Home | History | Annotate | Download | only in mips
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/base/adapters.h"
      6 #include "src/base/bits.h"
      7 #include "src/compiler/instruction-selector-impl.h"
      8 #include "src/compiler/node-matchers.h"
      9 #include "src/compiler/node-properties.h"
     10 
     11 namespace v8 {
     12 namespace internal {
     13 namespace compiler {
     14 
     15 #define TRACE_UNIMPL() \
     16   PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
     17 
     18 #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
     19 
     20 
     21 // Adds Mips-specific methods for generating InstructionOperands.
     22 class MipsOperandGenerator final : public OperandGenerator {
     23  public:
     24   explicit MipsOperandGenerator(InstructionSelector* selector)
     25       : OperandGenerator(selector) {}
     26 
     27   InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
     28     if (CanBeImmediate(node, opcode)) {
     29       return UseImmediate(node);
     30     }
     31     return UseRegister(node);
     32   }
     33 
     34   bool CanBeImmediate(Node* node, InstructionCode opcode) {
     35     Int32Matcher m(node);
     36     if (!m.HasValue()) return false;
     37     int32_t value = m.Value();
     38     switch (ArchOpcodeField::decode(opcode)) {
     39       case kMipsShl:
     40       case kMipsSar:
     41       case kMipsShr:
     42         return is_uint5(value);
     43       case kMipsXor:
     44         return is_uint16(value);
     45       case kMipsLdc1:
     46       case kMipsSdc1:
     47       case kCheckedLoadFloat64:
     48       case kCheckedStoreFloat64:
     49         return std::numeric_limits<int16_t>::min() <= (value + kIntSize) &&
     50                std::numeric_limits<int16_t>::max() >= (value + kIntSize);
     51       default:
     52         return is_int16(value);
     53     }
     54   }
     55 
     56  private:
     57   bool ImmediateFitsAddrMode1Instruction(int32_t imm) const {
     58     TRACE_UNIMPL();
     59     return false;
     60   }
     61 };
     62 
     63 
     64 static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
     65                      Node* node) {
     66   MipsOperandGenerator g(selector);
     67   selector->Emit(opcode, g.DefineAsRegister(node),
     68                  g.UseRegister(node->InputAt(0)),
     69                  g.UseRegister(node->InputAt(1)));
     70 }
     71 
     72 
     73 static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
     74                     Node* node) {
     75   MipsOperandGenerator g(selector);
     76   selector->Emit(opcode, g.DefineAsRegister(node),
     77                  g.UseRegister(node->InputAt(0)));
     78 }
     79 
     80 
     81 static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
     82                      Node* node) {
     83   MipsOperandGenerator g(selector);
     84   selector->Emit(opcode, g.DefineAsRegister(node),
     85                  g.UseRegister(node->InputAt(0)),
     86                  g.UseOperand(node->InputAt(1), opcode));
     87 }
     88 
     89 
     90 static void VisitBinop(InstructionSelector* selector, Node* node,
     91                        InstructionCode opcode, FlagsContinuation* cont) {
     92   MipsOperandGenerator g(selector);
     93   Int32BinopMatcher m(node);
     94   InstructionOperand inputs[4];
     95   size_t input_count = 0;
     96   InstructionOperand outputs[2];
     97   size_t output_count = 0;
     98 
     99   inputs[input_count++] = g.UseRegister(m.left().node());
    100   inputs[input_count++] = g.UseOperand(m.right().node(), opcode);
    101 
    102   if (cont->IsBranch()) {
    103     inputs[input_count++] = g.Label(cont->true_block());
    104     inputs[input_count++] = g.Label(cont->false_block());
    105   }
    106 
    107   outputs[output_count++] = g.DefineAsRegister(node);
    108   if (cont->IsSet()) {
    109     outputs[output_count++] = g.DefineAsRegister(cont->result());
    110   }
    111 
    112   DCHECK_NE(0u, input_count);
    113   DCHECK_NE(0u, output_count);
    114   DCHECK_GE(arraysize(inputs), input_count);
    115   DCHECK_GE(arraysize(outputs), output_count);
    116 
    117   opcode = cont->Encode(opcode);
    118   if (cont->IsDeoptimize()) {
    119     selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
    120                              cont->frame_state());
    121   } else {
    122     selector->Emit(opcode, output_count, outputs, input_count, inputs);
    123   }
    124 }
    125 
    126 
    127 static void VisitBinop(InstructionSelector* selector, Node* node,
    128                        InstructionCode opcode) {
    129   FlagsContinuation cont;
    130   VisitBinop(selector, node, opcode, &cont);
    131 }
    132 
    133 
    134 void InstructionSelector::VisitLoad(Node* node) {
    135   LoadRepresentation load_rep = LoadRepresentationOf(node->op());
    136   MipsOperandGenerator g(this);
    137   Node* base = node->InputAt(0);
    138   Node* index = node->InputAt(1);
    139 
    140   ArchOpcode opcode = kArchNop;
    141   switch (load_rep.representation()) {
    142     case MachineRepresentation::kFloat32:
    143       opcode = kMipsLwc1;
    144       break;
    145     case MachineRepresentation::kFloat64:
    146       opcode = kMipsLdc1;
    147       break;
    148     case MachineRepresentation::kBit:  // Fall through.
    149     case MachineRepresentation::kWord8:
    150       opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb;
    151       break;
    152     case MachineRepresentation::kWord16:
    153       opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh;
    154       break;
    155     case MachineRepresentation::kTagged:  // Fall through.
    156     case MachineRepresentation::kWord32:
    157       opcode = kMipsLw;
    158       break;
    159     case MachineRepresentation::kWord64:   // Fall through.
    160     case MachineRepresentation::kSimd128:  // Fall through.
    161     case MachineRepresentation::kNone:
    162       UNREACHABLE();
    163       return;
    164   }
    165 
    166   if (g.CanBeImmediate(index, opcode)) {
    167     Emit(opcode | AddressingModeField::encode(kMode_MRI),
    168          g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
    169   } else {
    170     InstructionOperand addr_reg = g.TempRegister();
    171     Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
    172          g.UseRegister(index), g.UseRegister(base));
    173     // Emit desired load opcode, using temp addr_reg.
    174     Emit(opcode | AddressingModeField::encode(kMode_MRI),
    175          g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
    176   }
    177 }
    178 
    179 
    180 void InstructionSelector::VisitStore(Node* node) {
    181   MipsOperandGenerator g(this);
    182   Node* base = node->InputAt(0);
    183   Node* index = node->InputAt(1);
    184   Node* value = node->InputAt(2);
    185 
    186   StoreRepresentation store_rep = StoreRepresentationOf(node->op());
    187   WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
    188   MachineRepresentation rep = store_rep.representation();
    189 
    190   // TODO(mips): I guess this could be done in a better way.
