Home | History | Annotate | Download | only in mips
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 // Declares a Simulator for MIPS instructions if we are not generating a native
      7 // MIPS binary. This Simulator allows us to run and debug MIPS code generation
      8 // on regular desktop machines.
      9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
     10 // which will start execution in the Simulator or forwards to the real entry
     11 // on a MIPS HW platform.
     12 
     13 #ifndef V8_MIPS_SIMULATOR_MIPS_H_
     14 #define V8_MIPS_SIMULATOR_MIPS_H_
     15 
     16 #include "src/allocation.h"
     17 #include "src/mips/constants-mips.h"
     18 
     19 #if !defined(USE_SIMULATOR)
     20 // Running without a simulator on a native mips platform.
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 // When running without a simulator we call the entry directly.
     26 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
     27   entry(p0, p1, p2, p3, p4)
     28 
     29 typedef int (*mips_regexp_matcher)(String*, int, const byte*, const byte*,
     30                                    void*, int*, int, Address, int, Isolate*);
     31 
     32 
     33 // Call the generated regexp code directly. The code at the entry address
     34 // should act as a function matching the type arm_regexp_matcher.
     35 // The fifth argument is a dummy that reserves the space used for
     36 // the return address added by the ExitFrame in native calls.
     37 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
     38                                    p7, p8)                                     \
     39   (FUNCTION_CAST<mips_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6, \
     40                                              p7, p8))
     41 
     42 // The stack limit beyond which we will throw stack overflow errors in
     43 // generated code. Because generated code on mips uses the C stack, we
     44 // just use the C stack limit.
     45 class SimulatorStack : public v8::internal::AllStatic {
     46  public:
     47   static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
     48                                             uintptr_t c_limit) {
     49     return c_limit;
     50   }
     51 
     52   static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
     53                                             uintptr_t try_catch_address) {
     54     USE(isolate);
     55     return try_catch_address;
     56   }
     57 
     58   static inline void UnregisterCTryCatch(Isolate* isolate) { USE(isolate); }
     59 };
     60 
     61 }  // namespace internal
     62 }  // namespace v8
     63 
     64 // Calculated the stack limit beyond which we will throw stack overflow errors.
     65 // This macro must be called from a C++ method. It relies on being able to take
     66 // the address of "this" to get a value on the current execution stack and then
     67 // calculates the stack limit based on that value.
     68 // NOTE: The check for overflow is not safe as there is no guarantee that the
     69 // running thread has its stack in all memory up to address 0x00000000.
     70 #define GENERATED_CODE_STACK_LIMIT(limit) \
     71   (reinterpret_cast<uintptr_t>(this) >= limit ? \
     72       reinterpret_cast<uintptr_t>(this) - limit : 0)
     73 
     74 #else  // !defined(USE_SIMULATOR)
     75 // Running with a simulator.
     76 
     77 #include "src/assembler.h"
     78 #include "src/base/hashmap.h"
     79 
     80 namespace v8 {
     81 namespace internal {
     82 
     83 // -----------------------------------------------------------------------------
     84 // Utility functions
     85 
     86 class CachePage {
     87  public:
     88   static const int LINE_VALID = 0;
     89   static const int LINE_INVALID = 1;
     90 
     91   static const int kPageShift = 12;
     92   static const int kPageSize = 1 << kPageShift;
     93   static const int kPageMask = kPageSize - 1;
     94   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
     95   static const int kLineLength = 1 << kLineShift;
     96   static const int kLineMask = kLineLength - 1;
     97 
     98   CachePage() {
     99     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
    100   }
    101 
    102   char* ValidityByte(int offset) {
    103     return &validity_map_[offset >> kLineShift];
    104   }
    105 
    106   char* CachedData(int offset) {
    107     return &data_[offset];
    108   }
    109 
    110  private:
    111   char data_[kPageSize];   // The cached data.
    112   static const int kValidityMapSize = kPageSize >> kLineShift;
    113   char validity_map_[kValidityMapSize];  // One byte per line.
    114 };
    115 
    116 class Simulator {
    117  public:
    118   friend class MipsDebugger;
    119 
    120   // Registers are declared in order. See SMRL chapter 2.
