Home | History | Annotate | Download | only in src
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                          License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
     15 // Third party copyrights are property of their respective owners.
     16 //
     17 // Redistribution and use in source and binary forms, with or without modification,
     18 // are permitted provided that the following conditions are met:
     19 //
     20 //   * Redistribution's of source code must retain the above copyright notice,
     21 //     this list of conditions and the following disclaimer.
     22 //
     23 //   * Redistribution's in binary form must reproduce the above copyright notice,
     24 //     this list of conditions and the following disclaimer in the documentation
     25 //     and/or other materials provided with the distribution.
     26 //
     27 //   * The name of the copyright holders may not be used to endorse or promote products
     28 //     derived from this software without specific prior written permission.
     29 //
     30 // This software is provided by the copyright holders and contributors "as is" and
     31 // any express or implied warranties, including, but not limited to, the implied
     32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     33 // In no event shall the Intel Corporation or contributors be liable for any direct,
     34 // indirect, incidental, special, exemplary, or consequential damages
     35 // (including, but not limited to, procurement of substitute goods or services;
     36 // loss of use, data, or profits; or business interruption) however caused
     37 // and on any theory of liability, whether in contract, strict liability,
     38 // or tort (including negligence or otherwise) arising in any way out of
     39 // the use of this software, even if advised of the possibility of such damage.
     40 //
     41 //M*/
     42 
     43 #include "precomp.hpp"
     44 
     45 using namespace cv;
     46 
     47 namespace {
     48 
     49 template<typename _Tp> static inline bool
     50 decomposeCholesky(_Tp* A, size_t astep, int m)
     51 {
     52     if (!hal::Cholesky(A, astep, m, 0, 0, 0))
     53         return false;
     54     astep /= sizeof(A[0]);
     55     for (int i = 0; i < m; ++i)
     56         A[i*astep + i] = (_Tp)(1./A[i*astep + i]);
     57     return true;
     58 }
     59 
     60 } // namespace
     61 
     62 
     63 namespace cv {
     64 namespace detail {
     65 
     66 void focalsFromHomography(const Mat& H, double &f0, double &f1, bool &f0_ok, bool &f1_ok)
     67 {
     68     CV_Assert(H.type() == CV_64F && H.size() == Size(3, 3));
     69 
     70     const double* h = H.ptr<double>();
     71 
     72     double d1, d2; // Denominators
     73     double v1, v2; // Focal squares value candidates
     74 
     75     f1_ok = true;
     76     d1 = h[6] * h[7];
     77     d2 = (h[7] - h[6]) * (h[7] + h[6]);
     78     v1 = -(h[0] * h[1] + h[3] * h[4]) / d1;
     79     v2 = (h[0] * h[0] + h[3] * h[3] - h[1] * h[1] - h[4] * h[4]) / d2;
     80     if (v1 < v2) std::swap(v1, v2);
     81     if (v1 > 0 && v2 > 0) f1 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
     82     else if (v1 > 0) f1 = std::sqrt(v1);
     83     else f1_ok = false;
     84 
     85     f0_ok = true;
     86     d1 = h[0] * h[3] + h[1] * h[4];
     87     d2 = h[0] * h[0] + h[1] * h[1] - h[3] * h[3] - h[4] * h[4];
     88     v1 = -h[2] * h[5] / d1;
     89     v2 = (h[5] * h[5] - h[2] * h[2]) / d2;
     90     if (v1 < v2) std::swap(v1, v2);
     91     if (v1 > 0 && v2 > 0) f0 = std::sqrt(std::abs(d1) > std::abs(d2) ? v1 : v2);
     92     else if (v1 > 0) f0 = std::sqrt(v1);
     93     else f0_ok = false;
     94 }
     95 
     96 
     97 void estimateFocal(const std::vector<ImageFeatures> &features, const std::vector<MatchesInfo> &pairwise_matches,
     98                        std::vector<double> &focals)
     99 {
    100     const int num_images = static_cast<int>(features.size());
    101     focals.resize(num_images);
    102 
    103     std::vector<double> all_focals;
    104 
    105     for (int i = 0; i < num_images; ++i)
    106     {
    107         for (int j = 0; j < num_images; ++j)
    108         {
    109             const MatchesInfo &m = pairwise_matches[i*num_images + j];
    110             if (m.H.empty())
    111                 continue;
    112             double f0, f1;
    113             bool f0ok, f1ok;
    114             focalsFromHomography(m.H, f0, f1, f0ok, f1ok);
    115             if (f0ok && f1ok)
    116                 all_focals.push_back(std::sqrt(f0 * f1));
    117         }
    118     }
    119 
    120     if (static_cast<int>(all_focals.size()) >= num_images - 1)
    121     {
    122         double median;
    123 
    124         std::sort(all_focals.begin(), all_focals.end());
    125         if (all_focals.size() % 2 == 1)
    126             median = all_focals[all_focals.size() / 2];
    127         else
    128             median = (all_focals[all_focals.size() / 2 - 1] + all_focals[all_focals.size() / 2]) * 0.5;
    129 
    130         for (int i = 0; i < num_images; ++i)
    131             focals[i] = median;
    132     }
    133     else
    134     {
    135         LOGLN("Can't estimate focal length, will use naive approach");
    136         double focals_sum = 0;
    137         for (int i = 0; i < num_images; ++i)
    138             focals_sum += features[i].img_size.width + features[i].img_size.height;
    139         for (int i = 0; i < num_images; ++i)
    140             focals[i] = focals_sum / num_images;
    141     }
    142 }
    143 
    144 
    145 bool calibrateRotatingCamera(const std::vector<Mat> &Hs, Mat &K)
    146 {
    147     int m = static_cast<int>(Hs.size());
    148     CV_Assert(m >= 1);
    149 
    150     std::vector<Mat> Hs_(m);
    151     for (int i = 0; i < m; ++i)
    152     {
    153         CV_Assert(Hs[i].size() == Size(3, 3) && Hs[i].type() == CV_64F);
    154         Hs_[i] = Hs[i] / std::pow(determinant(Hs[i]), 1./3.);
    155     }
    156 
    157     const int idx_map[3][3] = {{0, 1, 2}, {1, 3, 4}, {2, 4, 5}};
    158     Mat_<double> A(6*m, 6);
    159     A.setTo(0);
    160 
    161     int eq_idx = 0;
    162     for (int k = 0; k < m; ++k)
    163     {
    164         Mat_<double> H(Hs_[k]);
    165         for (int i = 0; i < 3; ++i)
    166         {
    167             for (int j = i; j < 3; ++j, ++eq_idx)
    168             {
    169                 for (int l = 0; l < 3; ++l)
    170                 {
    171                     for (int s = 0; s < 3; ++s)
    172                     {
    173                         int idx = idx_map[l][s];
    174                         A(eq_idx, idx) += H(i,l) * H(j,s);
    175                     }
    176                 }
    177                 A(eq_idx, idx_map[i][j]) -= 1;
    178             }
    179         }
    180     }
    181 
    182     Mat_<double> wcoef;
    183     SVD::solveZ(A, wcoef);
    184 
    185     Mat_<double> W(3,3);
    186     for (int i = 0; i < 3; ++i)
    187         for (int j = i; j < 3; ++j)
    188             W(i,j) = W(j,i) = wcoef(idx_map[i][j], 0) / wcoef(5,0);
    189     if (!decomposeCholesky(W.ptr<double>(), W.step, 3))
    190         return false;
    191     W(0,1) = W(0,2) = W(1,2) = 0;
    192     K = W.t();
    193     return true;
    194 }
    195 
    196 } // namespace detail
    197 } // namespace cv
    198