <right_val>-0.3602145016193390</right_val></_> 1962 <_> 1963 <!-- node 1 --> 1964 <feature> 1965 <rects> 1966 <_> 1967 3 0 8 1 -1.</_> 1968 <_> 1969 5 0 4 1 2.</_></rects> 1970 <tilted>0</tilted></feature> 1971 <threshold>4.4868541881442070e-03</threshold> 1972 <left_val>0.2827636003494263</left_val> 1973 <right_val>-0.7208412885665894</right_val></_></_> 1974 <_> 1975 <!-- tree 14 --> 1976 <_> 1977 <!-- root node --> 1978 <feature> 1979 <rects> 1980 <_> 1981 1 13 6 5 -1.</_> 1982 <_> 1983 3 13 2 5 3.</_></rects> 1984 <tilted>0</tilted></feature> 1985 <threshold>-3.7957848981022835e-03</threshold> 1986 <left_node>1</left_node> 1987 <right_val>-0.2871744036674500</right_val></_> 1988 <_> 1989 <!-- node 1 --> 1990 <feature> 1991 <rects> 1992 <_> 1993 13 9 3 5 -1.</_> 1994 <_> 1995 14 10 1 5 3.</_></rects> 1996 <tilted>1</tilted></feature> 1997 <threshold>-9.1829998418688774e-03</threshold> 1998 <left_val>0.5047904253005981</left_val> 1999 <right_val>-0.0707810372114182</right_val></_></_></trees> 2000 <stage_threshold>-2.2203750610351562</stage_threshold> 2001 <parent>6</parent> 2002 <next>-1</next></_> 2003 <_> 2004 <!-- stage 8 --> 2005 <trees> 2006 <_> 2007 <!-- tree 0 --> 2008 <_> 2009 <!-- root node --> 2010 <feature> 2011 <rects> 2012 <_> 2013 11 8 4 6 -1.</_> 2014 <_> 2015 9 10 4 2 3.</_></rects> 2016 <tilted>1</tilted></feature> 2017 <threshold>-0.0557602494955063</threshold> 2018 <left_node>1</left_node> 2019 <right_val>-0.5585464835166931</right_val></_> 2020 <_> 2021 <!-- node 1 --> 2022 <feature> 2023 <rects> 2024 <_> 2025 11 7 6 6 -1.</_> 2026 <_> 2027 13 9 2 6 3.</_></rects> 2028 <tilted>1</tilted></feature> 2029 <threshold>-0.0594366900622845</threshold> 2030 <left_val>0.6894369721412659</left_val> 2031 <right_val>-0.3719508051872253</right_val></_></_> 2032 <_> 2033 <!-- tree 1 --> 2034 <_> 2035 <!-- root node --> 2036 <feature> 2037 <rects> 2038 <_> 2039 7 0 7 6 -1.</_> 2040 <_> 2041 7 3 7 3 2.</_></rects> 2042 <tilted>0</tilted></feature> 2043 <threshold>-0.0546371787786484</threshold> 2044 <left_val>0.5304033160209656</left_val> 2045 <right_node>1</right_node></_> 2046 <_> 2047 <!-- node 1 --> 2048 <feature> 2049 <rects> 2050 <_> 2051 3 1 10 12 -1.</_> 2052 <_> 2053 3 5 10 4 3.</_></rects> 2054 <tilted>0</tilted></feature> 2055 <threshold>0.2360835969448090</threshold> 2056 <left_val>-0.4735530912876129</left_val> 2057 <right_val>0.4632248878479004</right_val></_></_> 2058 <_> 2059 <!-- tree 2 --> 2060 <_> 2061 <!-- root node --> 2062 <feature> 2063 <rects> 2064 <_> 2065 13 12 6 4 -1.</_> 2066 <_> 2067 15 12 2 4 3.</_></rects> 2068 <tilted>0</tilted></feature> 2069 <threshold>-9.4560505822300911e-03</threshold> 2070 <left_node>1</left_node> 2071 <right_val>-0.3254477977752686</right_val></_> 2072 <_> 2073 <!-- node 1 --> 2074 <feature> 2075 <rects> 2076 <_> 2077 0 9 6 9 -1.</_> 2078 <_> 2079 2 12 2 3 9.</_></rects> 2080 <tilted>0</tilted></feature> 2081 <threshold>-0.0531827099621296</threshold> 2082 <left_val>0.6346856951713562</left_val> 2083 <right_val>-0.2826836109161377</right_val></_></_> 2084 <_> 2085 <!-- tree 3 --> 2086 <_> 2087 <!-- root node --> 2088 <feature> 2089 <rects> 2090 <_> 2091 8 0 12 11 -1.</_> 2092 <_> 2093 12 0 4 11 3.</_></rects> 2094 <tilted>0</tilted></feature> 2095 <threshold>-0.0106381997466087</threshold> 2096 <left_node>1</left_node> 2097 <right_val>-0.5577635169029236</right_val></_> 2098 <_> 2099 <!-- node 1 --> 2100 <feature> 2101 <rects> 2102 <_> 2103 13 11 1 8 -1.</_> 2104 <_> 2105 13 11 1 4 2.</_></rects> 2106 <tilted>1</tilted></feature> 2107 <threshold>-0.0212070196866989</threshold> 2108 <left_val>0.3904919028282166</left_val> 2109 <right_val>-0.4211193025112152</right_val></_></_> 2110 <_> 2111 <!-- tree 4 --> 2112 <_> 2113 <!-- root node --> 2114 <feature> 2115 <rects> 2116 <_> 2117 19 4 1 2 -1.</_> 2118 <_> 2119 19 5 1 1 2.</_></rects> 2120 <tilted>0</tilted></feature> 2121 <threshold>-5.6731878430582583e-05</threshold> 2122 <left_node>1</left_node> 2123 <right_val>-0.4180330932140350</right_val></_> 2124 <_> 2125 <!-- node 1 --> 2126 <feature> 2127 <rects> 2128 <_> 2129 2 15 1 2 -1.</_> 2130 <_> 2131 2 15 1 1 2.</_></rects> 2132 <tilted>1</tilted></feature> 2133 <threshold>-4.4976451317779720e-04</threshold> 2134 <left_val>0.3735578954219818</left_val> 2135 <right_val>-0.3919964134693146</right_val></_></_> 2136 <_> 2137 <!-- tree 5 --> 2138 <_> 2139 <!-- root node --> 2140 <feature> 2141 <rects> 2142 <_> 2143 17 16 2 2 -1.</_> 2144 <_> 2145 17 16 2 1 2.</_></rects> 2146 <tilted>1</tilted></feature> 2147 <threshold>2.7574670966714621e-03</threshold> 2148 <left_node>1</left_node> 2149 <right_val>-0.7910463213920593</right_val></_> 2150 <_> 2151 <!-- node 1 --> 2152 <feature> 2153 <rects> 2154 <_> 2155 16 16 1 3 -1.</_> 2156 <_> 2157 15 17 1 1 3.</_></rects> 2158 <tilted>1</tilted></feature> 2159 <threshold>2.5649419985711575e-03</threshold> 2160 <left_val>0.1925818026065826</left_val> 2161 <right_val>-0.7534446120262146</right_val></_></_> 2162 <_> 2163 <!-- tree 6 --> 2164 <_> 2165 <!-- root node --> 2166 <feature> 2167 <rects> 2168 <_> 2169 5 11 3 2 -1.</_> 2170 <_> 2171 6 12 1 2 3.</_></rects> 2172 <tilted>1</tilted></feature> 2173 <threshold>-9.4359368085861206e-03</threshold> 2174 <left_val>0.4483475089073181</left_val> 2175 <right_node>1</right_node></_> 2176 <_> 2177 <!-- node 1 --> 2178 <feature> 2179 <rects> 2180 <_> 2181 4 11 2 2 -1.</_> 2182 <_> 2183 4 11 1 1 2.</_> 2184 <_> 2185 5 12 1 1 2.</_></rects> 2186 <tilted>0</tilted></feature> 2187 <threshold>1.4136210083961487e-03</threshold> 2188 <left_val>-0.3387843072414398</left_val> 2189 <right_val>0.4429191946983337</right_val></_></_> 2190 <_> 2191 <!-- tree 7 --> 2192 <_> 2193 <!-- root node --> 2194 <feature> 2195 <rects> 2196 <_> 2197 17 7 3 2 -1.</_> 2198 <_> 2199 18 8 1 2 3.</_></rects> 2200 <tilted>1</tilted></feature> 2201 <threshold>3.9976350963115692e-03</threshold> 2202 <left_node>1</left_node> 2203 <right_val>-0.6663758158683777</right_val></_> 2204 <_> 2205 <!-- node 1 --> 2206 <feature> 2207 <rects> 2208 <_> 2209 16 9 3 8 -1.</_> 2210 <_> 2211 16 11 3 4 2.</_></rects> 2212 <tilted>0</tilted></feature> 2213 <threshold>-1.5278969658538699e-03</threshold> 2214 <left_val>0.3129239976406097</left_val> 2215 <right_val>-0.2802799046039581</right_val></_></_> 2216 <_> 2217 <!-- tree 8 --> 2218 <_> 2219 <!-- root node --> 2220 <feature> 2221 <rects> 2222 <_> 2223 19 0 1 4 -1.</_> 2224 <_> 2225 19 2 1 2 2.</_></rects> 2226 <tilted>0</tilted></feature> 2227 <threshold>-3.2376639865105972e-05</threshold> 2228 <left_node>1</left_node> 2229 <right_val>-0.4667209088802338</right_val></_> 2230 <_> 2231 <!-- node 1 --> 2232 <feature> 2233 <rects> 2234 <_> 2235 19 0 1 3 -1.</_> 2236 <_> 2237 19 1 1 1 3.</_></rects> 2238 <tilted>0</tilted></feature> 2239 <threshold>1.6323389718309045e-03</threshold> 2240 <left_val>0.2799555957317352</left_val> 2241 <right_val>-0.6132150888442993</right_val></_></_> 2242 <_> 2243 <!-- tree 9 --> 2244 <_> 2245 <!-- root node --> 2246 <feature> 2247 <rects> 2248 <_> 2249 9 0 10 3 -1.</_> 2250 <_> 2251 14 0 5 3 2.</_></rects> 2252 <tilted>0</tilted></feature> 2253 <threshold>7.7096219174563885e-03</threshold> 2254 <left_node>1</left_node> 2255 <right_val>0.2035254985094070</right_val></_> 2256 <_> 2257 <!-- node 1 --> 2258 <feature> 2259 <rects> 2260 <_> 2261 3 3 15 17 -1.</_> 2262 <_> 2263 8 3 5 17 3.</_></rects> 2264 <tilted>0</tilted></feature> 2265 <threshold>-0.0785993188619614</threshold> 2266 <left_val>0.0727269127964973</left_val> 2267 <right_val>-0.6867709755897522</right_val></_></_> 2268 <_> 2269 <!-- tree 10 --> 2270 <_> 2271 <!-- root node --> 2272 <feature> 2273 <rects> 2274 <_> 2275 8 0 4 4 -1.</_> 2276 <_> 2277 9 0 2 4 2.</_></rects> 2278 <tilted>0</tilted></feature> 2279 <threshold>-3.6581400781869888e-03</threshold> 2280 <left_val>-0.6807945966720581</left_val> 2281 <right_node>1</right_node></_> 2282 <_> 2283 <!-- node 1 --> 2284 <feature> 2285 <rects> 2286 <_> 2287 1 11 8 1 -1.</_> 2288 <_> 2289 1 11 4 1 2.</_></rects> 2290 <tilted>1</tilted></feature> 2291 <threshold>-0.0426121987402439</threshold> 2292 <left_val>-0.8455178141593933</left_val> 2293 <right_val>0.1599057018756866</right_val></_></_> 2294 <_> 2295 <!-- tree 11 --> 2296 <_> 2297 <!-- root node --> 2298 <feature> 2299 <rects> 2300 <_> 2301 4 10 2 4 -1.</_> 2302 <_> 2303 3 11 2 2 2.</_></rects> 2304 <tilted>1</tilted></feature> 2305 <threshold>-4.8822778626345098e-04</threshold> 2306 <left_node>1</left_node> 2307 <right_val>-0.4794569909572601</right_val></_> 2308 <_> 2309 <!-- node 1 --> 2310 <feature> 2311 <rects> 2312 <_> 2313 4 17 4 3 -1.</_> 2314 <_> 2315 5 17 2 3 2.</_></rects> 2316 <tilted>0</tilted></feature> 2317 <threshold>-4.6951142139732838e-03</threshold> 2318 <left_val>-0.8223428130149841</left_val> 2319 <right_val>0.2043157964944839</right_val></_></_> 2320 <_> 2321 <!-- tree 12 --> 2322 <_> 2323 <!-- root node --> 2324 <feature> 2325 <rects> 2326 <_> 2327 18 7 2 1 -1.</_> 2328 <_> 2329 19 7 1 1 2.</_></rects> 2330 <tilted>0</tilted></feature> 2331 <threshold>6.1706348787993193e-05</threshold> 2332 <left_val>-0.3174282014369965</left_val> 2333 <right_node>1</right_node></_> 2334 <_> 2335 <!-- node 1 --> 2336 <feature> 2337 <rects> 2338 <_> 2339 2 7 18 3 -1.</_> 2340 <_> 2341 11 7 9 3 2.</_></rects> 2342 <tilted>0</tilted></feature> 2343 <threshold>0.0138099100440741</threshold> 2344 <left_val>0.3076930046081543</left_val> 2345 <right_val>-0.4354496896266937</right_val></_></_> 2346 <_> 2347 <!-- tree 13 --> 2348 <_> 2349 <!-- root node --> 2350 <feature> 2351 <rects> 2352 <_> 2353 4 11 4 2 -1.</_> 2354 <_> 2355 4 11 2 1 2.</_> 2356 <_> 2357 6 12 2 1 2.</_></rects> 2358 <tilted>0</tilted></feature> 2359 <threshold>-4.2187729850411415e-03</threshold> 2360 <left_val>0.6249998211860657</left_val> 2361 <right_node>1</right_node></_> 2362 <_> 2363 <!-- node 1 --> 2364 <feature> 2365 <rects> 2366 <_> 2367 4 9 2 4 -1.</_> 2368 <_> 2369 4 11 2 2 2.</_></rects> 2370 <tilted>0</tilted></feature> 2371 <threshold>-3.9540808647871017e-03</threshold> 2372 <left_val>0.1322520971298218</left_val> 2373 <right_val>-0.3974510133266449</right_val></_></_> 2374 <_> 2375 <!-- tree 14 --> 2376 <_> 2377 <!-- root node --> 2378 <feature> 2379 <rects> 2380 <_> 2381 16 1 3 1 -1.</_> 2382 <_> 2383 17 2 1 1 3.</_></rects> 2384 <tilted>1</tilted></feature> 2385 <threshold>2.2203531116247177e-03</threshold> 2386 <left_node>1</left_node> 2387 <right_val>-0.6004533171653748</right_val></_> 2388 <_> 2389 <!-- node 1 --> 2390 <feature> 2391 <rects> 2392 <_> 2393 4 18 1 2 -1.</_> 2394 <_> 2395 4 19 1 1 2.</_></rects> 2396 <tilted>0</tilted></feature> 2397 <threshold>6.2806582718621939e-05</threshold> 2398 <left_val>-0.2242998033761978</left_val> 2399 <right_val>0.2976852059364319</right_val></_></_> 2400 <_> 2401 <!-- tree 15 --> 2402 <_> 2403 <!-- root node --> 2404 <feature> 2405 <rects> 2406 <_> 2407 9 18 4 2 -1.</_> 2408 <_> 2409 10 18 2 2 2.</_></rects> 2410 <tilted>0</tilted></feature> 2411 <threshold>2.3292789701372385e-03</threshold> 2412 <left_node>1</left_node> 2413 <right_val>-0.7598208189010620</right_val></_> 2414 <_> 2415 <!-- node 1 --> 2416 <feature> 2417 <rects> 2418 <_> 2419 12 11 5 4 -1.</_> 2420 <_> 2421 11 12 5 2 2.</_></rects> 2422 <tilted>1</tilted></feature> 2423 <threshold>-5.3711822256445885e-03</threshold> 2424 <left_val>0.2648491859436035</left_val> 2425 <right_val>-0.2600553929805756</right_val></_></_> 2426 <_> 2427 <!-- tree 16 --> 2428 <_> 2429 <!-- root node --> 2430 <feature> 2431 <rects> 2432 <_> 2433 18 2 2 1 -1.</_> 2434 <_> 2435 19 2 1 1 2.</_></rects> 2436 <tilted>0</tilted></feature> 2437 <threshold>6.4782587287481874e-05</threshold> 2438 <left_val>-0.3211930096149445</left_val> 2439 <right_node>1</right_node></_> 2440 <_> 2441 <!-- node 1 --> 2442 <feature> 2443 <rects> 2444 <_> 2445 7 0 6 2 -1.</_> 2446 <_> 2447 9 0 2 2 3.</_></rects> 2448 <tilted>0</tilted></feature> 2449 <threshold>7.6606678776443005e-03</threshold> 2450 <left_val>0.2417640984058380</left_val> 2451 <right_val>-0.8382272720336914</right_val></_></_></trees> 2452 <stage_threshold>-2.1757249832153320</stage_threshold> 2453 <parent>7</parent> 2454 <next>-1</next></_> 2455 <_> 2456 <!-- stage 9 --> 2457 <trees> 2458 <_> 2459 <!-- tree 0 --> 2460 <_> 2461 <!-- root node --> 2462 <feature> 2463 <rects> 2464 <_> 2465 6 13 8 2 -1.</_> 2466 <_> 2467 8 13 4 2 2.</_></rects> 2468 <tilted>0</tilted></feature> 2469 <threshold>-0.0148482797667384</threshold> 2470 <left_node>1</left_node> 2471 <right_val>-0.5339112877845764</right_val></_> 2472 <_> 2473 <!-- node 1 --> 2474 <feature> 2475 <rects> 2476 <_> 2477 14 12 4 4 -1.</_> 2478 <_> 2479 15 12 2 4 2.</_></rects> 2480 <tilted>0</tilted></feature> 2481 <threshold>-1.6066679963842034e-03</threshold> 2482 <left_val>0.7600271105766296</left_val> 2483 <right_val>-0.2109173983335495</right_val></_></_> 2484 <_> 2485 <!-- tree 1 --> 2486 <_> 2487 <!-- root node --> 2488 <feature> 2489 <rects> 2490 <_> 2491 3 8 17 9 -1.</_> 2492 <_> 2493 3 11 17 3 3.</_></rects> 2494 <tilted>0</tilted></feature> 2495 <threshold>-0.1565192043781281</threshold> 2496 <left_node>1</left_node> 2497 <right_val>-0.4281854927539825</right_val></_> 2498 <_> 2499 <!-- node 1 --> 2500 <feature> 2501 <rects> 2502 <_> 2503 0 12 4 3 -1.</_> 2504 <_> 2505 2 12 2 3 2.</_></rects> 2506 <tilted>0</tilted></feature> 2507 <threshold>-5.5439779534935951e-03</threshold> 2508 <left_val>0.6562075018882751</left_val> 2509 <right_val>-0.2294984012842178</right_val></_></_> 2510 <_> 2511 <!-- tree 2 --> 2512 <_> 2513 <!-- root node --> 2514 <feature> 2515 <rects> 2516 <_> 2517 8 3 12 6 -1.</_> 2518 <_> 2519 12 3 4 6 3.</_></rects> 2520 <tilted>0</tilted></feature> 2521 <threshold>-0.0194483399391174</threshold> 2522 <left_node>1</left_node> 2523 <right_val>-0.4421252012252808</right_val></_> 2524 <_> 2525 <!-- node 1 --> 2526 <feature> 2527 <rects> 2528 <_> 2529 0 14 3 6 -1.</_> 2530 <_> 2531 0 17 3 3 2.</_></rects> 2532 <tilted>0</tilted></feature> 2533 <threshold>7.6653067953884602e-03</threshold> 2534 <left_val>-0.3395059108734131</left_val> 2535 <right_val>0.4658721983432770</right_val></_></_> 2536 <_> 2537 <!-- tree 3 --> 2538 <_> 2539 <!-- root node --> 2540 <feature> 2541 <rects> 2542 <_> 2543 3 0 13 9 -1.</_> 2544 <_> 2545 3 3 13 3 3.</_></rects> 2546 <tilted>0</tilted></feature> 2547 <threshold>-0.2114201039075851</threshold> 2548 <left_val>0.5500797033309937</left_val> 2549 <right_node>1</right_node></_> 2550 <_> 2551 <!-- node 1 --> 2552 <feature> 2553 <rects> 2554 <_> 2555 8 2 8 6 -1.</_> 2556 <_> 2557 8 5 8 3 2.</_></rects> 2558 <tilted>0</tilted></feature> 2559 <threshold>-0.1062842980027199</threshold> 2560 <left_val>0.6828094720840454</left_val> 2561 <right_val>-0.3098773956298828</right_val></_></_> 2562 <_> 2563 <!-- tree 4 --> 2564 <_> 2565 <!-- root node --> 2566 <feature> 2567 <rects> 2568 <_> 2569 1 11 18 3 -1.</_> 2570 <_> 2571 7 11 6 3 3.</_></rects> 2572 <tilted>0</tilted></feature> 2573 <threshold>-0.0526535995304585</threshold> 2574 <left_node>1</left_node> 2575 <right_val>-0.3481881916522980</right_val></_> 2576 <_> 2577 <!-- node 1 --> 2578 <feature> 2579 <rects> 2580 <_> 2581 16 17 1 2 -1.</_> 2582 <_> 2583 16 17 1 1 2.</_></rects> 2584 <tilted>1</tilted></feature> 2585 <threshold>-5.3522300731856376e-05</threshold> 2586 <left_val>0.5056676268577576</left_val> 2587 <right_val>-0.2522951960563660</right_val></_></_> 2588 <_> 2589 <!-- tree 5 --> 2590 <_> 2591 <!-- root node --> 2592 <feature> 2593 <rects> 2594 <_> 2595 14 12 6 4 -1.</_> 2596 <_> 2597 16 12 2 4 3.</_></rects> 2598 <tilted>0</tilted></feature> 2599 <threshold>-5.7972650974988937e-03</threshold> 2600 <left_val>0.3023801147937775</left_val> 2601 <right_node>1</right_node></_> 2602 <_> 2603 <!-- node 1 --> 2604 <feature> 2605 <rects> 2606 <_> 2607 13 11 4 5 -1.</_> 2608 <_> 2609 14 11 2 5 2.</_></rects> 2610 <tilted>0</tilted></feature> 2611 <threshold>-3.7428899668157101e-03</threshold> 2612 <left_val>0.2287323027849197</left_val> 2613 <right_val>-0.4836657941341400</right_val></_></_> 2614 <_> 2615 <!-- tree 6 --> 2616 <_> 2617 <!-- root node --> 2618 <feature> 2619 <rects> 2620 <_> 2621 19 3 1 2 -1.</_> 2622 <_> 2623 19 4 1 1 2.</_></rects> 2624 <tilted>0</tilted></feature> 2625 <threshold>-5.2694038458866999e-05</threshold> 2626 <left_node>1</left_node> 2627 <right_val>-0.3798896074295044</right_val></_> 2628 <_> 2629 <!-- node 1 --> 2630 <feature> 2631 <rects> 2632 <_> 2633 19 0 1 3 -1.</_> 2634 <_> 2635 19 1 1 1 3.</_></rects> 2636 <tilted>0</tilted></feature> 2637 <threshold>-1.1983739677816629e-03</threshold> 2638 <left_val>-0.6744245290756226</left_val> 2639 <right_val>0.2861126065254211</right_val></_></_> 2640 <_> 2641 <!-- tree 7 --> 2642 <_> 2643 <!-- root node --> 2644 <feature> 2645 <rects> 2646 <_> 2647 7 2 8 4 -1.</_> 2648 <_> 2649 7 4 8 2 2.</_></rects> 2650 <tilted>0</tilted></feature> 2651 <threshold>0.0225447993725538</threshold> 2652 <left_node>1</left_node> 2653 <right_val>0.4756571948528290</right_val></_> 2654 <_> 2655 <!-- node 1 --> 2656 <feature> 2657 <rects> 2658 <_> 2659 9 12 3 2 -1.</_> 2660 <_> 2661 10 12 1 2 3.</_></rects> 2662 <tilted>0</tilted></feature> 2663 <threshold>3.1783939339220524e-03</threshold> 2664 <left_val>-0.2889334857463837</left_val> 2665 <right_val>0.5550963878631592</right_val></_></_> 2666 <_> 2667 <!-- tree 8 --> 2668 <_> 2669 <!-- root node --> 2670 <feature> 2671 <rects> 2672 <_> 2673 15 8 3 2 -1.</_> 2674 <_> 2675 16 9 1 2 3.</_></rects> 2676 <tilted>1</tilted></feature> 2677 <threshold>3.4742769785225391e-03</threshold> 2678 <left_node>1</left_node> 2679 <right_val>-0.5982655286788940</right_val></_> 2680 <_> 2681 <!-- node 1 --> 2682 <feature> 2683 <rects> 2684 <_> 2685 16 15 3 2 -1.</_> 2686 <_> 2687 16 15 3 1 2.</_></rects> 2688 <tilted>1</tilted></feature> 2689 <threshold>-8.1408787518739700e-03</threshold> 2690 <left_val>-0.5593379139900208</left_val> 2691 <right_val>0.2234921008348465</right_val></_></_> 2692 <_> 2693 <!-- tree 9 --> 2694 <_> 2695 <!-- root node --> 2696 <feature> 2697 <rects> 2698 <_> 2699 6 12 3 3 -1.</_> 2700 <_> 2701 7 12 1 3 3.</_></rects> 2702 <tilted>0</tilted></feature> 2703 <threshold>-3.0238809995353222e-03</threshold> 2704 <left_val>0.4591797888278961</left_val> 2705 <right_node>1</right_node></_> 2706 <_> 2707 <!-- node 1 --> 2708 <feature> 2709 <rects> 2710 <_> 2711 13 12 3 1 -1.</_> 2712 <_> 2713 14 13 1 1 3.</_></rects> 2714 <tilted>1</tilted></feature> 2715 <threshold>-5.9159598313271999e-03</threshold> 2716 <left_val>0.6223490238189697</left_val> 2717 <right_val>-0.2446815073490143</right_val></_></_> 2718 <_> 2719 <!-- tree 10 --> 2720 <_> 2721 <!-- root node --> 2722 <feature> 2723 <rects> 2724 <_> 2725 4 0 1 3 -1.</_> 2726 <_> 2727 3 1 1 1 3.</_></rects> 2728 <tilted>1</tilted></feature> 2729 <threshold>2.3184430319815874e-03</threshold> 2730 <left_node>1</left_node> 2731 <right_val>-0.6047807931900024</right_val></_> 2732 <_> 2733 <!-- node 1 --> 2734 <feature> 2735 <rects> 2736 <_> 2737 8 2 6 4 -1.</_> 2738 <_> 2739 10 2 2 4 3.</_></rects> 2740 <tilted>0</tilted></feature> 2741 <threshold>7.7198208309710026e-03</threshold> 2742 <left_val>0.2100450992584229</left_val> 2743 <right_val>-0.6433128118515015</right_val></_></_> 2744 <_> 2745 <!-- tree 11 --> 2746 <_> 2747 <!-- root node --> 2748 <feature> 2749 <rects> 2750 <_> 2751 15 15 2 3 -1.</_> 2752 <_> 2753 14 16 2 1 3.</_></rects> 2754 <tilted>1</tilted></feature> 2755 <threshold>-5.5973320268094540e-03</threshold> 2756 <left_val>-0.7162581086158752</left_val> 2757 <right_node>1</right_node></_> 2758 <_> 2759 <!-- node 1 --> 2760 <feature> 2761 <rects> 2762 <_> 2763 12 18 8 2 -1.</_> 2764 <_> 2765 12 19 8 1 2.</_></rects> 2766 <tilted>0</tilted></feature> 2767 <threshold>2.0320380281191319e-04</threshold> 2768 <left_val>-0.3801802992820740</left_val> 2769 <right_val>0.2133689969778061</right_val></_></_> 2770 <_> 2771 <!-- tree 12 --> 2772 <_> 2773 <!-- root node --> 2774 <feature> 2775 <rects> 2776 <_> 2777 7 12 6 7 -1.</_> 2778 <_> 2779 9 12 2 7 3.</_></rects> 2780 <tilted>0</tilted></feature> 2781 <threshold>-3.8205389864742756e-03</threshold> 2782 <left_node>1</left_node> 2783 <right_val>-0.3595725893974304</right_val></_> 2784 <_> 2785 <!-- node 1 --> 2786 <feature> 2787 <rects> 2788 <_> 2789 4 18 6 2 -1.</_> 2790 <_> 2791 6 18 2 2 3.</_></rects> 2792 <tilted>0</tilted></feature> 2793 <threshold>4.8883338458836079e-03</threshold> 2794 <left_val>0.2647193074226379</left_val> 2795 <right_val>-0.5899668931961060</right_val></_></_> 2796 <_> 2797 <!-- tree 13 --> 2798 <_> 2799 <!-- root node --> 2800 <feature> 2801 <rects> 2802 <_> 2803 11 12 3 3 -1.</_> 2804 <_> 2805 12 12 1 3 3.</_></rects> 2806 <tilted>0</tilted></feature> 2807 <threshold>-1.3334590476006269e-03</threshold> 2808 <left_val>0.3225848972797394</left_val> 2809 <right_node>1</right_node></_> 2810 <_> 2811 <!-- node 1 --> 2812 <feature> 2813 <rects> 2814 <_> 2815 12 12 2 2 -1.</_> 2816 <_> 2817 13 12 1 2 2.</_></rects> 2818 <tilted>0</tilted></feature> 2819 <threshold>-1.5447080368176103e-03</threshold> 2820 <left_val>0.3697105050086975</left_val> 2821 <right_val>-0.3130857050418854</right_val></_></_> 2822 <_> 2823 <!-- tree 14 --> 2824 <_> 2825 <!-- root node --> 2826 <feature> 2827 <rects> 2828 <_> 2829 18 5 2 1 -1.</_> 2830 <_> 2831 19 5 1 1 2.</_></rects> 2832 <tilted>0</tilted></feature> 2833 <threshold>7.5150746852159500e-05</threshold> 2834 <left_val>-0.3467453122138977</left_val> 2835 <right_node>1</right_node></_> 2836 <_> 2837 <!-- node 1 --> 2838 <feature> 2839 <rects> 2840 <_> 2841 5 19 4 1 -1.</_> 2842 <_> 2843 6 19 2 1 2.</_></rects> 2844 <tilted>0</tilted></feature> 2845 <threshold>-1.1108840117231011e-03</threshold> 2846 <left_val>-0.5747753977775574</left_val> 2847 <right_val>0.2920114099979401</right_val></_></_> 2848 <_> 2849 <!-- tree 15 --> 2850 <_> 2851 <!-- root node --> 2852 <feature> 2853 <rects> 2854 <_> 2855 0 11 5 2 -1.</_> 2856 <_> 2857 0 12 5 1 2.</_></rects> 2858 <tilted>0</tilted></feature> 2859 <threshold>-1.6881119518075138e-04</threshold> 2860 <left_node>1</left_node> 2861 <right_val>-0.3604178130626678</right_val></_> 2862 <_> 2863 <!-- node 1 --> 2864 <feature> 2865 <rects> 2866 <_> 2867 18 0 2 2 -1.</_> 2868 <_> 2869 18 1 2 1 2.</_></rects> 2870 <tilted>0</tilted></feature> 2871 <threshold>-1.2814450019504875e-04</threshold> 2872 <left_val>0.3504320979118347</left_val> 2873 <right_val>-0.2201405018568039</right_val></_></_> 2874 <_> 2875 <!-- tree 16 --> 2876 <_> 2877 <!-- root node --> 2878 <feature> 2879 <rects> 2880 <_> 2881 1 0 12 6 -1.</_> 2882 <_> 2883 1 2 12 2 3.</_></rects> 2884 <tilted>0</tilted></feature> 2885 <threshold>0.0195469707250595</threshold> 2886 <left_node>1</left_node> 2887 <right_val>0.4129591882228851</right_val></_> 2888 <_> 2889 <!-- node 1 --> 2890 <feature> 2891 <rects> 2892 <_> 2893 1 1 6 1 -1.</_> 2894 <_> 2895 3 3 2 1 3.</_></rects> 2896 <tilted>1</tilted></feature> 2897 <threshold>-0.0110611803829670</threshold> 2898 <left_val>0.2596271932125092</left_val> 2899 <right_val>-0.3487595021724701</right_val></_></_> 2900 <_> 2901 <!-- tree 17 --> 2902 <_> 2903 <!-- root node --> 2904 <feature> 2905 <rects> 2906 <_> 2907 16 9 3 1 -1.</_> 2908 <_> 2909 17 10 1 1 3.</_></rects> 2910 <tilted>1</tilted></feature> 2911 <threshold>1.8147419905290008e-03</threshold> 2912 <left_node>1</left_node> 2913 <right_val>-0.5201988816261292</right_val></_> 2914 <_> 2915 <!-- node 1 --> 2916 <feature> 2917 <rects> 2918 <_> 2919 14 10 1 6 -1.</_> 2920 <_> 2921 12 12 1 2 3.</_></rects> 2922 <tilted>1</tilted></feature> 2923 <threshold>-7.1724010631442070e-03</threshold> 2924 <left_val>0.2745266854763031</left_val> 2925 <right_val>-0.2682884931564331</right_val></_></_> 2926 <_> 2927 <!-- tree 18 --> 2928 <_> 2929 <!-- root node --> 2930 <feature> 2931 <rects> 2932 <_> 2933 3 1 1 3 -1.</_> 2934 <_> 2935 2 2 1 1 3.</_></rects> 2936 <tilted>1</tilted></feature> 2937 <threshold>2.2158189676702023e-03</threshold> 2938 <left_node>1</left_node> 2939 <right_val>-0.5734090805053711</right_val></_> 2940 <_> 2941 <!