Home | History | Annotate | Download | only in platform
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Platform-specific code for Win32.
      6 
      7 // Secure API functions are not available using MinGW with msvcrt.dll
      8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
      9 // disable definition of secure API functions in standard headers that
     10 // would conflict with our own implementation.
     11 #ifdef __MINGW32__
     12 #include <_mingw.h>
     13 #ifdef MINGW_HAS_SECURE_API
     14 #undef MINGW_HAS_SECURE_API
     15 #endif  // MINGW_HAS_SECURE_API
     16 #endif  // __MINGW32__
     17 
     18 #include <limits>
     19 
     20 #include "src/base/win32-headers.h"
     21 
     22 #include "src/base/bits.h"
     23 #include "src/base/lazy-instance.h"
     24 #include "src/base/macros.h"
     25 #include "src/base/platform/platform.h"
     26 #include "src/base/platform/time.h"
     27 #include "src/base/utils/random-number-generator.h"
     28 
     29 
     30 // Extra functions for MinGW. Most of these are the _s functions which are in
     31 // the Microsoft Visual Studio C++ CRT.
     32 #ifdef __MINGW32__
     33 
     34 
     35 #ifndef __MINGW64_VERSION_MAJOR
     36 
     37 #define _TRUNCATE 0
     38 #define STRUNCATE 80
     39 
     40 inline void MemoryBarrier() {
     41   int barrier = 0;
     42   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
     43 }
     44 
     45 #endif  // __MINGW64_VERSION_MAJOR
     46 
     47 
     48 int localtime_s(tm* out_tm, const time_t* time) {
     49   tm* posix_local_time_struct = localtime(time);  // NOLINT
     50   if (posix_local_time_struct == NULL) return 1;
     51   *out_tm = *posix_local_time_struct;
     52   return 0;
     53 }
     54 
     55 
     56 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
     57   *pFile = fopen(filename, mode);
     58   return *pFile != NULL ? 0 : 1;
     59 }
     60 
     61 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
     62                  const char* format, va_list argptr) {
     63   DCHECK(count == _TRUNCATE);
     64   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
     65 }
     66 
     67 
     68 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
     69   CHECK(source != NULL);
     70   CHECK(dest != NULL);
     71   CHECK_GT(dest_size, 0);
     72 
     73   if (count == _TRUNCATE) {
     74     while (dest_size > 0 && *source != 0) {
     75       *(dest++) = *(source++);
     76       --dest_size;
     77     }
     78     if (dest_size == 0) {
     79       *(dest - 1) = 0;
     80       return STRUNCATE;
     81     }
     82   } else {
     83     while (dest_size > 0 && count > 0 && *source != 0) {
     84       *(dest++) = *(source++);
     85       --dest_size;
     86       --count;
     87     }
     88   }
     89   CHECK_GT(dest_size, 0);
     90   *dest = 0;
     91   return 0;
     92 }
     93 
     94 #endif  // __MINGW32__
     95 
     96 namespace v8 {
     97 namespace base {
     98 
     99 namespace {
    100 
    101 bool g_hard_abort = false;
    102 
    103 }  // namespace
    104 
    105 class TimezoneCache {
    106  public:
    107   TimezoneCache() : initialized_(false) { }
    108 
    109   void Clear() {
    110     initialized_ = false;
    111   }
    112 
    113   // Initialize timezone information. The timezone information is obtained from
    114   // windows. If we cannot get the timezone information we fall back to CET.
    115   void InitializeIfNeeded() {
    116     // Just return if timezone information has already been initialized.
    117     if (initialized_) return;
    118 
    119     // Initialize POSIX time zone data.
    120     _tzset();
    121     // Obtain timezone information from operating system.
    122     memset(&tzinfo_, 0, sizeof(tzinfo_));
    123     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    124       // If we cannot get timezone information we fall back to CET.
    125       tzinfo_.Bias = -60;
    126       tzinfo_.StandardDate.wMonth = 10;
    127       tzinfo_.StandardDate.wDay = 5;
    128       tzinfo_.StandardDate.wHour = 3;
    129       tzinfo_.StandardBias = 0;
    130       tzinfo_.DaylightDate.wMonth = 3;
    131       tzinfo_.DaylightDate.wDay = 5;
    132       tzinfo_.DaylightDate.wHour = 2;
    133       tzinfo_.DaylightBias = -60;
    134     }
    135 
    136     // Make standard and DST timezone names.
    137     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
    138                         std_tz_name_, kTzNameSize, NULL, NULL);
    139     std_tz_name_[kTzNameSize - 1] = '\0';
    140     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
    141                         dst_tz_name_, kTzNameSize, NULL, NULL);
    142     dst_tz_name_[kTzNameSize - 1] = '\0';
    143 
    144     // If OS returned empty string or resource id (like "@tzres.dll,-211")
    145     // simply guess the name from the UTC bias of the timezone.
    146     // To properly resolve the resource identifier requires a library load,
    147     // which is not possible in a sandbox.
    148     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    149       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
    150                    "%s Standard Time",
    151                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    152     }
    153     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    154       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
    155                    "%s Daylight Time",
    156                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    157     }
    158     // Timezone information initialized.
    159     initialized_ = true;
    160   }
    161 
    162   // Guess the name of the timezone from the bias.
    163   // The guess is very biased towards the northern hemisphere.
