Home | History | Annotate | Download | only in src
      1 /*
      2  * Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
      3  * Released to public domain under terms of the BSD Simplified license.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions are met:
      7  *   * Redistributions of source code must retain the above copyright
      8  *     notice, this list of conditions and the following disclaimer.
      9  *   * Redistributions in binary form must reproduce the above copyright
     10  *     notice, this list of conditions and the following disclaimer in the
     11  *     documentation and/or other materials provided with the distribution.
     12  *   * Neither the name of the organization nor the names of its contributors
     13  *     may be used to endorse or promote products derived from this software
     14  *     without specific prior written permission.
     15  *
     16  *   See <http://www.opensource.org/licenses/bsd-license>
     17  */
     18 
     19 #include "precomp.hpp"
     20 #include <iostream>
     21 #include <map>
     22 #include <set>
     23 
     24 namespace cv
     25 {
     26 
     27 // Removes duplicate elements in a given vector.
     28 template<typename _Tp>
     29 inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) {
     30     typedef typename std::set<_Tp>::const_iterator constSetIterator;
     31     typedef typename std::vector<_Tp>::const_iterator constVecIterator;
     32     std::set<_Tp> set_elems;
     33     for (constVecIterator it = src.begin(); it != src.end(); ++it)
     34         set_elems.insert(*it);
     35     std::vector<_Tp> elems;
     36     for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)
     37         elems.push_back(*it);
     38     return elems;
     39 }
     40 
     41 static Mat argsort(InputArray _src, bool ascending=true)
     42 {
     43     Mat src = _src.getMat();
     44     if (src.rows != 1 && src.cols != 1) {
     45         String error_message = "Wrong shape of input matrix! Expected a matrix with one row or column.";
     46         CV_Error(Error::StsBadArg, error_message);
     47     }
     48     int flags = SORT_EVERY_ROW | (ascending ? SORT_ASCENDING : SORT_DESCENDING);
     49     Mat sorted_indices;
     50     sortIdx(src.reshape(1,1),sorted_indices,flags);
     51     return sorted_indices;
     52 }
     53 
     54 static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {
     55     // make sure the input data is a vector of matrices or vector of vector
     56     if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {
     57         String error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >).";
     58         CV_Error(Error::StsBadArg, error_message);
     59     }
     60     // number of samples
     61     size_t n = src.total();
     62     // return empty matrix if no matrices given
     63     if(n == 0)
     64         return Mat();
     65     // dimensionality of (reshaped) samples
     66     size_t d = src.getMat(0).total();
     67     // create data matrix
     68     Mat data((int)n, (int)d, rtype);
     69     // now copy data
     70     for(int i = 0; i < (int)n; i++) {
     71         // make sure data can be reshaped, throw exception if not!
     72         if(src.getMat(i).total() != d) {
     73             String error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, (int)d, (int)src.getMat(i).total());
     74             CV_Error(Error::StsBadArg, error_message);
     75         }
     76         // get a hold of the current row
     77         Mat xi = data.row(i);
     78         // make reshape happy by cloning for non-continuous matrices
     79         if(src.getMat(i).isContinuous()) {
     80             src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);
     81         } else {
     82             src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);
     83         }
     84     }
     85     return data;
     86 }
     87 
     88 static void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArray _dst) {
     89     if(_indices.getMat().type() != CV_32SC1) {
     90         CV_Error(Error::StsUnsupportedFormat, "cv::sortColumnsByIndices only works on integer indices!");
     91     }
     92     Mat src = _src.getMat();
     93     std::vector<int> indices = _indices.getMat();
     94     _dst.create(src.rows, src.cols, src.type());
     95     Mat dst = _dst.getMat();
     96     for(size_t idx = 0; idx < indices.size(); idx++) {
     97         Mat originalCol = src.col(indices[idx]);
     98         Mat sortedCol = dst.col((int)idx);
     99         originalCol.copyTo(sortedCol);
    100     }
    101 }
    102 
    103 static Mat sortMatrixColumnsByIndices(InputArray src, InputArray indices) {
    104     Mat dst;
    105     sortMatrixColumnsByIndices(src, indices, dst);
    106     return dst;
    107 }
    108 
    109 
    110 template<typename _Tp> static bool
    111 isSymmetric_(InputArray src) {
    112     Mat _src = src.getMat();
    113     if(_src.cols != _src.rows)
    114         return false;
    115     for (int i = 0; i < _src.rows; i++) {
    116         for (int j = 0; j < _src.cols; j++) {
    117             _Tp a = _src.at<_Tp> (i, j);
    118             _Tp b = _src.at<_Tp> (j, i);
    119             if (a != b) {
    120                 return false;
    121             }
    122         }
    123     }
    124     return true;
    125 }
    126 
    127 template<typename _Tp> static bool
    128 isSymmetric_(InputArray src, double eps) {
    129     Mat _src = src.getMat();
    130     if(_src.cols != _src.rows)
    131         return false;
