Home | History | Annotate | Download | only in test
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "test_precomp.hpp"
     44 
     45 #ifdef HAVE_CUDA
     46 
     47 using namespace cvtest;
     48 
     49 namespace
     50 {
     51     cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
     52     {
     53         cv::Mat M(3, 3, CV_64FC1);
     54 
     55         M.at<double>(0, 0) = std::cos(angle); M.at<double>(0, 1) = -std::sin(angle); M.at<double>(0, 2) = srcSize.width / 2;
     56         M.at<double>(1, 0) = std::sin(angle); M.at<double>(1, 1) =  std::cos(angle); M.at<double>(1, 2) = 0.0;
     57         M.at<double>(2, 0) = 0.0            ; M.at<double>(2, 1) =  0.0            ; M.at<double>(2, 2) = 1.0;
     58 
     59         return M;
     60     }
     61 }
     62 
     63 ///////////////////////////////////////////////////////////////////
     64 // Test buildWarpPerspectiveMaps
     65 
     66 PARAM_TEST_CASE(BuildWarpPerspectiveMaps, cv::cuda::DeviceInfo, cv::Size, Inverse)
     67 {
     68     cv::cuda::DeviceInfo devInfo;
     69     cv::Size size;
     70     bool inverse;
     71 
     72     virtual void SetUp()
     73     {
     74         devInfo = GET_PARAM(0);
     75         size = GET_PARAM(1);
     76         inverse = GET_PARAM(2);
     77 
     78         cv::cuda::setDevice(devInfo.deviceID());
     79     }
     80 };
     81 
     82 CUDA_TEST_P(BuildWarpPerspectiveMaps, Accuracy)
     83 {
     84     cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
     85 
     86     cv::cuda::GpuMat xmap, ymap;
     87     cv::cuda::buildWarpPerspectiveMaps(M, inverse, size, xmap, ymap);
     88 
     89     cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
     90     int interpolation = cv::INTER_NEAREST;
     91     int borderMode = cv::BORDER_CONSTANT;
     92     int flags = interpolation;
     93     if (inverse)
     94         flags |= cv::WARP_INVERSE_MAP;
     95 
     96     cv::Mat dst;
     97     cv::remap(src, dst, cv::Mat(xmap), cv::Mat(ymap), interpolation, borderMode);
     98 
     99     cv::Mat dst_gold;
    100     cv::warpPerspective(src, dst_gold, M, size, flags, borderMode);
    101 
    102     EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
    103 }
    104 
    105 INSTANTIATE_TEST_CASE_P(CUDA_Warping, BuildWarpPerspectiveMaps, testing::Combine(
    106     ALL_DEVICES,
    107     DIFFERENT_SIZES,
    108     DIRECT_INVERSE));
    109 
    110 ///////////////////////////////////////////////////////////////////
    111 // Gold implementation
    112 
    113 namespace
    114 {
    115     template <typename T, template <typename> class Interpolator> void warpPerspectiveImpl(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal)
    116     {
    117         const int cn = src.channels();
    118 
    119         dst.create(dsize, src.type());
    120 
    121         for (int y = 0; y < dsize.height; ++y)
    122         {
    123             for (int x = 0; x < dsize.width; ++x)
    124             {
    125                 float coeff = static_cast<float>(M.at<double>(2, 0) * x + M.at<double>(2, 1) * y + M.at<double>(2, 2));
    126 
    127                 float xcoo = static_cast<float>((M.at<double>(0, 0) * x + M.at<double>(0, 1) * y + M.at<double>(0, 2)) / coeff);
    128                 float ycoo = static_cast<float>((M.at<double>(1, 0) * x + M.at<double>(1, 1) * y + M.at<double>(1, 2)) / coeff);
    129 
    130                 for (int c = 0; c < cn; ++c)
    131                     dst.at<T>(y, x * cn + c) = Interpolator<T>::getValue(src, ycoo, xcoo, c, borderType, borderVal);
    132             }
    133         }
    134     }
    135 
    136     void warpPerspectiveGold(const cv::Mat& src, const cv::Mat& M, bool inverse, cv::Size dsize, cv::Mat& dst, int interpolation, int borderType, cv::Scalar borderVal)
    137     {
    138         typedef void (*func_t)(const cv::Mat& src, const cv::Mat& M, cv::Size dsize, cv::Mat& dst, int borderType, cv::Scalar borderVal);
    139 
    140         static const func_t nearest_funcs[] =
    141         {
    142             warpPerspectiveImpl<unsigned char, NearestInterpolator>,
    143             warpPerspectiveImpl<signed char, NearestInterpolator>,
    144             warpPerspectiveImpl<unsigned short, NearestInterpolator>,
    145             warpPerspectiveImpl<short, NearestInterpolator>,
    146             warpPerspectiveImpl<int, NearestInterpolator>,
    147             warpPerspectiveImpl<float, NearestInterpolator>
    148         };
    149 
    150         static const func_t linear_funcs[] =
    151         {
    152             warpPerspectiveImpl<unsigned char, LinearInterpolator>,
    153             warpPerspectiveImpl<signed char, LinearInterpolator>,
    154             warpPerspectiveImpl<unsigned short, LinearInterpolator>,
    155             warpPerspectiveImpl<short, LinearInterpolator>,
    156             warpPerspectiveImpl<int, LinearInterpolator>,
    157             warpPerspectiveImpl<float, LinearInterpolator>
