Home | History | Annotate | Download | only in base
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/base/cpu.h"
      6 
      7 #if V8_LIBC_MSVCRT
      8 #include <intrin.h>  // __cpuid()
      9 #endif
     10 #if V8_OS_LINUX
     11 #include <linux/auxvec.h>  // AT_HWCAP
     12 #endif
     13 #if V8_GLIBC_PREREQ(2, 16)
     14 #include <sys/auxv.h>  // getauxval()
     15 #endif
     16 #if V8_OS_QNX
     17 #include <sys/syspage.h>  // cpuinfo
     18 #endif
     19 #if V8_OS_LINUX && V8_HOST_ARCH_PPC
     20 #include <elf.h>
     21 #endif
     22 #if V8_OS_AIX
     23 #include <sys/systemcfg.h>  // _system_configuration
     24 #ifndef POWER_8
     25 #define POWER_8 0x10000
     26 #endif
     27 #endif
     28 #if V8_OS_POSIX
     29 #include <unistd.h>  // sysconf()
     30 #endif
     31 
     32 #include <ctype.h>
     33 #include <limits.h>
     34 #include <stdio.h>
     35 #include <stdlib.h>
     36 #include <string.h>
     37 #include <algorithm>
     38 
     39 #include "src/base/logging.h"
     40 #if V8_OS_WIN
     41 #include "src/base/win32-headers.h"  // NOLINT
     42 #endif
     43 
     44 namespace v8 {
     45 namespace base {
     46 
     47 #if defined(__pnacl__)
     48 // Portable host shouldn't do feature detection.
     49 #elif V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
     50 
     51 // Define __cpuid() for non-MSVC libraries.
     52 #if !V8_LIBC_MSVCRT
     53 
     54 static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
     55 // Clear ecx to align with __cpuid() of MSVC:
     56 // https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
     57 #if defined(__i386__) && defined(__pic__)
     58   // Make sure to preserve ebx, which contains the pointer
     59   // to the GOT in case we're generating PIC.
     60   __asm__ volatile(
     61       "mov %%ebx, %%edi\n\t"
     62       "cpuid\n\t"
     63       "xchg %%edi, %%ebx\n\t"
     64       : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
     65         "=d"(cpu_info[3])
     66       : "a"(info_type), "c"(0));
     67 #else
     68   __asm__ volatile("cpuid \n\t"
     69                    : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
     70                      "=d"(cpu_info[3])
     71                    : "a"(info_type), "c"(0));
     72 #endif  // defined(__i386__) && defined(__pic__)
     73 }
     74 
     75 #endif  // !V8_LIBC_MSVCRT
     76 
     77 #elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 \
     78     || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
     79 
     80 #if V8_OS_LINUX
     81 
     82 #if V8_HOST_ARCH_ARM
     83 
     84 // See <uapi/asm/hwcap.h> kernel header.
     85 /*
     86  * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
     87  */
     88 #define HWCAP_SWP (1 << 0)
     89 #define HWCAP_HALF  (1 << 1)
     90 #define HWCAP_THUMB (1 << 2)
     91 #define HWCAP_26BIT (1 << 3)  /* Play it safe */
     92 #define HWCAP_FAST_MULT (1 << 4)
     93 #define HWCAP_FPA (1 << 5)
     94 #define HWCAP_VFP (1 << 6)
     95 #define HWCAP_EDSP  (1 << 7)
     96 #define HWCAP_JAVA  (1 << 8)
     97 #define HWCAP_IWMMXT  (1 << 9)
     98 #define HWCAP_CRUNCH  (1 << 10)
     99 #define HWCAP_THUMBEE (1 << 11)
    100 #define HWCAP_NEON  (1 << 12)
    101 #define HWCAP_VFPv3 (1 << 13)
    102 #define HWCAP_VFPv3D16  (1 << 14) /* also set for VFPv4-D16 */
    103 #define HWCAP_TLS (1 << 15)
    104 #define HWCAP_VFPv4 (1 << 16)
    105 #define HWCAP_IDIVA (1 << 17)
    106 #define HWCAP_IDIVT (1 << 18)
    107 #define HWCAP_VFPD32  (1 << 19) /* set if VFP has 32 regs (not 16) */
    108 #define HWCAP_IDIV  (HWCAP_IDIVA | HWCAP_IDIVT)
    109 #define HWCAP_LPAE  (1 << 20)
    110 
    111 static uint32_t ReadELFHWCaps() {
    112   uint32_t result = 0;
    113 #if V8_GLIBC_PREREQ(2, 16)
    114   result = static_cast<uint32_t>(getauxval(AT_HWCAP));
    115 #else
    116   // Read the ELF HWCAP flags by parsing /proc/self/auxv.
