Home | History | Annotate | Download | only in cuda
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #if !defined CUDA_DISABLER
     44 
     45 #include "opencv2/core/cuda/common.hpp"
     46 #include "opencv2/core/cuda/saturate_cast.hpp"
     47 #include "opencv2/core/cuda/limits.hpp"
     48 #include "opencv2/core/cuda/reduce.hpp"
     49 #include "opencv2/core/cuda/functional.hpp"
     50 
     51 #include "cuda/stereocsbp.hpp"
     52 
     53 namespace cv { namespace cuda { namespace device
     54 {
     55     namespace stereocsbp
     56     {
     57         ///////////////////////////////////////////////////////////////
     58         /////////////////////// init data cost ////////////////////////
     59         ///////////////////////////////////////////////////////////////
     60 
     61         template <int channels> static float __device__ pixeldiff(const uchar* left, const uchar* right, float max_data_term);
     62         template<> __device__ __forceinline__ float pixeldiff<1>(const uchar* left, const uchar* right, float max_data_term)
     63         {
     64             return fminf( ::abs((int)*left - *right), max_data_term);
     65         }
     66         template<> __device__ __forceinline__ float pixeldiff<3>(const uchar* left, const uchar* right, float max_data_term)
     67         {
     68             float tb = 0.114f * ::abs((int)left[0] - right[0]);
     69             float tg = 0.587f * ::abs((int)left[1] - right[1]);
     70             float tr = 0.299f * ::abs((int)left[2] - right[2]);
     71 
     72             return fminf(tr + tg + tb, max_data_term);
     73         }
     74         template<> __device__ __forceinline__ float pixeldiff<4>(const uchar* left, const uchar* right, float max_data_term)
     75         {
     76             uchar4 l = *((const uchar4*)left);
     77             uchar4 r = *((const uchar4*)right);
     78 
     79             float tb = 0.114f * ::abs((int)l.x - r.x);
     80             float tg = 0.587f * ::abs((int)l.y - r.y);
     81             float tr = 0.299f * ::abs((int)l.z - r.z);
     82 
     83             return fminf(tr + tg + tb, max_data_term);
     84         }
     85 
     86         template <typename T>
     87         __global__ void get_first_k_initial_global(uchar *ctemp, T* data_cost_selected_, T *selected_disp_pyr, int h, int w, int nr_plane, int ndisp,
     88             size_t msg_step, size_t disp_step)
     89         {
     90             int x = blockIdx.x * blockDim.x + threadIdx.x;
     91             int y = blockIdx.y * blockDim.y + threadIdx.y;
     92 
     93             if (y < h && x < w)
     94             {
     95                 T* selected_disparity = selected_disp_pyr + y * msg_step + x;
     96                 T* data_cost_selected = data_cost_selected_ + y * msg_step + x;
     97                 T* data_cost = (T*)ctemp + y * msg_step + x;
     98 
     99                 for(int i = 0; i < nr_plane; i++)
    100                 {
    101                     T minimum = device::numeric_limits<T>::max();
    102                     int id = 0;
    103                     for(int d = 0; d < ndisp; d++)
    104                     {
    105                         T cur = data_cost[d * disp_step];
    106                         if(cur < minimum)
    107                         {
    108                             minimum = cur;
    109                             id = d;
    110                         }
    111                     }
    112 
    113                     data_cost_selected[i  * disp_step] = minimum;
    114                     selected_disparity[i  * disp_step] = id;
    115                     data_cost         [id * disp_step] = numeric_limits<T>::max();
    116                 }
    117             }
    118         }
    119 
    120 
    121         template <typename T>
    122         __global__ void get_first_k_initial_local(uchar *ctemp, T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane, int ndisp,
    123             size_t msg_step, size_t disp_step)
    124         {
    125             int x = blockIdx.x * blockDim.x + threadIdx.x;
    126             int y = blockIdx.y * blockDim.y + threadIdx.y;
    127 
    128             if (y < h && x < w)
    129             {
    130                 T* selected_disparity = selected_disp_pyr + y * msg_step + x;
    131                 T* data_cost_selected = data_cost_selected_ + y * msg_step + x;
    132                 T* data_cost = (T*)ctemp + y * msg_step + x;
    133 
    134                 int nr_local_minimum = 0;
    135 
    136                 T prev = data_cost[0 * disp_step];
    137                 T cur  = data_cost[1 * disp_step];
    138                 T next = data_cost[2 * disp_step];
    139 
    140                 for (int d = 1; d < ndisp - 1 && nr_local_minimum < nr_plane; d++)
    141                 {
    142                     if (cur < prev && cur < next)
    143                     {
    144                         data_cost_selected[nr_local_minimum * disp_step] = cur;
    145                         selected_disparity[nr_local_minimum * disp_step] = d;