    121   enum Register {
    122     no_reg = -1,
    123     zero_reg = 0,
    124     at,
    125     v0, v1,
    126     a0, a1, a2, a3,
    127     t0, t1, t2, t3, t4, t5, t6, t7,
    128     s0, s1, s2, s3, s4, s5, s6, s7,
    129     t8, t9,
    130     k0, k1,
    131     gp,
    132     sp,
    133     s8,
    134     ra,
    135     // LO, HI, and pc.
    136     LO,
    137     HI,
    138     pc,   // pc must be the last register.
    139     kNumSimuRegisters,
    140     // aliases
    141     fp = s8
    142   };
    143 
    144   // Coprocessor registers.
    145   // Generated code will always use doubles. So we will only use even registers.
    146   enum FPURegister {
    147     f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
    148     f12, f13, f14, f15,   // f12 and f14 are arguments FPURegisters.
    149     f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
    150     f26, f27, f28, f29, f30, f31,
    151     kNumFPURegisters
    152   };
    153 
    154   explicit Simulator(Isolate* isolate);
    155   ~Simulator();
    156 
    157   // The currently executing Simulator instance. Potentially there can be one
    158   // for each native thread.
    159   static Simulator* current(v8::internal::Isolate* isolate);
    160 
    161   // Accessors for register state. Reading the pc value adheres to the MIPS
    162   // architecture specification and is off by a 8 from the currently executing
    163   // instruction.
    164   void set_register(int reg, int32_t value);
    165   void set_dw_register(int dreg, const int* dbl);
    166   int32_t get_register(int reg) const;
    167   double get_double_from_register_pair(int reg);
    168   // Same for FPURegisters.
    169   void set_fpu_register(int fpureg, int64_t value);
    170   void set_fpu_register_word(int fpureg, int32_t value);
    171   void set_fpu_register_hi_word(int fpureg, int32_t value);
    172   void set_fpu_register_float(int fpureg, float value);
    173   void set_fpu_register_double(int fpureg, double value);
    174   void set_fpu_register_invalid_result64(float original, float rounded);
    175   void set_fpu_register_invalid_result(float original, float rounded);
    176   void set_fpu_register_word_invalid_result(float original, float rounded);
    177   void set_fpu_register_invalid_result64(double original, double rounded);
    178   void set_fpu_register_invalid_result(double original, double rounded);
    179   void set_fpu_register_word_invalid_result(double original, double rounded);
    180   int64_t get_fpu_register(int fpureg) const;
    181   int32_t get_fpu_register_word(int fpureg) const;
    182   int32_t get_fpu_register_signed_word(int fpureg) const;
    183   int32_t get_fpu_register_hi_word(int fpureg) const;
    184   float get_fpu_register_float(int fpureg) const;
    185   double get_fpu_register_double(int fpureg) const;
    186   void set_fcsr_bit(uint32_t cc, bool value);
    187   bool test_fcsr_bit(uint32_t cc);
    188   void set_fcsr_rounding_mode(FPURoundingMode mode);
    189   unsigned int get_fcsr_rounding_mode();
    190   bool set_fcsr_round_error(double original, double rounded);
    191   bool set_fcsr_round_error(float original, float rounded);
    192   bool set_fcsr_round64_error(double original, double rounded);
    193   bool set_fcsr_round64_error(float original, float rounded);
    194   void round_according_to_fcsr(double toRound, double& rounded,
    195                                int32_t& rounded_int, double fs);
    196   void round_according_to_fcsr(float toRound, float& rounded,
    197                                int32_t& rounded_int, float fs);
    198   void round64_according_to_fcsr(double toRound, double& rounded,
    199                                  int64_t& rounded_int, double fs);
    200   void round64_according_to_fcsr(float toRound, float& rounded,
    201                                  int64_t& rounded_int, float fs);
    202   // Special case of set_register and get_register to access the raw PC value.
    203   void set_pc(int32_t value);
    204   int32_t get_pc() const;
    205 
    206   Address get_sp() const {
    207     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
    208   }
    209 
    210   // Accessor to the internal simulator stack area.