    117   FILE* fp = fopen("/proc/self/auxv", "r");
    118   if (fp != NULL) {
    119     struct { uint32_t tag; uint32_t value; } entry;
    120     for (;;) {
    121       size_t n = fread(&entry, sizeof(entry), 1, fp);
    122       if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
    123         break;
    124       }
    125       if (entry.tag == AT_HWCAP) {
    126         result = entry.value;
    127         break;
    128       }
    129     }
    130     fclose(fp);
    131   }
    132 #endif
    133   return result;
    134 }
    135 
    136 #endif  // V8_HOST_ARCH_ARM
    137 
    138 #if V8_HOST_ARCH_MIPS
    139 int __detect_fp64_mode(void) {
    140   double result = 0;
    141   // Bit representation of (double)1 is 0x3FF0000000000000.
    142   __asm__ volatile(
    143       ".set push\n\t"
    144       ".set noreorder\n\t"
    145       ".set oddspreg\n\t"
    146       "lui $t0, 0x3FF0\n\t"
    147       "ldc1 $f0, %0\n\t"
    148       "mtc1 $t0, $f1\n\t"
    149       "sdc1 $f0, %0\n\t"
    150       ".set pop\n\t"
    151       : "+m"(result)
    152       :
    153       : "t0", "$f0", "$f1", "memory");
    154 
    155   return !(result == 1);
    156 }
    157 
    158 
    159 int __detect_mips_arch_revision(void) {
    160   // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
    161   // kernel.
    162   uint32_t result = 0;
    163   __asm__ volatile(
    164       "move $v0, $zero\n\t"
    165       // Encoding for "addi $v0, $v0, 1" on non-r6,
    166       // which is encoding for "bovc $v0, %v0, 1" on r6.
    167       // Use machine code directly to avoid compilation errors with different
    168       // toolchains and maintain compatibility.
    169       ".word 0x20420001\n\t"
    170       "sw $v0, %0\n\t"
    171       : "=m"(result)
    172       :
    173       : "v0", "memory");
    174   // Result is 0 on r6 architectures, 1 on other architecture revisions.
    175   // Fall-back to the least common denominator which is mips32 revision 1.
    176   return result ? 1 : 6;
    177 }
    178 #endif
    179 
    180 // Extract the information exposed by the kernel via /proc/cpuinfo.
    181 class CPUInfo final {
    182  public:
    183   CPUInfo() : datalen_(0) {
    184     // Get the size of the cpuinfo file by reading it until the end. This is
    185     // required because files under /proc do not always return a valid size
    186     // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
    187     static const char PATHNAME[] = "/proc/cpuinfo";
    188     FILE* fp = fopen(PATHNAME, "r");
    189     if (fp != NULL) {
    190       for (;;) {
    191         char buffer[256];
    192         size_t n = fread(buffer, 1, sizeof(buffer), fp);
    193         if (n == 0) {
    194           break;
    195         }
    196         datalen_ += n;
    197       }
    198       fclose(fp);
    199     }
    200 
    201     // Read the contents of the cpuinfo file.
    202     data_ = new char[datalen_ + 1];
    203     fp = fopen(PATHNAME, "r");
    204     if (fp != NULL) {
    205       for (size_t offset = 0; offset < datalen_; ) {
    206         size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
    207         if (n == 0) {
    208           break;
    209         }
    210         offset += n;
    211       }
    212       fclose(fp);
    213     }
    214 
    215     // Zero-terminate the data.
    216     data_[datalen_] = '\0';
    217   }
    218 
    219   ~CPUInfo() {
    220     delete[] data_;
    221   }
    222 
    223   // Extract the content of a the first occurence of a given field in
    224   // the content of the cpuinfo file and return it as a heap-allocated
    225   // string that must be freed by the caller using delete[].
    226   // Return NULL if not found.
