Home | History | Annotate | Download | only in include
      1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
      2  *
      3  * Permission is hereby granted, free of charge, to any person obtaining a copy
      4  * of this software and associated documentation files (the "Software"), to deal
      5  * in the Software without restriction, including without limitation the rights
      6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      7  * copies of the Software, and to permit persons to whom the Software is
      8  * furnished to do so, subject to the following conditions:
      9  *
     10  * The above copyright notice and this permission notice shall be included in
     11  * all copies or substantial portions of the Software.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
     16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     19  * THE SOFTWARE.
     20  *
     21  *===-----------------------------------------------------------------------===
     22  */
     23 
     24 #ifndef __IMMINTRIN_H
     25 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
     26 #endif
     27 
     28 #ifndef __AVXINTRIN_H
     29 #define __AVXINTRIN_H
     30 
     31 typedef double __v4df __attribute__ ((__vector_size__ (32)));
     32 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
     33 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
     34 typedef int __v8si __attribute__ ((__vector_size__ (32)));
     35 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
     36 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
     37 
     38 /* We need an explicitly signed variant for char. Note that this shouldn't
     39  * appear in the interface though. */
     40 typedef signed char __v32qs __attribute__((__vector_size__(32)));
     41 
     42 typedef float __m256 __attribute__ ((__vector_size__ (32)));
     43 typedef double __m256d __attribute__((__vector_size__(32)));
     44 typedef long long __m256i __attribute__((__vector_size__(32)));
     45 
     46 /* Define the default attributes for the functions in this file. */
     47 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
     48 
     49 /* Arithmetic */
     50 /// \brief Adds two 256-bit vectors of [4 x double].
     51 ///
     52 /// \headerfile <x86intrin.h>
     53 ///
     54 /// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
     55 ///
     56 /// \param __a
     57 ///    A 256-bit vector of [4 x double] containing one of the source operands.
     58 /// \param __b
     59 ///    A 256-bit vector of [4 x double] containing one of the source operands.
     60 /// \returns A 256-bit vector of [4 x double] containing the sums of both
     61 ///    operands.
     62 static __inline __m256d __DEFAULT_FN_ATTRS
     63 _mm256_add_pd(__m256d __a, __m256d __b)
     64 {
     65   return __a+__b;
     66 }
     67 
     68 /// \brief Adds two 256-bit vectors of [8 x float].
     69 ///
     70 /// \headerfile <x86intrin.h>
     71 ///
     72 /// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
     73 ///
     74 /// \param __a
     75 ///    A 256-bit vector of [8 x float] containing one of the source operands.
     76 /// \param __b
     77 ///    A 256-bit vector of [8 x float] containing one of the source operands.
     78 /// \returns A 256-bit vector of [8 x float] containing the sums of both
     79 ///    operands.
     80 static __inline __m256 __DEFAULT_FN_ATTRS
     81 _mm256_add_ps(__m256 __a, __m256 __b)
     82 {
     83   return __a+__b;
     84 }
     85 
     86 /// \brief Subtracts two 256-bit vectors of [4 x double].
     87 ///
     88 /// \headerfile <x86intrin.h>
     89 ///
     90 /// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
     91 ///
     92 /// \param __a
     93 ///    A 256-bit vector of [4 x double] containing the minuend.
     94 /// \param __b
     95 ///    A 256-bit vector of [4 x double] containing the subtrahend.
     96 /// \returns A 256-bit vector of [4 x double] containing the differences between
     97 ///    both operands.
     98 static __inline __m256d __DEFAULT_FN_ATTRS
     99 _mm256_sub_pd(__m256d __a, __m256d __b)
    100 {
    101   return __a-__b;
    102 }
    103 
    104 /// \brief Subtracts two 256-bit vectors of [8 x float].
    105 ///
    106 /// \headerfile <x86intrin.h>
    107 ///
    108 /// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
    109 ///
    110 /// \param __a
    111 ///    A 256-bit vector of [8 x float] containing the minuend.
    112 /// \param __b
    113 ///    A 256-bit vector of [8 x float] containing the subtrahend.