    132     for (int i = 0; i < _src.rows; i++) {
    133         for (int j = 0; j < _src.cols; j++) {
    134             _Tp a = _src.at<_Tp> (i, j);
    135             _Tp b = _src.at<_Tp> (j, i);
    136             if (std::abs(a - b) > eps) {
    137                 return false;
    138             }
    139         }
    140     }
    141     return true;
    142 }
    143 
    144 static bool isSymmetric(InputArray src, double eps=1e-16)
    145 {
    146     Mat m = src.getMat();
    147     switch (m.type()) {
    148         case CV_8SC1: return isSymmetric_<char>(m); break;
    149         case CV_8UC1:
    150             return isSymmetric_<unsigned char>(m); break;
    151         case CV_16SC1:
    152             return isSymmetric_<short>(m); break;
    153         case CV_16UC1:
    154             return isSymmetric_<unsigned short>(m); break;
    155         case CV_32SC1:
    156             return isSymmetric_<int>(m); break;
    157         case CV_32FC1:
    158             return isSymmetric_<float>(m, eps); break;
    159         case CV_64FC1:
    160             return isSymmetric_<double>(m, eps); break;
    161         default:
    162             break;
    163     }
    164     return false;
    165 }
    166 
    167 
    168 //------------------------------------------------------------------------------
    169 // cv::subspaceProject
    170 //------------------------------------------------------------------------------
    171 Mat LDA::subspaceProject(InputArray _W, InputArray _mean, InputArray _src) {
    172     // get data matrices
    173     Mat W = _W.getMat();
    174     Mat mean = _mean.getMat();
    175     Mat src = _src.getMat();
    176     // get number of samples and dimension
    177     int n = src.rows;
    178     int d = src.cols;
    179     // make sure the data has the correct shape
    180     if(W.rows != d) {
    181         String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
    182         CV_Error(Error::StsBadArg, error_message);
    183     }
    184     // make sure mean is correct if not empty
    185     if(!mean.empty() && (mean.total() != (size_t) d)) {
    186         String error_message = format("Wrong mean shape for the given data matrix. Expected %d, but was %d.", d, mean.total());
    187         CV_Error(Error::StsBadArg, error_message);
    188     }
    189     // create temporary matrices
    190     Mat X, Y;
    191     // make sure you operate on correct type
    192     src.convertTo(X, W.type());
    193     // safe to do, because of above assertion
    194     if(!mean.empty()) {
    195         for(int i=0; i<n; i++) {
    196             Mat r_i = X.row(i);
    197             subtract(r_i, mean.reshape(1,1), r_i);
    198         }
    199     }
    200     // finally calculate projection as Y = (X-mean)*W
    201     gemm(X, W, 1.0, Mat(), 0.0, Y);
    202     return Y;
    203 }
    204 
    205 //------------------------------------------------------------------------------
    206 // cv::subspaceReconstruct
    207 //------------------------------------------------------------------------------
    208 Mat LDA::subspaceReconstruct(InputArray _W, InputArray _mean, InputArray _src)
    209 {
    210     // get data matrices
    211     Mat W = _W.getMat();
    212     Mat mean = _mean.getMat();
    213     Mat src = _src.getMat();
    214     // get number of samples and dimension
    215     int n = src.rows;
    216     int d = src.cols;
    217     // make sure the data has the correct shape
    218     if(W.cols != d) {
    219         String error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols);
    220         CV_Error(Error::StsBadArg, error_message);
    221     }
    222     // make sure mean is correct if not empty
    223     if(!mean.empty() && (mean.total() != (size_t) W.rows)) {
    224         String error_message = format("Wrong mean shape for the given eigenvector matrix. Expected %d, but was %d.", W.cols, mean.total());
    225         CV_Error(Error::StsBadArg, error_message);
    226     }
    227     // initialize temporary matrices
    228     Mat X, Y;
    229     // copy data & make sure we are using the correct type
    230     src.convertTo(Y, W.type());
    231     // calculate the reconstruction
    232     gemm(Y, W, 1.0, Mat(), 0.0, X, GEMM_2_T);
    233     // safe to do because of above assertion
    234     if(!mean.empty()) {
    235         for(int i=0; i<n; i++) {
    236             Mat r_i = X.row(i);
    237             add(r_i, mean.reshape(1,1), r_i);
    238         }
    239     }
    240     return X;
    241 }
    242 
    243 
    244 class EigenvalueDecomposition {
    245 private:
    246 
    247     // Holds the data dimension.
    248     int n;
    249 
    250     // Stores real/imag part of a complex division.
    251     double cdivr, cdivi;
    252 
    253     // Pointer to internal memory.
    254     double *d, *e, *ort;
    255     double **V, **H;
    256 
    257     // Holds the computed eigenvalues.
    258     Mat _eigenvalues;
    259 
    260     // Holds the computed eigenvectors.
    261     Mat _eigenvectors;
    262 
    263     // Allocates memory.
    264     template<typename _Tp>
    265     _Tp *alloc_1d(int m) {
    266         return new _Tp[m];
    267     }
    268 
    269     // Allocates memory.
    270     template<typename _Tp>
    271     _Tp *alloc_1d(int m, _Tp val) {
    272         _Tp *arr = alloc_1d<_Tp> (m);
    273         for (int i = 0; i < m; i++)
    274             arr[i] = val;
    275         return arr;
    276     }
    277 
    278     // Allocates memory.