    164   const char* GuessTimezoneNameFromBias(int bias) {
    165     static const int kHour = 60;
    166     switch (-bias) {
    167       case -9*kHour: return "Alaska";
    168       case -8*kHour: return "Pacific";
    169       case -7*kHour: return "Mountain";
    170       case -6*kHour: return "Central";
    171       case -5*kHour: return "Eastern";
    172       case -4*kHour: return "Atlantic";
    173       case  0*kHour: return "GMT";
    174       case +1*kHour: return "Central Europe";
    175       case +2*kHour: return "Eastern Europe";
    176       case +3*kHour: return "Russia";
    177       case +5*kHour + 30: return "India";
    178       case +8*kHour: return "China";
    179       case +9*kHour: return "Japan";
    180       case +12*kHour: return "New Zealand";
    181       default: return "Local";
    182     }
    183   }
    184 
    185 
    186  private:
    187   static const int kTzNameSize = 128;
    188   bool initialized_;
    189   char std_tz_name_[kTzNameSize];
    190   char dst_tz_name_[kTzNameSize];
    191   TIME_ZONE_INFORMATION tzinfo_;
    192   friend class Win32Time;
    193 };
    194 
    195 
    196 // ----------------------------------------------------------------------------
    197 // The Time class represents time on win32. A timestamp is represented as
    198 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
    199 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    200 // January 1, 1970.
    201 
    202 class Win32Time {
    203  public:
    204   // Constructors.
    205   Win32Time();
    206   explicit Win32Time(double jstime);
    207   Win32Time(int year, int mon, int day, int hour, int min, int sec);
    208 
    209   // Convert timestamp to JavaScript representation.
    210   double ToJSTime();
    211 
    212   // Set timestamp to current time.
    213   void SetToCurrentTime();
    214 
    215   // Returns the local timezone offset in milliseconds east of UTC. This is
    216   // the number of milliseconds you must add to UTC to get local time, i.e.
    217   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    218   // routine also takes into account whether daylight saving is effect
    219   // at the time.
    220   int64_t LocalOffset(TimezoneCache* cache);
    221 
    222   // Returns the daylight savings time offset for the time in milliseconds.
    223   int64_t DaylightSavingsOffset(TimezoneCache* cache);
    224 
    225   // Returns a string identifying the current timezone for the
    226   // timestamp taking into account daylight saving.
    227   char* LocalTimezone(TimezoneCache* cache);
    228 
    229  private:
    230   // Constants for time conversion.
    231   static const int64_t kTimeEpoc = 116444736000000000LL;
    232   static const int64_t kTimeScaler = 10000;
    233   static const int64_t kMsPerMinute = 60000;
    234 
    235   // Constants for timezone information.
    236   static const bool kShortTzNames = false;
    237 
    238   // Return whether or not daylight savings time is in effect at this time.
    239   bool InDST(TimezoneCache* cache);
    240 
    241   // Accessor for FILETIME representation.
    242   FILETIME& ft() { return time_.ft_; }
    243 
    244   // Accessor for integer representation.
    245   int64_t& t() { return time_.t_; }
    246 
    247   // Although win32 uses 64-bit integers for representing timestamps,
    248   // these are packed into a FILETIME structure. The FILETIME structure
    249   // is just a struct representing a 64-bit integer. The TimeStamp union
    250   // allows access to both a FILETIME and an integer representation of
    251   // the timestamp.
    252   union TimeStamp {
    253     FILETIME ft_;
    254     int64_t t_;
    255   };
    256 
    257   TimeStamp time_;
    258 };
    259 
    260 
    261 // Initialize timestamp to start of epoc.
    262 Win32Time::Win32Time() {
    263   t() = 0;
    264 }
    265 
    266 
    267 // Initialize timestamp from a JavaScript timestamp.
    268 Win32Time::Win32Time(double jstime) {
    269   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    270 }
    271 
    272 
    273 // Initialize timestamp from date/time components.
    274 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
    275   SYSTEMTIME st;
    276   st.wYear = year;
    277   st.wMonth = mon;
    278   st.wDay = day;
    279   st.wHour = hour;
    280   st.wMinute = min;
    281   st.wSecond = sec;
    282   st.wMilliseconds = 0;
    283   SystemTimeToFileTime(&st, &ft());
    284 }
    285 
    286 
    287 // Convert timestamp to JavaScript timestamp.
    288 double Win32Time::ToJSTime() {
    289   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    290 }
    291 
    292 
    293 // Set timestamp to current time.
    294 void Win32Time::SetToCurrentTime() {
    295   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    296   // Because we're fast, we like fast timers which have at least a
    297   // 1ms resolution.
    298   //
    299   // timeGetTime() provides 1ms granularity when combined with
    300   // timeBeginPeriod().  If the host application for v8 wants fast
    301   // timers, it can use timeBeginPeriod to increase the resolution.
    302   //
    303   // Using timeGetTime() has a drawback because it is a 32bit value
    304   // and hence rolls-over every ~49days.
    305   //
    306   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    307   // and then use timeGetTime to extrapolate current time from the
    308   // start time.  To deal with rollovers, we resync the clock
    309   // any time when more than kMaxClockElapsedTime has passed or
    310   // whenever timeGetTime creates a rollover.
    311 
    312   static bool initialized = false;
    313   static TimeStamp init_time;
    314   static DWORD init_ticks;
    315   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    316   static const int64_t kMaxClockElapsedTime =
    317       60*kHundredNanosecondsPerSecond;  // 1 minute
    318 
    319   // If we are uninitialized, we need to resync the clock.
    320   bool needs_resync = !initialized;
    321 
    322   // Get the current time.
    323   TimeStamp time_now;
    324   GetSystemTimeAsFileTime(&time_now.ft_);
    325   DWORD ticks_now = timeGetTime();
    326 
    327   // Check if we need to resync due to clock rollover.
    328   needs_resync |= ticks_now < init_ticks;
    329 
    330   // Check if we need to resync due to elapsed time.
    331   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    332 
    333   // Check if we need to resync due to backwards time change.