    227   char* ExtractField(const char* field) const {
    228     DCHECK(field != NULL);
    229 
    230     // Look for first field occurence, and ensure it starts the line.
    231     size_t fieldlen = strlen(field);
    232     char* p = data_;
    233     for (;;) {
    234       p = strstr(p, field);
    235       if (p == NULL) {
    236         return NULL;
    237       }
    238       if (p == data_ || p[-1] == '\n') {
    239         break;
    240       }
    241       p += fieldlen;
    242     }
    243 
    244     // Skip to the first colon followed by a space.
    245     p = strchr(p + fieldlen, ':');
    246     if (p == NULL || !isspace(p[1])) {
    247       return NULL;
    248     }
    249     p += 2;
    250 
    251     // Find the end of the line.
    252     char* q = strchr(p, '\n');
    253     if (q == NULL) {
    254       q = data_ + datalen_;
    255     }
    256 
    257     // Copy the line into a heap-allocated buffer.
    258     size_t len = q - p;
    259     char* result = new char[len + 1];
    260     if (result != NULL) {
    261       memcpy(result, p, len);
    262       result[len] = '\0';
    263     }
    264     return result;
    265   }
    266 
    267  private:
    268   char* data_;
    269   size_t datalen_;
    270 };
    271 
    272 #if V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    273 
    274 // Checks that a space-separated list of items contains one given 'item'.
    275 static bool HasListItem(const char* list, const char* item) {
    276   ssize_t item_len = strlen(item);
    277   const char* p = list;
    278   if (p != NULL) {
    279     while (*p != '\0') {
    280       // Skip whitespace.
    281       while (isspace(*p)) ++p;
    282 
    283       // Find end of current list item.
    284       const char* q = p;
    285       while (*q != '\0' && !isspace(*q)) ++q;
    286 
    287       if (item_len == q - p && memcmp(p, item, item_len) == 0) {
    288         return true;
    289       }
    290 
    291       // Skip to next item.
    292       p = q;
    293     }
    294   }
    295   return false;
    296 }
    297 
    298 #endif  // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    299 
    300 #endif  // V8_OS_LINUX
    301 
    302 #endif  // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
    303 
    304 CPU::CPU()
    305     : stepping_(0),
    306       model_(0),
    307       ext_model_(0),
    308       family_(0),
    309       ext_family_(0),
    310       type_(0),
    311       implementer_(0),
    312       architecture_(0),
    313       variant_(-1),
    314       part_(0),
    315       icache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    316       dcache_line_size_(UNKNOWN_CACHE_LINE_SIZE),
    317       has_fpu_(false),
    318       has_cmov_(false),
    319       has_sahf_(false),
    320       has_mmx_(false),
    321       has_sse_(false),
    322       has_sse2_(false),
    323       has_sse3_(false),
    324       has_ssse3_(false),
    325       has_sse41_(false),
    326       has_sse42_(false),
    327       is_atom_(false),
    328       has_osxsave_(false),
    329       has_avx_(false),
    330       has_fma3_(false),
    331       has_bmi1_(false),
    332       has_bmi2_(false),
    333       has_lzcnt_(false),
    334       has_popcnt_(false),
    335       has_idiva_(false),
    336       has_neon_(false),
    337       has_thumb2_(false),
    338       has_vfp_(false),
    339       has_vfp3_(false),
    340       has_vfp3_d32_(false),
    341       is_fp64_mode_(false),
    342       has_non_stop_time_stamp_counter_(false) {
    343   memcpy(vendor_, "Unknown", 8);
    344 #if V8_OS_NACL
    345 // Portable host shouldn't do feature detection.
    346 // TODO(jfb): Remove the hardcoded ARM simulator flags in the build, and
    347 // hardcode them here instead.
    348 #elif V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
    349   int cpu_info[4];
    350 
    351   // __cpuid with an InfoType argument of 0 returns the number of
    352   // valid Ids in CPUInfo[0] and the CPU identification string in
    353   // the other three array elements. The CPU identification string is
    354   // not in linear order. The code below arranges the information
    355   // in a human readable form. The human readable order is CPUInfo[1] |
    356   // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
    357   // before using memcpy to copy these three array elements to cpu_string.