-- node 1 --> 2942 <feature> 2943 <rects> 2944 <_> 2945 3 0 4 3 -1.</_> 2946 <_> 2947 2 1 4 1 3.</_></rects> 2948 <tilted>1</tilted></feature> 2949 <threshold>-9.6856858581304550e-03</threshold> 2950 <left_val>-0.5802857279777527</left_val> 2951 <right_val>0.1856441050767899</right_val></_></_></trees> 2952 <stage_threshold>-2.2618789672851562</stage_threshold> 2953 <parent>8</parent> 2954 <next>-1</next></_> 2955 <_> 2956 <!-- stage 10 --> 2957 <trees> 2958 <_> 2959 <!-- tree 0 --> 2960 <_> 2961 <!-- root node --> 2962 <feature> 2963 <rects> 2964 <_> 2965 6 14 8 1 -1.</_> 2966 <_> 2967 8 14 4 1 2.</_></rects> 2968 <tilted>0</tilted></feature> 2969 <threshold>-0.0120652196928859</threshold> 2970 <left_val>0.6167957186698914</left_val> 2971 <right_node>1</right_node></_> 2972 <_> 2973 <!-- node 1 --> 2974 <feature> 2975 <rects> 2976 <_> 2977 1 8 18 9 -1.</_> 2978 <_> 2979 7 11 6 3 9.</_></rects> 2980 <tilted>0</tilted></feature> 2981 <threshold>-0.4906777143478394</threshold> 2982 <left_val>0.1406393945217133</left_val> 2983 <right_val>-0.5535774230957031</right_val></_></_> 2984 <_> 2985 <!-- tree 1 --> 2986 <_> 2987 <!-- root node --> 2988 <feature> 2989 <rects> 2990 <_> 2991 19 0 1 18 -1.</_> 2992 <_> 2993 19 6 1 6 3.</_></rects> 2994 <tilted>0</tilted></feature> 2995 <threshold>-6.6585717722773552e-03</threshold> 2996 <left_node>1</left_node> 2997 <right_val>-0.5133228898048401</right_val></_> 2998 <_> 2999 <!-- node 1 --> 3000 <feature> 3001 <rects> 3002 <_> 3003 1 13 3 6 -1.</_> 3004 <_> 3005 1 16 3 3 2.</_></rects> 3006 <tilted>0</tilted></feature> 3007 <threshold>0.0158275607973337</threshold> 3008 <left_val>-0.3630152046680450</left_val> 3009 <right_val>0.4334334135055542</right_val></_></_> 3010 <_> 3011 <!-- tree 2 --> 3012 <_> 3013 <!-- root node --> 3014 <feature> 3015 <rects> 3016 <_> 3017 6 10 7 3 -1.</_> 3018 <_> 3019 6 11 7 1 3.</_></rects> 3020 <tilted>0</tilted></feature> 3021 <threshold>-0.0140811800956726</threshold> 3022 <left_val>0.5422372221946716</left_val> 3023 <right_node>1</right_node></_> 3024 <_> 3025 <!-- node 1 --> 3026 <feature> 3027 <rects> 3028 <_> 3029 6 9 7 3 -1.</_> 3030 <_> 3031 6 10 7 1 3.</_></rects> 3032 <tilted>0</tilted></feature> 3033 <threshold>-0.0121394498273730</threshold> 3034 <left_val>0.4428128898143768</left_val> 3035 <right_val>-0.3417111933231354</right_val></_></_> 3036 <_> 3037 <!-- tree 3 --> 3038 <_> 3039 <!-- root node --> 3040 <feature> 3041 <rects> 3042 <_> 3043 14 1 6 8 -1.</_> 3044 <_> 3045 17 1 3 8 2.</_></rects> 3046 <tilted>0</tilted></feature> 3047 <threshold>7.8055798076093197e-03</threshold> 3048 <left_val>-0.4865975975990295</left_val> 3049 <right_node>1</right_node></_> 3050 <_> 3051 <!-- node 1 --> 3052 <feature> 3053 <rects> 3054 <_> 3055 9 6 2 4 -1.</_> 3056 <_> 3057 10 6 1 4 2.</_></rects> 3058 <tilted>0</tilted></feature> 3059 <threshold>-7.0759910158813000e-05</threshold> 3060 <left_val>0.3481867909431458</left_val> 3061 <right_val>-0.3280673921108246</right_val></_></_> 3062 <_> 3063 <!-- tree 4 --> 3064 <_> 3065 <!-- root node --> 3066 <feature> 3067 <rects> 3068 <_> 3069 6 11 7 2 -1.</_> 3070 <_> 3071 6 12 7 1 2.</_></rects> 3072 <tilted>0</tilted></feature> 3073 <threshold>-0.0181996300816536</threshold> 3074 <left_val>0.5659415125846863</left_val> 3075 <right_node>1</right_node></_> 3076 <_> 3077 <!-- node 1 --> 3078 <feature> 3079 <rects> 3080 <_> 3081 17 11 3 6 -1.</_> 3082 <_> 3083 18 12 1 6 3.</_></rects> 3084 <tilted>1</tilted></feature> 3085 <threshold>-2.5289389304816723e-03</threshold> 3086 <left_val>0.1131006032228470</left_val> 3087 <right_val>-0.4077238142490387</right_val></_></_> 3088 <_> 3089 <!-- tree 5 --> 3090 <_> 3091 <!-- root node --> 3092 <feature> 3093 <rects> 3094 <_> 3095 19 17 1 2 -1.</_> 3096 <_> 3097 19 17 1 1 2.</_></rects> 3098 <tilted>1</tilted></feature> 3099 <threshold>1.0156990028917789e-03</threshold> 3100 <left_node>1</left_node> 3101 <right_val>-0.5984297990798950</right_val></_> 3102 <_> 3103 <!-- node 1 --> 3104 <feature> 3105 <rects> 3106 <_> 3107 16 9 4 2 -1.</_> 3108 <_> 3109 17 10 2 2 2.</_></rects> 3110 <tilted>1</tilted></feature> 3111 <threshold>2.9432660085149109e-04</threshold> 3112 <left_val>0.2843945026397705</left_val> 3113 <right_val>-0.3219023048877716</right_val></_></_> 3114 <_> 3115 <!-- tree 6 --> 3116 <_> 3117 <!-- root node --> 3118 <feature> 3119 <rects> 3120 <_> 3121 6 18 4 2 -1.</_> 3122 <_> 3123 7 18 2 2 2.</_></rects> 3124 <tilted>0</tilted></feature> 3125 <threshold>2.0865290425717831e-03</threshold> 3126 <left_node>1</left_node> 3127 <right_val>-0.7828571200370789</right_val></_> 3128 <_> 3129 <!-- node 1 --> 3130 <feature> 3131 <rects> 3132 <_> 3133 2 12 4 4 -1.</_> 3134 <_> 3135 3 12 2 4 2.</_></rects> 3136 <tilted>0</tilted></feature> 3137 <threshold>-1.7371569992974401e-03</threshold> 3138 <left_val>0.3358530104160309</left_val> 3139 <right_val>-0.2058237046003342</right_val></_></_> 3140 <_> 3141 <!-- tree 7 --> 3142 <_> 3143 <!-- root node --> 3144 <feature> 3145 <rects> 3146 <_> 3147 19 2 1 2 -1.</_> 3148 <_> 3149 19 3 1 1 2.</_></rects> 3150 <tilted>0</tilted></feature> 3151 <threshold>-7.0026202592998743e-05</threshold> 3152 <left_node>1</left_node> 3153 <right_val>-0.3910934925079346</right_val></_> 3154 <_> 3155 <!-- node 1 --> 3156 <feature> 3157 <rects> 3158 <_> 3159 19 2 1 3 -1.</_> 3160 <_> 3161 19 3 1 1 3.</_></rects> 3162 <tilted>0</tilted></feature> 3163 <threshold>-1.4891549944877625e-03</threshold> 3164 <left_val>-0.4695341885089874</left_val> 3165 <right_val>0.2760924100875854</right_val></_></_> 3166 <_> 3167 <!-- tree 8 --> 3168 <_> 3169 <!-- root node --> 3170 <feature> 3171 <rects> 3172 <_> 3173 1 12 12 3 -1.</_> 3174 <_> 3175 7 12 6 3 2.</_></rects> 3176 <tilted>0</tilted></feature> 3177 <threshold>-0.0117884296923876</threshold> 3178 <left_node>1</left_node> 3179 <right_val>-0.4011414945125580</right_val></_> 3180 <_> 3181 <!-- node 1 --> 3182 <feature> 3183 <rects> 3184 <_> 3185 6 18 4 1 -1.</_> 3186 <_> 3187 7 18 2 1 2.</_></rects> 3188 <tilted>0</tilted></feature> 3189 <threshold>-1.5155089786276221e-03</threshold> 3190 <left_val>-0.7429047822952271</left_val> 3191 <right_val>0.2769562900066376</right_val></_></_> 3192 <_> 3193 <!-- tree 9 --> 3194 <_> 3195 <!-- root node --> 3196 <feature> 3197 <rects> 3198 <_> 3199 5 2 12 6 -1.</_> 3200 <_> 3201 5 5 12 3 2.</_></rects> 3202 <tilted>0</tilted></feature> 3203 <threshold>0.0683967173099518</threshold> 3204 <left_node>1</left_node> 3205 <right_val>0.4523564875125885</right_val></_> 3206 <_> 3207 <!-- node 1 --> 3208 <feature> 3209 <rects> 3210 <_> 3211 9 1 6 6 -1.</_> 3212 <_> 3213 9 4 6 3 2.</_></rects> 3214 <tilted>0</tilted></feature> 3215 <threshold>-0.0764414072036743</threshold> 3216 <left_val>0.4284816980361938</left_val> 3217 <right_val>-0.3163630962371826</right_val></_></_> 3218 <_> 3219 <!-- tree 10 --> 3220 <_> 3221 <!-- root node --> 3222 <feature> 3223 <rects> 3224 <_> 3225 7 0 11 9 -1.</_> 3226 <_> 3227 7 3 11 3 3.</_></rects> 3228 <tilted>0</tilted></feature> 3229 <threshold>0.0683102011680603</threshold> 3230 <left_node>1</left_node> 3231 <right_val>0.5140427947044373</right_val></_> 3232 <_> 3233 <!-- node 1 --> 3234 <feature> 3235 <rects> 3236 <_> 3237 2 0 8 9 -1.</_> 3238 <_> 3239 2 3 8 3 3.</_></rects> 3240 <tilted>0</tilted></feature> 3241 <threshold>-0.0645080134272575</threshold> 3242 <left_val>0.1808187067508698</left_val> 3243 <right_val>-0.3421795070171356</right_val></_></_> 3244 <_> 3245 <!-- tree 11 --> 3246 <_> 3247 <!-- root node --> 3248 <feature> 3249 <rects> 3250 <_> 3251 5 3 4 3 -1.</_> 3252 <_> 3253 6 3 2 3 2.</_></rects> 3254 <tilted>0</tilted></feature> 3255 <threshold>-2.8335719835013151e-03</threshold> 3256 <left_val>-0.6950976848602295</left_val> 3257 <right_node>1</right_node></_> 3258 <_> 3259 <!-- node 1 --> 3260 <feature> 3261 <rects> 3262 <_> 3263 0 18 3 2 -1.</_> 3264 <_> 3265 0 19 3 1 2.</_></rects> 3266 <tilted>0</tilted></feature> 3267 <threshold>-9.9732237868010998e-04</threshold> 3268 <left_val>-0.4372459053993225</left_val> 3269 <right_val>0.2022608071565628</right_val></_></_> 3270 <_> 3271 <!-- tree 12 --> 3272 <_> 3273 <!-- root node --> 3274 <feature> 3275 <rects> 3276 <_> 3277 1 0 10 19 -1.</_> 3278 <_> 3279 6 0 5 19 2.</_></rects> 3280 <tilted>0</tilted></feature> 3281 <threshold>-0.2286991029977798</threshold> 3282 <left_val>0.6466220021247864</left_val> 3283 <right_node>1</right_node></_> 3284 <_> 3285 <!-- node 1 --> 3286 <feature> 3287 <rects> 3288 <_> 3289 3 8 2 3 -1.</_> 3290 <_> 3291 2 9 2 1 3.</_></rects> 3292 <tilted>1</tilted></feature> 3293 <threshold>2.9855249449610710e-03</threshold> 3294 <left_val>8.1149758771061897e-03</left_val> 3295 <right_val>-0.6021029949188232</right_val></_></_> 3296 <_> 3297 <!-- tree 13 --> 3298 <_> 3299 <!-- root node --> 3300 <feature> 3301 <rects> 3302 <_> 3303 10 17 4 3 -1.</_> 3304 <_> 3305 11 17 2 3 2.</_></rects> 3306 <tilted>0</tilted></feature> 3307 <threshold>-2.9535989742726088e-03</threshold> 3308 <left_val>-0.7201312780380249</left_val> 3309 <right_node>1</right_node></_> 3310 <_> 3311 <!-- node 1 --> 3312 <feature> 3313 <rects> 3314 <_> 3315 11 13 3 2 -1.</_> 3316 <_> 3317 12 13 1 2 3.</_></rects> 3318 <tilted>0</tilted></feature> 3319 <threshold>-2.1225619129836559e-03</threshold> 3320 <left_val>0.5087562203407288</left_val> 3321 <right_val>-0.0593666099011898</right_val></_></_> 3322 <_> 3323 <!-- tree 14 --> 3324 <_> 3325 <!-- root node --> 3326 <feature> 3327 <rects> 3328 <_> 3329 10 12 3 2 -1.</_> 3330 <_> 3331 11 12 1 2 3.</_></rects> 3332 <tilted>0</tilted></feature> 3333 <threshold>-2.9382819775491953e-03</threshold> 3334 <left_val>0.3928753137588501</left_val> 3335 <right_node>1</right_node></_> 3336 <_> 3337 <!-- node 1 --> 3338 <feature> 3339 <rects> 3340 <_> 3341 9 11 3 3 -1.</_> 3342 <_> 3343 10 11 1 3 3.</_></rects> 3344 <tilted>0</tilted></feature> 3345 <threshold>-5.8961478061974049e-03</threshold> 3346 <left_val>0.4186604022979736</left_val> 3347 <right_val>-0.2540551126003265</right_val></_></_> 3348 <_> 3349 <!-- tree 15 --> 3350 <_> 3351 <!-- root node --> 3352 <feature> 3353 <rects> 3354 <_> 3355 17 2 3 1 -1.</_> 3356 <_> 3357 18 3 1 1 3.</_></rects> 3358 <tilted>1</tilted></feature> 3359 <threshold>2.5730929337441921e-03</threshold> 3360 <left_node>1</left_node> 3361 <right_val>-0.5870727896690369</right_val></_> 3362 <_> 3363 <!-- node 1 --> 3364 <feature> 3365 <rects> 3366 <_> 3367 12 0 6 13 -1.</_> 3368 <_> 3369 14 0 2 13 3.</_></rects> 3370 <tilted>0</tilted></feature> 3371 <threshold>0.0166477393358946</threshold> 3372 <left_val>0.1920848041772842</left_val> 3373 <right_val>-0.6038894057273865</right_val></_></_> 3374 <_> 3375 <!-- tree 16 --> 3376 <_> 3377 <!-- root node --> 3378 <feature> 3379 <rects> 3380 <_> 3381 16 0 3 1 -1.</_> 3382 <_> 3383 17 1 1 1 3.</_></rects> 3384 <tilted>1</tilted></feature> 3385 <threshold>2.4041840806603432e-03</threshold> 3386 <left_node>1</left_node> 3387 <right_val>-0.5719233751296997</right_val></_> 3388 <_> 3389 <!-- node 1 --> 3390 <feature> 3391 <rects> 3392 <_> 3393 5 11 1 2 -1.</_> 3394 <_> 3395 5 12 1 1 2.</_></rects> 3396 <tilted>0</tilted></feature> 3397 <threshold>-9.0452830772846937e-04</threshold> 3398 <left_val>0.3486076891422272</left_val> 3399 <right_val>-0.1304924041032791</right_val></_></_> 3400 <_> 3401 <!-- tree 17 --> 3402 <_> 3403 <!-- root node --> 3404 <feature> 3405 <rects> 3406 <_> 3407 2 11 4 2 -1.</_> 3408 <_> 3409 2 11 2 1 2.</_> 3410 <_> 3411 4 12 2 1 2.</_></rects> 3412 <tilted>0</tilted></feature> 3413 <threshold>4.0814210660755634e-03</threshold> 3414 <left_node>1</left_node> 3415 <right_val>0.5177801847457886</right_val></_> 3416 <_> 3417 <!-- node 1 --> 3418 <feature> 3419 <rects> 3420 <_> 3421 16 15 2 3 -1.</_> 3422 <_> 3423 15 16 2 1 3.</_></rects> 3424 <tilted>1</tilted></feature> 3425 <threshold>3.3811479806900024e-03</threshold> 3426 <left_val>-6.3828541897237301e-03</left_val> 3427 <right_val>-0.6144781708717346</right_val></_></_> 3428 <_> 3429 <!-- tree 18 --> 3430 <_> 3431 <!-- root node --> 3432 <feature> 3433 <rects> 3434 <_> 3435 8 17 4 2 -1.</_> 3436 <_> 3437 9 17 2 2 2.</_></rects> 3438 <tilted>0</tilted></feature> 3439 <threshold>-2.7499340940266848e-03</threshold> 3440 <left_val>-0.6540778875350952</left_val> 3441 <right_node>1</right_node></_> 3442 <_> 3443 <!-- node 1 --> 3444 <feature> 3445 <rects> 3446 <_> 3447 0 16 4 3 -1.</_> 3448 <_> 3449 0 17 4 1 3.</_></rects> 3450 <tilted>0</tilted></feature> 3451 <threshold>-4.8207710497081280e-03</threshold> 3452 <left_val>-0.6002961993217468</left_val> 3453 <right_val>0.1437458992004395</right_val></_></_></trees> 3454 <stage_threshold>-2.0994780063629150</stage_threshold> 3455 <parent>9</parent> 3456 <next>-1</next></_> 3457 <_> 3458 <!-- stage 11 --> 3459 <trees> 3460 <_> 3461 <!-- tree 0 --> 3462 <_> 3463 <!-- root node --> 3464 <feature> 3465 <rects> 3466 <_> 3467 9 13 6 2 -1.</_> 3468 <_> 3469 12 13 3 2 2.</_></rects> 3470 <tilted>0</tilted></feature> 3471 <threshold>7.9710120335221291e-03</threshold> 3472 <left_val>-0.6199223995208740</left_val> 3473 <right_node>1</right_node></_> 3474 <_> 3475 <!-- node 1 --> 3476 <feature> 3477 <rects> 3478 <_> 3479 2 14 1 2 -1.</_> 3480 <_> 3481 2 14 1 1 2.</_></rects> 3482 <tilted>1</tilted></feature> 3483 <threshold>-9.7160867881029844e-04</threshold> 3484 <left_val>0.5487716197967529</left_val> 3485 <right_val>-0.4060696065425873</right_val></_></_> 3486 <_> 3487 <!-- tree 1 --> 3488 <_> 3489 <!-- root node --> 3490 <feature> 3491 <rects> 3492 <_> 3493 5 10 8 3 -1.</_> 3494 <_> 3495 5 11 8 1 3.</_></rects> 3496 <tilted>0</tilted></feature> 3497 <threshold>-0.0109458696097136</threshold> 3498 <left_val>0.4693686962127686</left_val> 3499 <right_node>1</right_node></_> 3500 <_> 3501 <!-- node 1 --> 3502 <feature> 3503 <rects> 3504 <_> 3505 15 0 3 8 -1.</_> 3506 <_> 3507 13 2 3 4 2.</_></rects> 3508 <tilted>1</tilted></feature> 3509 <threshold>-0.0611748211085796</threshold> 3510 <left_val>0.3057084977626801</left_val> 3511 <right_val>-0.4445989131927490</right_val></_></_> 3512 <_> 3513 <!-- tree 2 --> 3514 <_> 3515 <!-- root node --> 3516 <feature> 3517 <rects> 3518 <_> 3519 14 11 4 7 -1.</_> 3520 <_> 3521 15 11 2 7 2.</_></rects> 3522 <tilted>0</tilted></feature> 3523 <threshold>-2.3100150283426046e-03</threshold> 3524 <left_node>1</left_node> 3525 <right_val>-0.3781644105911255</right_val></_> 3526 <_> 3527 <!-- node 1 --> 3528 <feature> 3529 <rects> 3530 <_> 3531 3 11 15 4 -1.</_> 3532 <_> 3533 8 11 5 4 3.</_></rects> 3534 <tilted>0</tilted></feature> 3535 <threshold>-0.0475850515067577</threshold> 3536 <left_val>0.4886583983898163</left_val> 3537 <right_val>-0.2972886860370636</right_val></_></_> 3538 <_> 3539 <!-- tree 3 --> 3540 <_> 3541 <!-- root node --> 3542 <feature> 3543 <rects> 3544 <_> 3545 9 1 9 9 -1.</_> 3546 <_> 3547 12 1 3 9 3.</_></rects> 3548 <tilted>0</tilted></feature> 3549 <threshold>-2.5944279041141272e-03</threshold> 3550 <left_node>1</left_node> 3551 <right_val>-0.5440536737442017</right_val></_> 3552 <_> 3553 <!-- node 1 --> 3554 <feature> 3555 <rects> 3556 <_> 3557 0 11 4 7 -1.</_> 3558 <_> 3559 2 11 2 7 2.</_></rects> 3560 <tilted>0</tilted></feature> 3561 <threshold>-3.9469371549785137e-03</threshold> 3562 <left_val>0.3638249039649963</left_val> 3563 <right_val>-0.3046984970569611</right_val></_></_> 3564 <_> 3565 <!-- tree 4 --> 3566 <_> 3567 <!-- root node --> 3568 <feature> 3569 <rects> 3570 <_> 3571 0 16 1 4 -1.</_> 3572 <_> 3573 0 18 1 2 2.</_></rects> 3574 <tilted>0</tilted></feature> 3575 <threshold>3.1871569808572531e-04</threshold> 3576 <left_val>-0.4682297110557556</left_val> 3577 <right_node>1</right_node></_> 3578 <_> 3579 <!-- node 1 --> 3580 <feature> 3581 <rects> 3582 <_> 3583 19 0 1 6 -1.</_> 3584 <_> 3585 19 3 1 3 2.</_></rects> 3586 <tilted>0</tilted></feature> 3587 <threshold>-2.6655721012502909e-03</threshold> 3588 <left_val>0.3313196897506714</left_val> 3589 <right_val>-0.2991823852062225</right_val></_></_> 3590 <_> 3591 <!-- tree 5 --> 3592 <_> 3593 <!-- root node --> 3594 <feature> 3595 <rects> 3596 <_> 3597 11 8 9 9 -1.</_> 3598 <_> 3599 11 11 9 3 3.</_></rects> 3600 <tilted>0</tilted></feature> 3601 <threshold>-0.0395346507430077</threshold> 3602 <left_node>1</left_node> 3603 <right_val>-0.3531683087348938</right_val></_> 3604 <_> 3605 <!-- node 1 --> 3606 <feature> 3607 <rects> 3608 <_> 3609 9 17 8 3 -1.</_> 3610 <_> 3611 11 17 4 3 2.</_></rects> 3612 <tilted>0</tilted></feature> 3613 <threshold>-9.4085611635819077e-04</threshold> 3614 <left_val>0.4444710016250610</left_val> 3615 <right_val>-0.1108866035938263</right_val></_></_> 3616 <_> 3617 <!-- tree 6 --> 3618 <_> 3619 <!-- root node --> 3620 <feature> 3621 <rects> 3622 <_> 3623 18 4 2 2 -1.</_> 3624 <_> 3625 19 4 1 2 2.</_></rects> 3626 <tilted>0</tilted></feature> 3627 <threshold>6.9526307925116271e-05</threshold> 3628 <left_val>-0.3940326869487762</left_val> 3629 <right_node>1</right_node></_> 3630 <_> 3631 <!-- node 1 --> 3632 <feature> 3633 <rects> 3634 <_> 3635 8 11 3 3 -1.</_> 3636 <_> 3637 9 12 1 1 9.</_></rects> 3638 <tilted>0</tilted></feature> 3639 <threshold>-9.6976682543754578e-03</threshold> 3640 <left_val>0.5718188881874084</left_val> 3641 <right_val>-0.0163709502667189</right_val></_></_> 3642 <_> 3643 <!-- tree 7 --> 3644 <_> 3645 <!-- root node --> 3646 <feature> 3647 <rects> 3648 <_> 3649 13 2 3 4 -1.</_> 3650 <_> 3651 13 2 3 2 2.</_></rects> 3652 <tilted>1</tilted></feature> 3653 <threshold>0.0394690409302711</threshold> 3654 <left_node>1</left_node> 3655 <right_val>0.6915212273597717</right_val></_> 3656 <_> 3657 <!-- node 1 --> 3658 <feature> 3659 <rects> 3660 <_> 3661 4 6 16 3 -1.</_> 3662 <_> 3663 12 6 8 3 2.</_></rects> 3664 <tilted>0</tilted></feature> 3665 <threshold>-8.2811042666435242e-03</threshold> 3666 <left_val>0.1334999054670334</left_val> 3667 <right_val>-0.4706448018550873</right_val></_></_> 3668 <_> 3669 <!-- tree 8 --> 3670 <_> 3671 <!-- root node --> 3672 <feature> 3673 <rects> 3674 <_> 3675 10 12 1 3 -1.</_> 3676 <_> 3677 9 13 1 1 3.</_></rects> 3678 <tilted>1</tilted></feature> 3679 <threshold>-4.3219728395342827e-03</threshold> 3680 <left_val>0.3823925852775574</left_val> 3681 <right_node>1</right_node></_> 3682 <_> 3683 <!-- node 1 --> 3684 <feature> 3685 <rects> 3686 <_> 3687 8 12 3 3 -1.</_> 3688 <_> 3689 9 13 1 1 9.</_></rects> 3690 <tilted>0</tilted></feature> 3691 <threshold>-5.5436040274798870e-03</threshold> 3692 <left_val>0.1564587950706482</left_val> 3693 <right_val>-0.4108820855617523</right_val></_></_> 3694 <_> 3695 <!-- tree 9 --> 3696 <_> 3697 <!-- root node --> 3698 <feature> 3699 <rects> 3700 <_> 3701 17 17 1 2 -1.</_> 3702 <_> 3703 17 17 1 1 2.</_></rects> 3704 <tilted>1</tilted></feature> 3705 <threshold>-5.9953341406071559e-05</threshold> 3706 <left_node>1</left_node> 3707 <right_val>-0.3922179937362671</right_val></_> 3708 <_> 3709 <!-- node 1 --> 3710 <feature> 3711 <rects> 3712 <_> 3713 16 16 2 2 -1.</_> 3714 <_> 3715 16 16 2 1 2.</_></rects> 3716 <tilted>1</tilted></feature> 3717 <threshold>-5.9089371934533119e-03</threshold> 3718 <left_val>-0.5908386707305908</left_val> 3719 <right_val>0.2792448103427887</right_val></_></_> 3720 <_> 3721 <!-- tree 10 --> 3722 <_> 3723 <!-- root node --> 3724 <feature> 3725 <rects> 3726 <_> 3727 6 0 9 6 -1.</_> 3728 <_> 3729 6 2 9 2 3.</_></rects> 3730 <tilted>0</tilted></feature> 3731 <threshold>-0.0447213910520077</threshold> 3732 <left_val>0.4145449101924896</left_val> 3733 <right_node>1</right_node></_> 3734 <_> 3735 <!-- node 1 --> 3736 <feature> 3737 <rects> 3738 <_> 3739 5 0 10 8 -1.</_> 3740 <_> 3741 5 2 10 4 2.</_></rects> 3742 <tilted>0</tilted></feature> 3743 <threshold>0.0412670187652111</threshold> 3744 <left_val>-0.3224200904369354</left_val> 3745 <right_val>0.3784987926483154</right_val></_></_> 3746 <_> 3747 <!-- tree 11 --> 3748 <_> 3749 <!-- root node --> 3750 <feature> 3751 <rects> 3752 <_> 3753 17 5 2 1 -1.</_> 3754 <_> 3755 18 5 1 1 2.</_></rects> 3756 <tilted>0</tilted></feature> 3757 <threshold>5.6728709751041606e-05</threshold> 3758 <left_val>-0.3222804069519043</left_val> 3759 <right_node>1</right_node></_> 3760 <_> 3761 <!-- node 1 --> 3762 <feature> 3763 <rects> 3764 <_> 3765 11 0 9 9 -1.</_> 3766 <_> 3767 14 0 3 9 3.</_></rects> 3768 <tilted>0</tilted></feature> 3769 <threshold>-0.0624278709292412</threshold> 3770 <left_val>-0.5966644883155823</left_val> 3771 <right_val>0.2891578078269958</right_val></_></_> 3772 <_> 3773 <!-- tree 12 --> 3774 <_> 3775 <!-- root node --> 3776 <feature> 3777 <rects> 3778 <_> 3779 6 9 7 3 -1.</_> 3780 <_> 3781 6 10 7 1 3.</_></rects> 3782 <tilted>0</tilted></feature> 3783 <threshold>-5.6994128972291946e-03</threshold> 3784 <left_val>0.3749934136867523</left_val> 3785 <right_node>1</right_node></_> 3786 <_> 3787 <!-- node 1 --> 3788 <feature> 3789 <rects> 3790 <_> 3791 3 12 6 2 -1.</_> 3792 <_> 3793 3 12 3 1 2.</_> 3794 <_> 3795 6 13 3 1 2.</_></rects> 3796 <tilted>0</tilted></feature> 3797 <threshold>7.5202910229563713e-03</threshold> 3798 <left_val>-0.2813245952129364</left_val> 3799 <right_val>0.5098885893821716</right_val></_></_> 3800 <_> 3801 <!-- tree 13 --> 3802 <_> 3803 <!-- root node --> 3804 <feature> 3805 <rects> 3806 <_> 3807 2 10 1 2 -1.</_> 3808 <_> 3809 2 10 1 1 2.</_></rects> 3810 <tilted>1</tilted></feature> 3811 <threshold>-3.3640549518167973e-03</threshold> 3812 <left_val>-0.6397820711135864</left_val> 3813 <right_node>1</right_node></_> 3814 <_> 3815 <!-- node 1 --> 3816 <feature> 3817 <rects> 3818 <_> 3819 13 15 2 3 -1.</_> 3820 <_> 3821 12 16 2 1 3.</_></rects> 3822 <tilted>1</tilted></feature> 3823 <threshold>-6.8076648749411106e-03</threshold> 3824 <left_val>-0.7310581803321838</left_val> 3825 <right_val>0.1447525024414062</right_val></_></_> 3826 <_> 3827 <!-- tree 14 --> 3828 <_> 3829 <!-- root node --> 3830 <feature> 3831 <rects> 3832 <_> 3833 7 2 6 5 -1.</_> 3834 <_> 3835 9 2 2 5 3.</_></rects> 3836 <tilted>0</tilted></feature> 3837 <threshold>0.0126334596425295</threshold> 3838 <left_node>1</left_node> 3839 <right_val>-0.7772529721260071</right_val></_> 3840 <_> 3841 <!-- node 1 --> 3842 <feature> 3843 <rects> 3844 <_> 3845 13 13 6 3 -1.</_> 3846 <_> 3847 15 13 2 3 3.</_></rects> 3848 <tilted>0</tilted></feature> 3849 <threshold>-2.9199919663369656e-03</threshold> 3850 <left_val>0.2325859963893890</left_val> 3851 <right_val>-0.2049060016870499</right_val></_></_> 3852 <_> 3853 <!-- tree 15 --> 3854 <_> 3855 <!-- root node --> 3856 <feature> 3857 <rects> 3858 <_> 3859 17 9 3 8 -1.</_> 3860 <_> 3861 17 11 3 4 2.</_></rects> 3862 <tilted>0</tilted></feature> 3863 <threshold>-0.0305822491645813</threshold> 3864 <left_val>-0.6573882102966309</left_val> 3865 <right_node>1</right_node></_> 3866 <_> 3867 <!-- node 1 --> 3868 <feature> 3869 <rects> 3870 <_> 3871 8 3 4 3 -1.</_> 3872 <_> 3873 9 3 2 3 2.</_></rects> 3874 <tilted>0</tilted></feature> 3875 <threshold>-2.7796169742941856e-03</threshold> 3876 <left_val>-0.5488834977149963</left_val> 3877 <right_val>0.1383789032697678</right_val></_></_> 3878 <_> 3879 <!-- tree 16 --> 3880 <_> 3881 <!-- root node --> 3882 <feature> 3883 <rects> 3884 <_> 3885 15 6 2 12 -1.</_> 3886 <_> 3887 15 6 1 12 2.</_></rects> 3888 <tilted>1</tilted></feature> 3889 <threshold>-7.6163080520927906e-03</threshold> 3890 <left_val>-0.3591234982013702</left_val> 3891 <right_node>1</right_node></_> 3892 <_> 3893 <!-- node 1 --> 3894 <feature> 3895 <rects> 3896 <_> 3897 11 14 4 2 -1.</_> 3898 <_> 3899 11 14 4 1 2.</_></rects> 3900 <tilted>1</tilted></feature> 3901 <threshold>-1.8409560434520245e-03</threshold> 3902 <left_val>0.2240446954965591</left_val> 3903 <right_val>-0.3788186013698578</right_val></_></_> 3904 <_> 3905 <!-- tree 17 --> 3906 <_> 3907 <!-- root node --> 3908 <feature> 3909 <rects> 3910 <_> 3911 9 2 5 4 -1.</_> 3912 <_> 3913 9 4 5 2 2.</_></rects> 3914 <tilted>0</tilted></feature> 3915 <threshold>-0.0392002612352371</threshold> 3916 <left_val>0.5009055137634277</left_val> 3917 <right_node>1</right_node></_> 3918 <_> 3919 <!-- node 1 --> 3920 <feature> 3921 <rects> 3922 <_> 3923 13 12 3 3 -1.</_> 3924 <_> 3925 14 12 1 3 3.