    334   needs_resync |= time_now.t_ < init_time.t_;
    335 
    336   // Resync the clock if necessary.
    337   if (needs_resync) {
    338     GetSystemTimeAsFileTime(&init_time.ft_);
    339     init_ticks = ticks_now = timeGetTime();
    340     initialized = true;
    341   }
    342 
    343   // Finally, compute the actual time.  Why is this so hard.
    344   DWORD elapsed = ticks_now - init_ticks;
    345   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    346 }
    347 
    348 
    349 // Return the local timezone offset in milliseconds east of UTC. This
    350 // takes into account whether daylight saving is in effect at the time.
    351 // Only times in the 32-bit Unix range may be passed to this function.
    352 // Also, adding the time-zone offset to the input must not overflow.
    353 // The function EquivalentTime() in date.js guarantees this.
    354 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
    355   cache->InitializeIfNeeded();
    356 
    357   Win32Time rounded_to_second(*this);
    358   rounded_to_second.t() =
    359       rounded_to_second.t() / 1000 / kTimeScaler * 1000 * kTimeScaler;
    360   // Convert to local time using POSIX localtime function.
    361   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    362   // very slow.  Other browsers use localtime().
    363 
    364   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    365   // POSIX seconds past 1/1/1970 0:00:00.
    366   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    367   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    368     return 0;
    369   }
    370   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    371   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    372 
    373   // Convert to local time, as struct with fields for day, hour, year, etc.
    374   tm posix_local_time_struct;
    375   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    376 
    377   if (posix_local_time_struct.tm_isdst > 0) {
    378     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
    379   } else if (posix_local_time_struct.tm_isdst == 0) {
    380     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
    381   } else {
    382     return cache->tzinfo_.Bias * -kMsPerMinute;
    383   }
    384 }
    385 
    386 
    387 // Return whether or not daylight savings time is in effect at this time.
    388 bool Win32Time::InDST(TimezoneCache* cache) {
    389   cache->InitializeIfNeeded();
    390 
    391   // Determine if DST is in effect at the specified time.
    392   bool in_dst = false;
    393   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
    394       cache->tzinfo_.DaylightDate.wMonth != 0) {
    395     // Get the local timezone offset for the timestamp in milliseconds.
    396     int64_t offset = LocalOffset(cache);
    397 
    398     // Compute the offset for DST. The bias parameters in the timezone info
    399     // are specified in minutes. These must be converted to milliseconds.
    400     int64_t dstofs =
    401         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
    402 
    403     // If the local time offset equals the timezone bias plus the daylight
    404     // bias then DST is in effect.
    405     in_dst = offset == dstofs;
    406   }
    407 
    408   return in_dst;
    409 }
    410 
    411 
    412 // Return the daylight savings time offset for this time.
    413 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
    414   return InDST(cache) ? 60 * kMsPerMinute : 0;
    415 }
    416 
    417 
    418 // Returns a string identifying the current timezone for the
    419 // timestamp taking into account daylight saving.
    420 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
    421   // Return the standard or DST time zone name based on whether daylight
    422   // saving is in effect at the given time.
    423   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
    424 }
    425 
    426 
    427 // Returns the accumulated user time for thread.
    428 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    429   FILETIME dummy;
    430   uint64_t usertime;
    431 
    432   // Get the amount of time that the thread has executed in user mode.
    433   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    434                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    435 
    436   // Adjust the resolution to micro-seconds.
    437   usertime /= 10;
    438 
    439   // Convert to seconds and microseconds
    440   *secs = static_cast<uint32_t>(usertime / 1000000);
    441   *usecs = static_cast<uint32_t>(usertime % 1000000);
    442   return 0;
    443 }
    444 
    445 
    446 // Returns current time as the number of milliseconds since
    447 // 00:00:00 UTC, January 1, 1970.
    448 double OS::TimeCurrentMillis() {
    449   return Time::Now().ToJsTime();
    450 }
    451 
    452 
    453 TimezoneCache* OS::CreateTimezoneCache() {
    454   return new TimezoneCache();
    455 }
    456 
    457 
    458 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
    459   delete cache;
    460 }
    461 
    462 
    463 void OS::ClearTimezoneCache(TimezoneCache* cache) {
    464   cache->Clear();
    465 }
    466 
    467 
    468 // Returns a string identifying the current timezone taking into
    469 // account daylight saving.
    470 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
    471   return Win32Time(time).LocalTimezone(cache);
    472 }
    473 
    474 
    475 // Returns the local time offset in milliseconds east of UTC without
    476 // taking daylight savings time into account.
    477 double OS::LocalTimeOffset(TimezoneCache* cache) {
    478   // Use current time, rounded to the millisecond.
    479   Win32Time t(TimeCurrentMillis());
    480   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    481   return static_cast<double>(t.LocalOffset(cache) -
    482                              t.DaylightSavingsOffset(cache));
    483 }
    484 
    485 
    486 // Returns the daylight savings offset in milliseconds for the given
    487 // time.
    488 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
    489   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
    490   return static_cast<double>(offset);
    491 }
    492 
    493 
    494 int OS::GetLastError() {
    495   return ::GetLastError();
    496 }
    497 
    498 
    499 int OS::GetCurrentProcessId() {
    500   return static_cast<int>(::GetCurrentProcessId());
    501 }
    502 
    503 
    504 int OS::GetCurrentThreadId() {
    505   return static_cast<int>(::GetCurrentThreadId());
    506 }
    507 
    508 
    509 // ----------------------------------------------------------------------------
    510 // Win32 console output.
