Home | History | Annotate | Download | only in opts
      1 /*
      2  * Copyright 2014 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkColor_opts_SSE2_DEFINED
      9 #define SkColor_opts_SSE2_DEFINED
     10 
     11 #include <emmintrin.h>
     12 
     13 #define ASSERT_EQ(a,b) SkASSERT(0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8((a), (b))))
     14 
     15 // Because no _mm_mul_epi32() in SSE2, we emulate it here.
     16 // Multiplies 4 32-bit integers from a by 4 32-bit intergers from b.
     17 // The 4 multiplication results should be represented within 32-bit
     18 // integers, otherwise they would be overflow.
     19 static inline  __m128i Multiply32_SSE2(const __m128i& a, const __m128i& b) {
     20     // Calculate results of a0 * b0 and a2 * b2.
     21     __m128i r1 = _mm_mul_epu32(a, b);
     22     // Calculate results of a1 * b1 and a3 * b3.
     23     __m128i r2 = _mm_mul_epu32(_mm_srli_si128(a, 4), _mm_srli_si128(b, 4));
     24     // Shuffle results to [63..0] and interleave the results.
     25     __m128i r = _mm_unpacklo_epi32(_mm_shuffle_epi32(r1, _MM_SHUFFLE(0,0,2,0)),
     26                                    _mm_shuffle_epi32(r2, _MM_SHUFFLE(0,0,2,0)));
     27     return r;
     28 }
     29 
     30 static inline __m128i SkAlpha255To256_SSE2(const __m128i& alpha) {
     31     return _mm_add_epi32(alpha, _mm_set1_epi32(1));
     32 }
     33 
     34 // See #define SkAlphaMulAlpha(a, b)  SkMulDiv255Round(a, b) in SkXfermode.cpp.
     35 static inline __m128i SkAlphaMulAlpha_SSE2(const __m128i& a,
     36                                            const __m128i& b) {
     37     __m128i prod = _mm_mullo_epi16(a, b);
     38     prod = _mm_add_epi32(prod, _mm_set1_epi32(128));
     39     prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8));
     40     prod = _mm_srli_epi32(prod, 8);
     41 
     42     return prod;
     43 }
     44 
     45 // Portable version SkAlphaMulQ is in SkColorPriv.h.
     46 static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const __m128i& scale) {
     47     const __m128i mask = _mm_set1_epi32(0xFF00FF);
     48     __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale);
     49 
     50     // uint32_t rb = ((c & mask) * scale) >> 8
     51     __m128i rb = _mm_and_si128(mask, c);
     52     rb = _mm_mullo_epi16(rb, s);
     53     rb = _mm_srli_epi16(rb, 8);
     54 
     55     // uint32_t ag = ((c >> 8) & mask) * scale
     56     __m128i ag = _mm_srli_epi16(c, 8);
     57     ASSERT_EQ(ag, _mm_and_si128(mask, ag));  // ag = _mm_srli_epi16(c, 8) did this for us.
     58     ag = _mm_mullo_epi16(ag, s);
     59 
     60     // (rb & mask) | (ag & ~mask)
     61     ASSERT_EQ(rb, _mm_and_si128(mask, rb));  // rb = _mm_srli_epi16(rb, 8) did this for us.
     62     ag = _mm_andnot_si128(mask, ag);
     63     return _mm_or_si128(rb, ag);
     64 }
     65 
     66 // Fast path for SkAlphaMulQ_SSE2 with a constant scale factor.
     67 static inline __m128i SkAlphaMulQ_SSE2(const __m128i& c, const unsigned scale) {
     68     const __m128i mask = _mm_set1_epi32(0xFF00FF);
     69     __m128i s = _mm_set1_epi16(scale << 8); // Move scale factor to upper byte of word.
     70 
     71     // With mulhi, red and blue values are already in the right place and
     72     // don't need to be divided by 256.
     73     __m128i rb = _mm_and_si128(mask, c);
     74     rb = _mm_mulhi_epu16(rb, s);
     75 
     76     __m128i ag = _mm_andnot_si128(mask, c);
     77     ag = _mm_mulhi_epu16(ag, s);     // Alpha and green values are in the higher byte of each word.
     78     ag = _mm_andnot_si128(mask, ag);
     79 
     80     return _mm_or_si128(rb, ag);
     81 }
     82 
     83 static inline __m128i SkGetPackedA32_SSE2(const __m128i& src) {
     84 #if SK_A32_SHIFT == 24                // It's very common (universal?) that alpha is the top byte.