</_></rects> 3926 <tilted>0</tilted></feature> 3927 <threshold>-2.2543789818882942e-03</threshold> 3928 <left_val>0.3136400878429413</left_val> 3929 <right_val>-0.2213186025619507</right_val></_></_> 3930 <_> 3931 <!-- tree 18 --> 3932 <_> 3933 <!-- root node --> 3934 <feature> 3935 <rects> 3936 <_> 3937 18 1 2 3 -1.</_> 3938 <_> 3939 18 2 2 1 3.</_></rects> 3940 <tilted>0</tilted></feature> 3941 <threshold>2.3894659243524075e-03</threshold> 3942 <left_node>1</left_node> 3943 <right_val>-0.5869951248168945</right_val></_> 3944 <_> 3945 <!-- node 1 --> 3946 <feature> 3947 <rects> 3948 <_> 3949 5 13 4 1 -1.</_> 3950 <_> 3951 6 13 2 1 2.</_></rects> 3952 <tilted>0</tilted></feature> 3953 <threshold>-1.0725490283221006e-03</threshold> 3954 <left_val>0.4714120924472809</left_val> 3955 <right_val>-0.0325704887509346</right_val></_></_> 3956 <_> 3957 <!-- tree 19 --> 3958 <_> 3959 <!-- root node --> 3960 <feature> 3961 <rects> 3962 <_> 3963 5 10 2 2 -1.</_> 3964 <_> 3965 5 10 2 1 2.</_></rects> 3966 <tilted>1</tilted></feature> 3967 <threshold>8.9095337898470461e-05</threshold> 3968 <left_val>-0.3044430911540985</left_val> 3969 <right_node>1</right_node></_> 3970 <_> 3971 <!-- node 1 --> 3972 <feature> 3973 <rects> 3974 <_> 3975 2 11 1 2 -1.</_> 3976 <_> 3977 2 11 1 1 2.</_></rects> 3978 <tilted>1</tilted></feature> 3979 <threshold>1.6920049674808979e-03</threshold> 3980 <left_val>0.3028089106082916</left_val> 3981 <right_val>-0.3890272974967957</right_val></_></_> 3982 <_> 3983 <!-- tree 20 --> 3984 <_> 3985 <!-- root node --> 3986 <feature> 3987 <rects> 3988 <_> 3989 18 3 2 6 -1.</_> 3990 <_> 3991 18 5 2 2 3.</_></rects> 3992 <tilted>0</tilted></feature> 3993 <threshold>0.0117840003222227</threshold> 3994 <left_node>1</left_node> 3995 <right_val>-0.6899343729019165</right_val></_> 3996 <_> 3997 <!-- node 1 --> 3998 <feature> 3999 <rects> 4000 <_> 4001 10 4 6 2 -1.</_> 4002 <_> 4003 10 5 6 1 2.</_></rects> 4004 <tilted>0</tilted></feature> 4005 <threshold>3.9335917681455612e-03</threshold> 4006 <left_val>-0.0677639394998550</left_val> 4007 <right_val>0.4649978876113892</right_val></_></_></trees> 4008 <stage_threshold>-2.1254189014434814</stage_threshold> 4009 <parent>10</parent> 4010 <next>-1</next></_> 4011 <_> 4012 <!-- stage 12 --> 4013 <trees> 4014 <_> 4015 <!-- tree 0 --> 4016 <_> 4017 <!-- root node --> 4018 <feature> 4019 <rects> 4020 <_> 4021 11 13 6 2 -1.</_> 4022 <_> 4023 13 13 2 2 3.</_></rects> 4024 <tilted>0</tilted></feature> 4025 <threshold>0.0114308400079608</threshold> 4026 <left_val>-0.3927457034587860</left_val> 4027 <right_node>1</right_node></_> 4028 <_> 4029 <!-- node 1 --> 4030 <feature> 4031 <rects> 4032 <_> 4033 9 11 3 4 -1.</_> 4034 <_> 4035 9 11 3 2 2.</_></rects> 4036 <tilted>1</tilted></feature> 4037 <threshold>-0.0322429202497005</threshold> 4038 <left_val>0.6556879878044128</left_val> 4039 <right_val>-0.3106881082057953</right_val></_></_> 4040 <_> 4041 <!-- tree 1 --> 4042 <_> 4043 <!-- root node --> 4044 <feature> 4045 <rects> 4046 <_> 4047 0 11 2 5 -1.</_> 4048 <_> 4049 1 11 1 5 2.</_></rects> 4050 <tilted>0</tilted></feature> 4051 <threshold>-1.8382760463282466e-03</threshold> 4052 <left_node>1</left_node> 4053 <right_val>-0.4082506895065308</right_val></_> 4054 <_> 4055 <!-- node 1 --> 4056 <feature> 4057 <rects> 4058 <_> 4059 0 8 20 9 -1.</_> 4060 <_> 4061 0 11 20 3 3.</_></rects> 4062 <tilted>0</tilted></feature> 4063 <threshold>-0.1076439991593361</threshold> 4064 <left_val>0.4328007996082306</left_val> 4065 <right_val>-0.4226345121860504</right_val></_></_> 4066 <_> 4067 <!-- tree 2 --> 4068 <_> 4069 <!-- root node --> 4070 <feature> 4071 <rects> 4072 <_> 4073 18 0 1 6 -1.</_> 4074 <_> 4075 18 3 1 3 2.</_></rects> 4076 <tilted>0</tilted></feature> 4077 <threshold>-2.3866090923547745e-03</threshold> 4078 <left_node>1</left_node> 4079 <right_val>-0.4643520116806030</right_val></_> 4080 <_> 4081 <!-- node 1 --> 4082 <feature> 4083 <rects> 4084 <_> 4085 14 1 6 7 -1.</_> 4086 <_> 4087 17 1 3 7 2.</_></rects> 4088 <tilted>0</tilted></feature> 4089 <threshold>8.6586214601993561e-03</threshold> 4090 <left_val>-0.4067307114601135</left_val> 4091 <right_val>0.4126786887645721</right_val></_></_> 4092 <_> 4093 <!-- tree 3 --> 4094 <_> 4095 <!-- root node --> 4096 <feature> 4097 <rects> 4098 <_> 4099 4 13 2 4 -1.</_> 4100 <_> 4101 4 13 1 2 2.</_> 4102 <_> 4103 5 15 1 2 2.</_></rects> 4104 <tilted>0</tilted></feature> 4105 <threshold>-1.6437229933217168e-03</threshold> 4106 <left_node>1</left_node> 4107 <right_val>-0.2134404927492142</right_val></_> 4108 <_> 4109 <!-- node 1 --> 4110 <feature> 4111 <rects> 4112 <_> 4113 1 9 18 6 -1.</_> 4114 <_> 4115 7 9 6 6 3.</_></rects> 4116 <tilted>0</tilted></feature> 4117 <threshold>-0.0985111370682716</threshold> 4118 <left_val>0.6843231916427612</left_val> 4119 <right_val>-0.0970350131392479</right_val></_></_> 4120 <_> 4121 <!-- tree 4 --> 4122 <_> 4123 <!-- root node --> 4124 <feature> 4125 <rects> 4126 <_> 4127 0 16 5 4 -1.</_> 4128 <_> 4129 0 18 5 2 2.</_></rects> 4130 <tilted>0</tilted></feature> 4131 <threshold>4.4292360544204712e-03</threshold> 4132 <left_val>-0.3949891030788422</left_val> 4133 <right_node>1</right_node></_> 4134 <_> 4135 <!-- node 1 --> 4136 <feature> 4137 <rects> 4138 <_> 4139 8 14 3 4 -1.</_> 4140 <_> 4141 8 15 3 2 2.</_></rects> 4142 <tilted>0</tilted></feature> 4143 <threshold>4.6966210938990116e-03</threshold> 4144 <left_val>-0.1134598031640053</left_val> 4145 <right_val>0.4968199133872986</right_val></_></_> 4146 <_> 4147 <!-- tree 5 --> 4148 <_> 4149 <!-- root node --> 4150 <feature> 4151 <rects> 4152 <_> 4153 7 7 8 3 -1.</_> 4154 <_> 4155 11 7 4 3 2.</_></rects> 4156 <tilted>0</tilted></feature> 4157 <threshold>-8.8480701670050621e-03</threshold> 4158 <left_node>1</left_node> 4159 <right_val>-0.3129310011863708</right_val></_> 4160 <_> 4161 <!-- node 1 --> 4162 <feature> 4163 <rects> 4164 <_> 4165 12 3 4 7 -1.</_> 4166 <_> 4167 13 3 2 7 2.</_></rects> 4168 <tilted>0</tilted></feature> 4169 <threshold>-6.7258379422128201e-03</threshold> 4170 <left_val>-0.6163579225540161</left_val> 4171 <right_val>0.3176476955413818</right_val></_></_> 4172 <_> 4173 <!-- tree 6 --> 4174 <_> 4175 <!-- root node --> 4176 <feature> 4177 <rects> 4178 <_> 4179 13 12 2 8 -1.</_> 4180 <_> 4181 13 12 1 4 2.</_> 4182 <_> 4183 14 16 1 4 2.</_></rects> 4184 <tilted>0</tilted></feature> 4185 <threshold>2.0052040927112103e-03</threshold> 4186 <left_node>1</left_node> 4187 <right_val>0.3172427117824554</right_val></_> 4188 <_> 4189 <!-- node 1 --> 4190 <feature> 4191 <rects> 4192 <_> 4193 13 10 3 5 -1.</_> 4194 <_> 4195 14 11 1 5 3.</_></rects> 4196 <tilted>1</tilted></feature> 4197 <threshold>-0.0134073402732611</threshold> 4198 <left_val>0.1973506063222885</left_val> 4199 <right_val>-0.3719918131828308</right_val></_></_> 4200 <_> 4201 <!-- tree 7 --> 4202 <_> 4203 <!-- root node --> 4204 <feature> 4205 <rects> 4206 <_> 4207 10 5 4 5 -1.</_> 4208 <_> 4209 11 5 2 5 2.</_></rects> 4210 <tilted>0</tilted></feature> 4211 <threshold>-4.4199679978191853e-03</threshold> 4212 <left_val>-0.5716447830200195</left_val> 4213 <right_node>1</right_node></_> 4214 <_> 4215 <!-- node 1 --> 4216 <feature> 4217 <rects> 4218 <_> 4219 2 11 18 2 -1.</_> 4220 <_> 4221 8 11 6 2 3.</_></rects> 4222 <tilted>0</tilted></feature> 4223 <threshold>-0.0328009389340878</threshold> 4224 <left_val>0.3059993088245392</left_val> 4225 <right_val>-0.1739796996116638</right_val></_></_> 4226 <_> 4227 <!-- tree 8 --> 4228 <_> 4229 <!-- root node --> 4230 <feature> 4231 <rects> 4232 <_> 4233 2 0 1 2 -1.</_> 4234 <_> 4235 2 0 1 1 2.</_></rects> 4236 <tilted>1</tilted></feature> 4237 <threshold>4.9407979531679302e-05</threshold> 4238 <left_val>-0.2827053070068359</left_val> 4239 <right_node>1</right_node></_> 4240 <_> 4241 <!-- node 1 --> 4242 <feature> 4243 <rects> 4244 <_> 4245 2 0 1 2 -1.</_> 4246 <_> 4247 2 0 1 1 2.</_></rects> 4248 <tilted>1</tilted></feature> 4249 <threshold>4.1550169698894024e-03</threshold> 4250 <left_val>0.2968680858612061</left_val> 4251 <right_val>-0.4849430918693542</right_val></_></_> 4252 <_> 4253 <!-- tree 9 --> 4254 <_> 4255 <!-- root node --> 4256 <feature> 4257 <rects> 4258 <_> 4259 15 17 1 2 -1.</_> 4260 <_> 4261 15 17 1 1 2.</_></rects> 4262 <tilted>1</tilted></feature> 4263 <threshold>-7.5589967309497297e-05</threshold> 4264 <left_node>1</left_node> 4265 <right_val>-0.3853113949298859</right_val></_> 4266 <_> 4267 <!-- node 1 --> 4268 <feature> 4269 <rects> 4270 <_> 4271 17 16 1 3 -1.</_> 4272 <_> 4273 16 17 1 1 3.</_></rects> 4274 <tilted>1</tilted></feature> 4275 <threshold>-3.2147730235010386e-03</threshold> 4276 <left_val>-0.6330680847167969</left_val> 4277 <right_val>0.2343475073575974</right_val></_></_> 4278 <_> 4279 <!-- tree 10 --> 4280 <_> 4281 <!-- root node --> 4282 <feature> 4283 <rects> 4284 <_> 4285 18 0 2 10 -1.</_> 4286 <_> 4287 19 0 1 10 2.</_></rects> 4288 <tilted>0</tilted></feature> 4289 <threshold>1.6021779738366604e-03</threshold> 4290 <left_val>-0.2957904934883118</left_val> 4291 <right_node>1</right_node></_> 4292 <_> 4293 <!-- node 1 --> 4294 <feature> 4295 <rects> 4296 <_> 4297 14 2 6 7 -1.</_> 4298 <_> 4299 16 2 2 7 3.</_></rects> 4300 <tilted>0</tilted></feature> 4301 <threshold>-0.0194780193269253</threshold> 4302 <left_val>-0.4962520897388458</left_val> 4303 <right_val>0.2609257996082306</right_val></_></_> 4304 <_> 4305 <!-- tree 11 --> 4306 <_> 4307 <!-- root node --> 4308 <feature> 4309 <rects> 4310 <_> 4311 12 0 4 4 -1.</_> 4312 <_> 4313 12 0 4 2 2.</_></rects> 4314 <tilted>1</tilted></feature> 4315 <threshold>-0.0251937508583069</threshold> 4316 <left_val>0.3938488066196442</left_val> 4317 <right_node>1</right_node></_> 4318 <_> 4319 <!-- node 1 --> 4320 <feature> 4321 <rects> 4322 <_> 4323 0 3 15 6 -1.</_> 4324 <_> 4325 0 5 15 2 3.</_></rects> 4326 <tilted>0</tilted></feature> 4327 <threshold>-0.0464877299964428</threshold> 4328 <left_val>0.2216883003711700</left_val> 4329 <right_val>-0.2969174087047577</right_val></_></_> 4330 <_> 4331 <!-- tree 12 --> 4332 <_> 4333 <!-- root node --> 4334 <feature> 4335 <rects> 4336 <_> 4337 5 1 4 4 -1.</_> 4338 <_> 4339 6 1 2 4 2.</_></rects> 4340 <tilted>0</tilted></feature> 4341 <threshold>4.3414267711341381e-03</threshold> 4342 <left_node>1</left_node> 4343 <right_val>-0.6766117811203003</right_val></_> 4344 <_> 4345 <!-- node 1 --> 4346 <feature> 4347 <rects> 4348 <_> 4349 7 13 6 7 -1.</_> 4350 <_> 4351 9 13 2 7 3.</_></rects> 4352 <tilted>0</tilted></feature> 4353 <threshold>-2.4886759929358959e-03</threshold> 4354 <left_val>0.2050992995500565</left_val> 4355 <right_val>-0.2977114021778107</right_val></_></_> 4356 <_> 4357 <!-- tree 13 --> 4358 <_> 4359 <!-- root node --> 4360 <feature> 4361 <rects> 4362 <_> 4363 6 18 6 2 -1.</_> 4364 <_> 4365 8 18 2 2 3.</_></rects> 4366 <tilted>0</tilted></feature> 4367 <threshold>-5.8827269822359085e-03</threshold> 4368 <left_val>-0.6130179762840271</left_val> 4369 <right_node>1</right_node></_> 4370 <_> 4371 <!-- node 1 --> 4372 <feature> 4373 <rects> 4374 <_> 4375 0 15 5 2 -1.</_> 4376 <_> 4377 0 16 5 1 2.</_></rects> 4378 <tilted>0</tilted></feature> 4379 <threshold>9.0498890494927764e-04</threshold> 4380 <left_val>-0.3402321934700012</left_val> 4381 <right_val>0.1816820949316025</right_val></_></_> 4382 <_> 4383 <!-- tree 14 --> 4384 <_> 4385 <!-- root node --> 4386 <feature> 4387 <rects> 4388 <_> 4389 4 1 12 6 -1.</_> 4390 <_> 4391 4 3 12 2 3.</_></rects> 4392 <tilted>0</tilted></feature> 4393 <threshold>-0.0983389019966125</threshold> 4394 <left_val>0.4772956967353821</left_val> 4395 <right_node>1</right_node></_> 4396 <_> 4397 <!-- node 1 --> 4398 <feature> 4399 <rects> 4400 <_> 4401 5 0 13 8 -1.</_> 4402 <_> 4403 5 2 13 4 2.</_></rects> 4404 <tilted>0</tilted></feature> 4405 <threshold>0.0561418086290359</threshold> 4406 <left_val>-0.2290443927049637</left_val> 4407 <right_val>0.3441008925437927</right_val></_></_> 4408 <_> 4409 <!-- tree 15 --> 4410 <_> 4411 <!-- root node --> 4412 <feature> 4413 <rects> 4414 <_> 4415 13 10 6 6 -1.</_> 4416 <_> 4417 15 12 2 2 9.</_></rects> 4418 <tilted>0</tilted></feature> 4419 <threshold>-5.5787130258977413e-03</threshold> 4420 <left_node>1</left_node> 4421 <right_val>-0.3591017127037048</right_val></_> 4422 <_> 4423 <!-- node 1 --> 4424 <feature> 4425 <rects> 4426 <_> 4427 15 9 3 1 -1.</_> 4428 <_> 4429 16 10 1 1 3.</_></rects> 4430 <tilted>1</tilted></feature> 4431 <threshold>1.5108759980648756e-03</threshold> 4432 <left_val>0.2490043044090271</left_val> 4433 <right_val>-0.4379807114601135</right_val></_></_> 4434 <_> 4435 <!-- tree 16 --> 4436 <_> 4437 <!-- root node --> 4438 <feature> 4439 <rects> 4440 <_> 4441 5 11 3 3 -1.</_> 4442 <_> 4443 6 12 1 1 9.</_></rects> 4444 <tilted>0</tilted></feature> 4445 <threshold>-6.0129738412797451e-03</threshold> 4446 <left_val>0.3116418123245239</left_val> 4447 <right_node>1</right_node></_> 4448 <_> 4449 <!-- node 1 --> 4450 <feature> 4451 <rects> 4452 <_> 4453 6 11 2 2 -1.</_> 4454 <_> 4455 6 11 1 1 2.</_> 4456 <_> 4457 7 12 1 1 2.</_></rects> 4458 <tilted>0</tilted></feature> 4459 <threshold>-7.9341192031279206e-04</threshold> 4460 <left_val>0.2675966024398804</left_val> 4461 <right_val>-0.3680290877819061</right_val></_></_> 4462 <_> 4463 <!-- tree 17 --> 4464 <_> 4465 <!-- root node --> 4466 <feature> 4467 <rects> 4468 <_> 4469 17 3 3 2 -1.</_> 4470 <_> 4471 18 4 1 2 3.</_></rects> 4472 <tilted>1</tilted></feature> 4473 <threshold>6.1855330131947994e-03</threshold> 4474 <left_node>1</left_node> 4475 <right_val>-0.7215331792831421</right_val></_> 4476 <_> 4477 <!-- node 1 --> 4478 <feature> 4479 <rects> 4480 <_> 4481 16 3 3 3 -1.</_> 4482 <_> 4483 17 4 1 3 3.</_></rects> 4484 <tilted>1</tilted></feature> 4485 <threshold>-7.3785060085356236e-03</threshold> 4486 <left_val>-0.5371438264846802</left_val> 4487 <right_val>0.1382489055395126</right_val></_></_> 4488 <_> 4489 <!-- tree 18 --> 4490 <_> 4491 <!-- root node --> 4492 <feature> 4493 <rects> 4494 <_> 4495 12 13 3 1 -1.</_> 4496 <_> 4497 13 13 1 1 3.</_></rects> 4498 <tilted>0</tilted></feature> 4499 <threshold>-6.7488732747733593e-04</threshold> 4500 <left_val>0.3740605115890503</left_val> 4501 <right_node>1</right_node></_> 4502 <_> 4503 <!-- node 1 --> 4504 <feature> 4505 <rects> 4506 <_> 4507 11 12 3 2 -1.</_> 4508 <_> 4509 12 12 1 2 3.</_></rects> 4510 <tilted>0</tilted></feature> 4511 <threshold>-1.3102099765092134e-03</threshold> 4512 <left_val>0.1900379061698914</left_val> 4513 <right_val>-0.3163227140903473</right_val></_></_> 4514 <_> 4515 <!-- tree 19 --> 4516 <_> 4517 <!-- root node --> 4518 <feature> 4519 <rects> 4520 <_> 4521 10 0 1 2 -1.</_> 4522 <_> 4523 10 0 1 1 2.</_></rects> 4524 <tilted>1</tilted></feature> 4525 <threshold>4.9453211249783635e-04</threshold> 4526 <left_val>-0.2328317016363144</left_val> 4527 <right_node>1</right_node></_> 4528 <_> 4529 <!-- node 1 --> 4530 <feature> 4531 <rects> 4532 <_> 4533 17 13 1 6 -1.</_> 4534 <_> 4535 17 13 1 3 2.</_></rects> 4536 <tilted>1</tilted></feature> 4537 <threshold>1.2824690202251077e-03</threshold> 4538 <left_val>0.3046380877494812</left_val> 4539 <right_val>-0.4809210896492004</right_val></_></_> 4540 <_> 4541 <!-- tree 20 --> 4542 <_> 4543 <!-- root node --> 4544 <feature> 4545 <rects> 4546 <_> 4547 16 14 2 4 -1.</_> 4548 <_> 4549 16 14 2 2 2.</_></rects> 4550 <tilted>1</tilted></feature> 4551 <threshold>-0.0226248204708099</threshold> 4552 <left_val>-0.6878347992897034</left_val> 4553 <right_node>1</right_node></_> 4554 <_> 4555 <!-- node 1 --> 4556 <feature> 4557 <rects> 4558 <_> 4559 3 0 4 3 -1.</_> 4560 <_> 4561 4 0 2 3 2.</_></rects> 4562 <tilted>0</tilted></feature> 4563 <threshold>4.3685249984264374e-03</threshold> 4564 <left_val>0.1240309029817581</left_val> 4565 <right_val>-0.7922073006629944</right_val></_></_> 4566 <_> 4567 <!-- tree 21 --> 4568 <_> 4569 <!-- root node --> 4570 <feature> 4571 <rects> 4572 <_> 4573 6 0 14 1 -1.</_> 4574 <_> 4575 13 0 7 1 2.</_></rects> 4576 <tilted>0</tilted></feature> 4577 <threshold>5.6756488047540188e-03</threshold> 4578 <left_node>1</left_node> 4579 <right_val>0.1761142015457153</right_val></_> 4580 <_> 4581 <!-- node 1 --> 4582 <feature> 4583 <rects> 4584 <_> 4585 2 15 18 5 -1.</_> 4586 <_> 4587 8 15 6 5 3.</_></rects> 4588 <tilted>0</tilted></feature> 4589 <threshold>-0.0817692130804062</threshold> 4590 <left_val>0.3894216120243073</left_val> 4591 <right_val>-0.4509401023387909</right_val></_></_></trees> 4592 <stage_threshold>-2.0614759922027588</stage_threshold> 4593 <parent>11</parent> 4594 <next>-1</next></_> 4595 <_> 4596 <!-- stage 13 --> 4597 <trees> 4598 <_> 4599 <!-- tree 0 --> 4600 <_> 4601 <!-- root node --> 4602 <feature> 4603 <rects> 4604 <_> 4605 6 11 8 5 -1.</_> 4606 <_> 4607 8 11 4 5 2.</_></rects> 4608 <tilted>0</tilted></feature> 4609 <threshold>-0.0200035497546196</threshold> 4610 <left_node>1</left_node> 4611 <right_val>-0.5665075182914734</right_val></_> 4612 <_> 4613 <!-- node 1 --> 4614 <feature> 4615 <rects> 4616 <_> 4617 0 8 5 12 -1.</_> 4618 <_> 4619 0 11 5 6 2.</_></rects> 4620 <tilted>0</tilted></feature> 4621 <threshold>-0.0326212085783482</threshold> 4622 <left_val>0.5080708265304565</left_val> 4623 <right_val>-0.4534570872783661</right_val></_></_> 4624 <_> 4625 <!-- tree 1 --> 4626 <_> 4627 <!-- root node --> 4628 <feature> 4629 <rects> 4630 <_> 4631 14 0 6 2 -1.</_> 4632 <_> 4633 14 0 6 1 2.</_></rects> 4634 <tilted>1</tilted></feature> 4635 <threshold>0.0106681399047375</threshold> 4636 <left_val>-0.3231683969497681</left_val> 4637 <right_node>1</right_node></_> 4638 <_> 4639 <!-- node 1 --> 4640 <feature> 4641 <rects> 4642 <_> 4643 13 8 4 5 -1.</_> 4644 <_> 4645 14 9 2 5 2.</_></rects> 4646 <tilted>1</tilted></feature> 4647 <threshold>-0.0162766892462969</threshold> 4648 <left_val>0.6018949747085571</left_val> 4649 <right_val>-0.2405951023101807</right_val></_></_> 4650 <_> 4651 <!-- tree 2 --> 4652 <_> 4653 <!-- root node --> 4654 <feature> 4655 <rects> 4656 <_> 4657 0 11 4 9 -1.</_> 4658 <_> 4659 2 11 2 9 2.</_></rects> 4660 <tilted>0</tilted></feature> 4661 <threshold>-2.8211208991706371e-03</threshold> 4662 <left_node>1</left_node> 4663 <right_val>-0.4718115031719208</right_val></_> 4664 <_> 4665 <!-- node 1 --> 4666 <feature> 4667 <rects> 4668 <_> 4669 6 9 2 6 -1.</_> 4670 <_> 4671 6 11 2 2 3.</_></rects> 4672 <tilted>0</tilted></feature> 4673 <threshold>-0.0142911802977324</threshold> 4674 <left_val>0.5128008723258972</left_val> 4675 <right_val>-0.1074400022625923</right_val></_></_> 4676 <_> 4677 <!-- tree 3 --> 4678 <_> 4679 <!-- root node --> 4680 <feature> 4681 <rects> 4682 <_> 4683 12 18 4 2 -1.</_> 4684 <_> 4685 12 19 4 1 2.</_></rects> 4686 <tilted>0</tilted></feature> 4687 <threshold>1.0120410006493330e-03</threshold> 4688 <left_val>-0.3884469866752625</left_val> 4689 <right_node>1</right_node></_> 4690 <_> 4691 <!-- node 1 --> 4692 <feature> 4693 <rects> 4694 <_> 4695 14 13 6 2 -1.</_> 4696 <_> 4697 16 13 2 2 3.</_></rects> 4698 <tilted>0</tilted></feature> 4699 <threshold>-5.9822672046720982e-03</threshold> 4700 <left_val>0.4692885875701904</left_val> 4701 <right_val>-0.0913559198379517</right_val></_></_> 4702 <_> 4703 <!-- tree 4 --> 4704 <_> 4705 <!-- root node --> 4706 <feature> 4707 <rects> 4708 <_> 4709 19 9 1 10 -1.</_> 4710 <_> 4711 19 9 1 5 2.</_></rects> 4712 <tilted>1</tilted></feature> 4713 <threshold>-2.4705699179321527e-03</threshold> 4714 <left_node>1</left_node> 4715 <right_val>-0.4596441090106964</right_val></_> 4716 <_> 4717 <!-- node 1 --> 4718 <feature> 4719 <rects> 4720 <_> 4721 11 5 4 4 -1.</_> 4722 <_> 4723 12 5 2 4 2.</_></rects> 4724 <tilted>0</tilted></feature> 4725 <threshold>2.4079859722405672e-03</threshold> 4726 <left_val>0.2183067053556442</left_val> 4727 <right_val>-0.5937340259552002</right_val></_></_> 4728 <_> 4729 <!-- tree 5 --> 4730 <_> 4731 <!-- root node --> 4732 <feature> 4733 <rects> 4734 <_> 4735 14 12 3 5 -1.</_> 4736 <_> 4737 15 12 1 5 3.</_></rects> 4738 <tilted>0</tilted></feature> 4739 <threshold>-1.4312269631773233e-03</threshold> 4740 <left_node>1</left_node> 4741 <right_val>-0.2473167032003403</right_val></_> 4742 <_> 4743 <!-- node 1 --> 4744 <feature> 4745 <rects> 4746 <_> 4747 17 0 2 6 -1.</_> 4748 <_> 4749 18 0 1 6 2.</_></rects> 4750 <tilted>0</tilted></feature> 4751 <threshold>2.9141810955479741e-04</threshold> 4752 <left_val>-0.2597224116325378</left_val> 4753 <right_val>0.3820636868476868</right_val></_></_> 4754 <_> 4755 <!-- tree 6 --> 4756 <_> 4757 <!-- root node --> 4758 <feature> 4759 <rects> 4760 <_> 4761 13 16 3 3 -1.</_> 4762 <_> 4763 14 16 1 3 3.</_></rects> 4764 <tilted>0</tilted></feature> 4765 <threshold>-3.2818811014294624e-03</threshold> 4766 <left_val>-0.7718012928962708</left_val> 4767 <right_node>1</right_node></_> 4768 <_> 4769 <!-- node 1 --> 4770 <feature> 4771 <rects> 4772 <_> 4773 19 0 1 4 -1.</_> 4774 <_> 4775 19 2 1 2 2.</_></rects> 4776 <tilted>0</tilted></feature> 4777 <threshold>-1.0365940397605300e-03</threshold> 4778 <left_val>0.2356985956430435</left_val> 4779 <right_val>-0.2206770032644272</right_val></_></_> 4780 <_> 4781 <!-- tree 7 --> 4782 <_> 4783 <!-- root node --> 4784 <feature> 4785 <rects> 4786 <_> 4787 6 13 4 2 -1.</_> 4788 <_> 4789 7 13 2 2 2.</_></rects> 4790 <tilted>0</tilted></feature> 4791 <threshold>-2.2078400943428278e-03</threshold> 4792 <left_val>0.3088611960411072</left_val> 4793 <right_node>1</right_node></_> 4794 <_> 4795 <!-- node 1 --> 4796 <feature> 4797 <rects> 4798 <_> 4799 9 11 3 3 -1.</_> 4800 <_> 4801 10 11 1 3 3.</_></rects> 4802 <tilted>0</tilted></feature> 4803 <threshold>3.5239339340478182e-03</threshold> 4804 <left_val>-0.2849600017070770</left_val> 4805 <right_val>0.4754430055618286</right_val></_></_> 4806 <_> 4807 <!-- tree 8 --> 4808 <_> 4809 <!-- root node --> 4810 <feature> 4811 <rects> 4812 <_> 4813 14 15 2 3 -1.</_> 4814 <_> 4815 13 16 2 1 3.</_></rects> 4816 <tilted>1</tilted></feature> 4817 <threshold>-6.1774807982146740e-03</threshold> 4818 <left_val>-0.7031838297843933</left_val> 4819 <right_node>1</right_node></_> 4820 <_> 4821 <!-- node 1 --> 4822 <feature> 4823 <rects> 4824 <_> 4825 11 7 3 4 -1.</_> 4826 <_> 4827 12 7 1 4 3.</_></rects> 4828 <tilted>0</tilted></feature> 4829 <threshold>-3.2023619860410690e-03</threshold> 4830 <left_val>-0.5136131048202515</left_val> 4831 <right_val>0.1565625965595245</right_val></_></_> 4832 <_> 4833 <!-- tree 9 --> 4834 <_> 4835 <!-- root node --> 4836 <feature> 4837 <rects> 4838 <_> 4839 5 12 1 3 -1.</_> 4840 <_> 4841 4 13 1 1 3.</_></rects> 4842 <tilted>1</tilted></feature> 4843 <threshold>-8.7003601947799325e-04</threshold> 4844 <left_node>1</left_node> 4845 <right_val>-0.2992512881755829</right_val></_> 4846 <_> 4847 <!-- node 1 --> 4848 <feature> 4849 <rects> 4850 <_> 4851 1 11 6 2 -1.</_> 4852 <_> 4853 1 11 3 1 2.</_> 4854 <_> 4855 4 12 3 1 2.</_></rects> 4856 <tilted>0</tilted></feature> 4857 <threshold>-3.8079950027167797e-03</threshold> 4858 <left_val>0.5521563887596130</left_val> 4859 <right_val>-8.0608041025698185e-04</right_val></_></_> 4860 <_> 4861 <!-- tree 10 --> 4862 <_> 4863 <!-- root node --> 4864 <feature> 4865 <rects> 4866 <_> 4867 5 7 2 3 -1.</_> 4868 <_> 4869 4 8 2 1 3.</_></rects> 4870 <tilted>1</tilted></feature> 4871 <threshold>4.9994210712611675e-03</threshold> 4872 <left_node>1</left_node> 4873 <right_val>-0.4354174137115479</right_val></_> 4874 <_> 4875 <!-- node 1 --> 4876 <feature> 4877 <rects> 4878 <_> 4879 5 12 2 2 -1.</_> 4880 <_> 4881 5 12 1 1 2.</_> 4882 <_> 4883 6 13 1 1 2.</_></rects> 4884 <tilted>0</tilted></feature> 4885 <threshold>-1.0323170572519302e-03</threshold> 4886 <left_val>0.5499215126037598</left_val> 4887 <right_val>-5.0770761445164680e-03</right_val></_></_> 4888 <_> 4889 <!-- tree 11 --> 4890 <_> 4891 <!-- root node --> 4892 <feature> 4893 <rects> 4894 <_> 4895 8 8 4 3 -1.</_> 4896 <_> 4897 8 9 4 1 3.</_></rects> 4898 <tilted>0</tilted></feature> 4899 <threshold>6.9215619005262852e-03</threshold> 4900 <left_node>1</left_node> 4901 <right_val>0.3390001058578491</right_val></_> 4902 <_> 4903 <!-- node 1 --> 4904 <feature> 4905 <rects> 4906 <_> 4907 7 8 5 3 -1.</_> 4908 <_> 4909 7 9 5 1 3.