    191   if (write_barrier_kind != kNoWriteBarrier) {
    192     DCHECK_EQ(MachineRepresentation::kTagged, rep);
    193     InstructionOperand inputs[3];
    194     size_t input_count = 0;
    195     inputs[input_count++] = g.UseUniqueRegister(base);
    196     inputs[input_count++] = g.UseUniqueRegister(index);
    197     inputs[input_count++] = g.UseUniqueRegister(value);
    198     RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
    199     switch (write_barrier_kind) {
    200       case kNoWriteBarrier:
    201         UNREACHABLE();
    202         break;
    203       case kMapWriteBarrier:
    204         record_write_mode = RecordWriteMode::kValueIsMap;
    205         break;
    206       case kPointerWriteBarrier:
    207         record_write_mode = RecordWriteMode::kValueIsPointer;
    208         break;
    209       case kFullWriteBarrier:
    210         record_write_mode = RecordWriteMode::kValueIsAny;
    211         break;
    212     }
    213     InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
    214     size_t const temp_count = arraysize(temps);
    215     InstructionCode code = kArchStoreWithWriteBarrier;
    216     code |= MiscField::encode(static_cast<int>(record_write_mode));
    217     Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
    218   } else {
    219     ArchOpcode opcode = kArchNop;
    220     switch (rep) {
    221       case MachineRepresentation::kFloat32:
    222         opcode = kMipsSwc1;
    223         break;
    224       case MachineRepresentation::kFloat64:
    225         opcode = kMipsSdc1;
    226         break;
    227       case MachineRepresentation::kBit:  // Fall through.
    228       case MachineRepresentation::kWord8:
    229         opcode = kMipsSb;
    230         break;
    231       case MachineRepresentation::kWord16:
    232         opcode = kMipsSh;
    233         break;
    234       case MachineRepresentation::kTagged:  // Fall through.
    235       case MachineRepresentation::kWord32:
    236         opcode = kMipsSw;
    237         break;
    238       case MachineRepresentation::kWord64:   // Fall through.
    239       case MachineRepresentation::kSimd128:  // Fall through.
    240       case MachineRepresentation::kNone:
    241         UNREACHABLE();
    242         return;
    243     }
    244 
    245     if (g.CanBeImmediate(index, opcode)) {
    246       Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
    247            g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
    248     } else {
    249       InstructionOperand addr_reg = g.TempRegister();
    250       Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
    251            g.UseRegister(index), g.UseRegister(base));
    252       // Emit desired store opcode, using temp addr_reg.
    253       Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
    254            addr_reg, g.TempImmediate(0), g.UseRegister(value));
    255     }
    256   }
    257 }
    258 
    259 
    260 void InstructionSelector::VisitWord32And(Node* node) {
    261   MipsOperandGenerator g(this);
    262   Int32BinopMatcher m(node);
    263   if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
    264       m.right().HasValue()) {
    265     uint32_t mask = m.right().Value();
    266     uint32_t mask_width = base::bits::CountPopulation32(mask);
    267     uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
    268     if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
    269       // The mask must be contiguous, and occupy the least-significant bits.
    270       DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
    271 
    272       // Select Ext for And(Shr(x, imm), mask) where the mask is in the least
    273       // significant bits.
    274       Int32BinopMatcher mleft(m.left().node());
    275       if (mleft.right().HasValue()) {
    276         // Any shift value can match; int32 shifts use `value % 32`.
    277         uint32_t lsb = mleft.right().Value() & 0x1f;
    278 
    279         // Ext cannot extract bits past the register size, however since
    280         // shifting the original value would have introduced some zeros we can
    281         // still use Ext with a smaller mask and the remaining bits will be
    282         // zeros.
    283         if (lsb + mask_width > 32) mask_width = 32 - lsb;
    284 
    285         Emit(kMipsExt, g.DefineAsRegister(node),
    286              g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
    287              g.TempImmediate(mask_width));
    288         return;
    289       }
    290       // Other cases fall through to the normal And operation.
    291     }
    292   }
    293   if (m.right().HasValue()) {
    294     uint32_t mask = m.right().Value();
    295     uint32_t shift = base::bits::CountPopulation32(~mask);
    296     uint32_t msb = base::bits::CountLeadingZeros32(~mask);
    297     if (shift != 0 && shift != 32 && msb + shift == 32) {
    298       // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
    299       // and remove constant loading of invereted mask.
    300       Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
    301            g.TempImmediate(0), g.TempImmediate(shift));
    302       return;
    303     }
    304   }
    305   VisitBinop(this, node, kMipsAnd);
    306 }
    307 
    308 
    309 void InstructionSelector::VisitWord32Or(Node* node) {
    310   VisitBinop(this, node, kMipsOr);
    311 }
    312 
    313 
    314 void InstructionSelector::VisitWord32Xor(Node* node) {
    315   Int32BinopMatcher m(node);
    316   if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
    317       m.right().Is(-1)) {
    318     Int32BinopMatcher mleft(m.left().node());
    319     if (!mleft.right().HasValue()) {
    320       MipsOperandGenerator g(this);
    321       Emit(kMipsNor, g.DefineAsRegister(node),
    322            g.UseRegister(mleft.left().node()),
    323            g.UseRegister(mleft.right().node()));
    324       return;
    325     }
    326   }
    327   if (m.right().Is(-1)) {
    328     // Use Nor for bit negation and eliminate constant loading for xori.
    329     MipsOperandGenerator g(this);
    330     Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    331          g.TempImmediate(0));
    332     return;
    333   }
    334   VisitBinop(this, node, kMipsXor);
    335 }
    336 
    337 
    338 void InstructionSelector::VisitWord32Shl(Node* node) {
    339   Int32BinopMatcher m(node);
    340   if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
    341       m.right().IsInRange(1, 31)) {
    342     MipsOperandGenerator g(this);
    343     Int32BinopMatcher mleft(m.left().node());
    344     // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
    345     // contiguous, and the shift immediate non-zero.
    346     if (mleft.right().HasValue()) {
    347       uint32_t mask = mleft.right().Value();
    348       uint32_t mask_width = base::bits::CountPopulation32(mask);
    349       uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
    350       if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
    351         uint32_t shift = m.right().Value();
    352         DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
    353         DCHECK_NE(0u, shift);
    354         if ((shift + mask_width) >= 32) {
    355           // If the mask is contiguous and reaches or extends beyond the top
    356           // bit, only the shift is needed.
    357           Emit(kMipsShl, g.DefineAsRegister(node),
    358                g.UseRegister(mleft.left().node()),
    359                g.UseImmediate(m.right().node()));
    360           return;
    361         }
    362       }
    363     }
    364   }
    365   VisitRRO(this, kMipsShl, node);
    366 }
    367 
    368 
    369 void InstructionSelector::VisitWord32Shr(Node* node) {
    370   Int32BinopMatcher m(node);
    371   if (m.left().IsWord32And() && m.right().HasValue()) {
    372     uint32_t lsb = m.right().Value() & 0x1f;
    373     Int32BinopMatcher mleft(m.left().node());
    374     if (mleft.right().HasValue()) {
    375       // Select Ext for Shr(And(x, mask), imm) where the result of the mask is
    376       // shifted into the least-significant bits.
    377       uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
    378       unsigned mask_width = base::bits::CountPopulation32(mask);
    379       unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
    380       if ((mask_msb + mask_width + lsb) == 32) {
    381         MipsOperandGenerator g(this);
    382         DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
    383         Emit(kMipsExt, g.DefineAsRegister(node),
    384              g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
    385              g.TempImmediate(mask_width));
    386         return;
    387       }
    388     }
    389   }
    390   VisitRRO(this, kMipsShr, node);
    391 }
    392 
    393 
    394 void InstructionSelector::VisitWord32Sar(Node* node) {
    395   VisitRRO(this, kMipsSar, node);
    396 }
    397 
    398 static void VisitInt32PairBinop(InstructionSelector* selector,
    399                                 InstructionCode opcode, Node* node) {
    400   MipsOperandGenerator g(selector);
    401 
    402   // We use UseUniqueRegister here to avoid register sharing with the output
    403   // register.