    511 //
    512 // If a Win32 application is linked as a console application it has a normal
    513 // standard output and standard error. In this case normal printf works fine
    514 // for output. However, if the application is linked as a GUI application,
    515 // the process doesn't have a console, and therefore (debugging) output is lost.
    516 // This is the case if we are embedded in a windows program (like a browser).
    517 // In order to be able to get debug output in this case the the debugging
    518 // facility using OutputDebugString. This output goes to the active debugger
    519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    520 
    521 enum OutputMode {
    522   UNKNOWN,  // Output method has not yet been determined.
    523   CONSOLE,  // Output is written to stdout.
    524   ODS       // Output is written to debug facility.
    525 };
    526 
    527 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    528 
    529 
    530 // Determine if the process has a console for output.
    531 static bool HasConsole() {
    532   // Only check the first time. Eventual race conditions are not a problem,
    533   // because all threads will eventually determine the same mode.
    534   if (output_mode == UNKNOWN) {
    535     // We cannot just check that the standard output is attached to a console
    536     // because this would fail if output is redirected to a file. Therefore we
    537     // say that a process does not have an output console if either the
    538     // standard output handle is invalid or its file type is unknown.
    539     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    540         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    541       output_mode = CONSOLE;
    542     else
    543       output_mode = ODS;
    544   }
    545   return output_mode == CONSOLE;
    546 }
    547 
    548 
    549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    550   if ((stream == stdout || stream == stderr) && !HasConsole()) {
    551     // It is important to use safe print here in order to avoid
    552     // overflowing the buffer. We might truncate the output, but this
    553     // does not crash.
    554     char buffer[4096];
    555     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
    556     OutputDebugStringA(buffer);
    557   } else {
    558     vfprintf(stream, format, args);
    559   }
    560 }
    561 
    562 
    563 FILE* OS::FOpen(const char* path, const char* mode) {
    564   FILE* result;
    565   if (fopen_s(&result, path, mode) == 0) {
    566     return result;
    567   } else {
    568     return NULL;
    569   }
    570 }
    571 
    572 
    573 bool OS::Remove(const char* path) {
    574   return (DeleteFileA(path) != 0);
    575 }
    576 
    577 char OS::DirectorySeparator() { return '\\'; }
    578 
    579 bool OS::isDirectorySeparator(const char ch) {
    580   return ch == '/' || ch == '\\';
    581 }
    582 
    583 
    584 FILE* OS::OpenTemporaryFile() {
    585   // tmpfile_s tries to use the root dir, don't use it.
    586   char tempPathBuffer[MAX_PATH];
    587   DWORD path_result = 0;
    588   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
    589   if (path_result > MAX_PATH || path_result == 0) return NULL;
    590   UINT name_result = 0;
    591   char tempNameBuffer[MAX_PATH];
    592   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
    593   if (name_result == 0) return NULL;
    594   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
    595   if (result != NULL) {
    596     Remove(tempNameBuffer);  // Delete on close.
    597   }
    598   return result;
    599 }
    600 
    601 
    602 // Open log file in binary mode to avoid /n -> /r/n conversion.
    603 const char* const OS::LogFileOpenMode = "wb";
    604 
    605 
    606 // Print (debug) message to console.
    607 void OS::Print(const char* format, ...) {
    608   va_list args;
    609   va_start(args, format);
    610   VPrint(format, args);
    611   va_end(args);
    612 }
    613 
    614 
    615 void OS::VPrint(const char* format, va_list args) {
    616   VPrintHelper(stdout, format, args);
    617 }
    618 
    619 
    620 void OS::FPrint(FILE* out, const char* format, ...) {
    621   va_list args;
    622   va_start(args, format);
    623   VFPrint(out, format, args);
    624   va_end(args);
    625 }
    626 
    627 
    628 void OS::VFPrint(FILE* out, const char* format, va_list args) {
    629   VPrintHelper(out, format, args);
    630 }
    631 
    632 
    633 // Print error message to console.
    634 void OS::PrintError(const char* format, ...) {
    635   va_list args;
    636   va_start(args, format);
    637   VPrintError(format, args);
    638   va_end(args);
    639 }
    640 
    641 
    642 void OS::VPrintError(const char* format, va_list args) {
    643   VPrintHelper(stderr, format, args);
    644 }
    645 
    646 
    647 int OS::SNPrintF(char* str, int length, const char* format, ...) {
    648   va_list args;
    649   va_start(args, format);
    650   int result = VSNPrintF(str, length, format, args);
    651   va_end(args);
    652   return result;
    653 }
    654 
    655 
    656 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
    657   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
    658   // Make sure to zero-terminate the string if the output was
    659   // truncated or if there was an error.
    660   if (n < 0 || n >= length) {
    661     if (length > 0)
    662       str[length - 1] = '\0';
    663     return -1;
    664   } else {
    665     return n;
    666   }
    667 }
    668 
    669 
    670 char* OS::StrChr(char* str, int c) {
    671   return const_cast<char*>(strchr(str, c));
    672 }
    673 
    674 
    675 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
    676   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
    677   size_t buffer_size = static_cast<size_t>(length);
    678   if (n + 1 > buffer_size)  // count for trailing '\0'
    679     n = _TRUNCATE;
    680   int result = strncpy_s(dest, length, src, n);
    681   USE(result);
    682   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
    683 }
    684 
    685 
    686 #undef _TRUNCATE
    687 #undef STRUNCATE
    688 
    689 
    690 // Get the system's page size used by VirtualAlloc() or the next power
    691 // of two. The reason for always returning a power of two is that the
    692 // rounding up in OS::Allocate expects that.
