Home | History | Annotate | Download | only in heap
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/heap/spaces.h"
      6 
      7 #include <utility>
      8 
      9 #include "src/base/bits.h"
     10 #include "src/base/platform/platform.h"
     11 #include "src/base/platform/semaphore.h"
     12 #include "src/full-codegen/full-codegen.h"
     13 #include "src/heap/array-buffer-tracker.h"
     14 #include "src/heap/slot-set.h"
     15 #include "src/macro-assembler.h"
     16 #include "src/msan.h"
     17 #include "src/snapshot/snapshot.h"
     18 #include "src/v8.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 
     24 // ----------------------------------------------------------------------------
     25 // HeapObjectIterator
     26 
     27 HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
     28     : cur_addr_(nullptr),
     29       cur_end_(nullptr),
     30       space_(space),
     31       page_range_(space->anchor()->next_page(), space->anchor()),
     32       current_page_(page_range_.begin()) {}
     33 
     34 HeapObjectIterator::HeapObjectIterator(Page* page)
     35     : cur_addr_(nullptr),
     36       cur_end_(nullptr),
     37       space_(reinterpret_cast<PagedSpace*>(page->owner())),
     38       page_range_(page),
     39       current_page_(page_range_.begin()) {
     40 #ifdef DEBUG
     41   Space* owner = page->owner();
     42   DCHECK(owner == page->heap()->old_space() ||
     43          owner == page->heap()->map_space() ||
     44          owner == page->heap()->code_space());
     45 #endif  // DEBUG
     46 }
     47 
     48 // We have hit the end of the page and should advance to the next block of
     49 // objects.  This happens at the end of the page.
     50 bool HeapObjectIterator::AdvanceToNextPage() {
     51   DCHECK_EQ(cur_addr_, cur_end_);
     52   if (current_page_ == page_range_.end()) return false;
     53   Page* cur_page = *(current_page_++);
     54   space_->heap()
     55       ->mark_compact_collector()
     56       ->sweeper()
     57       .SweepOrWaitUntilSweepingCompleted(cur_page);
     58   cur_addr_ = cur_page->area_start();
     59   cur_end_ = cur_page->area_end();
     60   DCHECK(cur_page->SweepingDone());
     61   return true;
     62 }
     63 
     64 PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap)
     65     : heap_(heap) {
     66   AllSpaces spaces(heap_);
     67   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     68     space->PauseAllocationObservers();
     69   }
     70 }
     71 
     72 PauseAllocationObserversScope::~PauseAllocationObserversScope() {
     73   AllSpaces spaces(heap_);
     74   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     75     space->ResumeAllocationObservers();
     76   }
     77 }
     78 
     79 // -----------------------------------------------------------------------------
     80 // CodeRange
     81 
     82 
     83 CodeRange::CodeRange(Isolate* isolate)
     84     : isolate_(isolate),
     85       code_range_(NULL),
     86       free_list_(0),
     87       allocation_list_(0),
     88       current_allocation_block_index_(0) {}
     89 
     90 
     91 bool CodeRange::SetUp(size_t requested) {
     92   DCHECK(code_range_ == NULL);
     93 
     94   if (requested == 0) {
     95     // When a target requires the code range feature, we put all code objects
     96     // in a kMaximalCodeRangeSize range of virtual address space, so that
     97     // they can call each other with near calls.
     98     if (kRequiresCodeRange) {
     99       requested = kMaximalCodeRangeSize;
    100     } else {
    101       return true;
    102     }
    103   }
    104 
    105   if (requested <= kMinimumCodeRangeSize) {
    106     requested = kMinimumCodeRangeSize;
    107   }
    108 
    109   const size_t reserved_area =
    110       kReservedCodeRangePages * base::OS::CommitPageSize();
    111   if (requested < (kMaximalCodeRangeSize - reserved_area))
    112     requested += reserved_area;
    113 
    114   DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
    115 
    116   code_range_ = new base::VirtualMemory(
    117       requested, Max(kCodeRangeAreaAlignment,
    118                      static_cast<size_t>(base::OS::AllocateAlignment())));
    119   CHECK(code_range_ != NULL);
    120   if (!code_range_->IsReserved()) {
    121     delete code_range_;
    122     code_range_ = NULL;
    123     return false;
    124   }
    125 
    126   // We are sure that we have mapped a block of requested addresses.
    127   DCHECK(code_range_->size() == requested);
    128   Address base = reinterpret_cast<Address>(code_range_->address());
    129 
    130   // On some platforms, specifically Win64, we need to reserve some pages at
    131   // the beginning of an executable space.
    132   if (reserved_area > 0) {
    133     if (!code_range_->Commit(base, reserved_area, true)) {
    134       delete code_range_;
    135       code_range_ = NULL;
    136       return false;
    137     }
    138     base += reserved_area;
    139   }
    140   Address aligned_base = RoundUp(base, MemoryChunk::kAlignment);
    141   size_t size = code_range_->size() - (aligned_base - base) - reserved_area;
    142   allocation_list_.Add(FreeBlock(aligned_base, size));
    143   current_allocation_block_index_ = 0;
    144 
    145   LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
    146   return true;
    147 }
    148 
    149 
    150 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
    151                                        const FreeBlock* right) {
    152   // The entire point of CodeRange is that the difference between two
    153   // addresses in the range can be represented as a signed 32-bit int,
    154   // so the cast is semantically correct.
    155   return static_cast<int>(left->start - right->start);
    156 }
    157 
    158 
    159 bool CodeRange::GetNextAllocationBlock(size_t requested) {
    160   for (current_allocation_block_index_++;
    161        current_allocation_block_index_ < allocation_list_.length();
    162        current_allocation_block_index_++) {
    163     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    164       return true;  // Found a large enough allocation block.
    165     }
    166   }
    167 
    168   // Sort and merge the free blocks on the free list and the allocation list.
    169   free_list_.AddAll(allocation_list_);
    170   allocation_list_.Clear();
    171   free_list_.Sort(&CompareFreeBlockAddress);
    172   for (int i = 0; i < free_list_.length();) {
    173     FreeBlock merged = free_list_[i];
    174     i++;
    175     // Add adjacent free blocks to the current merged block.
    176     while (i < free_list_.length() &&
    177            free_list_[i].start == merged.start + merged.size) {
    178       merged.size += free_list_[i].size;
    179       i++;
    180     }
    181     if (merged.size > 0) {
    182       allocation_list_.Add(merged);
    183     }
    184   }
    185   free_list_.Clear();
    186 
    187   for (current_allocation_block_index_ = 0;
    188        current_allocation_block_index_ < allocation_list_.length();
    189        current_allocation_block_index_++) {
    190     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    191       return true;  // Found a large enough allocation block.
    192     }
    193   }
    194   current_allocation_block_index_ = 0;
    195   // Code range is full or too fragmented.
    196   return false;
    197 }
    198 
    199 
    200 Address CodeRange::AllocateRawMemory(const size_t requested_size,
    201                                      const size_t commit_size,
    202                                      size_t* allocated) {
    203   // request_size includes guards while committed_size does not. Make sure
    204   // callers know about the invariant.
    205   CHECK_LE(commit_size,
    206            requested_size - 2 * MemoryAllocator::CodePageGuardSize());
    207   FreeBlock current;
    208   if (!ReserveBlock(requested_size, &current)) {
    209     *allocated = 0;
    210     return NULL;
    211   }
    212   *allocated = current.size;
    213   DCHECK(*allocated <= current.size);
    214   DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
    215   if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
    216           code_range_, current.start, commit_size, *allocated)) {
    217     *allocated = 0;
    218     ReleaseBlock(&current);
    219     return NULL;
    220   }
    221   return current.start;
    222 }
    223 
    224 
    225 bool CodeRange::CommitRawMemory(Address start, size_t length) {
    226   return isolate_->heap()->memory_allocator()->CommitMemory(start, length,
    227                                                             EXECUTABLE);
    228 }
    229 
    230 
    231 bool CodeRange::UncommitRawMemory(Address start, size_t length) {
    232   return code_range_->Uncommit(start, length);
    233 }
    234 
    235 
    236 void CodeRange::FreeRawMemory(Address address, size_t length) {
    237   DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
    238   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    239   free_list_.Add(FreeBlock(address, length));
    240   code_range_->Uncommit(address, length);
    241 }
    242 
    243 
    244 void CodeRange::TearDown() {
    245   delete code_range_;  // Frees all memory in the virtual memory range.
    246   code_range_ = NULL;
    247   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    248   free_list_.Free();
    249   allocation_list_.Free();
    250 }
    251 
    252 
    253 bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) {
    254   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    255   DCHECK(allocation_list_.length() == 0 ||
    256          current_allocation_block_index_ < allocation_list_.length());
    257   if (allocation_list_.length() == 0 ||
    258       requested_size > allocation_list_[current_allocation_block_index_].size) {
    259     // Find an allocation block large enough.
    260     if (!GetNextAllocationBlock(requested_size)) return false;
    261   }
    262   // Commit the requested memory at the start of the current allocation block.
    263   size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
    264   *block = allocation_list_[current_allocation_block_index_];
    265   // Don't leave a small free block, useless for a large object or chunk.
    266   if (aligned_requested < (block->size - Page::kPageSize)) {
    267     block->size = aligned_requested;
    268   }
    269   DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment));
    270   allocation_list_[current_allocation_block_index_].start += block->size;
    271   allocation_list_[current_allocation_block_index_].size -= block->size;
    272   return true;
    273 }
    274 
    275 
    276 void CodeRange::ReleaseBlock(const FreeBlock* block) {
    277   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    278   free_list_.Add(*block);
    279 }
    280 
    281 
    282 // -----------------------------------------------------------------------------
    283 // MemoryAllocator
    284 //
    285 
    286 MemoryAllocator::MemoryAllocator(Isolate* isolate)
    287     : isolate_(isolate),
    288       code_range_(nullptr),
    289       capacity_(0),
    290       capacity_executable_(0),
    291       size_(0),
    292       size_executable_(0),
    293       lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
    294       highest_ever_allocated_(reinterpret_cast<void*>(0)),
    295       unmapper_(this) {}
    296 
    297 bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable,
    298                             intptr_t code_range_size) {
    299   capacity_ = RoundUp(capacity, Page::kPageSize);
    300   capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
    301   DCHECK_GE(capacity_, capacity_executable_);
    302 
    303   size_ = 0;
    304   size_executable_ = 0;
    305 
    306   code_range_ = new CodeRange(isolate_);
    307   if (!code_range_->SetUp(static_cast<size_t>(code_range_size))) return false;
    308 
    309   return true;
    310 }
    311 
    312 
    313 void MemoryAllocator::TearDown() {
    314   unmapper()->WaitUntilCompleted();
    315 
    316   MemoryChunk* chunk = nullptr;
    317   while ((chunk = unmapper()->TryGetPooledMemoryChunkSafe()) != nullptr) {
    318     FreeMemory(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize,
    319                NOT_EXECUTABLE);
    320   }
    321 
    322   // Check that spaces were torn down before MemoryAllocator.
    323   DCHECK_EQ(size_.Value(), 0);
    324   // TODO(gc) this will be true again when we fix FreeMemory.
    325   // DCHECK(size_executable_ == 0);
    326   capacity_ = 0;
    327   capacity_executable_ = 0;
    328 
    329   if (last_chunk_.IsReserved()) {
    330     last_chunk_.Release();
    331   }
    332 
    333   delete code_range_;
    334   code_range_ = nullptr;
    335 }
    336 
    337 class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public v8::Task {
    338  public:
    339   explicit UnmapFreeMemoryTask(Unmapper* unmapper) : unmapper_(unmapper) {}
    340 
    341  private:
    342   // v8::Task overrides.
    343   void Run() override {
    344     unmapper_->PerformFreeMemoryOnQueuedChunks();
    345     unmapper_->pending_unmapping_tasks_semaphore_.Signal();
    346   }
    347 
    348   Unmapper* unmapper_;
    349   DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
    350 };
    351 
    352 void MemoryAllocator::Unmapper::FreeQueuedChunks() {
    353   ReconsiderDelayedChunks();
    354   if (FLAG_concurrent_sweeping) {
    355     V8::GetCurrentPlatform()->CallOnBackgroundThread(
    356         new UnmapFreeMemoryTask(this), v8::Platform::kShortRunningTask);
    357     concurrent_unmapping_tasks_active_++;
    358   } else {
    359     PerformFreeMemoryOnQueuedChunks();
    360   }
    361 }
    362 
    363 bool MemoryAllocator::Unmapper::WaitUntilCompleted() {
    364   bool waited = false;
    365   while (concurrent_unmapping_tasks_active_ > 0) {
    366     pending_unmapping_tasks_semaphore_.Wait();
    367     concurrent_unmapping_tasks_active_--;
    368     waited = true;
    369   }
    370   return waited;
    371 }
    372 
    373 void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
    374   MemoryChunk* chunk = nullptr;
    375   // Regular chunks.
    376   while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
    377     bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
    378     allocator_->PerformFreeMemory(chunk);
    379     if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
    380   }
    381   // Non-regular chunks.
    382   while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
    383     allocator_->PerformFreeMemory(chunk);
    384   }
    385 }
    386 
    387 void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() {
    388   std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_));
    389   // Move constructed, so the permanent list should be empty.
    390   DCHECK(delayed_regular_chunks_.empty());
    391   for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) {
    392     AddMemoryChunkSafe<kRegular>(*it);
    393   }
    394 }
    395 
    396 bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) {
    397   MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector();
    398   // We cannot free memory chunks in new space while the sweeper is running
    399   // since a sweeper thread might be stuck right before trying to lock the
    400   // corresponding page.
    401   return !chunk->InNewSpace() || (mc == nullptr) ||
    402          mc->sweeper().IsSweepingCompleted();
    403 }
    404 
    405 bool MemoryAllocator::CommitMemory(Address base, size_t size,
    406                                    Executability executable) {
    407   if (!base::VirtualMemory::CommitRegion(base, size,
    408                                          executable == EXECUTABLE)) {
    409     return false;
    410   }
    411   UpdateAllocatedSpaceLimits(base, base + size);
    412   return true;
    413 }
    414 
    415 
    416 void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
    417                                  Executability executable) {
    418   // TODO(gc) make code_range part of memory allocator?
    419   // Code which is part of the code-range does not have its own VirtualMemory.
    420   DCHECK(code_range() == NULL ||
    421          !code_range()->contains(static_cast<Address>(reservation->address())));
    422   DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
    423          reservation->size() <= Page::kPageSize);
    424 
    425   reservation->Release();
    426 }
    427 
    428 
    429 void MemoryAllocator::FreeMemory(Address base, size_t size,
    430                                  Executability executable) {
    431   // TODO(gc) make code_range part of memory allocator?