    146 
    147                         data_cost[d * disp_step] = numeric_limits<T>::max();
    148 
    149                         nr_local_minimum++;
    150                     }
    151                     prev = cur;
    152                     cur = next;
    153                     next = data_cost[(d + 1) * disp_step];
    154                 }
    155 
    156                 for (int i = nr_local_minimum; i < nr_plane; i++)
    157                 {
    158                     T minimum = numeric_limits<T>::max();
    159                     int id = 0;
    160 
    161                     for (int d = 0; d < ndisp; d++)
    162                     {
    163                         cur = data_cost[d * disp_step];
    164                         if (cur < minimum)
    165                         {
    166                             minimum = cur;
    167                             id = d;
    168                         }
    169                     }
    170                     data_cost_selected[i * disp_step] = minimum;
    171                     selected_disparity[i * disp_step] = id;
    172 
    173                     data_cost[id * disp_step] = numeric_limits<T>::max();
    174                 }
    175             }
    176         }
    177 
    178         template <typename T, int channels>
    179         __global__ void init_data_cost(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step,
    180                                       int h, int w, int level, int ndisp, float data_weight, float max_data_term,
    181                                       int min_disp, size_t msg_step, size_t disp_step)
    182         {
    183             int x = blockIdx.x * blockDim.x + threadIdx.x;
    184             int y = blockIdx.y * blockDim.y + threadIdx.y;
    185 
    186             if (y < h && x < w)
    187             {
    188                 int y0 = y << level;
    189                 int yt = (y + 1) << level;
    190 
    191                 int x0 = x << level;
    192                 int xt = (x + 1) << level;
    193 
    194                 T* data_cost = (T*)ctemp + y * msg_step + x;
    195 
    196                 for(int d = 0; d < ndisp; ++d)
    197                 {
    198                     float val = 0.0f;
    199                     for(int yi = y0; yi < yt; yi++)
    200                     {
    201                         for(int xi = x0; xi < xt; xi++)
    202                         {
    203                             int xr = xi - d;
    204                             if(d < min_disp || xr < 0)
    205                                 val += data_weight * max_data_term;
    206                             else
    207                             {
    208                                 const uchar* lle = cleft + yi * cimg_step + xi * channels;
    209                                 const uchar* lri = cright + yi * cimg_step + xr * channels;
    210 
    211                                 val += data_weight * pixeldiff<channels>(lle, lri, max_data_term);
    212                             }
    213                         }
    214                     }
    215                     data_cost[disp_step * d] = saturate_cast<T>(val);
    216                 }
    217             }
    218         }
    219 
    220         template <typename T, int winsz, int channels>
    221         __global__ void init_data_cost_reduce(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step,
    222                                               int level, int rows, int cols, int h, int ndisp, float data_weight, float max_data_term,
    223                                               int min_disp, size_t msg_step, size_t disp_step)
    224         {
    225             int x_out = blockIdx.x;
    226             int y_out = blockIdx.y % h;
    227             int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
    228 
    229             int tid = threadIdx.x;
    230 
    231             if (d < ndisp)
    232             {
    233                 int x0 = x_out << level;
    234                 int y0 = y_out << level;
    235 
    236                 int len = ::min(y0 + winsz, rows) - y0;
    237 
    238                 float val = 0.0f;
    239                 if (x0 + tid < cols)
    240                 {
    241                     if (x0 + tid - d < 0 || d < min_disp)
    242                         val = data_weight * max_data_term * len;
    243                     else
    244                     {
    245                         const uchar* lle =  cleft + y0 * cimg_step + channels * (x0 + tid    );
    246                         const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d);
    247 
    248                         for(int y = 0; y < len; ++y)
    249                         {
    250                             val += data_weight * pixeldiff<channels>(lle, lri, max_data_term);
    251 
    252                             lle += cimg_step;
    253                             lri += cimg_step;
    254                         }
    255                     }
    256                 }
