Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/gdb-jit.h"
      6 
      7 #include "src/base/bits.h"
      8 #include "src/base/platform/platform.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/compiler.h"
     11 #include "src/frames-inl.h"
     12 #include "src/frames.h"
     13 #include "src/global-handles.h"
     14 #include "src/messages.h"
     15 #include "src/objects.h"
     16 #include "src/ostreams.h"
     17 #include "src/snapshot/natives.h"
     18 #include "src/splay-tree-inl.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 namespace GDBJITInterface {
     23 
     24 #ifdef ENABLE_GDB_JIT_INTERFACE
     25 
     26 #ifdef __APPLE__
     27 #define __MACH_O
     28 class MachO;
     29 class MachOSection;
     30 typedef MachO DebugObject;
     31 typedef MachOSection DebugSection;
     32 #else
     33 #define __ELF
     34 class ELF;
     35 class ELFSection;
     36 typedef ELF DebugObject;
     37 typedef ELFSection DebugSection;
     38 #endif
     39 
     40 class Writer BASE_EMBEDDED {
     41  public:
     42   explicit Writer(DebugObject* debug_object)
     43       : debug_object_(debug_object),
     44         position_(0),
     45         capacity_(1024),
     46         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
     47   }
     48 
     49   ~Writer() {
     50     free(buffer_);
     51   }
     52 
     53   uintptr_t position() const {
     54     return position_;
     55   }
     56 
     57   template<typename T>
     58   class Slot {
     59    public:
     60     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
     61 
     62     T* operator-> () {
     63       return w_->RawSlotAt<T>(offset_);
     64     }
     65 
     66     void set(const T& value) {
     67       *w_->RawSlotAt<T>(offset_) = value;
     68     }
     69 
     70     Slot<T> at(int i) {
     71       return Slot<T>(w_, offset_ + sizeof(T) * i);
     72     }
     73 
     74    private:
     75     Writer* w_;
     76     uintptr_t offset_;
     77   };
     78 
     79   template<typename T>
     80   void Write(const T& val) {
     81     Ensure(position_ + sizeof(T));
     82     *RawSlotAt<T>(position_) = val;
     83     position_ += sizeof(T);
     84   }
     85 
     86   template<typename T>
     87   Slot<T> SlotAt(uintptr_t offset) {
     88     Ensure(offset + sizeof(T));
     89     return Slot<T>(this, offset);
     90   }
     91 
     92   template<typename T>
     93   Slot<T> CreateSlotHere() {
     94     return CreateSlotsHere<T>(1);
     95   }
     96 
     97   template<typename T>
     98   Slot<T> CreateSlotsHere(uint32_t count) {
     99     uintptr_t slot_position = position_;
    100     position_ += sizeof(T) * count;
    101     Ensure(position_);
    102     return SlotAt<T>(slot_position);
    103   }
    104 
    105   void Ensure(uintptr_t pos) {
    106     if (capacity_ < pos) {
    107       while (capacity_ < pos) capacity_ *= 2;
    108       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    109     }
    110   }
    111 
    112   DebugObject* debug_object() { return debug_object_; }
    113 
    114   byte* buffer() { return buffer_; }
    115 
    116   void Align(uintptr_t align) {
    117     uintptr_t delta = position_ % align;
    118     if (delta == 0) return;
    119     uintptr_t padding = align - delta;
    120     Ensure(position_ += padding);
    121     DCHECK((position_ % align) == 0);
    122   }
    123 
    124   void WriteULEB128(uintptr_t value) {
    125     do {
    126       uint8_t byte = value & 0x7F;
    127       value >>= 7;
    128       if (value != 0) byte |= 0x80;
    129       Write<uint8_t>(byte);
    130     } while (value != 0);
    131   }
    132 
    133   void WriteSLEB128(intptr_t value) {
    134     bool more = true;
    135     while (more) {
    136       int8_t byte = value & 0x7F;
    137       bool byte_sign = byte & 0x40;
    138       value >>= 7;
    139 
    140       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
    141         more = false;
    142       } else {
    143         byte |= 0x80;
    144       }
    145 
    146       Write<int8_t>(byte);
    147     }
    148   }
    149 
    150   void WriteString(const char* str) {
    151     do {
    152       Write<char>(*str);
    153     } while (*str++);
    154   }
    155 
    156  private:
    157   template<typename T> friend class Slot;
    158 
    159   template<typename T>
    160   T* RawSlotAt(uintptr_t offset) {
    161     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
    162     return reinterpret_cast<T*>(&buffer_[offset]);
    163   }
    164 
    165   DebugObject* debug_object_;
    166   uintptr_t position_;
    167   uintptr_t capacity_;
    168   byte* buffer_;
    169 };
    170 
    171 class ELFStringTable;
    172 
    173 template<typename THeader>
    174 class DebugSectionBase : public ZoneObject {
    175  public:
    176   virtual ~DebugSectionBase() { }
    177 
    178   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    179     uintptr_t start = writer->position();
    180     if (WriteBodyInternal(writer)) {
    181       uintptr_t end = writer->position();
    182       header->offset = static_cast<uint32_t>(start);
    183 #if defined(__MACH_O)
    184       header->addr = 0;
    185 #endif
    186       header->size = end - start;
    187     }
    188   }
    189 
    190   virtual bool WriteBodyInternal(Writer* writer) {
    191     return false;
    192   }
    193 
    194   typedef THeader Header;
    195 };
    196 
    197 
    198 struct MachOSectionHeader {
    199   char sectname[16];
    200   char segname[16];
    201 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    202   uint32_t addr;
    203   uint32_t size;
    204 #else
    205   uint64_t addr;
    206   uint64_t size;
    207 #endif
    208   uint32_t offset;
    209   uint32_t align;
    210   uint32_t reloff;
    211   uint32_t nreloc;
    212   uint32_t flags;
    213   uint32_t reserved1;
    214   uint32_t reserved2;
    215 };
    216 
    217 
    218 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
    219  public:
    220   enum Type {
    221     S_REGULAR = 0x0u,
    222     S_ATTR_COALESCED = 0xbu,
    223     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    224     S_ATTR_DEBUG = 0x02000000u,
    225     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
    226   };
    227 
    228   MachOSection(const char* name, const char* segment, uint32_t align,
    229                uint32_t flags)
    230       : name_(name), segment_(segment), align_(align), flags_(flags) {
    231     if (align_ != 0) {
    232       DCHECK(base::bits::IsPowerOfTwo32(align));
    233       align_ = WhichPowerOf2(align_);
    234     }
    235   }
    236 
    237   virtual ~MachOSection() { }
    238 
    239   virtual void PopulateHeader(Writer::Slot<Header> header) {
    240     header->addr = 0;
    241     header->size = 0;
    242     header->offset = 0;
    243     header->align = align_;
    244     header->reloff = 0;
    245     header->nreloc = 0;
    246     header->flags = flags_;
    247     header->reserved1 = 0;
    248     header->reserved2 = 0;
    249     memset(header->sectname, 0, sizeof(header->sectname));
    250     memset(header->segname, 0, sizeof(header->segname));
    251     DCHECK(strlen(name_) < sizeof(header->sectname));
    252     DCHECK(strlen(segment_) < sizeof(header->segname));
    253     strncpy(header->sectname, name_, sizeof(header->sectname));
    254     strncpy(header->segname, segment_, sizeof(header->segname));
    255   }
    256 
    257  private:
    258   const char* name_;
    259   const char* segment_;
    260   uint32_t align_;
    261   uint32_t flags_;
    262 };
    263 
    264 
    265 struct ELFSectionHeader {
    266   uint32_t name;
    267   uint32_t type;
    268   uintptr_t flags;
    269   uintptr_t address;
    270   uintptr_t offset;
    271   uintptr_t size;
    272   uint32_t link;
    273   uint32_t info;
    274   uintptr_t alignment;
    275   uintptr_t entry_size;
    276 };
    277 
    278 
    279 #if defined(__ELF)
    280 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
    281  public:
    282   enum Type {
    283     TYPE_NULL = 0,
    284     TYPE_PROGBITS = 1,
    285     TYPE_SYMTAB = 2,
    286     TYPE_STRTAB = 3,
    287     TYPE_RELA = 4,
    288     TYPE_HASH = 5,
    289     TYPE_DYNAMIC = 6,
    290     TYPE_NOTE = 7,
    291     TYPE_NOBITS = 8,
    292     TYPE_REL = 9,
    293     TYPE_SHLIB = 10,
    294     TYPE_DYNSYM = 11,
    295     TYPE_LOPROC = 0x70000000,
    296     TYPE_X86_64_UNWIND = 0x70000001,
    297     TYPE_HIPROC = 0x7fffffff,
    298     TYPE_LOUSER = 0x80000000,
    299     TYPE_HIUSER = 0xffffffff
    300   };
    301 
    302   enum Flags {
    303     FLAG_WRITE = 1,
    304     FLAG_ALLOC = 2,
    305     FLAG_EXEC = 4
    306   };
    307 
    308   enum SpecialIndexes {
    309     INDEX_ABSOLUTE = 0xfff1
    310   };
    311 
    312   ELFSection(const char* name, Type type, uintptr_t align)
    313       : name_(name), type_(type), align_(align) { }
    314 
    315   virtual ~ELFSection() { }
    316 
    317   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
    318 
    319   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    320     uintptr_t start = w->position();
    321     if (WriteBodyInternal(w)) {
    322       uintptr_t end = w->position();
    323       header->offset = start;
    324       header->size = end - start;
    325     }
    326   }
    327 
    328   virtual bool WriteBodyInternal(Writer* w) {
    329     return false;
    330   }
    331 
    332   uint16_t index() const { return index_; }
    333   void set_index(uint16_t index) { index_ = index; }
    334 
    335  protected:
    336   virtual void PopulateHeader(Writer::Slot<Header> header) {
    337     header->flags = 0;
    338     header->address = 0;
    339     header->offset = 0;
    340     header->size = 0;
    341     header->link = 0;
    342     header->info = 0;
    343     header->entry_size = 0;
    344   }
    345 
    346  private:
    347   const char* name_;
    348   Type type_;
    349   uintptr_t align_;
    350   uint16_t index_;
    351 };
    352 #endif  // defined(__ELF)
    353 
    354 
    355 #if defined(__MACH_O)
    356 class MachOTextSection : public MachOSection {
    357  public:
    358   MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
    359       : MachOSection("__text", "__TEXT", align,
    360                      MachOSection::S_REGULAR |