    693 static size_t GetPageSize() {
    694   static size_t page_size = 0;
    695   if (page_size == 0) {
    696     SYSTEM_INFO info;
    697     GetSystemInfo(&info);
    698     page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
    699   }
    700   return page_size;
    701 }
    702 
    703 
    704 // The allocation alignment is the guaranteed alignment for
    705 // VirtualAlloc'ed blocks of memory.
    706 size_t OS::AllocateAlignment() {
    707   static size_t allocate_alignment = 0;
    708   if (allocate_alignment == 0) {
    709     SYSTEM_INFO info;
    710     GetSystemInfo(&info);
    711     allocate_alignment = info.dwAllocationGranularity;
    712   }
    713   return allocate_alignment;
    714 }
    715 
    716 
    717 static LazyInstance<RandomNumberGenerator>::type
    718     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
    719 
    720 
    721 void OS::Initialize(int64_t random_seed, bool hard_abort,
    722                     const char* const gc_fake_mmap) {
    723   if (random_seed) {
    724     platform_random_number_generator.Pointer()->SetSeed(random_seed);
    725   }
    726   g_hard_abort = hard_abort;
    727 }
    728 
    729 
    730 void* OS::GetRandomMmapAddr() {
    731   // The address range used to randomize RWX allocations in OS::Allocate
    732   // Try not to map pages into the default range that windows loads DLLs
    733   // Use a multiple of 64k to prevent committing unused memory.
    734   // Note: This does not guarantee RWX regions will be within the
    735   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
    736 #ifdef V8_HOST_ARCH_64_BIT
    737   static const uintptr_t kAllocationRandomAddressMin = 0x0000000080000000;
    738   static const uintptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
    739 #else
    740   static const uintptr_t kAllocationRandomAddressMin = 0x04000000;
    741   static const uintptr_t kAllocationRandomAddressMax = 0x3FFF0000;
    742 #endif
    743   uintptr_t address;
    744   platform_random_number_generator.Pointer()->NextBytes(&address,
    745                                                         sizeof(address));
    746   address <<= kPageSizeBits;
    747   address += kAllocationRandomAddressMin;
    748   address &= kAllocationRandomAddressMax;
    749   return reinterpret_cast<void *>(address);
    750 }
    751 
    752 
    753 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
    754   LPVOID base = NULL;
    755   static BOOL use_aslr = -1;
    756 #ifdef V8_HOST_ARCH_32_BIT
    757   // Don't bother randomizing on 32-bit hosts, because they lack the room and
    758   // don't have viable ASLR anyway.
    759   if (use_aslr == -1 && !IsWow64Process(GetCurrentProcess(), &use_aslr))
    760     use_aslr = FALSE;
    761 #else
    762   use_aslr = TRUE;
    763 #endif
    764 
    765   if (use_aslr &&
    766       (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS)) {
    767     // For executable pages try and randomize the allocation address
    768     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
    769       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
    770     }
    771   }
    772 
    773   // After three attempts give up and let the OS find an address to use.
    774   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
    775 
    776   return base;
    777 }
    778 
    779 
    780 void* OS::Allocate(const size_t requested,
    781                    size_t* allocated,
    782                    bool is_executable) {
    783   // VirtualAlloc rounds allocated size to page size automatically.
    784   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    785 
    786   // Windows XP SP2 allows Data Excution Prevention (DEP).
    787   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    788 
    789   LPVOID mbase = RandomizedVirtualAlloc(msize,
    790                                         MEM_COMMIT | MEM_RESERVE,
    791                                         prot);
    792 
    793   if (mbase == NULL) return NULL;
    794 
    795   DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
    796 
    797   *allocated = msize;
    798   return mbase;
    799 }
    800 
    801 
    802 void OS::Free(void* address, const size_t size) {
    803   // TODO(1240712): VirtualFree has a return value which is ignored here.
    804   VirtualFree(address, 0, MEM_RELEASE);
    805   USE(size);
    806 }
    807 
    808 
    809 intptr_t OS::CommitPageSize() {
    810   return 4096;
    811 }
    812 
    813 
    814 void OS::ProtectCode(void* address, const size_t size) {
    815   DWORD old_protect;
    816   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
    817 }
    818 
    819 
    820 void OS::Guard(void* address, const size_t size) {
    821   DWORD oldprotect;
    822   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
    823 }
    824 
    825 
    826 void OS::Sleep(TimeDelta interval) {
    827   ::Sleep(static_cast<DWORD>(interval.InMilliseconds()));
    828 }
    829 
    830 
    831 void OS::Abort() {
    832   if (g_hard_abort) {
    833     V8_IMMEDIATE_CRASH();
    834   }
    835   // Make the MSVCRT do a silent abort.
    836   raise(SIGABRT);
    837 
    838   // Make sure function doesn't return.