    257 
    258                 extern __shared__ float smem[];
    259 
    260                 reduce<winsz>(smem + winsz * threadIdx.z, val, tid, plus<float>());
    261 
    262                 T* data_cost = (T*)ctemp + y_out * msg_step + x_out;
    263 
    264                 if (tid == 0)
    265                     data_cost[disp_step * d] = saturate_cast<T>(val);
    266             }
    267         }
    268 
    269 
    270         template <typename T>
    271         void init_data_cost_caller_(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int /*rows*/, int /*cols*/, int h, int w, int level, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step, cudaStream_t stream)
    272         {
    273             dim3 threads(32, 8, 1);
    274             dim3 grid(1, 1, 1);
    275 
    276             grid.x = divUp(w, threads.x);
    277             grid.y = divUp(h, threads.y);
    278 
    279             switch (channels)
    280             {
    281             case 1: init_data_cost<T, 1><<<grid, threads, 0, stream>>>(cleft, cright, ctemp, cimg_step, h, w, level, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    282             case 3: init_data_cost<T, 3><<<grid, threads, 0, stream>>>(cleft, cright, ctemp, cimg_step, h, w, level, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    283             case 4: init_data_cost<T, 4><<<grid, threads, 0, stream>>>(cleft, cright, ctemp, cimg_step, h, w, level, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    284             default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
    285             }
    286         }
    287 
    288         template <typename T, int winsz>
    289         void init_data_cost_reduce_caller_(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int rows, int cols, int h, int w, int level, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step, cudaStream_t stream)
    290         {
    291             const int threadsNum = 256;
    292             const size_t smem_size = threadsNum * sizeof(float);
    293 
    294             dim3 threads(winsz, 1, threadsNum / winsz);
    295             dim3 grid(w, h, 1);
    296             grid.y *= divUp(ndisp, threads.z);
    297 
    298             switch (channels)
    299             {
    300             case 1: init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(cleft, cright, ctemp, cimg_step, level, rows, cols, h, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    301             case 3: init_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(cleft, cright, ctemp, cimg_step, level, rows, cols, h, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    302             case 4: init_data_cost_reduce<T, winsz, 4><<<grid, threads, smem_size, stream>>>(cleft, cright, ctemp, cimg_step, level, rows, cols, h, ndisp, data_weight, max_data_term, min_disp, msg_step, disp_step); break;
    303             default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
    304             }
    305         }
    306 
    307         template<class T>
    308         void init_data_cost(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
    309                     int h, int w, int level, int nr_plane, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, bool use_local_init_data_cost, cudaStream_t stream)
    310         {
    311 
    312             typedef void (*InitDataCostCaller)(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int cols, int rows, int w, int h, int level, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step, cudaStream_t stream);
    313 
    314             static const InitDataCostCaller init_data_cost_callers[] =
    315             {
    316                 init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>,
    317                 init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>,
    318                 init_data_cost_reduce_caller_<T, 64>, init_data_cost_reduce_caller_<T, 128>, init_data_cost_reduce_caller_<T, 256>
    319             };
    320 
    321             size_t disp_step = msg_step * h;
    322 
    323             init_data_cost_callers[level](cleft, cright, ctemp, cimg_step, rows, cols, h, w, level, ndisp, channels, data_weight, max_data_term, min_disp, msg_step, disp_step, stream);
    324             cudaSafeCall( cudaGetLastError() );
    325 
    326             if (stream == 0)
    327                 cudaSafeCall( cudaDeviceSynchronize() );
    328 
    329             dim3 threads(32, 8, 1);
    330             dim3 grid(1, 1, 1);
    331 
    332             grid.x = divUp(w, threads.x);
    333             grid.y = divUp(h, threads.y);
    334 
    335             if (use_local_init_data_cost == true)
    336                 get_first_k_initial_local<<<grid, threads, 0, stream>>> (ctemp, data_cost_selected, disp_selected_pyr, h, w, nr_plane, ndisp, msg_step, disp_step);
    337             else
    338                 get_first_k_initial_global<<<grid, threads, 0, stream>>>(ctemp, data_cost_selected, disp_selected_pyr, h, w, nr_plane, ndisp, msg_step, disp_step);
    339 
    340             cudaSafeCall( cudaGetLastError() );
    341 