    361                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
    362                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
    363         addr_(addr),
    364         size_(size) {}
    365 
    366  protected:
    367   virtual void PopulateHeader(Writer::Slot<Header> header) {
    368     MachOSection::PopulateHeader(header);
    369     header->addr = addr_;
    370     header->size = size_;
    371   }
    372 
    373  private:
    374   uintptr_t addr_;
    375   uintptr_t size_;
    376 };
    377 #endif  // defined(__MACH_O)
    378 
    379 
    380 #if defined(__ELF)
    381 class FullHeaderELFSection : public ELFSection {
    382  public:
    383   FullHeaderELFSection(const char* name,
    384                        Type type,
    385                        uintptr_t align,
    386                        uintptr_t addr,
    387                        uintptr_t offset,
    388                        uintptr_t size,
    389                        uintptr_t flags)
    390       : ELFSection(name, type, align),
    391         addr_(addr),
    392         offset_(offset),
    393         size_(size),
    394         flags_(flags) { }
    395 
    396  protected:
    397   virtual void PopulateHeader(Writer::Slot<Header> header) {
    398     ELFSection::PopulateHeader(header);
    399     header->address = addr_;
    400     header->offset = offset_;
    401     header->size = size_;
    402     header->flags = flags_;
    403   }
    404 
    405  private:
    406   uintptr_t addr_;
    407   uintptr_t offset_;
    408   uintptr_t size_;
    409   uintptr_t flags_;
    410 };
    411 
    412 
    413 class ELFStringTable : public ELFSection {
    414  public:
    415   explicit ELFStringTable(const char* name)
    416       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
    417   }
    418 
    419   uintptr_t Add(const char* str) {
    420     if (*str == '\0') return 0;
    421 
    422     uintptr_t offset = size_;
    423     WriteString(str);
    424     return offset;
    425   }
    426 
    427   void AttachWriter(Writer* w) {
    428     writer_ = w;
    429     offset_ = writer_->position();
    430 
    431     // First entry in the string table should be an empty string.
    432     WriteString("");
    433   }
    434 
    435   void DetachWriter() {
    436     writer_ = NULL;
    437   }
    438 
    439   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    440     DCHECK(writer_ == NULL);
    441     header->offset = offset_;
    442     header->size = size_;
    443   }
    444 
    445  private:
    446   void WriteString(const char* str) {
    447     uintptr_t written = 0;
    448     do {
    449       writer_->Write(*str);
    450       written++;
    451     } while (*str++);
    452     size_ += written;
    453   }
    454 
    455   Writer* writer_;
    456 
    457   uintptr_t offset_;
    458   uintptr_t size_;
    459 };
    460 
    461 
    462 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
    463                                 ELFStringTable* strtab) {
    464   header->name = static_cast<uint32_t>(strtab->Add(name_));
    465   header->type = type_;
    466   header->alignment = align_;
    467   PopulateHeader(header);
    468 }
    469 #endif  // defined(__ELF)
    470 
    471 
    472 #if defined(__MACH_O)
    473 class MachO BASE_EMBEDDED {
    474  public:
    475   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
    476 
    477   uint32_t AddSection(MachOSection* section) {
    478     sections_.Add(section, zone_);
    479     return sections_.length() - 1;
    480   }
    481 
    482   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    483     Writer::Slot<MachOHeader> header = WriteHeader(w);
    484     uintptr_t load_command_start = w->position();
    485     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
    486                                                                 code_start,
    487                                                                 code_size);
    488     WriteSections(w, cmd, header, load_command_start);
    489   }
    490 
    491  private:
    492   struct MachOHeader {
    493     uint32_t magic;
    494     uint32_t cputype;
    495     uint32_t cpusubtype;
    496     uint32_t filetype;
    497     uint32_t ncmds;
    498     uint32_t sizeofcmds;
    499     uint32_t flags;
    500 #if V8_TARGET_ARCH_X64
    501     uint32_t reserved;
    502 #endif
    503   };
    504 
    505   struct MachOSegmentCommand {
    506     uint32_t cmd;
    507     uint32_t cmdsize;
    508     char segname[16];
    509 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    510     uint32_t vmaddr;
    511     uint32_t vmsize;
    512     uint32_t fileoff;
    513     uint32_t filesize;
    514 #else
    515     uint64_t vmaddr;
    516     uint64_t vmsize;
    517     uint64_t fileoff;
    518     uint64_t filesize;
    519 #endif
    520     uint32_t maxprot;
    521     uint32_t initprot;
    522     uint32_t nsects;
    523     uint32_t flags;
    524   };
    525 
    526   enum MachOLoadCommandCmd {
    527     LC_SEGMENT_32 = 0x00000001u,
    528     LC_SEGMENT_64 = 0x00000019u
    529   };
    530 
    531 
    532   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
    533     DCHECK(w->position() == 0);
    534     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
    535 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    536     header->magic = 0xFEEDFACEu;
    537     header->cputype = 7;  // i386
    538     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    539 #elif V8_TARGET_ARCH_X64
    540     header->magic = 0xFEEDFACFu;
    541     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    542     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    543     header->reserved = 0;
    544 #else
    545 #error Unsupported target architecture.
    546 #endif
    547     header->filetype = 0x1;  // MH_OBJECT
    548     header->ncmds = 1;
    549     header->sizeofcmds = 0;
    550     header->flags = 0;
    551     return header;
    552   }
    553 
    554 
    555   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
    556                                                         uintptr_t code_start,
    557                                                         uintptr_t code_size) {
    558     Writer::Slot<MachOSegmentCommand> cmd =
    559         w->CreateSlotHere<MachOSegmentCommand>();
    560 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    561     cmd->cmd = LC_SEGMENT_32;
    562 #else
    563     cmd->cmd = LC_SEGMENT_64;
    564 #endif
    565     cmd->vmaddr = code_start;
    566     cmd->vmsize = code_size;
    567     cmd->fileoff = 0;
    568     cmd->filesize = 0;
    569     cmd->maxprot = 7;
    570     cmd->initprot = 7;
    571     cmd->flags = 0;
    572     cmd->nsects = sections_.length();
    573     memset(cmd->segname, 0, 16);
    574     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
    575         cmd->nsects;
    576     return cmd;
    577   }
    578 
    579 
    580   void WriteSections(Writer* w,
    581                      Writer::Slot<MachOSegmentCommand> cmd,
    582                      Writer::Slot<MachOHeader> header,
    583                      uintptr_t load_command_start) {
    584     Writer::Slot<MachOSection::Header> headers =
    585         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    586     cmd->fileoff = w->position();
    587     header->sizeofcmds =
    588         static_cast<uint32_t>(w->position() - load_command_start);
    589     for (int section = 0; section < sections_.length(); ++section) {
    590       sections_[section]->PopulateHeader(headers.at(section));
    591       sections_[section]->WriteBody(headers.at(section), w);
    592     }
    593     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
    594   }
    595 
    596   Zone* zone_;
    597   ZoneList<MachOSection*> sections_;
    598 };
    599 #endif  // defined(__MACH_O)
    600 
    601 
    602 #if defined(__ELF)
    603 class ELF BASE_EMBEDDED {
    604  public:
    605   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
    606     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
    607     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
    608   }
    609 
    610   void Write(Writer* w) {
    611     WriteHeader(w);
    612     WriteSectionTable(w);
    613     WriteSections(w);
    614   }
    615 
    616   ELFSection* SectionAt(uint32_t index) {
    617     return sections_[index];
    618   }
    619 
    620   uint32_t AddSection(ELFSection* section) {
    621     sections_.Add(section, zone_);
    622     section->set_index(sections_.length() - 1);
    623     return sections_.length() - 1;
    624   }
    625 
    626  private:
    627   struct ELFHeader {
    628     uint8_t ident[16];
    629     uint16_t type;
    630     uint16_t machine;
    631     uint32_t version;
    632     uintptr_t entry;
    633     uintptr_t pht_offset;
    634     uintptr_t sht_offset;
    635     uint32_t flags;
    636     uint16_t header_size;
    637     uint16_t pht_entry_size;
    638     uint16_t pht_entry_num;
    639     uint16_t sht_entry_size;
    640     uint16_t sht_entry_num;
    641     uint16_t sht_strtab_index;
    642   };
    643 
    644 
    645   void WriteHeader(Writer* w) {
    646     DCHECK(w->position() == 0);
    647     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
    648 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    649      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
    650     const uint8_t ident[16] =
    651         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    652 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    653     (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
    654     const uint8_t ident[16] =
    655         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    656 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
    657     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
    658                                0,    0,   0,   0,   0, 0, 0, 0};
    659 #elif V8_TARGET_ARCH_S390X
    660     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 3,
    661                                0,    0,   0,   0,   0, 0, 0, 0};
    662 #elif V8_TARGET_ARCH_S390
    663     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 1, 2, 1, 3,
    664                                0,    0,   0,   0,   0, 0, 0, 0};
    665 #else
    666 #error Unsupported target architecture.