</_></rects> 4910 <tilted>0</tilted></feature> 4911 <threshold>-8.1578325480222702e-03</threshold> 4912 <left_val>0.3435488939285278</left_val> 4913 <right_val>-0.2448388934135437</right_val></_></_> 4914 <_> 4915 <!-- tree 12 --> 4916 <_> 4917 <!-- root node --> 4918 <feature> 4919 <rects> 4920 <_> 4921 6 19 4 1 -1.</_> 4922 <_> 4923 7 19 2 1 2.</_></rects> 4924 <tilted>0</tilted></feature> 4925 <threshold>-1.6159559600055218e-03</threshold> 4926 <left_val>-0.7465370297431946</left_val> 4927 <right_node>1</right_node></_> 4928 <_> 4929 <!-- node 1 --> 4930 <feature> 4931 <rects> 4932 <_> 4933 5 0 4 4 -1.</_> 4934 <_> 4935 6 0 2 4 2.</_></rects> 4936 <tilted>0</tilted></feature> 4937 <threshold>4.7165839932858944e-03</threshold> 4938 <left_val>0.1185505986213684</left_val> 4939 <right_val>-0.7180386781692505</right_val></_></_> 4940 <_> 4941 <!-- tree 13 --> 4942 <_> 4943 <!-- root node --> 4944 <feature> 4945 <rects> 4946 <_> 4947 4 0 16 8 -1.</_> 4948 <_> 4949 8 0 8 8 2.</_></rects> 4950 <tilted>0</tilted></feature> 4951 <threshold>-0.0160931199789047</threshold> 4952 <left_node>1</left_node> 4953 <right_val>-0.3298721015453339</right_val></_> 4954 <_> 4955 <!-- node 1 --> 4956 <feature> 4957 <rects> 4958 <_> 4959 12 11 3 4 -1.</_> 4960 <_> 4961 11 12 3 2 2.</_></rects> 4962 <tilted>1</tilted></feature> 4963 <threshold>-5.9861610643565655e-03</threshold> 4964 <left_val>0.3126398026943207</left_val> 4965 <right_val>-0.2319402992725372</right_val></_></_> 4966 <_> 4967 <!-- tree 14 --> 4968 <_> 4969 <!-- root node --> 4970 <feature> 4971 <rects> 4972 <_> 4973 0 4 20 6 -1.</_> 4974 <_> 4975 5 4 10 6 2.</_></rects> 4976 <tilted>0</tilted></feature> 4977 <threshold>0.0641226172447205</threshold> 4978 <left_node>1</left_node> 4979 <right_val>0.4623914957046509</right_val></_> 4980 <_> 4981 <!-- node 1 --> 4982 <feature> 4983 <rects> 4984 <_> 4985 13 2 2 4 -1.</_> 4986 <_> 4987 13 2 2 2 2.</_></rects> 4988 <tilted>1</tilted></feature> 4989 <threshold>0.0215181596577168</threshold> 4990 <left_val>-0.2427732050418854</left_val> 4991 <right_val>0.4096390902996063</right_val></_></_> 4992 <_> 4993 <!-- tree 15 --> 4994 <_> 4995 <!-- root node --> 4996 <feature> 4997 <rects> 4998 <_> 4999 0 5 14 15 -1.</_> 5000 <_> 5001 7 5 7 15 2.</_></rects> 5002 <tilted>0</tilted></feature> 5003 <threshold>-0.2854138016700745</threshold> 5004 <left_val>0.4452179968357086</left_val> 5005 <right_node>1</right_node></_> 5006 <_> 5007 <!-- node 1 --> 5008 <feature> 5009 <rects> 5010 <_> 5011 1 18 3 2 -1.</_> 5012 <_> 5013 1 19 3 1 2.</_></rects> 5014 <tilted>0</tilted></feature> 5015 <threshold>2.7372559998184443e-04</threshold> 5016 <left_val>-0.4730761051177979</left_val> 5017 <right_val>0.0767397210001945</right_val></_></_> 5018 <_> 5019 <!-- tree 16 --> 5020 <_> 5021 <!-- root node --> 5022 <feature> 5023 <rects> 5024 <_> 5025 3 6 3 3 -1.</_> 5026 <_> 5027 2 7 3 1 3.</_></rects> 5028 <tilted>1</tilted></feature> 5029 <threshold>-6.4039281569421291e-03</threshold> 5030 <left_val>-0.5616778731346130</left_val> 5031 <right_node>1</right_node></_> 5032 <_> 5033 <!-- node 1 --> 5034 <feature> 5035 <rects> 5036 <_> 5037 0 1 6 8 -1.</_> 5038 <_> 5039 0 1 3 4 2.</_> 5040 <_> 5041 3 5 3 4 2.</_></rects> 5042 <tilted>0</tilted></feature> 5043 <threshold>0.0142796700820327</threshold> 5044 <left_val>-0.0673118904232979</left_val> 5045 <right_val>0.4380675852298737</right_val></_></_> 5046 <_> 5047 <!-- tree 17 --> 5048 <_> 5049 <!-- root node --> 5050 <feature> 5051 <rects> 5052 <_> 5053 5 0 6 6 -1.</_> 5054 <_> 5055 7 0 2 6 3.</_></rects> 5056 <tilted>0</tilted></feature> 5057 <threshold>-0.0131798600777984</threshold> 5058 <left_val>-0.6767266988754272</left_val> 5059 <right_node>1</right_node></_> 5060 <_> 5061 <!-- node 1 --> 5062 <feature> 5063 <rects> 5064 <_> 5065 1 1 15 8 -1.</_> 5066 <_> 5067 1 3 15 4 2.</_></rects> 5068 <tilted>0</tilted></feature> 5069 <threshold>0.0668280720710754</threshold> 5070 <left_val>-0.0321829095482826</left_val> 5071 <right_val>0.5130872130393982</right_val></_></_> 5072 <_> 5073 <!-- tree 18 --> 5074 <_> 5075 <!-- root node --> 5076 <feature> 5077 <rects> 5078 <_> 5079 0 0 16 1 -1.</_> 5080 <_> 5081 8 0 8 1 2.</_></rects> 5082 <tilted>0</tilted></feature> 5083 <threshold>6.3021448440849781e-03</threshold> 5084 <left_val>-0.2008266001939774</left_val> 5085 <right_node>1</right_node></_> 5086 <_> 5087 <!-- node 1 --> 5088 <feature> 5089 <rects> 5090 <_> 5091 3 0 1 2 -1.</_> 5092 <_> 5093 3 0 1 1 2.</_></rects> 5094 <tilted>1</tilted></feature> 5095 <threshold>-1.6806010389700532e-03</threshold> 5096 <left_val>-0.5176724195480347</left_val> 5097 <right_val>0.3857651054859161</right_val></_></_> 5098 <_> 5099 <!-- tree 19 --> 5100 <_> 5101 <!-- root node --> 5102 <feature> 5103 <rects> 5104 <_> 5105 3 13 4 1 -1.</_> 5106 <_> 5107 4 13 2 1 2.</_></rects> 5108 <tilted>0</tilted></feature> 5109 <threshold>-1.5057720011100173e-03</threshold> 5110 <left_val>0.3935809135437012</left_val> 5111 <right_node>1</right_node></_> 5112 <_> 5113 <!-- node 1 --> 5114 <feature> 5115 <rects> 5116 <_> 5117 4 11 2 2 -1.</_> 5118 <_> 5119 4 11 1 1 2.</_> 5120 <_> 5121 5 12 1 1 2.</_></rects> 5122 <tilted>0</tilted></feature> 5123 <threshold>1.1699240421876311e-03</threshold> 5124 <left_val>-0.2557956874370575</left_val> 5125 <right_val>0.3192729949951172</right_val></_></_> 5126 <_> 5127 <!-- tree 20 --> 5128 <_> 5129 <!-- root node --> 5130 <feature> 5131 <rects> 5132 <_> 5133 17 2 3 3 -1.</_> 5134 <_> 5135 18 3 1 1 9.</_></rects> 5136 <tilted>0</tilted></feature> 5137 <threshold>7.2735180146992207e-03</threshold> 5138 <left_node>1</left_node> 5139 <right_val>-0.7166724205017090</right_val></_> 5140 <_> 5141 <!-- node 1 --> 5142 <feature> 5143 <rects> 5144 <_> 5145 16 3 2 1 -1.</_> 5146 <_> 5147 17 3 1 1 2.</_></rects> 5148 <tilted>0</tilted></feature> 5149 <threshold>7.8693883551750332e-05</threshold> 5150 <left_val>-0.1890882998704910</left_val> 5151 <right_val>0.2384908050298691</right_val></_></_> 5152 <_> 5153 <!-- tree 21 --> 5154 <_> 5155 <!-- root node --> 5156 <feature> 5157 <rects> 5158 <_> 5159 0 11 3 2 -1.</_> 5160 <_> 5161 0 12 3 1 2.</_></rects> 5162 <tilted>0</tilted></feature> 5163 <threshold>1.9624589476734400e-03</threshold> 5164 <left_node>1</left_node> 5165 <right_val>-0.5158377289772034</right_val></_> 5166 <_> 5167 <!-- node 1 --> 5168 <feature> 5169 <rects> 5170 <_> 5171 4 11 4 2 -1.</_> 5172 <_> 5173 4 11 2 1 2.</_> 5174 <_> 5175 6 12 2 1 2.</_></rects> 5176 <tilted>0</tilted></feature> 5177 <threshold>-3.1472831033170223e-03</threshold> 5178 <left_val>0.4803304970264435</left_val> 5179 <right_val>-0.0362379103899002</right_val></_></_> 5180 <_> 5181 <!-- tree 22 --> 5182 <_> 5183 <!-- root node --> 5184 <feature> 5185 <rects> 5186 <_> 5187 10 0 4 11 -1.</_> 5188 <_> 5189 11 0 2 11 2.</_></rects> 5190 <tilted>0</tilted></feature> 5191 <threshold>5.0133569166064262e-03</threshold> 5192 <left_node>1</left_node> 5193 <right_val>-0.5272933840751648</right_val></_> 5194 <_> 5195 <!-- node 1 --> 5196 <feature> 5197 <rects> 5198 <_> 5199 18 15 2 3 -1.</_> 5200 <_> 5201 17 16 2 1 3.</_></rects> 5202 <tilted>1</tilted></feature> 5203 <threshold>-6.5994369797408581e-03</threshold> 5204 <left_val>-0.6940053105354309</left_val> 5205 <right_val>0.1227589026093483</right_val></_></_> 5206 <_> 5207 <!-- tree 23 --> 5208 <_> 5209 <!-- root node --> 5210 <feature> 5211 <rects> 5212 <_> 5213 2 11 8 1 -1.</_> 5214 <_> 5215 2 11 4 1 2.</_></rects> 5216 <tilted>1</tilted></feature> 5217 <threshold>-0.0427003614604473</threshold> 5218 <left_val>-0.6821854710578918</left_val> 5219 <right_node>1</right_node></_> 5220 <_> 5221 <!-- node 1 --> 5222 <feature> 5223 <rects> 5224 <_> 5225 17 13 1 6 -1.</_> 5226 <_> 5227 17 13 1 3 2.</_></rects> 5228 <tilted>1</tilted></feature> 5229 <threshold>-3.5096149076707661e-05</threshold> 5230 <left_val>0.1216031014919281</left_val> 5231 <right_val>-0.4214228987693787</right_val></_></_></trees> 5232 <stage_threshold>-1.9795049428939819</stage_threshold> 5233 <parent>12</parent> 5234 <next>-1</next></_> 5235 <_> 5236 <!-- stage 14 --> 5237 <trees> 5238 <_> 5239 <!-- tree 0 --> 5240 <_> 5241 <!-- root node --> 5242 <feature> 5243 <rects> 5244 <_> 5245 11 13 6 2 -1.</_> 5246 <_> 5247 13 13 2 2 3.</_></rects> 5248 <tilted>0</tilted></feature> 5249 <threshold>8.7128365412354469e-03</threshold> 5250 <left_val>-0.4404883980751038</left_val> 5251 <right_node>1</right_node></_> 5252 <_> 5253 <!-- node 1 --> 5254 <feature> 5255 <rects> 5256 <_> 5257 19 0 1 10 -1.</_> 5258 <_> 5259 19 5 1 5 2.</_></rects> 5260 <tilted>0</tilted></feature> 5261 <threshold>-4.0675927884876728e-03</threshold> 5262 <left_val>0.6003010272979736</left_val> 5263 <right_val>-0.2604264914989471</right_val></_></_> 5264 <_> 5265 <!-- tree 1 --> 5266 <_> 5267 <!-- root node --> 5268 <feature> 5269 <rects> 5270 <_> 5271 2 8 7 9 -1.</_> 5272 <_> 5273 2 11 7 3 3.</_></rects> 5274 <tilted>0</tilted></feature> 5275 <threshold>-0.0839333981275558</threshold> 5276 <left_node>1</left_node> 5277 <right_val>-0.3794398903846741</right_val></_> 5278 <_> 5279 <!-- node 1 --> 5280 <feature> 5281 <rects> 5282 <_> 5283 0 11 20 2 -1.</_> 5284 <_> 5285 5 11 10 2 2.</_></rects> 5286 <tilted>0</tilted></feature> 5287 <threshold>-0.0226261802017689</threshold> 5288 <left_val>0.5252948999404907</left_val> 5289 <right_val>-0.3273332118988037</right_val></_></_> 5290 <_> 5291 <!-- tree 2 --> 5292 <_> 5293 <!-- root node --> 5294 <feature> 5295 <rects> 5296 <_> 5297 6 14 6 1 -1.</_> 5298 <_> 5299 8 14 2 1 3.</_></rects> 5300 <tilted>0</tilted></feature> 5301 <threshold>-3.5725389607250690e-03</threshold> 5302 <left_node>1</left_node> 5303 <right_val>-0.2603093981742859</right_val></_> 5304 <_> 5305 <!-- node 1 --> 5306 <feature> 5307 <rects> 5308 <_> 5309 10 3 8 7 -1.</_> 5310 <_> 5311 12 3 4 7 2.</_></rects> 5312 <tilted>0</tilted></feature> 5313 <threshold>-1.6297569964081049e-03</threshold> 5314 <left_val>0.4843423068523407</left_val> 5315 <right_val>-0.3836326897144318</right_val></_></_> 5316 <_> 5317 <!-- tree 3 --> 5318 <_> 5319 <!-- root node --> 5320 <feature> 5321 <rects> 5322 <_> 5323 7 0 5 9 -1.</_> 5324 <_> 5325 7 3 5 3 3.</_></rects> 5326 <tilted>0</tilted></feature> 5327 <threshold>-0.0800115764141083</threshold> 5328 <left_val>0.3957956135272980</left_val> 5329 <right_node>1</right_node></_> 5330 <_> 5331 <!-- node 1 --> 5332 <feature> 5333 <rects> 5334 <_> 5335 0 0 16 6 -1.</_> 5336 <_> 5337 0 2 16 2 3.</_></rects> 5338 <tilted>0</tilted></feature> 5339 <threshold>-0.0960614532232285</threshold> 5340 <left_val>0.4287418127059937</left_val> 5341 <right_val>-0.2909663915634155</right_val></_></_> 5342 <_> 5343 <!-- tree 4 --> 5344 <_> 5345 <!-- root node --> 5346 <feature> 5347 <rects> 5348 <_> 5349 6 10 2 6 -1.</_> 5350 <_> 5351 4 12 2 2 3.</_></rects> 5352 <tilted>1</tilted></feature> 5353 <threshold>-9.3183852732181549e-03</threshold> 5354 <left_node>1</left_node> 5355 <right_val>-0.3932549953460693</right_val></_> 5356 <_> 5357 <!-- node 1 --> 5358 <feature> 5359 <rects> 5360 <_> 5361 16 0 4 14 -1.</_> 5362 <_> 5363 18 0 2 14 2.</_></rects> 5364 <tilted>0</tilted></feature> 5365 <threshold>9.2205153778195381e-03</threshold> 5366 <left_val>-0.2985737919807434</left_val> 5367 <right_val>0.3173330128192902</right_val></_></_> 5368 <_> 5369 <!-- tree 5 --> 5370 <_> 5371 <!-- root node --> 5372 <feature> 5373 <rects> 5374 <_> 5375 6 0 9 6 -1.</_> 5376 <_> 5377 6 2 9 2 3.</_></rects> 5378 <tilted>0</tilted></feature> 5379 <threshold>0.0232087504118681</threshold> 5380 <left_node>1</left_node> 5381 <right_val>0.3929522931575775</right_val></_> 5382 <_> 5383 <!-- node 1 --> 5384 <feature> 5385 <rects> 5386 <_> 5387 8 18 12 2 -1.</_> 5388 <_> 5389 8 19 12 1 2.</_></rects> 5390 <tilted>0</tilted></feature> 5391 <threshold>1.6389730153605342e-03</threshold> 5392 <left_val>-0.5403599739074707</left_val> 5393 <right_val>-0.0218368805944920</right_val></_></_> 5394 <_> 5395 <!-- tree 6 --> 5396 <_> 5397 <!-- root node --> 5398 <feature> 5399 <rects> 5400 <_> 5401 10 17 4 3 -1.</_> 5402 <_> 5403 11 17 2 3 2.</_></rects> 5404 <tilted>0</tilted></feature> 5405 <threshold>2.8872499242424965e-03</threshold> 5406 <left_node>1</left_node> 5407 <right_val>-0.7817273736000061</right_val></_> 5408 <_> 5409 <!-- node 1 --> 5410 <feature> 5411 <rects> 5412 <_> 5413 5 0 1 4 -1.</_> 5414 <_> 5415 4 1 1 2 2.</_></rects> 5416 <tilted>1</tilted></feature> 5417 <threshold>4.7465260140597820e-03</threshold> 5418 <left_val>0.1447418928146362</left_val> 5419 <right_val>-0.6423770189285278</right_val></_></_> 5420 <_> 5421 <!-- tree 7 --> 5422 <_> 5423 <!-- root node --> 5424 <feature> 5425 <rects> 5426 <_> 5427 18 6 2 2 -1.</_> 5428 <_> 5429 18 6 1 2 2.</_></rects> 5430 <tilted>1</tilted></feature> 5431 <threshold>-5.7432148605585098e-03</threshold> 5432 <left_val>-0.6555628776550293</left_val> 5433 <right_node>1</right_node></_> 5434 <_> 5435 <!-- node 1 --> 5436 <feature> 5437 <rects> 5438 <_> 5439 12 10 3 4 -1.</_> 5440 <_> 5441 11 11 3 2 2.</_></rects> 5442 <tilted>1</tilted></feature> 5443 <threshold>-8.5324952378869057e-03</threshold> 5444 <left_val>0.2209030985832214</left_val> 5445 <right_val>-0.2579030096530914</right_val></_></_> 5446 <_> 5447 <!-- tree 8 --> 5448 <_> 5449 <!-- root node --> 5450 <feature> 5451 <rects> 5452 <_> 5453 9 9 4 3 -1.</_> 5454 <_> 5455 9 10 4 1 3.</_></rects> 5456 <tilted>0</tilted></feature> 5457 <threshold>-8.8752172887325287e-03</threshold> 5458 <left_val>0.4659686088562012</left_val> 5459 <right_node>1</right_node></_> 5460 <_> 5461 <!-- node 1 --> 5462 <feature> 5463 <rects> 5464 <_> 5465 9 10 4 3 -1.</_> 5466 <_> 5467 9 11 4 1 3.</_></rects> 5468 <tilted>0</tilted></feature> 5469 <threshold>-7.7129527926445007e-03</threshold> 5470 <left_val>0.2527978122234344</left_val> 5471 <right_val>-0.2617045044898987</right_val></_></_> 5472 <_> 5473 <!-- tree 9 --> 5474 <_> 5475 <!-- root node --> 5476 <feature> 5477 <rects> 5478 <_> 5479 17 4 3 4 -1.</_> 5480 <_> 5481 18 5 1 4 3.</_></rects> 5482 <tilted>1</tilted></feature> 5483 <threshold>7.6909800991415977e-03</threshold> 5484 <left_node>1</left_node> 5485 <right_val>-0.5935081839561462</right_val></_> 5486 <_> 5487 <!-- node 1 --> 5488 <feature> 5489 <rects> 5490 <_> 5491 18 0 2 3 -1.</_> 5492 <_> 5493 18 1 2 1 3.</_></rects> 5494 <tilted>0</tilted></feature> 5495 <threshold>2.6657560374587774e-03</threshold> 5496 <left_val>0.1696972995996475</left_val> 5497 <right_val>-0.5412395000457764</right_val></_></_> 5498 <_> 5499 <!-- tree 10 --> 5500 <_> 5501 <!-- root node --> 5502 <feature> 5503 <rects> 5504 <_> 5505 18 1 2 2 -1.</_> 5506 <_> 5507 18 2 2 1 2.</_></rects> 5508 <tilted>0</tilted></feature> 5509 <threshold>-4.4685939792543650e-04</threshold> 5510 <left_node>1</left_node> 5511 <right_val>-0.3038387000560760</right_val></_> 5512 <_> 5513 <!-- node 1 --> 5514 <feature> 5515 <rects> 5516 <_> 5517 19 1 1 3 -1.</_> 5518 <_> 5519 19 2 1 1 3.</_></rects> 5520 <tilted>0</tilted></feature> 5521 <threshold>-1.5998890157788992e-03</threshold> 5522 <left_val>-0.5481774806976318</left_val> 5523 <right_val>0.2497155964374542</right_val></_></_> 5524 <_> 5525 <!-- tree 11 --> 5526 <_> 5527 <!-- root node --> 5528 <feature> 5529 <rects> 5530 <_> 5531 8 18 4 2 -1.</_> 5532 <_> 5533 9 18 2 2 2.</_></rects> 5534 <tilted>0</tilted></feature> 5535 <threshold>1.9368670182302594e-03</threshold> 5536 <left_node>1</left_node> 5537 <right_val>-0.6320034861564636</right_val></_> 5538 <_> 5539 <!-- node 1 --> 5540 <feature> 5541 <rects> 5542 <_> 5543 2 13 4 2 -1.</_> 5544 <_> 5545 2 13 2 1 2.</_> 5546 <_> 5547 4 14 2 1 2.</_></rects> 5548 <tilted>0</tilted></feature> 5549 <threshold>-2.4878541007637978e-03</threshold> 5550 <left_val>0.4705137908458710</left_val> 5551 <right_val>-0.0451872199773788</right_val></_></_> 5552 <_> 5553 <!-- tree 12 --> 5554 <_> 5555 <!-- root node --> 5556 <feature> 5557 <rects> 5558 <_> 5559 3 11 4 2 -1.</_> 5560 <_> 5561 3 11 2 1 2.</_> 5562 <_> 5563 5 12 2 1 2.</_></rects> 5564 <tilted>0</tilted></feature> 5565 <threshold>-2.8134910389780998e-03</threshold> 5566 <left_val>0.3927085101604462</left_val> 5567 <right_node>1</right_node></_> 5568 <_> 5569 <!-- node 1 --> 5570 <feature> 5571 <rects> 5572 <_> 5573 2 10 4 2 -1.</_> 5574 <_> 5575 2 10 2 1 2.</_> 5576 <_> 5577 4 11 2 1 2.</_></rects> 5578 <tilted>0</tilted></feature> 5579 <threshold>-1.4107710449025035e-03</threshold> 5580 <left_val>0.1801708042621613</left_val> 5581 <right_val>-0.2571457922458649</right_val></_></_> 5582 <_> 5583 <!-- tree 13 --> 5584 <_> 5585 <!-- root node --> 5586 <feature> 5587 <rects> 5588 <_> 5589 5 9 2 3 -1.</_> 5590 <_> 5591 4 10 2 1 3.</_></rects> 5592 <tilted>1</tilted></feature> 5593 <threshold>-6.9013070315122604e-03</threshold> 5594 <left_val>-0.5338624119758606</left_val> 5595 <right_node>1</right_node></_> 5596 <_> 5597 <!-- node 1 --> 5598 <feature> 5599 <rects> 5600 <_> 5601 2 10 4 6 -1.</_> 5602 <_> 5603 3 10 2 6 2.</_></rects> 5604 <tilted>0</tilted></feature> 5605 <threshold>-1.1458620429039001e-03</threshold> 5606 <left_val>0.2817435860633850</left_val> 5607 <right_val>-0.1608024984598160</right_val></_></_> 5608 <_> 5609 <!-- tree 14 --> 5610 <_> 5611 <!-- root node --> 5612 <feature> 5613 <rects> 5614 <_> 5615 13 0 6 8 -1.</_> 5616 <_> 5617 16 0 3 8 2.</_></rects> 5618 <tilted>0</tilted></feature> 5619 <threshold>9.2800445854663849e-03</threshold> 5620 <left_val>-0.3002896010875702</left_val> 5621 <right_node>1</right_node></_> 5622 <_> 5623 <!-- node 1 --> 5624 <feature> 5625 <rects> 5626 <_> 5627 10 0 8 9 -1.</_> 5628 <_> 5629 12 0 4 9 2.</_></rects> 5630 <tilted>0</tilted></feature> 5631 <threshold>-0.0412813015282154</threshold> 5632 <left_val>-0.6240906715393066</left_val> 5633 <right_val>0.2054990977048874</right_val></_></_> 5634 <_> 5635 <!-- tree 15 --> 5636 <_> 5637 <!-- root node --> 5638 <feature> 5639 <rects> 5640 <_> 5641 1 11 8 1 -1.</_> 5642 <_> 5643 1 11 4 1 2.</_></rects> 5644 <tilted>1</tilted></feature> 5645 <threshold>-0.0356253609061241</threshold> 5646 <left_val>-0.5252934098243713</left_val> 5647 <right_node>1</right_node></_> 5648 <_> 5649 <!-- node 1 --> 5650 <feature> 5651 <rects> 5652 <_> 5653 3 0 1 3 -1.</_> 5654 <_> 5655 2 1 1 1 3.</_></rects> 5656 <tilted>1</tilted></feature> 5657 <threshold>-4.1647539474070072e-03</threshold> 5658 <left_val>-0.6353800892829895</left_val> 5659 <right_val>0.1284665018320084</right_val></_></_> 5660 <_> 5661 <!-- tree 16 --> 5662 <_> 5663 <!-- root node --> 5664 <feature> 5665 <rects> 5666 <_> 5667 13 13 2 2 -1.</_> 5668 <_> 5669 14 13 1 2 2.</_></rects> 5670 <tilted>0</tilted></feature> 5671 <threshold>-9.5598259940743446e-04</threshold> 5672 <left_val>0.2650550901889801</left_val> 5673 <right_node>1</right_node></_> 5674 <_> 5675 <!-- node 1 --> 5676 <feature> 5677 <rects> 5678 <_> 5679 4 12 3 4 -1.</_> 5680 <_> 5681 5 12 1 4 3.</_></rects> 5682 <tilted>0</tilted></feature> 5683 <threshold>-8.9347851462662220e-04</threshold> 5684 <left_val>0.1826681047677994</left_val> 5685 <right_val>-0.3753179013729095</right_val></_></_> 5686 <_> 5687 <!-- tree 17 --> 5688 <_> 5689 <!-- root node --> 5690 <feature> 5691 <rects> 5692 <_> 5693 6 17 4 3 -1.</_> 5694 <_> 5695 7 17 2 3 2.</_></rects> 5696 <tilted>0</tilted></feature> 5697 <threshold>2.5431478861719370e-03</threshold> 5698 <left_node>1</left_node> 5699 <right_val>-0.6105722188949585</right_val></_> 5700 <_> 5701 <!-- node 1 --> 5702 <feature> 5703 <rects> 5704 <_> 5705 14 1 2 6 -1.</_> 5706 <_> 5707 14 1 2 3 2.</_></rects> 5708 <tilted>1</tilted></feature> 5709 <threshold>-0.0158538892865181</threshold> 5710 <left_val>0.3075476884841919</left_val> 5711 <right_val>-0.0981439203023911</right_val></_></_> 5712 <_> 5713 <!-- tree 18 --> 5714 <_> 5715 <!-- root node --> 5716 <feature> 5717 <rects> 5718 <_> 5719 8 4 8 4 -1.</_> 5720 <_> 5721 8 6 8 2 2.</_></rects> 5722 <tilted>0</tilted></feature> 5723 <threshold>-0.0413157604634762</threshold> 5724 <left_val>0.4924758970737457</left_val> 5725 <right_node>1</right_node></_> 5726 <_> 5727 <!-- node 1 --> 5728 <feature> 5729 <rects> 5730 <_> 5731 8 3 4 5 -1.</_> 5732 <_> 5733 10 3 2 5 2.</_></rects> 5734 <tilted>0</tilted></feature> 5735 <threshold>-6.8226549774408340e-04</threshold> 5736 <left_val>0.0629759430885315</left_val> 5737 <right_val>-0.4263429939746857</right_val></_></_> 5738 <_> 5739 <!-- tree 19 --> 5740 <_> 5741 <!-- root node --> 5742 <feature> 5743 <rects> 5744 <_> 5745 13 12 2 2 -1.</_> 5746 <_> 5747 13 12 1 1 2.</_> 5748 <_> 5749 14 13 1 1 2.</_></rects> 5750 <tilted>0</tilted></feature> 5751 <threshold>6.3098431564867496e-04</threshold> 5752 <left_node>1</left_node> 5753 <right_val>0.3139733970165253</right_val></_> 5754 <_> 5755 <!-- node 1 --> 5756 <feature> 5757 <rects> 5758 <_> 5759 6 12 3 3 -1.</_> 5760 <_> 5761 7 12 1 3 3.</_></rects> 5762 <tilted>0</tilted></feature> 5763 <threshold>-2.8946860693395138e-03</threshold> 5764 <left_val>0.2859097123146057</left_val> 5765 <right_val>-0.2562322914600372</right_val></_></_> 5766 <_> 5767 <!-- tree 20 --> 5768 <_> 5769 <!-- root node --> 5770 <feature> 5771 <rects> 5772 <_> 5773 5 7 3 3 -1.</_> 5774 <_> 5775 4 8 3 1 3.</_></rects> 5776 <tilted>1</tilted></feature> 5777 <threshold>-0.0102441404014826</threshold> 5778 <left_val>-0.6973748207092285</left_val> 5779 <right_node>1</right_node></_> 5780 <_> 5781 <!-- node 1 --> 5782 <feature> 5783 <rects> 5784 <_> 5785 15 10 5 4 -1.</_> 5786 <_> 5787 15 11 5 2 2.</_></rects> 5788 <tilted>0</tilted></feature> 5789 <threshold>-0.0169798508286476</threshold> 5790 <left_val>-0.7312573194503784</left_val> 5791 <right_val>0.1038917973637581</right_val></_></_> 5792 <_> 5793 <!-- tree 21 --> 5794 <_> 5795 <!-- root node --> 5796 <feature> 5797 <rects> 5798 <_> 5799 14 8 4 9 -1.</_> 5800 <_> 5801 14 11 4 3 3.</_></rects> 5802 <tilted>0</tilted></feature> 5803 <threshold>-7.0198569446802139e-03</threshold> 5804 <left_node>1</left_node> 5805 <right_val>-0.3507063984870911</right_val></_> 5806 <_> 5807 <!-- node 1 --> 5808 <feature> 5809 <rects> 5810 <_> 5811 16 9 4 3 -1.</_> 5812 <_> 5813 16 10 4 1 3.</_></rects> 5814 <tilted>0</tilted></feature> 5815 <threshold>-6.0688778758049011e-03</threshold> 5816 <left_val>-0.5339580774307251</left_val> 5817 <right_val>0.1733485013246536</right_val></_></_> 5818 <_> 5819 <!-- tree 22 --> 5820 <_> 5821 <!-- root node --> 5822 <feature> 5823 <rects> 5824 <_> 5825 18 7 2 13 -1.</_> 5826 <_> 5827 19 7 1 13 2.</_></rects> 5828 <tilted>0</tilted></feature> 5829 <threshold>-9.6911415457725525e-03</threshold> 5830 <left_val>0.5639979839324951</left_val> 5831 <right_node>1</right_node></_> 5832 <_> 5833 <!-- node 1 --> 5834 <feature> 5835 <rects> 5836 <_> 5837 0 0 16 1 -1.</_> 5838 <_> 5839 8 0 8 1 2.</_></rects> 5840 <tilted>0</tilted></feature> 5841 <threshold>8.5460003465414047e-03</threshold> 5842 <left_val>-0.2471649050712585</left_val> 5843 <right_val>0.1821652054786682</right_val></_></_> 5844 <_> 5845 <!-- tree 23 --> 5846 <_> 5847 <!-- root node --> 5848 <feature> 5849 <rects> 5850 <_> 5851 12 11 5 4 -1.</_> 5852 <_> 5853 11 12 5 2 2.</_></rects> 5854 <tilted>1</tilted></feature> 5855 <threshold>-4.9479231238365173e-03</threshold> 5856 <left_node>1</left_node> 5857 <right_val>-0.2833398878574371</right_val></_> 5858 <_> 5859 <!-- node 1 --> 5860 <feature> 5861 <rects> 5862 <_> 5863 17 13 2 4 -1.</_> 5864 <_> 5865 18 13 1 4 2.</_></rects> 5866 <tilted>0</tilted></feature> 5867 <threshold>1.9269150216132402e-03</threshold> 5868 <left_val>-0.0681960731744766</left_val> 5869 <right_val>0.3778719902038574</right_val></_></_></trees> 5870 <stage_threshold>-1.9048260450363159</stage_threshold> 5871 <parent>13</parent> 5872 <next>-1</next></_> 5873 <_> 5874 <!-- stage 15 --> 5875 <trees> 5876 <_> 5877 <!-- tree 0 --> 5878 <_> 5879 <!-- root node --> 5880 <feature> 5881 <rects> 5882 <_> 5883 6 13 9 2 -1.</_> 5884 <_> 5885 9 13 3 2 3.</_></rects> 5886 <tilted>0</tilted></feature> 5887 <threshold>-0.0286398194730282</threshold> 5888 <left_node>1</left_node> 5889 <right_val>-0.3771826028823853</right_val></_> 5890 <_> 5891 <!-- node 1 --> 5892 <feature> 5893 <rects> 5894 <_> 5895 3 8 6 8 -1.