    279     template<typename _Tp>
    280     _Tp **alloc_2d(int m, int _n) {
    281         _Tp **arr = new _Tp*[m];
    282         for (int i = 0; i < m; i++)
    283             arr[i] = new _Tp[_n];
    284         return arr;
    285     }
    286 
    287     // Allocates memory.
    288     template<typename _Tp>
    289     _Tp **alloc_2d(int m, int _n, _Tp val) {
    290         _Tp **arr = alloc_2d<_Tp> (m, _n);
    291         for (int i = 0; i < m; i++) {
    292             for (int j = 0; j < _n; j++) {
    293                 arr[i][j] = val;
    294             }
    295         }
    296         return arr;
    297     }
    298 
    299     void cdiv(double xr, double xi, double yr, double yi) {
    300         double r, dv;
    301         if (std::abs(yr) > std::abs(yi)) {
    302             r = yi / yr;
    303             dv = yr + r * yi;
    304             cdivr = (xr + r * xi) / dv;
    305             cdivi = (xi - r * xr) / dv;
    306         } else {
    307             r = yr / yi;
    308             dv = yi + r * yr;
    309             cdivr = (r * xr + xi) / dv;
    310             cdivi = (r * xi - xr) / dv;
    311         }
    312     }
    313 
    314     // Nonsymmetric reduction from Hessenberg to real Schur form.
    315 
    316     void hqr2() {
    317 
    318         //  This is derived from the Algol procedure hqr2,
    319         //  by Martin and Wilkinson, Handbook for Auto. Comp.,
    320         //  Vol.ii-Linear Algebra, and the corresponding
    321         //  Fortran subroutine in EISPACK.
    322 
    323         // Initialize
    324         int nn = this->n;
    325         int n1 = nn - 1;
    326         int low = 0;
    327         int high = nn - 1;
    328         double eps = std::pow(2.0, -52.0);
    329         double exshift = 0.0;
    330         double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
    331 
    332         // Store roots isolated by balanc and compute matrix norm
    333 
    334         double norm = 0.0;
    335         for (int i = 0; i < nn; i++) {
    336             if (i < low || i > high) {
    337                 d[i] = H[i][i];
    338                 e[i] = 0.0;
    339             }
    340             for (int j = std::max(i - 1, 0); j < nn; j++) {
    341                 norm = norm + std::abs(H[i][j]);
    342             }
    343         }
    344 
    345         // Outer loop over eigenvalue index
    346         int iter = 0;
    347         while (n1 >= low) {
    348 
    349             // Look for single small sub-diagonal element
    350             int l = n1;
    351             while (l > low) {
    352                 s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
    353                 if (s == 0.0) {
    354                     s = norm;
    355                 }
    356                 if (std::abs(H[l][l - 1]) < eps * s) {
    357                     break;
    358                 }
    359                 l--;
    360             }
    361 
    362             // Check for convergence
    363             // One root found
    364 
    365             if (l == n1) {
    366                 H[n1][n1] = H[n1][n1] + exshift;
    367                 d[n1] = H[n1][n1];
    368                 e[n1] = 0.0;
    369                 n1--;
    370                 iter = 0;
    371 
    372                 // Two roots found
    373 
    374             } else if (l == n1 - 1) {
    375                 w = H[n1][n1 - 1] * H[n1 - 1][n1];
    376                 p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
    377                 q = p * p + w;
    378                 z = std::sqrt(std::abs(q));
    379                 H[n1][n1] = H[n1][n1] + exshift;
    380                 H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
    381                 x = H[n1][n1];
    382 
    383                 // Real pair
    384 
    385                 if (q >= 0) {
    386                     if (p >= 0) {
    387                         z = p + z;
    388                     } else {
    389                         z = p - z;
    390                     }
    391                     d[n1 - 1] = x + z;
    392                     d[n1] = d[n1 - 1];
    393                     if (z != 0.0) {
    394                         d[n1] = x - w / z;
    395                     }
    396                     e[n1 - 1] = 0.0;
    397                     e[n1] = 0.0;
    398                     x = H[n1][n1 - 1];
    399                     s = std::abs(x) + std::abs(z);
    400                     p = x / s;
    401                     q = z / s;
    402                     r = std::sqrt(p * p + q * q);
    403                     p = p / r;
    404                     q = q / r;
    405 
    406                     // Row modification
    407 
    408                     for (int j = n1 - 1; j < nn; j++) {
    409                         z = H[n1 - 1][j];
    410                         H[n1 - 1][j] = q * z + p * H[n1][j];
    411                         H[n1][j] = q * H[n1][j] - p * z;
    412                     }
    413 
    414                     // Column modification
    415 
    416                     for (int i = 0; i <= n1; i++) {
    417                         z = H[i][n1 - 1];
    418                         H[i][n1 - 1] = q * z + p * H[i][n1];
    419                         H[i][n1] = q * H[i][n1] - p * z;
    420                     }
    421 
    422                     // Accumulate transformations
    423 
    424                     for (int i = low; i <= high; i++) {
    425                         z = V[i][n1 - 1];
    426                         V[i][n1 - 1] = q * z + p * V[i][n1];
    427                         V[i][n1] = q * V[i][n1] - p * z;
    428                     }
    429 
    430                     // Complex pair
    431 
    432                 } else {
    433                     d[n1 - 1] = x + p;
    434                     d[n1] = x + p;
    435                     e[n1 - 1] = z;
    436                     e[n1] = -z;
    437                 }
    438                 n1 = n1 - 2;
    439                 iter = 0;
    440 
    441                 // No convergence yet
    442 
    443             } else {
    444 
    445                 // Form shift
    446 
    447                 x = H[n1][n1];
    448                 y = 0.0;
    449                 w = 0.0;
    450                 if (l < n1) {
    451                     y = H[n1 - 1][n1 - 1];
    452                     w = H[n1][n1 - 1] * H[n1 - 1][n1];
    453                 }
    454 
    455                 // Wilkinson's original ad hoc shift
    456 
    457                 if (iter == 10) {
    458                     exshift += x;
    459                     for (int i = low; i <= n1; i++) {