    404   InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
    405                                  g.UseUniqueRegister(node->InputAt(1)),
    406                                  g.UseUniqueRegister(node->InputAt(2)),
    407                                  g.UseUniqueRegister(node->InputAt(3))};
    408 
    409   InstructionOperand outputs[] = {
    410       g.DefineAsRegister(node),
    411       g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
    412   selector->Emit(opcode, 2, outputs, 4, inputs);
    413 }
    414 
    415 void InstructionSelector::VisitInt32PairAdd(Node* node) {
    416   VisitInt32PairBinop(this, kMipsAddPair, node);
    417 }
    418 
    419 void InstructionSelector::VisitInt32PairSub(Node* node) {
    420   VisitInt32PairBinop(this, kMipsSubPair, node);
    421 }
    422 
    423 void InstructionSelector::VisitInt32PairMul(Node* node) {
    424   VisitInt32PairBinop(this, kMipsMulPair, node);
    425 }
    426 
    427 // Shared routine for multiple shift operations.
    428 static void VisitWord32PairShift(InstructionSelector* selector,
    429                                  InstructionCode opcode, Node* node) {
    430   MipsOperandGenerator g(selector);
    431   Int32Matcher m(node->InputAt(2));
    432   InstructionOperand shift_operand;
    433   if (m.HasValue()) {
    434     shift_operand = g.UseImmediate(m.node());
    435   } else {
    436     shift_operand = g.UseUniqueRegister(m.node());
    437   }
    438 
    439   // We use UseUniqueRegister here to avoid register sharing with the output
    440   // register.
    441   InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)),
    442                                  g.UseUniqueRegister(node->InputAt(1)),
    443                                  shift_operand};
    444 
    445   InstructionOperand outputs[] = {
    446       g.DefineAsRegister(node),
    447       g.DefineAsRegister(NodeProperties::FindProjection(node, 1))};
    448 
    449   selector->Emit(opcode, 2, outputs, 3, inputs);
    450 }
    451 
    452 void InstructionSelector::VisitWord32PairShl(Node* node) {
    453   VisitWord32PairShift(this, kMipsShlPair, node);
    454 }
    455 
    456 void InstructionSelector::VisitWord32PairShr(Node* node) {
    457   VisitWord32PairShift(this, kMipsShrPair, node);
    458 }
    459 
    460 void InstructionSelector::VisitWord32PairSar(Node* node) {
    461   VisitWord32PairShift(this, kMipsSarPair, node);
    462 }
    463 
    464 void InstructionSelector::VisitWord32Ror(Node* node) {
    465   VisitRRO(this, kMipsRor, node);
    466 }
    467 
    468 
    469 void InstructionSelector::VisitWord32Clz(Node* node) {
    470   VisitRR(this, kMipsClz, node);
    471 }
    472 
    473 
    474 void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
    475 
    476 
    477 void InstructionSelector::VisitWord32Ctz(Node* node) {
    478   MipsOperandGenerator g(this);
    479   Emit(kMipsCtz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
    480 }
    481 
    482 
    483 void InstructionSelector::VisitWord32Popcnt(Node* node) {
    484   MipsOperandGenerator g(this);
    485   Emit(kMipsPopcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
    486 }
    487 
    488 
    489 void InstructionSelector::VisitInt32Add(Node* node) {
    490   MipsOperandGenerator g(this);
    491   Int32BinopMatcher m(node);
    492 
    493   // Select Lsa for (left + (left_of_right << imm)).
    494   if (m.right().opcode() == IrOpcode::kWord32Shl &&
    495       CanCover(node, m.left().node()) && CanCover(node, m.right().node())) {
    496     Int32BinopMatcher mright(m.right().node());
    497     if (mright.right().HasValue()) {
    498       int32_t shift_value = static_cast<int32_t>(mright.right().Value());
    499       Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    500            g.UseRegister(mright.left().node()), g.TempImmediate(shift_value));
    501       return;
    502     }
    503   }
    504 
    505   // Select Lsa for ((left_of_left << imm) + right).
    506   if (m.left().opcode() == IrOpcode::kWord32Shl &&
    507       CanCover(node, m.right().node()) && CanCover(node, m.left().node())) {
    508     Int32BinopMatcher mleft(m.left().node());
    509     if (mleft.right().HasValue()) {
    510       int32_t shift_value = static_cast<int32_t>(mleft.right().Value());
    511       Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.right().node()),
    512            g.UseRegister(mleft.left().node()), g.TempImmediate(shift_value));
    513       return;
    514     }
    515   }
    516 
    517   VisitBinop(this, node, kMipsAdd);
    518 }
    519 
    520 
    521 void InstructionSelector::VisitInt32Sub(Node* node) {
    522   VisitBinop(this, node, kMipsSub);
    523 }
    524 
    525 
    526 void InstructionSelector::VisitInt32Mul(Node* node) {
    527   MipsOperandGenerator g(this);
    528   Int32BinopMatcher m(node);
    529   if (m.right().HasValue() && m.right().Value() > 0) {
    530     int32_t value = m.right().Value();
    531     if (base::bits::IsPowerOfTwo32(value)) {
    532       Emit(kMipsShl | AddressingModeField::encode(kMode_None),
    533            g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    534            g.TempImmediate(WhichPowerOf2(value)));
    535       return;
    536     }
    537     if (base::bits::IsPowerOfTwo32(value - 1)) {
    538       Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    539            g.UseRegister(m.left().node()),
    540            g.TempImmediate(WhichPowerOf2(value - 1)));
    541       return;
    542     }
    543     if (base::bits::IsPowerOfTwo32(value + 1)) {
    544       InstructionOperand temp = g.TempRegister();
    545       Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp,
    546            g.UseRegister(m.left().node()),
    547            g.TempImmediate(WhichPowerOf2(value + 1)));
    548       Emit(kMipsSub | AddressingModeField::encode(kMode_None),
    549            g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
    550       return;
    551     }
    552   }
    553   VisitRRR(this, kMipsMul, node);
    554 }
    555 
    556 
    557 void InstructionSelector::VisitInt32MulHigh(Node* node) {
    558   VisitRRR(this, kMipsMulHigh, node);
    559 }
    560 
    561 
    562 void InstructionSelector::VisitUint32MulHigh(Node* node) {
    563   MipsOperandGenerator g(this);
    564   Emit(kMipsMulHighU, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
    565        g.UseRegister(node->InputAt(1)));
    566 }
    567 
    568 
    569 void InstructionSelector::VisitInt32Div(Node* node) {
    570   MipsOperandGenerator g(this);
    571   Int32BinopMatcher m(node);
    572   Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
    573        g.UseRegister(m.right().node()));
    574 }
    575 
    576 
    577 void InstructionSelector::VisitUint32Div(Node* node) {
    578   MipsOperandGenerator g(this);
    579   Int32BinopMatcher m(node);
    580   Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
    581        g.UseRegister(m.right().node()));
    582 }
    583 
    584 
    585 void InstructionSelector::VisitInt32Mod(Node* node) {
    586   MipsOperandGenerator g(this);
    587   Int32BinopMatcher m(node);
    588   Emit(kMipsMod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    589        g.UseRegister(m.right().node()));
    590 }
    591 
    592 
    593 void InstructionSelector::VisitUint32Mod(Node* node) {
    594   MipsOperandGenerator g(this);
    595   Int32BinopMatcher m(node);
    596   Emit(kMipsModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
    597        g.UseRegister(m.right().node()));
    598 }
    599 
    600 
    601 void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
    602   VisitRR(this, kMipsCvtDS, node);
    603 }
    604 
    605 
    606 void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
    607   VisitRR(this, kMipsCvtSW, node);
    608 }
    609 
    610 
    611 void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
    612   VisitRR(this, kMipsCvtSUw, node);
    613 }
    614 
    615 
    616 void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
    617   VisitRR(this, kMipsCvtDW, node);
    618 }
    619 
    620 
    621 void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
    622   VisitRR(this, kMipsCvtDUw, node);
    623 }
    624 
    625 
    626 void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
    627   VisitRR(this, kMipsTruncWS, node);
    628 }
    629 
    630 
    631 void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
    632   VisitRR(this, kMipsTruncUwS, node);
    633 }
    634 
    635 
    636 void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
    637   MipsOperandGenerator g(this);
    638   Node* value = node->InputAt(0);
    639   // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
    640   // which does rounding and conversion to integer format.
