Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/bignum-dtoa.h"
      6 
      7 #include <cmath>
      8 
      9 #include "src/base/logging.h"
     10 #include "src/bignum.h"
     11 #include "src/double.h"
     12 #include "src/utils.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 static int NormalizedExponent(uint64_t significand, int exponent) {
     18   DCHECK(significand != 0);
     19   while ((significand & Double::kHiddenBit) == 0) {
     20     significand = significand << 1;
     21     exponent = exponent - 1;
     22   }
     23   return exponent;
     24 }
     25 
     26 
     27 // Forward declarations:
     28 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
     29 static int EstimatePower(int exponent);
     30 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
     31 // and denominator.
     32 static void InitialScaledStartValues(double v,
     33                                      int estimated_power,
     34                                      bool need_boundary_deltas,
     35                                      Bignum* numerator,
     36                                      Bignum* denominator,
     37                                      Bignum* delta_minus,
     38                                      Bignum* delta_plus);
     39 // Multiplies numerator/denominator so that its values lies in the range 1-10.
     40 // Returns decimal_point s.t.
     41 //  v = numerator'/denominator' * 10^(decimal_point-1)
     42 //     where numerator' and denominator' are the values of numerator and
     43 //     denominator after the call to this function.
     44 static void FixupMultiply10(int estimated_power, bool is_even,
     45                             int* decimal_point,
     46                             Bignum* numerator, Bignum* denominator,
     47                             Bignum* delta_minus, Bignum* delta_plus);
     48 // Generates digits from the left to the right and stops when the generated
     49 // digits yield the shortest decimal representation of v.
     50 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
     51                                    Bignum* delta_minus, Bignum* delta_plus,
     52                                    bool is_even,
     53                                    Vector<char> buffer, int* length);
     54 // Generates 'requested_digits' after the decimal point.
     55 static void BignumToFixed(int requested_digits, int* decimal_point,
     56                           Bignum* numerator, Bignum* denominator,
     57                           Vector<char>(buffer), int* length);
     58 // Generates 'count' digits of numerator/denominator.
     59 // Once 'count' digits have been produced rounds the result depending on the
     60 // remainder (remainders of exactly .5 round upwards). Might update the
     61 // decimal_point when rounding up (for example for 0.9999).
     62 static void GenerateCountedDigits(int count, int* decimal_point,
     63                                   Bignum* numerator, Bignum* denominator,
     64                                   Vector<char>(buffer), int* length);
     65 
     66 
     67 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
     68                 Vector<char> buffer, int* length, int* decimal_point) {
     69   DCHECK(v > 0);
     70   DCHECK(!Double(v).IsSpecial());
     71   uint64_t significand = Double(v).Significand();
     72   bool is_even = (significand & 1) == 0;
     73   int exponent = Double(v).Exponent();
     74   int normalized_exponent = NormalizedExponent(significand, exponent);
     75   // estimated_power might be too low by 1.
     76   int estimated_power = EstimatePower(normalized_exponent);
     77 
     78   // Shortcut for Fixed.
     79   // The requested digits correspond to the digits after the point. If the
     80   // number is much too small, then there is no need in trying to get any
     81   // digits.
     82   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
     83     buffer[0] = '\0';
     84     *length = 0;
     85     // Set decimal-point to -requested_digits. This is what Gay does.
     86     // Note that it should not have any effect anyways since the string is
     87     // empty.
     88     *decimal_point = -requested_digits;
     89     return;
     90   }
     91 
     92   Bignum numerator;
     93   Bignum denominator;
     94   Bignum delta_minus;
     95   Bignum delta_plus;
     96   // Make sure the bignum can grow large enough. The smallest double equals
     97   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
     98   // The maximum double is 1.7976931348623157e308 which needs fewer than
     99   // 308*4 binary digits.
    100   DCHECK(Bignum::kMaxSignificantBits >= 324*4);
    101   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
    102   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
    103                            &numerator, &denominator,
    104                            &delta_minus, &delta_plus);
    105   // We now have v = (numerator / denominator) * 10^estimated_power.