    432   if (code_range() != NULL &&
    433       code_range()->contains(static_cast<Address>(base))) {
    434     DCHECK(executable == EXECUTABLE);
    435     code_range()->FreeRawMemory(base, size);
    436   } else {
    437     DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
    438     bool result = base::VirtualMemory::ReleaseRegion(base, size);
    439     USE(result);
    440     DCHECK(result);
    441   }
    442 }
    443 
    444 Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
    445                                               base::VirtualMemory* controller) {
    446   base::VirtualMemory reservation(size, alignment);
    447 
    448   if (!reservation.IsReserved()) return NULL;
    449   size_.Increment(static_cast<intptr_t>(reservation.size()));
    450   Address base =
    451       RoundUp(static_cast<Address>(reservation.address()), alignment);
    452   controller->TakeControl(&reservation);
    453   return base;
    454 }
    455 
    456 Address MemoryAllocator::AllocateAlignedMemory(
    457     size_t reserve_size, size_t commit_size, size_t alignment,
    458     Executability executable, base::VirtualMemory* controller) {
    459   DCHECK(commit_size <= reserve_size);
    460   base::VirtualMemory reservation;
    461   Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
    462   if (base == NULL) return NULL;
    463 
    464   if (executable == EXECUTABLE) {
    465     if (!CommitExecutableMemory(&reservation, base, commit_size,
    466                                 reserve_size)) {
    467       base = NULL;
    468     }
    469   } else {
    470     if (reservation.Commit(base, commit_size, false)) {
    471       UpdateAllocatedSpaceLimits(base, base + commit_size);
    472     } else {
    473       base = NULL;
    474     }
    475   }
    476 
    477   if (base == NULL) {
    478     // Failed to commit the body. Release the mapping and any partially
    479     // commited regions inside it.
    480     reservation.Release();
    481     return NULL;
    482   }
    483 
    484   controller->TakeControl(&reservation);
    485   return base;
    486 }
    487 
    488 void Page::InitializeAsAnchor(Space* space) {
    489   set_owner(space);
    490   set_next_chunk(this);
    491   set_prev_chunk(this);
    492   SetFlags(0, ~0);
    493   SetFlag(ANCHOR);
    494 }
    495 
    496 MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
    497                                      Address area_start, Address area_end,
    498                                      Executability executable, Space* owner,
    499                                      base::VirtualMemory* reservation) {
    500   MemoryChunk* chunk = FromAddress(base);
    501 
    502   DCHECK(base == chunk->address());
    503 
    504   chunk->heap_ = heap;
    505   chunk->size_ = size;
    506   chunk->area_start_ = area_start;
    507   chunk->area_end_ = area_end;
    508   chunk->flags_ = 0;
    509   chunk->set_owner(owner);
    510   chunk->InitializeReservedMemory();
    511   chunk->old_to_new_slots_ = nullptr;
    512   chunk->old_to_old_slots_ = nullptr;
    513   chunk->typed_old_to_new_slots_ = nullptr;
    514   chunk->typed_old_to_old_slots_ = nullptr;
    515   chunk->skip_list_ = nullptr;
    516   chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity;
    517   chunk->progress_bar_ = 0;
    518   chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base));
    519   chunk->concurrent_sweeping_state().SetValue(kSweepingDone);
    520   chunk->mutex_ = new base::Mutex();
    521   chunk->available_in_free_list_ = 0;
    522   chunk->wasted_memory_ = 0;
    523   chunk->ResetLiveBytes();
    524   Bitmap::Clear(chunk);
    525   chunk->set_next_chunk(nullptr);
    526   chunk->set_prev_chunk(nullptr);
    527   chunk->local_tracker_ = nullptr;
    528 
    529   DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
    530   DCHECK(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset);
    531 
    532   if (executable == EXECUTABLE) {
    533     chunk->SetFlag(IS_EXECUTABLE);
    534   }
    535 
    536   if (reservation != nullptr) {
    537     chunk->reservation_.TakeControl(reservation);
    538   }
    539 
    540   return chunk;
    541 }
    542 
    543 
    544 // Commit MemoryChunk area to the requested size.
    545 bool MemoryChunk::CommitArea(size_t requested) {
    546   size_t guard_size =
    547       IsFlagSet(IS_EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0;
    548   size_t header_size = area_start() - address() - guard_size;
    549   size_t commit_size =
    550       RoundUp(header_size + requested, base::OS::CommitPageSize());
    551   size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
    552                                   base::OS::CommitPageSize());
    553 
    554   if (commit_size > committed_size) {
    555     // Commit size should be less or equal than the reserved size.
    556     DCHECK(commit_size <= size() - 2 * guard_size);
    557     // Append the committed area.
    558     Address start = address() + committed_size + guard_size;
    559     size_t length = commit_size - committed_size;
    560     if (reservation_.IsReserved()) {
    561       Executability executable =
    562           IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
    563       if (!heap()->memory_allocator()->CommitMemory(start, length,
    564                                                     executable)) {
    565         return false;
    566       }
    567     } else {
    568       CodeRange* code_range = heap_->memory_allocator()->code_range();
    569       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    570       if (!code_range->CommitRawMemory(start, length)) return false;
    571     }
    572 
    573     if (Heap::ShouldZapGarbage()) {
    574       heap_->memory_allocator()->ZapBlock(start, length);
    575     }
    576   } else if (commit_size < committed_size) {
    577     DCHECK(commit_size > 0);
    578     // Shrink the committed area.
    579     size_t length = committed_size - commit_size;
    580     Address start = address() + committed_size + guard_size - length;
    581     if (reservation_.IsReserved()) {
    582       if (!reservation_.Uncommit(start, length)) return false;
    583     } else {
    584       CodeRange* code_range = heap_->memory_allocator()->code_range();
    585       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    586       if (!code_range->UncommitRawMemory(start, length)) return false;
    587     }
    588   }
    589 
    590   area_end_ = area_start_ + requested;
    591   return true;
    592 }
    593 
    594 
    595 void MemoryChunk::InsertAfter(MemoryChunk* other) {
    596   MemoryChunk* other_next = other->next_chunk();
    597 
    598   set_next_chunk(other_next);
    599   set_prev_chunk(other);
    600   other_next->set_prev_chunk(this);
    601   other->set_next_chunk(this);
    602 }
    603 
    604 
    605 void MemoryChunk::Unlink() {
    606   MemoryChunk* next_element = next_chunk();
    607   MemoryChunk* prev_element = prev_chunk();
    608   next_element->set_prev_chunk(prev_element);
    609   prev_element->set_next_chunk(next_element);
    610   set_prev_chunk(NULL);
    611   set_next_chunk(NULL);
    612 }
    613 
    614 
    615 MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size,
    616                                             intptr_t commit_area_size,
    617                                             Executability executable,
    618                                             Space* owner) {
    619   DCHECK(commit_area_size <= reserve_area_size);
    620 
    621   size_t chunk_size;
    622   Heap* heap = isolate_->heap();
    623   Address base = NULL;
    624   base::VirtualMemory reservation;
    625   Address area_start = NULL;
    626   Address area_end = NULL;
    627 
    628   //
    629   // MemoryChunk layout:
    630   //
    631   //             Executable
    632   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    633   // |           Header           |
    634   // +----------------------------+<- base + CodePageGuardStartOffset
    635   // |           Guard            |
    636   // +----------------------------+<- area_start_
    637   // |           Area             |
    638   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    639   // |   Committed but not used   |
    640   // +----------------------------+<- aligned at OS page boundary
    641   // | Reserved but not committed |
    642   // +----------------------------+<- aligned at OS page boundary
    643   // |           Guard            |
    644   // +----------------------------+<- base + chunk_size
    645   //
    646   //           Non-executable
    647   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    648   // |          Header            |
    649   // +----------------------------+<- area_start_ (base + kObjectStartOffset)
    650   // |           Area             |
    651   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    652   // |  Committed but not used    |
    653   // +----------------------------+<- aligned at OS page boundary
    654   // | Reserved but not committed |
    655   // +----------------------------+<- base + chunk_size
    656   //
    657 
    658   if (executable == EXECUTABLE) {
    659     chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
    660                          base::OS::CommitPageSize()) +
    661                  CodePageGuardSize();
    662 
    663     // Check executable memory limit.
    664     if ((size_executable_.Value() + static_cast<intptr_t>(chunk_size)) >
    665         capacity_executable_) {
    666       LOG(isolate_, StringEvent("MemoryAllocator::AllocateRawMemory",
    667                                 "V8 Executable Allocation capacity exceeded"));
    668       return NULL;
    669     }
    670 
    671     // Size of header (not executable) plus area (executable).
    672     size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
    673                                  base::OS::CommitPageSize());
    674     // Allocate executable memory either from code range or from the
    675     // OS.
    676 #ifdef V8_TARGET_ARCH_MIPS64
    677     // Use code range only for large object space on mips64 to keep address
    678     // range within 256-MB memory region.
    679     if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
    680 #else
    681     if (code_range()->valid()) {
    682 #endif
    683       base =
    684           code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
    685       DCHECK(
    686           IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment));
    687       if (base == NULL) return NULL;
    688       size_.Increment(static_cast<intptr_t>(chunk_size));
    689       // Update executable memory size.
    690       size_executable_.Increment(static_cast<intptr_t>(chunk_size));
    691     } else {
    692       base = AllocateAlignedMemory(chunk_size, commit_size,
    693                                    MemoryChunk::kAlignment, executable,
    694                                    &reservation);
    695       if (base == NULL) return NULL;
    696       // Update executable memory size.
    697       size_executable_.Increment(static_cast<intptr_t>(reservation.size()));
    698     }
    699 
    700     if (Heap::ShouldZapGarbage()) {
    701       ZapBlock(base, CodePageGuardStartOffset());
    702       ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
    703     }
    704 
    705     area_start = base + CodePageAreaStartOffset();
    706     area_end = area_start + commit_area_size;
    707   } else {
    708     chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
    709                          base::OS::CommitPageSize());
    710     size_t commit_size =
    711         RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size,
    712                 base::OS::CommitPageSize());
    713     base =
    714         AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment,
    715                               executable, &reservation);
    716 
    717     if (base == NULL) return NULL;
    718 
    719     if (Heap::ShouldZapGarbage()) {
    720       ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
    721     }
    722 
    723     area_start = base + Page::kObjectStartOffset;
    724     area_end = area_start + commit_area_size;
    725   }
    726 
    727   // Use chunk_size for statistics and callbacks because we assume that they
    728   // treat reserved but not-yet committed memory regions of chunks as allocated.
    729   isolate_->counters()->memory_allocated()->Increment(
    730       static_cast<int>(chunk_size));
    731 
    732   LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
    733 
    734   // We cannot use the last chunk in the address space because we would
    735   // overflow when comparing top and limit if this chunk is used for a
    736   // linear allocation area.
    737   if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) {
    738     CHECK(!last_chunk_.IsReserved());
    739     last_chunk_.TakeControl(&reservation);
    740     UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()),
    741                   last_chunk_.size());
    742     size_.Increment(-static_cast<intptr_t>(chunk_size));
    743     if (executable == EXECUTABLE) {
    744       size_executable_.Increment(-static_cast<intptr_t>(chunk_size));
    745     }
    746     CHECK(last_chunk_.IsReserved());
    747     return AllocateChunk(reserve_area_size, commit_area_size, executable,
    748                          owner);
    749   }
    750 
    751   return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
    752                                  executable, owner, &reservation);
    753 }
    754 
    755 
    756 void Page::ResetFreeListStatistics() {
    757   wasted_memory_ = 0;
    758   available_in_free_list_ = 0;
    759 }
    760 
    761 void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
    762   DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    763   LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
    764 
    765   isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
    766                                          chunk->IsEvacuationCandidate());
    767 
    768   intptr_t size;
    769   base::VirtualMemory* reservation = chunk->reserved_memory();
    770   if (reservation->IsReserved()) {
    771     size = static_cast<intptr_t>(reservation->size());
    772   } else {
    773     size = static_cast<intptr_t>(chunk->size());
    774   }
    775   DCHECK(size_.Value() >= size);
    776   size_.Increment(-size);
    777   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
    778 
    779   if (chunk->executable() == EXECUTABLE) {
    780     DCHECK(size_executable_.Value() >= size);
    781     size_executable_.Increment(-size);
    782   }
    783 
    784   chunk->SetFlag(MemoryChunk::PRE_FREED);
    785 }
    786 
    787 
    788 void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
    789   DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    790   chunk->ReleaseAllocatedMemory();
    791 
    792   base::VirtualMemory* reservation = chunk->reserved_memory();
    793   if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
    794     UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
    795   } else {
    796     if (reservation->IsReserved()) {
    797       FreeMemory(reservation, chunk->executable());
    798     } else {
    799       FreeMemory(chunk->address(), chunk->size(), chunk->executable());
    800     }
    801   }
    802 }
    803 
    804 template <MemoryAllocator::FreeMode mode>
    805 void MemoryAllocator::Free(MemoryChunk* chunk) {
    806   switch (mode) {
    807     case kFull:
    808       PreFreeMemory(chunk);
    809       PerformFreeMemory(chunk);
    810       break;
    811     case kPooledAndQueue:
    812       DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
    813       DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
    814       chunk->SetFlag(MemoryChunk::POOLED);
    815     // Fall through to kPreFreeAndQueue.
    816     case kPreFreeAndQueue:
    817       PreFreeMemory(chunk);
    818       // The chunks added to this queue will be freed by a concurrent thread.
    819       unmapper()->AddMemoryChunkSafe(chunk);
    820       break;
    821     default:
    822       UNREACHABLE();
    823   }
    824 }
    825 
    826 template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
    827 
    828 template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
    829     MemoryChunk* chunk);
    830 
    831 template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
    832     MemoryChunk* chunk);
    833 
    834 template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
    835 Page* MemoryAllocator::AllocatePage(intptr_t size, SpaceType* owner,
    836                                     Executability executable) {
    837   MemoryChunk* chunk = nullptr;
    838   if (alloc_mode == kPooled) {
    839     DCHECK_EQ(size, static_cast<intptr_t>(MemoryChunk::kAllocatableMemory));
    840     DCHECK_EQ(executable, NOT_EXECUTABLE);
    841     chunk = AllocatePagePooled(owner);
    842   }
    843   if (chunk == nullptr) {
    844     chunk = AllocateChunk(size, size, executable, owner);
    845   }
    846   if (chunk == nullptr) return nullptr;
    847   return Page::Initialize(isolate_->heap(), chunk, executable, owner);
    848 }
    849 
    850 template Page*
    851 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
    852     intptr_t size, PagedSpace* owner, Executability executable);
    853 template Page*
    854 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
    855     intptr_t size, SemiSpace* owner, Executability executable);
    856 template Page*
    857 MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
    858     intptr_t size, SemiSpace* owner, Executability executable);
    859 
    860 LargePage* MemoryAllocator::AllocateLargePage(intptr_t size,
    861                                               LargeObjectSpace* owner,
    862                                               Executability executable) {
    863   MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
    864   if (chunk == nullptr) return nullptr;
    865   return LargePage::Initialize(isolate_->heap(), chunk, executable, owner);
    866 }
    867 
    868 template <typename SpaceType>
    869 MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
    870   MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
    871   if (chunk == nullptr) return nullptr;
    872   const int size = MemoryChunk::kPageSize;
    873   const Address start = reinterpret_cast<Address>(chunk);
    874   const Address area_start = start + MemoryChunk::kObjectStartOffset;
    875   const Address area_end = start + size;
    876   if (!CommitBlock(reinterpret_cast<Address>(chunk), size, NOT_EXECUTABLE)) {
    877     return nullptr;
    878   }
    879   base::VirtualMemory reservation(start, size);
    880   MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end,
    881                           NOT_EXECUTABLE, owner, &reservation);
    882   size_.Increment(size);
    883   return chunk;
    884 }
    885 
    886 bool MemoryAllocator::CommitBlock(Address start, size_t size,
    887                                   Executability executable) {
    888   if (!CommitMemory(start, size, executable)) return false;
    889 
    890   if (Heap::ShouldZapGarbage()) {
    891     ZapBlock(start, size);
    892   }
    893 
    894   isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
    895   return true;
    896 }
    897 
    898 
    899 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
    900   if (!base::VirtualMemory::UncommitRegion(start, size)) return false;
    901   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
    902   return true;
    903 }
    904 
    905 
    906 void MemoryAllocator::ZapBlock(Address start, size_t size) {
    907   for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
    908     Memory::Address_at(start + s) = kZapValue;
    909   }
    910 }
    911 
    912 #ifdef DEBUG
    913 void MemoryAllocator::ReportStatistics() {
    914   intptr_t size = Size();
    915   float pct = static_cast<float>(capacity_ - size) / capacity_;
    916   PrintF("  capacity: %" V8PRIdPTR ", used: %" V8PRIdPTR
    917          ", available: %%%d\n\n",
    918          capacity_, size, static_cast<int>(pct * 100));
    919 }
    920 #endif
    921 
    922 
    923 int MemoryAllocator::CodePageGuardStartOffset() {
    924   // We are guarding code pages: the first OS page after the header
    925   // will be protected as non-writable.