    114 /// \returns A 256-bit vector of [8 x float] containing the differences between
    115 ///    both operands.
    116 static __inline __m256 __DEFAULT_FN_ATTRS
    117 _mm256_sub_ps(__m256 __a, __m256 __b)
    118 {
    119   return __a-__b;
    120 }
    121 
    122 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
    123 ///    two 256-bit vectors of [4 x double].
    124 ///
    125 /// \headerfile <x86intrin.h>
    126 ///
    127 /// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
    128 ///
    129 /// \param __a
    130 ///    A 256-bit vector of [4 x double] containing the left source operand.
    131 /// \param __b
    132 ///    A 256-bit vector of [4 x double] containing the right source operand.
    133 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
    134 ///    and differences between both operands.
    135 static __inline __m256d __DEFAULT_FN_ATTRS
    136 _mm256_addsub_pd(__m256d __a, __m256d __b)
    137 {
    138   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
    139 }
    140 
    141 /// \brief Adds the even-indexed values and subtracts the odd-indexed values of
    142 ///    two 256-bit vectors of [8 x float].
    143 ///
    144 /// \headerfile <x86intrin.h>
    145 ///
    146 /// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
    147 ///
    148 /// \param __a
    149 ///    A 256-bit vector of [8 x float] containing the left source operand.
    150 /// \param __b
    151 ///    A 256-bit vector of [8 x float] containing the right source operand.
    152 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
    153 ///    differences between both operands.
    154 static __inline __m256 __DEFAULT_FN_ATTRS
    155 _mm256_addsub_ps(__m256 __a, __m256 __b)
    156 {
    157   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
    158 }
    159 
    160 /// \brief Divides two 256-bit vectors of [4 x double].
    161 ///
    162 /// \headerfile <x86intrin.h>
    163 ///
    164 /// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
    165 ///
    166 /// \param __a
    167 ///    A 256-bit vector of [4 x double] containing the dividend.
    168 /// \param __b
    169 ///    A 256-bit vector of [4 x double] containing the divisor.
    170 /// \returns A 256-bit vector of [4 x double] containing the quotients between
    171 ///    both operands.
    172 static __inline __m256d __DEFAULT_FN_ATTRS
    173 _mm256_div_pd(__m256d __a, __m256d __b)
    174 {
    175   return __a / __b;
    176 }
    177 
    178 /// \brief Divides two 256-bit vectors of [8 x float].
    179 ///
    180 /// \headerfile <x86intrin.h>
    181 ///
    182 /// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
    183 ///
    184 /// \param __a
    185 ///    A 256-bit vector of [8 x float] containing the dividend.
    186 /// \param __b
    187 ///    A 256-bit vector of [8 x float] containing the divisor.
    188 /// \returns A 256-bit vector of [8 x float] containing the quotients between
    189 ///    both operands.
    190 static __inline __m256 __DEFAULT_FN_ATTRS
    191 _mm256_div_ps(__m256 __a, __m256 __b)
    192 {
    193   return __a / __b;
    194 }
    195 
    196 /// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
    197 ///    of each pair of values.
    198 ///
    199 /// \headerfile <x86intrin.h>
    200 ///
    201 /// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
    202 ///
    203 /// \param __a
    204 ///    A 256-bit vector of [4 x double] containing one of the operands.
    205 /// \param __b
    206 ///    A 256-bit vector of [4 x double] containing one of the operands.
    207 /// \returns A 256-bit vector of [4 x double] containing the maximum values
    208 ///    between both operands.
    209 static __inline __m256d __DEFAULT_FN_ATTRS
    210 _mm256_max_pd(__m256d __a, __m256d __b)
    211 {
    212   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
    213 }
    214 
    215 /// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
    216 ///    of each pair of values.
    217 ///
    218 /// \headerfile <x86intrin.h>
    219 ///
    220 /// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
    221 ///
    222 /// \param __a
    223 ///    A 256-bit vector of [8 x float] containing one of the operands.