    641   if (CanCover(node, value)) {
    642     switch (value->opcode()) {
    643       case IrOpcode::kFloat64RoundDown:
    644         Emit(kMipsFloorWD, g.DefineAsRegister(node),
    645              g.UseRegister(value->InputAt(0)));
    646         return;
    647       case IrOpcode::kFloat64RoundUp:
    648         Emit(kMipsCeilWD, g.DefineAsRegister(node),
    649              g.UseRegister(value->InputAt(0)));
    650         return;
    651       case IrOpcode::kFloat64RoundTiesEven:
    652         Emit(kMipsRoundWD, g.DefineAsRegister(node),
    653              g.UseRegister(value->InputAt(0)));
    654         return;
    655       case IrOpcode::kFloat64RoundTruncate:
    656         Emit(kMipsTruncWD, g.DefineAsRegister(node),
    657              g.UseRegister(value->InputAt(0)));
    658         return;
    659       default:
    660         break;
    661     }
    662     if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
    663       Node* next = value->InputAt(0);
    664       if (CanCover(value, next)) {
    665         // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
    666         switch (next->opcode()) {
    667           case IrOpcode::kFloat32RoundDown:
    668             Emit(kMipsFloorWS, g.DefineAsRegister(node),
    669                  g.UseRegister(next->InputAt(0)));
    670             return;
    671           case IrOpcode::kFloat32RoundUp:
    672             Emit(kMipsCeilWS, g.DefineAsRegister(node),
    673                  g.UseRegister(next->InputAt(0)));
    674             return;
    675           case IrOpcode::kFloat32RoundTiesEven:
    676             Emit(kMipsRoundWS, g.DefineAsRegister(node),
    677                  g.UseRegister(next->InputAt(0)));
    678             return;
    679           case IrOpcode::kFloat32RoundTruncate:
    680             Emit(kMipsTruncWS, g.DefineAsRegister(node),
    681                  g.UseRegister(next->InputAt(0)));
    682             return;
    683           default:
    684             Emit(kMipsTruncWS, g.DefineAsRegister(node),
    685                  g.UseRegister(value->InputAt(0)));
    686             return;
    687         }
    688       } else {
    689         // Match float32 -> float64 -> int32 representation change path.
    690         Emit(kMipsTruncWS, g.DefineAsRegister(node),
    691              g.UseRegister(value->InputAt(0)));
    692         return;
    693       }
    694     }
    695   }
    696   VisitRR(this, kMipsTruncWD, node);
    697 }
    698 
    699 
    700 void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
    701   VisitRR(this, kMipsTruncUwD, node);
    702 }
    703 
    704 void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
    705   VisitRR(this, kMipsTruncUwD, node);
    706 }
    707 
    708 void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
    709   MipsOperandGenerator g(this);
    710   Node* value = node->InputAt(0);
    711   // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
    712   // instruction.
    713   if (CanCover(node, value) &&
    714       value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
    715     Emit(kMipsCvtSW, g.DefineAsRegister(node),
    716          g.UseRegister(value->InputAt(0)));
    717     return;
    718   }
    719   VisitRR(this, kMipsCvtSD, node);
    720 }
    721 
    722 void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
    723   VisitRR(this, kArchTruncateDoubleToI, node);
    724 }
    725 
    726 void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
    727   VisitRR(this, kMipsTruncWD, node);
    728 }
    729 
    730 void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
    731   VisitRR(this, kMipsFloat64ExtractLowWord32, node);
    732 }
    733 
    734 
    735 void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
    736   MipsOperandGenerator g(this);
    737   Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node),
    738        ImmediateOperand(ImmediateOperand::INLINE, 0),
    739        g.UseRegister(node->InputAt(0)));
    740 }
    741 
    742 
    743 void InstructionSelector::VisitFloat32Add(Node* node) {
    744   VisitRRR(this, kMipsAddS, node);
    745 }
    746 
    747 
    748 void InstructionSelector::VisitFloat64Add(Node* node) {
    749   VisitRRR(this, kMipsAddD, node);
    750 }
    751 
    752 
    753 void InstructionSelector::VisitFloat32Sub(Node* node) {
    754   VisitRRR(this, kMipsSubS, node);
    755 }
    756 
    757 void InstructionSelector::VisitFloat32SubPreserveNan(Node* node) {
    758   VisitRRR(this, kMipsSubPreserveNanS, node);
    759 }
    760 
    761 void InstructionSelector::VisitFloat64Sub(Node* node) {
    762   MipsOperandGenerator g(this);
    763   Float64BinopMatcher m(node);
    764   if (m.left().IsMinusZero() && m.right().IsFloat64RoundDown() &&
    765       CanCover(m.node(), m.right().node())) {
    766     if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
    767         CanCover(m.right().node(), m.right().InputAt(0))) {
    768       Float64BinopMatcher mright0(m.right().InputAt(0));
    769       if (mright0.left().IsMinusZero()) {
    770         Emit(kMipsFloat64RoundUp, g.DefineAsRegister(node),
    771              g.UseRegister(mright0.right().node()));
    772         return;
    773       }
    774     }
    775   }
    776   VisitRRR(this, kMipsSubD, node);
    777 }
    778 
    779 void InstructionSelector::VisitFloat64SubPreserveNan(Node* node) {
    780   VisitRRR(this, kMipsSubPreserveNanD, node);
    781 }
    782 
    783 void InstructionSelector::VisitFloat32Mul(Node* node) {
    784   VisitRRR(this, kMipsMulS, node);
    785 }
    786 
    787 
    788 void InstructionSelector::VisitFloat64Mul(Node* node) {
    789   VisitRRR(this, kMipsMulD, node);
    790 }
    791 
    792 
    793 void InstructionSelector::VisitFloat32Div(Node* node) {
    794   VisitRRR(this, kMipsDivS, node);
    795 }
    796 
    797 
    798 void InstructionSelector::VisitFloat64Div(Node* node) {
    799   VisitRRR(this, kMipsDivD, node);
    800 }
    801 
    802 
    803 void InstructionSelector::VisitFloat64Mod(Node* node) {
    804   MipsOperandGenerator g(this);
    805   Emit(kMipsModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12),
    806        g.UseFixed(node->InputAt(1), f14))->MarkAsCall();
    807 }
    808 
    809 
    810 void InstructionSelector::VisitFloat32Max(Node* node) {
    811   MipsOperandGenerator g(this);
    812   if (IsMipsArchVariant(kMips32r6)) {
    813     Emit(kMipsFloat32Max, g.DefineAsRegister(node),
    814          g.UseUniqueRegister(node->InputAt(0)),
    815          g.UseUniqueRegister(node->InputAt(1)));
    816 
    817   } else {
    818     // Reverse operands, and use same reg. for result and right operand.