    926   return RoundUp(Page::kObjectStartOffset, base::OS::CommitPageSize());
    927 }
    928 
    929 
    930 int MemoryAllocator::CodePageGuardSize() {
    931   return static_cast<int>(base::OS::CommitPageSize());
    932 }
    933 
    934 
    935 int MemoryAllocator::CodePageAreaStartOffset() {
    936   // We are guarding code pages: the first OS page after the header
    937   // will be protected as non-writable.
    938   return CodePageGuardStartOffset() + CodePageGuardSize();
    939 }
    940 
    941 
    942 int MemoryAllocator::CodePageAreaEndOffset() {
    943   // We are guarding code pages: the last OS page will be protected as
    944   // non-writable.
    945   return Page::kPageSize - static_cast<int>(base::OS::CommitPageSize());
    946 }
    947 
    948 
    949 bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm,
    950                                              Address start, size_t commit_size,
    951                                              size_t reserved_size) {
    952   // Commit page header (not executable).
    953   Address header = start;
    954   size_t header_size = CodePageGuardStartOffset();
    955   if (vm->Commit(header, header_size, false)) {
    956     // Create guard page after the header.
    957     if (vm->Guard(start + CodePageGuardStartOffset())) {
    958       // Commit page body (executable).
    959       Address body = start + CodePageAreaStartOffset();
    960       size_t body_size = commit_size - CodePageGuardStartOffset();
    961       if (vm->Commit(body, body_size, true)) {
    962         // Create guard page before the end.
    963         if (vm->Guard(start + reserved_size - CodePageGuardSize())) {
    964           UpdateAllocatedSpaceLimits(start, start + CodePageAreaStartOffset() +
    965                                                 commit_size -
    966                                                 CodePageGuardStartOffset());
    967           return true;
    968         }
    969         vm->Uncommit(body, body_size);
    970       }
    971     }
    972     vm->Uncommit(header, header_size);
    973   }
    974   return false;
    975 }
    976 
    977 
    978 // -----------------------------------------------------------------------------
    979 // MemoryChunk implementation
    980 
    981 void MemoryChunk::ReleaseAllocatedMemory() {
    982   if (skip_list_ != nullptr) {
    983     delete skip_list_;
    984     skip_list_ = nullptr;
    985   }
    986   if (mutex_ != nullptr) {
    987     delete mutex_;
    988     mutex_ = nullptr;
    989   }
    990   if (old_to_new_slots_ != nullptr) ReleaseOldToNewSlots();
    991   if (old_to_old_slots_ != nullptr) ReleaseOldToOldSlots();
    992   if (typed_old_to_new_slots_ != nullptr) ReleaseTypedOldToNewSlots();
    993   if (typed_old_to_old_slots_ != nullptr) ReleaseTypedOldToOldSlots();
    994   if (local_tracker_ != nullptr) ReleaseLocalTracker();
    995 }
    996 
    997 static SlotSet* AllocateSlotSet(size_t size, Address page_start) {
    998   size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize;
    999   DCHECK(pages > 0);
   1000   SlotSet* slot_set = new SlotSet[pages];
   1001   for (size_t i = 0; i < pages; i++) {
   1002     slot_set[i].SetPageStart(page_start + i * Page::kPageSize);
   1003   }
   1004   return slot_set;
   1005 }
   1006 
   1007 void MemoryChunk::AllocateOldToNewSlots() {
   1008   DCHECK(nullptr == old_to_new_slots_);
   1009   old_to_new_slots_ = AllocateSlotSet(size_, address());
   1010 }
   1011 
   1012 void MemoryChunk::ReleaseOldToNewSlots() {
   1013   delete[] old_to_new_slots_;
   1014   old_to_new_slots_ = nullptr;
   1015 }
   1016 
   1017 void MemoryChunk::AllocateOldToOldSlots() {
   1018   DCHECK(nullptr == old_to_old_slots_);
   1019   old_to_old_slots_ = AllocateSlotSet(size_, address());
   1020 }
   1021 
   1022 void MemoryChunk::ReleaseOldToOldSlots() {
   1023   delete[] old_to_old_slots_;
   1024   old_to_old_slots_ = nullptr;
   1025 }
   1026 
   1027 void MemoryChunk::AllocateTypedOldToNewSlots() {
   1028   DCHECK(nullptr == typed_old_to_new_slots_);
   1029   typed_old_to_new_slots_ = new TypedSlotSet(address());
   1030 }
   1031 
   1032 void MemoryChunk::ReleaseTypedOldToNewSlots() {
   1033   delete typed_old_to_new_slots_;
   1034   typed_old_to_new_slots_ = nullptr;
   1035 }
   1036 
   1037 void MemoryChunk::AllocateTypedOldToOldSlots() {
   1038   DCHECK(nullptr == typed_old_to_old_slots_);
   1039   typed_old_to_old_slots_ = new TypedSlotSet(address());
   1040 }
   1041 
   1042 void MemoryChunk::ReleaseTypedOldToOldSlots() {
   1043   delete typed_old_to_old_slots_;
   1044   typed_old_to_old_slots_ = nullptr;
   1045 }
   1046 
   1047 void MemoryChunk::AllocateLocalTracker() {
   1048   DCHECK_NULL(local_tracker_);
   1049   local_tracker_ = new LocalArrayBufferTracker(heap());
   1050 }
   1051 
   1052 void MemoryChunk::ReleaseLocalTracker() {
   1053   DCHECK_NOT_NULL(local_tracker_);
   1054   delete local_tracker_;
   1055   local_tracker_ = nullptr;
   1056 }
   1057 
   1058 // -----------------------------------------------------------------------------
   1059 // PagedSpace implementation
   1060 
   1061 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::NEW_SPACE) ==
   1062               ObjectSpace::kObjectSpaceNewSpace);
   1063 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::OLD_SPACE) ==
   1064               ObjectSpace::kObjectSpaceOldSpace);
   1065 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::CODE_SPACE) ==
   1066               ObjectSpace::kObjectSpaceCodeSpace);
   1067 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::MAP_SPACE) ==
   1068               ObjectSpace::kObjectSpaceMapSpace);
   1069 
   1070 void Space::AllocationStep(Address soon_object, int size) {
   1071   if (!allocation_observers_paused_) {
   1072     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1073       AllocationObserver* o = (*allocation_observers_)[i];
   1074       o->AllocationStep(size, soon_object, size);
   1075     }
   1076   }
   1077 }
   1078 
   1079 PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
   1080                        Executability executable)
   1081     : Space(heap, space, executable), anchor_(this), free_list_(this) {
   1082   area_size_ = MemoryAllocator::PageAreaSize(space);
   1083   accounting_stats_.Clear();
   1084 
   1085   allocation_info_.Reset(nullptr, nullptr);
   1086 }
   1087 
   1088 
   1089 bool PagedSpace::SetUp() { return true; }
   1090 
   1091 
   1092 bool PagedSpace::HasBeenSetUp() { return true; }
   1093 
   1094 
   1095 void PagedSpace::TearDown() {
   1096   for (auto it = begin(); it != end();) {
   1097     Page* page = *(it++);  // Will be erased.
   1098     ArrayBufferTracker::FreeAll(page);
   1099     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   1100   }
   1101   anchor_.set_next_page(&anchor_);
   1102   anchor_.set_prev_page(&anchor_);
   1103   accounting_stats_.Clear();
   1104 }
   1105 
   1106 void PagedSpace::RefillFreeList() {
   1107   // Any PagedSpace might invoke RefillFreeList. We filter all but our old
   1108   // generation spaces out.
   1109   if (identity() != OLD_SPACE && identity() != CODE_SPACE &&
   1110       identity() != MAP_SPACE) {
   1111     return;
   1112   }
   1113   MarkCompactCollector* collector = heap()->mark_compact_collector();
   1114   intptr_t added = 0;
   1115   {
   1116     Page* p = nullptr;
   1117     while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) {
   1118       // Only during compaction pages can actually change ownership. This is
   1119       // safe because there exists no other competing action on the page links
   1120       // during compaction.
   1121       if (is_local() && (p->owner() != this)) {
   1122         base::LockGuard<base::Mutex> guard(
   1123             reinterpret_cast<PagedSpace*>(p->owner())->mutex());
   1124         p->Unlink();
   1125         p->set_owner(this);
   1126         p->InsertAfter(anchor_.prev_page());
   1127       }
   1128       added += RelinkFreeListCategories(p);
   1129       added += p->wasted_memory();
   1130       if (is_local() && (added > kCompactionMemoryWanted)) break;
   1131     }
   1132   }
   1133   accounting_stats_.IncreaseCapacity(added);
   1134 }
   1135 
   1136 void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
   1137   DCHECK(identity() == other->identity());
   1138   // Unmerged fields:
   1139   //   area_size_
   1140   //   anchor_
   1141 
   1142   other->EmptyAllocationInfo();
   1143 
   1144   // Update and clear accounting statistics.
   1145   accounting_stats_.Merge(other->accounting_stats_);
   1146   other->accounting_stats_.Clear();
   1147 
   1148   // The linear allocation area of {other} should be destroyed now.
   1149   DCHECK(other->top() == nullptr);
   1150   DCHECK(other->limit() == nullptr);
   1151 
   1152   AccountCommitted(other->CommittedMemory());
   1153 
   1154   // Move over pages.
   1155   for (auto it = other->begin(); it != other->end();) {
   1156     Page* p = *(it++);
   1157 
   1158     // Relinking requires the category to be unlinked.
   1159     other->UnlinkFreeListCategories(p);
   1160 
   1161     p->Unlink();
   1162     p->set_owner(this);
   1163     p->InsertAfter(anchor_.prev_page());
   1164     RelinkFreeListCategories(p);
   1165   }
   1166 }
   1167 
   1168 
   1169 size_t PagedSpace::CommittedPhysicalMemory() {
   1170   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   1171   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1172   size_t size = 0;
   1173   for (Page* page : *this) {
   1174     size += page->CommittedPhysicalMemory();
   1175   }
   1176   return size;
   1177 }
   1178 
   1179 bool PagedSpace::ContainsSlow(Address addr) {
   1180   Page* p = Page::FromAddress(addr);
   1181   for (Page* page : *this) {
   1182     if (page == p) return true;
   1183   }
   1184   return false;
   1185 }
   1186 
   1187 
   1188 Object* PagedSpace::FindObject(Address addr) {
   1189   // Note: this function can only be called on iterable spaces.
   1190   DCHECK(!heap()->mark_compact_collector()->in_use());
   1191 
   1192   if (!Contains(addr)) return Smi::FromInt(0);  // Signaling not found.
   1193 
   1194   Page* p = Page::FromAddress(addr);
   1195   HeapObjectIterator it(p);
   1196   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   1197     Address cur = obj->address();
   1198     Address next = cur + obj->Size();
   1199     if ((cur <= addr) && (addr < next)) return obj;
   1200   }
   1201 
   1202   UNREACHABLE();
   1203   return Smi::FromInt(0);
   1204 }
   1205 
   1206 bool PagedSpace::Expand() {
   1207   int size = AreaSize();
   1208   if (snapshotable() && !HasPages()) {
   1209     size = Snapshot::SizeOfFirstPage(heap()->isolate(), identity());
   1210   }
   1211 
   1212   if (!heap()->CanExpandOldGeneration(size)) return false;
   1213 
   1214   Page* p = heap()->memory_allocator()->AllocatePage(size, this, executable());
   1215   if (p == nullptr) return false;
   1216 
   1217   AccountCommitted(static_cast<intptr_t>(p->size()));
   1218 
   1219   // Pages created during bootstrapping may contain immortal immovable objects.
   1220   if (!heap()->deserialization_complete()) p->MarkNeverEvacuate();
   1221 
   1222   // When incremental marking was activated, old space pages are allocated
   1223   // black.
   1224   if (heap()->incremental_marking()->black_allocation() &&
   1225       identity() == OLD_SPACE) {
   1226     Bitmap::SetAllBits(p);
   1227     p->SetFlag(Page::BLACK_PAGE);
   1228     if (FLAG_trace_incremental_marking) {
   1229       PrintIsolate(heap()->isolate(), "Added black page %p\n",
   1230                    static_cast<void*>(p));
   1231     }
   1232   }
   1233 
   1234   DCHECK(Capacity() <= heap()->MaxOldGenerationSize());
   1235 
   1236   p->InsertAfter(anchor_.prev_page());
   1237 
   1238   return true;
   1239 }
   1240 
   1241 
   1242 int PagedSpace::CountTotalPages() {
   1243   int count = 0;
   1244   for (Page* page : *this) {
   1245     count++;
   1246     USE(page);
   1247   }
   1248   return count;
   1249 }
   1250 
   1251 
   1252 void PagedSpace::ResetFreeListStatistics() {
   1253   for (Page* page : *this) {
   1254     page->ResetFreeListStatistics();
   1255   }
   1256 }
   1257 
   1258 
   1259 void PagedSpace::IncreaseCapacity(int size) {
   1260   accounting_stats_.ExpandSpace(size);
   1261 }
   1262 
   1263 void PagedSpace::ReleasePage(Page* page) {
   1264   DCHECK_EQ(page->LiveBytes(), 0);
   1265   DCHECK_EQ(AreaSize(), page->area_size());
   1266   DCHECK_EQ(page->owner(), this);
   1267 
   1268   free_list_.EvictFreeListItems(page);
   1269   DCHECK(!free_list_.ContainsPageFreeListItems(page));
   1270 
   1271   if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
   1272     allocation_info_.Reset(nullptr, nullptr);
   1273   }
   1274 
   1275   // If page is still in a list, unlink it from that list.