    667 #endif
    668     memcpy(header->ident, ident, 16);
    669     header->type = 1;
    670 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    671     header->machine = 3;
    672 #elif V8_TARGET_ARCH_X64
    673     // Processor identification value for x64 is 62 as defined in
    674     //    System V ABI, AMD64 Supplement
    675     //    http://www.x86-64.org/documentation/abi.pdf
    676     header->machine = 62;
    677 #elif V8_TARGET_ARCH_ARM
    678     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    679     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    680     header->machine = 40;
    681 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
    682     // Set to EM_PPC64, defined as 21, in Power ABI,
    683     // Join the next 4 lines, omitting the spaces and double-slashes.
    684     // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
    685     // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
    686     // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
    687     // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
    688     header->machine = 21;
    689 #elif V8_TARGET_ARCH_S390
    690     // Processor identification value is 22 (EM_S390) as defined in the ABI:
    691     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
    692     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
    693     header->machine = 22;
    694 #else
    695 #error Unsupported target architecture.
    696 #endif
    697     header->version = 1;
    698     header->entry = 0;
    699     header->pht_offset = 0;
    700     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    701     header->flags = 0;
    702     header->header_size = sizeof(ELFHeader);
    703     header->pht_entry_size = 0;
    704     header->pht_entry_num = 0;
    705     header->sht_entry_size = sizeof(ELFSection::Header);
    706     header->sht_entry_num = sections_.length();
    707     header->sht_strtab_index = 1;
    708   }
    709 
    710   void WriteSectionTable(Writer* w) {
    711     // Section headers table immediately follows file header.
    712     DCHECK(w->position() == sizeof(ELFHeader));
    713 
    714     Writer::Slot<ELFSection::Header> headers =
    715         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
    716 
    717     // String table for section table is the first section.
    718     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
    719     strtab->AttachWriter(w);
    720     for (int i = 0, length = sections_.length();
    721          i < length;
    722          i++) {
    723       sections_[i]->PopulateHeader(headers.at(i), strtab);
    724     }
    725     strtab->DetachWriter();
    726   }
    727 
    728   int SectionHeaderPosition(uint32_t section_index) {
    729     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
    730   }
    731 
    732   void WriteSections(Writer* w) {
    733     Writer::Slot<ELFSection::Header> headers =
    734         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
    735 
    736     for (int i = 0, length = sections_.length();
    737          i < length;
    738          i++) {
    739       sections_[i]->WriteBody(headers.at(i), w);
    740     }
    741   }
    742 
    743   Zone* zone_;
    744   ZoneList<ELFSection*> sections_;
    745 };
    746 
    747 
    748 class ELFSymbol BASE_EMBEDDED {
    749  public:
    750   enum Type {
    751     TYPE_NOTYPE = 0,
    752     TYPE_OBJECT = 1,
    753     TYPE_FUNC = 2,
    754     TYPE_SECTION = 3,
    755     TYPE_FILE = 4,
    756     TYPE_LOPROC = 13,
    757     TYPE_HIPROC = 15
    758   };
    759 
    760   enum Binding {
    761     BIND_LOCAL = 0,
    762     BIND_GLOBAL = 1,
    763     BIND_WEAK = 2,
    764     BIND_LOPROC = 13,
    765     BIND_HIPROC = 15
    766   };
    767 
    768   ELFSymbol(const char* name,
    769             uintptr_t value,
    770             uintptr_t size,
    771             Binding binding,
    772             Type type,
    773             uint16_t section)
    774       : name(name),
    775         value(value),
    776         size(size),
    777         info((binding << 4) | type),
    778         other(0),
    779         section(section) {
    780   }
    781 
    782   Binding binding() const {
    783     return static_cast<Binding>(info >> 4);
    784   }
    785 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    786      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) ||                   \
    787      (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
    788   struct SerializedLayout {
    789     SerializedLayout(uint32_t name,
    790                      uintptr_t value,
    791                      uintptr_t size,
    792                      Binding binding,
    793                      Type type,
    794                      uint16_t section)
    795         : name(name),
    796           value(value),
    797           size(size),
    798           info((binding << 4) | type),
    799           other(0),
    800           section(section) {
    801     }
    802 
    803     uint32_t name;
    804     uintptr_t value;
    805     uintptr_t size;
    806     uint8_t info;
    807     uint8_t other;
    808     uint16_t section;
    809   };
    810 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    811     (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
    812   struct SerializedLayout {
    813     SerializedLayout(uint32_t name,
    814                      uintptr_t value,
    815                      uintptr_t size,
    816                      Binding binding,
    817                      Type type,
    818                      uint16_t section)
    819         : name(name),
    820           info((binding << 4) | type),
    821           other(0),
    822           section(section),
    823           value(value),
    824           size(size) {
    825     }
    826 
    827     uint32_t name;
    828     uint8_t info;
    829     uint8_t other;
    830     uint16_t section;
    831     uintptr_t value;
    832     uintptr_t size;
    833   };
    834 #endif
    835 
    836   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
    837     // Convert symbol names from strings to indexes in the string table.
    838     s->name = static_cast<uint32_t>(t->Add(name));
    839     s->value = value;
    840     s->size = size;
    841     s->info = info;
    842     s->other = other;
    843     s->section = section;
    844   }
    845 
    846  private:
    847   const char* name;
    848   uintptr_t value;
    849   uintptr_t size;
    850   uint8_t info;
    851   uint8_t other;
    852   uint16_t section;
    853 };
    854 
    855 
    856 class ELFSymbolTable : public ELFSection {
    857  public:
    858   ELFSymbolTable(const char* name, Zone* zone)
    859       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
    860         locals_(1, zone),
    861         globals_(1, zone) {
    862   }
    863 
    864   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    865     w->Align(header->alignment);
    866     int total_symbols = locals_.length() + globals_.length() + 1;
    867     header->offset = w->position();
    868 
    869     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
    870         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
    871 
    872     header->size = w->position() - header->offset;
    873 
    874     // String table for this symbol table should follow it in the section table.
    875     ELFStringTable* strtab =
    876         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
    877     strtab->AttachWriter(w);
    878     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
    879                                                   0,
    880                                                   0,
    881                                                   ELFSymbol::BIND_LOCAL,
    882                                                   ELFSymbol::TYPE_NOTYPE,
    883                                                   0));
    884     WriteSymbolsList(&locals_, symbols.at(1), strtab);
    885     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    886     strtab->DetachWriter();
    887   }
    888 
    889   void Add(const ELFSymbol& symbol, Zone* zone) {
    890     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
    891       locals_.Add(symbol, zone);
    892     } else {
    893       globals_.Add(symbol, zone);
    894     }
    895   }
    896 
    897  protected:
    898   virtual void PopulateHeader(Writer::Slot<Header> header) {
    899     ELFSection::PopulateHeader(header);
    900     // We are assuming that string table will follow symbol table.