    819     Emit(kMipsFloat32Max, g.DefineSameAsFirst(node),
    820          g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
    821   }
    822 }
    823 
    824 
    825 void InstructionSelector::VisitFloat64Max(Node* node) {
    826   MipsOperandGenerator g(this);
    827   if (IsMipsArchVariant(kMips32r6)) {
    828     Emit(kMipsFloat64Max, g.DefineAsRegister(node),
    829          g.UseUniqueRegister(node->InputAt(0)),
    830          g.UseUniqueRegister(node->InputAt(1)));
    831 
    832   } else {
    833     // Reverse operands, and use same reg. for result and right operand.
    834     Emit(kMipsFloat64Max, g.DefineSameAsFirst(node),
    835          g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
    836   }
    837 }
    838 
    839 
    840 void InstructionSelector::VisitFloat32Min(Node* node) {
    841   MipsOperandGenerator g(this);
    842   if (IsMipsArchVariant(kMips32r6)) {
    843     Emit(kMipsFloat32Min, g.DefineAsRegister(node),
    844          g.UseUniqueRegister(node->InputAt(0)),
    845          g.UseUniqueRegister(node->InputAt(1)));
    846 
    847   } else {
    848     // Reverse operands, and use same reg. for result and right operand.
    849     Emit(kMipsFloat32Min, g.DefineSameAsFirst(node),
    850          g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
    851   }
    852 }
    853 
    854 
    855 void InstructionSelector::VisitFloat64Min(Node* node) {
    856   MipsOperandGenerator g(this);
    857   if (IsMipsArchVariant(kMips32r6)) {
    858     Emit(kMipsFloat64Min, g.DefineAsRegister(node),
    859          g.UseUniqueRegister(node->InputAt(0)),
    860          g.UseUniqueRegister(node->InputAt(1)));
    861 
    862   } else {
    863     // Reverse operands, and use same reg. for result and right operand.
    864     Emit(kMipsFloat64Min, g.DefineSameAsFirst(node),
    865          g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)));
    866   }
    867 }
    868 
    869 
    870 void InstructionSelector::VisitFloat32Abs(Node* node) {
    871   VisitRR(this, kMipsAbsS, node);
    872 }
    873 
    874 
    875 void InstructionSelector::VisitFloat64Abs(Node* node) {
    876   VisitRR(this, kMipsAbsD, node);
    877 }
    878 
    879 void InstructionSelector::VisitFloat32Sqrt(Node* node) {
    880   VisitRR(this, kMipsSqrtS, node);
    881 }
    882 
    883 
    884 void InstructionSelector::VisitFloat64Sqrt(Node* node) {
    885   VisitRR(this, kMipsSqrtD, node);
    886 }
    887 
    888 
    889 void InstructionSelector::VisitFloat32RoundDown(Node* node) {
    890   VisitRR(this, kMipsFloat32RoundDown, node);
    891 }
    892 
    893 
    894 void InstructionSelector::VisitFloat64RoundDown(Node* node) {
    895   VisitRR(this, kMipsFloat64RoundDown, node);
    896 }
    897 
    898 
    899 void InstructionSelector::VisitFloat32RoundUp(Node* node) {
    900   VisitRR(this, kMipsFloat32RoundUp, node);
    901 }
    902 
    903 
    904 void InstructionSelector::VisitFloat64RoundUp(Node* node) {
    905   VisitRR(this, kMipsFloat64RoundUp, node);
    906 }
    907 
    908 
    909 void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
    910   VisitRR(this, kMipsFloat32RoundTruncate, node);
    911 }
    912 
    913 
    914 void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
    915   VisitRR(this, kMipsFloat64RoundTruncate, node);
    916 }
    917 
    918 
    919 void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
    920   UNREACHABLE();
    921 }
    922 
    923 
    924 void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
    925   VisitRR(this, kMipsFloat32RoundTiesEven, node);
    926 }
    927 
    928 
    929 void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
    930   VisitRR(this, kMipsFloat64RoundTiesEven, node);
    931 }
    932 
    933 void InstructionSelector::VisitFloat32Neg(Node* node) { UNREACHABLE(); }
    934 
    935 void InstructionSelector::VisitFloat64Neg(Node* node) { UNREACHABLE(); }
    936 
    937 void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
    938                                                    InstructionCode opcode) {
    939   MipsOperandGenerator g(this);
    940   Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12),
    941        g.UseFixed(node->InputAt(1), f14))
    942       ->MarkAsCall();
    943 }
    944 
    945 void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
    946                                                   InstructionCode opcode) {
    947   MipsOperandGenerator g(this);
    948   Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12))
    949       ->MarkAsCall();
    950 }
    951 
    952 void InstructionSelector::EmitPrepareArguments(
    953     ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
    954     Node* node) {
    955   MipsOperandGenerator g(this);
    956 
    957   // Prepare for C function call.
    958   if (descriptor->IsCFunctionCall()) {
    959     Emit(kArchPrepareCallCFunction |
    960              MiscField::encode(static_cast<int>(descriptor->CParameterCount())),
    961          0, nullptr, 0, nullptr);
    962 
    963     // Poke any stack arguments.
    964     int slot = kCArgSlotCount;
    965     for (PushParameter input : (*arguments)) {
    966       if (input.node()) {
    967         Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
    968              g.TempImmediate(slot << kPointerSizeLog2));
    969         ++slot;
    970       }
    971     }
    972   } else {
    973     // Possibly align stack here for functions.
    974     int push_count = static_cast<int>(descriptor->StackParameterCount());
    975     if (push_count > 0) {
    976       Emit(kMipsStackClaim, g.NoOutput(),
    977            g.TempImmediate(push_count << kPointerSizeLog2));
    978     }
    979     for (size_t n = 0; n < arguments->size(); ++n) {
    980       PushParameter input = (*arguments)[n];
    981       if (input.node()) {
    982         Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node()),
    983              g.TempImmediate(n << kPointerSizeLog2));
    984       }
    985     }
    986   }
    987 }
    988 
    989 
    990 bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
    991 
    992 int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
    993 
    994 void InstructionSelector::VisitCheckedLoad(Node* node) {
    995   CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
    996   MipsOperandGenerator g(this);
    997   Node* const buffer = node->InputAt(0);
    998   Node* const offset = node->InputAt(1);
    999   Node* const length = node->InputAt(2);
   1000   ArchOpcode opcode = kArchNop;
   1001   switch (load_rep.representation()) {
   1002     case MachineRepresentation::kWord8:
   1003       opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
   1004       break;
   1005     case MachineRepresentation::kWord16:
   1006       opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
   1007       break;
   1008     case MachineRepresentation::kWord32:
   1009       opcode = kCheckedLoadWord32;
   1010       break;
   1011     case MachineRepresentation::kFloat32:
   1012       opcode = kCheckedLoadFloat32;
   1013       break;
   1014     case MachineRepresentation::kFloat64:
   1015       opcode = kCheckedLoadFloat64;
   1016       break;
   1017     case MachineRepresentation::kBit:      // Fall through.
   1018     case MachineRepresentation::kTagged:   // Fall through.
   1019     case MachineRepresentation::kWord64:   // Fall through.
   1020     case MachineRepresentation::kSimd128:  // Fall through.