    224 /// \param __b
    225 ///    A 256-bit vector of [8 x float] containing one of the operands.
    226 /// \returns A 256-bit vector of [8 x float] containing the maximum values
    227 ///    between both operands.
    228 static __inline __m256 __DEFAULT_FN_ATTRS
    229 _mm256_max_ps(__m256 __a, __m256 __b)
    230 {
    231   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
    232 }
    233 
    234 /// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
    235 ///    of each pair of values.
    236 ///
    237 /// \headerfile <x86intrin.h>
    238 ///
    239 /// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
    240 ///
    241 /// \param __a
    242 ///    A 256-bit vector of [4 x double] containing one of the operands.
    243 /// \param __b
    244 ///    A 256-bit vector of [4 x double] containing one of the operands.
    245 /// \returns A 256-bit vector of [4 x double] containing the minimum values
    246 ///    between both operands.
    247 static __inline __m256d __DEFAULT_FN_ATTRS
    248 _mm256_min_pd(__m256d __a, __m256d __b)
    249 {
    250   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
    251 }
    252 
    253 /// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
    254 ///    of each pair of values.
    255 ///
    256 /// \headerfile <x86intrin.h>
    257 ///
    258 /// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
    259 ///
    260 /// \param __a
    261 ///    A 256-bit vector of [8 x float] containing one of the operands.
    262 /// \param __b
    263 ///    A 256-bit vector of [8 x float] containing one of the operands.
    264 /// \returns A 256-bit vector of [8 x float] containing the minimum values
    265 ///    between both operands.
    266 static __inline __m256 __DEFAULT_FN_ATTRS
    267 _mm256_min_ps(__m256 __a, __m256 __b)
    268 {
    269   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
    270 }
    271 
    272 /// \brief Multiplies two 256-bit vectors of [4 x double].
    273 ///
    274 /// \headerfile <x86intrin.h>
    275 ///
    276 /// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
    277 ///
    278 /// \param __a
    279 ///    A 256-bit vector of [4 x double] containing one of the operands.
    280 /// \param __b
    281 ///    A 256-bit vector of [4 x double] containing one of the operands.
    282 /// \returns A 256-bit vector of [4 x double] containing the products between
    283 ///    both operands.
    284 static __inline __m256d __DEFAULT_FN_ATTRS
    285 _mm256_mul_pd(__m256d __a, __m256d __b)
    286 {
    287   return __a * __b;
    288 }
    289 
    290 /// \brief Multiplies two 256-bit vectors of [8 x float].
    291 ///
    292 /// \headerfile <x86intrin.h>
    293 ///
    294 /// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
    295 ///
    296 /// \param __a
    297 ///    A 256-bit vector of [8 x float] containing one of the operands.
    298 /// \param __b
    299 ///    A 256-bit vector of [8 x float] containing one of the operands.
    300 /// \returns A 256-bit vector of [8 x float] containing the products between
    301 ///    both operands.
    302 static __inline __m256 __DEFAULT_FN_ATTRS
    303 _mm256_mul_ps(__m256 __a, __m256 __b)
    304 {
    305   return __a * __b;
    306 }
    307 
    308 /// \brief Calculates the square roots of the values stored in a 256-bit vector
    309 ///    of [4 x double].
    310 ///
    311 /// \headerfile <x86intrin.h>
    312 ///
    313 /// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
    314 ///
    315 /// \param __a
    316 ///    A 256-bit vector of [4 x double].
    317 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
    318 ///    values in the operand.
    319 static __inline __m256d __DEFAULT_FN_ATTRS
    320 _mm256_sqrt_pd(__m256d __a)
    321 {
    322   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
    323 }
    324 
    325 /// \brief Calculates the square roots of the values stored in a 256-bit vector
    326 ///    of [8 x float].
    327 ///
    328 /// \headerfile <x86intrin.h>
    329 ///
    330 /// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
    331 ///
    332 /// \param __a
    333 ///    A 256-bit vector of [8 x float].
    334 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
    335 ///    values in the operand.