   1276   if (page->next_chunk() != NULL) {
   1277     DCHECK(page->prev_chunk() != NULL);
   1278     page->Unlink();
   1279   }
   1280 
   1281   AccountUncommitted(static_cast<intptr_t>(page->size()));
   1282   heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   1283 
   1284   DCHECK(Capacity() > 0);
   1285   accounting_stats_.ShrinkSpace(AreaSize());
   1286 }
   1287 
   1288 #ifdef DEBUG
   1289 void PagedSpace::Print() {}
   1290 #endif
   1291 
   1292 #ifdef VERIFY_HEAP
   1293 void PagedSpace::Verify(ObjectVisitor* visitor) {
   1294   bool allocation_pointer_found_in_space =
   1295       (allocation_info_.top() == allocation_info_.limit());
   1296   for (Page* page : *this) {
   1297     CHECK(page->owner() == this);
   1298     if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
   1299       allocation_pointer_found_in_space = true;
   1300     }
   1301     CHECK(page->SweepingDone());
   1302     HeapObjectIterator it(page);
   1303     Address end_of_previous_object = page->area_start();
   1304     Address top = page->area_end();
   1305     int black_size = 0;
   1306     for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
   1307       CHECK(end_of_previous_object <= object->address());
   1308 
   1309       // The first word should be a map, and we expect all map pointers to
   1310       // be in map space.
   1311       Map* map = object->map();
   1312       CHECK(map->IsMap());
   1313       CHECK(heap()->map_space()->Contains(map));
   1314 
   1315       // Perform space-specific object verification.
   1316       VerifyObject(object);
   1317 
   1318       // The object itself should look OK.
   1319       object->ObjectVerify();
   1320 
   1321       // All the interior pointers should be contained in the heap.
   1322       int size = object->Size();
   1323       object->IterateBody(map->instance_type(), size, visitor);
   1324       if (!page->IsFlagSet(Page::BLACK_PAGE) &&
   1325           Marking::IsBlack(Marking::MarkBitFrom(object))) {
   1326         black_size += size;
   1327       }
   1328 
   1329       CHECK(object->address() + size <= top);
   1330       end_of_previous_object = object->address() + size;
   1331     }
   1332     CHECK_LE(black_size, page->LiveBytes());
   1333   }
   1334   CHECK(allocation_pointer_found_in_space);
   1335 }
   1336 #endif  // VERIFY_HEAP
   1337 
   1338 // -----------------------------------------------------------------------------
   1339 // NewSpace implementation
   1340 
   1341 bool NewSpace::SetUp(int initial_semispace_capacity,
   1342                      int maximum_semispace_capacity) {
   1343   DCHECK(initial_semispace_capacity <= maximum_semispace_capacity);
   1344   DCHECK(base::bits::IsPowerOfTwo32(maximum_semispace_capacity));
   1345 
   1346   to_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1347   from_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1348   if (!to_space_.Commit()) {
   1349     return false;
   1350   }
   1351   DCHECK(!from_space_.is_committed());  // No need to use memory yet.
   1352   ResetAllocationInfo();
   1353 
   1354   // Allocate and set up the histogram arrays if necessary.
   1355   allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1356   promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1357 #define SET_NAME(name)                        \
   1358   allocated_histogram_[name].set_name(#name); \
   1359   promoted_histogram_[name].set_name(#name);
   1360   INSTANCE_TYPE_LIST(SET_NAME)
   1361 #undef SET_NAME
   1362 
   1363   return true;
   1364 }
   1365 
   1366 
   1367 void NewSpace::TearDown() {
   1368   if (allocated_histogram_) {
   1369     DeleteArray(allocated_histogram_);
   1370     allocated_histogram_ = NULL;
   1371   }
   1372   if (promoted_histogram_) {
   1373     DeleteArray(promoted_histogram_);
   1374     promoted_histogram_ = NULL;
   1375   }
   1376 
   1377   allocation_info_.Reset(nullptr, nullptr);
   1378 
   1379   to_space_.TearDown();
   1380   from_space_.TearDown();
   1381 }
   1382 
   1383 void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
   1384 
   1385 
   1386 void NewSpace::Grow() {
   1387   // Double the semispace size but only up to maximum capacity.
   1388   DCHECK(TotalCapacity() < MaximumCapacity());
   1389   int new_capacity =
   1390       Min(MaximumCapacity(),
   1391           FLAG_semi_space_growth_factor * static_cast<int>(TotalCapacity()));
   1392   if (to_space_.GrowTo(new_capacity)) {
   1393     // Only grow from space if we managed to grow to-space.
   1394     if (!from_space_.GrowTo(new_capacity)) {
   1395       // If we managed to grow to-space but couldn't grow from-space,
   1396       // attempt to shrink to-space.
   1397       if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
   1398         // We are in an inconsistent state because we could not
   1399         // commit/uncommit memory from new space.
   1400         CHECK(false);
   1401       }
   1402     }
   1403   }
   1404   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1405 }
   1406 
   1407 
   1408 void NewSpace::Shrink() {
   1409   int new_capacity = Max(InitialTotalCapacity(), 2 * SizeAsInt());
   1410   int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
   1411   if (rounded_new_capacity < TotalCapacity() &&
   1412       to_space_.ShrinkTo(rounded_new_capacity)) {
   1413     // Only shrink from-space if we managed to shrink to-space.
   1414     from_space_.Reset();
   1415     if (!from_space_.ShrinkTo(rounded_new_capacity)) {
   1416       // If we managed to shrink to-space but couldn't shrink from
   1417       // space, attempt to grow to-space again.
   1418       if (!to_space_.GrowTo(from_space_.current_capacity())) {
   1419         // We are in an inconsistent state because we could not
   1420         // commit/uncommit memory from new space.
   1421         CHECK(false);
   1422       }
   1423     }
   1424   }
   1425   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1426 }
   1427 
   1428 bool NewSpace::Rebalance() {
   1429   CHECK(heap()->promotion_queue()->is_empty());
   1430   // Order here is important to make use of the page pool.
   1431   return to_space_.EnsureCurrentCapacity() &&
   1432          from_space_.EnsureCurrentCapacity();
   1433 }
   1434 
   1435 bool SemiSpace::EnsureCurrentCapacity() {
   1436   if (is_committed()) {
   1437     const int expected_pages = current_capacity_ / Page::kPageSize;
   1438     int actual_pages = 0;
   1439     Page* current_page = anchor()->next_page();
   1440     while (current_page != anchor()) {
   1441       actual_pages++;
   1442       current_page = current_page->next_page();
   1443       if (actual_pages > expected_pages) {
   1444         Page* to_remove = current_page->prev_page();
   1445         // Make sure we don't overtake the actual top pointer.
   1446         CHECK_NE(to_remove, current_page_);
   1447         to_remove->Unlink();
   1448         heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   1449             to_remove);
   1450       }
   1451     }
   1452     while (actual_pages < expected_pages) {
   1453       actual_pages++;
   1454       current_page =
   1455           heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1456               Page::kAllocatableMemory, this, executable());
   1457       if (current_page == nullptr) return false;
   1458       DCHECK_NOT_NULL(current_page);
   1459       current_page->InsertAfter(anchor());
   1460       Bitmap::Clear(current_page);
   1461       current_page->SetFlags(anchor()->prev_page()->GetFlags(),
   1462                              Page::kCopyAllFlags);
   1463       heap()->CreateFillerObjectAt(current_page->area_start(),
   1464                                    current_page->area_size(),
   1465                                    ClearRecordedSlots::kNo);
   1466     }
   1467   }
   1468   return true;
   1469 }
   1470 
   1471 void LocalAllocationBuffer::Close() {
   1472   if (IsValid()) {
   1473     heap_->CreateFillerObjectAt(
   1474         allocation_info_.top(),
   1475         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1476         ClearRecordedSlots::kNo);
   1477   }
   1478 }
   1479 
   1480 
   1481 LocalAllocationBuffer::LocalAllocationBuffer(Heap* heap,
   1482                                              AllocationInfo allocation_info)
   1483     : heap_(heap), allocation_info_(allocation_info) {
   1484   if (IsValid()) {
   1485     heap_->CreateFillerObjectAt(
   1486         allocation_info_.top(),
   1487         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1488         ClearRecordedSlots::kNo);
   1489   }
   1490 }
   1491 
   1492 
   1493 LocalAllocationBuffer::LocalAllocationBuffer(
   1494     const LocalAllocationBuffer& other) {
   1495   *this = other;
   1496 }
   1497 
   1498 
   1499 LocalAllocationBuffer& LocalAllocationBuffer::operator=(
   1500     const LocalAllocationBuffer& other) {
   1501   Close();
   1502   heap_ = other.heap_;
   1503   allocation_info_ = other.allocation_info_;
   1504 
   1505   // This is needed since we (a) cannot yet use move-semantics, and (b) want
   1506   // to make the use of the class easy by it as value and (c) implicitly call
   1507   // {Close} upon copy.
   1508   const_cast<LocalAllocationBuffer&>(other)
   1509       .allocation_info_.Reset(nullptr, nullptr);
   1510   return *this;
   1511 }
   1512 
   1513 
   1514 void NewSpace::UpdateAllocationInfo() {
   1515   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1516   allocation_info_.Reset(to_space_.page_low(), to_space_.page_high());
   1517   UpdateInlineAllocationLimit(0);
   1518   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1519 }
   1520 
   1521 
   1522 void NewSpace::ResetAllocationInfo() {
   1523   Address old_top = allocation_info_.top();
   1524   to_space_.Reset();
   1525   UpdateAllocationInfo();
   1526   // Clear all mark-bits in the to-space.
   1527   for (Page* p : to_space_) {
   1528     Bitmap::Clear(p);
   1529   }
   1530   InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1531 }
   1532 
   1533 
   1534 void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
   1535   if (heap()->inline_allocation_disabled()) {
   1536     // Lowest limit when linear allocation was disabled.
   1537     Address high = to_space_.page_high();
   1538     Address new_top = allocation_info_.top() + size_in_bytes;
   1539     allocation_info_.set_limit(Min(new_top, high));
   1540   } else if (allocation_observers_paused_ || top_on_previous_step_ == 0) {
   1541     // Normal limit is the end of the current page.
   1542     allocation_info_.set_limit(to_space_.page_high());
   1543   } else {
   1544     // Lower limit during incremental marking.
   1545     Address high = to_space_.page_high();
   1546     Address new_top = allocation_info_.top() + size_in_bytes;
   1547     Address new_limit = new_top + GetNextInlineAllocationStepSize() - 1;
   1548     allocation_info_.set_limit(Min(new_limit, high));
   1549   }
   1550   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1551 }
   1552 
   1553 
   1554 bool NewSpace::AddFreshPage() {
   1555   Address top = allocation_info_.top();
   1556   DCHECK(!Page::IsAtObjectStart(top));
   1557   if (!to_space_.AdvancePage()) {
   1558     // No more pages left to advance.
   1559     return false;
   1560   }
   1561 
   1562   // Clear remainder of current page.
   1563   Address limit = Page::FromAllocationAreaAddress(top)->area_end();
   1564   if (heap()->gc_state() == Heap::SCAVENGE) {
   1565     heap()->promotion_queue()->SetNewLimit(limit);
   1566   }
   1567 
   1568   int remaining_in_page = static_cast<int>(limit - top);
   1569   heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
   1570   UpdateAllocationInfo();
   1571 
   1572   return true;
   1573 }
   1574 
   1575 
   1576 bool NewSpace::AddFreshPageSynchronized() {
   1577   base::LockGuard<base::Mutex> guard(&mutex_);
   1578   return AddFreshPage();
   1579 }
   1580 
   1581 
   1582 bool NewSpace::EnsureAllocation(int size_in_bytes,
   1583                                 AllocationAlignment alignment) {
   1584   Address old_top = allocation_info_.top();
   1585   Address high = to_space_.page_high();
   1586   int filler_size = Heap::GetFillToAlign(old_top, alignment);
   1587   int aligned_size_in_bytes = size_in_bytes + filler_size;
   1588 
   1589   if (old_top + aligned_size_in_bytes > high) {
   1590     // Not enough room in the page, try to allocate a new one.
   1591     if (!AddFreshPage()) {
   1592       return false;
   1593     }
   1594 
   1595     InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1596 
   1597     old_top = allocation_info_.top();
   1598     high = to_space_.page_high();
   1599     filler_size = Heap::GetFillToAlign(old_top, alignment);
   1600   }
   1601 
   1602   DCHECK(old_top + aligned_size_in_bytes <= high);
   1603 
   1604   if (allocation_info_.limit() < high) {
   1605     // Either the limit has been lowered because linear allocation was disabled
   1606     // or because incremental marking wants to get a chance to do a step,
   1607     // or because idle scavenge job wants to get a chance to post a task.
   1608     // Set the new limit accordingly.
   1609     Address new_top = old_top + aligned_size_in_bytes;
   1610     Address soon_object = old_top + filler_size;
   1611     InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes);
   1612     UpdateInlineAllocationLimit(aligned_size_in_bytes);
   1613   }
   1614   return true;
   1615 }
   1616 
   1617 
   1618 void NewSpace::StartNextInlineAllocationStep() {
   1619   if (!allocation_observers_paused_) {
   1620     top_on_previous_step_ =
   1621         allocation_observers_->length() ? allocation_info_.top() : 0;
   1622     UpdateInlineAllocationLimit(0);
   1623   }
   1624 }
   1625 
   1626 
   1627 intptr_t NewSpace::GetNextInlineAllocationStepSize() {
   1628   intptr_t next_step = 0;
   1629   for (int i = 0; i < allocation_observers_->length(); ++i) {
   1630     AllocationObserver* o = (*allocation_observers_)[i];
   1631     next_step = next_step ? Min(next_step, o->bytes_to_next_step())
   1632                           : o->bytes_to_next_step();
   1633   }
   1634   DCHECK(allocation_observers_->length() == 0 || next_step != 0);
   1635   return next_step;
   1636 }
   1637 
   1638 void NewSpace::AddAllocationObserver(AllocationObserver* observer) {
   1639   Space::AddAllocationObserver(observer);
   1640   StartNextInlineAllocationStep();
   1641 }
   1642 
   1643 void NewSpace::RemoveAllocationObserver(AllocationObserver* observer) {
   1644   Space::RemoveAllocationObserver(observer);
   1645   StartNextInlineAllocationStep();
   1646 }
   1647 
   1648 void NewSpace::PauseAllocationObservers() {
   1649   // Do a step to account for memory allocated so far.
   1650   InlineAllocationStep(top(), top(), nullptr, 0);
   1651   Space::PauseAllocationObservers();
   1652   top_on_previous_step_ = 0;
   1653   UpdateInlineAllocationLimit(0);
   1654 }
   1655 
   1656 void NewSpace::ResumeAllocationObservers() {
   1657   DCHECK(top_on_previous_step_ == 0);
   1658   Space::ResumeAllocationObservers();
   1659   StartNextInlineAllocationStep();
   1660 }
   1661 
   1662 
   1663 void NewSpace::InlineAllocationStep(Address top, Address new_top,
   1664                                     Address soon_object, size_t size) {
   1665   if (top_on_previous_step_) {
   1666     int bytes_allocated = static_cast<int>(top - top_on_previous_step_);
   1667     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1668       (*allocation_observers_)[i]->AllocationStep(bytes_allocated, soon_object,
   1669                                                   size);
   1670     }
   1671     top_on_previous_step_ = new_top;
   1672   }
   1673 }
   1674 
   1675 #ifdef VERIFY_HEAP
   1676 // We do not use the SemiSpaceIterator because verification doesn't assume
   1677 // that it works (it depends on the invariants we are checking).