     85     return _mm_srli_epi32(src, 24);   // You'd hope the compiler would remove the left shift then,
     86 #else                                 // but I've seen Clang just do a dumb left shift of zero. :(
     87     __m128i a = _mm_slli_epi32(src, (24 - SK_A32_SHIFT));
     88     return _mm_srli_epi32(a, 24);
     89 #endif
     90 }
     91 
     92 static inline __m128i SkGetPackedR32_SSE2(const __m128i& src) {
     93     __m128i r = _mm_slli_epi32(src, (24 - SK_R32_SHIFT));
     94     return _mm_srli_epi32(r, 24);
     95 }
     96 
     97 static inline __m128i SkGetPackedG32_SSE2(const __m128i& src) {
     98     __m128i g = _mm_slli_epi32(src, (24 - SK_G32_SHIFT));
     99     return _mm_srli_epi32(g, 24);
    100 }
    101 
    102 static inline __m128i SkGetPackedB32_SSE2(const __m128i& src) {
    103     __m128i b = _mm_slli_epi32(src, (24 - SK_B32_SHIFT));
    104     return _mm_srli_epi32(b, 24);
    105 }
    106 
    107 static inline __m128i SkMul16ShiftRound_SSE2(const __m128i& a,
    108                                              const __m128i& b, int shift) {
    109     __m128i prod = _mm_mullo_epi16(a, b);
    110     prod = _mm_add_epi16(prod, _mm_set1_epi16(1 << (shift - 1)));
    111     prod = _mm_add_epi16(prod, _mm_srli_epi16(prod, shift));
    112     prod = _mm_srli_epi16(prod, shift);
    113 
    114     return prod;
    115 }
    116 
    117 static inline __m128i SkPackRGB16_SSE2(const __m128i& r,
    118                                        const __m128i& g, const __m128i& b) {
    119     __m128i dr = _mm_slli_epi16(r, SK_R16_SHIFT);
    120     __m128i dg = _mm_slli_epi16(g, SK_G16_SHIFT);
    121     __m128i db = _mm_slli_epi16(b, SK_B16_SHIFT);
    122 
    123     __m128i c = _mm_or_si128(dr, dg);
    124     return _mm_or_si128(c, db);
    125 }
    126 
    127 static inline __m128i SkPackARGB32_SSE2(const __m128i& a, const __m128i& r,
    128                                         const __m128i& g, const __m128i& b) {
    129     __m128i da = _mm_slli_epi32(a, SK_A32_SHIFT);
    130     __m128i dr = _mm_slli_epi32(r, SK_R32_SHIFT);
    131     __m128i dg = _mm_slli_epi32(g, SK_G32_SHIFT);
    132     __m128i db = _mm_slli_epi32(b, SK_B32_SHIFT);
    133 
    134     __m128i c = _mm_or_si128(da, dr);
    135     c = _mm_or_si128(c, dg);
    136     return _mm_or_si128(c, db);
    137 }
    138 
    139 static inline __m128i SkPacked16ToR32_SSE2(const __m128i& src) {
    140     __m128i r = _mm_srli_epi32(src, SK_R16_SHIFT);
    141     r = _mm_and_si128(r, _mm_set1_epi32(SK_R16_MASK));
    142     r = _mm_or_si128(_mm_slli_epi32(r, (8 - SK_R16_BITS)),
    143                      _mm_srli_epi32(r, (2 * SK_R16_BITS - 8)));
    144 
    145     return r;
    146 }
    147 
    148 static inline __m128i SkPacked16ToG32_SSE2(const __m128i& src) {
    149     __m128i g = _mm_srli_epi32(src, SK_G16_SHIFT);
    150     g = _mm_and_si128(g, _mm_set1_epi32(SK_G16_MASK));
    151     g = _mm_or_si128(_mm_slli_epi32(g, (8 - SK_G16_BITS)),
    152                      _mm_srli_epi32(g, (2 * SK_G16_BITS - 8)));
    153 
    154     return g;
    155 }
    156 
    157 static inline __m128i SkPacked16ToB32_SSE2(const __m128i& src) {
    158     __m128i b = _mm_srli_epi32(src, SK_B16_SHIFT);
    159     b = _mm_and_si128(b, _mm_set1_epi32(SK_B16_MASK));
    160     b = _mm_or_si128(_mm_slli_epi32(b, (8 - SK_B16_BITS)),
    161                      _mm_srli_epi32(b, (2 * SK_B16_BITS - 8)));
    162 
    163     return b;
    164 }
    165 
    166 static inline __m128i SkPixel16ToPixel32_SSE2(const __m128i& src) {
    167     __m128i r = SkPacked16ToR32_SSE2(src);
    168     __m128i g = SkPacked16ToG32_SSE2(src);
    169     __m128i b = SkPacked16ToB32_SSE2(src);
    170 
    171     return SkPackARGB32_SSE2(_mm_set1_epi32(0xFF), r, g, b);
    172 }
    173 
    174 static inline __m128i SkPixel32ToPixel16_ToU16_SSE2(const __m128i& src_pixel1,
    175                                                     const __m128i& src_pixel2) {
    176     // Calculate result r.