</_> 5896 <_> 5897 3 10 6 4 2.</_></rects> 5898 <tilted>0</tilted></feature> 5899 <threshold>-0.0421766601502895</threshold> 5900 <left_val>0.7229869961738586</left_val> 5901 <right_val>-0.0761411637067795</right_val></_></_> 5902 <_> 5903 <!-- tree 1 --> 5904 <_> 5905 <!-- root node --> 5906 <feature> 5907 <rects> 5908 <_> 5909 14 12 4 3 -1.</_> 5910 <_> 5911 15 12 2 3 2.</_></rects> 5912 <tilted>0</tilted></feature> 5913 <threshold>-2.2537210024893284e-03</threshold> 5914 <left_node>1</left_node> 5915 <right_val>-0.3272745907306671</right_val></_> 5916 <_> 5917 <!-- node 1 --> 5918 <feature> 5919 <rects> 5920 <_> 5921 12 6 6 4 -1.</_> 5922 <_> 5923 14 8 2 4 3.</_></rects> 5924 <tilted>1</tilted></feature> 5925 <threshold>-0.0306833293288946</threshold> 5926 <left_val>0.5150523781776428</left_val> 5927 <right_val>-0.2223519980907440</right_val></_></_> 5928 <_> 5929 <!-- tree 2 --> 5930 <_> 5931 <!-- root node --> 5932 <feature> 5933 <rects> 5934 <_> 5935 4 0 12 6 -1.</_> 5936 <_> 5937 4 3 12 3 2.</_></rects> 5938 <tilted>0</tilted></feature> 5939 <threshold>-0.1234126985073090</threshold> 5940 <left_val>0.4469901025295258</left_val> 5941 <right_node>1</right_node></_> 5942 <_> 5943 <!-- node 1 --> 5944 <feature> 5945 <rects> 5946 <_> 5947 0 0 17 2 -1.</_> 5948 <_> 5949 0 1 17 1 2.</_></rects> 5950 <tilted>0</tilted></feature> 5951 <threshold>-0.0236741509288549</threshold> 5952 <left_val>0.3470853865146637</left_val> 5953 <right_val>-0.3177390098571777</right_val></_></_> 5954 <_> 5955 <!-- tree 3 --> 5956 <_> 5957 <!-- root node --> 5958 <feature> 5959 <rects> 5960 <_> 5961 2 14 1 6 -1.</_> 5962 <_> 5963 2 17 1 3 2.</_></rects> 5964 <tilted>0</tilted></feature> 5965 <threshold>3.1951239798218012e-03</threshold> 5966 <left_val>-0.4977504909038544</left_val> 5967 <right_node>1</right_node></_> 5968 <_> 5969 <!-- node 1 --> 5970 <feature> 5971 <rects> 5972 <_> 5973 3 10 3 3 -1.</_> 5974 <_> 5975 2 11 3 1 3.</_></rects> 5976 <tilted>1</tilted></feature> 5977 <threshold>-1.4915530337020755e-03</threshold> 5978 <left_val>0.2638441920280457</left_val> 5979 <right_val>-0.3891254961490631</right_val></_></_> 5980 <_> 5981 <!-- tree 4 --> 5982 <_> 5983 <!-- root node --> 5984 <feature> 5985 <rects> 5986 <_> 5987 18 2 2 9 -1.</_> 5988 <_> 5989 19 2 1 9 2.</_></rects> 5990 <tilted>0</tilted></feature> 5991 <threshold>8.8097527623176575e-04</threshold> 5992 <left_val>-0.4093979001045227</left_val> 5993 <right_node>1</right_node></_> 5994 <_> 5995 <!-- node 1 --> 5996 <feature> 5997 <rects> 5998 <_> 5999 7 9 13 8 -1.</_> 6000 <_> 6001 7 11 13 4 2.</_></rects> 6002 <tilted>0</tilted></feature> 6003 <threshold>-0.0583557710051537</threshold> 6004 <left_val>0.3228761851787567</left_val> 6005 <right_val>-0.2304559946060181</right_val></_></_> 6006 <_> 6007 <!-- tree 5 --> 6008 <_> 6009 <!-- root node --> 6010 <feature> 6011 <rects> 6012 <_> 6013 17 6 3 4 -1.</_> 6014 <_> 6015 18 7 1 4 3.</_></rects> 6016 <tilted>1</tilted></feature> 6017 <threshold>5.1132370717823505e-03</threshold> 6018 <left_node>1</left_node> 6019 <right_val>-0.5135368108749390</right_val></_> 6020 <_> 6021 <!-- node 1 --> 6022 <feature> 6023 <rects> 6024 <_> 6025 6 13 2 2 -1.</_> 6026 <_> 6027 7 13 1 2 2.</_></rects> 6028 <tilted>0</tilted></feature> 6029 <threshold>-4.5418320223689079e-03</threshold> 6030 <left_val>0.5301175713539124</left_val> 6031 <right_val>-0.0306493304669857</right_val></_></_> 6032 <_> 6033 <!-- tree 6 --> 6034 <_> 6035 <!-- root node --> 6036 <feature> 6037 <rects> 6038 <_> 6039 15 16 1 3 -1.</_> 6040 <_> 6041 14 17 1 1 3.</_></rects> 6042 <tilted>1</tilted></feature> 6043 <threshold>1.6811339883133769e-03</threshold> 6044 <left_node>1</left_node> 6045 <right_val>-0.5316147208213806</right_val></_> 6046 <_> 6047 <!-- node 1 --> 6048 <feature> 6049 <rects> 6050 <_> 6051 11 16 6 4 -1.</_> 6052 <_> 6053 11 16 3 2 2.</_> 6054 <_> 6055 14 18 3 2 2.</_></rects> 6056 <tilted>0</tilted></feature> 6057 <threshold>2.8129699639976025e-03</threshold> 6058 <left_val>-0.0675240531563759</left_val> 6059 <right_val>0.3854224979877472</right_val></_></_> 6060 <_> 6061 <!-- tree 7 --> 6062 <_> 6063 <!-- root node --> 6064 <feature> 6065 <rects> 6066 <_> 6067 19 0 1 4 -1.</_> 6068 <_> 6069 19 1 1 2 2.</_></rects> 6070 <tilted>0</tilted></feature> 6071 <threshold>2.1835418883711100e-03</threshold> 6072 <left_node>1</left_node> 6073 <right_val>-0.6429883241653442</right_val></_> 6074 <_> 6075 <!-- node 1 --> 6076 <feature> 6077 <rects> 6078 <_> 6079 19 0 1 2 -1.</_> 6080 <_> 6081 19 1 1 1 2.</_></rects> 6082 <tilted>0</tilted></feature> 6083 <threshold>-2.4335379712283611e-03</threshold> 6084 <left_val>-0.6631330847740173</left_val> 6085 <right_val>0.1388237029314041</right_val></_></_> 6086 <_> 6087 <!-- tree 8 --> 6088 <_> 6089 <!-- root node --> 6090 <feature> 6091 <rects> 6092 <_> 6093 12 3 3 6 -1.</_> 6094 <_> 6095 13 3 1 6 3.</_></rects> 6096 <tilted>0</tilted></feature> 6097 <threshold>3.0736608896404505e-03</threshold> 6098 <left_node>1</left_node> 6099 <right_val>-0.6343315839767456</right_val></_> 6100 <_> 6101 <!-- node 1 --> 6102 <feature> 6103 <rects> 6104 <_> 6105 8 10 4 3 -1.</_> 6106 <_> 6107 8 11 4 1 3.</_></rects> 6108 <tilted>0</tilted></feature> 6109 <threshold>-9.6425544470548630e-03</threshold> 6110 <left_val>0.3869616091251373</left_val> 6111 <right_val>-0.0687377974390984</right_val></_></_> 6112 <_> 6113 <!-- tree 9 --> 6114 <_> 6115 <!-- root node --> 6116 <feature> 6117 <rects> 6118 <_> 6119 19 0 1 8 -1.</_> 6120 <_> 6121 19 4 1 4 2.</_></rects> 6122 <tilted>0</tilted></feature> 6123 <threshold>-7.2082108817994595e-03</threshold> 6124 <left_val>0.1612125039100647</left_val> 6125 <right_node>1</right_node></_> 6126 <_> 6127 <!-- node 1 --> 6128 <feature> 6129 <rects> 6130 <_> 6131 14 0 6 6 -1.</_> 6132 <_> 6133 14 0 3 3 2.</_> 6134 <_> 6135 17 3 3 3 2.</_></rects> 6136 <tilted>0</tilted></feature> 6137 <threshold>-8.0191977322101593e-03</threshold> 6138 <left_val>0.3801113069057465</left_val> 6139 <right_val>-0.4139797985553741</right_val></_></_> 6140 <_> 6141 <!-- tree 10 --> 6142 <_> 6143 <!-- root node --> 6144 <feature> 6145 <rects> 6146 <_> 6147 8 11 3 3 -1.</_> 6148 <_> 6149 9 12 1 1 9.</_></rects> 6150 <tilted>0</tilted></feature> 6151 <threshold>-7.2479159571230412e-03</threshold> 6152 <left_val>0.2435187995433807</left_val> 6153 <right_node>1</right_node></_> 6154 <_> 6155 <!-- node 1 --> 6156 <feature> 6157 <rects> 6158 <_> 6159 1 6 10 12 -1.</_> 6160 <_> 6161 6 6 5 12 2.</_></rects> 6162 <tilted>0</tilted></feature> 6163 <threshold>-0.2263164073228836</threshold> 6164 <left_val>0.6066794991493225</left_val> 6165 <right_val>-0.2252188026905060</right_val></_></_> 6166 <_> 6167 <!-- tree 11 --> 6168 <_> 6169 <!-- root node --> 6170 <feature> 6171 <rects> 6172 <_> 6173 10 6 2 1 -1.</_> 6174 <_> 6175 11 6 1 1 2.</_></rects> 6176 <tilted>0</tilted></feature> 6177 <threshold>-7.0091613451950252e-05</threshold> 6178 <left_val>0.1711532026529312</left_val> 6179 <right_node>1</right_node></_> 6180 <_> 6181 <!-- node 1 --> 6182 <feature> 6183 <rects> 6184 <_> 6185 8 1 7 10 -1.</_> 6186 <_> 6187 8 6 7 5 2.</_></rects> 6188 <tilted>0</tilted></feature> 6189 <threshold>-0.1816139966249466</threshold> 6190 <left_val>0.5272598266601562</left_val> 6191 <right_val>-0.3524754047393799</right_val></_></_> 6192 <_> 6193 <!-- tree 12 --> 6194 <_> 6195 <!-- root node --> 6196 <feature> 6197 <rects> 6198 <_> 6199 13 11 3 3 -1.</_> 6200 <_> 6201 14 12 1 3 3.</_></rects> 6202 <tilted>1</tilted></feature> 6203 <threshold>-9.4038434326648712e-03</threshold> 6204 <left_val>0.3497051894664764</left_val> 6205 <right_node>1</right_node></_> 6206 <_> 6207 <!-- node 1 --> 6208 <feature> 6209 <rects> 6210 <_> 6211 10 13 4 4 -1.</_> 6212 <_> 6213 10 13 2 2 2.</_> 6214 <_> 6215 12 15 2 2 2.</_></rects> 6216 <tilted>0</tilted></feature> 6217 <threshold>-2.1289030555635691e-03</threshold> 6218 <left_val>0.0558786988258362</left_val> 6219 <right_val>-0.4981659054756165</right_val></_></_> 6220 <_> 6221 <!-- tree 13 --> 6222 <_> 6223 <!-- root node --> 6224 <feature> 6225 <rects> 6226 <_> 6227 15 15 2 3 -1.</_> 6228 <_> 6229 14 16 2 1 3.</_></rects> 6230 <tilted>1</tilted></feature> 6231 <threshold>-5.1798550412058830e-03</threshold> 6232 <left_val>-0.6309564113616943</left_val> 6233 <right_node>1</right_node></_> 6234 <_> 6235 <!-- node 1 --> 6236 <feature> 6237 <rects> 6238 <_> 6239 13 13 3 1 -1.</_> 6240 <_> 6241 14 13 1 1 3.</_></rects> 6242 <tilted>0</tilted></feature> 6243 <threshold>-6.5030192490667105e-04</threshold> 6244 <left_val>0.3585645854473114</left_val> 6245 <right_val>-0.0782810524106026</right_val></_></_> 6246 <_> 6247 <!-- tree 14 --> 6248 <_> 6249 <!-- root node --> 6250 <feature> 6251 <rects> 6252 <_> 6253 10 4 6 3 -1.</_> 6254 <_> 6255 12 4 2 3 3.</_></rects> 6256 <tilted>0</tilted></feature> 6257 <threshold>-0.0105559304356575</threshold> 6258 <left_val>-0.5550283193588257</left_val> 6259 <right_node>1</right_node></_> 6260 <_> 6261 <!-- node 1 --> 6262 <feature> 6263 <rects> 6264 <_> 6265 1 7 6 4 -1.</_> 6266 <_> 6267 1 7 3 2 2.</_> 6268 <_> 6269 4 9 3 2 2.</_></rects> 6270 <tilted>0</tilted></feature> 6271 <threshold>-5.1852981559932232e-03</threshold> 6272 <left_val>0.3554868102073669</left_val> 6273 <right_val>-0.0688922926783562</right_val></_></_> 6274 <_> 6275 <!-- tree 15 --> 6276 <_> 6277 <!-- root node --> 6278 <feature> 6279 <rects> 6280 <_> 6281 15 7 4 2 -1.</_> 6282 <_> 6283 16 8 2 2 2.</_></rects> 6284 <tilted>1</tilted></feature> 6285 <threshold>-7.8725479543209076e-03</threshold> 6286 <left_val>-0.4859617948532104</left_val> 6287 <right_node>1</right_node></_> 6288 <_> 6289 <!-- node 1 --> 6290 <feature> 6291 <rects> 6292 <_> 6293 10 4 9 6 -1.</_> 6294 <_> 6295 13 4 3 6 3.</_></rects> 6296 <tilted>0</tilted></feature> 6297 <threshold>-6.5342970192432404e-03</threshold> 6298 <left_val>0.2117895931005478</left_val> 6299 <right_val>-0.2317408025264740</right_val></_></_> 6300 <_> 6301 <!-- tree 16 --> 6302 <_> 6303 <!-- root node --> 6304 <feature> 6305 <rects> 6306 <_> 6307 14 2 6 2 -1.</_> 6308 <_> 6309 14 2 6 1 2.</_></rects> 6310 <tilted>1</tilted></feature> 6311 <threshold>-0.0139099201187491</threshold> 6312 <left_val>0.5993698239326477</left_val> 6313 <right_node>1</right_node></_> 6314 <_> 6315 <!-- node 1 --> 6316 <feature> 6317 <rects> 6318 <_> 6319 5 18 4 2 -1.</_> 6320 <_> 6321 6 18 2 2 2.</_></rects> 6322 <tilted>0</tilted></feature> 6323 <threshold>1.5418450348079205e-03</threshold> 6324 <left_val>-9.5086917281150818e-03</left_val> 6325 <right_val>-0.6479613184928894</right_val></_></_> 6326 <_> 6327 <!-- tree 17 --> 6328 <_> 6329 <!-- root node --> 6330 <feature> 6331 <rects> 6332 <_> 6333 0 12 2 8 -1.</_> 6334 <_> 6335 1 12 1 8 2.</_></rects> 6336 <tilted>0</tilted></feature> 6337 <threshold>-1.1549900518730283e-03</threshold> 6338 <left_node>1</left_node> 6339 <right_val>-0.2750172019004822</right_val></_> 6340 <_> 6341 <!-- node 1 --> 6342 <feature> 6343 <rects> 6344 <_> 6345 1 19 18 1 -1.</_> 6346 <_> 6347 10 19 9 1 2.</_></rects> 6348 <tilted>0</tilted></feature> 6349 <threshold>-0.0326870307326317</threshold> 6350 <left_val>-0.6733620762825012</left_val> 6351 <right_val>0.1952040046453476</right_val></_></_> 6352 <_> 6353 <!-- tree 18 --> 6354 <_> 6355 <!-- root node --> 6356 <feature> 6357 <rects> 6358 <_> 6359 2 0 12 20 -1.</_> 6360 <_> 6361 8 0 6 20 2.</_></rects> 6362 <tilted>0</tilted></feature> 6363 <threshold>-0.2642259001731873</threshold> 6364 <left_val>0.3698686957359314</left_val> 6365 <right_node>1</right_node></_> 6366 <_> 6367 <!-- node 1 --> 6368 <feature> 6369 <rects> 6370 <_> 6371 2 0 14 1 -1.</_> 6372 <_> 6373 9 0 7 1 2.</_></rects> 6374 <tilted>0</tilted></feature> 6375 <threshold>6.9438670761883259e-03</threshold> 6376 <left_val>-0.3002974092960358</left_val> 6377 <right_val>0.1499896943569183</right_val></_></_> 6378 <_> 6379 <!-- tree 19 --> 6380 <_> 6381 <!-- root node --> 6382 <feature> 6383 <rects> 6384 <_> 6385 7 9 8 3 -1.</_> 6386 <_> 6387 7 10 8 1 3.</_></rects> 6388 <tilted>0</tilted></feature> 6389 <threshold>-0.0120779201388359</threshold> 6390 <left_val>0.4164412915706635</left_val> 6391 <right_node>1</right_node></_> 6392 <_> 6393 <!-- node 1 --> 6394 <feature> 6395 <rects> 6396 <_> 6397 3 11 2 2 -1.</_> 6398 <_> 6399 3 11 1 1 2.</_> 6400 <_> 6401 4 12 1 1 2.</_></rects> 6402 <tilted>0</tilted></feature> 6403 <threshold>-1.3986700214445591e-03</threshold> 6404 <left_val>0.4124872982501984</left_val> 6405 <right_val>-0.1953365951776505</right_val></_></_> 6406 <_> 6407 <!-- tree 20 --> 6408 <_> 6409 <!-- root node --> 6410 <feature> 6411 <rects> 6412 <_> 6413 11 0 9 2 -1.</_> 6414 <_> 6415 14 0 3 2 3.</_></rects> 6416 <tilted>0</tilted></feature> 6417 <threshold>0.0131383398547769</threshold> 6418 <left_node>1</left_node> 6419 <right_val>-0.6420493125915527</right_val></_> 6420 <_> 6421 <!-- node 1 --> 6422 <feature> 6423 <rects> 6424 <_> 6425 6 0 9 1 -1.</_> 6426 <_> 6427 9 0 3 1 3.</_></rects> 6428 <tilted>0</tilted></feature> 6429 <threshold>7.2417110204696655e-03</threshold> 6430 <left_val>0.1135936006903648</left_val> 6431 <right_val>-0.7383887171745300</right_val></_></_> 6432 <_> 6433 <!-- tree 21 --> 6434 <_> 6435 <!-- root node --> 6436 <feature> 6437 <rects> 6438 <_> 6439 4 8 1 4 -1.</_> 6440 <_> 6441 3 9 1 2 2.</_></rects> 6442 <tilted>1</tilted></feature> 6443 <threshold>-7.4837901629507542e-03</threshold> 6444 <left_val>-0.6924629807472229</left_val> 6445 <right_node>1</right_node></_> 6446 <_> 6447 <!-- node 1 --> 6448 <feature> 6449 <rects> 6450 <_> 6451 0 9 3 3 -1.</_> 6452 <_> 6453 0 10 3 1 3.</_></rects> 6454 <tilted>0</tilted></feature> 6455 <threshold>6.8022231571376324e-03</threshold> 6456 <left_val>0.0928734391927719</left_val> 6457 <right_val>-0.6004747152328491</right_val></_></_> 6458 <_> 6459 <!-- tree 22 --> 6460 <_> 6461 <!-- root node --> 6462 <feature> 6463 <rects> 6464 <_> 6465 3 4 15 12 -1.</_> 6466 <_> 6467 8 8 5 4 9.</_></rects> 6468 <tilted>0</tilted></feature> 6469 <threshold>0.4532290995121002</threshold> 6470 <left_node>1</left_node> 6471 <right_val>0.5626053214073181</right_val></_> 6472 <_> 6473 <!-- node 1 --> 6474 <feature> 6475 <rects> 6476 <_> 6477 7 13 6 6 -1.</_> 6478 <_> 6479 9 13 2 6 3.</_></rects> 6480 <tilted>0</tilted></feature> 6481 <threshold>-5.5721630342304707e-03</threshold> 6482 <left_val>0.0778201594948769</left_val> 6483 <right_val>-0.3399060070514679</right_val></_></_> 6484 <_> 6485 <!-- tree 23 --> 6486 <_> 6487 <!-- root node --> 6488 <feature> 6489 <rects> 6490 <_> 6491 2 1 12 6 -1.</_> 6492 <_> 6493 2 3 12 2 3.</_></rects> 6494 <tilted>0</tilted></feature> 6495 <threshold>0.0315839610993862</threshold> 6496 <left_node>1</left_node> 6497 <right_val>0.3229267001152039</right_val></_> 6498 <_> 6499 <!-- node 1 --> 6500 <feature> 6501 <rects> 6502 <_> 6503 1 1 6 1 -1.</_> 6504 <_> 6505 3 3 2 1 3.</_></rects> 6506 <tilted>1</tilted></feature> 6507 <threshold>-5.7926177978515625e-03</threshold> 6508 <left_val>0.1553445011377335</left_val> 6509 <right_val>-0.3571783900260925</right_val></_></_> 6510 <_> 6511 <!-- tree 24 --> 6512 <_> 6513 <!-- root node --> 6514 <feature> 6515 <rects> 6516 <_> 6517 3 4 5 3 -1.</_> 6518 <_> 6519 2 5 5 1 3.</_></rects> 6520 <tilted>1</tilted></feature> 6521 <threshold>-7.6025379821658134e-03</threshold> 6522 <left_val>-0.5185949802398682</left_val> 6523 <right_node>1</right_node></_> 6524 <_> 6525 <!-- node 1 --> 6526 <feature> 6527 <rects> 6528 <_> 6529 2 12 2 2 -1.</_> 6530 <_> 6531 2 12 1 1 2.</_> 6532 <_> 6533 3 13 1 1 2.</_></rects> 6534 <tilted>0</tilted></feature> 6535 <threshold>9.5151038840413094e-04</threshold> 6536 <left_val>-0.0295706707984209</left_val> 6537 <right_val>0.4602751135826111</right_val></_></_> 6538 <_> 6539 <!-- tree 25 --> 6540 <_> 6541 <!-- root node --> 6542 <feature> 6543 <rects> 6544 <_> 6545 8 11 3 3 -1.</_> 6546 <_> 6547 9 11 1 3 3.</_></rects> 6548 <tilted>0</tilted></feature> 6549 <threshold>1.9723300356417894e-03</threshold> 6550 <left_node>1</left_node> 6551 <right_val>0.3692665100097656</right_val></_> 6552 <_> 6553 <!-- node 1 --> 6554 <feature> 6555 <rects> 6556 <_> 6557 9 11 3 4 -1.</_> 6558 <_> 6559 10 11 1 4 3.</_></rects> 6560 <tilted>0</tilted></feature> 6561 <threshold>2.3158260155469179e-03</threshold> 6562 <left_val>-0.2129974067211151</left_val> 6563 <right_val>0.2694854140281677</right_val></_></_> 6564 <_> 6565 <!-- tree 26 --> 6566 <_> 6567 <!-- root node --> 6568 <feature> 6569 <rects> 6570 <_> 6571 17 2 3 1 -1.</_> 6572 <_> 6573 18 3 1 1 3.</_></rects> 6574 <tilted>1</tilted></feature> 6575 <threshold>2.1179600153118372e-03</threshold> 6576 <left_node>1</left_node> 6577 <right_val>-0.4836950004100800</right_val></_> 6578 <_> 6579 <!-- node 1 --> 6580 <feature> 6581 <rects> 6582 <_> 6583 5 11 6 3 -1.</_> 6584 <_> 6585 8 11 3 3 2.</_></rects> 6586 <tilted>0</tilted></feature> 6587 <threshold>-2.6946600992232561e-03</threshold> 6588 <left_val>0.1854566037654877</left_val> 6589 <right_val>-0.2941196858882904</right_val></_></_> 6590 <_> 6591 <!-- tree 27 --> 6592 <_> 6593 <!-- root node --> 6594 <feature> 6595 <rects> 6596 <_> 6597 2 12 12 8 -1.</_> 6598 <_> 6599 2 12 6 4 2.</_> 6600 <_> 6601 8 16 6 4 2.</_></rects> 6602 <tilted>0</tilted></feature> 6603 <threshold>0.0588654093444347</threshold> 6604 <left_node>1</left_node> 6605 <right_val>-0.4677037894725800</right_val></_> 6606 <_> 6607 <!-- node 1 --> 6608 <feature> 6609 <rects> 6610 <_> 6611 13 15 2 3 -1.</_> 6612 <_> 6613 12 16 2 1 3.</_></rects> 6614 <tilted>1</tilted></feature> 6615 <threshold>-6.8408921360969543e-03</threshold> 6616 <left_val>-0.6637132167816162</left_val> 6617 <right_val>0.1272134929895401</right_val></_></_></trees> 6618 <stage_threshold>-1.9407349824905396</stage_threshold> 6619 <parent>14</parent> 6620 <next>-1</next></_> 6621 <_> 6622 <!-- stage 16 --> 6623 <trees> 6624 <_> 6625 <!-- tree 0 --> 6626 <_> 6627 <!-- root node --> 6628 <feature> 6629 <rects> 6630 <_> 6631 5 14 9 1 -1.</_> 6632 <_> 6633 8 14 3 1 3.</_></rects> 6634 <tilted>0</tilted></feature> 6635 <threshold>-0.0127664897590876</threshold> 6636 <left_node>1</left_node> 6637 <right_val>-0.3796809911727905</right_val></_> 6638 <_> 6639 <!-- node 1 --> 6640 <feature> 6641 <rects> 6642 <_> 6643 13 13 4 6 -1.</_> 6644 <_> 6645 13 13 2 3 2.</_> 6646 <_> 6647 15 16 2 3 2.</_></rects> 6648 <tilted>0</tilted></feature> 6649 <threshold>3.7821640726178885e-03</threshold> 6650 <left_val>-0.1600182950496674</left_val> 6651 <right_val>0.6195328831672668</right_val></_></_> 6652 <_> 6653 <!-- tree 1 --> 6654 <_> 6655 <!-- root node --> 6656 <feature> 6657 <rects> 6658 <_> 6659 8 7 9 1 -1.</_> 6660 <_> 6661 11 10 3 1 3.</_></rects> 6662 <tilted>1</tilted></feature> 6663 <threshold>-0.0330498814582825</threshold> 6664 <left_node>1</left_node> 6665 <right_val>-0.3682548105716705</right_val></_> 6666 <_> 6667 <!-- node 1 --> 6668 <feature> 6669 <rects> 6670 <_> 6671 16 0 4 4 -1.</_> 6672 <_> 6673 16 0 4 2 2.</_></rects> 6674 <tilted>1</tilted></feature> 6675 <threshold>0.0450502410531044</threshold> 6676 <left_val>9.3770343810319901e-03</left_val> 6677 <right_val>0.7157058119773865</right_val></_></_> 6678 <_> 6679 <!-- tree 2 --> 6680 <_> 6681 <!-- root node --> 6682 <feature> 6683 <rects> 6684 <_> 6685 2 13 2 2 -1.</_> 6686 <_> 6687 2 13 2 1 2.</_></rects> 6688 <tilted>1</tilted></feature> 6689 <threshold>-3.5275409463793039e-03</threshold> 6690 <left_node>1</left_node> 6691 <right_val>-0.3733660876750946</right_val></_> 6692 <_> 6693 <!-- node 1 --> 6694 <feature> 6695 <rects> 6696 <_> 6697 5 12 2 2 -1.</_> 6698 <_> 6699 5 13 2 1 2.</_></rects> 6700 <tilted>0</tilted></feature> 6701 <threshold>2.2250709589570761e-03</threshold> 6702 <left_val>-0.0667124912142754</left_val> 6703 <right_val>0.4990611970424652</right_val></_></_> 6704 <_> 6705 <!-- tree 3 --> 6706 <_> 6707 <!-- root node --> 6708 <feature> 6709 <rects> 6710 <_> 6711 0 16 2 4 -1.</_> 6712 <_> 6713 0 18 2 2 2.</_></rects> 6714 <tilted>0</tilted></feature> 6715 <threshold>1.3609490124508739e-03</threshold> 6716 <left_node>1</left_node> 6717 <right_val>0.1716292947530746</right_val></_> 6718 <_> 6719 <!-- node 1 --> 6720 <feature> 6721 <rects> 6722 <_> 6723 0 8 14 11 -1.</_> 6724 <_> 6725 7 8 7 11 2.</_></rects> 6726 <tilted>0</tilted></feature> 6727 <threshold>-0.2908785939216614</threshold> 6728 <left_val>0.3615890145301819</left_val> 6729 <right_val>-0.5087137222290039</right_val></_></_> 6730 <_> 6731 <!-- tree 4 --> 6732 <_> 6733 <!-- root node --> 6734 <feature> 6735 <rects> 6736 <_> 6737 4 17 4 3 -1.</_> 6738 <_> 6739 5 17 2 3 2.</_></rects> 6740 <tilted>0</tilted></feature> 6741 <threshold>3.3148950897157192e-03</threshold> 6742 <left_node>1</left_node> 6743 <right_val>-0.7178813815116882</right_val></_> 6744 <_> 6745 <!-- node 1 --> 6746 <feature> 6747 <rects> 6748 <_> 6749 3 12 3 5 -1.</_> 6750 <_> 6751 4 12 1 5 3.</_></rects> 6752 <tilted>0</tilted></feature> 6753 <threshold>-8.8641437469050288e-04</threshold> 6754 <left_val>0.2571361958980560</left_val> 6755 <right_val>-0.1797894984483719</right_val></_></_> 6756 <_> 6757 <!-- tree 5 --> 6758 <_> 6759 <!-- root node --> 6760 <feature> 6761 <rects> 6762 <_> 6763 5 11 1 3 -1.</_> 6764 <_> 6765 5 12 1 1 3.</_></rects> 6766 <tilted>0</tilted></feature> 6767 <threshold>1.1313590221107006e-03</threshold> 6768 <left_node>1</left_node> 6769 <right_val>0.3538742065429688</right_val></_> 6770 <_> 6771 <!-- node 1 --> 6772 <feature> 6773 <rects> 6774 <_> 6775 4 10 4 2 -1.</_> 6776 <_> 6777 4 10 2 1 2.</_> 6778 <_> 6779 6 11 2 1 2.</_></rects> 6780 <tilted>0</tilted></feature> 6781 <threshold>-3.0621800106018782e-03</threshold> 6782 <left_val>0.3079080879688263</left_val> 6783 <right_val>-0.3121724128723145</right_val></_></_> 6784 <_> 6785 <!-- tree 6 --> 6786 <_> 6787 <!-- root node --> 6788 <feature> 6789 <rects> 6790 <_> 6791 15 9 3 1 -1.</_> 6792 <_> 6793 16 10 1 1 3.</_></rects> 6794 <tilted>1</tilted></feature> 6795 <threshold>2.5443620979785919e-03</threshold> 6796 <left_node>1</left_node> 6797 <right_val>-0.5678855180740356</right_val></_> 6798 <_> 6799 <!-- node 1 --> 6800 <feature> 6801 <rects> 6802 <_> 6803 3 0 16 7 -1.</_> 6804 <_> 6805 7 0 8 7 2.</_></rects> 6806 <tilted>0</tilted></feature> 6807 <threshold>-6.7088878713548183e-03</threshold> 6808 <left_val>0.2122289985418320</left_val> 6809 <right_val>-0.2682110965251923</right_val></_></_> 6810 <_> 6811 <!-- tree 7 --> 6812 <_> 6813 <!-- root node --> 6814 <feature> 6815 <rects> 6816 <_> 6817 2 2 17 6 -1.</_> 6818 <_> 6819 2 5 17 3 2.</_></rects> 6820 <tilted>0</tilted></feature> 6821 <threshold>-0.1644680947065353</threshold> 6822 <left_val>0.4901696145534515</left_val> 6823 <right_node>1</right_node></_> 6824 <_> 6825 <!-- node 1 --> 6826 <feature> 6827 <rects> 6828 <_> 6829 2 4 14 6 -1.</_> 6830 <_> 6831 2 6 14 2 3.</_></rects> 6832 <tilted>0</tilted></feature> 6833 <threshold>0.0408281087875366</threshold> 6834 <left_val>-0.3121747076511383</left_val> 6835 <right_val>0.2474814951419830</right_val></_></_> 6836 <_> 6837 <!-- tree 8 --> 6838 <_> 6839 <!-- root node --> 6840 <feature> 6841 <rects> 6842 <_> 6843 2 9 6 2 -1.</_> 6844 <_> 6845 2 9 3 1 2.</_> 6846 <_> 6847 5 10 3 1 2.</_></rects> 6848 <tilted>0</tilted></feature> 6849 <threshold>-3.6051510833203793e-03</threshold> 6850 <left_val>0.3435586094856262</left_val> 6851 <right_node>1</right_node></_> 6852 <_> 6853 <!-- node 1 --> 6854 <feature> 6855 <rects> 6856 <_> 6857 3 11 4 2 -1.</_> 6858 <_> 6859 3 11 2 1 2.</_> 6860 <_> 6861 5 12 2 1 2.</_></rects> 6862 <tilted>0</tilted></feature> 6863 <threshold>-2.3608640767633915e-03</threshold> 6864 <left_val>0.2656646072864532</left_val> 6865 <right_val>-0.2864471971988678</right_val></_></_> 6866 <_> 6867 <!-- tree 9 --> 6868 <_> 6869 <!-- root node --> 6870 <feature> 6871 <rects> 6872 <_> 6873 16 13 4 2 -1.</_> 6874 <_> 6875 18 13 2 2 2.</_></rects> 6876 <tilted>0</tilted></feature> 6877 <threshold>1.2965350179001689e-03</threshold> 6878 <left_val>-0.2931776046752930</left_val> 6879 <right_node>1</right_node></_> 6880 <_> 6881 <!-- node 1 --> 6882 <feature> 6883 <rects> 6884 <_> 6885 15 7 3 2 -1.