    342             if (stream == 0)
    343                 cudaSafeCall( cudaDeviceSynchronize() );
    344         }
    345 
    346         template void init_data_cost<short>(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int rows, int cols, short* disp_selected_pyr, short* data_cost_selected, size_t msg_step,
    347                     int h, int w, int level, int nr_plane, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, bool use_local_init_data_cost, cudaStream_t stream);
    348 
    349         template void init_data_cost<float>(const uchar *cleft, const uchar *cright, uchar *ctemp, size_t cimg_step, int rows, int cols, float* disp_selected_pyr, float* data_cost_selected, size_t msg_step,
    350                     int h, int w, int level, int nr_plane, int ndisp, int channels, float data_weight, float max_data_term, int min_disp, bool use_local_init_data_cost, cudaStream_t stream);
    351 
    352         ///////////////////////////////////////////////////////////////
    353         ////////////////////// compute data cost //////////////////////
    354         ///////////////////////////////////////////////////////////////
    355 
    356         template <typename T, int channels>
    357         __global__ void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2)
    358         {
    359             int x = blockIdx.x * blockDim.x + threadIdx.x;
    360             int y = blockIdx.y * blockDim.y + threadIdx.y;
    361 
    362             if (y < h && x < w)
    363             {
    364                 int y0 = y << level;
    365                 int yt = (y + 1) << level;
    366 
    367                 int x0 = x << level;
    368                 int xt = (x + 1) << level;
    369 
    370                 const T* selected_disparity = selected_disp_pyr + y/2 * msg_step + x/2;
    371                 T* data_cost = data_cost_ + y * msg_step + x;
    372 
    373                 for(int d = 0; d < nr_plane; d++)
    374                 {
    375                     float val = 0.0f;
    376                     for(int yi = y0; yi < yt; yi++)
    377                     {
    378                         for(int xi = x0; xi < xt; xi++)
    379                         {
    380                             int sel_disp = selected_disparity[d * disp_step2];
    381                             int xr = xi - sel_disp;
    382 
    383                             if (xr < 0 || sel_disp < min_disp)
    384                                 val += data_weight * max_data_term;
    385                             else
    386                             {
    387                                 const uchar* left_x = cleft + yi * cimg_step + xi * channels;
    388                                 const uchar* right_x = cright + yi * cimg_step + xr * channels;
    389 
    390                                 val += data_weight * pixeldiff<channels>(left_x, right_x, max_data_term);
    391                             }
    392                         }
    393                     }
    394                     data_cost[disp_step1 * d] = saturate_cast<T>(val);
    395                 }
    396             }
    397         }
    398 
    399         template <typename T, int winsz, int channels>
    400         __global__ void compute_data_cost_reduce(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2)
    401         {
    402             int x_out = blockIdx.x;
    403             int y_out = blockIdx.y % h;
    404             int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
    405 
    406             int tid = threadIdx.x;
    407 
    408             const T* selected_disparity = selected_disp_pyr + y_out/2 * msg_step + x_out/2;
    409             T* data_cost = data_cost_ + y_out * msg_step + x_out;
    410 
    411             if (d < nr_plane)
    412             {
    413                 int sel_disp = selected_disparity[d * disp_step2];
    414 
    415                 int x0 = x_out << level;
    416                 int y0 = y_out << level;
    417 
    418                 int len = ::min(y0 + winsz, rows) - y0;
    419 
    420                 float val = 0.0f;
    421                 if (x0 + tid < cols)
    422                 {
    423                     if (x0 + tid - sel_disp < 0 || sel_disp < min_disp)
    424                         val = data_weight * max_data_term * len;
    425                     else
    426                     {
    427                         const uchar* lle =  cleft + y0 * cimg_step + channels * (x0 + tid    );
    428                         const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - sel_disp);
    429 
    430                         for(int y = 0; y < len; ++y)
    431                         {
    432                             val += data_weight * pixeldiff<channels>(lle, lri, max_data_term);
    433 
    434                             lle += cimg_step;
    435                             lri += cimg_step;
    436                         }
    437                     }
    438                 }
    439 
    440                 extern __shared__ float smem[];
    441 