    177     __m128i r1 = _mm_srli_epi32(src_pixel1,
    178                                 SK_R32_SHIFT + (8 - SK_R16_BITS));
    179     r1 = _mm_and_si128(r1, _mm_set1_epi32(SK_R16_MASK));
    180     __m128i r2 = _mm_srli_epi32(src_pixel2,
    181                                 SK_R32_SHIFT + (8 - SK_R16_BITS));
    182     r2 = _mm_and_si128(r2, _mm_set1_epi32(SK_R16_MASK));
    183     __m128i r = _mm_packs_epi32(r1, r2);
    184 
    185     // Calculate result g.
    186     __m128i g1 = _mm_srli_epi32(src_pixel1,
    187                                 SK_G32_SHIFT + (8 - SK_G16_BITS));
    188     g1 = _mm_and_si128(g1, _mm_set1_epi32(SK_G16_MASK));
    189     __m128i g2 = _mm_srli_epi32(src_pixel2,
    190                                 SK_G32_SHIFT + (8 - SK_G16_BITS));
    191     g2 = _mm_and_si128(g2, _mm_set1_epi32(SK_G16_MASK));
    192     __m128i g = _mm_packs_epi32(g1, g2);
    193 
    194     // Calculate result b.
    195     __m128i b1 = _mm_srli_epi32(src_pixel1,
    196                                 SK_B32_SHIFT + (8 - SK_B16_BITS));
    197     b1 = _mm_and_si128(b1, _mm_set1_epi32(SK_B16_MASK));
    198     __m128i b2 = _mm_srli_epi32(src_pixel2,
    199                                 SK_B32_SHIFT + (8 - SK_B16_BITS));
    200     b2 = _mm_and_si128(b2, _mm_set1_epi32(SK_B16_MASK));
    201     __m128i b = _mm_packs_epi32(b1, b2);
    202 
    203     // Store 8 16-bit colors in dst.
    204     __m128i d_pixel = SkPackRGB16_SSE2(r, g, b);
    205 
    206     return d_pixel;
    207 }
    208 
    209 // Portable version is SkPMSrcOver in SkColorPriv.h.
    210 static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) {
    211     return _mm_add_epi32(src,
    212                          SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256),
    213                                                              SkGetPackedA32_SSE2(src))));
    214 }
    215 
    216 // Portable version is SkBlendARGB32 in SkColorPriv.h.
    217 static inline __m128i SkBlendARGB32_SSE2(const __m128i& src, const __m128i& dst,
    218                                          const __m128i& aa) {
    219     __m128i src_scale = SkAlpha255To256_SSE2(aa);
    220     // SkAlpha255To256(255 - SkAlphaMul(SkGetPackedA32(src), src_scale))
    221     __m128i dst_scale = SkGetPackedA32_SSE2(src);
    222     dst_scale = _mm_mullo_epi16(dst_scale, src_scale);
    223     dst_scale = _mm_srli_epi16(dst_scale, 8);
    224     dst_scale = _mm_sub_epi32(_mm_set1_epi32(256), dst_scale);
    225 
    226     __m128i result = SkAlphaMulQ_SSE2(src, src_scale);
    227     return _mm_add_epi8(result, SkAlphaMulQ_SSE2(dst, dst_scale));
    228 }
    229 
    230 // Fast path for SkBlendARGB32_SSE2 with a constant alpha factor.
    231 static inline __m128i SkBlendARGB32_SSE2(const __m128i& src, const __m128i& dst,
    232                                          const unsigned aa) {
    233     unsigned alpha = SkAlpha255To256(aa);
    234     __m128i src_scale = _mm_set1_epi32(alpha);
    235     // SkAlpha255To256(255 - SkAlphaMul(SkGetPackedA32(src), src_scale))
    236     __m128i dst_scale = SkGetPackedA32_SSE2(src);
    237     dst_scale = _mm_mullo_epi16(dst_scale, src_scale);
    238     dst_scale = _mm_srli_epi16(dst_scale, 8);
    239     dst_scale = _mm_sub_epi32(_mm_set1_epi32(256), dst_scale);
    240 
    241     __m128i result = SkAlphaMulQ_SSE2(src, alpha);
    242     return _mm_add_epi8(result, SkAlphaMulQ_SSE2(dst, dst_scale));
    243 }
    244 
    245 #undef ASSERT_EQ
    246 #endif // SkColor_opts_SSE2_DEFINED
    247