   1678 void NewSpace::Verify() {
   1679   // The allocation pointer should be in the space or at the very end.
   1680   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1681 
   1682   // There should be objects packed in from the low address up to the
   1683   // allocation pointer.
   1684   Address current = to_space_.first_page()->area_start();
   1685   CHECK_EQ(current, to_space_.space_start());
   1686 
   1687   while (current != top()) {
   1688     if (!Page::IsAlignedToPageSize(current)) {
   1689       // The allocation pointer should not be in the middle of an object.
   1690       CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
   1691             current < top());
   1692 
   1693       HeapObject* object = HeapObject::FromAddress(current);
   1694 
   1695       // The first word should be a map, and we expect all map pointers to
   1696       // be in map space.
   1697       Map* map = object->map();
   1698       CHECK(map->IsMap());
   1699       CHECK(heap()->map_space()->Contains(map));
   1700 
   1701       // The object should not be code or a map.
   1702       CHECK(!object->IsMap());
   1703       CHECK(!object->IsAbstractCode());
   1704 
   1705       // The object itself should look OK.
   1706       object->ObjectVerify();
   1707 
   1708       // All the interior pointers should be contained in the heap.
   1709       VerifyPointersVisitor visitor;
   1710       int size = object->Size();
   1711       object->IterateBody(map->instance_type(), size, &visitor);
   1712 
   1713       current += size;
   1714     } else {
   1715       // At end of page, switch to next page.
   1716       Page* page = Page::FromAllocationAreaAddress(current)->next_page();
   1717       // Next page should be valid.
   1718       CHECK(!page->is_anchor());
   1719       current = page->area_start();
   1720     }
   1721   }
   1722 
   1723   // Check semi-spaces.
   1724   CHECK_EQ(from_space_.id(), kFromSpace);
   1725   CHECK_EQ(to_space_.id(), kToSpace);
   1726   from_space_.Verify();
   1727   to_space_.Verify();
   1728 }
   1729 #endif
   1730 
   1731 // -----------------------------------------------------------------------------
   1732 // SemiSpace implementation
   1733 
   1734 void SemiSpace::SetUp(int initial_capacity, int maximum_capacity) {
   1735   DCHECK_GE(maximum_capacity, Page::kPageSize);
   1736   minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
   1737   current_capacity_ = minimum_capacity_;
   1738   maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
   1739   committed_ = false;
   1740 }
   1741 
   1742 
   1743 void SemiSpace::TearDown() {
   1744   // Properly uncommit memory to keep the allocator counters in sync.
   1745   if (is_committed()) {
   1746     for (Page* p : *this) {
   1747       ArrayBufferTracker::FreeAll(p);
   1748     }
   1749     Uncommit();
   1750   }
   1751   current_capacity_ = maximum_capacity_ = 0;
   1752 }
   1753 
   1754 
   1755 bool SemiSpace::Commit() {
   1756   DCHECK(!is_committed());
   1757   Page* current = anchor();
   1758   const int num_pages = current_capacity_ / Page::kPageSize;
   1759   for (int pages_added = 0; pages_added < num_pages; pages_added++) {
   1760     Page* new_page =
   1761         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1762             Page::kAllocatableMemory, this, executable());
   1763     if (new_page == nullptr) {
   1764       RewindPages(current, pages_added);
   1765       return false;
   1766     }
   1767     new_page->InsertAfter(current);
   1768     current = new_page;
   1769   }
   1770   Reset();
   1771   AccountCommitted(current_capacity_);
   1772   if (age_mark_ == nullptr) {
   1773     age_mark_ = first_page()->area_start();
   1774   }
   1775   committed_ = true;
   1776   return true;
   1777 }
   1778 
   1779 
   1780 bool SemiSpace::Uncommit() {
   1781   DCHECK(is_committed());
   1782   for (auto it = begin(); it != end();) {
   1783     Page* p = *(it++);
   1784     heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p);
   1785   }
   1786   anchor()->set_next_page(anchor());
   1787   anchor()->set_prev_page(anchor());
   1788   AccountUncommitted(current_capacity_);
   1789   committed_ = false;
   1790   heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   1791   return true;
   1792 }
   1793 
   1794 
   1795 size_t SemiSpace::CommittedPhysicalMemory() {
   1796   if (!is_committed()) return 0;
   1797   size_t size = 0;
   1798   for (Page* p : *this) {
   1799     size += p->CommittedPhysicalMemory();
   1800   }
   1801   return size;
   1802 }
   1803 
   1804 
   1805 bool SemiSpace::GrowTo(int new_capacity) {
   1806   if (!is_committed()) {
   1807     if (!Commit()) return false;
   1808   }
   1809   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0);
   1810   DCHECK_LE(new_capacity, maximum_capacity_);
   1811   DCHECK_GT(new_capacity, current_capacity_);
   1812   const int delta = new_capacity - current_capacity_;
   1813   DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   1814   const int delta_pages = delta / Page::kPageSize;
   1815   Page* last_page = anchor()->prev_page();
   1816   DCHECK_NE(last_page, anchor());
   1817   for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
   1818     Page* new_page =
   1819         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1820             Page::kAllocatableMemory, this, executable());
   1821     if (new_page == nullptr) {
   1822       RewindPages(last_page, pages_added);
   1823       return false;
   1824     }
   1825     new_page->InsertAfter(last_page);
   1826     Bitmap::Clear(new_page);
   1827     // Duplicate the flags that was set on the old page.
   1828     new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask);
   1829     last_page = new_page;
   1830   }
   1831   AccountCommitted(static_cast<intptr_t>(delta));
   1832   current_capacity_ = new_capacity;
   1833   return true;
   1834 }
   1835 
   1836 void SemiSpace::RewindPages(Page* start, int num_pages) {
   1837   Page* new_last_page = nullptr;
   1838   Page* last_page = start;
   1839   while (num_pages > 0) {
   1840     DCHECK_NE(last_page, anchor());
   1841     new_last_page = last_page->prev_page();
   1842     last_page->prev_page()->set_next_page(last_page->next_page());
   1843     last_page->next_page()->set_prev_page(last_page->prev_page());
   1844     last_page = new_last_page;
   1845     num_pages--;
   1846   }
   1847 }
   1848 
   1849 bool SemiSpace::ShrinkTo(int new_capacity) {
   1850   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0);
   1851   DCHECK_GE(new_capacity, minimum_capacity_);
   1852   DCHECK_LT(new_capacity, current_capacity_);
   1853   if (is_committed()) {
   1854     const int delta = current_capacity_ - new_capacity;
   1855     DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   1856     int delta_pages = delta / Page::kPageSize;
   1857     Page* new_last_page;
   1858     Page* last_page;
   1859     while (delta_pages > 0) {
   1860       last_page = anchor()->prev_page();
   1861       new_last_page = last_page->prev_page();
   1862       new_last_page->set_next_page(anchor());
   1863       anchor()->set_prev_page(new_last_page);
   1864       heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   1865           last_page);
   1866       delta_pages--;
   1867     }
   1868     AccountUncommitted(static_cast<intptr_t>(delta));
   1869     heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   1870   }
   1871   current_capacity_ = new_capacity;
   1872   return true;
   1873 }
   1874 
   1875 void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
   1876   anchor_.set_owner(this);
   1877   anchor_.prev_page()->set_next_page(&anchor_);
   1878   anchor_.next_page()->set_prev_page(&anchor_);
   1879 
   1880   for (Page* page : *this) {
   1881     page->set_owner(this);
   1882     page->SetFlags(flags, mask);
   1883     if (id_ == kToSpace) {
   1884       page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
   1885       page->SetFlag(MemoryChunk::IN_TO_SPACE);
   1886       page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   1887       page->ResetLiveBytes();
   1888     } else {
   1889       page->SetFlag(MemoryChunk::IN_FROM_SPACE);
   1890       page->ClearFlag(MemoryChunk::IN_TO_SPACE);
   1891     }
   1892     DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
   1893            page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
   1894   }
   1895 }
   1896 
   1897 
   1898 void SemiSpace::Reset() {
   1899   DCHECK_NE(anchor_.next_page(), &anchor_);
   1900   current_page_ = anchor_.next_page();
   1901   pages_used_ = 0;
   1902 }
   1903 
   1904 void SemiSpace::RemovePage(Page* page) {
   1905   if (current_page_ == page) {
   1906     current_page_ = page->prev_page();
   1907   }
   1908   page->Unlink();
   1909 }
   1910 
   1911 void SemiSpace::PrependPage(Page* page) {
   1912   page->SetFlags(current_page()->GetFlags(), Page::kCopyAllFlags);
   1913   page->set_owner(this);
   1914   page->InsertAfter(anchor());
   1915   pages_used_++;
   1916 }
   1917 
   1918 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
   1919   // We won't be swapping semispaces without data in them.
   1920   DCHECK_NE(from->anchor_.next_page(), &from->anchor_);
   1921   DCHECK_NE(to->anchor_.next_page(), &to->anchor_);
   1922 
   1923   intptr_t saved_to_space_flags = to->current_page()->GetFlags();
   1924 
   1925   // We swap all properties but id_.
   1926   std::swap(from->current_capacity_, to->current_capacity_);
   1927   std::swap(from->maximum_capacity_, to->maximum_capacity_);
   1928   std::swap(from->minimum_capacity_, to->minimum_capacity_);
   1929   std::swap(from->age_mark_, to->age_mark_);
   1930   std::swap(from->committed_, to->committed_);
   1931   std::swap(from->anchor_, to->anchor_);
   1932   std::swap(from->current_page_, to->current_page_);
   1933 
   1934   to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
   1935   from->FixPagesFlags(0, 0);
   1936 }
   1937 
   1938 
   1939 void SemiSpace::set_age_mark(Address mark) {
   1940   DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
   1941   age_mark_ = mark;
   1942   // Mark all pages up to the one containing mark.
   1943   for (Page* p : NewSpacePageRange(space_start(), mark)) {
   1944     p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   1945   }
   1946 }
   1947 
   1948 
   1949 #ifdef DEBUG
   1950 void SemiSpace::Print() {}
   1951 #endif
   1952 
   1953 #ifdef VERIFY_HEAP
   1954 void SemiSpace::Verify() {
   1955   bool is_from_space = (id_ == kFromSpace);
   1956   Page* page = anchor_.next_page();
   1957   CHECK(anchor_.owner() == this);
   1958   while (page != &anchor_) {
   1959     CHECK_EQ(page->owner(), this);
   1960     CHECK(page->InNewSpace());
   1961     CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
   1962                                         : MemoryChunk::IN_TO_SPACE));
   1963     CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
   1964                                          : MemoryChunk::IN_FROM_SPACE));
   1965     CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
   1966     if (!is_from_space) {
   1967       // The pointers-from-here-are-interesting flag isn't updated dynamically
   1968       // on from-space pages, so it might be out of sync with the marking state.
   1969       if (page->heap()->incremental_marking()->IsMarking()) {
   1970         CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   1971       } else {
   1972         CHECK(
   1973             !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   1974       }
   1975       // TODO(gc): Check that the live_bytes_count_ field matches the
   1976       // black marking on the page (if we make it match in new-space).
   1977     }
   1978     CHECK_EQ(page->prev_page()->next_page(), page);
   1979     page = page->next_page();
   1980   }
   1981 }
   1982 #endif
   1983 
   1984 #ifdef DEBUG
   1985 void SemiSpace::AssertValidRange(Address start, Address end) {
   1986   // Addresses belong to same semi-space
   1987   Page* page = Page::FromAllocationAreaAddress(start);
   1988   Page* end_page = Page::FromAllocationAreaAddress(end);
   1989   SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
   1990   CHECK_EQ(space, end_page->owner());
   1991   // Start address is before end address, either on same page,
   1992   // or end address is on a later page in the linked list of
   1993   // semi-space pages.
   1994   if (page == end_page) {
   1995     CHECK_LE(start, end);
   1996   } else {
   1997     while (page != end_page) {
   1998       page = page->next_page();
   1999       CHECK_NE(page, space->anchor());
   2000     }
   2001   }
   2002 }
   2003 #endif
   2004 
   2005 
   2006 // -----------------------------------------------------------------------------
   2007 // SemiSpaceIterator implementation.
   2008 
   2009 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
   2010   Initialize(space->bottom(), space->top());
   2011 }
   2012 
   2013 
   2014 void SemiSpaceIterator::Initialize(Address start, Address end) {
   2015   SemiSpace::AssertValidRange(start, end);
   2016   current_ = start;
   2017   limit_ = end;
   2018 }
   2019 
   2020 #ifdef DEBUG
   2021 // heap_histograms is shared, always clear it before using it.
   2022 static void ClearHistograms(Isolate* isolate) {
   2023 // We reset the name each time, though it hasn't changed.
   2024 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
   2025   INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
   2026 #undef DEF_TYPE_NAME
   2027 
   2028 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
   2029   INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
   2030 #undef CLEAR_HISTOGRAM
   2031 
   2032   isolate->js_spill_information()->Clear();
   2033 }
   2034 
   2035 
   2036 static void ClearCodeKindStatistics(int* code_kind_statistics) {
   2037   for (int i = 0; i < AbstractCode::NUMBER_OF_KINDS; i++) {
   2038     code_kind_statistics[i] = 0;
   2039   }
   2040 }
   2041 static void ReportCodeKindStatistics(int* code_kind_statistics) {
   2042   PrintF("\n   Code kind histograms: \n");
   2043   for (int i = 0; i < AbstractCode::NUMBER_OF_KINDS; i++) {
   2044     if (code_kind_statistics[i] > 0) {
   2045       PrintF("     %-20s: %10d bytes\n",
   2046              AbstractCode::Kind2String(static_cast<AbstractCode::Kind>(i)),
   2047              code_kind_statistics[i]);
   2048     }
   2049   }
   2050   PrintF("\n");
   2051 }
   2052 
   2053 static int CollectHistogramInfo(HeapObject* obj) {
   2054   Isolate* isolate = obj->GetIsolate();
   2055   InstanceType type = obj->map()->instance_type();
   2056   DCHECK(0 <= type && type <= LAST_TYPE);
   2057   DCHECK(isolate->heap_histograms()[type].name() != NULL);
   2058   isolate->heap_histograms()[type].increment_number(1);
   2059   isolate->heap_histograms()[type].increment_bytes(obj->Size());
   2060 
   2061   if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
   2062     JSObject::cast(obj)
   2063         ->IncrementSpillStatistics(isolate->js_spill_information());
   2064   }
   2065 
   2066   return obj->Size();
   2067 }
   2068 
   2069 
   2070 static void ReportHistogram(Isolate* isolate, bool print_spill) {
   2071   PrintF("\n  Object Histogram:\n");
   2072   for (int i = 0; i <= LAST_TYPE; i++) {
   2073     if (isolate->heap_histograms()[i].number() > 0) {
   2074       PrintF("    %-34s%10d (%10d bytes)\n",
   2075              isolate->heap_histograms()[i].name(),
   2076              isolate->heap_histograms()[i].number(),
   2077              isolate->heap_histograms()[i].bytes());
   2078     }
   2079   }
   2080   PrintF("\n");
   2081 
   2082   // Summarize string types.