    442                 reduce<winsz>(smem + winsz * threadIdx.z, val, tid, plus<float>());
    443 
    444                 if (tid == 0)
    445                     data_cost[disp_step1 * d] = saturate_cast<T>(val);
    446             }
    447         }
    448 
    449         template <typename T>
    450         void compute_data_cost_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/,
    451                                       int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream)
    452         {
    453             dim3 threads(32, 8, 1);
    454             dim3 grid(1, 1, 1);
    455 
    456             grid.x = divUp(w, threads.x);
    457             grid.y = divUp(h, threads.y);
    458 
    459             switch(channels)
    460             {
    461             case 1: compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    462             case 3: compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    463             case 4: compute_data_cost<T, 4><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    464             default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
    465             }
    466         }
    467 
    468         template <typename T, int winsz>
    469         void compute_data_cost_reduce_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols,
    470                                       int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream)
    471         {
    472             const int threadsNum = 256;
    473             const size_t smem_size = threadsNum * sizeof(float);
    474 
    475             dim3 threads(winsz, 1, threadsNum / winsz);
    476             dim3 grid(w, h, 1);
    477             grid.y *= divUp(nr_plane, threads.z);
    478 
    479             switch (channels)
    480             {
    481             case 1: compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    482             case 3: compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    483             case 4: compute_data_cost_reduce<T, winsz, 4><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
    484             default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
    485             }
    486         }
    487 
    488         template<class T>
    489         void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, size_t msg_step,
    490                                int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, float data_weight, float max_data_term,
    491                                int min_disp, cudaStream_t stream)
    492         {
    493             typedef void (*ComputeDataCostCaller)(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols,
    494                 int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream);
    495 
    496             static const ComputeDataCostCaller callers[] =
    497             {
    498                 compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>,
    499                 compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>,
    500                 compute_data_cost_reduce_caller_<T, 64>, compute_data_cost_reduce_caller_<T, 128>, compute_data_cost_reduce_caller_<T, 256>
    501             };
    502 
    503             size_t disp_step1 = msg_step * h;
    504             size_t disp_step2 = msg_step * h2;
    505 
    506             callers[level](cleft, cright, cimg_step, disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2, stream);
    507             cudaSafeCall( cudaGetLastError() );
    508 
    509             if (stream == 0)
    510                 cudaSafeCall( cudaDeviceSynchronize() );
    511         }
    512 
    513         template void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const short* disp_selected_pyr, short* data_cost, size_t msg_step,
    514                                int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, cudaStream_t stream);
    515 
    516         template void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const float* disp_selected_pyr, float* data_cost, size_t msg_step,
    517                                int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, cudaStream_t stream);
    518 
    519 
    520         ///////////////////////////////////////////////////////////////
    521         //////////////////////// init message /////////////////////////
    522         ///////////////////////////////////////////////////////////////
    523 
    524 
    525          template <typename T>
    526         __device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
    527                                                      const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
    528                                                      T* data_cost_selected, T* disparity_selected_new, T* data_cost_new,
    529                                                      const T* data_cost_cur, const T* disparity_selected_cur,
    530                                                      int nr_plane, int nr_plane2, size_t disp_step1, size_t disp_step2)
    531         {
    532             for(int i = 0; i < nr_plane; i++)