    106   FixupMultiply10(estimated_power, is_even, decimal_point,
    107                   &numerator, &denominator,
    108                   &delta_minus, &delta_plus);
    109   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
    110   //  1 <= (numerator + delta_plus) / denominator < 10
    111   switch (mode) {
    112     case BIGNUM_DTOA_SHORTEST:
    113       GenerateShortestDigits(&numerator, &denominator,
    114                              &delta_minus, &delta_plus,
    115                              is_even, buffer, length);
    116       break;
    117     case BIGNUM_DTOA_FIXED:
    118       BignumToFixed(requested_digits, decimal_point,
    119                     &numerator, &denominator,
    120                     buffer, length);
    121       break;
    122     case BIGNUM_DTOA_PRECISION:
    123       GenerateCountedDigits(requested_digits, decimal_point,
    124                             &numerator, &denominator,
    125                             buffer, length);
    126       break;
    127     default:
    128       UNREACHABLE();
    129   }
    130   buffer[*length] = '\0';
    131 }
    132 
    133 
    134 // The procedure starts generating digits from the left to the right and stops
    135 // when the generated digits yield the shortest decimal representation of v. A
    136 // decimal representation of v is a number lying closer to v than to any other
    137 // double, so it converts to v when read.
    138 //
    139 // This is true if d, the decimal representation, is between m- and m+, the
    140 // upper and lower boundaries. d must be strictly between them if !is_even.
    141 //           m- := (numerator - delta_minus) / denominator
    142 //           m+ := (numerator + delta_plus) / denominator
    143 //
    144 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
    145 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
    146 //   will be produced. This should be the standard precondition.
    147 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
    148                                    Bignum* delta_minus, Bignum* delta_plus,
    149                                    bool is_even,
    150                                    Vector<char> buffer, int* length) {
    151   // Small optimization: if delta_minus and delta_plus are the same just reuse
    152   // one of the two bignums.
    153   if (Bignum::Equal(*delta_minus, *delta_plus)) {
    154     delta_plus = delta_minus;
    155   }
    156   *length = 0;
    157   while (true) {
    158     uint16_t digit;
    159     digit = numerator->DivideModuloIntBignum(*denominator);
    160     DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
    161     // digit = numerator / denominator (integer division).
    162     // numerator = numerator % denominator.
    163     buffer[(*length)++] = digit + '0';
    164 
    165     // Can we stop already?
    166     // If the remainder of the division is less than the distance to the lower
    167     // boundary we can stop. In this case we simply round down (discarding the
    168     // remainder).
    169     // Similarly we test if we can round up (using the upper boundary).
    170     bool in_delta_room_minus;
    171     bool in_delta_room_plus;
    172     if (is_even) {
    173       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
    174     } else {
    175       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
    176     }
    177     if (is_even) {
    178       in_delta_room_plus =
    179           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
    180     } else {
    181       in_delta_room_plus =
    182           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
    183     }
    184     if (!in_delta_room_minus && !in_delta_room_plus) {
    185       // Prepare for next iteration.
    186       numerator->Times10();
    187       delta_minus->Times10();
    188       // We optimized delta_plus to be equal to delta_minus (if they share the
    189       // same value). So don't multiply delta_plus if they point to the same
    190       // object.
    191       if (delta_minus != delta_plus) {
    192         delta_plus->Times10();
    193       }
    194     } else if (in_delta_room_minus && in_delta_room_plus) {
    195       // Let's see if 2*numerator < denominator.
    196       // If yes, then the next digit would be < 5 and we can round down.
    197       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
    198       if (compare < 0) {
    199         // Remaining digits are less than .5. -> Round down (== do nothing).
    200       } else if (compare > 0) {
    201         // Remaining digits are more than .5 of denominator. -> Round up.
    202         // Note that the last digit could not be a '9' as otherwise the whole
    203         // loop would have stopped earlier.
    204         // We still have an assert here in case the preconditions were not
    205         // satisfied.
    206         DCHECK(buffer[(*length) - 1] != '9');
    207         buffer[(*length) - 1]++;
    208       } else {
    209         // Halfway case.
    210         // TODO(floitsch): need a way to solve half-way cases.
    211         //   For now let's round towards even (since this is what Gay seems to
    212         //   do).
    213 
    214         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
    215           // Round down => Do nothing.
    216         } else {
    217           DCHECK(buffer[(*length) - 1] != '9');
    218           buffer[(*length) - 1]++;
    219         }
    220       }
    221       return;
    222     } else if (in_delta_room_minus) {
    223       // Round down (== do nothing).