    211   uintptr_t StackLimit(uintptr_t c_limit) const;
    212 
    213   // Executes MIPS instructions until the PC reaches end_sim_pc.
    214   void Execute();
    215 
    216   // Call on program start.
    217   static void Initialize(Isolate* isolate);
    218 
    219   static void TearDown(base::HashMap* i_cache, Redirection* first);
    220 
    221   // V8 generally calls into generated JS code with 5 parameters and into
    222   // generated RegExp code with 7 parameters. This is a convenience function,
    223   // which sets up the simulator state and grabs the result on return.
    224   int32_t Call(byte* entry, int argument_count, ...);
    225   // Alternative: call a 2-argument double function.
    226   double CallFP(byte* entry, double d0, double d1);
    227 
    228   // Push an address onto the JS stack.
    229   uintptr_t PushAddress(uintptr_t address);
    230 
    231   // Pop an address from the JS stack.
    232   uintptr_t PopAddress();
    233 
    234   // Debugger input.
    235   void set_last_debugger_input(char* input);
    236   char* last_debugger_input() { return last_debugger_input_; }
    237 
    238   // ICache checking.
    239   static void FlushICache(base::HashMap* i_cache, void* start, size_t size);
    240 
    241   // Returns true if pc register contains one of the 'special_values' defined
    242   // below (bad_ra, end_sim_pc).
    243   bool has_bad_pc() const;
    244 
    245  private:
    246   enum special_values {
    247     // Known bad pc value to ensure that the simulator does not execute
    248     // without being properly setup.
    249     bad_ra = -1,
    250     // A pc value used to signal the simulator to stop execution.  Generally
    251     // the ra is set to this value on transition from native C code to
    252     // simulated execution, so that the simulator can "return" to the native
    253     // C code.
    254     end_sim_pc = -2,
    255     // Unpredictable value.
    256     Unpredictable = 0xbadbeaf
    257   };
    258 
    259   // Unsupported instructions use Format to print an error and stop execution.
    260   void Format(Instruction* instr, const char* format);
    261 
    262   // Read and write memory.
    263   inline uint32_t ReadBU(int32_t addr);
    264   inline int32_t ReadB(int32_t addr);
    265   inline void WriteB(int32_t addr, uint8_t value);
    266   inline void WriteB(int32_t addr, int8_t value);
    267 
    268   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
    269   inline int16_t ReadH(int32_t addr, Instruction* instr);
    270   // Note: Overloaded on the sign of the value.
    271   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
    272   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
    273 
    274   inline int ReadW(int32_t addr, Instruction* instr);
    275   inline void WriteW(int32_t addr, int value, Instruction* instr);
    276 
    277   inline double ReadD(int32_t addr, Instruction* instr);
    278   inline void WriteD(int32_t addr, double value, Instruction* instr);
    279 
    280   // Helpers for data value tracing.
    281   enum TraceType {
    282     BYTE,
    283     HALF,
    284     WORD
    285     // DWORD,
    286     // DFLOAT - Floats may have printing issues due to paired lwc1's
    287   };
    288 
    289   void TraceRegWr(int32_t value);
    290   void TraceMemWr(int32_t addr, int32_t value, TraceType t);
    291   void TraceMemRd(int32_t addr, int32_t value);
    292   EmbeddedVector<char, 128> trace_buf_;
    293 
    294   // Operations depending on endianness.
    295   // Get Double Higher / Lower word.
    296   inline int32_t GetDoubleHIW(double* addr);
    297   inline int32_t GetDoubleLOW(double* addr);
    298   // Set Double Higher / Lower word.
    299   inline int32_t SetDoubleHIW(double* addr);
    300   inline int32_t SetDoubleLOW(double* addr);
    301 
    302   // Executing is handled based on the instruction type.
    303   void DecodeTypeRegister(Instruction* instr);
    304 
    305   // Functions called from DecodeTypeRegister.