    533             {
    534                 T minimum = numeric_limits<T>::max();
    535                 int id = 0;
    536                 for(int j = 0; j < nr_plane2; j++)
    537                 {
    538                     T cur = data_cost_new[j * disp_step1];
    539                     if(cur < minimum)
    540                     {
    541                         minimum = cur;
    542                         id = j;
    543                     }
    544                 }
    545 
    546                 data_cost_selected[i * disp_step1] = data_cost_cur[id * disp_step1];
    547                 disparity_selected_new[i * disp_step1] = disparity_selected_cur[id * disp_step2];
    548 
    549                 u_new[i * disp_step1] = u_cur[id * disp_step2];
    550                 d_new[i * disp_step1] = d_cur[id * disp_step2];
    551                 l_new[i * disp_step1] = l_cur[id * disp_step2];
    552                 r_new[i * disp_step1] = r_cur[id * disp_step2];
    553 
    554                 data_cost_new[id * disp_step1] = numeric_limits<T>::max();
    555             }
    556         }
    557 
    558         template <typename T>
    559         __global__ void init_message(uchar *ctemp, T* u_new_, T* d_new_, T* l_new_, T* r_new_,
    560                                      const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
    561                                      T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
    562                                      T* data_cost_selected_, const T* data_cost_,
    563                                      int h, int w, int nr_plane, int h2, int w2, int nr_plane2,
    564                                      size_t msg_step, size_t disp_step1, size_t disp_step2)
    565         {
    566             int x = blockIdx.x * blockDim.x + threadIdx.x;
    567             int y = blockIdx.y * blockDim.y + threadIdx.y;
    568 
    569             if (y < h && x < w)
    570             {
    571                 const T* u_cur = u_cur_ + ::min(h2-1, y/2 + 1) * msg_step + x/2;
    572                 const T* d_cur = d_cur_ + ::max(0, y/2 - 1)    * msg_step + x/2;
    573                 const T* l_cur = l_cur_ + (y/2)                * msg_step + ::min(w2-1, x/2 + 1);
    574                 const T* r_cur = r_cur_ + (y/2)                * msg_step + ::max(0, x/2 - 1);
    575 
    576                 T* data_cost_new = (T*)ctemp + y * msg_step + x;
    577 
    578                 const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * msg_step + x/2;
    579                 const T* data_cost = data_cost_ + y * msg_step + x;
    580 
    581                 for(int d = 0; d < nr_plane2; d++)
    582                 {
    583                     int idx2 = d * disp_step2;
    584 
    585                     T val  = data_cost[d * disp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2];
    586                     data_cost_new[d * disp_step1] = val;
    587                 }
    588 
    589                 T* data_cost_selected = data_cost_selected_ + y * msg_step + x;
    590                 T* disparity_selected_new = selected_disp_pyr_new + y * msg_step + x;
    591 
    592                 T* u_new = u_new_ + y * msg_step + x;
    593                 T* d_new = d_new_ + y * msg_step + x;
    594                 T* l_new = l_new_ + y * msg_step + x;
    595                 T* r_new = r_new_ + y * msg_step + x;
    596 
    597                 u_cur = u_cur_ + y/2 * msg_step + x/2;
    598                 d_cur = d_cur_ + y/2 * msg_step + x/2;
    599                 l_cur = l_cur_ + y/2 * msg_step + x/2;
    600                 r_cur = r_cur_ + y/2 * msg_step + x/2;
    601 
    602                 get_first_k_element_increase(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
    603                                              data_cost_selected, disparity_selected_new, data_cost_new,
    604                                              data_cost, disparity_selected_cur, nr_plane, nr_plane2,
    605                                              disp_step1, disp_step2);
    606             }
    607         }
    608 
    609 
    610         template<class T>
    611         void init_message(uchar *ctemp, T* u_new, T* d_new, T* l_new, T* r_new,
    612                           const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
    613                           T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
    614                           T* data_cost_selected, const T* data_cost, size_t msg_step,
    615                           int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
    616         {
    617 
    618             size_t disp_step1 = msg_step * h;
    619             size_t disp_step2 = msg_step * h2;
    620 
    621             dim3 threads(32, 8, 1);
    622             dim3 grid(1, 1, 1);
    623 
    624             grid.x = divUp(w, threads.x);
    625             grid.y = divUp(h, threads.y);
    626 
    627             init_message<<<grid, threads, 0, stream>>>(ctemp, u_new, d_new, l_new, r_new,