   1021     case MachineRepresentation::kNone:
   1022       UNREACHABLE();
   1023       return;
   1024   }
   1025   InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
   1026                                           ? g.UseImmediate(offset)
   1027                                           : g.UseRegister(offset);
   1028 
   1029   InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
   1030                                           ? g.CanBeImmediate(length, opcode)
   1031                                                 ? g.UseImmediate(length)
   1032                                                 : g.UseRegister(length)
   1033                                           : g.UseRegister(length);
   1034 
   1035   Emit(opcode | AddressingModeField::encode(kMode_MRI),
   1036        g.DefineAsRegister(node), offset_operand, length_operand,
   1037        g.UseRegister(buffer));
   1038 }
   1039 
   1040 
   1041 void InstructionSelector::VisitCheckedStore(Node* node) {
   1042   MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
   1043   MipsOperandGenerator g(this);
   1044   Node* const buffer = node->InputAt(0);
   1045   Node* const offset = node->InputAt(1);
   1046   Node* const length = node->InputAt(2);
   1047   Node* const value = node->InputAt(3);
   1048   ArchOpcode opcode = kArchNop;
   1049   switch (rep) {
   1050     case MachineRepresentation::kWord8:
   1051       opcode = kCheckedStoreWord8;
   1052       break;
   1053     case MachineRepresentation::kWord16:
   1054       opcode = kCheckedStoreWord16;
   1055       break;
   1056     case MachineRepresentation::kWord32:
   1057       opcode = kCheckedStoreWord32;
   1058       break;
   1059     case MachineRepresentation::kFloat32:
   1060       opcode = kCheckedStoreFloat32;
   1061       break;
   1062     case MachineRepresentation::kFloat64:
   1063       opcode = kCheckedStoreFloat64;
   1064       break;
   1065     default:
   1066       UNREACHABLE();
   1067       return;
   1068   }
   1069   InstructionOperand offset_operand = g.CanBeImmediate(offset, opcode)
   1070                                           ? g.UseImmediate(offset)
   1071                                           : g.UseRegister(offset);
   1072 
   1073   InstructionOperand length_operand = (!g.CanBeImmediate(offset, opcode))
   1074                                           ? g.CanBeImmediate(length, opcode)
   1075                                                 ? g.UseImmediate(length)
   1076                                                 : g.UseRegister(length)
   1077                                           : g.UseRegister(length);
   1078 
   1079   Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
   1080        offset_operand, length_operand, g.UseRegister(value),
   1081        g.UseRegister(buffer));
   1082 }
   1083 
   1084 
   1085 namespace {
   1086 // Shared routine for multiple compare operations.
   1087 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
   1088                          InstructionOperand left, InstructionOperand right,
   1089                          FlagsContinuation* cont) {
   1090   MipsOperandGenerator g(selector);
   1091   opcode = cont->Encode(opcode);
   1092   if (cont->IsBranch()) {
   1093     selector->Emit(opcode, g.NoOutput(), left, right,
   1094                    g.Label(cont->true_block()), g.Label(cont->false_block()));
   1095   } else if (cont->IsDeoptimize()) {
   1096     selector->EmitDeoptimize(opcode, g.NoOutput(), left, right,
   1097                              cont->frame_state());
   1098   } else {
   1099     DCHECK(cont->IsSet());
   1100     selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
   1101   }
   1102 }
   1103 
   1104 
   1105 // Shared routine for multiple float32 compare operations.
   1106 void VisitFloat32Compare(InstructionSelector* selector, Node* node,
   1107                          FlagsContinuation* cont) {
   1108   MipsOperandGenerator g(selector);
   1109   Float32BinopMatcher m(node);
   1110   InstructionOperand lhs, rhs;
   1111 
   1112   lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
   1113                           : g.UseRegister(m.left().node());
   1114   rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
   1115                            : g.UseRegister(m.right().node());
   1116   VisitCompare(selector, kMipsCmpS, lhs, rhs, cont);
   1117 }
   1118 
   1119 
   1120 // Shared routine for multiple float64 compare operations.
   1121 void VisitFloat64Compare(InstructionSelector* selector, Node* node,
   1122                          FlagsContinuation* cont) {
   1123   MipsOperandGenerator g(selector);
   1124   Float64BinopMatcher m(node);
   1125   InstructionOperand lhs, rhs;
   1126 
   1127   lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
   1128                           : g.UseRegister(m.left().node());
   1129   rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
   1130                            : g.UseRegister(m.right().node());
   1131   VisitCompare(selector, kMipsCmpD, lhs, rhs, cont);
   1132 }
   1133 
   1134 
   1135 // Shared routine for multiple word compare operations.
   1136 void VisitWordCompare(InstructionSelector* selector, Node* node,
   1137                       InstructionCode opcode, FlagsContinuation* cont,
   1138                       bool commutative) {
   1139   MipsOperandGenerator g(selector);
   1140   Node* left = node->InputAt(0);
   1141   Node* right = node->InputAt(1);
   1142 
   1143   // Match immediates on left or right side of comparison.
   1144   if (g.CanBeImmediate(right, opcode)) {
   1145     switch (cont->condition()) {
   1146       case kEqual:
   1147       case kNotEqual:
   1148         if (cont->IsSet()) {
   1149           VisitCompare(selector, opcode, g.UseRegister(left),
   1150                        g.UseImmediate(right), cont);
   1151         } else {
   1152           VisitCompare(selector, opcode, g.UseRegister(left),
   1153                        g.UseRegister(right), cont);
   1154         }
   1155         break;
   1156       case kSignedLessThan:
   1157       case kSignedGreaterThanOrEqual:
   1158       case kUnsignedLessThan:
   1159       case kUnsignedGreaterThanOrEqual:
   1160         VisitCompare(selector, opcode, g.UseRegister(left),
   1161                      g.UseImmediate(right), cont);
   1162         break;
   1163       default:
   1164         VisitCompare(selector, opcode, g.UseRegister(left),
   1165                      g.UseRegister(right), cont);
   1166     }
   1167   } else if (g.CanBeImmediate(left, opcode)) {
   1168     if (!commutative) cont->Commute();
   1169     switch (cont->condition()) {
   1170       case kEqual:
   1171       case kNotEqual:
   1172         if (cont->IsSet()) {
   1173           VisitCompare(selector, opcode, g.UseRegister(right),
   1174                        g.UseImmediate(left), cont);
   1175         } else {
   1176           VisitCompare(selector, opcode, g.UseRegister(right),
   1177                        g.UseRegister(left), cont);
   1178         }
   1179         break;
   1180       case kSignedLessThan:
   1181       case kSignedGreaterThanOrEqual:
   1182       case kUnsignedLessThan:
   1183       case kUnsignedGreaterThanOrEqual:
   1184         VisitCompare(selector, opcode, g.UseRegister(right),
   1185                      g.UseImmediate(left), cont);
   1186         break;
   1187       default:
   1188         VisitCompare(selector, opcode, g.UseRegister(right),
   1189                      g.UseRegister(left), cont);
   1190     }
   1191   } else {
   1192     VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
   1193                  cont);
   1194   }
   1195 }
   1196 
   1197 
   1198 void VisitWordCompare(InstructionSelector* selector, Node* node,
   1199                       FlagsContinuation* cont) {
   1200   VisitWordCompare(selector, node, kMipsCmp, cont, false);
   1201 }
   1202 
   1203 // Shared routine for word comparisons against zero.
   1204 void VisitWordCompareZero(InstructionSelector* selector, Node* user,
   1205                           Node* value, FlagsContinuation* cont) {
   1206   while (selector->CanCover(user, value)) {
   1207     switch (value->opcode()) {
   1208       case IrOpcode::kWord32Equal: {
   1209         // Combine with comparisons against 0 by simply inverting the
   1210         // continuation.