    901     header->link = index() + 1;
    902     header->info = locals_.length() + 1;
    903     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
    904   }
    905 
    906  private:
    907   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
    908                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
    909                         ELFStringTable* strtab) {
    910     for (int i = 0, len = src->length();
    911          i < len;
    912          i++) {
    913       src->at(i).Write(dst.at(i), strtab);
    914     }
    915   }
    916 
    917   ZoneList<ELFSymbol> locals_;
    918   ZoneList<ELFSymbol> globals_;
    919 };
    920 #endif  // defined(__ELF)
    921 
    922 
    923 class LineInfo : public Malloced {
    924  public:
    925   LineInfo() : pc_info_(10) {}
    926 
    927   void SetPosition(intptr_t pc, int pos, bool is_statement) {
    928     AddPCInfo(PCInfo(pc, pos, is_statement));
    929   }
    930 
    931   struct PCInfo {
    932     PCInfo(intptr_t pc, int pos, bool is_statement)
    933         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
    934 
    935     intptr_t pc_;
    936     int pos_;
    937     bool is_statement_;
    938   };
    939 
    940   List<PCInfo>* pc_info() { return &pc_info_; }
    941 
    942  private:
    943   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
    944 
    945   List<PCInfo> pc_info_;
    946 };
    947 
    948 
    949 class CodeDescription BASE_EMBEDDED {
    950  public:
    951 #if V8_TARGET_ARCH_X64
    952   enum StackState {
    953     POST_RBP_PUSH,
    954     POST_RBP_SET,
    955     POST_RBP_POP,
    956     STACK_STATE_MAX
    957   };
    958 #endif
    959 
    960   CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
    961                   LineInfo* lineinfo)
    962       : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
    963 
    964   const char* name() const {
    965     return name_;
    966   }
    967 
    968   LineInfo* lineinfo() const { return lineinfo_; }
    969 
    970   bool is_function() const {
    971     Code::Kind kind = code_->kind();
    972     return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
    973   }
    974 
    975   bool has_scope_info() const { return shared_info_ != NULL; }
    976 
    977   ScopeInfo* scope_info() const {
    978     DCHECK(has_scope_info());
    979     return shared_info_->scope_info();
    980   }
    981 
    982   uintptr_t CodeStart() const {
    983     return reinterpret_cast<uintptr_t>(code_->instruction_start());
    984   }
    985 
    986   uintptr_t CodeEnd() const {
    987     return reinterpret_cast<uintptr_t>(code_->instruction_end());
    988   }
    989 
    990   uintptr_t CodeSize() const {
    991     return CodeEnd() - CodeStart();
    992   }
    993 
    994   bool has_script() {
    995     return shared_info_ != NULL && shared_info_->script()->IsScript();
    996   }
    997 
    998   Script* script() { return Script::cast(shared_info_->script()); }
    999 
   1000   bool IsLineInfoAvailable() {
   1001     return has_script() && script()->source()->IsString() &&
   1002            script()->HasValidSource() && script()->name()->IsString() &&
   1003            lineinfo_ != NULL;
   1004   }
   1005 
   1006 #if V8_TARGET_ARCH_X64
   1007   uintptr_t GetStackStateStartAddress(StackState state) const {
   1008     DCHECK(state < STACK_STATE_MAX);
   1009     return stack_state_start_addresses_[state];
   1010   }
   1011 
   1012   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
   1013     DCHECK(state < STACK_STATE_MAX);
   1014     stack_state_start_addresses_[state] = addr;
   1015   }
   1016 #endif
   1017 
   1018   base::SmartArrayPointer<char> GetFilename() {
   1019     return String::cast(script()->name())->ToCString();
   1020   }
   1021 
   1022   int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
   1023 
   1024 
   1025  private:
   1026   const char* name_;
   1027   Code* code_;
   1028   SharedFunctionInfo* shared_info_;
   1029   LineInfo* lineinfo_;
   1030 #if V8_TARGET_ARCH_X64
   1031   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
   1032 #endif
   1033 };
   1034 
   1035 #if defined(__ELF)
   1036 static void CreateSymbolsTable(CodeDescription* desc,
   1037                                Zone* zone,
   1038                                ELF* elf,
   1039                                int text_section_index) {
   1040   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
   1041   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
   1042 
   1043   // Symbol table should be followed by the linked string table.
   1044   elf->AddSection(symtab);
   1045   elf->AddSection(strtab);
   1046 
   1047   symtab->Add(ELFSymbol("V8 Code",
   1048                         0,
   1049                         0,
   1050                         ELFSymbol::BIND_LOCAL,
   1051                         ELFSymbol::TYPE_FILE,
   1052                         ELFSection::INDEX_ABSOLUTE),
   1053               zone);
   1054 
   1055   symtab->Add(ELFSymbol(desc->name(),
   1056                         0,
   1057                         desc->CodeSize(),
   1058                         ELFSymbol::BIND_GLOBAL,
   1059                         ELFSymbol::TYPE_FUNC,
   1060                         text_section_index),
   1061               zone);
   1062 }
   1063 #endif  // defined(__ELF)
   1064 
   1065 
   1066 class DebugInfoSection : public DebugSection {
   1067  public:
   1068   explicit DebugInfoSection(CodeDescription* desc)
   1069 #if defined(__ELF)
   1070       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
   1071 #else
   1072       : MachOSection("__debug_info",
   1073                      "__DWARF",
   1074                      1,
   1075                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1076 #endif
   1077         desc_(desc) { }
   1078 
   1079   // DWARF2 standard
   1080   enum DWARF2LocationOp {
   1081     DW_OP_reg0 = 0x50,
   1082     DW_OP_reg1 = 0x51,
   1083     DW_OP_reg2 = 0x52,
   1084     DW_OP_reg3 = 0x53,
   1085     DW_OP_reg4 = 0x54,
   1086     DW_OP_reg5 = 0x55,
   1087     DW_OP_reg6 = 0x56,
   1088     DW_OP_reg7 = 0x57,
   1089     DW_OP_reg8 = 0x58,
   1090     DW_OP_reg9 = 0x59,
   1091     DW_OP_reg10 = 0x5a,
   1092     DW_OP_reg11 = 0x5b,
   1093     DW_OP_reg12 = 0x5c,
   1094     DW_OP_reg13 = 0x5d,
   1095     DW_OP_reg14 = 0x5e,
   1096     DW_OP_reg15 = 0x5f,
   1097     DW_OP_reg16 = 0x60,
   1098     DW_OP_reg17 = 0x61,
   1099     DW_OP_reg18 = 0x62,
   1100     DW_OP_reg19 = 0x63,
   1101     DW_OP_reg20 = 0x64,
   1102     DW_OP_reg21 = 0x65,
   1103     DW_OP_reg22 = 0x66,
   1104     DW_OP_reg23 = 0x67,
   1105     DW_OP_reg24 = 0x68,
   1106     DW_OP_reg25 = 0x69,
   1107     DW_OP_reg26 = 0x6a,
   1108     DW_OP_reg27 = 0x6b,
   1109     DW_OP_reg28 = 0x6c,
   1110     DW_OP_reg29 = 0x6d,
   1111     DW_OP_reg30 = 0x6e,
   1112     DW_OP_reg31 = 0x6f,
   1113     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
   1114   };
   1115 
   1116   enum DWARF2Encoding {
   1117     DW_ATE_ADDRESS = 0x1,
   1118     DW_ATE_SIGNED = 0x5
   1119   };
   1120 
   1121   bool WriteBodyInternal(Writer* w) {
   1122     uintptr_t cu_start = w->position();
   1123     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
   1124     uintptr_t start = w->position();
   1125     w->Write<uint16_t>(2);  // DWARF version.
   1126     w->Write<uint32_t>(0);  // Abbreviation table offset.
   1127     w->Write<uint8_t>(sizeof(intptr_t));
   1128 
   1129     w->WriteULEB128(1);  // Abbreviation code.
   1130     w->WriteString(desc_->GetFilename().get());
   1131     w->Write<intptr_t>(desc_->CodeStart());
   1132     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1133     w->Write<uint32_t>(0);
   1134 
   1135     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
   1136     w->WriteULEB128(3);
   1137     w->Write<uint8_t>(kPointerSize);
   1138     w->WriteString("v8value");
   1139 
   1140     if (desc_->has_scope_info()) {
   1141       ScopeInfo* scope = desc_->scope_info();
   1142       w->WriteULEB128(2);
   1143       w->WriteString(desc_->name());
   1144       w->Write<intptr_t>(desc_->CodeStart());
   1145       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1146       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
   1147       uintptr_t fb_block_start = w->position();
   1148 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
   1149       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
   1150 #elif V8_TARGET_ARCH_X64
   1151       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
   1152 #elif V8_TARGET_ARCH_ARM
   1153       UNIMPLEMENTED();
   1154 #elif V8_TARGET_ARCH_MIPS
   1155       UNIMPLEMENTED();
   1156 #elif V8_TARGET_ARCH_MIPS64
   1157       UNIMPLEMENTED();
   1158 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
   1159       w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
   1160 #elif V8_TARGET_ARCH_S390
   1161       w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
   1162 #else
   1163 #error Unsupported target architecture.
   1164 #endif
   1165       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
   1166 
   1167       int params = scope->ParameterCount();
   1168       int slots = scope->StackLocalCount();
   1169       int context_slots = scope->ContextLocalCount();
   1170       // The real slot ID is internal_slots + context_slot_id.
   1171       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1172       int locals = scope->StackLocalCount();
   1173       int current_abbreviation = 4;
   1174 
   1175       for (int param = 0; param < params; ++param) {
   1176         w->WriteULEB128(current_abbreviation++);
   1177         w->WriteString(
   1178             scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
   1179         w->Write<uint32_t>(ty_offset);
   1180         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1181         uintptr_t block_start = w->position();
   1182         w->Write<uint8_t>(DW_OP_fbreg);
   1183         w->WriteSLEB128(
   1184           JavaScriptFrameConstants::kLastParameterOffset +
   1185               kPointerSize * (params - param - 1));
   1186         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1187       }
   1188 
   1189       EmbeddedVector<char, 256> buffer;
   1190       StringBuilder builder(buffer.start(), buffer.length());
   1191 
   1192       for (int slot = 0; slot < slots; ++slot) {
   1193         w->WriteULEB128(current_abbreviation++);
   1194         builder.Reset();
   1195         builder.AddFormatted("slot%d", slot);
   1196         w->WriteString(builder.Finalize());
   1197       }
   1198 
   1199       // See contexts.h for more information.