    628                                                        u_cur, d_cur, l_cur, r_cur,
    629                                                        selected_disp_pyr_new, selected_disp_pyr_cur,
    630                                                        data_cost_selected, data_cost,
    631                                                        h, w, nr_plane, h2, w2, nr_plane2,
    632                                                        msg_step, disp_step1, disp_step2);
    633             cudaSafeCall( cudaGetLastError() );
    634 
    635             if (stream == 0)
    636                 cudaSafeCall( cudaDeviceSynchronize() );
    637         }
    638 
    639 
    640         template void init_message(uchar *ctemp, short* u_new, short* d_new, short* l_new, short* r_new,
    641                           const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur,
    642                           short* selected_disp_pyr_new, const short* selected_disp_pyr_cur,
    643                           short* data_cost_selected, const short* data_cost, size_t msg_step,
    644                           int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);
    645 
    646         template void init_message(uchar *ctemp, float* u_new, float* d_new, float* l_new, float* r_new,
    647                           const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur,
    648                           float* selected_disp_pyr_new, const float* selected_disp_pyr_cur,
    649                           float* data_cost_selected, const float* data_cost, size_t msg_step,
    650                           int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);
    651 
    652         ///////////////////////////////////////////////////////////////
    653         ////////////////////  calc all iterations /////////////////////
    654         ///////////////////////////////////////////////////////////////
    655 
    656         template <typename T>
    657         __device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
    658                                           const T* dst_disp, const T* src_disp, int nr_plane, int max_disc_term, float disc_single_jump, volatile T* temp,
    659                                           size_t disp_step)
    660         {
    661             T minimum = numeric_limits<T>::max();
    662 
    663             for(int d = 0; d < nr_plane; d++)
    664             {
    665                 int idx = d * disp_step;
    666                 T val  = data[idx] + msg1[idx] + msg2[idx] + msg3[idx];
    667 
    668                 if(val < minimum)
    669                     minimum = val;
    670 
    671                 msg_dst[idx] = val;
    672             }
    673 
    674             float sum = 0;
    675             for(int d = 0; d < nr_plane; d++)
    676             {
    677                 float cost_min = minimum + max_disc_term;
    678                 T src_disp_reg = src_disp[d * disp_step];
    679 
    680                 for(int d2 = 0; d2 < nr_plane; d2++)
    681                     cost_min = fmin(cost_min, msg_dst[d2 * disp_step] + disc_single_jump * ::abs(dst_disp[d2 * disp_step] - src_disp_reg));
    682 
    683                 temp[d * disp_step] = saturate_cast<T>(cost_min);
    684                 sum += cost_min;
    685             }
    686             sum /= nr_plane;
    687 
    688             for(int d = 0; d < nr_plane; d++)
    689                 msg_dst[d * disp_step] = saturate_cast<T>(temp[d * disp_step] - sum);
    690         }
    691 
    692         template <typename T>
    693         __global__ void compute_message(uchar *ctemp, T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur, int h, int w, int nr_plane, int i, int max_disc_term, float disc_single_jump, size_t msg_step, size_t disp_step)
    694         {
    695             int y = blockIdx.y * blockDim.y + threadIdx.y;
    696             int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + i) & 1);
    697 
    698             if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
    699             {
    700                 const T* data = data_cost_selected + y * msg_step + x;
    701 
    702                 T* u = u_ + y * msg_step + x;
    703                 T* d = d_ + y * msg_step + x;
    704                 T* l = l_ + y * msg_step + x;
    705                 T* r = r_ + y * msg_step + x;
    706 
    707                 const T* disp = selected_disp_pyr_cur + y * msg_step + x;
    708 
    709                 T* temp = (T*)ctemp + y * msg_step + x;
    710 
    711                 message_per_pixel(data, u, r - 1, u + msg_step, l + 1, disp, disp - msg_step, nr_plane, max_disc_term, disc_single_jump, temp, disp_step);
    712                 message_per_pixel(data, d, d - msg_step, r - 1, l + 1, disp, disp + msg_step, nr_plane, max_disc_term, disc_single_jump, temp, disp_step);
    713                 message_per_pixel(data, l, u + msg_step, d - msg_step, l + 1, disp, disp - 1, nr_plane, max_disc_term, disc_single_jump, temp, disp_step);
    714                 message_per_pixel(data, r, u + msg_step, d - msg_step, r - 1, disp, disp + 1, nr_plane, max_disc_term, disc_single_jump, temp, disp_step);