    158         };
    159 
    160         static const func_t cubic_funcs[] =
    161         {
    162             warpPerspectiveImpl<unsigned char, CubicInterpolator>,
    163             warpPerspectiveImpl<signed char, CubicInterpolator>,
    164             warpPerspectiveImpl<unsigned short, CubicInterpolator>,
    165             warpPerspectiveImpl<short, CubicInterpolator>,
    166             warpPerspectiveImpl<int, CubicInterpolator>,
    167             warpPerspectiveImpl<float, CubicInterpolator>
    168         };
    169 
    170         static const func_t* funcs[] = {nearest_funcs, linear_funcs, cubic_funcs};
    171 
    172         if (inverse)
    173             funcs[interpolation][src.depth()](src, M, dsize, dst, borderType, borderVal);
    174         else
    175         {
    176             cv::Mat iM;
    177             cv::invert(M, iM);
    178             funcs[interpolation][src.depth()](src, iM, dsize, dst, borderType, borderVal);
    179         }
    180     }
    181 }
    182 
    183 ///////////////////////////////////////////////////////////////////
    184 // Test
    185 
    186 PARAM_TEST_CASE(WarpPerspective, cv::cuda::DeviceInfo, cv::Size, MatType, Inverse, Interpolation, BorderType, UseRoi)
    187 {
    188     cv::cuda::DeviceInfo devInfo;
    189     cv::Size size;
    190     int type;
    191     bool inverse;
    192     int interpolation;
    193     int borderType;
    194     bool useRoi;
    195 
    196     virtual void SetUp()
    197     {
    198         devInfo = GET_PARAM(0);
    199         size = GET_PARAM(1);
    200         type = GET_PARAM(2);
    201         inverse = GET_PARAM(3);
    202         interpolation = GET_PARAM(4);
    203         borderType = GET_PARAM(5);
    204         useRoi = GET_PARAM(6);
    205 
    206         cv::cuda::setDevice(devInfo.deviceID());
    207     }
    208 };
    209 
    210 CUDA_TEST_P(WarpPerspective, Accuracy)
    211 {
    212     cv::Mat src = randomMat(size, type);
    213     cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
    214     int flags = interpolation;
    215     if (inverse)
    216         flags |= cv::WARP_INVERSE_MAP;
    217     cv::Scalar val = randomScalar(0.0, 255.0);
    218 
    219     cv::cuda::GpuMat dst = createMat(size, type, useRoi);
    220     cv::cuda::warpPerspective(loadMat(src, useRoi), dst, M, size, flags, borderType, val);
    221 
    222     cv::Mat dst_gold;
    223     warpPerspectiveGold(src, M, inverse, size, dst_gold, interpolation, borderType, val);
    224 
    225     EXPECT_MAT_NEAR(dst_gold, dst, src.depth() == CV_32F ? 1e-1 : 1.0);
    226 }
    227 
    228 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpPerspective, testing::Combine(
    229     ALL_DEVICES,
    230     DIFFERENT_SIZES,
    231     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_16UC1), MatType(CV_16UC3), MatType(CV_16UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
    232     DIRECT_INVERSE,
    233     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC)),
    234     testing::Values(BorderType(cv::BORDER_REFLECT101), BorderType(cv::BORDER_REPLICATE), BorderType(cv::BORDER_REFLECT), BorderType(cv::BORDER_WRAP)),
    235     WHOLE_SUBMAT));
    236 
    237 ///////////////////////////////////////////////////////////////////
    238 // Test NPP
    239 
    240 PARAM_TEST_CASE(WarpPerspectiveNPP, cv::cuda::DeviceInfo, MatType, Inverse, Interpolation)
    241 {
    242     cv::cuda::DeviceInfo devInfo;
    243     int type;
    244     bool inverse;
    245     int interpolation;
    246 
    247     virtual void SetUp()
    248     {
    249         devInfo = GET_PARAM(0);
    250         type = GET_PARAM(1);
    251         inverse = GET_PARAM(2);
    252         interpolation = GET_PARAM(3);
    253 
    254         cv::cuda::setDevice(devInfo.deviceID());
    255     }
    256 };
    257 
    258 CUDA_TEST_P(WarpPerspectiveNPP, Accuracy)
    259 {
    260     cv::Mat src = readImageType("stereobp/aloe-L.png", type);
    261     ASSERT_FALSE(src.empty());
    262 
    263     cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
    264     int flags = interpolation;
    265     if (inverse)
    266         flags |= cv::WARP_INVERSE_MAP;
    267 
    268     cv::cuda::GpuMat dst;
    269     cv::cuda::warpPerspective(loadMat(src), dst, M, src.size(), flags);
    270 
    271     cv::Mat dst_gold;
    272     warpPerspectiveGold(src, M, inverse, src.size(), dst_gold, interpolation, cv::BORDER_CONSTANT, cv::Scalar::all(0));
    273 
    274     EXPECT_MAT_SIMILAR(dst_gold, dst, 2e-2);
    275 }
    276 
    277 INSTANTIATE_TEST_CASE_P(CUDA_Warping, WarpPerspectiveNPP, testing::Combine(
    278     ALL_DEVICES,
    279     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC3), MatType(CV_32FC4)),
    280     DIRECT_INVERSE,
    281     testing::Values(Interpolation(cv::INTER_NEAREST), Interpolation(cv::INTER_LINEAR), Interpolation(cv::INTER_CUBIC))));
    282 
    283 #endif // HAVE_CUDA
    284