   1200       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
   1201       DCHECK(Context::CLOSURE_INDEX == 0);
   1202       DCHECK(Context::PREVIOUS_INDEX == 1);
   1203       DCHECK(Context::EXTENSION_INDEX == 2);
   1204       DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
   1205       w->WriteULEB128(current_abbreviation++);
   1206       w->WriteString(".closure");
   1207       w->WriteULEB128(current_abbreviation++);
   1208       w->WriteString(".previous");
   1209       w->WriteULEB128(current_abbreviation++);
   1210       w->WriteString(".extension");
   1211       w->WriteULEB128(current_abbreviation++);
   1212       w->WriteString(".native_context");
   1213 
   1214       for (int context_slot = 0;
   1215            context_slot < context_slots;
   1216            ++context_slot) {
   1217         w->WriteULEB128(current_abbreviation++);
   1218         builder.Reset();
   1219         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
   1220         w->WriteString(builder.Finalize());
   1221       }
   1222 
   1223       for (int local = 0; local < locals; ++local) {
   1224         w->WriteULEB128(current_abbreviation++);
   1225         w->WriteString(
   1226             scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
   1227         w->Write<uint32_t>(ty_offset);
   1228         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1229         uintptr_t block_start = w->position();
   1230         w->Write<uint8_t>(DW_OP_fbreg);
   1231         w->WriteSLEB128(
   1232           JavaScriptFrameConstants::kLocal0Offset -
   1233               kPointerSize * local);
   1234         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1235       }
   1236 
   1237       {
   1238         w->WriteULEB128(current_abbreviation++);
   1239         w->WriteString("__function");
   1240         w->Write<uint32_t>(ty_offset);
   1241         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1242         uintptr_t block_start = w->position();
   1243         w->Write<uint8_t>(DW_OP_fbreg);
   1244         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
   1245         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1246       }
   1247 
   1248       {
   1249         w->WriteULEB128(current_abbreviation++);
   1250         w->WriteString("__context");
   1251         w->Write<uint32_t>(ty_offset);
   1252         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1253         uintptr_t block_start = w->position();
   1254         w->Write<uint8_t>(DW_OP_fbreg);
   1255         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
   1256         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1257       }
   1258 
   1259       w->WriteULEB128(0);  // Terminate the sub program.
   1260     }
   1261 
   1262     w->WriteULEB128(0);  // Terminate the compile unit.
   1263     size.set(static_cast<uint32_t>(w->position() - start));
   1264     return true;
   1265   }
   1266 
   1267  private:
   1268   CodeDescription* desc_;
   1269 };
   1270 
   1271 
   1272 class DebugAbbrevSection : public DebugSection {
   1273  public:
   1274   explicit DebugAbbrevSection(CodeDescription* desc)
   1275 #ifdef __ELF
   1276       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
   1277 #else
   1278       : MachOSection("__debug_abbrev",
   1279                      "__DWARF",
   1280                      1,
   1281                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1282 #endif
   1283         desc_(desc) { }
   1284 
   1285   // DWARF2 standard, figure 14.
   1286   enum DWARF2Tags {
   1287     DW_TAG_FORMAL_PARAMETER = 0x05,
   1288     DW_TAG_POINTER_TYPE = 0xf,
   1289     DW_TAG_COMPILE_UNIT = 0x11,
   1290     DW_TAG_STRUCTURE_TYPE = 0x13,
   1291     DW_TAG_BASE_TYPE = 0x24,
   1292     DW_TAG_SUBPROGRAM = 0x2e,
   1293     DW_TAG_VARIABLE = 0x34
   1294   };
   1295 
   1296   // DWARF2 standard, figure 16.
   1297   enum DWARF2ChildrenDetermination {
   1298     DW_CHILDREN_NO = 0,
   1299     DW_CHILDREN_YES = 1
   1300   };
   1301 
   1302   // DWARF standard, figure 17.
   1303   enum DWARF2Attribute {
   1304     DW_AT_LOCATION = 0x2,
   1305     DW_AT_NAME = 0x3,
   1306     DW_AT_BYTE_SIZE = 0xb,
   1307     DW_AT_STMT_LIST = 0x10,
   1308     DW_AT_LOW_PC = 0x11,
   1309     DW_AT_HIGH_PC = 0x12,
   1310     DW_AT_ENCODING = 0x3e,
   1311     DW_AT_FRAME_BASE = 0x40,
   1312     DW_AT_TYPE = 0x49
   1313   };
   1314 
   1315   // DWARF2 standard, figure 19.
   1316   enum DWARF2AttributeForm {
   1317     DW_FORM_ADDR = 0x1,
   1318     DW_FORM_BLOCK4 = 0x4,
   1319     DW_FORM_STRING = 0x8,
   1320     DW_FORM_DATA4 = 0x6,
   1321     DW_FORM_BLOCK = 0x9,
   1322     DW_FORM_DATA1 = 0xb,
   1323     DW_FORM_FLAG = 0xc,
   1324     DW_FORM_REF4 = 0x13
   1325   };
   1326 
   1327   void WriteVariableAbbreviation(Writer* w,
   1328                                  int abbreviation_code,
   1329                                  bool has_value,
   1330                                  bool is_parameter) {
   1331     w->WriteULEB128(abbreviation_code);
   1332     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
   1333     w->Write<uint8_t>(DW_CHILDREN_NO);
   1334     w->WriteULEB128(DW_AT_NAME);
   1335     w->WriteULEB128(DW_FORM_STRING);
   1336     if (has_value) {
   1337       w->WriteULEB128(DW_AT_TYPE);
   1338       w->WriteULEB128(DW_FORM_REF4);
   1339       w->WriteULEB128(DW_AT_LOCATION);
   1340       w->WriteULEB128(DW_FORM_BLOCK4);
   1341     }
   1342     w->WriteULEB128(0);
   1343     w->WriteULEB128(0);
   1344   }
   1345 
   1346   bool WriteBodyInternal(Writer* w) {
   1347     int current_abbreviation = 1;
   1348     bool extra_info = desc_->has_scope_info();
   1349     DCHECK(desc_->IsLineInfoAvailable());
   1350     w->WriteULEB128(current_abbreviation++);
   1351     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
   1352     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
   1353     w->WriteULEB128(DW_AT_NAME);
   1354     w->WriteULEB128(DW_FORM_STRING);
   1355     w->WriteULEB128(DW_AT_LOW_PC);
   1356     w->WriteULEB128(DW_FORM_ADDR);
   1357     w->WriteULEB128(DW_AT_HIGH_PC);
   1358     w->WriteULEB128(DW_FORM_ADDR);
   1359     w->WriteULEB128(DW_AT_STMT_LIST);
   1360     w->WriteULEB128(DW_FORM_DATA4);
   1361     w->WriteULEB128(0);
   1362     w->WriteULEB128(0);
   1363 
   1364     if (extra_info) {
   1365       ScopeInfo* scope = desc_->scope_info();
   1366       int params = scope->ParameterCount();
   1367       int slots = scope->StackLocalCount();
   1368       int context_slots = scope->ContextLocalCount();
   1369       // The real slot ID is internal_slots + context_slot_id.
   1370       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1371       int locals = scope->StackLocalCount();
   1372       // Total children is params + slots + context_slots + internal_slots +
   1373       // locals + 2 (__function and __context).
   1374 
   1375       // The extra duplication below seems to be necessary to keep
   1376       // gdb from getting upset on OSX.
   1377       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
   1378       w->WriteULEB128(DW_TAG_SUBPROGRAM);
   1379       w->Write<uint8_t>(DW_CHILDREN_YES);
   1380       w->WriteULEB128(DW_AT_NAME);
   1381       w->WriteULEB128(DW_FORM_STRING);
   1382       w->WriteULEB128(DW_AT_LOW_PC);
   1383       w->WriteULEB128(DW_FORM_ADDR);
   1384       w->WriteULEB128(DW_AT_HIGH_PC);
   1385       w->WriteULEB128(DW_FORM_ADDR);
   1386       w->WriteULEB128(DW_AT_FRAME_BASE);
   1387       w->WriteULEB128(DW_FORM_BLOCK4);
   1388       w->WriteULEB128(0);
   1389       w->WriteULEB128(0);
   1390 
   1391       w->WriteULEB128(current_abbreviation++);
   1392       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
   1393       w->Write<uint8_t>(DW_CHILDREN_NO);
   1394       w->WriteULEB128(DW_AT_BYTE_SIZE);
   1395       w->WriteULEB128(DW_FORM_DATA1);
   1396       w->WriteULEB128(DW_AT_NAME);
   1397       w->WriteULEB128(DW_FORM_STRING);
   1398       w->WriteULEB128(0);
   1399       w->WriteULEB128(0);
   1400 
   1401       for (int param = 0; param < params; ++param) {
   1402         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
   1403       }
   1404 
   1405       for (int slot = 0; slot < slots; ++slot) {
   1406         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1407       }
   1408 
   1409       for (int internal_slot = 0;
   1410            internal_slot < internal_slots;
   1411            ++internal_slot) {
   1412         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1413       }
   1414 
   1415       for (int context_slot = 0;
   1416            context_slot < context_slots;
   1417            ++context_slot) {
   1418         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1419       }
   1420 
   1421       for (int local = 0; local < locals; ++local) {
   1422         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1423       }
   1424 
   1425       // The function.
   1426       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1427 
   1428       // The context.
   1429       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1430 
   1431       w->WriteULEB128(0);  // Terminate the sibling list.
   1432     }
   1433 
   1434     w->WriteULEB128(0);  // Terminate the table.
   1435     return true;
   1436   }
   1437 
   1438  private:
   1439   CodeDescription* desc_;
   1440 };
   1441 
   1442 
   1443 class DebugLineSection : public DebugSection {
   1444  public:
   1445   explicit DebugLineSection(CodeDescription* desc)
   1446 #ifdef __ELF
   1447       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
   1448 #else
   1449       : MachOSection("__debug_line",
   1450                      "__DWARF",
   1451                      1,
   1452                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1453 #endif
   1454         desc_(desc) { }
   1455 
   1456   // DWARF2 standard, figure 34.