   2083   int string_number = 0;
   2084   int string_bytes = 0;
   2085 #define INCREMENT(type, size, name, camel_name)               \
   2086   string_number += isolate->heap_histograms()[type].number(); \
   2087   string_bytes += isolate->heap_histograms()[type].bytes();
   2088   STRING_TYPE_LIST(INCREMENT)
   2089 #undef INCREMENT
   2090   if (string_number > 0) {
   2091     PrintF("    %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
   2092            string_bytes);
   2093   }
   2094 
   2095   if (FLAG_collect_heap_spill_statistics && print_spill) {
   2096     isolate->js_spill_information()->Print();
   2097   }
   2098 }
   2099 #endif  // DEBUG
   2100 
   2101 
   2102 // Support for statistics gathering for --heap-stats and --log-gc.
   2103 void NewSpace::ClearHistograms() {
   2104   for (int i = 0; i <= LAST_TYPE; i++) {
   2105     allocated_histogram_[i].clear();
   2106     promoted_histogram_[i].clear();
   2107   }
   2108 }
   2109 
   2110 
   2111 // Because the copying collector does not touch garbage objects, we iterate
   2112 // the new space before a collection to get a histogram of allocated objects.
   2113 // This only happens when --log-gc flag is set.
   2114 void NewSpace::CollectStatistics() {
   2115   ClearHistograms();
   2116   SemiSpaceIterator it(this);
   2117   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
   2118     RecordAllocation(obj);
   2119 }
   2120 
   2121 
   2122 static void DoReportStatistics(Isolate* isolate, HistogramInfo* info,
   2123                                const char* description) {
   2124   LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
   2125   // Lump all the string types together.
   2126   int string_number = 0;
   2127   int string_bytes = 0;
   2128 #define INCREMENT(type, size, name, camel_name) \
   2129   string_number += info[type].number();         \
   2130   string_bytes += info[type].bytes();
   2131   STRING_TYPE_LIST(INCREMENT)
   2132 #undef INCREMENT
   2133   if (string_number > 0) {
   2134     LOG(isolate,
   2135         HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
   2136   }
   2137 
   2138   // Then do the other types.
   2139   for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
   2140     if (info[i].number() > 0) {
   2141       LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(),
   2142                                        info[i].bytes()));
   2143     }
   2144   }
   2145   LOG(isolate, HeapSampleEndEvent("NewSpace", description));
   2146 }
   2147 
   2148 
   2149 void NewSpace::ReportStatistics() {
   2150 #ifdef DEBUG
   2151   if (FLAG_heap_stats) {
   2152     float pct = static_cast<float>(Available()) / TotalCapacity();
   2153     PrintF("  capacity: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n",
   2154            TotalCapacity(), Available(), static_cast<int>(pct * 100));
   2155     PrintF("\n  Object Histogram:\n");
   2156     for (int i = 0; i <= LAST_TYPE; i++) {
   2157       if (allocated_histogram_[i].number() > 0) {
   2158         PrintF("    %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(),
   2159                allocated_histogram_[i].number(),
   2160                allocated_histogram_[i].bytes());
   2161       }
   2162     }
   2163     PrintF("\n");
   2164   }
   2165 #endif  // DEBUG
   2166 
   2167   if (FLAG_log_gc) {
   2168     Isolate* isolate = heap()->isolate();
   2169     DoReportStatistics(isolate, allocated_histogram_, "allocated");
   2170     DoReportStatistics(isolate, promoted_histogram_, "promoted");
   2171   }
   2172 }
   2173 
   2174 
   2175 void NewSpace::RecordAllocation(HeapObject* obj) {
   2176   InstanceType type = obj->map()->instance_type();
   2177   DCHECK(0 <= type && type <= LAST_TYPE);
   2178   allocated_histogram_[type].increment_number(1);
   2179   allocated_histogram_[type].increment_bytes(obj->Size());
   2180 }
   2181 
   2182 
   2183 void NewSpace::RecordPromotion(HeapObject* obj) {
   2184   InstanceType type = obj->map()->instance_type();
   2185   DCHECK(0 <= type && type <= LAST_TYPE);
   2186   promoted_histogram_[type].increment_number(1);
   2187   promoted_histogram_[type].increment_bytes(obj->Size());
   2188 }
   2189 
   2190 
   2191 size_t NewSpace::CommittedPhysicalMemory() {
   2192   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   2193   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   2194   size_t size = to_space_.CommittedPhysicalMemory();
   2195   if (from_space_.is_committed()) {
   2196     size += from_space_.CommittedPhysicalMemory();
   2197   }
   2198   return size;
   2199 }
   2200 
   2201 
   2202 // -----------------------------------------------------------------------------
   2203 // Free lists for old object spaces implementation
   2204 
   2205 
   2206 void FreeListCategory::Reset() {
   2207   set_top(nullptr);
   2208   set_prev(nullptr);
   2209   set_next(nullptr);
   2210   available_ = 0;
   2211 }
   2212 
   2213 FreeSpace* FreeListCategory::PickNodeFromList(int* node_size) {
   2214   DCHECK(page()->CanAllocate());
   2215 
   2216   FreeSpace* node = top();
   2217   if (node == nullptr) return nullptr;
   2218   set_top(node->next());
   2219   *node_size = node->Size();
   2220   available_ -= *node_size;
   2221   return node;
   2222 }
   2223 
   2224 FreeSpace* FreeListCategory::TryPickNodeFromList(int minimum_size,
   2225                                                  int* node_size) {
   2226   DCHECK(page()->CanAllocate());
   2227 
   2228   FreeSpace* node = PickNodeFromList(node_size);
   2229   if ((node != nullptr) && (*node_size < minimum_size)) {
   2230     Free(node, *node_size, kLinkCategory);
   2231     *node_size = 0;
   2232     return nullptr;
   2233   }
   2234   return node;
   2235 }
   2236 
   2237 FreeSpace* FreeListCategory::SearchForNodeInList(int minimum_size,
   2238                                                  int* node_size) {
   2239   DCHECK(page()->CanAllocate());
   2240 
   2241   FreeSpace* prev_non_evac_node = nullptr;
   2242   for (FreeSpace* cur_node = top(); cur_node != nullptr;
   2243        cur_node = cur_node->next()) {
   2244     int size = cur_node->size();
   2245     if (size >= minimum_size) {
   2246       available_ -= size;
   2247       if (cur_node == top()) {
   2248         set_top(cur_node->next());
   2249       }
   2250       if (prev_non_evac_node != nullptr) {
   2251         prev_non_evac_node->set_next(cur_node->next());
   2252       }
   2253       *node_size = size;
   2254       return cur_node;
   2255     }
   2256 
   2257     prev_non_evac_node = cur_node;
   2258   }
   2259   return nullptr;
   2260 }
   2261 
   2262 bool FreeListCategory::Free(FreeSpace* free_space, int size_in_bytes,
   2263                             FreeMode mode) {
   2264   if (!page()->CanAllocate()) return false;
   2265 
   2266   free_space->set_next(top());
   2267   set_top(free_space);
   2268   available_ += size_in_bytes;
   2269   if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) {
   2270     owner()->AddCategory(this);
   2271   }
   2272   return true;
   2273 }
   2274 
   2275 
   2276 void FreeListCategory::RepairFreeList(Heap* heap) {
   2277   FreeSpace* n = top();
   2278   while (n != NULL) {
   2279     Map** map_location = reinterpret_cast<Map**>(n->address());
   2280     if (*map_location == NULL) {
   2281       *map_location = heap->free_space_map();
   2282     } else {
   2283       DCHECK(*map_location == heap->free_space_map());
   2284     }
   2285     n = n->next();
   2286   }
   2287 }
   2288 
   2289 void FreeListCategory::Relink() {
   2290   DCHECK(!is_linked());
   2291   owner()->AddCategory(this);
   2292 }
   2293 
   2294 void FreeListCategory::Invalidate() {
   2295   page()->add_available_in_free_list(-available());
   2296   Reset();
   2297   type_ = kInvalidCategory;
   2298 }
   2299 
   2300 FreeList::FreeList(PagedSpace* owner) : owner_(owner), wasted_bytes_(0) {
   2301   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2302     categories_[i] = nullptr;
   2303   }
   2304   Reset();
   2305 }
   2306 
   2307 
   2308 void FreeList::Reset() {
   2309   ForAllFreeListCategories(
   2310       [](FreeListCategory* category) { category->Reset(); });
   2311   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2312     categories_[i] = nullptr;
   2313   }
   2314   ResetStats();
   2315 }
   2316 
   2317 int FreeList::Free(Address start, int size_in_bytes, FreeMode mode) {
   2318   if (size_in_bytes == 0) return 0;
   2319 
   2320   owner()->heap()->CreateFillerObjectAt(start, size_in_bytes,
   2321                                         ClearRecordedSlots::kNo);
   2322 
   2323   Page* page = Page::FromAddress(start);
   2324 
   2325   // Blocks have to be a minimum size to hold free list items.
   2326   if (size_in_bytes < kMinBlockSize) {
   2327     page->add_wasted_memory(size_in_bytes);
   2328     wasted_bytes_.Increment(size_in_bytes);
   2329     return size_in_bytes;
   2330   }
   2331 
   2332   FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start));
   2333   // Insert other blocks at the head of a free list of the appropriate
   2334   // magnitude.
   2335   FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes);
   2336   if (page->free_list_category(type)->Free(free_space, size_in_bytes, mode)) {
   2337     page->add_available_in_free_list(size_in_bytes);
   2338   }
   2339   return 0;
   2340 }
   2341 
   2342 FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, int* node_size) {
   2343   FreeListCategoryIterator it(this, type);
   2344   FreeSpace* node = nullptr;
   2345   while (it.HasNext()) {
   2346     FreeListCategory* current = it.Next();
   2347     node = current->PickNodeFromList(node_size);
   2348     if (node != nullptr) {
   2349       Page::FromAddress(node->address())
   2350           ->add_available_in_free_list(-(*node_size));
   2351       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2352       return node;
   2353     }
   2354     RemoveCategory(current);
   2355   }
   2356   return node;
   2357 }
   2358 
   2359 FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type, int* node_size,
   2360                                    int minimum_size) {
   2361   if (categories_[type] == nullptr) return nullptr;
   2362   FreeSpace* node =
   2363       categories_[type]->TryPickNodeFromList(minimum_size, node_size);
   2364   if (node != nullptr) {
   2365     Page::FromAddress(node->address())
   2366         ->add_available_in_free_list(-(*node_size));
   2367     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2368   }
   2369   return node;
   2370 }
   2371 
   2372 FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
   2373                                          int* node_size, int minimum_size) {
   2374   FreeListCategoryIterator it(this, type);
   2375   FreeSpace* node = nullptr;
   2376   while (it.HasNext()) {
   2377     FreeListCategory* current = it.Next();
   2378     node = current->SearchForNodeInList(minimum_size, node_size);
   2379     if (node != nullptr) {
   2380       Page::FromAddress(node->address())
   2381           ->add_available_in_free_list(-(*node_size));
   2382       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2383       return node;
   2384     }
   2385   }
   2386   return node;
   2387 }
   2388 
   2389 FreeSpace* FreeList::FindNodeFor(int size_in_bytes, int* node_size) {
   2390   FreeSpace* node = nullptr;
   2391 
   2392   // First try the allocation fast path: try to allocate the minimum element
   2393   // size of a free list category. This operation is constant time.
   2394   FreeListCategoryType type =
   2395       SelectFastAllocationFreeListCategoryType(size_in_bytes);
   2396   for (int i = type; i < kHuge; i++) {
   2397     node = FindNodeIn(static_cast<FreeListCategoryType>(i), node_size);
   2398     if (node != nullptr) return node;
   2399   }
   2400 
   2401   // Next search the huge list for free list nodes. This takes linear time in
   2402   // the number of huge elements.
   2403   node = SearchForNodeInList(kHuge, node_size, size_in_bytes);
   2404   if (node != nullptr) {
   2405     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2406     return node;
   2407   }
   2408 
   2409   // We need a huge block of memory, but we didn't find anything in the huge
   2410   // list.
   2411   if (type == kHuge) return nullptr;
   2412 
   2413   // Now search the best fitting free list for a node that has at least the
   2414   // requested size.
   2415   type = SelectFreeListCategoryType(size_in_bytes);
   2416   node = TryFindNodeIn(type, node_size, size_in_bytes);
   2417 
   2418   DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2419   return node;
   2420 }
   2421 
   2422 // Allocation on the old space free list.  If it succeeds then a new linear
   2423 // allocation space has been set up with the top and limit of the space.  If
   2424 // the allocation fails then NULL is returned, and the caller can perform a GC
   2425 // or allocate a new page before retrying.
   2426 HeapObject* FreeList::Allocate(int size_in_bytes) {
   2427   DCHECK(0 < size_in_bytes);
   2428   DCHECK(size_in_bytes <= kMaxBlockSize);
   2429   DCHECK(IsAligned(size_in_bytes, kPointerSize));
   2430   // Don't free list allocate if there is linear space available.
   2431   DCHECK(owner_->limit() - owner_->top() < size_in_bytes);
   2432 
   2433   int old_linear_size = static_cast<int>(owner_->limit() - owner_->top());
   2434   // Mark the old linear allocation area with a free space map so it can be
   2435   // skipped when scanning the heap.  This also puts it back in the free list
   2436   // if it is big enough.
   2437   owner_->Free(owner_->top(), old_linear_size);
   2438   owner_->SetTopAndLimit(nullptr, nullptr);
   2439 
   2440   owner_->heap()->incremental_marking()->OldSpaceStep(size_in_bytes -
   2441                                                       old_linear_size);
   2442 
   2443   int new_node_size = 0;
   2444   FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size);
   2445   if (new_node == nullptr) return nullptr;
   2446 
   2447   int bytes_left = new_node_size - size_in_bytes;
   2448   DCHECK(bytes_left >= 0);
   2449 
   2450 #ifdef DEBUG
   2451   for (int i = 0; i < size_in_bytes / kPointerSize; i++) {
   2452     reinterpret_cast<Object**>(new_node->address())[i] =
   2453         Smi::FromInt(kCodeZapValue);
   2454   }
   2455 #endif
   2456 
   2457   // The old-space-step might have finished sweeping and restarted marking.
   2458   // Verify that it did not turn the page of the new node into an evacuation
   2459   // candidate.
   2460   DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
   2461 
   2462   const int kThreshold = IncrementalMarking::kAllocatedThreshold;
   2463 
   2464   // Memory in the linear allocation area is counted as allocated.  We may free
   2465   // a little of this again immediately - see below.
   2466   owner_->Allocate(new_node_size);
   2467 
   2468   if (owner_->heap()->inline_allocation_disabled()) {
   2469     // Keep the linear allocation area empty if requested to do so, just
   2470     // return area back to the free list instead.