</_> 6886 <_> 6887 16 8 1 2 3.</_></rects> 6888 <tilted>1</tilted></feature> 6889 <threshold>6.0111000202596188e-03</threshold> 6890 <left_val>0.2194170057773590</left_val> 6891 <right_val>-0.6001421809196472</right_val></_></_> 6892 <_> 6893 <!-- tree 10 --> 6894 <_> 6895 <!-- root node --> 6896 <feature> 6897 <rects> 6898 <_> 6899 0 11 4 2 -1.</_> 6900 <_> 6901 0 12 4 1 2.</_></rects> 6902 <tilted>0</tilted></feature> 6903 <threshold>-6.1628420371562243e-04</threshold> 6904 <left_node>1</left_node> 6905 <right_val>-0.3129233121871948</right_val></_> 6906 <_> 6907 <!-- node 1 --> 6908 <feature> 6909 <rects> 6910 <_> 6911 4 9 2 3 -1.</_> 6912 <_> 6913 3 10 2 1 3.</_></rects> 6914 <tilted>1</tilted></feature> 6915 <threshold>2.0573718938976526e-03</threshold> 6916 <left_val>0.2876316905021667</left_val> 6917 <right_val>-0.3732070922851562</right_val></_></_> 6918 <_> 6919 <!-- tree 11 --> 6920 <_> 6921 <!-- root node --> 6922 <feature> 6923 <rects> 6924 <_> 6925 3 18 6 2 -1.</_> 6926 <_> 6927 5 18 2 2 3.</_></rects> 6928 <tilted>0</tilted></feature> 6929 <threshold>-7.7166007831692696e-03</threshold> 6930 <left_val>-0.7168325185775757</left_val> 6931 <right_node>1</right_node></_> 6932 <_> 6933 <!-- node 1 --> 6934 <feature> 6935 <rects> 6936 <_> 6937 11 12 3 2 -1.</_> 6938 <_> 6939 12 12 1 2 3.</_></rects> 6940 <tilted>0</tilted></feature> 6941 <threshold>-2.8222459368407726e-03</threshold> 6942 <left_val>0.4250183105468750</left_val> 6943 <right_val>-0.0532948896288872</right_val></_></_> 6944 <_> 6945 <!-- tree 12 --> 6946 <_> 6947 <!-- root node --> 6948 <feature> 6949 <rects> 6950 <_> 6951 19 0 1 2 -1.</_> 6952 <_> 6953 19 1 1 1 2.</_></rects> 6954 <tilted>0</tilted></feature> 6955 <threshold>-7.3861207056324929e-05</threshold> 6956 <left_val>0.1490345001220703</left_val> 6957 <right_node>1</right_node></_> 6958 <_> 6959 <!-- node 1 --> 6960 <feature> 6961 <rects> 6962 <_> 6963 0 0 14 1 -1.</_> 6964 <_> 6965 7 0 7 1 2.</_></rects> 6966 <tilted>0</tilted></feature> 6967 <threshold>5.8680498041212559e-03</threshold> 6968 <left_val>-0.5843665003776550</left_val> 6969 <right_val>0.1072475984692574</right_val></_></_> 6970 <_> 6971 <!-- tree 13 --> 6972 <_> 6973 <!-- root node --> 6974 <feature> 6975 <rects> 6976 <_> 6977 11 10 3 4 -1.</_> 6978 <_> 6979 10 11 3 2 2.</_></rects> 6980 <tilted>1</tilted></feature> 6981 <threshold>-7.9013723880052567e-03</threshold> 6982 <left_node>1</left_node> 6983 <right_val>-0.3431994915008545</right_val></_> 6984 <_> 6985 <!-- node 1 --> 6986 <feature> 6987 <rects> 6988 <_> 6989 14 16 1 3 -1.</_> 6990 <_> 6991 13 17 1 1 3.</_></rects> 6992 <tilted>1</tilted></feature> 6993 <threshold>2.7825690340250731e-03</threshold> 6994 <left_val>0.1765536069869995</left_val> 6995 <right_val>-0.6147375702857971</right_val></_></_> 6996 <_> 6997 <!-- tree 14 --> 6998 <_> 6999 <!-- root node --> 7000 <feature> 7001 <rects> 7002 <_> 7003 18 1 2 4 -1.</_> 7004 <_> 7005 19 1 1 4 2.</_></rects> 7006 <tilted>0</tilted></feature> 7007 <threshold>3.2751538674347103e-04</threshold> 7008 <left_val>-0.3383756875991821</left_val> 7009 <right_node>1</right_node></_> 7010 <_> 7011 <!-- node 1 --> 7012 <feature> 7013 <rects> 7014 <_> 7015 15 13 5 6 -1.</_> 7016 <_> 7017 15 15 5 2 3.</_></rects> 7018 <tilted>0</tilted></feature> 7019 <threshold>0.0307008996605873</threshold> 7020 <left_val>0.1856613010168076</left_val> 7021 <right_val>-0.5345026850700378</right_val></_></_> 7022 <_> 7023 <!-- tree 15 --> 7024 <_> 7025 <!-- root node --> 7026 <feature> 7027 <rects> 7028 <_> 7029 16 4 3 3 -1.</_> 7030 <_> 7031 17 5 1 3 3.</_></rects> 7032 <tilted>1</tilted></feature> 7033 <threshold>5.6932470761239529e-03</threshold> 7034 <left_node>1</left_node> 7035 <right_val>-0.5175045132637024</right_val></_> 7036 <_> 7037 <!-- node 1 --> 7038 <feature> 7039 <rects> 7040 <_> 7041 4 6 16 14 -1.</_> 7042 <_> 7043 12 6 8 14 2.</_></rects> 7044 <tilted>0</tilted></feature> 7045 <threshold>0.2137514054775238</threshold> 7046 <left_val>0.1233239993453026</left_val> 7047 <right_val>-0.6428813934326172</right_val></_></_> 7048 <_> 7049 <!-- tree 16 --> 7050 <_> 7051 <!-- root node --> 7052 <feature> 7053 <rects> 7054 <_> 7055 10 12 3 1 -1.</_> 7056 <_> 7057 11 12 1 1 3.</_></rects> 7058 <tilted>0</tilted></feature> 7059 <threshold>-4.4024959206581116e-03</threshold> 7060 <left_val>0.5853567719459534</left_val> 7061 <right_node>1</right_node></_> 7062 <_> 7063 <!-- node 1 --> 7064 <feature> 7065 <rects> 7066 <_> 7067 5 12 2 2 -1.</_> 7068 <_> 7069 5 12 1 1 2.</_> 7070 <_> 7071 6 13 1 1 2.</_></rects> 7072 <tilted>0</tilted></feature> 7073 <threshold>-4.5719969784840941e-04</threshold> 7074 <left_val>0.2336882054805756</left_val> 7075 <right_val>-0.1903900951147079</right_val></_></_> 7076 <_> 7077 <!-- tree 17 --> 7078 <_> 7079 <!-- root node --> 7080 <feature> 7081 <rects> 7082 <_> 7083 9 3 4 5 -1.</_> 7084 <_> 7085 10 3 2 5 2.</_></rects> 7086 <tilted>0</tilted></feature> 7087 <threshold>-4.2587839998304844e-03</threshold> 7088 <left_val>-0.5119084715843201</left_val> 7089 <right_node>1</right_node></_> 7090 <_> 7091 <!-- node 1 --> 7092 <feature> 7093 <rects> 7094 <_> 7095 18 1 2 3 -1.</_> 7096 <_> 7097 18 2 2 1 3.</_></rects> 7098 <tilted>0</tilted></feature> 7099 <threshold>-2.3462621029466391e-03</threshold> 7100 <left_val>-0.4716477096080780</left_val> 7101 <right_val>0.1478340029716492</right_val></_></_> 7102 <_> 7103 <!-- tree 18 --> 7104 <_> 7105 <!-- root node --> 7106 <feature> 7107 <rects> 7108 <_> 7109 19 17 1 2 -1.</_> 7110 <_> 7111 19 17 1 1 2.</_></rects> 7112 <tilted>1</tilted></feature> 7113 <threshold>-6.5065571106970310e-05</threshold> 7114 <left_node>1</left_node> 7115 <right_val>-0.2988634109497070</right_val></_> 7116 <_> 7117 <!-- node 1 --> 7118 <feature> 7119 <rects> 7120 <_> 7121 17 16 2 2 -1.</_> 7122 <_> 7123 17 16 2 1 2.</_></rects> 7124 <tilted>1</tilted></feature> 7125 <threshold>-5.5082160979509354e-03</threshold> 7126 <left_val>-0.4850896000862122</left_val> 7127 <right_val>0.2001491039991379</right_val></_></_> 7128 <_> 7129 <!-- tree 19 --> 7130 <_> 7131 <!-- root node --> 7132 <feature> 7133 <rects> 7134 <_> 7135 10 2 7 6 -1.</_> 7136 <_> 7137 10 4 7 2 3.</_></rects> 7138 <tilted>0</tilted></feature> 7139 <threshold>0.0189427901059389</threshold> 7140 <left_node>1</left_node> 7141 <right_val>0.3102895021438599</right_val></_> 7142 <_> 7143 <!-- node 1 --> 7144 <feature> 7145 <rects> 7146 <_> 7147 2 0 13 4 -1.</_> 7148 <_> 7149 2 1 13 2 2.</_></rects> 7150 <tilted>0</tilted></feature> 7151 <threshold>6.9123771972954273e-03</threshold> 7152 <left_val>-0.2870123982429504</left_val> 7153 <right_val>0.2053406983613968</right_val></_></_> 7154 <_> 7155 <!-- tree 20 --> 7156 <_> 7157 <!-- root node --> 7158 <feature> 7159 <rects> 7160 <_> 7161 2 0 2 2 -1.</_> 7162 <_> 7163 2 0 1 2 2.</_></rects> 7164 <tilted>1</tilted></feature> 7165 <threshold>8.1696882843971252e-03</threshold> 7166 <left_node>1</left_node> 7167 <right_val>0.4581083059310913</right_val></_> 7168 <_> 7169 <!-- node 1 --> 7170 <feature> 7171 <rects> 7172 <_> 7173 0 3 6 8 -1.</_> 7174 <_> 7175 3 3 3 8 2.</_></rects> 7176 <tilted>0</tilted></feature> 7177 <threshold>0.0100697698071599</threshold> 7178 <left_val>-0.2417591959238052</left_val> 7179 <right_val>0.1759382039308548</right_val></_></_> 7180 <_> 7181 <!-- tree 21 --> 7182 <_> 7183 <!-- root node --> 7184 <feature> 7185 <rects> 7186 <_> 7187 3 0 1 3 -1.</_> 7188 <_> 7189 2 1 1 1 3.</_></rects> 7190 <tilted>1</tilted></feature> 7191 <threshold>2.1663580555468798e-03</threshold> 7192 <left_node>1</left_node> 7193 <right_val>-0.4987790882587433</right_val></_> 7194 <_> 7195 <!-- node 1 --> 7196 <feature> 7197 <rects> 7198 <_> 7199 8 0 6 9 -1.</_> 7200 <_> 7201 10 0 2 9 3.</_></rects> 7202 <tilted>0</tilted></feature> 7203 <threshold>0.0105057302862406</threshold> 7204 <left_val>0.1623128056526184</left_val> 7205 <right_val>-0.4298886954784393</right_val></_></_> 7206 <_> 7207 <!-- tree 22 --> 7208 <_> 7209 <!-- root node --> 7210 <feature> 7211 <rects> 7212 <_> 7213 17 9 3 2 -1.</_> 7214 <_> 7215 18 10 1 2 3.</_></rects> 7216 <tilted>1</tilted></feature> 7217 <threshold>5.7576788822188973e-04</threshold> 7218 <left_node>1</left_node> 7219 <right_val>-0.3101257085800171</right_val></_> 7220 <_> 7221 <!-- node 1 --> 7222 <feature> 7223 <rects> 7224 <_> 7225 16 8 4 6 -1.</_> 7226 <_> 7227 16 10 4 2 3.</_></rects> 7228 <tilted>0</tilted></feature> 7229 <threshold>-0.0306088998913765</threshold> 7230 <left_val>-0.7406430244445801</left_val> 7231 <right_val>0.1621717959642410</right_val></_></_> 7232 <_> 7233 <!-- tree 23 --> 7234 <_> 7235 <!-- root node --> 7236 <feature> 7237 <rects> 7238 <_> 7239 6 9 7 3 -1.</_> 7240 <_> 7241 6 10 7 1 3.</_></rects> 7242 <tilted>0</tilted></feature> 7243 <threshold>-0.0134306596592069</threshold> 7244 <left_val>0.4550563991069794</left_val> 7245 <right_node>1</right_node></_> 7246 <_> 7247 <!-- node 1 --> 7248 <feature> 7249 <rects> 7250 <_> 7251 2 10 3 4 -1.</_> 7252 <_> 7253 2 11 3 2 2.</_></rects> 7254 <tilted>0</tilted></feature> 7255 <threshold>1.1859040241688490e-03</threshold> 7256 <left_val>-0.2722725868225098</left_val> 7257 <right_val>0.2247501015663147</right_val></_></_> 7258 <_> 7259 <!-- tree 24 --> 7260 <_> 7261 <!-- root node --> 7262 <feature> 7263 <rects> 7264 <_> 7265 15 8 1 6 -1.</_> 7266 <_> 7267 15 8 1 3 2.</_></rects> 7268 <tilted>1</tilted></feature> 7269 <threshold>-4.9311347538605332e-04</threshold> 7270 <left_val>-0.3959831893444061</left_val> 7271 <right_node>1</right_node></_> 7272 <_> 7273 <!-- node 1 --> 7274 <feature> 7275 <rects> 7276 <_> 7277 19 3 1 12 -1.</_> 7278 <_> 7279 19 7 1 4 3.</_></rects> 7280 <tilted>0</tilted></feature> 7281 <threshold>-2.4509918875992298e-03</threshold> 7282 <left_val>0.2500421106815338</left_val> 7283 <right_val>-0.1614051014184952</right_val></_></_> 7284 <_> 7285 <!-- tree 25 --> 7286 <_> 7287 <!-- root node --> 7288 <feature> 7289 <rects> 7290 <_> 7291 2 0 5 2 -1.</_> 7292 <_> 7293 2 0 5 1 2.</_></rects> 7294 <tilted>1</tilted></feature> 7295 <threshold>0.0136419497430325</threshold> 7296 <left_node>1</left_node> 7297 <right_val>-0.6452549099922180</right_val></_> 7298 <_> 7299 <!-- node 1 --> 7300 <feature> 7301 <rects> 7302 <_> 7303 1 3 11 6 -1.</_> 7304 <_> 7305 1 5 11 2 3.</_></rects> 7306 <tilted>0</tilted></feature> 7307 <threshold>-0.0367333292961121</threshold> 7308 <left_val>0.3419705927371979</left_val> 7309 <right_val>-0.0659683272242546</right_val></_></_></trees> 7310 <stage_threshold>-1.8931059837341309</stage_threshold> 7311 <parent>15</parent> 7312 <next>-1</next></_> 7313 <_> 7314 <!-- stage 17 --> 7315 <trees> 7316 <_> 7317 <!-- tree 0 --> 7318 <_> 7319 <!-- root node --> 7320 <feature> 7321 <rects> 7322 <_> 7323 14 13 2 4 -1.</_> 7324 <_> 7325 14 13 1 2 2.</_> 7326 <_> 7327 15 15 1 2 2.</_></rects> 7328 <tilted>0</tilted></feature> 7329 <threshold>1.3613830087706447e-03</threshold> 7330 <left_val>-0.3438392877578735</left_val> 7331 <right_node>1</right_node></_> 7332 <_> 7333 <!-- node 1 --> 7334 <feature> 7335 <rects> 7336 <_> 7337 8 11 10 3 -1.</_> 7338 <_> 7339 13 11 5 3 2.</_></rects> 7340 <tilted>0</tilted></feature> 7341 <threshold>0.0122110601514578</threshold> 7342 <left_val>-0.4035860002040863</left_val> 7343 <right_val>0.5787363052368164</right_val></_></_> 7344 <_> 7345 <!-- tree 1 --> 7346 <_> 7347 <!-- root node --> 7348 <feature> 7349 <rects> 7350 <_> 7351 6 11 1 4 -1.</_> 7352 <_> 7353 6 13 1 2 2.</_></rects> 7354 <tilted>0</tilted></feature> 7355 <threshold>3.2929528970271349e-03</threshold> 7356 <left_val>-0.2216434925794601</left_val> 7357 <right_node>1</right_node></_> 7358 <_> 7359 <!-- node 1 --> 7360 <feature> 7361 <rects> 7362 <_> 7363 2 9 3 9 -1.</_> 7364 <_> 7365 3 12 1 3 9.</_></rects> 7366 <tilted>0</tilted></feature> 7367 <threshold>-0.0248319804668427</threshold> 7368 <left_val>0.5425691008567810</left_val> 7369 <right_val>-0.4758560061454773</right_val></_></_> 7370 <_> 7371 <!-- tree 2 --> 7372 <_> 7373 <!-- root node --> 7374 <feature> 7375 <rects> 7376 <_> 7377 4 0 15 9 -1.</_> 7378 <_> 7379 9 3 5 3 9.</_></rects> 7380 <tilted>0</tilted></feature> 7381 <threshold>-0.3408153057098389</threshold> 7382 <left_val>0.5343874096870422</left_val> 7383 <right_node>1</right_node></_> 7384 <_> 7385 <!-- node 1 --> 7386 <feature> 7387 <rects> 7388 <_> 7389 12 0 6 4 -1.</_> 7390 <_> 7391 12 0 6 2 2.</_></rects> 7392 <tilted>1</tilted></feature> 7393 <threshold>0.0609296411275864</threshold> 7394 <left_val>-0.2601535916328430</left_val> 7395 <right_val>0.3762655854225159</right_val></_></_> 7396 <_> 7397 <!-- tree 3 --> 7398 <_> 7399 <!-- root node --> 7400 <feature> 7401 <rects> 7402 <_> 7403 10 5 4 5 -1.</_> 7404 <_> 7405 12 5 2 5 2.</_></rects> 7406 <tilted>0</tilted></feature> 7407 <threshold>-1.4399300562217832e-03</threshold> 7408 <left_node>1</left_node> 7409 <right_val>-0.4163514971733093</right_val></_> 7410 <_> 7411 <!-- node 1 --> 7412 <feature> 7413 <rects> 7414 <_> 7415 1 7 18 12 -1.</_> 7416 <_> 7417 7 11 6 4 9.</_></rects> 7418 <tilted>0</tilted></feature> 7419 <threshold>-0.7571117877960205</threshold> 7420 <left_val>0.4776453971862793</left_val> 7421 <right_val>-0.1237422972917557</right_val></_></_> 7422 <_> 7423 <!-- tree 4 --> 7424 <_> 7425 <!-- root node --> 7426 <feature> 7427 <rects> 7428 <_> 7429 14 12 6 4 -1.</_> 7430 <_> 7431 16 12 2 4 3.</_></rects> 7432 <tilted>0</tilted></feature> 7433 <threshold>-5.9891431592404842e-03</threshold> 7434 <left_val>0.2184862047433853</left_val> 7435 <right_node>1</right_node></_> 7436 <_> 7437 <!-- node 1 --> 7438 <feature> 7439 <rects> 7440 <_> 7441 13 12 3 3 -1.</_> 7442 <_> 7443 14 12 1 3 3.</_></rects> 7444 <tilted>0</tilted></feature> 7445 <threshold>-8.9398561976850033e-04</threshold> 7446 <left_val>0.1772602945566177</left_val> 7447 <right_val>-0.5481501817703247</right_val></_></_> 7448 <_> 7449 <!-- tree 5 --> 7450 <_> 7451 <!-- root node --> 7452 <feature> 7453 <rects> 7454 <_> 7455 14 9 4 1 -1.</_> 7456 <_> 7457 15 10 2 1 2.</_></rects> 7458 <tilted>1</tilted></feature> 7459 <threshold>2.9013510793447495e-03</threshold> 7460 <left_node>1</left_node> 7461 <right_val>-0.5670918226242065</right_val></_> 7462 <_> 7463 <!-- node 1 --> 7464 <feature> 7465 <rects> 7466 <_> 7467 17 7 3 2 -1.</_> 7468 <_> 7469 18 8 1 2 3.</_></rects> 7470 <tilted>1</tilted></feature> 7471 <threshold>4.4361278414726257e-03</threshold> 7472 <left_val>0.1418378055095673</left_val> 7473 <right_val>-0.5878441929817200</right_val></_></_> 7474 <_> 7475 <!-- tree 6 --> 7476 <_> 7477 <!-- root node --> 7478 <feature> 7479 <rects> 7480 <_> 7481 19 3 1 2 -1.</_> 7482 <_> 7483 19 4 1 1 2.</_></rects> 7484 <tilted>0</tilted></feature> 7485 <threshold>-5.3319290600484237e-05</threshold> 7486 <left_node>1</left_node> 7487 <right_val>-0.3482188880443573</right_val></_> 7488 <_> 7489 <!-- node 1 --> 7490 <feature> 7491 <rects> 7492 <_> 7493 19 1 1 4 -1.</_> 7494 <_> 7495 19 2 1 2 2.</_></rects> 7496 <tilted>0</tilted></feature> 7497 <threshold>2.5481029879301786e-03</threshold> 7498 <left_val>0.1974532008171082</left_val> 7499 <right_val>-0.5597922205924988</right_val></_></_> 7500 <_> 7501 <!-- tree 7 --> 7502 <_> 7503 <!-- root node --> 7504 <feature> 7505 <rects> 7506 <_> 7507 3 2 12 8 -1.</_> 7508 <_> 7509 3 4 12 4 2.</_></rects> 7510 <tilted>0</tilted></feature> 7511 <threshold>0.0748829394578934</threshold> 7512 <left_node>1</left_node> 7513 <right_val>0.4664795100688934</right_val></_> 7514 <_> 7515 <!-- node 1 --> 7516 <feature> 7517 <rects> 7518 <_> 7519 1 0 16 6 -1.</_> 7520 <_> 7521 1 2 16 2 3.</_></rects> 7522 <tilted>0</tilted></feature> 7523 <threshold>0.0488163083791733</threshold> 7524 <left_val>-0.2257521003484726</left_val> 7525 <right_val>0.3232581913471222</right_val></_></_> 7526 <_> 7527 <!-- tree 8 --> 7528 <_> 7529 <!-- root node --> 7530 <feature> 7531 <rects> 7532 <_> 7533 16 8 3 1 -1.</_> 7534 <_> 7535 17 9 1 1 3.</_></rects> 7536 <tilted>1</tilted></feature> 7537 <threshold>-3.9128339849412441e-03</threshold> 7538 <left_val>-0.5977287292480469</left_val> 7539 <right_node>1</right_node></_> 7540 <_> 7541 <!-- node 1 --> 7542 <feature> 7543 <rects> 7544 <_> 7545 7 13 6 3 -1.</_> 7546 <_> 7547 9 14 2 1 9.</_></rects> 7548 <tilted>0</tilted></feature> 7549 <threshold>-0.0138206295669079</threshold> 7550 <left_val>0.2603121101856232</left_val> 7551 <right_val>-0.2021141052246094</right_val></_></_> 7552 <_> 7553 <!-- tree 9 --> 7554 <_> 7555 <!-- root node --> 7556 <feature> 7557 <rects> 7558 <_> 7559 11 18 6 2 -1.</_> 7560 <_> 7561 11 19 6 1 2.</_></rects> 7562 <tilted>0</tilted></feature> 7563 <threshold>9.4047200400382280e-04</threshold> 7564 <left_val>-0.3400524854660034</left_val> 7565 <right_node>1</right_node></_> 7566 <_> 7567 <!-- node 1 --> 7568 <feature> 7569 <rects> 7570 <_> 7571 15 17 5 3 -1.</_> 7572 <_> 7573 15 18 5 1 3.</_></rects> 7574 <tilted>0</tilted></feature> 7575 <threshold>-4.6419431455433369e-03</threshold> 7576 <left_val>-0.4518780112266541</left_val> 7577 <right_val>0.2105485945940018</right_val></_></_> 7578 <_> 7579 <!-- tree 10 --> 7580 <_> 7581 <!-- root node --> 7582 <feature> 7583 <rects> 7584 <_> 7585 2 1 18 4 -1.</_> 7586 <_> 7587 8 1 6 4 3.</_></rects> 7588 <tilted>0</tilted></feature> 7589 <threshold>-0.0319609418511391</threshold> 7590 <left_node>1</left_node> 7591 <right_val>-0.2082601934671402</right_val></_> 7592 <_> 7593 <!-- node 1 --> 7594 <feature> 7595 <rects> 7596 <_> 7597 5 0 1 2 -1.</_> 7598 <_> 7599 5 1 1 1 2.</_></rects> 7600 <tilted>0</tilted></feature> 7601 <threshold>-1.2651160068344325e-04</threshold> 7602 <left_val>0.3855319023132324</left_val> 7603 <right_val>-0.2311642020940781</right_val></_></_> 7604 <_> 7605 <!-- tree 11 --> 7606 <_> 7607 <!-- root node --> 7608 <feature> 7609 <rects> 7610 <_> 7611 1 11 6 6 -1.</_> 7612 <_> 7613 3 13 2 2 9.</_></rects> 7614 <tilted>0</tilted></feature> 7615 <threshold>-0.0504137091338634</threshold> 7616 <left_val>0.2284615933895111</left_val> 7617 <right_node>1</right_node></_> 7618 <_> 7619 <!-- node 1 --> 7620 <feature> 7621 <rects> 7622 <_> 7623 3 12 4 2 -1.</_> 7624 <_> 7625 3 12 2 1 2.</_> 7626 <_> 7627 5 13 2 1 2.</_></rects> 7628 <tilted>0</tilted></feature> 7629 <threshold>-2.0950778853148222e-03</threshold> 7630 <left_val>0.3263955116271973</left_val> 7631 <right_val>-0.3438543081283569</right_val></_></_> 7632 <_> 7633 <!-- tree 12 --> 7634 <_> 7635 <!-- root node --> 7636 <feature> 7637 <rects> 7638 <_> 7639 3 0 3 3 -1.</_> 7640 <_> 7641 2 1 3 1 3.</_></rects> 7642 <tilted>1</tilted></feature> 7643 <threshold>-0.0110178804025054</threshold> 7644 <left_val>-0.7738878130912781</left_val> 7645 <right_node>1</right_node></_> 7646 <_> 7647 <!-- node 1 --> 7648 <feature> 7649 <rects> 7650 <_> 7651 8 10 3 3 -1.</_> 7652 <_> 7653 9 11 1 1 9.</_></rects> 7654 <tilted>0</tilted></feature> 7655 <threshold>-9.7415763884782791e-03</threshold> 7656 <left_val>0.3673199117183685</left_val> 7657 <right_val>-0.0657460018992424</right_val></_></_> 7658 <_> 7659 <!-- tree 13 --> 7660 <_> 7661 <!-- root node --> 7662 <feature> 7663 <rects> 7664 <_> 7665 0 16 2 2 -1.</_> 7666 <_> 7667 0 17 2 1 2.</_></rects> 7668 <tilted>0</tilted></feature> 7669 <threshold>5.3386680519906804e-05</threshold> 7670 <left_val>-0.3557175099849701</left_val> 7671 <right_node>1</right_node></_> 7672 <_> 7673 <!-- node 1 --> 7674 <feature> 7675 <rects> 7676 <_> 7677 0 16 4 3 -1.</_> 7678 <_> 7679 0 17 4 1 3.</_></rects> 7680 <tilted>0</tilted></feature> 7681 <threshold>5.9820311143994331e-03</threshold> 7682 <left_val>0.1765311956405640</left_val> 7683 <right_val>-0.4611007869243622</right_val></_></_> 7684 <_> 7685 <!-- tree 14 --> 7686 <_> 7687 <!-- root node --> 7688 <feature> 7689 <rects> 7690 <_> 7691 0 13 12 1 -1.</_> 7692 <_> 7693 6 13 6 1 2.</_></rects> 7694 <tilted>0</tilted></feature> 7695 <threshold>-1.9558269996196032e-03</threshold> 7696 <left_node>1</left_node> 7697 <right_val>-0.3617269098758698</right_val></_> 7698 <_> 7699 <!-- node 1 --> 7700 <feature> 7701 <rects> 7702 <_> 7703 13 2 6 9 -1.</_> 7704 <_> 7705 15 2 2 9 3.</_></rects> 7706 <tilted>0</tilted></feature> 7707 <threshold>7.6739699579775333e-03</threshold> 7708 <left_val>0.1803857982158661</left_val> 7709 <right_val>-0.4045203030109406</right_val></_></_> 7710 <_> 7711 <!-- tree 15 --> 7712 <_> 7713 <!-- root node --> 7714 <feature> 7715 <rects> 7716 <_> 7717 8 11 3 3 -1.</_> 7718 <_> 7719 9 11 1 3 3.</_></rects> 7720 <tilted>0</tilted></feature> 7721 <threshold>4.2935381643474102e-03</threshold> 7722 <left_node>1</left_node> 7723 <right_val>0.5208635926246643</right_val></_> 7724 <_> 7725 <!-- node 1 --> 7726 <feature> 7727 <rects> 7728 <_> 7729 9 11 3 4 -1.</_> 7730 <_> 7731 10 11 1 4 3.</_></rects> 7732 <tilted>0</tilted></feature> 7733 <threshold>1.4181300066411495e-03</threshold> 7734 <left_val>-0.2208580970764160</left_val> 7735 <right_val>0.2735756039619446</right_val></_></_> 7736 <_> 7737 <!-- tree 16 --> 7738 <_> 7739 <!-- root node --> 7740 <feature> 7741 <rects> 7742 <_> 7743 13 0 6 10 -1.</_> 7744 <_> 7745 15 0 2 10 3.</_></rects> 7746 <tilted>0</tilted></feature> 7747 <threshold>-0.0282630994915962</threshold> 7748 <left_val>-0.6383373141288757</left_val> 7749 <right_node>1</right_node></_> 7750 <_> 7751 <!-- node 1 --> 7752 <feature> 7753 <rects> 7754 <_> 7755 4 10 1 4 -1.</_> 7756 <_> 7757 3 11 1 2 2.</_></rects> 7758 <tilted>1</tilted></feature> 7759 <threshold>6.3434068579226732e-04</threshold> 7760 <left_val>0.1563638001680374</left_val> 7761 <right_val>-0.3214890062808990</right_val></_></_> 7762 <_> 7763 <!-- tree 17 --> 7764 <_> 7765 <!-- root node --> 7766 <feature> 7767 <rects> 7768 <_> 7769 9 11 3 3 -1.</_> 7770 <_> 7771 10 12 1 1 9.</_></rects> 7772 <tilted>0</tilted></feature> 7773 <threshold>-7.2387307882308960e-03</threshold> 7774 <left_val>0.2312625944614410</left_val> 7775 <right_node>1</right_node></_> 7776 <_> 7777 <!-- node 1 --> 7778 <feature> 7779 <rects> 7780 <_> 7781 6 12 3 3 -1.</_> 7782 <_> 7783 5 13 3 1 3.</_></rects> 7784 <tilted>1</tilted></feature> 7785 <threshold>-9.9928081035614014e-03</threshold> 7786 <left_val>0.3039731979370117</left_val> 7787 <right_val>-0.2447843998670578</right_val></_></_> 7788 <_> 7789 <!-- tree 18 --> 7790 <_> 7791 <!-- root node --> 7792 <feature> 7793 <rects> 7794 <_> 7795 17 6 2 1 -1.</_> 7796 <_> 7797 18 6 1 1 2.</_></rects> 7798 <tilted>0</tilted></feature> 7799 <threshold>6.4995248976629227e-05</threshold> 7800 <left_node>1</left_node> 7801 <right_val>0.1513298004865646</right_val></_> 7802 <_> 7803 <!-- node 1 --> 7804 <feature> 7805 <rects> 7806 <_> 7807 16 2 1 4 -1.</_> 7808 <_> 7809 16 2 1 2 2.</_></rects> 7810 <tilted>1</tilted></feature> 7811 <threshold>-5.3049270063638687e-03</threshold> 7812 <left_val>0.2041787058115005</left_val> 7813 <right_val>-0.4626043140888214</right_val></_></_> 7814 <_> 7815 <!-- tree 19 --> 7816 <_> 7817 <!-- root node --> 7818 <feature> 7819 <rects> 7820 <_> 7821 2 5 13 4 -1.</_> 7822 <_> 7823 2 6 13 2 2.</_></rects> 7824 <tilted>0</tilted></feature> 7825 <threshold>-0.0166130997240543</threshold> 7826 <left_val>0.3339976966381073</left_val> 7827 <right_node>1</right_node></_> 7828 <_> 7829 <!-- node 1 --> 7830 <feature> 7831 <rects> 7832 <_> 7833 14 4 6 2 -1.</_> 7834 <_> 7835 14 4 6 1 2.</_></rects> 7836 <tilted>1</tilted></feature> 7837 <threshold>-0.0116302901878953</threshold> 7838 <left_val>0.3705343008041382</left_val> 7839 <right_val>-0.1936154961585999</right_val></_></_> 7840 <_> 7841 <!-- tree 20 --> 7842 <_> 7843 <!-- root node --> 7844 <feature> 7845 <rects> 7846 <_> 7847 3 8 1 3 -1.</_> 7848 <_> 7849 2 9 1 1 3.</_></rects> 7850 <tilted>1</tilted></feature> 7851 <threshold>1.9068180117756128e-03</threshold> 7852 <left_node>1</left_node> 7853 <right_val>-0.3810505867004395</right_val></_> 7854 <_> 7855 <!-- node 1 --> 7856 <feature> 7857 <rects> 7858 <_> 7859 7 7 8 3 -1.</_> 7860 <_> 7861 7 8 8 1 3.</_></rects> 7862 <tilted>0</tilted></feature> 7863 <threshold>-5.6926468387246132e-03</threshold> 7864 <left_val>0.5064520835876465</left_val> 7865 <right_val>6.5170922316610813e-03</right_val></_></_> 7866 <_> 7867 <!