    460                         H[i][i] -= x;
    461                     }
    462                     s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
    463                     x = y = 0.75 * s;
    464                     w = -0.4375 * s * s;
    465                 }
    466 
    467                 // MATLAB's new ad hoc shift
    468 
    469                 if (iter == 30) {
    470                     s = (y - x) / 2.0;
    471                     s = s * s + w;
    472                     if (s > 0) {
    473                         s = std::sqrt(s);
    474                         if (y < x) {
    475                             s = -s;
    476                         }
    477                         s = x - w / ((y - x) / 2.0 + s);
    478                         for (int i = low; i <= n1; i++) {
    479                             H[i][i] -= s;
    480                         }
    481                         exshift += s;
    482                         x = y = w = 0.964;
    483                     }
    484                 }
    485 
    486                 iter = iter + 1; // (Could check iteration count here.)
    487 
    488                 // Look for two consecutive small sub-diagonal elements
    489                 int m = n1 - 2;
    490                 while (m >= l) {
    491                     z = H[m][m];
    492                     r = x - z;
    493                     s = y - z;
    494                     p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
    495                     q = H[m + 1][m + 1] - z - r - s;
    496                     r = H[m + 2][m + 1];
    497                     s = std::abs(p) + std::abs(q) + std::abs(r);
    498                     p = p / s;
    499                     q = q / s;
    500                     r = r / s;
    501                     if (m == l) {
    502                         break;
    503                     }
    504                     if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p)
    505                                                                                      * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs(
    506                                                                                                                                            H[m + 1][m + 1])))) {
    507                         break;
    508                     }
    509                     m--;
    510                 }
    511 
    512                 for (int i = m + 2; i <= n1; i++) {
    513                     H[i][i - 2] = 0.0;
    514                     if (i > m + 2) {
    515                         H[i][i - 3] = 0.0;
    516                     }
    517                 }
    518 
    519                 // Double QR step involving rows l:n and columns m:n
    520 
    521                 for (int k = m; k <= n1 - 1; k++) {
    522                     bool notlast = (k != n1 - 1);
    523                     if (k != m) {
    524                         p = H[k][k - 1];
    525                         q = H[k + 1][k - 1];
    526                         r = (notlast ? H[k + 2][k - 1] : 0.0);
    527                         x = std::abs(p) + std::abs(q) + std::abs(r);
    528                         if (x != 0.0) {
    529                             p = p / x;
    530                             q = q / x;
    531                             r = r / x;
    532                         }
    533                     }
    534                     if (x == 0.0) {
    535                         break;
    536                     }
    537                     s = std::sqrt(p * p + q * q + r * r);
    538                     if (p < 0) {
    539                         s = -s;
    540                     }
    541                     if (s != 0) {
    542                         if (k != m) {
    543                             H[k][k - 1] = -s * x;
    544                         } else if (l != m) {
    545                             H[k][k - 1] = -H[k][k - 1];
    546                         }
    547                         p = p + s;
    548                         x = p / s;
    549                         y = q / s;
    550                         z = r / s;
    551                         q = q / p;
    552                         r = r / p;
    553 
    554                         // Row modification
    555 
    556                         for (int j = k; j < nn; j++) {
    557                             p = H[k][j] + q * H[k + 1][j];
    558                             if (notlast) {
    559                                 p = p + r * H[k + 2][j];
    560                                 H[k + 2][j] = H[k + 2][j] - p * z;
    561                             }
    562                             H[k][j] = H[k][j] - p * x;
    563                             H[k + 1][j] = H[k + 1][j] - p * y;
    564                         }
    565 
    566                         // Column modification
    567 
    568                         for (int i = 0; i <= std::min(n1, k + 3); i++) {
    569                             p = x * H[i][k] + y * H[i][k + 1];
    570                             if (notlast) {
    571                                 p = p + z * H[i][k + 2];
    572                                 H[i][k + 2] = H[i][k + 2] - p * r;
    573                             }
    574                             H[i][k] = H[i][k] - p;
    575                             H[i][k + 1] = H[i][k + 1] - p * q;
    576                         }
    577 
    578                         // Accumulate transformations
    579 
    580                         for (int i = low; i <= high; i++) {
    581                             p = x * V[i][k] + y * V[i][k + 1];
    582                             if (notlast) {
    583                                 p = p + z * V[i][k + 2];
    584                                 V[i][k + 2] = V[i][k + 2] - p * r;
    585                             }
    586                             V[i][k] = V[i][k] - p;
    587                             V[i][k + 1] = V[i][k + 1] - p * q;
    588                         }
    589                     } // (s != 0)
    590                 } // k loop
    591             } // check convergence
    592         } // while (n1 >= low)
    593 
    594         // Backsubstitute to find vectors of upper triangular form
    595 
    596         if (norm == 0.0) {
    597             return;
    598         }
    599 
    600         for (n1 = nn - 1; n1 >= 0; n1--) {
    601             p = d[n1];
    602             q = e[n1];
    603 
    604             // Real vector
    605 
    606             if (q == 0) {
    607                 int l = n1;
    608                 H[n1][n1] = 1.0;
    609                 for (int i = n1 - 1; i >= 0; i--) {
    610                     w = H[i][i] - p;
