Home | History | Annotate | Download | only in cascade_classifier
      1 Cascade Classifier {#tutorial_cascade_classifier}
      2 ==================
      3 
      4 Goal
      5 ----
      6 
      7 In this tutorial you will learn how to:
      8 
      9 -   Use the @ref cv::CascadeClassifier class to detect objects in a video stream. Particularly, we
     10     will use the functions:
     11     -   @ref cv::CascadeClassifier::load to load a .xml classifier file. It can be either a Haar or a LBP classifer
     12     -   @ref cv::CascadeClassifier::detectMultiScale to perform the detection.
     13 
     14 Theory
     15 ------
     16 
     17 Code
     18 ----
     19 
     20 This tutorial code's is shown lines below. You can also download it from
     21 [here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp)
     22 . The second version (using LBP for face detection) can be [found
     23 here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp)
     24 @code{.cpp}
     25 #include "opencv2/objdetect.hpp"
     26 #include "opencv2/highgui.hpp"
     27 #include "opencv2/imgproc.hpp"
     28 
     29 #include <iostream>
     30 #include <stdio.h>
     31 
     32 using namespace std;
     33 using namespace cv;
     34 
     35 /* Function Headers */
     36 void detectAndDisplay( Mat frame );
     37 
     38 /* Global variables */
     39 String face_cascade_name = "haarcascade_frontalface_alt.xml";
     40 String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
     41 CascadeClassifier face_cascade;
     42 CascadeClassifier eyes_cascade;
     43 String window_name = "Capture - Face detection";
     44 
     45 /* @function main */
     46 int main( void )
     47 {
     48     VideoCapture capture;
     49     Mat frame;
     50 
     51     //-- 1. Load the cascades
     52     if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; };
     53     if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading eyes cascade\n"); return -1; };
     54 
     55     //-- 2. Read the video stream
     56     capture.open( -1 );
     57     if ( ! capture.isOpened() ) { printf("--(!)Error opening video capture\n"); return -1; }
     58 
     59     while (  capture.read(frame) )
     60     {
     61         if( frame.empty() )
     62         {
     63             printf(" --(!) No captured frame -- Break!");
     64             break;
     65         }
     66 
     67         //-- 3. Apply the classifier to the frame
     68         detectAndDisplay( frame );
     69 
     70         int c = waitKey(10);
     71         if( (char)c == 27 ) { break; } // escape
     72     }
     73     return 0;
     74 }
     75 
     76 /* @function detectAndDisplay */
     77 void detectAndDisplay( Mat frame )
     78 {
     79     std::vector<Rect> faces;
     80     Mat frame_gray;
     81 
     82     cvtColor( frame, frame_gray, COLOR_BGR2GRAY );
     83     equalizeHist( frame_gray, frame_gray );
     84 
     85     //-- Detect faces
     86     face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(30, 30) );
     87 
     88     for( size_t i = 0; i < faces.size(); i++ )
     89     {
     90         Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
     91         ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
     92 
     93         Mat faceROI = frame_gray( faces[i] );
     94         std::vector<Rect> eyes;
     95 
     96         //-- In each face, detect eyes
     97         eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, Size(30, 30) );
     98 
     99         for( size_t j = 0; j < eyes.size(); j++ )
    100         {
    101             Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
    102             int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
    103             circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );
    104         }
    105     }
    106     //-- Show what you got
    107     imshow( window_name, frame );
    108 }
    109 @endcode
    110 Explanation
    111 -----------
    112 
    113 Result
    114 ------
    115 
    116 -#  Here is the result of running the code above and using as input the video stream of a build-in
    117     webcam:
    118 
    119     ![](images/Cascade_Classifier_Tutorial_Result_Haar.jpg)
    120 
    121     Remember to copy the files *haarcascade_frontalface_alt.xml* and
    122     *haarcascade_eye_tree_eyeglasses.xml* in your current directory. They are located in
    123     *opencv/data/haarcascades*
    124 
    125 -#  This is the result of using the file *lbpcascade_frontalface.xml* (LBP trained) for the face
    126     detection. For the eyes we keep using the file used in the tutorial.
    127 
    128     ![](images/Cascade_Classifier_Tutorial_Result_LBP.jpg)
    129