-- tree 21 --> 7868 <_> 7869 <!-- root node --> 7870 <feature> 7871 <rects> 7872 <_> 7873 8 8 4 3 -1.</_> 7874 <_> 7875 10 8 2 3 2.</_></rects> 7876 <tilted>0</tilted></feature> 7877 <threshold>-2.2453670680988580e-04</threshold> 7878 <left_node>1</left_node> 7879 <right_val>-0.3152601122856140</right_val></_> 7880 <_> 7881 <!-- node 1 --> 7882 <feature> 7883 <rects> 7884 <_> 7885 10 11 3 8 -1.</_> 7886 <_> 7887 10 15 3 4 2.</_></rects> 7888 <tilted>0</tilted></feature> 7889 <threshold>9.5565039664506912e-03</threshold> 7890 <left_val>-0.5303559899330139</left_val> 7891 <right_val>0.2053276002407074</right_val></_></_> 7892 <_> 7893 <!-- tree 22 --> 7894 <_> 7895 <!-- root node --> 7896 <feature> 7897 <rects> 7898 <_> 7899 13 15 2 3 -1.</_> 7900 <_> 7901 12 16 2 1 3.</_></rects> 7902 <tilted>1</tilted></feature> 7903 <threshold>3.1540619675070047e-03</threshold> 7904 <left_node>1</left_node> 7905 <right_val>-0.4592832922935486</right_val></_> 7906 <_> 7907 <!-- node 1 --> 7908 <feature> 7909 <rects> 7910 <_> 7911 0 0 12 20 -1.</_> 7912 <_> 7913 6 0 6 20 2.</_></rects> 7914 <tilted>0</tilted></feature> 7915 <threshold>-0.3068132996559143</threshold> 7916 <left_val>0.5071771740913391</left_val> 7917 <right_val>-0.0144392503425479</right_val></_></_> 7918 <_> 7919 <!-- tree 23 --> 7920 <_> 7921 <!-- root node --> 7922 <feature> 7923 <rects> 7924 <_> 7925 0 0 10 1 -1.</_> 7926 <_> 7927 5 0 5 1 2.</_></rects> 7928 <tilted>0</tilted></feature> 7929 <threshold>2.8239809907972813e-03</threshold> 7930 <left_val>-0.1543793976306915</left_val> 7931 <right_node>1</right_node></_> 7932 <_> 7933 <!-- node 1 --> 7934 <feature> 7935 <rects> 7936 <_> 7937 0 0 6 3 -1.</_> 7938 <_> 7939 0 1 6 1 3.</_></rects> 7940 <tilted>0</tilted></feature> 7941 <threshold>-3.3063529990613461e-03</threshold> 7942 <left_val>-0.4357138872146606</left_val> 7943 <right_val>0.3934271931648254</right_val></_></_> 7944 <_> 7945 <!-- tree 24 --> 7946 <_> 7947 <!-- root node --> 7948 <feature> 7949 <rects> 7950 <_> 7951 14 13 2 2 -1.</_> 7952 <_> 7953 14 13 1 1 2.</_> 7954 <_> 7955 15 14 1 1 2.</_></rects> 7956 <tilted>0</tilted></feature> 7957 <threshold>3.7848789361305535e-04</threshold> 7958 <left_node>1</left_node> 7959 <right_val>0.2521260082721710</right_val></_> 7960 <_> 7961 <!-- node 1 --> 7962 <feature> 7963 <rects> 7964 <_> 7965 12 10 4 2 -1.</_> 7966 <_> 7967 12 10 2 1 2.</_> 7968 <_> 7969 14 11 2 1 2.</_></rects> 7970 <tilted>0</tilted></feature> 7971 <threshold>-3.0488630291074514e-03</threshold> 7972 <left_val>0.4666233956813812</left_val> 7973 <right_val>-0.2279223054647446</right_val></_></_> 7974 <_> 7975 <!-- tree 25 --> 7976 <_> 7977 <!-- root node --> 7978 <feature> 7979 <rects> 7980 <_> 7981 7 0 6 4 -1.</_> 7982 <_> 7983 9 0 2 4 3.</_></rects> 7984 <tilted>0</tilted></feature> 7985 <threshold>-0.0147243803367019</threshold> 7986 <left_val>-0.7860211133956909</left_val> 7987 <right_node>1</right_node></_> 7988 <_> 7989 <!-- node 1 --> 7990 <feature> 7991 <rects> 7992 <_> 7993 0 0 10 10 -1.</_> 7994 <_> 7995 0 0 5 5 2.</_> 7996 <_> 7997 5 5 5 5 2.</_></rects> 7998 <tilted>0</tilted></feature> 7999 <threshold>0.0360623002052307</threshold> 8000 <left_val>-0.0685713216662407</left_val> 8001 <right_val>0.3669883906841278</right_val></_></_> 8002 <_> 8003 <!-- tree 26 --> 8004 <_> 8005 <!-- root node --> 8006 <feature> 8007 <rects> 8008 <_> 8009 6 3 4 2 -1.</_> 8010 <_> 8011 7 3 2 2 2.</_></rects> 8012 <tilted>0</tilted></feature> 8013 <threshold>-2.2327410988509655e-03</threshold> 8014 <left_val>-0.5974019765853882</left_val> 8015 <right_node>1</right_node></_> 8016 <_> 8017 <!-- node 1 --> 8018 <feature> 8019 <rects> 8020 <_> 8021 1 5 4 11 -1.</_> 8022 <_> 8023 2 5 2 11 2.</_></rects> 8024 <tilted>0</tilted></feature> 8025 <threshold>-7.8541820403188467e-04</threshold> 8026 <left_val>0.2027346938848495</left_val> 8027 <right_val>-0.1722168028354645</right_val></_></_> 8028 <_> 8029 <!-- tree 27 --> 8030 <_> 8031 <!-- root node --> 8032 <feature> 8033 <rects> 8034 <_> 8035 12 8 3 1 -1.</_> 8036 <_> 8037 13 8 1 1 3.</_></rects> 8038 <tilted>0</tilted></feature> 8039 <threshold>7.8553898492828012e-04</threshold> 8040 <left_node>1</left_node> 8041 <right_val>-0.4340744912624359</right_val></_> 8042 <_> 8043 <!-- node 1 --> 8044 <feature> 8045 <rects> 8046 <_> 8047 2 2 6 2 -1.</_> 8048 <_> 8049 2 2 6 1 2.</_></rects> 8050 <tilted>1</tilted></feature> 8051 <threshold>0.0100781098008156</threshold> 8052 <left_val>0.1246414035558701</left_val> 8053 <right_val>-0.4839141964912415</right_val></_></_> 8054 <_> 8055 <!-- tree 28 --> 8056 <_> 8057 <!-- root node --> 8058 <feature> 8059 <rects> 8060 <_> 8061 13 5 7 3 -1.</_> 8062 <_> 8063 12 6 7 1 3.</_></rects> 8064 <tilted>1</tilted></feature> 8065 <threshold>0.0209287907928228</threshold> 8066 <left_node>1</left_node> 8067 <right_val>0.5686420798301697</right_val></_> 8068 <_> 8069 <!-- node 1 --> 8070 <feature> 8071 <rects> 8072 <_> 8073 13 7 3 4 -1.</_> 8074 <_> 8075 14 7 1 4 3.</_></rects> 8076 <tilted>0</tilted></feature> 8077 <threshold>1.3340089935809374e-03</threshold> 8078 <left_val>0.0145246395841241</left_val> 8079 <right_val>-0.4600321054458618</right_val></_></_></trees> 8080 <stage_threshold>-1.9677840471267700</stage_threshold> 8081 <parent>16</parent> 8082 <next>-1</next></_> 8083 <_> 8084 <!-- stage 18 --> 8085 <trees> 8086 <_> 8087 <!-- tree 0 --> 8088 <_> 8089 <!-- root node --> 8090 <feature> 8091 <rects> 8092 <_> 8093 8 12 3 2 -1.</_> 8094 <_> 8095 8 12 3 1 2.</_></rects> 8096 <tilted>1</tilted></feature> 8097 <threshold>-0.0153139596804976</threshold> 8098 <left_node>1</left_node> 8099 <right_val>-0.3434768915176392</right_val></_> 8100 <_> 8101 <!-- node 1 --> 8102 <feature> 8103 <rects> 8104 <_> 8105 0 10 4 8 -1.</_> 8106 <_> 8107 0 12 4 4 2.</_></rects> 8108 <tilted>0</tilted></feature> 8109 <threshold>-0.0142658604308963</threshold> 8110 <left_val>0.5820953249931335</left_val> 8111 <right_val>-0.3552739918231964</right_val></_></_> 8112 <_> 8113 <!-- tree 1 --> 8114 <_> 8115 <!-- root node --> 8116 <feature> 8117 <rects> 8118 <_> 8119 14 13 2 6 -1.</_> 8120 <_> 8121 14 13 1 3 2.</_> 8122 <_> 8123 15 16 1 3 2.</_></rects> 8124 <tilted>0</tilted></feature> 8125 <threshold>1.2652979930862784e-03</threshold> 8126 <left_val>-0.3149831891059875</left_val> 8127 <right_node>1</right_node></_> 8128 <_> 8129 <!-- node 1 --> 8130 <feature> 8131 <rects> 8132 <_> 8133 16 17 1 2 -1.</_> 8134 <_> 8135 16 17 1 1 2.</_></rects> 8136 <tilted>1</tilted></feature> 8137 <threshold>-7.3807648732326925e-05</threshold> 8138 <left_val>0.4724959135055542</left_val> 8139 <right_val>-0.2638080120086670</right_val></_></_> 8140 <_> 8141 <!-- tree 2 --> 8142 <_> 8143 <!-- root node --> 8144 <feature> 8145 <rects> 8146 <_> 8147 12 0 3 6 -1.</_> 8148 <_> 8149 10 2 3 2 3.</_></rects> 8150 <tilted>1</tilted></feature> 8151 <threshold>-0.0385270304977894</threshold> 8152 <left_val>0.4155685007572174</left_val> 8153 <right_node>1</right_node></_> 8154 <_> 8155 <!-- node 1 --> 8156 <feature> 8157 <rects> 8158 <_> 8159 4 10 14 3 -1.</_> 8160 <_> 8161 4 11 14 1 3.</_></rects> 8162 <tilted>0</tilted></feature> 8163 <threshold>-0.0147587703540921</threshold> 8164 <left_val>0.1567724943161011</left_val> 8165 <right_val>-0.3765023946762085</right_val></_></_> 8166 <_> 8167 <!-- tree 3 --> 8168 <_> 8169 <!-- root node --> 8170 <feature> 8171 <rects> 8172 <_> 8173 19 4 1 12 -1.</_> 8174 <_> 8175 19 8 1 4 3.</_></rects> 8176 <tilted>0</tilted></feature> 8177 <threshold>-1.5448270132765174e-03</threshold> 8178 <left_node>1</left_node> 8179 <right_val>-0.3593201935291290</right_val></_> 8180 <_> 8181 <!-- node 1 --> 8182 <feature> 8183 <rects> 8184 <_> 8185 19 2 1 6 -1.</_> 8186 <_> 8187 19 4 1 2 3.</_></rects> 8188 <tilted>0</tilted></feature> 8189 <threshold>6.4564580097794533e-03</threshold> 8190 <left_val>0.2127663940191269</left_val> 8191 <right_val>-0.7228717803955078</right_val></_></_> 8192 <_> 8193 <!-- tree 4 --> 8194 <_> 8195 <!-- root node --> 8196 <feature> 8197 <rects> 8198 <_> 8199 8 12 12 3 -1.</_> 8200 <_> 8201 14 12 6 3 2.</_></rects> 8202 <tilted>0</tilted></feature> 8203 <threshold>0.0102673498913646</threshold> 8204 <left_val>-0.4604580998420715</left_val> 8205 <right_node>1</right_node></_> 8206 <_> 8207 <!-- node 1 --> 8208 <feature> 8209 <rects> 8210 <_> 8211 0 13 2 3 -1.</_> 8212 <_> 8213 1 13 1 3 2.</_></rects> 8214 <tilted>0</tilted></feature> 8215 <threshold>-8.6422899039462209e-04</threshold> 8216 <left_val>0.2492025941610336</left_val> 8217 <right_val>-0.2672136127948761</right_val></_></_> 8218 <_> 8219 <!-- tree 5 --> 8220 <_> 8221 <!-- root node --> 8222 <feature> 8223 <rects> 8224 <_> 8225 16 0 4 9 -1.</_> 8226 <_> 8227 18 0 2 9 2.</_></rects> 8228 <tilted>0</tilted></feature> 8229 <threshold>3.2311889808624983e-03</threshold> 8230 <left_val>-0.4093919992446899</left_val> 8231 <right_node>1</right_node></_> 8232 <_> 8233 <!-- node 1 --> 8234 <feature> 8235 <rects> 8236 <_> 8237 9 2 6 4 -1.</_> 8238 <_> 8239 9 4 6 2 2.</_></rects> 8240 <tilted>0</tilted></feature> 8241 <threshold>0.0136765297502279</threshold> 8242 <left_val>-0.0273916907608509</left_val> 8243 <right_val>0.4525907039642334</right_val></_></_> 8244 <_> 8245 <!-- tree 6 --> 8246 <_> 8247 <!-- root node --> 8248 <feature> 8249 <rects> 8250 <_> 8251 16 2 3 1 -1.</_> 8252 <_> 8253 17 3 1 1 3.</_></rects> 8254 <tilted>1</tilted></feature> 8255 <threshold>3.2787120435386896e-03</threshold> 8256 <left_node>1</left_node> 8257 <right_val>-0.7002565264701843</right_val></_> 8258 <_> 8259 <!-- node 1 --> 8260 <feature> 8261 <rects> 8262 <_> 8263 15 12 3 6 -1.</_> 8264 <_> 8265 16 12 1 6 3.</_></rects> 8266 <tilted>0</tilted></feature> 8267 <threshold>-1.4256529975682497e-03</threshold> 8268 <left_val>0.2578780055046082</left_val> 8269 <right_val>-0.1509343981742859</right_val></_></_> 8270 <_> 8271 <!-- tree 7 --> 8272 <_> 8273 <!-- root node --> 8274 <feature> 8275 <rects> 8276 <_> 8277 13 12 3 3 -1.</_> 8278 <_> 8279 14 12 1 3 3.</_></rects> 8280 <tilted>0</tilted></feature> 8281 <threshold>-2.2095029707998037e-03</threshold> 8282 <left_val>0.3514811098575592</left_val> 8283 <right_node>1</right_node></_> 8284 <_> 8285 <!-- node 1 --> 8286 <feature> 8287 <rects> 8288 <_> 8289 3 3 15 4 -1.</_> 8290 <_> 8291 3 5 15 2 2.</_></rects> 8292 <tilted>0</tilted></feature> 8293 <threshold>-0.0877013728022575</threshold> 8294 <left_val>0.4197874069213867</left_val> 8295 <right_val>-0.2360018044710159</right_val></_></_> 8296 <_> 8297 <!-- tree 8 --> 8298 <_> 8299 <!-- root node --> 8300 <feature> 8301 <rects> 8302 <_> 8303 11 11 3 4 -1.</_> 8304 <_> 8305 12 11 1 4 3.</_></rects> 8306 <tilted>0</tilted></feature> 8307 <threshold>-2.8805620968341827e-03</threshold> 8308 <left_val>0.3047986924648285</left_val> 8309 <right_node>1</right_node></_> 8310 <_> 8311 <!-- node 1 --> 8312 <feature> 8313 <rects> 8314 <_> 8315 10 11 3 3 -1.</_> 8316 <_> 8317 11 11 1 3 3.</_></rects> 8318 <tilted>0</tilted></feature> 8319 <threshold>-2.5028509553521872e-03</threshold> 8320 <left_val>0.1331669986248016</left_val> 8321 <right_val>-0.3169130086898804</right_val></_></_> 8322 <_> 8323 <!-- tree 9 --> 8324 <_> 8325 <!-- root node --> 8326 <feature> 8327 <rects> 8328 <_> 8329 19 0 1 4 -1.</_> 8330 <_> 8331 19 2 1 2 2.</_></rects> 8332 <tilted>0</tilted></feature> 8333 <threshold>-5.1710562547668815e-04</threshold> 8334 <left_node>1</left_node> 8335 <right_val>-0.3519909083843231</right_val></_> 8336 <_> 8337 <!-- node 1 --> 8338 <feature> 8339 <rects> 8340 <_> 8341 14 0 3 3 -1.</_> 8342 <_> 8343 15 1 1 3 3.</_></rects> 8344 <tilted>1</tilted></feature> 8345 <threshold>6.7088729701936245e-03</threshold> 8346 <left_val>0.2016315013170242</left_val> 8347 <right_val>-0.6094800829887390</right_val></_></_> 8348 <_> 8349 <!-- tree 10 --> 8350 <_> 8351 <!-- root node --> 8352 <feature> 8353 <rects> 8354 <_> 8355 2 10 8 2 -1.</_> 8356 <_> 8357 2 10 4 2 2.</_></rects> 8358 <tilted>1</tilted></feature> 8359 <threshold>-0.0760587528347969</threshold> 8360 <left_val>-0.6369420886039734</left_val> 8361 <right_node>1</right_node></_> 8362 <_> 8363 <!-- node 1 --> 8364 <feature> 8365 <rects> 8366 <_> 8367 9 18 4 2 -1.</_> 8368 <_> 8369 10 18 2 2 2.</_></rects> 8370 <tilted>0</tilted></feature> 8371 <threshold>-3.0889140907675028e-03</threshold> 8372 <left_val>-0.7902534008026123</left_val> 8373 <right_val>0.1036607995629311</right_val></_></_> 8374 <_> 8375 <!-- tree 11 --> 8376 <_> 8377 <!-- root node --> 8378 <feature> 8379 <rects> 8380 <_> 8381 10 0 4 9 -1.</_> 8382 <_> 8383 11 0 2 9 2.</_></rects> 8384 <tilted>0</tilted></feature> 8385 <threshold>2.5740528944879770e-03</threshold> 8386 <left_node>1</left_node> 8387 <right_val>-0.4542419910430908</right_val></_> 8388 <_> 8389 <!-- node 1 --> 8390 <feature> 8391 <rects> 8392 <_> 8393 15 10 5 6 -1.</_> 8394 <_> 8395 15 12 5 2 3.</_></rects> 8396 <tilted>0</tilted></feature> 8397 <threshold>-5.4877097718417645e-03</threshold> 8398 <left_val>0.2148129940032959</left_val> 8399 <right_val>-0.1932951062917709</right_val></_></_> 8400 <_> 8401 <!-- tree 12 --> 8402 <_> 8403 <!-- root node --> 8404 <feature> 8405 <rects> 8406 <_> 8407 2 13 4 2 -1.</_> 8408 <_> 8409 3 13 2 2 2.</_></rects> 8410 <tilted>0</tilted></feature> 8411 <threshold>-1.2507289648056030e-03</threshold> 8412 <left_node>1</left_node> 8413 <right_val>-0.2165144979953766</right_val></_> 8414 <_> 8415 <!-- node 1 --> 8416 <feature> 8417 <rects> 8418 <_> 8419 2 15 4 1 -1.</_> 8420 <_> 8421 3 16 2 1 2.</_></rects> 8422 <tilted>1</tilted></feature> 8423 <threshold>-4.3231048621237278e-03</threshold> 8424 <left_val>-0.6279907822608948</left_val> 8425 <right_val>0.2427074015140533</right_val></_></_> 8426 <_> 8427 <!-- tree 13 --> 8428 <_> 8429 <!-- root node --> 8430 <feature> 8431 <rects> 8432 <_> 8433 15 8 3 2 -1.</_> 8434 <_> 8435 16 9 1 2 3.</_></rects> 8436 <tilted>1</tilted></feature> 8437 <threshold>4.3724630959331989e-03</threshold> 8438 <left_node>1</left_node> 8439 <right_val>-0.5188937783241272</right_val></_> 8440 <_> 8441 <!-- node 1 --> 8442 <feature> 8443 <rects> 8444 <_> 8445 0 6 4 2 -1.</_> 8446 <_> 8447 2 6 2 2 2.</_></rects> 8448 <tilted>0</tilted></feature> 8449 <threshold>7.4632692849263549e-04</threshold> 8450 <left_val>-0.1137868016958237</left_val> 8451 <right_val>0.2822437882423401</right_val></_></_> 8452 <_> 8453 <!-- tree 14 --> 8454 <_> 8455 <!-- root node --> 8456 <feature> 8457 <rects> 8458 <_> 8459 9 17 6 1 -1.</_> 8460 <_> 8461 12 17 3 1 2.</_></rects> 8462 <tilted>0</tilted></feature> 8463 <threshold>-1.3375070411711931e-03</threshold> 8464 <left_val>0.2458911985158920</left_val> 8465 <right_node>1</right_node></_> 8466 <_> 8467 <!-- node 1 --> 8468 <feature> 8469 <rects> 8470 <_> 8471 14 19 6 1 -1.</_> 8472 <_> 8473 17 19 3 1 2.</_></rects> 8474 <tilted>0</tilted></feature> 8475 <threshold>-2.9367550741881132e-03</threshold> 8476 <left_val>0.2433581948280334</left_val> 8477 <right_val>-0.2911281883716583</right_val></_></_> 8478 <_> 8479 <!-- tree 15 --> 8480 <_> 8481 <!-- root node --> 8482 <feature> 8483 <rects> 8484 <_> 8485 17 18 1 2 -1.</_> 8486 <_> 8487 17 19 1 1 2.</_></rects> 8488 <tilted>0</tilted></feature> 8489 <threshold>6.3193867390509695e-05</threshold> 8490 <left_val>-0.2580659091472626</left_val> 8491 <right_node>1</right_node></_> 8492 <_> 8493 <!-- node 1 --> 8494 <feature> 8495 <rects> 8496 <_> 8497 17 16 2 2 -1.</_> 8498 <_> 8499 17 16 2 1 2.</_></rects> 8500 <tilted>1</tilted></feature> 8501 <threshold>-5.1338938064873219e-03</threshold> 8502 <left_val>-0.4611040949821472</left_val> 8503 <right_val>0.2433398067951202</right_val></_></_> 8504 <_> 8505 <!-- tree 16 --> 8506 <_> 8507 <!-- root node --> 8508 <feature> 8509 <rects> 8510 <_> 8511 19 3 1 9 -1.</_> 8512 <_> 8513 19 6 1 3 3.</_></rects> 8514 <tilted>0</tilted></feature> 8515 <threshold>4.9400608986616135e-03</threshold> 8516 <left_node>1</left_node> 8517 <right_val>-0.3963299095630646</right_val></_> 8518 <_> 8519 <!-- node 1 --> 8520 <feature> 8521 <rects> 8522 <_> 8523 10 10 3 3 -1.</_> 8524 <_> 8525 9 11 3 1 3.</_></rects> 8526 <tilted>1</tilted></feature> 8527 <threshold>-5.6112580932676792e-03</threshold> 8528 <left_val>0.2450238019227982</left_val> 8529 <right_val>-0.1563901007175446</right_val></_></_> 8530 <_> 8531 <!-- tree 17 --> 8532 <_> 8533 <!-- root node --> 8534 <feature> 8535 <rects> 8536 <_> 8537 3 0 3 3 -1.</_> 8538 <_> 8539 2 1 3 1 3.</_></rects> 8540 <tilted>1</tilted></feature> 8541 <threshold>4.2950599454343319e-03</threshold> 8542 <left_node>1</left_node> 8543 <right_val>-0.4767167866230011</right_val></_> 8544 <_> 8545 <!-- node 1 --> 8546 <feature> 8547 <rects> 8548 <_> 8549 17 16 2 2 -1.</_> 8550 <_> 8551 17 16 2 1 2.</_></rects> 8552 <tilted>1</tilted></feature> 8553 <threshold>4.5142881572246552e-03</threshold> 8554 <left_val>0.1069843024015427</left_val> 8555 <right_val>-0.9047132134437561</right_val></_></_> 8556 <_> 8557 <!-- tree 18 --> 8558 <_> 8559 <!-- root node --> 8560 <feature> 8561 <rects> 8562 <_> 8563 5 11 3 3 -1.</_> 8564 <_> 8565 6 12 1 3 3.</_></rects> 8566 <tilted>1</tilted></feature> 8567 <threshold>7.5297639705240726e-03</threshold> 8568 <left_node>1</left_node> 8569 <right_val>0.4123980998992920</right_val></_> 8570 <_> 8571 <!-- node 1 --> 8572 <feature> 8573 <rects> 8574 <_> 8575 3 11 2 2 -1.</_> 8576 <_> 8577 3 11 1 1 2.</_> 8578 <_> 8579 4 12 1 1 2.</_></rects> 8580 <tilted>0</tilted></feature> 8581 <threshold>-1.2225280515849590e-03</threshold> 8582 <left_val>0.2848817110061646</left_val> 8583 <right_val>-0.1981569975614548</right_val></_></_> 8584 <_> 8585 <!-- tree 19 --> 8586 <_> 8587 <!-- root node --> 8588 <feature> 8589 <rects> 8590 <_> 8591 16 9 2 2 -1.</_> 8592 <_> 8593 16 9 1 2 2.</_></rects> 8594 <tilted>1</tilted></feature> 8595 <threshold>-3.4703810233622789e-03</threshold> 8596 <left_val>-0.4496796131134033</left_val> 8597 <right_node>1</right_node></_> 8598 <_> 8599 <!-- node 1 --> 8600 <feature> 8601 <rects> 8602 <_> 8603 4 9 2 2 -1.</_> 8604 <_> 8605 4 9 2 1 2.</_></rects> 8606 <tilted>1</tilted></feature> 8607 <threshold>8.3724651485681534e-03</threshold> 8608 <left_val>0.1532424986362457</left_val> 8609 <right_val>-0.3866685032844543</right_val></_></_> 8610 <_> 8611 <!-- tree 20 --> 8612 <_> 8613 <!-- root node --> 8614 <feature> 8615 <rects> 8616 <_> 8617 3 10 2 3 -1.</_> 8618 <_> 8619 2 11 2 1 3.</_></rects> 8620 <tilted>1</tilted></feature> 8621 <threshold>-3.3934618841158226e-05</threshold> 8622 <left_node>1</left_node> 8623 <right_val>-0.3142907023429871</right_val></_> 8624 <_> 8625 <!-- node 1 --> 8626 <feature> 8627 <rects> 8628 <_> 8629 0 0 20 20 -1.</_> 8630 <_> 8631 0 0 10 10 2.</_> 8632 <_> 8633 10 10 10 10 2.</_></rects> 8634 <tilted>0</tilted></feature> 8635 <threshold>-0.2724170982837677</threshold> 8636 <left_val>-0.5584210157394409</left_val> 8637 <right_val>0.1662781983613968</right_val></_></_> 8638 <_> 8639 <!-- tree 21 --> 8640 <_> 8641 <!-- root node --> 8642 <feature> 8643 <rects> 8644 <_> 8645 7 16 5 3 -1.</_> 8646 <_> 8647 7 17 5 1 3.</_></rects> 8648 <tilted>0</tilted></feature> 8649 <threshold>-2.7582740876823664e-03</threshold> 8650 <left_val>0.2718957066535950</left_val> 8651 <right_node>1</right_node></_> 8652 <_> 8653 <!-- node 1 --> 8654 <feature> 8655 <rects> 8656 <_> 8657 14 1 3 6 -1.</_> 8658 <_> 8659 12 3 3 2 3.</_></rects> 8660 <tilted>1</tilted></feature> 8661 <threshold>0.0255304891616106</threshold> 8662 <left_val>-0.1917200982570648</left_val> 8663 <right_val>0.4378049969673157</right_val></_></_> 8664 <_> 8665 <!-- tree 22 --> 8666 <_> 8667 <!-- root node --> 8668 <feature> 8669 <rects> 8670 <_> 8671 6 0 4 7 -1.</_> 8672 <_> 8673 7 0 2 7 2.</_></rects> 8674 <tilted>0</tilted></feature> 8675 <threshold>4.2080380953848362e-03</threshold> 8676 <left_node>1</left_node> 8677 <right_val>-0.4468413889408112</right_val></_> 8678 <_> 8679 <!-- node 1 --> 8680 <feature> 8681 <rects> 8682 <_> 8683 9 5 9 6 -1.</_> 8684 <_> 8685 12 5 3 6 3.</_></rects> 8686 <tilted>0</tilted></feature> 8687 <threshold>-8.2151442766189575e-03</threshold> 8688 <left_val>0.2278670966625214</left_val> 8689 <right_val>-0.1744178980588913</right_val></_></_> 8690 <_> 8691 <!-- tree 23 --> 8692 <_> 8693 <!-- root node --> 8694 <feature> 8695 <rects> 8696 <_> 8697 5 18 4 2 -1.</_> 8698 <_> 8699 6 18 2 2 2.</_></rects> 8700 <tilted>0</tilted></feature> 8701 <threshold>-2.9405429959297180e-03</threshold> 8702 <left_val>-0.7264354825019836</left_val> 8703 <right_node>1</right_node></_> 8704 <_> 8705 <!-- node 1 --> 8706 <feature> 8707 <rects> 8708 <_> 8709 7 7 6 8 -1.</_> 8710 <_> 8711 9 7 2 8 3.</_></rects> 8712 <tilted>0</tilted></feature> 8713 <threshold>-9.4840265810489655e-03</threshold> 8714 <left_val>0.2079429030418396</left_val> 8715 <right_val>-0.1523991972208023</right_val></_></_> 8716 <_> 8717 <!-- tree 24 --> 8718 <_> 8719 <!-- root node --> 8720 <feature> 8721 <rects> 8722 <_> 8723 18 16 2 4 -1.</_> 8724 <_> 8725 18 16 1 2 2.</_> 8726 <_> 8727 19 18 1 2 2.</_></rects> 8728 <tilted>0</tilted></feature> 8729 <threshold>4.2596450075507164e-03</threshold> 8730 <left_node>1</left_node> 8731 <right_val>0.6177268028259277</right_val></_> 8732 <_> 8733 <!-- node 1 --> 8734 <feature> 8735 <rects> 8736 <_> 8737 11 18 2 2 -1.</_> 8738 <_> 8739 12 18 1 2 2.</_></rects> 8740 <tilted>0</tilted></feature> 8741 <threshold>-1.7117479583248496e-03</threshold> 8742 <left_val>-0.7110661268234253</left_val> 8743 <right_val>-6.1875251121819019e-03</right_val></_></_> 8744 <_> 8745 <!-- tree 25 --> 8746 <_> 8747 <!-- root node --> 8748 <feature> 8749 <rects> 8750 <_> 8751 3 2 5 2 -1.</_> 8752 <_> 8753 3 3 5 1 2.</_></rects> 8754 <tilted>0</tilted></feature> 8755 <threshold>-1.3266160385683179e-03</threshold> 8756 <left_val>0.1718126982450485</left_val> 8757 <right_node>1</right_node></_> 8758 <_> 8759 <!-- node 1 --> 8760 <feature> 8761 <rects> 8762 <_> 8763 7 1 6 4 -1.</_> 8764 <_> 8765 7 3 6 2 2.</_></rects> 8766 <tilted>0</tilted></feature> 8767 <threshold>9.1314306482672691e-03</threshold> 8768 <left_val>-0.4113875925540924</left_val> 8769 <right_val>0.1812427937984467</right_val></_></_> 8770 <_> 8771 <!-- tree 26 --> 8772 <_> 8773 <!-- root node --> 8774 <feature> 8775 <rects> 8776 <_> 8777 2 0 2 2 -1.</_> 8778 <_> 8779 2 0 2 1 2.</_></rects> 8780 <tilted>1</tilted></feature> 8781 <threshold>6.8382360041141510e-03</threshold> 8782 <left_node>1</left_node> 8783 <right_val>-0.5760108232498169</right_val></_> 8784 <_> 8785 <!-- node 1 --> 8786 <feature> 8787 <rects> 8788 <_> 8789 0 1 16 1 -1.</_> 8790 <_> 8791 8 1 8 1 2.</_></rects> 8792 <tilted>0</tilted></feature> 8793 <threshold>7.5181988067924976e-03</threshold> 8794 <left_val>-0.1081907972693443</left_val> 8795 <right_val>0.2956142127513885</right_val></_></_> 8796 <_> 8797 <!-- tree 27 --> 8798 <_> 8799 <!-- root node --> 8800 <feature> 8801 <rects> 8802 <_> 8803 11 1 3 10 -1.</_> 8804 <_> 8805 12 1 1 10 3.</_></rects> 8806 <tilted>0</tilted></feature> 8807 <threshold>-7.2788819670677185e-03</threshold> 8808 <left_val>-0.5811352133750916</left_val> 8809 <right_node>1</right_node></_> 8810 <_> 8811 <!-- node 1 --> 8812 <feature> 8813 <rects> 8814 <_> 8815 4 0 4 4 -1.</_> 8816 <_> 8817 5 1 2 4 2.</_></rects> 8818 <tilted>1</tilted></feature> 8819 <threshold>-0.0180394705384970</threshold> 8820 <left_val>0.4518306851387024</left_val> 8821 <right_val>-0.0270830895751715</right_val></_></_> 8822 <_> 8823 <!-- tree 28 --> 8824 <_> 8825 <!-- root node --> 8826 <feature> 8827 <rects> 8828 <_> 8829 4 13 3 2 -1.</_> 8830 <_> 8831 5 13 1 2 3.</_></rects> 8832 <tilted>0</tilted></feature> 8833 <threshold>-1.0126599809154868e-03</threshold> 8834 <left_val>0.2434411942958832</left_val> 8835 <right_node>1</right_node></_> 8836 <_> 8837 <!-- node 1 --> 8838 <feature> 8839 <rects> 8840 <_> 8841 8 11 4 3 -1.</_> 8842 <_> 8843 7 12 4 1 3.</_></rects> 8844 <tilted>1</tilted></feature> 8845 <threshold>-6.7263199016451836e-03</threshold> 8846 <left_val>0.1687044054269791</left_val> 8847 <right_val>-0.2700772881507874</right_val></_></_> 8848 <_> 8849 <!-- tree 29 --> 8850 <_> 8851 <!