   2471     owner_->Free(new_node->address() + size_in_bytes, bytes_left);
   2472     owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
   2473                            new_node->address() + size_in_bytes);
   2474   } else if (bytes_left > kThreshold &&
   2475              owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
   2476              FLAG_incremental_marking) {
   2477     int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
   2478     // We don't want to give too large linear areas to the allocator while
   2479     // incremental marking is going on, because we won't check again whether
   2480     // we want to do another increment until the linear area is used up.
   2481     owner_->Free(new_node->address() + size_in_bytes + linear_size,
   2482                  new_node_size - size_in_bytes - linear_size);
   2483     owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
   2484                            new_node->address() + size_in_bytes + linear_size);
   2485   } else {
   2486     DCHECK(bytes_left >= 0);
   2487     // Normally we give the rest of the node to the allocator as its new
   2488     // linear allocation area.
   2489     owner_->SetTopAndLimit(new_node->address() + size_in_bytes,
   2490                            new_node->address() + new_node_size);
   2491   }
   2492 
   2493   owner_->AllocationStep(new_node->address(), size_in_bytes);
   2494 
   2495   return new_node;
   2496 }
   2497 
   2498 intptr_t FreeList::EvictFreeListItems(Page* page) {
   2499   intptr_t sum = 0;
   2500   page->ForAllFreeListCategories(
   2501       [this, &sum, page](FreeListCategory* category) {
   2502         DCHECK_EQ(this, category->owner());
   2503         sum += category->available();
   2504         RemoveCategory(category);
   2505         category->Invalidate();
   2506       });
   2507   return sum;
   2508 }
   2509 
   2510 bool FreeList::ContainsPageFreeListItems(Page* page) {
   2511   bool contained = false;
   2512   page->ForAllFreeListCategories(
   2513       [this, &contained](FreeListCategory* category) {
   2514         if (category->owner() == this && category->is_linked()) {
   2515           contained = true;
   2516         }
   2517       });
   2518   return contained;
   2519 }
   2520 
   2521 void FreeList::RepairLists(Heap* heap) {
   2522   ForAllFreeListCategories(
   2523       [heap](FreeListCategory* category) { category->RepairFreeList(heap); });
   2524 }
   2525 
   2526 bool FreeList::AddCategory(FreeListCategory* category) {
   2527   FreeListCategoryType type = category->type_;
   2528   FreeListCategory* top = categories_[type];
   2529 
   2530   if (category->is_empty()) return false;
   2531   if (top == category) return false;
   2532 
   2533   // Common double-linked list insertion.
   2534   if (top != nullptr) {
   2535     top->set_prev(category);
   2536   }
   2537   category->set_next(top);
   2538   categories_[type] = category;
   2539   return true;
   2540 }
   2541 
   2542 void FreeList::RemoveCategory(FreeListCategory* category) {
   2543   FreeListCategoryType type = category->type_;
   2544   FreeListCategory* top = categories_[type];
   2545 
   2546   // Common double-linked list removal.
   2547   if (top == category) {
   2548     categories_[type] = category->next();
   2549   }
   2550   if (category->prev() != nullptr) {
   2551     category->prev()->set_next(category->next());
   2552   }
   2553   if (category->next() != nullptr) {
   2554     category->next()->set_prev(category->prev());
   2555   }
   2556   category->set_next(nullptr);
   2557   category->set_prev(nullptr);
   2558 }
   2559 
   2560 void FreeList::PrintCategories(FreeListCategoryType type) {
   2561   FreeListCategoryIterator it(this, type);
   2562   PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
   2563          static_cast<void*>(categories_[type]), type);
   2564   while (it.HasNext()) {
   2565     FreeListCategory* current = it.Next();
   2566     PrintF("%p -> ", static_cast<void*>(current));
   2567   }
   2568   PrintF("null\n");
   2569 }
   2570 
   2571 
   2572 #ifdef DEBUG
   2573 intptr_t FreeListCategory::SumFreeList() {
   2574   intptr_t sum = 0;
   2575   FreeSpace* cur = top();
   2576   while (cur != NULL) {
   2577     DCHECK(cur->map() == cur->GetHeap()->root(Heap::kFreeSpaceMapRootIndex));
   2578     sum += cur->nobarrier_size();
   2579     cur = cur->next();
   2580   }
   2581   return sum;
   2582 }
   2583 
   2584 int FreeListCategory::FreeListLength() {
   2585   int length = 0;
   2586   FreeSpace* cur = top();
   2587   while (cur != NULL) {
   2588     length++;
   2589     cur = cur->next();
   2590     if (length == kVeryLongFreeList) return length;
   2591   }
   2592   return length;
   2593 }
   2594 
   2595 bool FreeList::IsVeryLong() {
   2596   int len = 0;
   2597   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2598     FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i));
   2599     while (it.HasNext()) {
   2600       len += it.Next()->FreeListLength();
   2601       if (len >= FreeListCategory::kVeryLongFreeList) return true;
   2602     }
   2603   }
   2604   return false;
   2605 }
   2606 
   2607 
   2608 // This can take a very long time because it is linear in the number of entries
   2609 // on the free list, so it should not be called if FreeListLength returns
   2610 // kVeryLongFreeList.
   2611 intptr_t FreeList::SumFreeLists() {
   2612   intptr_t sum = 0;
   2613   ForAllFreeListCategories(
   2614       [&sum](FreeListCategory* category) { sum += category->SumFreeList(); });
   2615   return sum;
   2616 }
   2617 #endif
   2618 
   2619 
   2620 // -----------------------------------------------------------------------------
   2621 // OldSpace implementation
   2622 
   2623 void PagedSpace::PrepareForMarkCompact() {
   2624   // We don't have a linear allocation area while sweeping.  It will be restored
   2625   // on the first allocation after the sweep.
   2626   EmptyAllocationInfo();
   2627 
   2628   // Clear the free list before a full GC---it will be rebuilt afterward.
   2629   free_list_.Reset();
   2630 }
   2631 
   2632 
   2633 intptr_t PagedSpace::SizeOfObjects() {
   2634   const intptr_t size = Size() - (limit() - top());
   2635   CHECK_GE(limit(), top());
   2636   CHECK_GE(size, 0);
   2637   USE(size);
   2638   return size;
   2639 }
   2640 
   2641 
   2642 // After we have booted, we have created a map which represents free space
   2643 // on the heap.  If there was already a free list then the elements on it
   2644 // were created with the wrong FreeSpaceMap (normally NULL), so we need to
   2645 // fix them.
   2646 void PagedSpace::RepairFreeListsAfterDeserialization() {
   2647   free_list_.RepairLists(heap());
   2648   // Each page may have a small free space that is not tracked by a free list.
   2649   // Update the maps for those free space objects.
   2650   for (Page* page : *this) {
   2651     int size = static_cast<int>(page->wasted_memory());
   2652     if (size == 0) continue;
   2653     Address address = page->OffsetToAddress(Page::kPageSize - size);
   2654     heap()->CreateFillerObjectAt(address, size, ClearRecordedSlots::kNo);
   2655   }
   2656 }
   2657 
   2658 
   2659 void PagedSpace::EvictEvacuationCandidatesFromLinearAllocationArea() {
   2660   if (allocation_info_.top() >= allocation_info_.limit()) return;
   2661 
   2662   if (!Page::FromAllocationAreaAddress(allocation_info_.top())->CanAllocate()) {
   2663     // Create filler object to keep page iterable if it was iterable.
   2664     int remaining =
   2665         static_cast<int>(allocation_info_.limit() - allocation_info_.top());
   2666     heap()->CreateFillerObjectAt(allocation_info_.top(), remaining,
   2667                                  ClearRecordedSlots::kNo);
   2668     allocation_info_.Reset(nullptr, nullptr);
   2669   }
   2670 }
   2671 
   2672 
   2673 HeapObject* PagedSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2674   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2675   if (collector->sweeping_in_progress()) {
   2676     // Wait for the sweeper threads here and complete the sweeping phase.
   2677     collector->EnsureSweepingCompleted();
   2678 
   2679     // After waiting for the sweeper threads, there may be new free-list
   2680     // entries.
   2681     return free_list_.Allocate(size_in_bytes);
   2682   }
   2683   return nullptr;
   2684 }
   2685 
   2686 
   2687 HeapObject* CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2688   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2689   if (collector->sweeping_in_progress()) {
   2690     collector->SweepAndRefill(this);
   2691     return free_list_.Allocate(size_in_bytes);
   2692   }
   2693   return nullptr;
   2694 }
   2695 
   2696 
   2697 HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
   2698   const int kMaxPagesToSweep = 1;
   2699 
   2700   // Allocation in this space has failed.
   2701 
   2702   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2703   // Sweeping is still in progress.
   2704   if (collector->sweeping_in_progress()) {
   2705     // First try to refill the free-list, concurrent sweeper threads
   2706     // may have freed some objects in the meantime.
   2707     RefillFreeList();
   2708 
   2709     // Retry the free list allocation.
   2710     HeapObject* object = free_list_.Allocate(size_in_bytes);
   2711     if (object != NULL) return object;
   2712 
   2713     // If sweeping is still in progress try to sweep pages on the main thread.
   2714     int max_freed = collector->sweeper().ParallelSweepSpace(
   2715         identity(), size_in_bytes, kMaxPagesToSweep);
   2716     RefillFreeList();
   2717     if (max_freed >= size_in_bytes) {
   2718       object = free_list_.Allocate(size_in_bytes);
   2719       if (object != nullptr) return object;
   2720     }
   2721   }
   2722 
   2723   // Free list allocation failed and there is no next page.  Fail if we have
   2724   // hit the old generation size limit that should cause a garbage
   2725   // collection.
   2726   if (!heap()->always_allocate() &&
   2727       heap()->OldGenerationAllocationLimitReached()) {
   2728     // If sweeper threads are active, wait for them at that point and steal
   2729     // elements form their free-lists.
   2730     HeapObject* object = SweepAndRetryAllocation(size_in_bytes);
   2731     return object;
   2732   }
   2733 
   2734   // Try to expand the space and allocate in the new next page.
   2735   if (Expand()) {
   2736     DCHECK((CountTotalPages() > 1) ||
   2737            (size_in_bytes <= free_list_.Available()));
   2738     return free_list_.Allocate(size_in_bytes);
   2739   }
   2740 
   2741   // If sweeper threads are active, wait for them at that point and steal
   2742   // elements form their free-lists. Allocation may still fail their which
   2743   // would indicate that there is not enough memory for the given allocation.
   2744   return SweepAndRetryAllocation(size_in_bytes);
   2745 }
   2746 
   2747 #ifdef DEBUG
   2748 void PagedSpace::ReportCodeStatistics(Isolate* isolate) {
   2749   CommentStatistic* comments_statistics =
   2750       isolate->paged_space_comments_statistics();
   2751   ReportCodeKindStatistics(isolate->code_kind_statistics());
   2752   PrintF("Code size including metadata    : %10d bytes\n",
   2753          isolate->code_and_metadata_size());
   2754   PrintF("Bytecode size including metadata: %10d bytes\n",
   2755          isolate->bytecode_and_metadata_size());
   2756   PrintF(
   2757       "Code comment statistics (\"   [ comment-txt   :    size/   "
   2758       "count  (average)\"):\n");
   2759   for (int i = 0; i <= CommentStatistic::kMaxComments; i++) {
   2760     const CommentStatistic& cs = comments_statistics[i];
   2761     if (cs.size > 0) {
   2762       PrintF("   %-30s: %10d/%6d     (%d)\n", cs.comment, cs.size, cs.count,
   2763              cs.size / cs.count);
   2764     }
   2765   }
   2766   PrintF("\n");
   2767 }
   2768 
   2769 void PagedSpace::ResetCodeStatistics(Isolate* isolate) {
   2770   CommentStatistic* comments_statistics =
   2771       isolate->paged_space_comments_statistics();
   2772   ClearCodeKindStatistics(isolate->code_kind_statistics());
   2773   for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
   2774     comments_statistics[i].Clear();
   2775   }
   2776   comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown";
   2777   comments_statistics[CommentStatistic::kMaxComments].size = 0;
   2778   comments_statistics[CommentStatistic::kMaxComments].count = 0;
   2779 }
   2780 
   2781 
   2782 // Adds comment to 'comment_statistics' table. Performance OK as long as
   2783 // 'kMaxComments' is small
   2784 static void EnterComment(Isolate* isolate, const char* comment, int delta) {
   2785   CommentStatistic* comments_statistics =
   2786       isolate->paged_space_comments_statistics();
   2787   // Do not count empty comments
   2788   if (delta <= 0) return;
   2789   CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments];
   2790   // Search for a free or matching entry in 'comments_statistics': 'cs'
   2791   // points to result.
   2792   for (int i = 0; i < CommentStatistic::kMaxComments; i++) {
   2793     if (comments_statistics[i].comment == NULL) {
   2794       cs = &comments_statistics[i];
   2795       cs->comment = comment;
   2796       break;
   2797     } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
   2798       cs = &comments_statistics[i];
   2799       break;
   2800     }
   2801   }
   2802   // Update entry for 'comment'
   2803   cs->size += delta;
   2804   cs->count += 1;
   2805 }
   2806 
   2807 
   2808 // Call for each nested comment start (start marked with '[ xxx', end marked
   2809 // with ']'.  RelocIterator 'it' must point to a comment reloc info.
   2810 static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) {
   2811   DCHECK(!it->done());
   2812   DCHECK(it->rinfo()->rmode() == RelocInfo::COMMENT);
   2813   const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
   2814   if (tmp[0] != '[') {
   2815     // Not a nested comment; skip
   2816     return;
   2817   }
   2818 
   2819   // Search for end of nested comment or a new nested comment
   2820   const char* const comment_txt =
   2821       reinterpret_cast<const char*>(it->rinfo()->data());
   2822   const byte* prev_pc = it->rinfo()->pc();
   2823   int flat_delta = 0;
   2824   it->next();
   2825   while (true) {
   2826     // All nested comments must be terminated properly, and therefore exit
   2827     // from loop.