    358   __cpuid(cpu_info, 0);
    359   unsigned num_ids = cpu_info[0];
    360   std::swap(cpu_info[2], cpu_info[3]);
    361   memcpy(vendor_, cpu_info + 1, 12);
    362   vendor_[12] = '\0';
    363 
    364   // Interpret CPU feature information.
    365   if (num_ids > 0) {
    366     __cpuid(cpu_info, 1);
    367     stepping_ = cpu_info[0] & 0xf;
    368     model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
    369     family_ = (cpu_info[0] >> 8) & 0xf;
    370     type_ = (cpu_info[0] >> 12) & 0x3;
    371     ext_model_ = (cpu_info[0] >> 16) & 0xf;
    372     ext_family_ = (cpu_info[0] >> 20) & 0xff;
    373     has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
    374     has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
    375     has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
    376     has_sse_ = (cpu_info[3] & 0x02000000) != 0;
    377     has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
    378     has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
    379     has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    380     has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    381     has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    382     has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
    383     has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
    384     has_avx_ = (cpu_info[2] & 0x10000000) != 0;
    385     has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
    386 
    387     if (family_ == 0x6) {
    388       switch (model_) {
    389         case 0x1c:  // SLT
    390         case 0x26:
    391         case 0x36:
    392         case 0x27:
    393         case 0x35:
    394         case 0x37:  // SLM
    395         case 0x4a:
    396         case 0x4d:
    397         case 0x4c:  // AMT
    398         case 0x6e:
    399           is_atom_ = true;
    400       }
    401     }
    402   }
    403 
    404   // There are separate feature flags for VEX-encoded GPR instructions.
    405   if (num_ids >= 7) {
    406     __cpuid(cpu_info, 7);
    407     has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
    408     has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
    409   }
    410 
    411   // Query extended IDs.
    412   __cpuid(cpu_info, 0x80000000);
    413   unsigned num_ext_ids = cpu_info[0];
    414 
    415   // Interpret extended CPU feature information.
    416   if (num_ext_ids > 0x80000000) {
    417     __cpuid(cpu_info, 0x80000001);
    418     has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
    419     // SAHF must be probed in long mode.
    420     has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
    421   }
    422 
    423   // Check if CPU has non stoppable time stamp counter.
    424   const int parameter_containing_non_stop_time_stamp_counter = 0x80000007;
    425   if (num_ext_ids >= parameter_containing_non_stop_time_stamp_counter) {
    426     __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
    427     has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
    428   }
    429 
    430 #elif V8_HOST_ARCH_ARM
    431 
    432 #if V8_OS_LINUX
    433 
    434   CPUInfo cpu_info;
    435 
    436   // Extract implementor from the "CPU implementer" field.
    437   char* implementer = cpu_info.ExtractField("CPU implementer");
    438   if (implementer != NULL) {
    439     char* end;
    440     implementer_ = strtol(implementer, &end, 0);
    441     if (end == implementer) {
    442       implementer_ = 0;
    443     }
    444     delete[] implementer;
    445   }
    446 
    447   char* variant = cpu_info.ExtractField("CPU variant");
    448   if (variant != NULL) {
    449     char* end;
    450     variant_ = strtol(variant, &end, 0);
    451     if (end == variant) {
    452       variant_ = -1;
    453     }
    454     delete[] variant;
    455   }
    456 
    457   // Extract part number from the "CPU part" field.
    458   char* part = cpu_info.ExtractField("CPU part");
    459   if (part != NULL) {
    460     char* end;
    461     part_ = strtol(part, &end, 0);
    462     if (end == part) {
    463       part_ = 0;
    464     }
    465     delete[] part;
    466   }
    467 
    468   // Extract architecture from the "CPU Architecture" field.
    469   // The list is well-known, unlike the the output of
    470   // the 'Processor' field which can vary greatly.
    471   // See the definition of the 'proc_arch' array in
    472   // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
    473   // same file.
    474   char* architecture = cpu_info.ExtractField("CPU architecture");
    475   if (architecture != NULL) {
    476     char* end;
    477     architecture_ = strtol(architecture, &end, 10);
    478     if (end == architecture) {
    479       // Kernels older than 3.18 report "CPU architecture: AArch64" on ARMv8.
    480       if (strcmp(architecture, "AArch64") == 0) {
    481         architecture_ = 8;
    482       } else {
    483         architecture_ = 0;
    484       }
    485     }
    486     delete[] architecture;
    487 
    488     // Unfortunately, it seems that certain ARMv6-based CPUs
    489     // report an incorrect architecture number of 7!