    611                     r = 0.0;
    612                     for (int j = l; j <= n1; j++) {
    613                         r = r + H[i][j] * H[j][n1];
    614                     }
    615                     if (e[i] < 0.0) {
    616                         z = w;
    617                         s = r;
    618                     } else {
    619                         l = i;
    620                         if (e[i] == 0.0) {
    621                             if (w != 0.0) {
    622                                 H[i][n1] = -r / w;
    623                             } else {
    624                                 H[i][n1] = -r / (eps * norm);
    625                             }
    626 
    627                             // Solve real equations
    628 
    629                         } else {
    630                             x = H[i][i + 1];
    631                             y = H[i + 1][i];
    632                             q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
    633                             t = (x * s - z * r) / q;
    634                             H[i][n1] = t;
    635                             if (std::abs(x) > std::abs(z)) {
    636                                 H[i + 1][n1] = (-r - w * t) / x;
    637                             } else {
    638                                 H[i + 1][n1] = (-s - y * t) / z;
    639                             }
    640                         }
    641 
    642                         // Overflow control
    643 
    644                         t = std::abs(H[i][n1]);
    645                         if ((eps * t) * t > 1) {
    646                             for (int j = i; j <= n1; j++) {
    647                                 H[j][n1] = H[j][n1] / t;
    648                             }
    649                         }
    650                     }
    651                 }
    652                 // Complex vector
    653             } else if (q < 0) {
    654                 int l = n1 - 1;
    655 
    656                 // Last vector component imaginary so matrix is triangular
    657 
    658                 if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) {
    659                     H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
    660                     H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
    661                 } else {
    662                     cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
    663                     H[n1 - 1][n1 - 1] = cdivr;
    664                     H[n1 - 1][n1] = cdivi;
    665                 }
    666                 H[n1][n1 - 1] = 0.0;
    667                 H[n1][n1] = 1.0;
    668                 for (int i = n1 - 2; i >= 0; i--) {
    669                     double ra, sa, vr, vi;
    670                     ra = 0.0;
    671                     sa = 0.0;
    672                     for (int j = l; j <= n1; j++) {
    673                         ra = ra + H[i][j] * H[j][n1 - 1];
    674                         sa = sa + H[i][j] * H[j][n1];
    675                     }
    676                     w = H[i][i] - p;
    677 
    678                     if (e[i] < 0.0) {
    679                         z = w;
    680                         r = ra;
    681                         s = sa;
    682                     } else {
    683                         l = i;
    684                         if (e[i] == 0) {
    685                             cdiv(-ra, -sa, w, q);
    686                             H[i][n1 - 1] = cdivr;
    687                             H[i][n1] = cdivi;
    688                         } else {
    689 
    690                             // Solve complex equations
    691 
    692                             x = H[i][i + 1];
    693                             y = H[i + 1][i];
    694                             vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
    695                             vi = (d[i] - p) * 2.0 * q;
    696                             if (vr == 0.0 && vi == 0.0) {
    697                                 vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
    698                                                    + std::abs(y) + std::abs(z));
    699                             }
    700                             cdiv(x * r - z * ra + q * sa,
    701                                  x * s - z * sa - q * ra, vr, vi);
    702                             H[i][n1 - 1] = cdivr;
    703                             H[i][n1] = cdivi;
    704                             if (std::abs(x) > (std::abs(z) + std::abs(q))) {
    705                                 H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
    706                                                    * H[i][n1]) / x;
    707                                 H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
    708                                                                             - 1]) / x;
    709                             } else {
    710                                 cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
    711                                      q);
    712                                 H[i + 1][n1 - 1] = cdivr;
    713                                 H[i + 1][n1] = cdivi;
    714                             }
    715                         }
    716 
    717                         // Overflow control
    718 
    719                         t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
    720                         if ((eps * t) * t > 1) {
    721                             for (int j = i; j <= n1; j++) {
    722                                 H[j][n1 - 1] = H[j][n1 - 1] / t;
    723                                 H[j][n1] = H[j][n1] / t;
    724                             }
    725                         }
    726                     }
    727                 }
    728             }
    729         }
    730 
    731         // Vectors of isolated roots
    732 
    733         for (int i = 0; i < nn; i++) {
    734             if (i < low || i > high) {
    735                 for (int j = i; j < nn; j++) {
    736                     V[i][j] = H[i][j];
    737                 }
    738             }
    739         }
    740 
    741         // Back transformation to get eigenvectors of original matrix
    742 
    743         for (int j = nn - 1; j >= low; j--) {
    744             for (int i = low; i <= high; i++) {
    745                 z = 0.0;
    746                 for (int k = low; k <= std::min(j, high); k++) {
    747                     z = z + V[i][k] * H[k][j];
    748                 }
    749                 V[i][j] = z;
    750             }
    751         }
    752     }
    753 
    754     // Nonsymmetric reduction to Hessenberg form.