    336 static __inline __m256 __DEFAULT_FN_ATTRS
    337 _mm256_sqrt_ps(__m256 __a)
    338 {
    339   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
    340 }
    341 
    342 /// \brief Calculates the reciprocal square roots of the values stored in a
    343 ///    256-bit vector of [8 x float].
    344 ///
    345 /// \headerfile <x86intrin.h>
    346 ///
    347 /// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
    348 ///
    349 /// \param __a
    350 ///    A 256-bit vector of [8 x float].
    351 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
    352 ///    roots of the values in the operand.
    353 static __inline __m256 __DEFAULT_FN_ATTRS
    354 _mm256_rsqrt_ps(__m256 __a)
    355 {
    356   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
    357 }
    358 
    359 /// \brief Calculates the reciprocals of the values stored in a 256-bit vector
    360 ///    of [8 x float].
    361 ///
    362 /// \headerfile <x86intrin.h>
    363 ///
    364 /// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
    365 ///
    366 /// \param __a
    367 ///    A 256-bit vector of [8 x float].
    368 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
    369 ///    values in the operand.
    370 static __inline __m256 __DEFAULT_FN_ATTRS
    371 _mm256_rcp_ps(__m256 __a)
    372 {
    373   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
    374 }
    375 
    376 /// \brief Rounds the values stored in a 256-bit vector of [4 x double] as
    377 ///    specified by the byte operand. The source values are rounded to integer
    378 ///    values and returned as 64-bit double-precision floating-point values.
    379 ///
    380 /// \headerfile <x86intrin.h>
    381 ///
    382 /// \code
    383 /// __m256d _mm256_round_pd(__m256d V, const int M);
    384 /// \endcode
    385 ///
    386 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    387 ///
    388 /// \param V
    389 ///    A 256-bit vector of [4 x double].
    390 /// \param M
    391 ///    An integer value that specifies the rounding operation.
    392 ///    Bits [7:4] are reserved.
    393 ///    Bit [3] is a precision exception value:
    394 ///    0: A normal PE exception is used
    395 ///    1: The PE field is not updated
    396 ///    Bit [2] is the rounding control source:
    397 ///    0: Use bits [1:0] of M
    398 ///    1: Use the current MXCSR setting
    399 ///    Bits [1:0] contain the rounding control definition:
    400 ///    00: Nearest
    401 ///    01: Downward (toward negative infinity)
    402 ///    10: Upward (toward positive infinity)
    403 ///    11: Truncated
    404 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
    405 #define _mm256_round_pd(V, M) __extension__ ({ \
    406     (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
    407 
    408 /// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
    409 ///    specified by the byte operand. The source values are rounded to integer
    410 ///    values and returned as floating-point values.
    411 ///
    412 /// \headerfile <x86intrin.h>
    413 ///
    414 /// \code
    415 /// __m256 _mm256_round_ps(__m256 V, const int M);
    416 /// \endcode
    417 ///
    418 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    419 ///
    420 /// \param V
    421 ///    A 256-bit vector of [8 x float].
    422 /// \param M
    423 ///    An integer value that specifies the rounding operation.
    424 ///    Bits [7:4] are reserved.
    425 ///    Bit [3] is a precision exception value:
    426 ///    0: A normal PE exception is used
    427 ///    1: The PE field is not updated
    428 ///    Bit [2] is the rounding control source:
    429 ///    0: Use bits [1:0] of M
    430 ///    1: Use the current MXCSR setting
    431 ///    Bits [1:0] contain the rounding control definition:
    432 ///    00: Nearest
    433 ///    01: Downward (toward negative infinity)
    434 ///    10: Upward (toward positive infinity)
    435 ///    11: Truncated
    436 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
    437 #define _mm256_round_ps(V, M) __extension__ ({ \
    438   (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
    439 
    440 /// \brief Round up the values stored in a 256-bit vector of [4 x double]. The
    441 ///    source values are rounded up to integer values and returned as 64-bit
    442 ///    double-precision floating-point values.
