Home | History | Annotate | Download | only in opencl
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
     14 // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // @Authors
     18 //    Zhang Ying, zhangying913 (at) gmail.com
     19 //
     20 // Redistribution and use in source and binary forms, with or without modification,
     21 // are permitted provided that the following conditions are met:
     22 //
     23 //   * Redistribution's of source code must retain the above copyright notice,
     24 //     this list of conditions and the following disclaimer.
     25 //
     26 //   * Redistribution's in binary form must reproduce the above copyright notice,
     27 //     this list of conditions and the following disclaimer in the documentation
     28 //     and/or other materials provided with the distribution.
     29 //
     30 //   * The name of the copyright holders may not be used to endorse or promote products
     31 //     derived from this software without specific prior written permission.
     32 //
     33 // This software is provided by the copyright holders and contributors as is and
     34 // any express or implied warranties, including, but not limited to, the implied
     35 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     36 // In no event shall the Intel Corporation or contributors be liable for any direct,
     37 // indirect, incidental, special, exemplary, or consequential damages
     38 // (including, but not limited to, procurement of substitute goods or services;
     39 // loss of use, data, or profits; or business interruption) however caused
     40 // and on any theory of liability, whether in contract, strict liability,
     41 // or tort (including negligence or otherwise) arising in any way out of
     42 // the use of this software, even if advised of the possibility of such damage.
     43 //
     44 //M*/
     45 
     46 #ifdef DOUBLE_SUPPORT
     47 #ifdef cl_amd_fp64
     48 #pragma OPENCL EXTENSION cl_amd_fp64:enable
     49 #elif defined (cl_khr_fp64)
     50 #pragma OPENCL EXTENSION cl_khr_fp64:enable
     51 #endif
     52 #define CT double
     53 #else
     54 #define CT float
     55 #endif
     56 
     57 #define INTER_BITS 5
     58 #define INTER_TAB_SIZE (1 << INTER_BITS)
     59 #define INTER_SCALE 1.f / INTER_TAB_SIZE
     60 #define AB_BITS max(10, (int)INTER_BITS)
     61 #define AB_SCALE (1 << AB_BITS)
     62 #define INTER_REMAP_COEF_BITS 15
     63 #define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
     64 
     65 #define noconvert
     66 
     67 #ifndef ST
     68 #define ST T
     69 #endif
     70 
     71 #if cn != 3
     72 #define loadpix(addr)  *(__global const T*)(addr)
     73 #define storepix(val, addr)  *(__global T*)(addr) = val
     74 #define scalar scalar_
     75 #define pixsize (int)sizeof(T)
     76 #else
     77 #define loadpix(addr)  vload3(0, (__global const T1*)(addr))
     78 #define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr))
     79 #ifdef INTER_NEAREST
     80 #define scalar (T)(scalar_.x, scalar_.y, scalar_.z)
     81 #else
     82 #define scalar (WT)(scalar_.x, scalar_.y, scalar_.z)
     83 #endif
     84 #define pixsize ((int)sizeof(T1)*3)
     85 #endif
     86 
     87 #ifdef INTER_NEAREST
     88 
     89 __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
     90                               __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
     91                               __constant CT * M, ST scalar_)
     92 {
     93     int dx = get_global_id(0);
     94     int dy = get_global_id(1);
     95 
     96     if (dx < dst_cols && dy < dst_rows)
     97     {
     98         CT X0 = M[0] * dx + M[1] * dy + M[2];
     99         CT Y0 = M[3] * dx + M[4] * dy + M[5];
    100         CT W = M[6] * dx + M[7] * dy + M[8];
    101         W = W != 0.0f ? 1.f / W : 0.0f;
    102         short sx = convert_short_sat_rte(X0*W);
    103         short sy = convert_short_sat_rte(Y0*W);
    104 
    105         int dst_index = mad24(dy, dst_step, dx * pixsize + dst_offset);
    106 
    107         if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
    108         {
    109             int src_index = mad24(sy, src_step, sx * pixsize + src_offset);
    110             storepix(loadpix(srcptr + src_index), dstptr + dst_index);
    111         }
    112         else
    113             storepix(scalar, dstptr + dst_index);
    114     }
    115 }
    116 
    117 #elif defined INTER_LINEAR
    118 
    119 __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
    120                               __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
    121                               __constant CT * M, ST scalar_)
    122 {
    123     int dx = get_global_id(0);
    124     int dy = get_global_id(1);
    125 
    126     if (dx < dst_cols && dy < dst_rows)
    127     {
    128         CT X0 = M[0] * dx + M[1] * dy + M[2];
    129         CT Y0 = M[3] * dx + M[4] * dy + M[5];
    130         CT W = M[6] * dx + M[7] * dy + M[8];
    131         W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
    132         int X = rint(X0 * W), Y = rint(Y0 * W);
    133 
    134         short sx = convert_short_sat(X >> INTER_BITS);
    135         short sy = convert_short_sat(Y >> INTER_BITS);
    136         short ay = (short)(Y & (INTER_TAB_SIZE - 1));
    137         short ax = (short)(X & (INTER_TAB_SIZE - 1));