    306   void DecodeTypeRegisterCOP1();
    307 
    308   void DecodeTypeRegisterCOP1X();
    309 
    310   void DecodeTypeRegisterSPECIAL();
    311 
    312   void DecodeTypeRegisterSPECIAL2();
    313 
    314   void DecodeTypeRegisterSPECIAL3();
    315 
    316   // Called from DecodeTypeRegisterCOP1.
    317   void DecodeTypeRegisterSRsType();
    318 
    319   void DecodeTypeRegisterDRsType();
    320 
    321   void DecodeTypeRegisterWRsType();
    322 
    323   void DecodeTypeRegisterLRsType();
    324 
    325   Instruction* currentInstr_;
    326 
    327   inline Instruction* get_instr() const { return currentInstr_; }
    328   inline void set_instr(Instruction* instr) { currentInstr_ = instr; }
    329 
    330   inline int32_t rs_reg() const { return currentInstr_->RsValue(); }
    331   inline int32_t rs() const { return get_register(rs_reg()); }
    332   inline uint32_t rs_u() const {
    333     return static_cast<uint32_t>(get_register(rs_reg()));
    334   }
    335   inline int32_t rt_reg() const { return currentInstr_->RtValue(); }
    336   inline int32_t rt() const { return get_register(rt_reg()); }
    337   inline uint32_t rt_u() const {
    338     return static_cast<uint32_t>(get_register(rt_reg()));
    339   }
    340   inline int32_t rd_reg() const { return currentInstr_->RdValue(); }
    341   inline int32_t fr_reg() const { return currentInstr_->FrValue(); }
    342   inline int32_t fs_reg() const { return currentInstr_->FsValue(); }
    343   inline int32_t ft_reg() const { return currentInstr_->FtValue(); }
    344   inline int32_t fd_reg() const { return currentInstr_->FdValue(); }
    345   inline int32_t sa() const { return currentInstr_->SaValue(); }
    346   inline int32_t lsa_sa() const { return currentInstr_->LsaSaValue(); }
    347 
    348   inline void SetResult(int32_t rd_reg, int32_t alu_out) {
    349     set_register(rd_reg, alu_out);
    350     TraceRegWr(alu_out);
    351   }
    352 
    353   void DecodeTypeImmediate(Instruction* instr);
    354   void DecodeTypeJump(Instruction* instr);
    355 
    356   // Used for breakpoints and traps.
    357   void SoftwareInterrupt(Instruction* instr);
    358 
    359   // Compact branch guard.
    360   void CheckForbiddenSlot(int32_t current_pc) {
    361     Instruction* instr_after_compact_branch =
    362         reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
    363     if (instr_after_compact_branch->IsForbiddenAfterBranch()) {
    364       V8_Fatal(__FILE__, __LINE__,
    365                "Error: Unexpected instruction 0x%08x immediately after a "
    366                "compact branch instruction.",
    367                *reinterpret_cast<uint32_t*>(instr_after_compact_branch));
    368     }
    369   }
    370 
    371   // Stop helper functions.
    372   bool IsWatchpoint(uint32_t code);
    373   void PrintWatchpoint(uint32_t code);
    374   void HandleStop(uint32_t code, Instruction* instr);
    375   bool IsStopInstruction(Instruction* instr);
    376   bool IsEnabledStop(uint32_t code);
    377   void EnableStop(uint32_t code);
    378   void DisableStop(uint32_t code);
    379   void IncreaseStopCounter(uint32_t code);
    380   void PrintStopInfo(uint32_t code);
    381 
    382 
    383   // Executes one instruction.
    384   void InstructionDecode(Instruction* instr);
    385   // Execute one instruction placed in a branch delay slot.
    386   void BranchDelayInstructionDecode(Instruction* instr) {
    387     if (instr->InstructionBits() == nopInstr) {
    388       // Short-cut generic nop instructions. They are always valid and they
    389       // never change the simulator state.
    390       return;
    391     }
    392 
    393     if (instr->IsForbiddenInBranchDelay()) {
    394       V8_Fatal(__FILE__, __LINE__,
    395                "Eror:Unexpected %i opcode in a branch delay slot.",
    396                instr->OpcodeValue());
    397     }
    398     InstructionDecode(instr);
    399     SNPrintF(trace_buf_, " ");
    400   }
    401 
    402   // ICache.