    443 ///
    444 /// \headerfile <x86intrin.h>
    445 ///
    446 /// \code
    447 /// __m256d _mm256_ceil_pd(__m256d V);
    448 /// \endcode
    449 ///
    450 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    451 ///
    452 /// \param V
    453 ///    A 256-bit vector of [4 x double].
    454 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
    455 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
    456 
    457 /// \brief Round down the values stored in a 256-bit vector of [4 x double].
    458 ///    The source values are rounded down to integer values and returned as
    459 ///    64-bit double-precision floating-point values.
    460 ///
    461 /// \headerfile <x86intrin.h>
    462 ///
    463 /// \code
    464 /// __m256d _mm256_floor_pd(__m256d V);
    465 /// \endcode
    466 ///
    467 /// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
    468 ///
    469 /// \param V
    470 ///    A 256-bit vector of [4 x double].
    471 /// \returns A 256-bit vector of [4 x double] containing the rounded down
    472 ///    values.
    473 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
    474 
    475 /// \brief Round up the values stored in a 256-bit vector of [8 x float]. The
    476 ///    source values are rounded up to integer values and returned as
    477 ///    floating-point values.
    478 ///
    479 /// \headerfile <x86intrin.h>
    480 ///
    481 /// \code
    482 /// __m256 _mm256_ceil_ps(__m256 V);
    483 /// \endcode
    484 ///
    485 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    486 ///
    487 /// \param V
    488 ///    A 256-bit vector of [8 x float].
    489 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
    490 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
    491 
    492 /// \brief Round down the values stored in a 256-bit vector of [8 x float]. The
    493 ///    source values are rounded down to integer values and returned as
    494 ///    floating-point values.
    495 ///
    496 /// \headerfile <x86intrin.h>
    497 ///
    498 /// \code
    499 /// __m256 _mm256_floor_ps(__m256 V);
    500 /// \endcode
    501 ///
    502 /// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
    503 ///
    504 /// \param V
    505 ///    A 256-bit vector of [8 x float].
    506 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
    507 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
    508 
    509 /* Logical */
    510 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
    511 ///
    512 /// \headerfile <x86intrin.h>
    513 ///
    514 /// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
    515 ///
    516 /// \param __a
    517 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    518 /// \param __b
    519 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    520 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
    521 ///    values between both operands.
    522 static __inline __m256d __DEFAULT_FN_ATTRS
    523 _mm256_and_pd(__m256d __a, __m256d __b)
    524 {
    525   return (__m256d)((__v4di)__a & (__v4di)__b);
    526 }
    527 
    528 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
    529 ///
    530 /// \headerfile <x86intrin.h>
    531 ///
    532 /// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
    533 ///
    534 /// \param __a
    535 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    536 /// \param __b
    537 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    538 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
    539 ///    values between both operands.
    540 static __inline __m256 __DEFAULT_FN_ATTRS
    541 _mm256_and_ps(__m256 __a, __m256 __b)
    542 {
    543   return (__m256)((__v8si)__a & (__v8si)__b);
    544 }
    545 
    546 /// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
    547 ///    the one's complement of the values contained in the first source operand.
    548 ///
    549 /// \headerfile <x86intrin.h>
    550 ///
    551 /// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
    552 ///
    553 /// \param __a
    554 ///    A 256-bit vector of [4 x double] containing the left source operand. The
    555 ///    one's complement of this value is used in the bitwise AND.
    556 /// \param __b
    557 ///    A 256-bit vector of [4 x double] containing the right source operand.
    558 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
    559 ///    values of the second operand and the one's complement of the first
    560 ///    operand.
    561 static __inline __m256d __DEFAULT_FN_ATTRS
    562 _mm256_andnot_pd(__m256d __a, __m256d __b)
    563 {
    564   return (__m256d)(~(__v4di)__a & (__v4di)__b);
    565 }
    566 
    567 /// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
    568 ///    the one's complement of the values contained in the first source operand.
    569 ///
    570 /// \headerfile <x86intrin.h>
    571 ///
    572 /// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
    573 ///
    574 /// \param __a
    575 ///    A 256-bit vector of [8 x float] containing the left source operand. The
    576 ///    one's complement of this value is used in the bitwise AND.