    755     void orthes() {
    756         //  This is derived from the Algol procedures orthes and ortran,
    757         //  by Martin and Wilkinson, Handbook for Auto. Comp.,
    758         //  Vol.ii-Linear Algebra, and the corresponding
    759         //  Fortran subroutines in EISPACK.
    760         int low = 0;
    761         int high = n - 1;
    762 
    763         for (int m = low + 1; m <= high - 1; m++) {
    764 
    765             // Scale column.
    766 
    767             double scale = 0.0;
    768             for (int i = m; i <= high; i++) {
    769                 scale = scale + std::abs(H[i][m - 1]);
    770             }
    771             if (scale != 0.0) {
    772 
    773                 // Compute Householder transformation.
    774 
    775                 double h = 0.0;
    776                 for (int i = high; i >= m; i--) {
    777                     ort[i] = H[i][m - 1] / scale;
    778                     h += ort[i] * ort[i];
    779                 }
    780                 double g = std::sqrt(h);
    781                 if (ort[m] > 0) {
    782                     g = -g;
    783                 }
    784                 h = h - ort[m] * g;
    785                 ort[m] = ort[m] - g;
    786 
    787                 // Apply Householder similarity transformation
    788                 // H = (I-u*u'/h)*H*(I-u*u')/h)
    789 
    790                 for (int j = m; j < n; j++) {
    791                     double f = 0.0;
    792                     for (int i = high; i >= m; i--) {
    793                         f += ort[i] * H[i][j];
    794                     }
    795                     f = f / h;
    796                     for (int i = m; i <= high; i++) {
    797                         H[i][j] -= f * ort[i];
    798                     }
    799                 }
    800 
    801                 for (int i = 0; i <= high; i++) {
    802                     double f = 0.0;
    803                     for (int j = high; j >= m; j--) {
    804                         f += ort[j] * H[i][j];
    805                     }
    806                     f = f / h;
    807                     for (int j = m; j <= high; j++) {
    808                         H[i][j] -= f * ort[j];
    809                     }
    810                 }
    811                 ort[m] = scale * ort[m];
    812                 H[m][m - 1] = scale * g;
    813             }
    814         }
    815 
    816         // Accumulate transformations (Algol's ortran).
    817 
    818         for (int i = 0; i < n; i++) {
    819             for (int j = 0; j < n; j++) {
    820                 V[i][j] = (i == j ? 1.0 : 0.0);
    821             }
    822         }
    823 
    824         for (int m = high - 1; m >= low + 1; m--) {
    825             if (H[m][m - 1] != 0.0) {
    826                 for (int i = m + 1; i <= high; i++) {
    827                     ort[i] = H[i][m - 1];
    828                 }
    829                 for (int j = m; j <= high; j++) {
    830                     double g = 0.0;
    831                     for (int i = m; i <= high; i++) {
    832                         g += ort[i] * V[i][j];
    833                     }
    834                     // Double division avoids possible underflow
    835                     g = (g / ort[m]) / H[m][m - 1];
    836                     for (int i = m; i <= high; i++) {
    837                         V[i][j] += g * ort[i];
    838                     }
    839                 }
    840             }
    841         }
    842     }
    843 
    844     // Releases all internal working memory.
    845     void release() {
    846         // releases the working data
    847         delete[] d;
    848         delete[] e;
    849         delete[] ort;
    850         for (int i = 0; i < n; i++) {
    851             delete[] H[i];
    852             delete[] V[i];
    853         }
    854         delete[] H;
    855         delete[] V;
    856     }
    857 
    858     // Computes the Eigenvalue Decomposition for a matrix given in H.
    859     void compute() {
    860         // Allocate memory for the working data.
    861         V = alloc_2d<double> (n, n, 0.0);
    862         d = alloc_1d<double> (n);
    863         e = alloc_1d<double> (n);
    864         ort = alloc_1d<double> (n);
    865         // Reduce to Hessenberg form.
    866         orthes();
    867         // Reduce Hessenberg to real Schur form.
    868         hqr2();
    869         // Copy eigenvalues to OpenCV Matrix.
    870         _eigenvalues.create(1, n, CV_64FC1);
    871         for (int i = 0; i < n; i++) {
    872             _eigenvalues.at<double> (0, i) = d[i];
    873         }
    874         // Copy eigenvectors to OpenCV Matrix.
    875         _eigenvectors.create(n, n, CV_64FC1);
    876         for (int i = 0; i < n; i++)
    877             for (int j = 0; j < n; j++)
    878                 _eigenvectors.at<double> (i, j) = V[i][j];
    879         // Deallocate the memory by releasing all internal working data.