    224       return;
    225     } else {  // in_delta_room_plus
    226       // Round up.
    227       // Note again that the last digit could not be '9' since this would have
    228       // stopped the loop earlier.
    229       // We still have an DCHECK here, in case the preconditions were not
    230       // satisfied.
    231       DCHECK(buffer[(*length) -1] != '9');
    232       buffer[(*length) - 1]++;
    233       return;
    234     }
    235   }
    236 }
    237 
    238 
    239 // Let v = numerator / denominator < 10.
    240 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
    241 // from left to right. Once 'count' digits have been produced we decide wether
    242 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
    243 // as 9.999999 propagate a carry all the way, and change the
    244 // exponent (decimal_point), when rounding upwards.
    245 static void GenerateCountedDigits(int count, int* decimal_point,
    246                                   Bignum* numerator, Bignum* denominator,
    247                                   Vector<char>(buffer), int* length) {
    248   DCHECK(count >= 0);
    249   for (int i = 0; i < count - 1; ++i) {
    250     uint16_t digit;
    251     digit = numerator->DivideModuloIntBignum(*denominator);
    252     DCHECK(digit <= 9);  // digit is a uint16_t and therefore always positive.
    253     // digit = numerator / denominator (integer division).
    254     // numerator = numerator % denominator.
    255     buffer[i] = digit + '0';
    256     // Prepare for next iteration.
    257     numerator->Times10();
    258   }
    259   // Generate the last digit.
    260   uint16_t digit;
    261   digit = numerator->DivideModuloIntBignum(*denominator);
    262   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
    263     digit++;
    264   }
    265   buffer[count - 1] = digit + '0';
    266   // Correct bad digits (in case we had a sequence of '9's). Propagate the
    267   // carry until we hat a non-'9' or til we reach the first digit.
    268   for (int i = count - 1; i > 0; --i) {
    269     if (buffer[i] != '0' + 10) break;
    270     buffer[i] = '0';
    271     buffer[i - 1]++;
    272   }
    273   if (buffer[0] == '0' + 10) {
    274     // Propagate a carry past the top place.
    275     buffer[0] = '1';
    276     (*decimal_point)++;
    277   }
    278   *length = count;
    279 }
    280 
    281 
    282 // Generates 'requested_digits' after the decimal point. It might omit
    283 // trailing '0's. If the input number is too small then no digits at all are
    284 // generated (ex.: 2 fixed digits for 0.00001).
    285 //
    286 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
    287 static void BignumToFixed(int requested_digits, int* decimal_point,
    288                           Bignum* numerator, Bignum* denominator,
    289                           Vector<char>(buffer), int* length) {
    290   // Note that we have to look at more than just the requested_digits, since
    291   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
    292   // Even though the power of v equals 0 we can't just stop here.
    293   if (-(*decimal_point) > requested_digits) {
    294     // The number is definitively too small.
    295     // Ex: 0.001 with requested_digits == 1.
    296     // Set decimal-point to -requested_digits. This is what Gay does.
    297     // Note that it should not have any effect anyways since the string is
    298     // empty.
    299     *decimal_point = -requested_digits;
    300     *length = 0;
    301     return;
    302   } else if (-(*decimal_point) == requested_digits) {
    303     // We only need to verify if the number rounds down or up.
    304     // Ex: 0.04 and 0.06 with requested_digits == 1.
    305     DCHECK(*decimal_point == -requested_digits);
    306     // Initially the fraction lies in range (1, 10]. Multiply the denominator
    307     // by 10 so that we can compare more easily.
    308     denominator->Times10();
    309     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
    310       // If the fraction is >= 0.5 then we have to include the rounded
    311       // digit.
    312       buffer[0] = '1';
    313       *length = 1;
    314       (*decimal_point)++;
    315     } else {
    316       // Note that we caught most of similar cases earlier.
    317       *length = 0;
    318     }
    319     return;
    320   } else {
    321     // The requested digits correspond to the digits after the point.
    322     // The variable 'needed_digits' includes the digits before the point.
    323     int needed_digits = (*decimal_point) + requested_digits;
    324     GenerateCountedDigits(needed_digits, decimal_point,
    325                           numerator, denominator,
    326                           buffer, length);
    327   }
    328 }
    329 
    330 
    331 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
    332 // v = f * 2^exponent and 2^52 <= f < 2^53.