    715             }
    716         }
    717 
    718 
    719         template<class T>
    720         void calc_all_iterations(uchar *ctemp, T* u, T* d, T* l, T* r, const T* data_cost_selected,
    721             const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, int max_disc_term, float disc_single_jump, cudaStream_t stream)
    722         {
    723             size_t disp_step = msg_step * h;
    724 
    725             dim3 threads(32, 8, 1);
    726             dim3 grid(1, 1, 1);
    727 
    728             grid.x = divUp(w, threads.x << 1);
    729             grid.y = divUp(h, threads.y);
    730 
    731             for(int t = 0; t < iters; ++t)
    732             {
    733                 compute_message<<<grid, threads, 0, stream>>>(ctemp, u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1, max_disc_term, disc_single_jump, msg_step, disp_step);
    734                 cudaSafeCall( cudaGetLastError() );
    735             }
    736             if (stream == 0)
    737                     cudaSafeCall( cudaDeviceSynchronize() );
    738         };
    739 
    740         template void calc_all_iterations(uchar *ctemp, short* u, short* d, short* l, short* r, const short* data_cost_selected, const short* selected_disp_pyr_cur, size_t msg_step,
    741             int h, int w, int nr_plane, int iters, int max_disc_term, float disc_single_jump, cudaStream_t stream);
    742 
    743         template void calc_all_iterations(uchar *ctemp, float* u, float* d, float* l, float* r, const float* data_cost_selected, const float* selected_disp_pyr_cur, size_t msg_step,
    744             int h, int w, int nr_plane, int iters, int max_disc_term, float disc_single_jump, cudaStream_t stream);
    745 
    746 
    747         ///////////////////////////////////////////////////////////////
    748         /////////////////////////// output ////////////////////////////
    749         ///////////////////////////////////////////////////////////////
    750 
    751 
    752         template <typename T>
    753         __global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
    754                                      const T* data_cost_selected, const T* disp_selected_pyr,
    755                                      PtrStepSz<short> disp, int nr_plane, size_t msg_step, size_t disp_step)
    756         {
    757             int x = blockIdx.x * blockDim.x + threadIdx.x;
    758             int y = blockIdx.y * blockDim.y + threadIdx.y;
    759 
    760             if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1)
    761             {
    762                 const T* data = data_cost_selected + y * msg_step + x;
    763                 const T* disp_selected = disp_selected_pyr + y * msg_step + x;
    764 
    765                 const T* u = u_ + (y+1) * msg_step + (x+0);
    766                 const T* d = d_ + (y-1) * msg_step + (x+0);
    767                 const T* l = l_ + (y+0) * msg_step + (x+1);
    768                 const T* r = r_ + (y+0) * msg_step + (x-1);
    769 
    770                 int best = 0;
    771                 T best_val = numeric_limits<T>::max();
    772                 for (int i = 0; i < nr_plane; ++i)
    773                 {
    774                     int idx = i * disp_step;
    775                     T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx];
    776 
    777                     if (val < best_val)
    778                     {
    779                         best_val = val;
    780                         best = saturate_cast<short>(disp_selected[idx]);
    781                     }
    782                 }
    783                 disp(y, x) = best;
    784             }
    785         }
    786 
    787         template<class T>
    788         void compute_disp(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
    789             const PtrStepSz<short>& disp, int nr_plane, cudaStream_t stream)
    790         {
    791             size_t disp_step = disp.rows * msg_step;
    792 
    793             dim3 threads(32, 8, 1);
    794             dim3 grid(1, 1, 1);
    795 
    796             grid.x = divUp(disp.cols, threads.x);
    797             grid.y = divUp(disp.rows, threads.y);
    798 
    799             compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected, disp, nr_plane, msg_step, disp_step);
    800             cudaSafeCall( cudaGetLastError() );
    801 
    802             if (stream == 0)
    803                 cudaSafeCall( cudaDeviceSynchronize() );
    804         }
    805 
    806         template void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step,
    807             const PtrStepSz<short>& disp, int nr_plane, cudaStream_t stream);
    808 
    809         template void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step,
    810             const PtrStepSz<short>& disp, int nr_plane, cudaStream_t stream);
    811     } // namespace stereocsbp
    812 }}} // namespace cv { namespace cuda { namespace cudev {
    813 
    814 #endif /* CUDA_DISABLER */
    815