    403   static void CheckICache(base::HashMap* i_cache, Instruction* instr);
    404   static void FlushOnePage(base::HashMap* i_cache, intptr_t start, int size);
    405   static CachePage* GetCachePage(base::HashMap* i_cache, void* page);
    406 
    407   enum Exception {
    408     none,
    409     kIntegerOverflow,
    410     kIntegerUnderflow,
    411     kDivideByZero,
    412     kNumExceptions
    413   };
    414 
    415   // Exceptions.
    416   void SignalException(Exception e);
    417 
    418   // Runtime call support.
    419   static void* RedirectExternalReference(Isolate* isolate,
    420                                          void* external_function,
    421                                          ExternalReference::Type type);
    422 
    423   // Handle arguments and return value for runtime FP functions.
    424   void GetFpArgs(double* x, double* y, int32_t* z);
    425   void SetFpResult(const double& result);
    426 
    427   void CallInternal(byte* entry);
    428 
    429   // Architecture state.
    430   // Registers.
    431   int32_t registers_[kNumSimuRegisters];
    432   // Coprocessor Registers.
    433   // Note: FP32 mode uses only the lower 32-bit part of each element,
    434   // the upper 32-bit is unpredictable.
    435   int64_t FPUregisters_[kNumFPURegisters];
    436   // FPU control register.
    437   uint32_t FCSR_;
    438 
    439   // Simulator support.
    440   // Allocate 1MB for stack.
    441   static const size_t stack_size_ = 1 * 1024*1024;
    442   char* stack_;
    443   bool pc_modified_;
    444   uint64_t icount_;
    445   int break_count_;
    446 
    447   // Debugger input.
    448   char* last_debugger_input_;
    449 
    450   // Icache simulation.
    451   base::HashMap* i_cache_;
    452 
    453   v8::internal::Isolate* isolate_;
    454 
    455   // Registered breakpoints.
    456   Instruction* break_pc_;
    457   Instr break_instr_;
    458 
    459   // Stop is disabled if bit 31 is set.
    460   static const uint32_t kStopDisabledBit = 1 << 31;
    461 
    462   // A stop is enabled, meaning the simulator will stop when meeting the
    463   // instruction, if bit 31 of watched_stops_[code].count is unset.
    464   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
    465   // the breakpoint was hit or gone through.
    466   struct StopCountAndDesc {
    467     uint32_t count;
    468     char* desc;
    469   };
    470   StopCountAndDesc watched_stops_[kMaxStopCode + 1];
    471 };
    472 
    473 
    474 // When running with the simulator transition into simulated execution at this
    475 // point.
    476 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
    477   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
    478       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
    479 
    480 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
    481                                    p7, p8)                                     \
    482   Simulator::current(isolate)                                                  \
    483       ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
    484 
    485 
    486 // The simulator has its own stack. Thus it has a different stack limit from
    487 // the C-based native code.  The JS-based limit normally points near the end of
    488 // the simulator stack.  When the C-based limit is exhausted we reflect that by
    489 // lowering the JS-based limit as well, to make stack checks trigger.
    490 class SimulatorStack : public v8::internal::AllStatic {
    491  public:
    492   static inline uintptr_t JsLimitFromCLimit(Isolate* isolate,
    493                                             uintptr_t c_limit) {
    494     return Simulator::current(isolate)->StackLimit(c_limit);
    495   }
    496 
    497   static inline uintptr_t RegisterCTryCatch(Isolate* isolate,
    498                                             uintptr_t try_catch_address) {
    499     Simulator* sim = Simulator::current(isolate);
    500     return sim->PushAddress(try_catch_address);
    501   }
    502 
    503   static inline void UnregisterCTryCatch(Isolate* isolate) {
    504     Simulator::current(isolate)->PopAddress();
    505   }
    506 };
    507 
    508 }  // namespace internal
    509 }  // namespace v8
    510 
    511 #endif  // !defined(USE_SIMULATOR)
    512 #endif  // V8_MIPS_SIMULATOR_MIPS_H_
    513