    333 // v is hence a normalized double with the given exponent. The output is an
    334 // approximation for the exponent of the decimal approimation .digits * 10^k.
    335 //
    336 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
    337 // Note: this property holds for v's upper boundary m+ too.
    338 //    10^k <= m+ < 10^k+1.
    339 //   (see explanation below).
    340 //
    341 // Examples:
    342 //  EstimatePower(0)   => 16
    343 //  EstimatePower(-52) => 0
    344 //
    345 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
    346 static int EstimatePower(int exponent) {
    347   // This function estimates log10 of v where v = f*2^e (with e == exponent).
    348   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
    349   // Note that f is bounded by its container size. Let p = 53 (the double's
    350   // significand size). Then 2^(p-1) <= f < 2^p.
    351   //
    352   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
    353   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
    354   // The computed number undershoots by less than 0.631 (when we compute log3
    355   // and not log10).
    356   //
    357   // Optimization: since we only need an approximated result this computation
    358   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
    359   // not really measurable, though.
    360   //
    361   // Since we want to avoid overshooting we decrement by 1e10 so that
    362   // floating-point imprecisions don't affect us.
    363   //
    364   // Explanation for v's boundary m+: the computation takes advantage of
    365   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
    366   // (even for denormals where the delta can be much more important).
    367 
    368   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
    369 
    370   // For doubles len(f) == 53 (don't forget the hidden bit).
    371   const int kSignificandSize = 53;
    372   double estimate =
    373       std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
    374   return static_cast<int>(estimate);
    375 }
    376 
    377 
    378 // See comments for InitialScaledStartValues.
    379 static void InitialScaledStartValuesPositiveExponent(
    380     double v, int estimated_power, bool need_boundary_deltas,
    381     Bignum* numerator, Bignum* denominator,
    382     Bignum* delta_minus, Bignum* delta_plus) {
    383   // A positive exponent implies a positive power.
    384   DCHECK(estimated_power >= 0);
    385   // Since the estimated_power is positive we simply multiply the denominator
    386   // by 10^estimated_power.
    387 
    388   // numerator = v.
    389   numerator->AssignUInt64(Double(v).Significand());
    390   numerator->ShiftLeft(Double(v).Exponent());
    391   // denominator = 10^estimated_power.
    392   denominator->AssignPowerUInt16(10, estimated_power);
    393 
    394   if (need_boundary_deltas) {
    395     // Introduce a common denominator so that the deltas to the boundaries are
    396     // integers.
    397     denominator->ShiftLeft(1);
    398     numerator->ShiftLeft(1);
    399     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    400     // denominator (of 2) delta_plus equals 2^e.
    401     delta_plus->AssignUInt16(1);
    402     delta_plus->ShiftLeft(Double(v).Exponent());
    403     // Same for delta_minus (with adjustments below if f == 2^p-1).
    404     delta_minus->AssignUInt16(1);
    405     delta_minus->ShiftLeft(Double(v).Exponent());
    406 
    407     // If the significand (without the hidden bit) is 0, then the lower
    408     // boundary is closer than just half a ulp (unit in the last place).
    409     // There is only one exception: if the next lower number is a denormal then
    410     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
    411     // have to test it in the other function where exponent < 0).
    412     uint64_t v_bits = Double(v).AsUint64();
    413     if ((v_bits & Double::kSignificandMask) == 0) {
    414       // The lower boundary is closer at half the distance of "normal" numbers.
    415       // Increase the common denominator and adapt all but the delta_minus.
    416       denominator->ShiftLeft(1);  // *2
    417       numerator->ShiftLeft(1);    // *2
    418       delta_plus->ShiftLeft(1);   // *2
    419     }
    420   }
    421 }
    422 
    423 
    424 // See comments for InitialScaledStartValues
    425 static void InitialScaledStartValuesNegativeExponentPositivePower(
    426     double v, int estimated_power, bool need_boundary_deltas,
    427     Bignum* numerator, Bignum* denominator,
    428     Bignum* delta_minus, Bignum* delta_plus) {
    429   uint64_t significand = Double(v).Significand();
    430   int exponent = Double(v).Exponent();
    431   // v = f * 2^e with e < 0, and with estimated_power >= 0.
    432   // This means that e is close to 0 (have a look at how estimated_power is
    433   // computed).