    880         release();
    881     }
    882 
    883 public:
    884     EigenvalueDecomposition()
    885     : n(0) { }
    886 
    887     // Initializes & computes the Eigenvalue Decomposition for a general matrix
    888     // given in src. This function is a port of the EigenvalueSolver in JAMA,
    889     // which has been released to public domain by The MathWorks and the
    890     // National Institute of Standards and Technology (NIST).
    891     EigenvalueDecomposition(InputArray src) {
    892         compute(src);
    893     }
    894 
    895     // This function computes the Eigenvalue Decomposition for a general matrix
    896     // given in src. This function is a port of the EigenvalueSolver in JAMA,
    897     // which has been released to public domain by The MathWorks and the
    898     // National Institute of Standards and Technology (NIST).
    899     void compute(InputArray src)
    900     {
    901         if(isSymmetric(src)) {
    902             // Fall back to OpenCV for a symmetric matrix!
    903             cv::eigen(src, _eigenvalues, _eigenvectors);
    904         } else {
    905             Mat tmp;
    906             // Convert the given input matrix to double. Is there any way to
    907             // prevent allocating the temporary memory? Only used for copying
    908             // into working memory and deallocated after.
    909             src.getMat().convertTo(tmp, CV_64FC1);
    910             // Get dimension of the matrix.
    911             this->n = tmp.cols;
    912             // Allocate the matrix data to work on.
    913             this->H = alloc_2d<double> (n, n);
    914             // Now safely copy the data.
    915             for (int i = 0; i < tmp.rows; i++) {
    916                 for (int j = 0; j < tmp.cols; j++) {
    917                     this->H[i][j] = tmp.at<double>(i, j);
    918                 }
    919             }
    920             // Deallocates the temporary matrix before computing.
    921             tmp.release();
    922             // Performs the eigenvalue decomposition of H.
    923             compute();
    924         }
    925     }
    926 
    927     ~EigenvalueDecomposition() {}
    928 
    929     // Returns the eigenvalues of the Eigenvalue Decomposition.
    930     Mat eigenvalues() {    return _eigenvalues; }
    931     // Returns the eigenvectors of the Eigenvalue Decomposition.
    932     Mat eigenvectors() { return _eigenvectors; }
    933 };
    934 
    935 
    936 //------------------------------------------------------------------------------
    937 // Linear Discriminant Analysis implementation
    938 //------------------------------------------------------------------------------
    939 
    940 LDA::LDA(int num_components) : _num_components(num_components) { }
    941 
    942 LDA::LDA(InputArrayOfArrays src, InputArray labels, int num_components) : _num_components(num_components)
    943 {
    944     this->compute(src, labels); //! compute eigenvectors and eigenvalues
    945 }
    946 
    947 LDA::~LDA() {}
    948 
    949 void LDA::save(const String& filename) const
    950 {
    951     FileStorage fs(filename, FileStorage::WRITE);
    952     if (!fs.isOpened()) {
    953         CV_Error(Error::StsError, "File can't be opened for writing!");
    954     }
    955     this->save(fs);
    956     fs.release();
    957 }
    958 
    959 // Deserializes this object from a given filename.
    960 void LDA::load(const String& filename) {
    961     FileStorage fs(filename, FileStorage::READ);
    962     if (!fs.isOpened())
    963        CV_Error(Error::StsError, "File can't be opened for writing!");
    964     this->load(fs);
    965     fs.release();
    966 }
    967 
    968 // Serializes this object to a given FileStorage.
    969 void LDA::save(FileStorage& fs) const {
    970     // write matrices
    971     fs << "num_components" << _num_components;
    972     fs << "eigenvalues" << _eigenvalues;
    973     fs << "eigenvectors" << _eigenvectors;
    974 }
    975 
    976 // Deserializes this object from a given FileStorage.
    977 void LDA::load(const FileStorage& fs) {
    978     //read matrices
    979     fs["num_components"] >> _num_components;
    980     fs["eigenvalues"] >> _eigenvalues;
    981     fs["eigenvectors"] >> _eigenvectors;
    982 }
    983 
    984 void LDA::lda(InputArrayOfArrays _src, InputArray _lbls) {
    985     // get data
    986     Mat src = _src.getMat();
    987     std::vector<int> labels;
    988     // safely copy the labels
    989     {
    990         Mat tmp = _lbls.getMat();
    991         for(unsigned int i = 0; i < tmp.total(); i++) {
    992             labels.push_back(tmp.at<int>(i));
    993         }
    994     }
    995     // turn into row sampled matrix
    996     Mat data;
    997     // ensure working matrix is double precision
    998     src.convertTo(data, CV_64FC1);
    999     // maps the labels, so they're ascending: [0,1,...,C]
   1000     std::vector<int> mapped_labels(labels.size());
   1001     std::vector<int> num2label = remove_dups(labels);
   1002     std::map<int, int> label2num;
   1003     for (int i = 0; i < (int)num2label.size(); i++)
   1004         label2num[num2label[i]] = i;
   1005     for (size_t i = 0; i < labels.size(); i++)
   1006         mapped_labels[i] = label2num[labels[i]];
   1007     // get sample size, dimension
   1008     int N = data.rows;
   1009     int D = data.cols;
   1010     // number of unique labels
   1011     int C = (int)num2label.size();
   1012     // we can't do a LDA on one class, what do you
   1013     // want to separate from each other then?