    490     //
    491     // See http://code.google.com/p/android/issues/detail?id=10812
    492     //
    493     // We try to correct this by looking at the 'elf_platform'
    494     // field reported by the 'Processor' field, which is of the
    495     // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    496     // an ARMv6-one. For example, the Raspberry Pi is one popular
    497     // ARMv6 device that reports architecture 7.
    498     if (architecture_ == 7) {
    499       char* processor = cpu_info.ExtractField("Processor");
    500       if (HasListItem(processor, "(v6l)")) {
    501         architecture_ = 6;
    502       }
    503       delete[] processor;
    504     }
    505 
    506     // elf_platform moved to the model name field in Linux v3.8.
    507     if (architecture_ == 7) {
    508       char* processor = cpu_info.ExtractField("model name");
    509       if (HasListItem(processor, "(v6l)")) {
    510         architecture_ = 6;
    511       }
    512       delete[] processor;
    513     }
    514   }
    515 
    516   // Try to extract the list of CPU features from ELF hwcaps.
    517   uint32_t hwcaps = ReadELFHWCaps();
    518   if (hwcaps != 0) {
    519     has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
    520     has_neon_ = (hwcaps & HWCAP_NEON) != 0;
    521     has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
    522     has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
    523     has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
    524                                    (hwcaps & HWCAP_VFPD32) != 0));
    525   } else {
    526     // Try to fallback to "Features" CPUInfo field.
    527     char* features = cpu_info.ExtractField("Features");
    528     has_idiva_ = HasListItem(features, "idiva");
    529     has_neon_ = HasListItem(features, "neon");
    530     has_thumb2_ = HasListItem(features, "thumb2");
    531     has_vfp_ = HasListItem(features, "vfp");
    532     if (HasListItem(features, "vfpv3d16")) {
    533       has_vfp3_ = true;
    534     } else if (HasListItem(features, "vfpv3")) {
    535       has_vfp3_ = true;
    536       has_vfp3_d32_ = true;
    537     }
    538     delete[] features;
    539   }
    540 
    541   // Some old kernels will report vfp not vfpv3. Here we make an attempt
    542   // to detect vfpv3 by checking for vfp *and* neon, since neon is only
    543   // available on architectures with vfpv3. Checking neon on its own is
    544   // not enough as it is possible to have neon without vfp.
    545   if (has_vfp_ && has_neon_) {
    546     has_vfp3_ = true;
    547   }
    548 
    549   // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
    550   if (architecture_ < 7 && has_vfp3_) {
    551     architecture_ = 7;
    552   }
    553 
    554   // ARMv7 implies Thumb2.
    555   if (architecture_ >= 7) {
    556     has_thumb2_ = true;
    557   }
    558 
    559   // The earliest architecture with Thumb2 is ARMv6T2.
    560   if (has_thumb2_ && architecture_ < 6) {
    561     architecture_ = 6;
    562   }
    563 
    564   // We don't support any FPUs other than VFP.
    565   has_fpu_ = has_vfp_;
    566 
    567 #elif V8_OS_QNX
    568 
    569   uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
    570   if (cpu_flags & ARM_CPU_FLAG_V7) {
    571     architecture_ = 7;
    572     has_thumb2_ = true;
    573   } else if (cpu_flags & ARM_CPU_FLAG_V6) {
    574     architecture_ = 6;
    575     // QNX doesn't say if Thumb2 is available.
    576     // Assume false for the architectures older than ARMv7.
    577   }
    578   DCHECK(architecture_ >= 6);
    579   has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
    580   has_vfp_ = has_fpu_;
    581   if (cpu_flags & ARM_CPU_FLAG_NEON) {
    582     has_neon_ = true;
    583     has_vfp3_ = has_vfp_;
    584 #ifdef ARM_CPU_FLAG_VFP_D32
    585     has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
    586 #endif
    587   }
    588   has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;
    589 
    590 #endif  // V8_OS_LINUX
    591 
    592 #elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64
    593 
    594   // Simple detection of FPU at runtime for Linux.
    595   // It is based on /proc/cpuinfo, which reveals hardware configuration
    596   // to user-space applications.  According to MIPS (early 2010), no similar
    597   // facility is universally available on the MIPS architectures,
    598   // so it's up to individual OSes to provide such.