-- root node --> 8852 <feature> 8853 <rects> 8854 <_> 8855 7 17 4 3 -1.</_> 8856 <_> 8857 8 17 2 3 2.</_></rects> 8858 <tilted>0</tilted></feature> 8859 <threshold>-3.2334970310330391e-03</threshold> 8860 <left_val>-0.6004822254180908</left_val> 8861 <right_node>1</right_node></_> 8862 <_> 8863 <!-- node 1 --> 8864 <feature> 8865 <rects> 8866 <_> 8867 5 19 2 1 -1.</_> 8868 <_> 8869 6 19 1 1 2.</_></rects> 8870 <tilted>0</tilted></feature> 8871 <threshold>-7.7852200774941593e-05</threshold> 8872 <left_val>0.2424176931381226</left_val> 8873 <right_val>-0.1241324990987778</right_val></_></_> 8874 <_> 8875 <!-- tree 30 --> 8876 <_> 8877 <!-- root node --> 8878 <feature> 8879 <rects> 8880 <_> 8881 0 9 2 2 -1.</_> 8882 <_> 8883 0 9 1 1 2.</_> 8884 <_> 8885 1 10 1 1 2.</_></rects> 8886 <tilted>0</tilted></feature> 8887 <threshold>-6.7774722992908210e-05</threshold> 8888 <left_val>0.1572915017604828</left_val> 8889 <right_node>1</right_node></_> 8890 <_> 8891 <!-- node 1 --> 8892 <feature> 8893 <rects> 8894 <_> 8895 0 9 2 2 -1.</_> 8896 <_> 8897 0 9 1 1 2.</_> 8898 <_> 8899 1 10 1 1 2.</_></rects> 8900 <tilted>0</tilted></feature> 8901 <threshold>7.1789676439948380e-05</threshold> 8902 <left_val>-0.5289350748062134</left_val> 8903 <right_val>-0.0316655710339546</right_val></_></_> 8904 <_> 8905 <!-- tree 31 --> 8906 <_> 8907 <!-- root node --> 8908 <feature> 8909 <rects> 8910 <_> 8911 6 9 2 2 -1.</_> 8912 <_> 8913 6 9 2 1 2.</_></rects> 8914 <tilted>1</tilted></feature> 8915 <threshold>0.0100242998450994</threshold> 8916 <left_node>1</left_node> 8917 <right_val>-0.4864695966243744</right_val></_> 8918 <_> 8919 <!-- node 1 --> 8920 <feature> 8921 <rects> 8922 <_> 8923 0 10 5 3 -1.</_> 8924 <_> 8925 0 11 5 1 3.</_></rects> 8926 <tilted>0</tilted></feature> 8927 <threshold>9.4298496842384338e-03</threshold> 8928 <left_val>0.1124086976051331</left_val> 8929 <right_val>-0.4257048964500427</right_val></_></_> 8930 <_> 8931 <!-- tree 32 --> 8932 <_> 8933 <!-- root node --> 8934 <feature> 8935 <rects> 8936 <_> 8937 3 10 2 2 -1.</_> 8938 <_> 8939 3 10 1 1 2.</_> 8940 <_> 8941 4 11 1 1 2.</_></rects> 8942 <tilted>0</tilted></feature> 8943 <threshold>-7.4433721601963043e-04</threshold> 8944 <left_val>0.2754076123237610</left_val> 8945 <right_node>1</right_node></_> 8946 <_> 8947 <!-- node 1 --> 8948 <feature> 8949 <rects> 8950 <_> 8951 0 10 18 1 -1.</_> 8952 <_> 8953 6 10 6 1 3.</_></rects> 8954 <tilted>0</tilted></feature> 8955 <threshold>0.0116605600342155</threshold> 8956 <left_val>-0.2311726063489914</left_val> 8957 <right_val>0.2244233042001724</right_val></_></_> 8958 <_> 8959 <!-- tree 33 --> 8960 <_> 8961 <!-- root node --> 8962 <feature> 8963 <rects> 8964 <_> 8965 17 4 3 1 -1.</_> 8966 <_> 8967 18 5 1 1 3.</_></rects> 8968 <tilted>1</tilted></feature> 8969 <threshold>3.9079408161342144e-03</threshold> 8970 <left_node>1</left_node> 8971 <right_val>-0.6351963877677917</right_val></_> 8972 <_> 8973 <!-- node 1 --> 8974 <feature> 8975 <rects> 8976 <_> 8977 17 1 2 7 -1.</_> 8978 <_> 8979 17 1 1 7 2.</_></rects> 8980 <tilted>1</tilted></feature> 8981 <threshold>0.0165501497685909</threshold> 8982 <left_val>0.1061910018324852</left_val> 8983 <right_val>-0.4765498936176300</right_val></_></_></trees> 8984 <stage_threshold>-1.9657919406890869</stage_threshold> 8985 <parent>17</parent> 8986 <next>-1</next></_> 8987 <_> 8988 <!-- stage 19 --> 8989 <trees> 8990 <_> 8991 <!-- tree 0 --> 8992 <_> 8993 <!-- root node --> 8994 <feature> 8995 <rects> 8996 <_> 8997 6 13 9 2 -1.</_> 8998 <_> 8999 9 13 3 2 3.</_></rects> 9000 <tilted>0</tilted></feature> 9001 <threshold>-0.0184390302747488</threshold> 9002 <left_node>1</left_node> 9003 <right_val>-0.4874570965766907</right_val></_> 9004 <_> 9005 <!-- node 1 --> 9006 <feature> 9007 <rects> 9008 <_> 9009 4 9 16 6 -1.</_> 9010 <_> 9011 4 11 16 2 3.</_></rects> 9012 <tilted>0</tilted></feature> 9013 <threshold>-0.0533645190298557</threshold> 9014 <left_val>0.5103781223297119</left_val> 9015 <right_val>-0.2267013043165207</right_val></_></_> 9016 <_> 9017 <!-- tree 1 --> 9018 <_> 9019 <!-- root node --> 9020 <feature> 9021 <rects> 9022 <_> 9023 1 1 16 4 -1.</_> 9024 <_> 9025 1 3 16 2 2.</_></rects> 9026 <tilted>0</tilted></feature> 9027 <threshold>-0.0757063180208206</threshold> 9028 <left_val>0.4148775041103363</left_val> 9029 <right_node>1</right_node></_> 9030 <_> 9031 <!-- node 1 --> 9032 <feature> 9033 <rects> 9034 <_> 9035 14 12 3 3 -1.</_> 9036 <_> 9037 15 12 1 3 3.</_></rects> 9038 <tilted>0</tilted></feature> 9039 <threshold>-1.5329009620472789e-03</threshold> 9040 <left_val>0.0857649371027946</left_val> 9041 <right_val>-0.4347091019153595</right_val></_></_> 9042 <_> 9043 <!-- tree 2 --> 9044 <_> 9045 <!-- root node --> 9046 <feature> 9047 <rects> 9048 <_> 9049 2 9 6 2 -1.</_> 9050 <_> 9051 4 11 2 2 3.</_></rects> 9052 <tilted>1</tilted></feature> 9053 <threshold>-0.0244948901236057</threshold> 9054 <left_node>1</left_node> 9055 <right_val>-0.2753269970417023</right_val></_> 9056 <_> 9057 <!-- node 1 --> 9058 <feature> 9059 <rects> 9060 <_> 9061 10 0 8 10 -1.</_> 9062 <_> 9063 12 0 4 10 2.</_></rects> 9064 <tilted>0</tilted></feature> 9065 <threshold>-3.8144161226227880e-04</threshold> 9066 <left_val>0.3804396986961365</left_val> 9067 <right_val>-0.4396784901618958</right_val></_></_> 9068 <_> 9069 <!-- tree 3 --> 9070 <_> 9071 <!-- root node --> 9072 <feature> 9073 <rects> 9074 <_> 9075 1 12 16 4 -1.</_> 9076 <_> 9077 5 12 8 4 2.</_></rects> 9078 <tilted>0</tilted></feature> 9079 <threshold>-8.8816778734326363e-03</threshold> 9080 <left_node>1</left_node> 9081 <right_val>-0.4325881898403168</right_val></_> 9082 <_> 9083 <!-- node 1 --> 9084 <feature> 9085 <rects> 9086 <_> 9087 13 8 6 9 -1.</_> 9088 <_> 9089 15 11 2 3 9.</_></rects> 9090 <tilted>0</tilted></feature> 9091 <threshold>-0.0396251305937767</threshold> 9092 <left_val>0.2448122054338455</left_val> 9093 <right_val>-0.2619363963603973</right_val></_></_> 9094 <_> 9095 <!-- tree 4 --> 9096 <_> 9097 <!-- root node --> 9098 <feature> 9099 <rects> 9100 <_> 9101 19 0 1 8 -1.</_> 9102 <_> 9103 19 4 1 4 2.</_></rects> 9104 <tilted>0</tilted></feature> 9105 <threshold>-3.5907390993088484e-03</threshold> 9106 <left_node>1</left_node> 9107 <right_val>-0.3619948029518127</right_val></_> 9108 <_> 9109 <!-- node 1 --> 9110 <feature> 9111 <rects> 9112 <_> 9113 8 2 10 6 -1.</_> 9114 <_> 9115 8 5 10 3 2.</_></rects> 9116 <tilted>0</tilted></feature> 9117 <threshold>0.0370088703930378</threshold> 9118 <left_val>0.0226374603807926</left_val> 9119 <right_val>0.5577843785285950</right_val></_></_> 9120 <_> 9121 <!-- tree 5 --> 9122 <_> 9123 <!-- root node --> 9124 <feature> 9125 <rects> 9126 <_> 9127 18 7 2 1 -1.</_> 9128 <_> 9129 19 7 1 1 2.</_></rects> 9130 <tilted>0</tilted></feature> 9131 <threshold>7.8503930126316845e-05</threshold> 9132 <left_val>-0.3386113047599792</left_val> 9133 <right_node>1</right_node></_> 9134 <_> 9135 <!-- node 1 --> 9136 <feature> 9137 <rects> 9138 <_> 9139 19 4 1 12 -1.</_> 9140 <_> 9141 19 7 1 6 2.</_></rects> 9142 <tilted>0</tilted></feature> 9143 <threshold>-4.7969701699912548e-03</threshold> 9144 <left_val>0.3185609877109528</left_val> 9145 <right_val>-0.1660024970769882</right_val></_></_> 9146 <_> 9147 <!-- tree 6 --> 9148 <_> 9149 <!-- root node --> 9150 <feature> 9151 <rects> 9152 <_> 9153 8 11 3 3 -1.</_> 9154 <_> 9155 9 12 1 1 9.</_></rects> 9156 <tilted>0</tilted></feature> 9157 <threshold>-0.0112980101257563</threshold> 9158 <left_val>0.3730547130107880</left_val> 9159 <right_node>1</right_node></_> 9160 <_> 9161 <!-- node 1 --> 9162 <feature> 9163 <rects> 9164 <_> 9165 7 12 3 3 -1.</_> 9166 <_> 9167 8 12 1 3 3.</_></rects> 9168 <tilted>0</tilted></feature> 9169 <threshold>-4.4886539690196514e-03</threshold> 9170 <left_val>0.2969295978546143</left_val> 9171 <right_val>-0.2523576021194458</right_val></_></_> 9172 <_> 9173 <!-- tree 7 --> 9174 <_> 9175 <!-- root node --> 9176 <feature> 9177 <rects> 9178 <_> 9179 6 13 3 2 -1.</_> 9180 <_> 9181 7 13 1 2 3.</_></rects> 9182 <tilted>0</tilted></feature> 9183 <threshold>-2.2497780155390501e-03</threshold> 9184 <left_val>0.3426302969455719</left_val> 9185 <right_node>1</right_node></_> 9186 <_> 9187 <!-- node 1 --> 9188 <feature> 9189 <rects> 9190 <_> 9191 17 15 3 2 -1.</_> 9192 <_> 9193 17 15 3 1 2.</_></rects> 9194 <tilted>1</tilted></feature> 9195 <threshold>2.9247230850160122e-03</threshold> 9196 <left_val>-0.0565932393074036</left_val> 9197 <right_val>-0.7062603235244751</right_val></_></_> 9198 <_> 9199 <!-- tree 8 --> 9200 <_> 9201 <!-- root node --> 9202 <feature> 9203 <rects> 9204 <_> 9205 11 6 3 3 -1.</_> 9206 <_> 9207 12 6 1 3 3.</_></rects> 9208 <tilted>0</tilted></feature> 9209 <threshold>1.7976630479097366e-03</threshold> 9210 <left_node>1</left_node> 9211 <right_val>-0.5418022871017456</right_val></_> 9212 <_> 9213 <!-- node 1 --> 9214 <feature> 9215 <rects> 9216 <_> 9217 0 15 2 4 -1.</_> 9218 <_> 9219 0 17 2 2 2.</_></rects> 9220 <tilted>0</tilted></feature> 9221 <threshold>1.9808609504252672e-03</threshold> 9222 <left_val>-0.2564300894737244</left_val> 9223 <right_val>0.1844687014818192</right_val></_></_> 9224 <_> 9225 <!-- tree 9 --> 9226 <_> 9227 <!-- root node --> 9228 <feature> 9229 <rects> 9230 <_> 9231 12 9 7 2 -1.</_> 9232 <_> 9233 12 9 7 1 2.</_></rects> 9234 <tilted>1</tilted></feature> 9235 <threshold>-4.7688339836895466e-03</threshold> 9236 <left_val>-0.2969822883605957</left_val> 9237 <right_node>1</right_node></_> 9238 <_> 9239 <!-- node 1 --> 9240 <feature> 9241 <rects> 9242 <_> 9243 6 5 8 7 -1.</_> 9244 <_> 9245 10 5 4 7 2.</_></rects> 9246 <tilted>0</tilted></feature> 9247 <threshold>-0.0157556105405092</threshold> 9248 <left_val>0.2895937860012054</left_val> 9249 <right_val>-0.1648074984550476</right_val></_></_> 9250 <_> 9251 <!-- tree 10 --> 9252 <_> 9253 <!-- root node --> 9254 <feature> 9255 <rects> 9256 <_> 9257 6 17 8 3 -1.</_> 9258 <_> 9259 8 17 4 3 2.</_></rects> 9260 <tilted>0</tilted></feature> 9261 <threshold>-0.0119196400046349</threshold> 9262 <left_val>-0.5856721997261047</left_val> 9263 <right_node>1</right_node></_> 9264 <_> 9265 <!-- node 1 --> 9266 <feature> 9267 <rects> 9268 <_> 9269 0 17 4 3 -1.</_> 9270 <_> 9271 0 18 4 1 3.</_></rects> 9272 <tilted>0</tilted></feature> 9273 <threshold>4.2308131232857704e-03</threshold> 9274 <left_val>0.1360127031803131</left_val> 9275 <right_val>-0.4816245138645172</right_val></_></_> 9276 <_> 9277 <!-- tree 11 --> 9278 <_> 9279 <!-- root node --> 9280 <feature> 9281 <rects> 9282 <_> 9283 5 1 10 6 -1.</_> 9284 <_> 9285 5 3 10 2 3.</_></rects> 9286 <tilted>0</tilted></feature> 9287 <threshold>0.0205485504120588</threshold> 9288 <left_node>1</left_node> 9289 <right_val>0.3014349937438965</right_val></_> 9290 <_> 9291 <!-- node 1 --> 9292 <feature> 9293 <rects> 9294 <_> 9295 0 2 18 2 -1.</_> 9296 <_> 9297 6 2 6 2 3.</_></rects> 9298 <tilted>0</tilted></feature> 9299 <threshold>-7.3943338356912136e-03</threshold> 9300 <left_val>0.0463677607476711</left_val> 9301 <right_val>-0.4237951934337616</right_val></_></_> 9302 <_> 9303 <!-- tree 12 --> 9304 <_> 9305 <!-- root node --> 9306 <feature> 9307 <rects> 9308 <_> 9309 7 8 6 3 -1.</_> 9310 <_> 9311 7 9 6 1 3.</_></rects> 9312 <tilted>0</tilted></feature> 9313 <threshold>-6.2137800268828869e-03</threshold> 9314 <left_val>0.4572427868843079</left_val> 9315 <right_node>1</right_node></_> 9316 <_> 9317 <!-- node 1 --> 9318 <feature> 9319 <rects> 9320 <_> 9321 10 8 1 3 -1.</_> 9322 <_> 9323 10 9 1 1 3.</_></rects> 9324 <tilted>0</tilted></feature> 9325 <threshold>1.4182809973135591e-03</threshold> 9326 <left_val>-0.3014363944530487</left_val> 9327 <right_val>0.1820451021194458</right_val></_></_> 9328 <_> 9329 <!-- tree 13 --> 9330 <_> 9331 <!-- root node --> 9332 <feature> 9333 <rects> 9334 <_> 9335 16 1 3 2 -1.</_> 9336 <_> 9337 17 2 1 2 3.</_></rects> 9338 <tilted>1</tilted></feature> 9339 <threshold>4.1609420441091061e-03</threshold> 9340 <left_node>1</left_node> 9341 <right_val>-0.5265483856201172</right_val></_> 9342 <_> 9343 <!-- node 1 --> 9344 <feature> 9345 <rects> 9346 <_> 9347 2 10 1 2 -1.</_> 9348 <_> 9349 2 10 1 1 2.</_></rects> 9350 <tilted>1</tilted></feature> 9351 <threshold>-3.7915320135653019e-03</threshold> 9352 <left_val>-0.5867707133293152</left_val> 9353 <right_val>0.1170366033911705</right_val></_></_> 9354 <_> 9355 <!-- tree 14 --> 9356 <_> 9357 <!-- root node --> 9358 <feature> 9359 <rects> 9360 <_> 9361 2 9 1 2 -1.</_> 9362 <_> 9363 2 9 1 1 2.</_></rects> 9364 <tilted>1</tilted></feature> 9365 <threshold>2.0879150833934546e-03</threshold> 9366 <left_node>1</left_node> 9367 <right_val>-0.3530772924423218</right_val></_> 9368 <_> 9369 <!-- node 1 --> 9370 <feature> 9371 <rects> 9372 <_> 9373 3 9 2 3 -1.</_> 9374 <_> 9375 2 10 2 1 3.</_></rects> 9376 <tilted>1</tilted></feature> 9377 <threshold>1.5018540434539318e-03</threshold> 9378 <left_val>0.1862480044364929</left_val> 9379 <right_val>-0.3272973001003265</right_val></_></_> 9380 <_> 9381 <!-- tree 15 --> 9382 <_> 9383 <!-- root node --> 9384 <feature> 9385 <rects> 9386 <_> 9387 2 14 12 6 -1.</_> 9388 <_> 9389 2 14 6 3 2.</_> 9390 <_> 9391 8 17 6 3 2.</_></rects> 9392 <tilted>0</tilted></feature> 9393 <threshold>0.0212488099932671</threshold> 9394 <left_node>1</left_node> 9395 <right_val>-0.3197925984859467</right_val></_> 9396 <_> 9397 <!-- node 1 --> 9398 <feature> 9399 <rects> 9400 <_> 9401 15 17 1 2 -1.</_> 9402 <_> 9403 15 17 1 1 2.</_></rects> 9404 <tilted>1</tilted></feature> 9405 <threshold>-5.5249751312658191e-04</threshold> 9406 <left_val>0.2337023019790649</left_val> 9407 <right_val>-0.1738619953393936</right_val></_></_> 9408 <_> 9409 <!-- tree 16 --> 9410 <_> 9411 <!-- root node --> 9412 <feature> 9413 <rects> 9414 <_> 9415 17 11 3 3 -1.</_> 9416 <_> 9417 18 12 1 3 3.</_></rects> 9418 <tilted>1</tilted></feature> 9419 <threshold>-3.0085169710218906e-03</threshold> 9420 <left_val>0.1759604960680008</left_val> 9421 <right_node>1</right_node></_> 9422 <_> 9423 <!-- node 1 --> 9424 <feature> 9425 <rects> 9426 <_> 9427 13 12 3 2 -1.</_> 9428 <_> 9429 14 12 1 2 3.</_></rects> 9430 <tilted>0</tilted></feature> 9431 <threshold>-1.1611919617280364e-03</threshold> 9432 <left_val>0.1603343039751053</left_val> 9433 <right_val>-0.3968097865581512</right_val></_></_> 9434 <_> 9435 <!-- tree 17 --> 9436 <_> 9437 <!-- root node --> 9438 <feature> 9439 <rects> 9440 <_> 9441 16 18 4 2 -1.</_> 9442 <_> 9443 18 18 2 2 2.</_></rects> 9444 <tilted>0</tilted></feature> 9445 <threshold>-3.9655580185353756e-03</threshold> 9446 <left_val>0.3669176995754242</left_val> 9447 <right_node>1</right_node></_> 9448 <_> 9449 <!-- node 1 --> 9450 <feature> 9451 <rects> 9452 <_> 9453 18 14 2 4 -1.</_> 9454 <_> 9455 17 15 2 2 2.</_></rects> 9456 <tilted>1</tilted></feature> 9457 <threshold>-6.5836100839078426e-03</threshold> 9458 <left_val>-0.6296635866165161</left_val> 9459 <right_val>-0.0249264501035213</right_val></_></_> 9460 <_> 9461 <!-- tree 18 --> 9462 <_> 9463 <!-- root node --> 9464 <feature> 9465 <rects> 9466 <_> 9467 12 13 3 1 -1.</_> 9468 <_> 9469 13 13 1 1 3.</_></rects> 9470 <tilted>0</tilted></feature> 9471 <threshold>-9.0950471349060535e-04</threshold> 9472 <left_val>0.3957498073577881</left_val> 9473 <right_node>1</right_node></_> 9474 <_> 9475 <!-- node 1 --> 9476 <feature> 9477 <rects> 9478 <_> 9479 11 12 3 3 -1.</_> 9480 <_> 9481 12 13 1 1 9.</_></rects> 9482 <tilted>0</tilted></feature> 9483 <threshold>-5.7984529994428158e-03</threshold> 9484 <left_val>0.1749224066734314</left_val> 9485 <right_val>-0.2683740854263306</right_val></_></_> 9486 <_> 9487 <!-- tree 19 --> 9488 <_> 9489 <!-- root node --> 9490 <feature> 9491 <rects> 9492 <_> 9493 0 0 16 20 -1.</_> 9494 <_> 9495 8 0 8 20 2.</_></rects> 9496 <tilted>0</tilted></feature> 9497 <threshold>-0.5775880217552185</threshold> 9498 <left_val>0.5961139202117920</left_val> 9499 <right_node>1</right_node></_> 9500 <_> 9501 <!-- node 1 --> 9502 <feature> 9503 <rects> 9504 <_> 9505 3 0 8 5 -1.</_> 9506 <_> 9507 5 0 4 5 2.</_></rects> 9508 <tilted>0</tilted></feature> 9509 <threshold>-0.0151613103225827</threshold> 9510 <left_val>-0.6613163948059082</left_val> 9511 <right_val>3.3608361263759434e-04</right_val></_></_> 9512 <_> 9513 <!-- tree 20 --> 9514 <_> 9515 <!-- root node --> 9516 <feature> 9517 <rects> 9518 <_> 9519 0 0 2 1 -1.</_> 9520 <_> 9521 1 0 1 1 2.</_></rects> 9522 <tilted>0</tilted></feature> 9523 <threshold>7.6604672358371317e-05</threshold> 9524 <left_node>1</left_node> 9525 <right_val>0.2040158957242966</right_val></_> 9526 <_> 9527 <!-- node 1 --> 9528 <feature> 9529 <rects> 9530 <_> 9531 1 2 19 4 -1.</_> 9532 <_> 9533 1 4 19 2 2.</_></rects> 9534 <tilted>0</tilted></feature> 9535 <threshold>0.0277699790894985</threshold> 9536 <left_val>-0.3209733068943024</left_val> 9537 <right_val>0.2231740057468414</right_val></_></_> 9538 <_> 9539 <!-- tree 21 --> 9540 <_> 9541 <!-- root node --> 9542 <feature> 9543 <rects> 9544 <_> 9545 12 7 3 4 -1.</_> 9546 <_> 9547 13 7 1 4 3.</_></rects> 9548 <tilted>0</tilted></feature> 9549 <threshold>-2.6336179580539465e-03</threshold> 9550 <left_val>-0.3965649902820587</left_val> 9551 <right_node>1</right_node></_> 9552 <_> 9553 <!-- node 1 --> 9554 <feature> 9555 <rects> 9556 <_> 9557 15 6 3 3 -1.</_> 9558 <_> 9559 16 7 1 3 3.</_></rects> 9560 <tilted>1</tilted></feature> 9561 <threshold>8.3722146227955818e-03</threshold> 9562 <left_val>0.1388397067785263</left_val> 9563 <right_val>-0.5800622105598450</right_val></_></_> 9564 <_> 9565 <!-- tree 22 --> 9566 <_> 9567 <!-- root node --> 9568 <feature> 9569 <rects> 9570 <_> 9571 3 13 2 2 -1.</_> 9572 <_> 9573 3 13 1 1 2.</_> 9574 <_> 9575 4 14 1 1 2.</_></rects> 9576 <tilted>0</tilted></feature> 9577 <threshold>-7.0203031646087766e-04</threshold> 9578 <left_val>0.2777728140354156</left_val> 9579 <right_node>1</right_node></_> 9580 <_> 9581 <!-- node 1 --> 9582 <feature> 9583 <rects> 9584 <_> 9585 2 12 2 2 -1.</_> 9586 <_> 9587 2 12 1 1 2.</_> 9588 <_> 9589 3 13 1 1 2.</_></rects> 9590 <tilted>0</tilted></feature> 9591 <threshold>-4.8448870074935257e-04</threshold> 9592 <left_val>0.2162851989269257</left_val> 9593 <right_val>-0.2969225049018860</right_val></_></_> 9594 <_> 9595 <!-- tree 23 --> 9596 <_> 9597 <!-- root node --> 9598 <feature> 9599 <rects> 9600 <_> 9601 0 3 19 4 -1.</_> 9602 <_> 9603 0 4 19 2 2.</_></rects> 9604 <tilted>0</tilted></feature> 9605 <threshold>-0.0336381718516350</threshold> 9606 <left_val>0.3579196929931641</left_val> 9607 <right_node>1</right_node></_> 9608 <_> 9609 <!-- node 1 --> 9610 <feature> 9611 <rects> 9612 <_> 9613 17 7 3 4 -1.</_> 9614 <_> 9615 18 8 1 4 3.</_></rects> 9616 <tilted>1</tilted></feature> 9617 <threshold>4.4241230934858322e-03</threshold> 9618 <left_val>-8.6632027523592114e-04</left_val> 9619 <right_val>-0.5587272047996521</right_val></_></_> 9620 <_> 9621 <!-- tree 24 --> 9622 <_> 9623 <!-- root node --> 9624 <feature> 9625 <rects> 9626 <_> 9627 4 8 3 4 -1.</_> 9628 <_> 9629 5 9 1 4 3.</_></rects> 9630 <tilted>1</tilted></feature> 9631 <threshold>0.0115452604368329</threshold> 9632 <left_node>1</left_node> 9633 <right_val>0.3383761942386627</right_val></_> 9634 <_> 9635 <!-- node 1 --> 9636 <feature> 9637 <rects> 9638 <_> 9639 14 11 4 6 -1.</_> 9640 <_> 9641 15 11 2 6 2.</_></rects> 9642 <tilted>0</tilted></feature> 9643 <threshold>-1.5816639643162489e-03</threshold> 9644 <left_val>0.0286606997251511</left_val> 9645 <right_val>-0.3504197001457214</right_val></_></_> 9646 <_> 9647 <!-- tree 25 --> 9648 <_> 9649 <!-- root node --> 9650 <feature> 9651 <rects> 9652 <_> 9653 18 3 2 6 -1.</_> 9654 <_> 9655 18 5 2 2 3.</_></rects> 9656 <tilted>0</tilted></feature> 9657 <threshold>0.0138381402939558</threshold> 9658 <left_node>1</left_node> 9659 <right_val>-0.7788680791854858</right_val></_> 9660 <_> 9661 <!-- node 1 --> 9662 <feature> 9663 <rects> 9664 <_> 9665 14 3 2 4 -1.</_> 9666 <_> 9667 14 3 2 2 2.</_></rects> 9668 <tilted>1</tilted></feature> 9669 <threshold>0.0283274091780186</threshold> 9670 <left_val>-0.0186049100011587</left_val> 9671 <right_val>0.6214786767959595</right_val></_></_> 9672 <_> 9673 <!-- tree 26 --> 9674 <_> 9675 <!-- root node --> 9676 <feature> 9677 <rects> 9678 <_> 9679 7 9 5 4 -1.</_> 9680 <_> 9681 7 10 5 2 2.</_></rects> 9682 <tilted>0</tilted></feature> 9683 <threshold>-8.8482163846492767e-03</threshold> 9684 <left_val>0.2636981904506683</left_val> 9685 <right_node>1</right_node></_> 9686 <_> 9687 <!-- node 1 --> 9688 <feature> 9689 <rects> 9690 <_> 9691 12 11 8 2 -1.</_> 9692 <_> 9693 12 12 8 1 2.</_></rects> 9694 <tilted>0</tilted></feature> 9695 <threshold>-1.1661020107567310e-03</threshold> 9696 <left_val>0.1030258014798164</left_val> 9697 <right_val>-0.3268001079559326</right_val></_></_> 9698 <_> 9699 <!-- tree 27 --> 9700 <_> 9701 <!-- root node --> 9702 <feature> 9703 <rects> 9704 <_> 9705 16 13 3 4 -1.</_> 9706 <_> 9707 16 13 3 2 2.</_></rects> 9708 <tilted>1</tilted></feature> 9709 <threshold>-0.0322522111237049</threshold> 9710 <left_val>-0.5004624128341675</left_val> 9711 <right_node>1</right_node></_> 9712 <_> 9713 <!-- node 1 --> 9714 <feature> 9715 <rects> 9716 <_> 9717 14 7 5 9 -1.</_> 9718 <_> 9719 14 10 5 3 3.</_></rects> 9720 <tilted>0</tilted></feature> 9721 <threshold>-0.0949211195111275</threshold> 9722 <left_val>-0.7276101112365723</left_val> 9723 <right_val>0.1033010035753250</right_val></_></_> 9724 <_> 9725 <!-- tree 28 --> 9726 <_> 9727 <!-- root node --> 9728 <feature> 9729 <rects> 9730 <_> 9731 0 12 1 3 -1.</_> 9732 <_> 9733 0 13 1 1 3.</_></rects> 9734 <tilted>0</tilted></feature> 9735 <threshold>2.5177269708365202e-03</threshold> 9736 <left_node>1</left_node> 9737 <right_val>-0.6393802762031555</right_val></_> 9738 <_> 9739 <!-- node 1 --> 9740 <feature> 9741 <rects> 9742 <_> 9743 6 6 3 6 -1.</_> 9744 <_> 9745 4 8 3 2 3.</_></rects> 9746 <tilted>1</tilted></feature> 9747 <threshold>-0.0408921688795090</threshold> 9748 <left_val>-0.5734522938728333</left_val> 9749 <right_val>0.0815025269985199</right_val></_></_> 9750 <_> 9751 <!-- tree 29 --> 9752 <_> 9753 <!-- root node --> 9754 <feature> 9755 <rects> 9756 <_> 9757 0 9 9 1 -1.</_> 9758 <_> 9759 3 9 3 1 3.</_></rects> 9760 <tilted>0</tilted></feature> 9761 <threshold>-1.9293189980089664e-03</threshold> 9762 <left_val>0.2417722940444946</left_val> 9763 <right_node>1</right_node></_> 9764 <_> 9765 <!-- node 1 --> 9766 <feature> 9767 <rects> 9768 <_> 9769 0 9 6 2 -1.</_> 9770 <_> 9771 0 9 3 1 2.</_> 9772 <_> 9773 3 10 3 1 2.</_></rects> 9774 <tilted>0</tilted></feature> 9775 <threshold>-1.4116390375420451e-03</threshold> 9776 <left_val>0.0803638175129890</left_val> 9777 <right_val>-0.3614653944969177</right_val></_></_> 9778 <_> 9779 <!-- tree 30 --> 9780 <_> 9781 <!-- root node --> 9782 <feature> 9783 <rects> 9784 <_> 9785 3 2 4 4 -1.</_> 9786 <_> 9787 4 2 2 4 2.</_></rects> 9788 <tilted>0</tilted></feature> 9789 <threshold>-3.8812779821455479e-03</threshold> 9790 <left_val>-0.5763878226280212</left_val> 9791 <right_node>1</right_node></_> 9792 <_> 9793 <!-- node 1 --> 9794 <feature> 9795 <rects> 9796 <_> 9797 18 3 2 3 -1.</_> 9798 <_> 9799 18 4 2 1 3.</_></rects> 9800 <tilted>0</tilted></feature> 9801 <threshold>4.4630360789597034e-03</threshold> 9802 <left_val>0.0918357893824577</left_val> 9803 <right_val>-0.6803910136222839</right_val></_></_> 9804 <_> 9805 <!-- tree 31 --> 9806 <_> 9807 <!-- root node --> 9808 <feature> 9809 <rects> 9810 <_> 9811 6 16 3 3 -1.</_> 9812 <_> 9813 6 17 3 1 3.</_></rects> 9814 <tilted>0</tilted></feature> 9815 <threshold>2.9870839789509773e-03</threshold> 9816 <left_val>-0.1023664027452469</left_val> 9817 <right_node>1</right_node></_> 9818 <_> 9819 <!-- node 1 --> 9820 <feature> 9821 <rects> 9822 <_> 9823 1 16 6 3 -1.</_> 9824 <_> 9825 1 17 6 1 3.</_></rects> 9826 <tilted>0</tilted></feature> 9827 <threshold>9.4975335523486137e-03</threshold> 9828 <left_val>0.4915060997009277</left_val> 9829 <right_val>-0.3801138997077942</right_val></_></_></trees> 9830 <stage_threshold>-1.7649420499801636</stage_threshold> 9831 <parent>18</parent> 9832 <next>-1</next></_></stages></haarcascade_righteye> 9833 </opencv_storage> 9834