   2828     DCHECK(!it->done());
   2829     if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
   2830       const char* const txt =
   2831           reinterpret_cast<const char*>(it->rinfo()->data());
   2832       flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
   2833       if (txt[0] == ']') break;  // End of nested  comment
   2834       // A new comment
   2835       CollectCommentStatistics(isolate, it);
   2836       // Skip code that was covered with previous comment
   2837       prev_pc = it->rinfo()->pc();
   2838     }
   2839     it->next();
   2840   }
   2841   EnterComment(isolate, comment_txt, flat_delta);
   2842 }
   2843 
   2844 // Collects code comment statistics
   2845 static void CollectCodeCommentStatistics(HeapObject* obj, Isolate* isolate) {
   2846   if (!obj->IsCode()) {
   2847     return;
   2848   }
   2849   Code* code = Code::cast(obj);
   2850   RelocIterator it(code);
   2851   int delta = 0;
   2852   const byte* prev_pc = code->instruction_start();
   2853   while (!it.done()) {
   2854     if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
   2855       delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
   2856       CollectCommentStatistics(isolate, &it);
   2857       prev_pc = it.rinfo()->pc();
   2858     }
   2859     it.next();
   2860   }
   2861 
   2862   DCHECK(code->instruction_start() <= prev_pc &&
   2863          prev_pc <= code->instruction_end());
   2864   delta += static_cast<int>(code->instruction_end() - prev_pc);
   2865   EnterComment(isolate, "NoComment", delta);
   2866 }
   2867 
   2868 
   2869 void PagedSpace::ReportStatistics() {
   2870   int pct = static_cast<int>(Available() * 100 / Capacity());
   2871   PrintF("  capacity: %" V8PRIdPTR ", waste: %" V8PRIdPTR
   2872          ", available: %" V8PRIdPTR ", %%%d\n",
   2873          Capacity(), Waste(), Available(), pct);
   2874 
   2875   if (heap()->mark_compact_collector()->sweeping_in_progress()) {
   2876     heap()->mark_compact_collector()->EnsureSweepingCompleted();
   2877   }
   2878   ClearHistograms(heap()->isolate());
   2879   HeapObjectIterator obj_it(this);
   2880   for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
   2881     CollectHistogramInfo(obj);
   2882   ReportHistogram(heap()->isolate(), true);
   2883 }
   2884 #endif
   2885 
   2886 static void RecordCodeSizeIncludingMetadata(AbstractCode* abstract_code,
   2887                                             Isolate* isolate) {
   2888   int size = abstract_code->SizeIncludingMetadata();
   2889   if (abstract_code->IsCode()) {
   2890     size += isolate->code_and_metadata_size();
   2891     isolate->set_code_and_metadata_size(size);
   2892   } else {
   2893     size += isolate->bytecode_and_metadata_size();
   2894     isolate->set_bytecode_and_metadata_size(size);
   2895   }
   2896 }
   2897 
   2898 // Collects code size statistics:
   2899 // - code and metadata size
   2900 // - by code kind (only in debug mode)
   2901 // - by code comment (only in debug mode)
   2902 void PagedSpace::CollectCodeStatistics() {
   2903   Isolate* isolate = heap()->isolate();
   2904   HeapObjectIterator obj_it(this);
   2905   for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
   2906     if (obj->IsAbstractCode()) {
   2907       AbstractCode* code = AbstractCode::cast(obj);
   2908       RecordCodeSizeIncludingMetadata(code, isolate);
   2909 #ifdef DEBUG
   2910       isolate->code_kind_statistics()[code->kind()] += code->Size();
   2911       CollectCodeCommentStatistics(obj, isolate);
   2912 #endif
   2913     }
   2914   }
   2915 }
   2916 
   2917 void PagedSpace::ResetCodeAndMetadataStatistics(Isolate* isolate) {
   2918   isolate->set_code_and_metadata_size(0);
   2919   isolate->set_bytecode_and_metadata_size(0);
   2920 #ifdef DEBUG
   2921   ResetCodeStatistics(isolate);
   2922 #endif
   2923 }
   2924 
   2925 // -----------------------------------------------------------------------------
   2926 // MapSpace implementation
   2927 
   2928 #ifdef VERIFY_HEAP
   2929 void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
   2930 #endif
   2931 
   2932 
   2933 // -----------------------------------------------------------------------------
   2934 // LargeObjectIterator
   2935 
   2936 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
   2937   current_ = space->first_page_;
   2938 }
   2939 
   2940 
   2941 HeapObject* LargeObjectIterator::Next() {
   2942   if (current_ == NULL) return NULL;
   2943 
   2944   HeapObject* object = current_->GetObject();
   2945   current_ = current_->next_page();
   2946   return object;
   2947 }
   2948 
   2949 
   2950 // -----------------------------------------------------------------------------
   2951 // LargeObjectSpace
   2952 
   2953 LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
   2954     : Space(heap, id, NOT_EXECUTABLE),  // Managed on a per-allocation basis
   2955       first_page_(NULL),
   2956       size_(0),
   2957       page_count_(0),
   2958       objects_size_(0),
   2959       chunk_map_(base::HashMap::PointersMatch, 1024) {}
   2960 
   2961 LargeObjectSpace::~LargeObjectSpace() {}
   2962 
   2963 
   2964 bool LargeObjectSpace::SetUp() {
   2965   first_page_ = NULL;
   2966   size_ = 0;
   2967   page_count_ = 0;
   2968   objects_size_ = 0;
   2969   chunk_map_.Clear();
   2970   return true;
   2971 }
   2972 
   2973 
   2974 void LargeObjectSpace::TearDown() {
   2975   while (first_page_ != NULL) {
   2976     LargePage* page = first_page_;
   2977     first_page_ = first_page_->next_page();
   2978     LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
   2979     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   2980   }
   2981   SetUp();
   2982 }
   2983 
   2984 
   2985 AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
   2986                                                Executability executable) {
   2987   // Check if we want to force a GC before growing the old space further.
   2988   // If so, fail the allocation.
   2989   if (!heap()->CanExpandOldGeneration(object_size)) {
   2990     return AllocationResult::Retry(identity());
   2991   }
   2992 
   2993   LargePage* page = heap()->memory_allocator()->AllocateLargePage(
   2994       object_size, this, executable);
   2995   if (page == NULL) return AllocationResult::Retry(identity());
   2996   DCHECK(page->area_size() >= object_size);
   2997 
   2998   size_ += static_cast<int>(page->size());
   2999   AccountCommitted(static_cast<intptr_t>(page->size()));
   3000   objects_size_ += object_size;
   3001   page_count_++;
   3002   page->set_next_page(first_page_);
   3003   first_page_ = page;
   3004 
   3005   // Register all MemoryChunk::kAlignment-aligned chunks covered by
   3006   // this large page in the chunk map.
   3007   uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
   3008   uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment;
   3009   for (uintptr_t key = base; key <= limit; key++) {
   3010     base::HashMap::Entry* entry = chunk_map_.LookupOrInsert(
   3011         reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
   3012     DCHECK(entry != NULL);
   3013     entry->value = page;
   3014   }
   3015 
   3016   HeapObject* object = page->GetObject();
   3017   MSAN_ALLOCATED_UNINITIALIZED_MEMORY(object->address(), object_size);
   3018 
   3019   if (Heap::ShouldZapGarbage()) {
   3020     // Make the object consistent so the heap can be verified in OldSpaceStep.
   3021     // We only need to do this in debug builds or if verify_heap is on.
   3022     reinterpret_cast<Object**>(object->address())[0] =
   3023         heap()->fixed_array_map();
   3024     reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0);
   3025   }
   3026 
   3027   heap()->incremental_marking()->OldSpaceStep(object_size);
   3028   AllocationStep(object->address(), object_size);
   3029   return object;
   3030 }
   3031 
   3032 
   3033 size_t LargeObjectSpace::CommittedPhysicalMemory() {
   3034   // On a platform that provides lazy committing of memory, we over-account
   3035   // the actually committed memory. There is no easy way right now to support
   3036   // precise accounting of committed memory in large object space.
   3037   return CommittedMemory();
   3038 }
   3039 
   3040 
   3041 // GC support
   3042 Object* LargeObjectSpace::FindObject(Address a) {
   3043   LargePage* page = FindPage(a);
   3044   if (page != NULL) {
   3045     return page->GetObject();
   3046   }
   3047   return Smi::FromInt(0);  // Signaling not found.
   3048 }
   3049 
   3050 
   3051 LargePage* LargeObjectSpace::FindPage(Address a) {
   3052   uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
   3053   base::HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
   3054                                               static_cast<uint32_t>(key));
   3055   if (e != NULL) {
   3056     DCHECK(e->value != NULL);
   3057     LargePage* page = reinterpret_cast<LargePage*>(e->value);
   3058     DCHECK(LargePage::IsValid(page));
   3059     if (page->Contains(a)) {
   3060       return page;
   3061     }
   3062   }
   3063   return NULL;
   3064 }
   3065 
   3066 
   3067 void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
   3068   LargePage* current = first_page_;
   3069   while (current != NULL) {
   3070     HeapObject* object = current->GetObject();
   3071     MarkBit mark_bit = Marking::MarkBitFrom(object);
   3072     DCHECK(Marking::IsBlack(mark_bit));
   3073     Marking::BlackToWhite(mark_bit);
   3074     Page::FromAddress(object->address())->ResetProgressBar();
   3075     Page::FromAddress(object->address())->ResetLiveBytes();
   3076     current = current->next_page();
   3077   }
   3078 }
   3079 
   3080 
   3081 void LargeObjectSpace::FreeUnmarkedObjects() {
   3082   LargePage* previous = NULL;
   3083   LargePage* current = first_page_;
   3084   while (current != NULL) {
   3085     HeapObject* object = current->GetObject();
   3086     MarkBit mark_bit = Marking::MarkBitFrom(object);
   3087     DCHECK(!Marking::IsGrey(mark_bit));
   3088     if (Marking::IsBlack(mark_bit)) {
   3089       previous = current;
   3090       current = current->next_page();
   3091     } else {
   3092       LargePage* page = current;
   3093       // Cut the chunk out from the chunk list.
   3094       current = current->next_page();
   3095       if (previous == NULL) {
   3096         first_page_ = current;
   3097       } else {
   3098         previous->set_next_page(current);
   3099       }
   3100 
   3101       // Free the chunk.
   3102       size_ -= static_cast<int>(page->size());
   3103       AccountUncommitted(static_cast<intptr_t>(page->size()));
   3104       objects_size_ -= object->Size();
   3105       page_count_--;
   3106 
   3107       // Remove entries belonging to this page.
   3108       // Use variable alignment to help pass length check (<= 80 characters)
   3109       // of single line in tools/presubmit.py.
   3110       const intptr_t alignment = MemoryChunk::kAlignment;
   3111       uintptr_t base = reinterpret_cast<uintptr_t>(page) / alignment;
   3112       uintptr_t limit = base + (page->size() - 1) / alignment;
   3113       for (uintptr_t key = base; key <= limit; key++) {
   3114         chunk_map_.Remove(reinterpret_cast<void*>(key),
   3115                           static_cast<uint32_t>(key));
   3116       }
   3117 
   3118       heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   3119     }
   3120   }
   3121 }
   3122 
   3123 
   3124 bool LargeObjectSpace::Contains(HeapObject* object) {
   3125   Address address = object->address();
   3126   MemoryChunk* chunk = MemoryChunk::FromAddress(address);
   3127 
   3128   bool owned = (chunk->owner() == this);
   3129 
   3130   SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());
   3131 
   3132   return owned;
   3133 }
   3134 
   3135 
   3136 #ifdef VERIFY_HEAP
   3137 // We do not assume that the large object iterator works, because it depends
   3138 // on the invariants we are checking during verification.
   3139 void LargeObjectSpace::Verify() {
   3140   for (LargePage* chunk = first_page_; chunk != NULL;
   3141        chunk = chunk->next_page()) {
   3142     // Each chunk contains an object that starts at the large object page's
   3143     // object area start.
   3144     HeapObject* object = chunk->GetObject();
   3145     Page* page = Page::FromAddress(object->address());
   3146     CHECK(object->address() == page->area_start());
   3147 
   3148     // The first word should be a map, and we expect all map pointers to be
   3149     // in map space.
   3150     Map* map = object->map();
   3151     CHECK(map->IsMap());
   3152     CHECK(heap()->map_space()->Contains(map));
   3153 
   3154     // We have only code, sequential strings, external strings
   3155     // (sequential strings that have been morphed into external
   3156     // strings), fixed arrays, byte arrays, and constant pool arrays in the
   3157     // large object space.
   3158     CHECK(object->IsAbstractCode() || object->IsSeqString() ||
   3159           object->IsExternalString() || object->IsFixedArray() ||
   3160           object->IsFixedDoubleArray() || object->IsByteArray());
   3161 
   3162     // The object itself should look OK.
   3163     object->ObjectVerify();
   3164 
   3165     // Byte arrays and strings don't have interior pointers.
   3166     if (object->IsAbstractCode()) {
   3167       VerifyPointersVisitor code_visitor;
   3168       object->IterateBody(map->instance_type(), object->Size(), &code_visitor);
   3169     } else if (object->IsFixedArray()) {
   3170       FixedArray* array = FixedArray::cast(object);
   3171       for (int j = 0; j < array->length(); j++) {
   3172         Object* element = array->get(j);
   3173         if (element->IsHeapObject()) {
   3174           HeapObject* element_object = HeapObject::cast(element);
   3175           CHECK(heap()->Contains(element_object));
   3176           CHECK(element_object->map()->IsMap());
   3177         }
   3178       }
   3179     }
   3180   }
   3181 }
   3182 #endif
   3183 
   3184 void LargeObjectSpace::CollectCodeStatistics() {
   3185   Isolate* isolate = heap()->isolate();
   3186   LargeObjectIterator obj_it(this);
   3187   for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) {
   3188     if (obj->IsAbstractCode()) {
   3189       AbstractCode* code = AbstractCode::cast(obj);
   3190       RecordCodeSizeIncludingMetadata(code, isolate);
   3191 #ifdef DEBUG
   3192       isolate->code_kind_statistics()[code->kind()] += code->Size();
   3193       CollectCodeCommentStatistics(obj, isolate);
   3194 #endif
   3195     }
   3196   }
   3197 }
   3198 
   3199 #ifdef DEBUG
   3200 void LargeObjectSpace::Print() {
   3201   OFStream os(stdout);
   3202   LargeObjectIterator it(this);
   3203   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3204     obj->Print(os);
   3205   }
   3206 }
   3207 
   3208 
   3209 void LargeObjectSpace::ReportStatistics() {
   3210   PrintF("  size: %" V8PRIdPTR "\n", size_);
   3211   int num_objects = 0;
   3212   ClearHistograms(heap()->isolate());
   3213   LargeObjectIterator it(this);
   3214   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3215     num_objects++;
   3216     CollectHistogramInfo(obj);
   3217   }
   3218 
   3219   PrintF(
   3220       "  number of objects %d, "
   3221       "size of objects %" V8PRIdPTR "\n",
   3222       num_objects, objects_size_);
   3223   if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
   3224 }
   3225 
   3226 
   3227 void Page::Print() {
   3228   // Make a best-effort to print the objects in the page.
   3229   PrintF("Page@%p in %s\n", static_cast<void*>(this->address()),
   3230          AllocationSpaceName(this->owner()->identity()));
   3231   printf(" --------------------------------------\n");
   3232   HeapObjectIterator objects(this);
   3233   unsigned mark_size = 0;
   3234   for (HeapObject* object = objects.Next(); object != NULL;
   3235        object = objects.Next()) {
   3236     bool is_marked = Marking::IsBlackOrGrey(Marking::MarkBitFrom(object));
   3237     PrintF(" %c ", (is_marked ? '!' : ' '));  // Indent a little.
   3238     if (is_marked) {
   3239       mark_size += object->Size();
   3240     }
   3241     object->ShortPrint();
   3242     PrintF("\n");
   3243   }
   3244   printf(" --------------------------------------\n");
   3245   printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
   3246 }
   3247 
   3248 #endif  // DEBUG
   3249 }  // namespace internal
   3250 }  // namespace v8
   3251