   1457   enum DWARF2Opcodes {
   1458     DW_LNS_COPY = 1,
   1459     DW_LNS_ADVANCE_PC = 2,
   1460     DW_LNS_ADVANCE_LINE = 3,
   1461     DW_LNS_SET_FILE = 4,
   1462     DW_LNS_SET_COLUMN = 5,
   1463     DW_LNS_NEGATE_STMT = 6
   1464   };
   1465 
   1466   // DWARF2 standard, figure 35.
   1467   enum DWARF2ExtendedOpcode {
   1468     DW_LNE_END_SEQUENCE = 1,
   1469     DW_LNE_SET_ADDRESS = 2,
   1470     DW_LNE_DEFINE_FILE = 3
   1471   };
   1472 
   1473   bool WriteBodyInternal(Writer* w) {
   1474     // Write prologue.
   1475     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
   1476     uintptr_t start = w->position();
   1477 
   1478     // Used for special opcodes
   1479     const int8_t line_base = 1;
   1480     const uint8_t line_range = 7;
   1481     const int8_t max_line_incr = (line_base + line_range - 1);
   1482     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
   1483 
   1484     w->Write<uint16_t>(2);  // Field version.
   1485     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
   1486     uintptr_t prologue_start = w->position();
   1487     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
   1488     w->Write<uint8_t>(1);  // Field default_is_stmt.
   1489     w->Write<int8_t>(line_base);  // Field line_base.
   1490     w->Write<uint8_t>(line_range);  // Field line_range.
   1491     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
   1492     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
   1493     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
   1494     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
   1495     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
   1496     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
   1497     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
   1498     w->Write<uint8_t>(0);  // Empty include_directories sequence.
   1499     w->WriteString(desc_->GetFilename().get());  // File name.
   1500     w->WriteULEB128(0);  // Current directory.
   1501     w->WriteULEB128(0);  // Unknown modification time.
   1502     w->WriteULEB128(0);  // Unknown file size.
   1503     w->Write<uint8_t>(0);
   1504     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
   1505 
   1506     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
   1507     w->Write<intptr_t>(desc_->CodeStart());
   1508     w->Write<uint8_t>(DW_LNS_COPY);
   1509 
   1510     intptr_t pc = 0;
   1511     intptr_t line = 1;
   1512     bool is_statement = true;
   1513 
   1514     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
   1515     pc_info->Sort(&ComparePCInfo);
   1516 
   1517     int pc_info_length = pc_info->length();
   1518     for (int i = 0; i < pc_info_length; i++) {
   1519       LineInfo::PCInfo* info = &pc_info->at(i);
   1520       DCHECK(info->pc_ >= pc);
   1521 
   1522       // Reduce bloating in the debug line table by removing duplicate line
   1523       // entries (per DWARF2 standard).
   1524       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
   1525       if (new_line == line) {
   1526         continue;
   1527       }
   1528 
   1529       // Mark statement boundaries.  For a better debugging experience, mark
   1530       // the last pc address in the function as a statement (e.g. "}"), so that
   1531       // a user can see the result of the last line executed in the function,
   1532       // should control reach the end.
   1533       if ((i+1) == pc_info_length) {
   1534         if (!is_statement) {
   1535           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1536         }
   1537       } else if (is_statement != info->is_statement_) {
   1538         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1539         is_statement = !is_statement;
   1540       }
   1541 
   1542       // Generate special opcodes, if possible.  This results in more compact
   1543       // debug line tables.  See the DWARF 2.0 standard to learn more about
   1544       // special opcodes.
   1545       uintptr_t pc_diff = info->pc_ - pc;
   1546       intptr_t line_diff = new_line - line;
   1547 
   1548       // Compute special opcode (see DWARF 2.0 standard)
   1549       intptr_t special_opcode = (line_diff - line_base) +
   1550                                 (line_range * pc_diff) + opcode_base;
   1551 
   1552       // If special_opcode is less than or equal to 255, it can be used as a
   1553       // special opcode.  If line_diff is larger than the max line increment
   1554       // allowed for a special opcode, or if line_diff is less than the minimum
   1555       // line that can be added to the line register (i.e. line_base), then
   1556       // special_opcode can't be used.
   1557       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
   1558           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
   1559         w->Write<uint8_t>(special_opcode);
   1560       } else {
   1561         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1562         w->WriteSLEB128(pc_diff);
   1563         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
   1564         w->WriteSLEB128(line_diff);
   1565         w->Write<uint8_t>(DW_LNS_COPY);
   1566       }
   1567 
   1568       // Increment the pc and line operands.
   1569       pc += pc_diff;
   1570       line += line_diff;
   1571     }
   1572     // Advance the pc to the end of the routine, since the end sequence opcode
   1573     // requires this.
   1574     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1575     w->WriteSLEB128(desc_->CodeSize() - pc);
   1576     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
   1577     total_length.set(static_cast<uint32_t>(w->position() - start));
   1578     return true;
   1579   }
   1580 
   1581  private:
   1582   void WriteExtendedOpcode(Writer* w,
   1583                            DWARF2ExtendedOpcode op,
   1584                            size_t operands_size) {
   1585     w->Write<uint8_t>(0);
   1586     w->WriteULEB128(operands_size + 1);
   1587     w->Write<uint8_t>(op);
   1588   }
   1589 
   1590   static int ComparePCInfo(const LineInfo::PCInfo* a,
   1591                            const LineInfo::PCInfo* b) {
   1592     if (a->pc_ == b->pc_) {
   1593       if (a->is_statement_ != b->is_statement_) {
   1594         return b->is_statement_ ? +1 : -1;
   1595       }
   1596       return 0;
   1597     } else if (a->pc_ > b->pc_) {
   1598       return +1;
   1599     } else {
   1600       return -1;
   1601     }
   1602   }
   1603 
   1604   CodeDescription* desc_;
   1605 };
   1606 
   1607 
   1608 #if V8_TARGET_ARCH_X64
   1609 
   1610 class UnwindInfoSection : public DebugSection {
   1611  public:
   1612   explicit UnwindInfoSection(CodeDescription* desc);
   1613   virtual bool WriteBodyInternal(Writer* w);
   1614 
   1615   int WriteCIE(Writer* w);
   1616   void WriteFDE(Writer* w, int);
   1617 
   1618   void WriteFDEStateOnEntry(Writer* w);
   1619   void WriteFDEStateAfterRBPPush(Writer* w);
   1620   void WriteFDEStateAfterRBPSet(Writer* w);
   1621   void WriteFDEStateAfterRBPPop(Writer* w);
   1622 
   1623   void WriteLength(Writer* w,
   1624                    Writer::Slot<uint32_t>* length_slot,
   1625                    int initial_position);
   1626 
   1627  private:
   1628   CodeDescription* desc_;
   1629 
   1630   // DWARF3 Specification, Table 7.23
   1631   enum CFIInstructions {
   1632     DW_CFA_ADVANCE_LOC = 0x40,
   1633     DW_CFA_OFFSET = 0x80,
   1634     DW_CFA_RESTORE = 0xC0,
   1635     DW_CFA_NOP = 0x00,
   1636     DW_CFA_SET_LOC = 0x01,
   1637     DW_CFA_ADVANCE_LOC1 = 0x02,
   1638     DW_CFA_ADVANCE_LOC2 = 0x03,
   1639     DW_CFA_ADVANCE_LOC4 = 0x04,
   1640     DW_CFA_OFFSET_EXTENDED = 0x05,
   1641     DW_CFA_RESTORE_EXTENDED = 0x06,
   1642     DW_CFA_UNDEFINED = 0x07,
   1643     DW_CFA_SAME_VALUE = 0x08,
   1644     DW_CFA_REGISTER = 0x09,
   1645     DW_CFA_REMEMBER_STATE = 0x0A,
   1646     DW_CFA_RESTORE_STATE = 0x0B,
   1647     DW_CFA_DEF_CFA = 0x0C,
   1648     DW_CFA_DEF_CFA_REGISTER = 0x0D,
   1649     DW_CFA_DEF_CFA_OFFSET = 0x0E,
   1650 
   1651     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
   1652     DW_CFA_EXPRESSION = 0x10,
   1653     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
   1654     DW_CFA_DEF_CFA_SF = 0x12,
   1655     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
   1656     DW_CFA_VAL_OFFSET = 0x14,
   1657     DW_CFA_VAL_OFFSET_SF = 0x15,
   1658     DW_CFA_VAL_EXPRESSION = 0x16
   1659   };
   1660 
   1661   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
   1662   enum RegisterMapping {
   1663     // Only the relevant ones have been added to reduce clutter.