    577 /// \param __b
    578 ///    A 256-bit vector of [8 x float] containing the right source operand.
    579 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
    580 ///    values of the second operand and the one's complement of the first
    581 ///    operand.
    582 static __inline __m256 __DEFAULT_FN_ATTRS
    583 _mm256_andnot_ps(__m256 __a, __m256 __b)
    584 {
    585   return (__m256)(~(__v8si)__a & (__v8si)__b);
    586 }
    587 
    588 /// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
    589 ///
    590 /// \headerfile <x86intrin.h>
    591 ///
    592 /// This intrinsic corresponds to the \c VORPD / ORPD instruction.
    593 ///
    594 /// \param __a
    595 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    596 /// \param __b
    597 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    598 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
    599 ///    values between both operands.
    600 static __inline __m256d __DEFAULT_FN_ATTRS
    601 _mm256_or_pd(__m256d __a, __m256d __b)
    602 {
    603   return (__m256d)((__v4di)__a | (__v4di)__b);
    604 }
    605 
    606 /// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
    607 ///
    608 /// \headerfile <x86intrin.h>
    609 ///
    610 /// This intrinsic corresponds to the \c VORPS / ORPS instruction.
    611 ///
    612 /// \param __a
    613 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    614 /// \param __b
    615 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    616 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
    617 ///    values between both operands.
    618 static __inline __m256 __DEFAULT_FN_ATTRS
    619 _mm256_or_ps(__m256 __a, __m256 __b)
    620 {
    621   return (__m256)((__v8si)__a | (__v8si)__b);
    622 }
    623 
    624 /// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
    625 ///
    626 /// \headerfile <x86intrin.h>
    627 ///
    628 /// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
    629 ///
    630 /// \param __a
    631 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    632 /// \param __b
    633 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    634 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
    635 ///    values between both operands.
    636 static __inline __m256d __DEFAULT_FN_ATTRS
    637 _mm256_xor_pd(__m256d __a, __m256d __b)
    638 {
    639   return (__m256d)((__v4di)__a ^ (__v4di)__b);
    640 }
    641 
    642 /// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
    643 ///
    644 /// \headerfile <x86intrin.h>
    645 ///
    646 /// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
    647 ///
    648 /// \param __a
    649 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    650 /// \param __b
    651 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    652 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
    653 ///    values between both operands.
    654 static __inline __m256 __DEFAULT_FN_ATTRS
    655 _mm256_xor_ps(__m256 __a, __m256 __b)
    656 {
    657   return (__m256)((__v8si)__a ^ (__v8si)__b);
    658 }
    659 
    660 /* Horizontal arithmetic */
    661 /// \brief Horizontally adds the adjacent pairs of values contained in two
    662 ///    256-bit vectors of [4 x double].
    663 ///
    664 /// \headerfile <x86intrin.h>
    665 ///
    666 /// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
    667 ///
    668 /// \param __a
    669 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    670 ///    The horizontal sums of the values are returned in the even-indexed
    671 ///    elements of a vector of [4 x double].
    672 /// \param __b
    673 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    674 ///    The horizontal sums of the values are returned in the odd-indexed
    675 ///    elements of a vector of [4 x double].
    676 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
    677 ///    both operands.
    678 static __inline __m256d __DEFAULT_FN_ATTRS
    679 _mm256_hadd_pd(__m256d __a, __m256d __b)
    680 {
    681   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
    682 }
    683 
    684 /// \brief Horizontally adds the adjacent pairs of values contained in two
    685 ///    256-bit vectors of [8 x float].
    686 ///
    687 /// \headerfile <x86intrin.h>
    688 ///
    689 /// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
    690 ///
    691 /// \param __a
    692 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    693 ///    The horizontal sums of the values are returned in the elements with
    694 ///    index 0, 1, 4, 5 of a vector of [8 x float].
    695 /// \param __b
    696 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    697 ///    The horizontal sums of the values are returned in the elements with
    698 ///    index 2, 3, 6, 7 of a vector of [8 x float].