    599   CPUInfo cpu_info;
    600   char* cpu_model = cpu_info.ExtractField("cpu model");
    601   has_fpu_ = HasListItem(cpu_model, "FPU");
    602   delete[] cpu_model;
    603 #ifdef V8_HOST_ARCH_MIPS
    604   is_fp64_mode_ = __detect_fp64_mode();
    605   architecture_ = __detect_mips_arch_revision();
    606 #endif
    607 
    608 #elif V8_HOST_ARCH_ARM64
    609 
    610   CPUInfo cpu_info;
    611 
    612   // Extract implementor from the "CPU implementer" field.
    613   char* implementer = cpu_info.ExtractField("CPU implementer");
    614   if (implementer != NULL) {
    615     char* end;
    616     implementer_ = strtol(implementer, &end, 0);
    617     if (end == implementer) {
    618       implementer_ = 0;
    619     }
    620     delete[] implementer;
    621   }
    622 
    623   char* variant = cpu_info.ExtractField("CPU variant");
    624   if (variant != NULL) {
    625     char* end;
    626     variant_ = strtol(variant, &end, 0);
    627     if (end == variant) {
    628       variant_ = -1;
    629     }
    630     delete[] variant;
    631   }
    632 
    633   // Extract part number from the "CPU part" field.
    634   char* part = cpu_info.ExtractField("CPU part");
    635   if (part != NULL) {
    636     char* end;
    637     part_ = strtol(part, &end, 0);
    638     if (end == part) {
    639       part_ = 0;
    640     }
    641     delete[] part;
    642   }
    643 
    644 #elif V8_HOST_ARCH_PPC
    645 
    646 #ifndef USE_SIMULATOR
    647 #if V8_OS_LINUX
    648   // Read processor info from /proc/self/auxv.
    649   char* auxv_cpu_type = NULL;
    650   FILE* fp = fopen("/proc/self/auxv", "r");
    651   if (fp != NULL) {
    652 #if V8_TARGET_ARCH_PPC64
    653     Elf64_auxv_t entry;
    654 #else
    655     Elf32_auxv_t entry;
    656 #endif
    657     for (;;) {
    658       size_t n = fread(&entry, sizeof(entry), 1, fp);
    659       if (n == 0 || entry.a_type == AT_NULL) {
    660         break;
    661       }
    662       switch (entry.a_type) {
    663         case AT_PLATFORM:
    664           auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
    665           break;
    666         case AT_ICACHEBSIZE:
    667           icache_line_size_ = entry.a_un.a_val;
    668           break;
    669         case AT_DCACHEBSIZE:
    670           dcache_line_size_ = entry.a_un.a_val;
    671           break;
    672       }
    673     }
    674     fclose(fp);
    675   }
    676 
    677   part_ = -1;
    678   if (auxv_cpu_type) {
    679     if (strcmp(auxv_cpu_type, "power8") == 0) {
    680       part_ = PPC_POWER8;
    681     } else if (strcmp(auxv_cpu_type, "power7") == 0) {
    682       part_ = PPC_POWER7;
    683     } else if (strcmp(auxv_cpu_type, "power6") == 0) {
    684       part_ = PPC_POWER6;
    685     } else if (strcmp(auxv_cpu_type, "power5") == 0) {
    686       part_ = PPC_POWER5;
    687     } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
    688       part_ = PPC_G5;
    689     } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
    690       part_ = PPC_G4;
    691     } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
    692       part_ = PPC_PA6T;
    693     }
    694   }
    695 
    696 #elif V8_OS_AIX
    697   switch (_system_configuration.implementation) {
    698     case POWER_8:
    699       part_ = PPC_POWER8;
    700       break;
    701     case POWER_7:
    702       part_ = PPC_POWER7;
    703       break;
    704     case POWER_6:
    705       part_ = PPC_POWER6;
    706       break;
    707     case POWER_5:
    708       part_ = PPC_POWER5;
    709       break;
    710   }
    711 #endif  // V8_OS_AIX
    712 #endif  // !USE_SIMULATOR
    713 #endif  // V8_HOST_ARCH_PPC
    714 }
    715 
    716 }  // namespace base
    717 }  // namespace v8
    718