   1014     if(C == 1) {
   1015         String error_message = "At least two classes are needed to perform a LDA. Reason: Only one class was given!";
   1016         CV_Error(Error::StsBadArg, error_message);
   1017     }
   1018     // throw error if less labels, than samples
   1019     if (labels.size() != static_cast<size_t>(N)) {
   1020         String error_message = format("The number of samples must equal the number of labels. Given %d labels, %d samples. ", labels.size(), N);
   1021         CV_Error(Error::StsBadArg, error_message);
   1022     }
   1023     // warn if within-classes scatter matrix becomes singular
   1024     if (N < D) {
   1025         std::cout << "Warning: Less observations than feature dimension given!"
   1026                   << "Computation will probably fail."
   1027                   << std::endl;
   1028     }
   1029     // clip number of components to be a valid number
   1030     if ((_num_components <= 0) || (_num_components > (C - 1))) {
   1031         _num_components = (C - 1);
   1032     }
   1033     // holds the mean over all classes
   1034     Mat meanTotal = Mat::zeros(1, D, data.type());
   1035     // holds the mean for each class
   1036     std::vector<Mat> meanClass(C);
   1037     std::vector<int> numClass(C);
   1038     // initialize
   1039     for (int i = 0; i < C; i++) {
   1040         numClass[i] = 0;
   1041         meanClass[i] = Mat::zeros(1, D, data.type()); //! Dx1 image vector
   1042     }
   1043     // calculate sums
   1044     for (int i = 0; i < N; i++) {
   1045         Mat instance = data.row(i);
   1046         int classIdx = mapped_labels[i];
   1047         add(meanTotal, instance, meanTotal);
   1048         add(meanClass[classIdx], instance, meanClass[classIdx]);
   1049         numClass[classIdx]++;
   1050     }
   1051     // calculate total mean
   1052     meanTotal.convertTo(meanTotal, meanTotal.type(), 1.0 / static_cast<double> (N));
   1053     // calculate class means
   1054     for (int i = 0; i < C; i++) {
   1055         meanClass[i].convertTo(meanClass[i], meanClass[i].type(), 1.0 / static_cast<double> (numClass[i]));
   1056     }
   1057     // subtract class means
   1058     for (int i = 0; i < N; i++) {
   1059         int classIdx = mapped_labels[i];
   1060         Mat instance = data.row(i);
   1061         subtract(instance, meanClass[classIdx], instance);
   1062     }
   1063     // calculate within-classes scatter
   1064     Mat Sw = Mat::zeros(D, D, data.type());
   1065     mulTransposed(data, Sw, true);
   1066     // calculate between-classes scatter
   1067     Mat Sb = Mat::zeros(D, D, data.type());
   1068     for (int i = 0; i < C; i++) {
   1069         Mat tmp;
   1070         subtract(meanClass[i], meanTotal, tmp);
   1071         mulTransposed(tmp, tmp, true);
   1072         add(Sb, tmp, Sb);
   1073     }
   1074     // invert Sw
   1075     Mat Swi = Sw.inv();
   1076     // M = inv(Sw)*Sb
   1077     Mat M;
   1078     gemm(Swi, Sb, 1.0, Mat(), 0.0, M);
   1079     EigenvalueDecomposition es(M);
   1080     _eigenvalues = es.eigenvalues();
   1081     _eigenvectors = es.eigenvectors();
   1082     // reshape eigenvalues, so they are stored by column
   1083     _eigenvalues = _eigenvalues.reshape(1, 1);
   1084     // get sorted indices descending by their eigenvalue
   1085     std::vector<int> sorted_indices = argsort(_eigenvalues, false);
   1086     // now sort eigenvalues and eigenvectors accordingly
   1087     _eigenvalues = sortMatrixColumnsByIndices(_eigenvalues, sorted_indices);
   1088     _eigenvectors = sortMatrixColumnsByIndices(_eigenvectors, sorted_indices);
   1089     // and now take only the num_components and we're out!
   1090     _eigenvalues = Mat(_eigenvalues, Range::all(), Range(0, _num_components));
   1091     _eigenvectors = Mat(_eigenvectors, Range::all(), Range(0, _num_components));
   1092 }
   1093 
   1094 void LDA::compute(InputArrayOfArrays _src, InputArray _lbls) {
   1095     switch(_src.kind()) {
   1096     case _InputArray::STD_VECTOR_MAT:
   1097         lda(asRowMatrix(_src, CV_64FC1), _lbls);
   1098         break;
   1099     case _InputArray::MAT:
   1100         lda(_src.getMat(), _lbls);
   1101         break;
   1102     default:
   1103         String error_message= format("InputArray Datatype %d is not supported.", _src.kind());
   1104         CV_Error(Error::StsBadArg, error_message);
   1105         break;
   1106     }
   1107 }
   1108 
   1109 // Projects samples into the LDA subspace.
   1110 Mat LDA::project(InputArray src) {
   1111    return subspaceProject(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t());
   1112 }
   1113 
   1114 // Reconstructs projections from the LDA subspace.
   1115 Mat LDA::reconstruct(InputArray src) {
   1116    return subspaceReconstruct(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t());
   1117 }
   1118 
   1119 }
   1120