    839   abort();
    840 }
    841 
    842 
    843 void OS::DebugBreak() {
    844 #if V8_CC_MSVC
    845   // To avoid Visual Studio runtime support the following code can be used
    846   // instead
    847   // __asm { int 3 }
    848   __debugbreak();
    849 #else
    850   ::DebugBreak();
    851 #endif
    852 }
    853 
    854 
    855 class Win32MemoryMappedFile final : public OS::MemoryMappedFile {
    856  public:
    857   Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory,
    858                         size_t size)
    859       : file_(file),
    860         file_mapping_(file_mapping),
    861         memory_(memory),
    862         size_(size) {}
    863   ~Win32MemoryMappedFile() final;
    864   void* memory() const final { return memory_; }
    865   size_t size() const final { return size_; }
    866 
    867  private:
    868   HANDLE const file_;
    869   HANDLE const file_mapping_;
    870   void* const memory_;
    871   size_t const size_;
    872 };
    873 
    874 
    875 // static
    876 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    877   // Open a physical file
    878   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    879       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
    880   if (file == INVALID_HANDLE_VALUE) return NULL;
    881 
    882   DWORD size = GetFileSize(file, NULL);
    883 
    884   // Create a file mapping for the physical file
    885   HANDLE file_mapping =
    886       CreateFileMapping(file, NULL, PAGE_READWRITE, 0, size, NULL);
    887   if (file_mapping == NULL) return NULL;
    888 
    889   // Map a view of the file into memory
    890   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    891   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    892 }
    893 
    894 
    895 // static
    896 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name,
    897                                                    size_t size, void* initial) {
    898   // Open a physical file
    899   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    900                             FILE_SHARE_READ | FILE_SHARE_WRITE, NULL,
    901                             OPEN_ALWAYS, 0, NULL);
    902   if (file == NULL) return NULL;
    903   // Create a file mapping for the physical file
    904   HANDLE file_mapping = CreateFileMapping(file, NULL, PAGE_READWRITE, 0,
    905                                           static_cast<DWORD>(size), NULL);
    906   if (file_mapping == NULL) return NULL;
    907   // Map a view of the file into memory
    908   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    909   if (memory) memmove(memory, initial, size);
    910   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    911 }
    912 
    913 
    914 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
    915   if (memory_) UnmapViewOfFile(memory_);
    916   CloseHandle(file_mapping_);
    917   CloseHandle(file_);
    918 }
    919 
    920 
    921 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
    922 // dynamically. This is to avoid being depending on dbghelp.dll and
    923 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
    924 // kernel32.dll at some point so loading functions defines in TlHelp32.h
    925 // dynamically might not be necessary any more - for some versions of Windows?).
    926 
    927 // Function pointers to functions dynamically loaded from dbghelp.dll.
    928 #define DBGHELP_FUNCTION_LIST(V)  \
    929   V(SymInitialize)                \
    930   V(SymGetOptions)                \
    931   V(SymSetOptions)                \
    932   V(SymGetSearchPath)             \
    933   V(SymLoadModule64)              \
    934   V(StackWalk64)                  \
    935   V(SymGetSymFromAddr64)          \
    936   V(SymGetLineFromAddr64)         \
    937   V(SymFunctionTableAccess64)     \
    938   V(SymGetModuleBase64)
    939 
    940 // Function pointers to functions dynamically loaded from dbghelp.dll.
    941 #define TLHELP32_FUNCTION_LIST(V)  \
    942   V(CreateToolhelp32Snapshot)      \
    943   V(Module32FirstW)                \
    944   V(Module32NextW)
    945 
    946 // Define the decoration to use for the type and variable name used for
    947 // dynamically loaded DLL function..
    948 #define DLL_FUNC_TYPE(name) _##name##_
    949 #define DLL_FUNC_VAR(name) _##name
    950 
    951 // Define the type for each dynamically loaded DLL function. The function
    952 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
    953 // from the Windows include files are redefined here to have the function
    954 // definitions to be as close to the ones in the original .h files as possible.
    955 #ifndef IN
    956 #define IN
    957 #endif
    958 #ifndef VOID
    959 #define VOID void
    960 #endif
    961 
    962 // DbgHelp isn't supported on MinGW yet
    963 #ifndef __MINGW32__
    964 // DbgHelp.h functions.
    965 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
    966                                                        IN PSTR UserSearchPath,
    967                                                        IN BOOL fInvadeProcess);
    968 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
    969 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
    970 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
    971     IN HANDLE hProcess,
    972     OUT PSTR SearchPath,
    973     IN DWORD SearchPathLength);
    974 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
    975     IN HANDLE hProcess,
    976     IN HANDLE hFile,
    977     IN PSTR ImageName,
    978     IN PSTR ModuleName,
    979     IN DWORD64 BaseOfDll,
    980     IN DWORD SizeOfDll);
    981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
    982     DWORD MachineType,
    983     HANDLE hProcess,
    984     HANDLE hThread,
    985     LPSTACKFRAME64 StackFrame,
    986     PVOID ContextRecord,
    987     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
    988     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
    989     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
    990     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
    991 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
    992     IN HANDLE hProcess,
    993     IN DWORD64 qwAddr,
    994     OUT PDWORD64 pdwDisplacement,
    995     OUT PIMAGEHLP_SYMBOL64 Symbol);
    996 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
    997     IN HANDLE hProcess,
    998     IN DWORD64 qwAddr,
    999     OUT PDWORD pdwDisplacement,
   1000     OUT PIMAGEHLP_LINE64 Line64);
   1001 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
   1002 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
   1003     HANDLE hProcess,
   1004     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
   1005 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
   1006     HANDLE hProcess,
   1007     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
   1008 
   1009 // TlHelp32.h functions.
   1010 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
   1011     DWORD dwFlags,
   1012     DWORD th32ProcessID);
   1013 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
   1014                                                         LPMODULEENTRY32W lpme);
   1015 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
   1016                                                        LPMODULEENTRY32W lpme);
   1017 
   1018 #undef IN
   1019 #undef VOID
   1020 
   1021 // Declare a variable for each dynamically loaded DLL function.
   1022 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
   1023 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1024 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
   1025 #undef DEF_DLL_FUNCTION
   1026 
   1027 // Load the functions. This function has a lot of "ugly" macros in order to
   1028 // keep down code duplication.
   1029 
   1030 static bool LoadDbgHelpAndTlHelp32() {
   1031   static bool dbghelp_loaded = false;
   1032 
   1033   if (dbghelp_loaded) return true;
   1034 
   1035   HMODULE module;
   1036 
   1037   // Load functions from the dbghelp.dll module.