   1211         Int32BinopMatcher m(value);
   1212         if (m.right().Is(0)) {
   1213           user = value;
   1214           value = m.left().node();
   1215           cont->Negate();
   1216           continue;
   1217         }
   1218         cont->OverwriteAndNegateIfEqual(kEqual);
   1219         return VisitWordCompare(selector, value, cont);
   1220       }
   1221       case IrOpcode::kInt32LessThan:
   1222         cont->OverwriteAndNegateIfEqual(kSignedLessThan);
   1223         return VisitWordCompare(selector, value, cont);
   1224       case IrOpcode::kInt32LessThanOrEqual:
   1225         cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
   1226         return VisitWordCompare(selector, value, cont);
   1227       case IrOpcode::kUint32LessThan:
   1228         cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
   1229         return VisitWordCompare(selector, value, cont);
   1230       case IrOpcode::kUint32LessThanOrEqual:
   1231         cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
   1232         return VisitWordCompare(selector, value, cont);
   1233       case IrOpcode::kFloat32Equal:
   1234         cont->OverwriteAndNegateIfEqual(kEqual);
   1235         return VisitFloat32Compare(selector, value, cont);
   1236       case IrOpcode::kFloat32LessThan:
   1237         cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
   1238         return VisitFloat32Compare(selector, value, cont);
   1239       case IrOpcode::kFloat32LessThanOrEqual:
   1240         cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
   1241         return VisitFloat32Compare(selector, value, cont);
   1242       case IrOpcode::kFloat64Equal:
   1243         cont->OverwriteAndNegateIfEqual(kEqual);
   1244         return VisitFloat64Compare(selector, value, cont);
   1245       case IrOpcode::kFloat64LessThan:
   1246         cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
   1247         return VisitFloat64Compare(selector, value, cont);
   1248       case IrOpcode::kFloat64LessThanOrEqual:
   1249         cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
   1250         return VisitFloat64Compare(selector, value, cont);
   1251       case IrOpcode::kProjection:
   1252         // Check if this is the overflow output projection of an
   1253         // <Operation>WithOverflow node.
   1254         if (ProjectionIndexOf(value->op()) == 1u) {
   1255           // We cannot combine the <Operation>WithOverflow with this branch
   1256           // unless the 0th projection (the use of the actual value of the
   1257           // <Operation> is either nullptr, which means there's no use of the
   1258           // actual value, or was already defined, which means it is scheduled
   1259           // *AFTER* this branch).
   1260           Node* const node = value->InputAt(0);
   1261           Node* const result = NodeProperties::FindProjection(node, 0);
   1262           if (!result || selector->IsDefined(result)) {
   1263             switch (node->opcode()) {
   1264               case IrOpcode::kInt32AddWithOverflow:
   1265                 cont->OverwriteAndNegateIfEqual(kOverflow);
   1266                 return VisitBinop(selector, node, kMipsAddOvf, cont);
   1267               case IrOpcode::kInt32SubWithOverflow:
   1268                 cont->OverwriteAndNegateIfEqual(kOverflow);
   1269                 return VisitBinop(selector, node, kMipsSubOvf, cont);
   1270               default:
   1271                 break;
   1272             }
   1273           }
   1274         }
   1275         break;
   1276       case IrOpcode::kWord32And:
   1277         return VisitWordCompare(selector, value, kMipsTst, cont, true);
   1278       default:
   1279         break;
   1280     }
   1281     break;
   1282   }
   1283 
   1284   // Continuation could not be combined with a compare, emit compare against 0.
   1285   MipsOperandGenerator g(selector);
   1286   InstructionCode const opcode = cont->Encode(kMipsCmp);
   1287   InstructionOperand const value_operand = g.UseRegister(value);
   1288   if (cont->IsBranch()) {
   1289     selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
   1290                    g.Label(cont->true_block()), g.Label(cont->false_block()));
   1291   } else if (cont->IsDeoptimize()) {
   1292     selector->EmitDeoptimize(opcode, g.NoOutput(), value_operand,
   1293                              g.TempImmediate(0), cont->frame_state());
   1294   } else {
   1295     DCHECK(cont->IsSet());
   1296     selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand,
   1297                    g.TempImmediate(0));
   1298   }
   1299 }
   1300 
   1301 }  // namespace
   1302 
   1303 void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
   1304                                       BasicBlock* fbranch) {
   1305   FlagsContinuation cont(kNotEqual, tbranch, fbranch);
   1306   VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
   1307 }
   1308 
   1309 void InstructionSelector::VisitDeoptimizeIf(Node* node) {
   1310   FlagsContinuation cont =
   1311       FlagsContinuation::ForDeoptimize(kNotEqual, node->InputAt(1));
   1312   VisitWordCompareZero(this, node, node->InputAt(0), &cont);
   1313 }
   1314 
   1315 void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
   1316   FlagsContinuation cont =
   1317       FlagsContinuation::ForDeoptimize(kEqual, node->InputAt(1));
   1318   VisitWordCompareZero(this, node, node->InputAt(0), &cont);
   1319 }
   1320 
   1321 void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
   1322   MipsOperandGenerator g(this);
   1323   InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
   1324 
   1325   // Emit either ArchTableSwitch or ArchLookupSwitch.
   1326   size_t table_space_cost = 9 + sw.value_range;
   1327   size_t table_time_cost = 3;
   1328   size_t lookup_space_cost = 2 + 2 * sw.case_count;
   1329   size_t lookup_time_cost = sw.case_count;
   1330   if (sw.case_count > 0 &&
   1331       table_space_cost + 3 * table_time_cost <=
   1332           lookup_space_cost + 3 * lookup_time_cost &&
   1333       sw.min_value > std::numeric_limits<int32_t>::min()) {
   1334     InstructionOperand index_operand = value_operand;
   1335     if (sw.min_value) {
   1336       index_operand = g.TempRegister();
   1337       Emit(kMipsSub, index_operand, value_operand,
   1338            g.TempImmediate(sw.min_value));
   1339     }
   1340     // Generate a table lookup.
   1341     return EmitTableSwitch(sw, index_operand);
   1342   }
   1343 
   1344   // Generate a sequence of conditional jumps.