    434 
    435   // numerator = significand
    436   //  since v = significand * 2^exponent this is equivalent to
    437   //  numerator = v * / 2^-exponent
    438   numerator->AssignUInt64(significand);
    439   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
    440   denominator->AssignPowerUInt16(10, estimated_power);
    441   denominator->ShiftLeft(-exponent);
    442 
    443   if (need_boundary_deltas) {
    444     // Introduce a common denominator so that the deltas to the boundaries are
    445     // integers.
    446     denominator->ShiftLeft(1);
    447     numerator->ShiftLeft(1);
    448     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
    449     // denominator (of 2) delta_plus equals 2^e.
    450     // Given that the denominator already includes v's exponent the distance
    451     // to the boundaries is simply 1.
    452     delta_plus->AssignUInt16(1);
    453     // Same for delta_minus (with adjustments below if f == 2^p-1).
    454     delta_minus->AssignUInt16(1);
    455 
    456     // If the significand (without the hidden bit) is 0, then the lower
    457     // boundary is closer than just one ulp (unit in the last place).
    458     // There is only one exception: if the next lower number is a denormal
    459     // then the distance is 1 ulp. Since the exponent is close to zero
    460     // (otherwise estimated_power would have been negative) this cannot happen
    461     // here either.
    462     uint64_t v_bits = Double(v).AsUint64();
    463     if ((v_bits & Double::kSignificandMask) == 0) {
    464       // The lower boundary is closer at half the distance of "normal" numbers.
    465       // Increase the denominator and adapt all but the delta_minus.
    466       denominator->ShiftLeft(1);  // *2
    467       numerator->ShiftLeft(1);    // *2
    468       delta_plus->ShiftLeft(1);   // *2
    469     }
    470   }
    471 }
    472 
    473 
    474 // See comments for InitialScaledStartValues
    475 static void InitialScaledStartValuesNegativeExponentNegativePower(
    476     double v, int estimated_power, bool need_boundary_deltas,
    477     Bignum* numerator, Bignum* denominator,
    478     Bignum* delta_minus, Bignum* delta_plus) {
    479   const uint64_t kMinimalNormalizedExponent =
    480       V8_2PART_UINT64_C(0x00100000, 00000000);
    481   uint64_t significand = Double(v).Significand();
    482   int exponent = Double(v).Exponent();
    483   // Instead of multiplying the denominator with 10^estimated_power we
    484   // multiply all values (numerator and deltas) by 10^-estimated_power.
    485 
    486   // Use numerator as temporary container for power_ten.
    487   Bignum* power_ten = numerator;
    488   power_ten->AssignPowerUInt16(10, -estimated_power);
    489 
    490   if (need_boundary_deltas) {
    491     // Since power_ten == numerator we must make a copy of 10^estimated_power
    492     // before we complete the computation of the numerator.
    493     // delta_plus = delta_minus = 10^estimated_power
    494     delta_plus->AssignBignum(*power_ten);
    495     delta_minus->AssignBignum(*power_ten);
    496   }
    497 
    498   // numerator = significand * 2 * 10^-estimated_power
    499   //  since v = significand * 2^exponent this is equivalent to
    500   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
    501   // Remember: numerator has been abused as power_ten. So no need to assign it
    502   //  to itself.
    503   DCHECK(numerator == power_ten);
    504   numerator->MultiplyByUInt64(significand);
    505 
    506   // denominator = 2 * 2^-exponent with exponent < 0.
    507   denominator->AssignUInt16(1);
    508   denominator->ShiftLeft(-exponent);
    509 
    510   if (need_boundary_deltas) {
    511     // Introduce a common denominator so that the deltas to the boundaries are
    512     // integers.
    513     numerator->ShiftLeft(1);
    514     denominator->ShiftLeft(1);
    515     // With this shift the boundaries have their correct value, since
    516     // delta_plus = 10^-estimated_power, and
    517     // delta_minus = 10^-estimated_power.
    518     // These assignments have been done earlier.
    519 
    520     // The special case where the lower boundary is twice as close.
    521     // This time we have to look out for the exception too.
    522     uint64_t v_bits = Double(v).AsUint64();
    523     if ((v_bits & Double::kSignificandMask) == 0 &&
    524         // The only exception where a significand == 0 has its boundaries at
    525         // "normal" distances:
    526         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
    527       numerator->ShiftLeft(1);    // *2
    528       denominator->ShiftLeft(1);  // *2
    529       delta_plus->ShiftLeft(1);   // *2
    530     }
    531   }
    532 }
    533 
    534 
    535 // Let v = significand * 2^exponent.