   1038   module = LoadLibrary(TEXT("dbghelp.dll"));
   1039   if (module == NULL) {
   1040     return false;
   1041   }
   1042 
   1043 #define LOAD_DLL_FUNC(name)                                                 \
   1044   DLL_FUNC_VAR(name) =                                                      \
   1045       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1046 
   1047 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1048 
   1049 #undef LOAD_DLL_FUNC
   1050 
   1051   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1052   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1053   module = LoadLibrary(TEXT("kernel32.dll"));
   1054   if (module == NULL) {
   1055     return false;
   1056   }
   1057 
   1058 #define LOAD_DLL_FUNC(name)                                                 \
   1059   DLL_FUNC_VAR(name) =                                                      \
   1060       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1061 
   1062 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1063 
   1064 #undef LOAD_DLL_FUNC
   1065 
   1066   // Check that all functions where loaded.
   1067   bool result =
   1068 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1069 
   1070 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1071 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1072 
   1073 #undef DLL_FUNC_LOADED
   1074   true;
   1075 
   1076   dbghelp_loaded = result;
   1077   return result;
   1078   // NOTE: The modules are never unloaded and will stay around until the
   1079   // application is closed.
   1080 }
   1081 
   1082 #undef DBGHELP_FUNCTION_LIST
   1083 #undef TLHELP32_FUNCTION_LIST
   1084 #undef DLL_FUNC_VAR
   1085 #undef DLL_FUNC_TYPE
   1086 
   1087 
   1088 // Load the symbols for generating stack traces.
   1089 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
   1090     HANDLE process_handle) {
   1091   static std::vector<OS::SharedLibraryAddress> result;
   1092 
   1093   static bool symbols_loaded = false;
   1094 
   1095   if (symbols_loaded) return result;
   1096 
   1097   BOOL ok;
   1098 
   1099   // Initialize the symbol engine.
   1100   ok = _SymInitialize(process_handle,  // hProcess
   1101                       NULL,            // UserSearchPath
   1102                       false);          // fInvadeProcess
   1103   if (!ok) return result;
   1104 
   1105   DWORD options = _SymGetOptions();
   1106   options |= SYMOPT_LOAD_LINES;
   1107   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1108   options = _SymSetOptions(options);
   1109 
   1110   char buf[OS::kStackWalkMaxNameLen] = {0};
   1111   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1112   if (!ok) {
   1113     int err = GetLastError();
   1114     OS::Print("%d\n", err);
   1115     return result;
   1116   }
   1117 
   1118   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1119       TH32CS_SNAPMODULE,       // dwFlags
   1120       GetCurrentProcessId());  // th32ProcessId
   1121   if (snapshot == INVALID_HANDLE_VALUE) return result;
   1122   MODULEENTRY32W module_entry;
   1123   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1124   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1125   while (cont) {
   1126     DWORD64 base;
   1127     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1128     // both unicode and ASCII strings even though the parameter is PSTR.
   1129     base = _SymLoadModule64(
   1130         process_handle,                                       // hProcess
   1131         0,                                                    // hFile
   1132         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1133         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1134         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1135         module_entry.modBaseSize);                            // SizeOfDll
   1136     if (base == 0) {
   1137       int err = GetLastError();
   1138       if (err != ERROR_MOD_NOT_FOUND &&
   1139           err != ERROR_INVALID_HANDLE) {
   1140         result.clear();
   1141         return result;
   1142       }
   1143     }
   1144     int lib_name_length = WideCharToMultiByte(
   1145         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
   1146     std::string lib_name(lib_name_length, 0);
   1147     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
   1148                         lib_name_length, NULL, NULL);
   1149     result.push_back(OS::SharedLibraryAddress(
   1150         lib_name, reinterpret_cast<uintptr_t>(module_entry.modBaseAddr),
   1151         reinterpret_cast<uintptr_t>(module_entry.modBaseAddr +
   1152                                     module_entry.modBaseSize)));
   1153     cont = _Module32NextW(snapshot, &module_entry);
   1154   }
   1155   CloseHandle(snapshot);
   1156 
   1157   symbols_loaded = true;
   1158   return result;
   1159 }
   1160 
   1161 
   1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1163   // SharedLibraryEvents are logged when loading symbol information.
   1164   // Only the shared libraries loaded at the time of the call to
   1165   // GetSharedLibraryAddresses are logged.  DLLs loaded after
   1166   // initialization are not accounted for.
   1167   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
   1168   HANDLE process_handle = GetCurrentProcess();
   1169   return LoadSymbols(process_handle);
   1170 }
   1171 
   1172 
   1173 void OS::SignalCodeMovingGC() {
   1174 }
   1175 
   1176 
   1177 #else  // __MINGW32__
   1178 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1179   return std::vector<OS::SharedLibraryAddress>();
   1180 }
   1181 
   1182 
   1183 void OS::SignalCodeMovingGC() { }
   1184 #endif  // __MINGW32__
   1185 
   1186 
   1187 int OS::ActivationFrameAlignment() {
   1188 #ifdef _WIN64
   1189   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1190 #elif defined(__MINGW32__)
   1191   // With gcc 4.4 the tree vectorization optimizer can generate code
   1192   // that requires 16 byte alignment such as movdqa on x86.
   1193   return 16;
   1194 #else
   1195   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1196 #endif
   1197 }
   1198 
   1199 
   1200 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
   1201 
   1202 
   1203 VirtualMemory::VirtualMemory(size_t size)
   1204     : address_(ReserveRegion(size)), size_(size) { }
   1205 
   1206 
   1207 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
   1208     : address_(NULL), size_(0) {
   1209   DCHECK((alignment % OS::AllocateAlignment()) == 0);
   1210   size_t request_size = RoundUp(size + alignment,
   1211                                 static_cast<intptr_t>(OS::AllocateAlignment()));
   1212   void* address = ReserveRegion(request_size);
   1213   if (address == NULL) return;
   1214   uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
   1215   // Try reducing the size by freeing and then reallocating a specific area.