    138 
    139         WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ?
    140             convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + sx * pixsize))) : scalar;
    141         WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ?
    142             convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + (sx+1) * pixsize))) : scalar;
    143         WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
    144             convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + sx * pixsize))) : scalar;
    145         WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
    146             convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * pixsize))) : scalar;
    147 
    148         float taby = 1.f/INTER_TAB_SIZE*ay;
    149         float tabx = 1.f/INTER_TAB_SIZE*ax;
    150 
    151         int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize);
    152 
    153 #if depth <= 4
    154         int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
    155         int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
    156         int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
    157         int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
    158 
    159         WT val = v0 * itab0 +  v1 * itab1 + v2 * itab2 + v3 * itab3;
    160         storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index);
    161 #else
    162         float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
    163         WT val = v0 * tabx2 * taby2 +  v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby;
    164         storepix(convertToT(val), dstptr + dst_index);
    165 #endif
    166     }
    167 }
    168 
    169 #elif defined INTER_CUBIC
    170 
    171 inline void interpolateCubic( float x, float* coeffs )
    172 {
    173     const float A = -0.75f;
    174 
    175     coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A;
    176     coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f;
    177     coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f;
    178     coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
    179 }
    180 
    181 __kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
    182                               __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
    183                               __constant CT * M, ST scalar_)
    184 {
    185     int dx = get_global_id(0);
    186     int dy = get_global_id(1);
    187 
    188     if (dx < dst_cols && dy < dst_rows)
    189     {
    190         CT X0 = M[0] * dx + M[1] * dy + M[2];
    191         CT Y0 = M[3] * dx + M[4] * dy + M[5];
    192         CT W = M[6] * dx + M[7] * dy + M[8];
    193         W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
    194         int X = rint(X0 * W), Y = rint(Y0 * W);
    195 
    196         short sx = convert_short_sat(X >> INTER_BITS) - 1;
    197         short sy = convert_short_sat(Y >> INTER_BITS) - 1;
    198         short ay = (short)(Y & (INTER_TAB_SIZE-1));
    199         short ax = (short)(X & (INTER_TAB_SIZE-1));
    200 
    201         WT v[16];
    202         #pragma unroll
    203         for (int y = 0; y < 4; y++)
    204             #pragma unroll
    205             for (int x = 0; x < 4; x++)
    206                 v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ?
    207                     convertToWT(loadpix(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * pixsize))) : scalar;
    208 
    209         float tab1y[4], tab1x[4];
    210 
    211         float ayy = INTER_SCALE * ay;
    212         float axx = INTER_SCALE * ax;
    213         interpolateCubic(ayy, tab1y);
    214         interpolateCubic(axx, tab1x);
    215 
    216         int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize);
    217 
    218         WT sum = (WT)(0);
    219 #if depth <= 4
    220         int itab[16];
    221 
    222         #pragma unroll
    223         for (int i = 0; i < 16; i++)
    224             itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
    225 
    226         #pragma unroll
    227         for (int i = 0; i < 16; i++)
    228             sum += v[i] * itab[i];
    229         storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index);
    230 #else
    231         #pragma unroll
    232         for (int i = 0; i < 16; i++)
    233             sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)];
    234         storepix(convertToT( sum ), dstptr + dst_index);
    235 #endif
    236     }
    237 }
    238 
    239 #endif
    240