   1345   return EmitLookupSwitch(sw, value_operand);
   1346 }
   1347 
   1348 
   1349 void InstructionSelector::VisitWord32Equal(Node* const node) {
   1350   FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
   1351   Int32BinopMatcher m(node);
   1352   if (m.right().Is(0)) {
   1353     return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
   1354   }
   1355   VisitWordCompare(this, node, &cont);
   1356 }
   1357 
   1358 
   1359 void InstructionSelector::VisitInt32LessThan(Node* node) {
   1360   FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
   1361   VisitWordCompare(this, node, &cont);
   1362 }
   1363 
   1364 
   1365 void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
   1366   FlagsContinuation cont =
   1367       FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
   1368   VisitWordCompare(this, node, &cont);
   1369 }
   1370 
   1371 
   1372 void InstructionSelector::VisitUint32LessThan(Node* node) {
   1373   FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
   1374   VisitWordCompare(this, node, &cont);
   1375 }
   1376 
   1377 
   1378 void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
   1379   FlagsContinuation cont =
   1380       FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
   1381   VisitWordCompare(this, node, &cont);
   1382 }
   1383 
   1384 
   1385 void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
   1386   if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
   1387     FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
   1388     return VisitBinop(this, node, kMipsAddOvf, &cont);
   1389   }
   1390   FlagsContinuation cont;
   1391   VisitBinop(this, node, kMipsAddOvf, &cont);
   1392 }
   1393 
   1394 
   1395 void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
   1396   if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
   1397     FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
   1398     return VisitBinop(this, node, kMipsSubOvf, &cont);
   1399   }
   1400   FlagsContinuation cont;
   1401   VisitBinop(this, node, kMipsSubOvf, &cont);
   1402 }
   1403 
   1404 
   1405 void InstructionSelector::VisitFloat32Equal(Node* node) {
   1406   FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
   1407   VisitFloat32Compare(this, node, &cont);
   1408 }
   1409 
   1410 
   1411 void InstructionSelector::VisitFloat32LessThan(Node* node) {
   1412   FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
   1413   VisitFloat32Compare(this, node, &cont);
   1414 }
   1415 
   1416 
   1417 void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
   1418   FlagsContinuation cont =
   1419       FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
   1420   VisitFloat32Compare(this, node, &cont);
   1421 }
   1422 
   1423 
   1424 void InstructionSelector::VisitFloat64Equal(Node* node) {
   1425   FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
   1426   VisitFloat64Compare(this, node, &cont);
   1427 }
   1428 
   1429 
   1430 void InstructionSelector::VisitFloat64LessThan(Node* node) {
   1431   FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
   1432   VisitFloat64Compare(this, node, &cont);
   1433 }
   1434 
   1435 
   1436 void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
   1437   FlagsContinuation cont =
   1438       FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
   1439   VisitFloat64Compare(this, node, &cont);
   1440 }
   1441 
   1442 
   1443 void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
   1444   MipsOperandGenerator g(this);
   1445   Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node),
   1446        g.UseRegister(node->InputAt(0)));
   1447 }
   1448 
   1449 
   1450 void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
   1451   MipsOperandGenerator g(this);
   1452   Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node),
   1453        g.UseRegister(node->InputAt(0)));
   1454 }
   1455 
   1456 
   1457 void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
   1458   MipsOperandGenerator g(this);
   1459   Node* left = node->InputAt(0);
   1460   Node* right = node->InputAt(1);
   1461   Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node),
   1462        g.UseRegister(left), g.UseRegister(right));
   1463 }
   1464 
   1465 
   1466 void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
   1467   MipsOperandGenerator g(this);
   1468   Node* left = node->InputAt(0);
   1469   Node* right = node->InputAt(1);
   1470   Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node),
   1471        g.UseRegister(left), g.UseRegister(right));
   1472 }
   1473 
   1474 void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
   1475   MipsOperandGenerator g(this);
   1476   Node* left = node->InputAt(0);
   1477   InstructionOperand temps[] = {g.TempRegister()};
   1478   Emit(kMipsFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(left),
   1479        arraysize(temps), temps);
   1480 }
   1481 
   1482 void InstructionSelector::VisitAtomicLoad(Node* node) {
   1483   LoadRepresentation load_rep = LoadRepresentationOf(node->op());
   1484   MipsOperandGenerator g(this);
   1485   Node* base = node->InputAt(0);
   1486   Node* index = node->InputAt(1);
   1487   ArchOpcode opcode = kArchNop;
   1488   switch (load_rep.representation()) {
   1489     case MachineRepresentation::kWord8:
   1490       opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
   1491       break;
   1492     case MachineRepresentation::kWord16:
   1493       opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
   1494       break;
   1495     case MachineRepresentation::kWord32:
   1496       opcode = kAtomicLoadWord32;
   1497       break;
   1498     default:
   1499       UNREACHABLE();
   1500       return;
   1501   }
   1502   if (g.CanBeImmediate(index, opcode)) {
   1503     Emit(opcode | AddressingModeField::encode(kMode_MRI),
   1504          g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
   1505   } else {
   1506     InstructionOperand addr_reg = g.TempRegister();
   1507     Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
   1508          g.UseRegister(index), g.UseRegister(base));
   1509     // Emit desired load opcode, using temp addr_reg.
   1510     Emit(opcode | AddressingModeField::encode(kMode_MRI),
   1511          g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
   1512   }
   1513 }
   1514 
   1515 void InstructionSelector::VisitAtomicStore(Node* node) {
   1516   MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
   1517   MipsOperandGenerator g(this);
   1518   Node* base = node->InputAt(0);
   1519   Node* index = node->InputAt(1);
   1520   Node* value = node->InputAt(2);
   1521   ArchOpcode opcode = kArchNop;
   1522   switch (rep) {
   1523     case MachineRepresentation::kWord8:
   1524       opcode = kAtomicStoreWord8;
   1525       break;
   1526     case MachineRepresentation::kWord16:
   1527       opcode = kAtomicStoreWord16;
   1528       break;
   1529     case MachineRepresentation::kWord32:
   1530       opcode = kAtomicStoreWord32;
   1531       break;
   1532     default:
   1533       UNREACHABLE();
   1534       return;
   1535   }
   1536 
   1537   if (g.CanBeImmediate(index, opcode)) {
   1538     Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
   1539          g.UseRegister(base), g.UseImmediate(index), g.UseRegister(value));
   1540   } else {
   1541     InstructionOperand addr_reg = g.TempRegister();
   1542     Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg,
   1543          g.UseRegister(index), g.UseRegister(base));
   1544     // Emit desired store opcode, using temp addr_reg.
   1545     Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
   1546          addr_reg, g.TempImmediate(0), g.UseRegister(value));
   1547   }
   1548 }
   1549 
   1550 // static
   1551 MachineOperatorBuilder::Flags
   1552 InstructionSelector::SupportedMachineOperatorFlags() {
   1553   MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
   1554   if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
   1555       IsFp64Mode()) {
   1556     flags |= MachineOperatorBuilder::kFloat64RoundDown |
   1557              MachineOperatorBuilder::kFloat64RoundUp |
   1558              MachineOperatorBuilder::kFloat64RoundTruncate |
   1559              MachineOperatorBuilder::kFloat64RoundTiesEven;
   1560   }
   1561   return flags | MachineOperatorBuilder::kWord32Ctz |
   1562          MachineOperatorBuilder::kWord32Popcnt |
   1563          MachineOperatorBuilder::kInt32DivIsSafe |
   1564          MachineOperatorBuilder::kUint32DivIsSafe |
   1565          MachineOperatorBuilder::kWord32ShiftIsSafe |
   1566          MachineOperatorBuilder::kFloat64Min |
   1567          MachineOperatorBuilder::kFloat64Max |
   1568          MachineOperatorBuilder::kFloat32Min |
   1569          MachineOperatorBuilder::kFloat32Max |
   1570          MachineOperatorBuilder::kFloat32RoundDown |
   1571          MachineOperatorBuilder::kFloat32RoundUp |
   1572          MachineOperatorBuilder::kFloat32RoundTruncate |
   1573          MachineOperatorBuilder::kFloat32RoundTiesEven;
   1574 }
   1575 
   1576 // static
   1577 MachineOperatorBuilder::AlignmentRequirements
   1578 InstructionSelector::AlignmentRequirements() {
   1579   if (IsMipsArchVariant(kMips32r6)) {
   1580     return MachineOperatorBuilder::AlignmentRequirements::
   1581         FullUnalignedAccessSupport();
   1582   } else {
   1583     DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
   1584            IsMipsArchVariant(kMips32r2));
   1585     return MachineOperatorBuilder::AlignmentRequirements::
   1586         NoUnalignedAccessSupport();
   1587   }
   1588 }
   1589 
   1590 }  // namespace compiler
   1591 }  // namespace internal
   1592 }  // namespace v8
   1593