   1216   bool result = ReleaseRegion(address, request_size);
   1217   USE(result);
   1218   DCHECK(result);
   1219   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
   1220   if (address != NULL) {
   1221     request_size = size;
   1222     DCHECK(base == static_cast<uint8_t*>(address));
   1223   } else {
   1224     // Resizing failed, just go with a bigger area.
   1225     address = ReserveRegion(request_size);
   1226     if (address == NULL) return;
   1227   }
   1228   address_ = address;
   1229   size_ = request_size;
   1230 }
   1231 
   1232 
   1233 VirtualMemory::~VirtualMemory() {
   1234   if (IsReserved()) {
   1235     bool result = ReleaseRegion(address(), size());
   1236     DCHECK(result);
   1237     USE(result);
   1238   }
   1239 }
   1240 
   1241 
   1242 bool VirtualMemory::IsReserved() {
   1243   return address_ != NULL;
   1244 }
   1245 
   1246 
   1247 void VirtualMemory::Reset() {
   1248   address_ = NULL;
   1249   size_ = 0;
   1250 }
   1251 
   1252 
   1253 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1254   return CommitRegion(address, size, is_executable);
   1255 }
   1256 
   1257 
   1258 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1259   DCHECK(IsReserved());
   1260   return UncommitRegion(address, size);
   1261 }
   1262 
   1263 
   1264 bool VirtualMemory::Guard(void* address) {
   1265   if (NULL == VirtualAlloc(address,
   1266                            OS::CommitPageSize(),
   1267                            MEM_COMMIT,
   1268                            PAGE_NOACCESS)) {
   1269     return false;
   1270   }
   1271   return true;
   1272 }
   1273 
   1274 
   1275 void* VirtualMemory::ReserveRegion(size_t size) {
   1276   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
   1277 }
   1278 
   1279 
   1280 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
   1281   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1282   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
   1283     return false;
   1284   }
   1285   return true;
   1286 }
   1287 
   1288 
   1289 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
   1290   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
   1291 }
   1292 
   1293 
   1294 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
   1295   return VirtualFree(base, 0, MEM_RELEASE) != 0;
   1296 }
   1297 
   1298 
   1299 bool VirtualMemory::HasLazyCommits() {
   1300   // TODO(alph): implement for the platform.
   1301   return false;
   1302 }
   1303 
   1304 
   1305 // ----------------------------------------------------------------------------
   1306 // Win32 thread support.
   1307 
   1308 // Definition of invalid thread handle and id.
   1309 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1310 
   1311 // Entry point for threads. The supplied argument is a pointer to the thread
   1312 // object. The entry function dispatches to the run method in the thread
   1313 // object. It is important that this function has __stdcall calling
   1314 // convention.
   1315 static unsigned int __stdcall ThreadEntry(void* arg) {
   1316   Thread* thread = reinterpret_cast<Thread*>(arg);
   1317   thread->NotifyStartedAndRun();
   1318   return 0;
   1319 }
   1320 
   1321 
   1322 class Thread::PlatformData {
   1323  public:
   1324   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1325   HANDLE thread_;
   1326   unsigned thread_id_;
   1327 };
   1328 
   1329 
   1330 // Initialize a Win32 thread object. The thread has an invalid thread
   1331 // handle until it is started.
   1332 
   1333 Thread::Thread(const Options& options)
   1334     : stack_size_(options.stack_size()),
   1335       start_semaphore_(NULL) {
   1336   data_ = new PlatformData(kNoThread);
   1337   set_name(options.name());
   1338 }
   1339 
   1340 
   1341 void Thread::set_name(const char* name) {
   1342   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
   1343   name_[sizeof(name_) - 1] = '\0';
   1344 }
   1345 
   1346 
   1347 // Close our own handle for the thread.
   1348 Thread::~Thread() {
   1349   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1350   delete data_;
   1351 }
   1352 
   1353 
   1354 // Create a new thread. It is important to use _beginthreadex() instead of
   1355 // the Win32 function CreateThread(), because the CreateThread() does not
   1356 // initialize thread specific structures in the C runtime library.
   1357 void Thread::Start() {
   1358   data_->thread_ = reinterpret_cast<HANDLE>(
   1359       _beginthreadex(NULL,
   1360                      static_cast<unsigned>(stack_size_),
   1361                      ThreadEntry,
   1362                      this,
   1363                      0,
   1364                      &data_->thread_id_));
   1365 }
   1366 
   1367 
   1368 // Wait for thread to terminate.
   1369 void Thread::Join() {
   1370   if (data_->thread_id_ != GetCurrentThreadId()) {
   1371     WaitForSingleObject(data_->thread_, INFINITE);
   1372   }
   1373 }
   1374 
   1375 
   1376 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1377   DWORD result = TlsAlloc();
   1378   DCHECK(result != TLS_OUT_OF_INDEXES);
   1379   return static_cast<LocalStorageKey>(result);
   1380 }
   1381 
   1382 
   1383 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1384   BOOL result = TlsFree(static_cast<DWORD>(key));
   1385   USE(result);
   1386   DCHECK(result);
   1387 }
   1388 
   1389 
   1390 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1391   return TlsGetValue(static_cast<DWORD>(key));
   1392 }
   1393 
   1394 
   1395 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1396   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1397   USE(result);
   1398   DCHECK(result);
   1399 }
   1400 
   1401 }  // namespace base
   1402 }  // namespace v8
   1403