   1664     AMD64_RBP = 6,
   1665     AMD64_RSP = 7,
   1666     AMD64_RA = 16
   1667   };
   1668 
   1669   enum CFIConstants {
   1670     CIE_ID = 0,
   1671     CIE_VERSION = 1,
   1672     CODE_ALIGN_FACTOR = 1,
   1673     DATA_ALIGN_FACTOR = 1,
   1674     RETURN_ADDRESS_REGISTER = AMD64_RA
   1675   };
   1676 };
   1677 
   1678 
   1679 void UnwindInfoSection::WriteLength(Writer* w,
   1680                                     Writer::Slot<uint32_t>* length_slot,
   1681                                     int initial_position) {
   1682   uint32_t align = (w->position() - initial_position) % kPointerSize;
   1683 
   1684   if (align != 0) {
   1685     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
   1686       w->Write<uint8_t>(DW_CFA_NOP);
   1687     }
   1688   }
   1689 
   1690   DCHECK((w->position() - initial_position) % kPointerSize == 0);
   1691   length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
   1692 }
   1693 
   1694 
   1695 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
   1696 #ifdef __ELF
   1697     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
   1698 #else
   1699     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
   1700                    MachOSection::S_REGULAR),
   1701 #endif
   1702       desc_(desc) { }
   1703 
   1704 int UnwindInfoSection::WriteCIE(Writer* w) {
   1705   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
   1706   uint32_t cie_position = static_cast<uint32_t>(w->position());
   1707 
   1708   // Write out the CIE header. Currently no 'common instructions' are
   1709   // emitted onto the CIE; every FDE has its own set of instructions.
   1710 
   1711   w->Write<uint32_t>(CIE_ID);
   1712   w->Write<uint8_t>(CIE_VERSION);
   1713   w->Write<uint8_t>(0);  // Null augmentation string.
   1714   w->WriteSLEB128(CODE_ALIGN_FACTOR);
   1715   w->WriteSLEB128(DATA_ALIGN_FACTOR);
   1716   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
   1717 
   1718   WriteLength(w, &cie_length_slot, cie_position);
   1719 
   1720   return cie_position;
   1721 }
   1722 
   1723 
   1724 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
   1725   // The only FDE for this function. The CFA is the current RBP.
   1726   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
   1727   int fde_position = static_cast<uint32_t>(w->position());
   1728   w->Write<int32_t>(fde_position - cie_position + 4);
   1729 
   1730   w->Write<uintptr_t>(desc_->CodeStart());
   1731   w->Write<uintptr_t>(desc_->CodeSize());
   1732 
   1733   WriteFDEStateOnEntry(w);
   1734   WriteFDEStateAfterRBPPush(w);
   1735   WriteFDEStateAfterRBPSet(w);
   1736   WriteFDEStateAfterRBPPop(w);
   1737 
   1738   WriteLength(w, &fde_length_slot, fde_position);
   1739 }
   1740 
   1741 
   1742 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
   1743   // The first state, just after the control has been transferred to the the
   1744   // function.
   1745 
   1746   // RBP for this function will be the value of RSP after pushing the RBP
   1747   // for the previous function. The previous RBP has not been pushed yet.
   1748   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1749   w->WriteULEB128(AMD64_RSP);
   1750   w->WriteSLEB128(-kPointerSize);
   1751 
   1752   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
   1753   // and hence omitted from the next states.
   1754   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1755   w->WriteULEB128(AMD64_RA);
   1756   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
   1757 
   1758   // The RBP of the previous function is still in RBP.
   1759   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
   1760   w->WriteULEB128(AMD64_RBP);
   1761 
   1762   // Last location described by this entry.
   1763   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1764   w->Write<uint64_t>(
   1765       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
   1766 }
   1767 
   1768 
   1769 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
   1770   // The second state, just after RBP has been pushed.
   1771 
   1772   // RBP / CFA for this function is now the current RSP, so just set the
   1773   // offset from the previous rule (from -8) to 0.
   1774   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
   1775   w->WriteULEB128(0);
   1776 
   1777   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
   1778   // in this and the next state, and hence omitted in the next state.
   1779   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1780   w->WriteULEB128(AMD64_RBP);
   1781   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1782 
   1783   // Last location described by this entry.
   1784   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1785   w->Write<uint64_t>(
   1786       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
   1787 }
   1788 
   1789 
   1790 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
   1791   // The third state, after the RBP has been set.
   1792 
   1793   // The CFA can now directly be set to RBP.
   1794   w->Write<uint8_t>(DW_CFA_DEF_CFA);
   1795   w->WriteULEB128(AMD64_RBP);
   1796   w->WriteULEB128(0);
   1797 
   1798   // Last location described by this entry.
   1799   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1800   w->Write<uint64_t>(
   1801       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
   1802 }
   1803 
   1804 
   1805 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
   1806   // The fourth (final) state. The RBP has been popped (just before issuing a
   1807   // return).
   1808 
   1809   // The CFA can is now calculated in the same way as in the first state.
   1810   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1811   w->WriteULEB128(AMD64_RSP);
   1812   w->WriteSLEB128(-kPointerSize);
   1813 
   1814   // The RBP
   1815   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1816   w->WriteULEB128(AMD64_RBP);
   1817   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1818 
   1819   // Last location described by this entry.
   1820   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1821   w->Write<uint64_t>(desc_->CodeEnd());
   1822 }
   1823 
   1824 
   1825 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
   1826   uint32_t cie_position = WriteCIE(w);
   1827   WriteFDE(w, cie_position);
   1828   return true;
   1829 }
   1830 
   1831 
   1832 #endif  // V8_TARGET_ARCH_X64
   1833 
   1834 static void CreateDWARFSections(CodeDescription* desc,
   1835                                 Zone* zone,
   1836                                 DebugObject* obj) {
   1837   if (desc->IsLineInfoAvailable()) {
   1838     obj->AddSection(new(zone) DebugInfoSection(desc));
   1839     obj->AddSection(new(zone) DebugAbbrevSection(desc));
   1840     obj->AddSection(new(zone) DebugLineSection(desc));
   1841   }
   1842 #if V8_TARGET_ARCH_X64
   1843   obj->AddSection(new(zone) UnwindInfoSection(desc));
   1844 #endif
   1845 }
   1846 
   1847 
   1848 // -------------------------------------------------------------------
   1849 // Binary GDB JIT Interface as described in
   1850 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
   1851 extern "C" {
   1852   typedef enum {
   1853     JIT_NOACTION = 0,
   1854     JIT_REGISTER_FN,
   1855     JIT_UNREGISTER_FN
   1856   } JITAction;
   1857 
   1858   struct JITCodeEntry {
   1859     JITCodeEntry* next_;
   1860     JITCodeEntry* prev_;
   1861     Address symfile_addr_;
   1862     uint64_t symfile_size_;
   1863   };
   1864 
   1865   struct JITDescriptor {
   1866     uint32_t version_;
   1867     uint32_t action_flag_;
   1868     JITCodeEntry* relevant_entry_;
   1869     JITCodeEntry* first_entry_;
   1870   };
   1871 
   1872   // GDB will place breakpoint into this function.
   1873   // To prevent GCC from inlining or removing it we place noinline attribute
   1874   // and inline assembler statement inside.
   1875   void __attribute__((noinline)) __jit_debug_register_code() {
   1876     __asm__("");
   1877   }
   1878 
   1879   // GDB will inspect contents of this descriptor.
   1880   // Static initialization is necessary to prevent GDB from seeing
   1881   // uninitialized descriptor.
   1882   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
   1883 
   1884 #ifdef OBJECT_PRINT
   1885   void __gdb_print_v8_object(Object* object) {
   1886     OFStream os(stdout);
   1887     object->Print(os);
   1888     os << std::flush;
   1889   }
   1890 #endif
   1891 }
   1892 
   1893 
   1894 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
   1895                                      uintptr_t symfile_size) {
   1896   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
   1897       malloc(sizeof(JITCodeEntry) + symfile_size));
   1898 
   1899   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
   1900   entry->symfile_size_ = symfile_size;
   1901   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
   1902 
   1903   entry->prev_ = entry->next_ = NULL;
   1904 
   1905   return entry;
   1906 }
   1907 
   1908 
   1909 static void DestroyCodeEntry(JITCodeEntry* entry) {
   1910   free(entry);
   1911 }
   1912 
   1913 
   1914 static void RegisterCodeEntry(JITCodeEntry* entry) {
   1915   entry->next_ = __jit_debug_descriptor.first_entry_;
   1916   if (entry->next_ != NULL) entry->next_->prev_ = entry;
   1917   __jit_debug_descriptor.first_entry_ =
   1918       __jit_debug_descriptor.relevant_entry_ = entry;
   1919 
   1920   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
   1921   __jit_debug_register_code();
   1922 }
   1923 
   1924 
   1925 static void UnregisterCodeEntry(JITCodeEntry* entry) {
   1926   if (entry->prev_ != NULL) {
   1927     entry->prev_->next_ = entry->next_;
   1928   } else {
   1929     __jit_debug_descriptor.first_entry_ = entry->next_;
   1930   }
   1931 
   1932   if (entry->next_ != NULL) {
   1933     entry->next_->prev_ = entry->prev_;
   1934   }
   1935 
   1936   __jit_debug_descriptor.relevant_entry_ = entry;
   1937   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
   1938   __jit_debug_register_code();
   1939 }
   1940 
   1941 
   1942 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
   1943 #ifdef __MACH_O
   1944   Zone zone(isolate->allocator());
   1945   MachO mach_o(&zone);
   1946   Writer w(&mach_o);
   1947 
   1948   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
   1949                                                 desc->CodeStart(),
   1950                                                 desc->CodeSize()));
   1951 
   1952   CreateDWARFSections(desc, &zone, &mach_o);
   1953 
   1954   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
   1955 #else
   1956   Zone zone(isolate->allocator());
   1957   ELF elf(&zone);
   1958   Writer w(&elf);
   1959 
   1960   int text_section_index = elf.AddSection(
   1961       new(&zone) FullHeaderELFSection(
   1962           ".text",
   1963           ELFSection::TYPE_NOBITS,
   1964           kCodeAlignment,
   1965           desc->CodeStart(),
   1966           0,
   1967           desc->CodeSize(),
   1968           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
   1969 
   1970   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
   1971 
   1972   CreateDWARFSections(desc, &zone, &elf);
   1973 
   1974   elf.Write(&w);
   1975 #endif
   1976 
   1977   return CreateCodeEntry(w.buffer(), w.position());
   1978 }
   1979 
   1980 
   1981 struct AddressRange {
   1982   Address start;
   1983   Address end;
   1984 };
   1985 
   1986 struct SplayTreeConfig {
   1987   typedef AddressRange Key;
   1988   typedef JITCodeEntry* Value;
   1989   static const AddressRange kNoKey;
   1990   static Value NoValue() { return NULL; }
   1991   static int Compare(const AddressRange& a, const AddressRange& b) {
   1992     // ptrdiff_t probably doesn't fit in an int.