    536 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
    537 // and denominator. The functions GenerateShortestDigits and
    538 // GenerateCountedDigits will then convert this ratio to its decimal
    539 // representation d, with the required accuracy.
    540 // Then d * 10^estimated_power is the representation of v.
    541 // (Note: the fraction and the estimated_power might get adjusted before
    542 // generating the decimal representation.)
    543 //
    544 // The initial start values consist of:
    545 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
    546 //  - a scaled (common) denominator.
    547 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
    548 //  decimal converting back to v):
    549 //  - v - m-: the distance to the lower boundary.
    550 //  - m+ - v: the distance to the upper boundary.
    551 //
    552 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
    553 //
    554 // Let ep == estimated_power, then the returned values will satisfy:
    555 //  v / 10^ep = numerator / denominator.
    556 //  v's boundarys m- and m+:
    557 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
    558 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
    559 //  Or in other words:
    560 //    m- == v - delta_minus * 10^ep / denominator;
    561 //    m+ == v + delta_plus * 10^ep / denominator;
    562 //
    563 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
    564 //  or       10^k <= v < 10^(k+1)
    565 //  we then have 0.1 <= numerator/denominator < 1
    566 //           or    1 <= numerator/denominator < 10
    567 //
    568 // It is then easy to kickstart the digit-generation routine.
    569 //
    570 // The boundary-deltas are only filled if need_boundary_deltas is set.
    571 static void InitialScaledStartValues(double v,
    572                                      int estimated_power,
    573                                      bool need_boundary_deltas,
    574                                      Bignum* numerator,
    575                                      Bignum* denominator,
    576                                      Bignum* delta_minus,
    577                                      Bignum* delta_plus) {
    578   if (Double(v).Exponent() >= 0) {
    579     InitialScaledStartValuesPositiveExponent(
    580         v, estimated_power, need_boundary_deltas,
    581         numerator, denominator, delta_minus, delta_plus);
    582   } else if (estimated_power >= 0) {
    583     InitialScaledStartValuesNegativeExponentPositivePower(
    584         v, estimated_power, need_boundary_deltas,
    585         numerator, denominator, delta_minus, delta_plus);
    586   } else {
    587     InitialScaledStartValuesNegativeExponentNegativePower(
    588         v, estimated_power, need_boundary_deltas,
    589         numerator, denominator, delta_minus, delta_plus);
    590   }
    591 }
    592 
    593 
    594 // This routine multiplies numerator/denominator so that its values lies in the
    595 // range 1-10. That is after a call to this function we have:
    596 //    1 <= (numerator + delta_plus) /denominator < 10.
    597 // Let numerator the input before modification and numerator' the argument
    598 // after modification, then the output-parameter decimal_point is such that
    599 //  numerator / denominator * 10^estimated_power ==
    600 //    numerator' / denominator' * 10^(decimal_point - 1)
    601 // In some cases estimated_power was too low, and this is already the case. We
    602 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
    603 // estimated_power) but do not touch the numerator or denominator.
    604 // Otherwise the routine multiplies the numerator and the deltas by 10.
    605 static void FixupMultiply10(int estimated_power, bool is_even,
    606                             int* decimal_point,
    607                             Bignum* numerator, Bignum* denominator,
    608                             Bignum* delta_minus, Bignum* delta_plus) {
    609   bool in_range;
    610   if (is_even) {
    611     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
    612     // are rounded to the closest floating-point number with even significand.
    613     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
    614   } else {
    615     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
    616   }
    617   if (in_range) {
    618     // Since numerator + delta_plus >= denominator we already have
    619     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
    620     *decimal_point = estimated_power + 1;
    621   } else {
    622     *decimal_point = estimated_power;
    623     numerator->Times10();
    624     if (Bignum::Equal(*delta_minus, *delta_plus)) {
    625       delta_minus->Times10();
    626       delta_plus->AssignBignum(*delta_minus);
    627     } else {
    628       delta_minus->Times10();
    629       delta_plus->Times10();
    630     }
    631   }
    632 }
    633 
    634 }  // namespace internal
    635 }  // namespace v8
    636