   1993     if (a.start < b.start) return -1;
   1994     if (a.start == b.start) return 0;
   1995     return 1;
   1996   }
   1997 };
   1998 
   1999 const AddressRange SplayTreeConfig::kNoKey = {0, 0};
   2000 typedef SplayTree<SplayTreeConfig> CodeMap;
   2001 
   2002 static CodeMap* GetCodeMap() {
   2003   static CodeMap* code_map = NULL;
   2004   if (code_map == NULL) code_map = new CodeMap();
   2005   return code_map;
   2006 }
   2007 
   2008 
   2009 static uint32_t HashCodeAddress(Address addr) {
   2010   static const uintptr_t kGoldenRatio = 2654435761u;
   2011   uintptr_t offset = OffsetFrom(addr);
   2012   return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
   2013 }
   2014 
   2015 static base::HashMap* GetLineMap() {
   2016   static base::HashMap* line_map = NULL;
   2017   if (line_map == NULL) {
   2018     line_map = new base::HashMap(&base::HashMap::PointersMatch);
   2019   }
   2020   return line_map;
   2021 }
   2022 
   2023 
   2024 static void PutLineInfo(Address addr, LineInfo* info) {
   2025   base::HashMap* line_map = GetLineMap();
   2026   base::HashMap::Entry* e =
   2027       line_map->LookupOrInsert(addr, HashCodeAddress(addr));
   2028   if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
   2029   e->value = info;
   2030 }
   2031 
   2032 
   2033 static LineInfo* GetLineInfo(Address addr) {
   2034   void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
   2035   return static_cast<LineInfo*>(value);
   2036 }
   2037 
   2038 
   2039 static void AddUnwindInfo(CodeDescription* desc) {
   2040 #if V8_TARGET_ARCH_X64
   2041   if (desc->is_function()) {
   2042     // To avoid propagating unwinding information through
   2043     // compilation pipeline we use an approximation.
   2044     // For most use cases this should not affect usability.
   2045     static const int kFramePointerPushOffset = 1;
   2046     static const int kFramePointerSetOffset = 4;
   2047     static const int kFramePointerPopOffset = -3;
   2048 
   2049     uintptr_t frame_pointer_push_address =
   2050         desc->CodeStart() + kFramePointerPushOffset;
   2051 
   2052     uintptr_t frame_pointer_set_address =
   2053         desc->CodeStart() + kFramePointerSetOffset;
   2054 
   2055     uintptr_t frame_pointer_pop_address =
   2056         desc->CodeEnd() + kFramePointerPopOffset;
   2057 
   2058     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2059                                     frame_pointer_push_address);
   2060     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2061                                     frame_pointer_set_address);
   2062     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2063                                     frame_pointer_pop_address);
   2064   } else {
   2065     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2066                                     desc->CodeStart());
   2067     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2068                                     desc->CodeStart());
   2069     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2070                                     desc->CodeEnd());
   2071   }
   2072 #endif  // V8_TARGET_ARCH_X64
   2073 }
   2074 
   2075 
   2076 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
   2077 
   2078 
   2079 // Remove entries from the splay tree that intersect the given address range,
   2080 // and deregister them from GDB.
   2081 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
   2082   DCHECK(range.start < range.end);
   2083   CodeMap::Locator cur;
   2084   if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
   2085     // Skip entries that are entirely less than the range of interest.
   2086     while (cur.key().end <= range.start) {
   2087       // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
   2088       // than _or equal to_ the given key, so we have to advance our key to get
   2089       // the next one.
   2090       AddressRange new_key;
   2091       new_key.start = cur.key().end;
   2092       new_key.end = 0;
   2093       if (!map->FindLeastGreaterThan(new_key, &cur)) return;
   2094     }
   2095     // Evict intersecting ranges.
   2096     while (cur.key().start < range.end) {
   2097       AddressRange old_range = cur.key();
   2098       JITCodeEntry* old_entry = cur.value();
   2099 
   2100       UnregisterCodeEntry(old_entry);
   2101       DestroyCodeEntry(old_entry);
   2102 
   2103       CHECK(map->Remove(old_range));
   2104       if (!map->FindLeastGreaterThan(old_range, &cur)) return;
   2105     }
   2106   }
   2107 }
   2108 
   2109 
   2110 // Insert the entry into the splay tree and register it with GDB.
   2111 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
   2112                             JITCodeEntry* entry, bool dump_if_enabled,
   2113                             const char* name_hint) {
   2114 #if defined(DEBUG) && !V8_OS_WIN
   2115   static int file_num = 0;
   2116   if (FLAG_gdbjit_dump && dump_if_enabled) {
   2117     static const int kMaxFileNameSize = 64;
   2118     char file_name[64];
   2119 
   2120     SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
   2121              (name_hint != NULL) ? name_hint : "", file_num++);
   2122     WriteBytes(file_name, entry->symfile_addr_,
   2123                static_cast<int>(entry->symfile_size_));
   2124   }
   2125 #endif
   2126 
   2127   CodeMap::Locator cur;
   2128   CHECK(map->Insert(range, &cur));
   2129   cur.set_value(entry);
   2130 
   2131   RegisterCodeEntry(entry);
   2132 }
   2133 
   2134 
   2135 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
   2136                     LineInfo* lineinfo) {
   2137   DisallowHeapAllocation no_gc;
   2138 
   2139   CodeMap* code_map = GetCodeMap();
   2140   AddressRange range;
   2141   range.start = code->address();
   2142   range.end = code->address() + code->CodeSize();
   2143   RemoveJITCodeEntries(code_map, range);
   2144 
   2145   CodeDescription code_desc(name, code, shared, lineinfo);
   2146 
   2147   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
   2148     delete lineinfo;
   2149     return;
   2150   }
   2151 
   2152   AddUnwindInfo(&code_desc);
   2153   Isolate* isolate = code->GetIsolate();
   2154   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
   2155 
   2156   delete lineinfo;
   2157 
   2158   const char* name_hint = NULL;
   2159   bool should_dump = false;
   2160   if (FLAG_gdbjit_dump) {
   2161     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
   2162       name_hint = name;
   2163       should_dump = true;
   2164     } else if (name != NULL) {
   2165       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
   2166       should_dump = (name_hint != NULL);
   2167     }
   2168   }
   2169   AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
   2170 }
   2171 
   2172 
   2173 void EventHandler(const v8::JitCodeEvent* event) {
   2174   if (!FLAG_gdbjit) return;
   2175   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2176   switch (event->type) {
   2177     case v8::JitCodeEvent::CODE_ADDED: {
   2178       Address addr = reinterpret_cast<Address>(event->code_start);
   2179       Code* code = Code::GetCodeFromTargetAddress(addr);
   2180       LineInfo* lineinfo = GetLineInfo(addr);
   2181       EmbeddedVector<char, 256> buffer;
   2182       StringBuilder builder(buffer.start(), buffer.length());
   2183       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
   2184       // It's called UnboundScript in the API but it's a SharedFunctionInfo.
   2185       SharedFunctionInfo* shared =
   2186           event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
   2187       AddCode(builder.Finalize(), code, shared, lineinfo);
   2188       break;
   2189     }
   2190     case v8::JitCodeEvent::CODE_MOVED:
   2191       // Enabling the GDB JIT interface should disable code compaction.
   2192       UNREACHABLE();
   2193       break;
   2194     case v8::JitCodeEvent::CODE_REMOVED:
   2195       // Do nothing.  Instead, adding code causes eviction of any entry whose
   2196       // address range intersects the address range of the added code.
   2197       break;
   2198     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
   2199       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2200       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
   2201                              static_cast<int>(event->line_info.pos),
   2202                              event->line_info.position_type ==
   2203                                  v8::JitCodeEvent::STATEMENT_POSITION);
   2204       break;
   2205     }
   2206     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
   2207       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
   2208       mutable_event->user_data = new LineInfo();
   2209       break;
   2210     }
   2211     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
   2212       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2213       PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
   2214       break;
   2215     }
   2216   }
   2217 }
   2218 #endif
   2219 }  // namespace GDBJITInterface
   2220 }  // namespace internal
   2221 }  // namespace v8
   2222