    699 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
    700 ///    both operands.
    701 static __inline __m256 __DEFAULT_FN_ATTRS
    702 _mm256_hadd_ps(__m256 __a, __m256 __b)
    703 {
    704   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
    705 }
    706 
    707 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
    708 ///    256-bit vectors of [4 x double].
    709 ///
    710 /// \headerfile <x86intrin.h>
    711 ///
    712 /// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
    713 ///
    714 /// \param __a
    715 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    716 ///    The horizontal differences between the values are returned in the
    717 ///    even-indexed elements of a vector of [4 x double].
    718 /// \param __b
    719 ///    A 256-bit vector of [4 x double] containing one of the source operands.
    720 ///    The horizontal differences between the values are returned in the
    721 ///    odd-indexed elements of a vector of [4 x double].
    722 /// \returns A 256-bit vector of [4 x double] containing the horizontal
    723 ///    differences of both operands.
    724 static __inline __m256d __DEFAULT_FN_ATTRS
    725 _mm256_hsub_pd(__m256d __a, __m256d __b)
    726 {
    727   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
    728 }
    729 
    730 /// \brief Horizontally subtracts the adjacent pairs of values contained in two
    731 ///    256-bit vectors of [8 x float].
    732 ///
    733 /// \headerfile <x86intrin.h>
    734 ///
    735 /// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
    736 ///
    737 /// \param __a
    738 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    739 ///    The horizontal differences between the values are returned in the
    740 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
    741 /// \param __b
    742 ///    A 256-bit vector of [8 x float] containing one of the source operands.
    743 ///    The horizontal differences between the values are returned in the
    744 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
    745 /// \returns A 256-bit vector of [8 x float] containing the horizontal
    746 ///    differences of both operands.
    747 static __inline __m256 __DEFAULT_FN_ATTRS
    748 _mm256_hsub_ps(__m256 __a, __m256 __b)
    749 {
    750   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
    751 }
    752 
    753 /* Vector permutations */
    754 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
    755 ///    specified by the 128-bit integer vector operand.
    756 ///
    757 /// \headerfile <x86intrin.h>
    758 ///
    759 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    760 ///
    761 /// \param __a
    762 ///    A 128-bit vector of [2 x double].
    763 /// \param __c
    764 ///    A 128-bit integer vector operand specifying how the values are to be
    765 ///    copied.
    766 ///    Bit [1]:
    767 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    768 ///    returned vector
    769 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    770 ///    returned vector
    771 ///    Bit [65]:
    772 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    773 ///    returned vector
    774 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    775 ///    returned vector
    776 /// \returns A 128-bit vector of [2 x double] containing the copied values.
    777 static __inline __m128d __DEFAULT_FN_ATTRS
    778 _mm_permutevar_pd(__m128d __a, __m128i __c)
    779 {
    780   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
    781 }
    782 
    783 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
    784 ///    specified by the 256-bit integer vector operand.
    785 ///
    786 /// \headerfile <x86intrin.h>
    787 ///
    788 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    789 ///
    790 /// \param __a
    791 ///    A 256-bit vector of [4 x double].
    792 /// \param __c
    793 ///    A 256-bit integer vector operand specifying how the values are to be
    794 ///    copied.
    795 ///    Bit [1]:
    796 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    797 ///    returned vector
    798 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    799 ///    returned vector
    800 ///    Bit [65]:
    801 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    802 ///    returned vector
    803 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    804 ///    returned vector
    805 ///    Bit [129]:
    806 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
    807 ///    returned vector
    808 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
    809 ///    returned vector
    810 ///    Bit [193]:
    811 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
    812 ///    returned vector
    813 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
    814 ///    returned vector
    815 /// \returns A 256-bit vector of [4 x double] containing the copied values.
    816 static __inline __m256d __DEFAULT_FN_ATTRS
    817 _mm256_permutevar_pd(__m256d __a, __m256i __c)
    818 {
    819   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
    820 }
    821 
    822 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
    823 ///    specified by the 128-bit integer vector operand.
    824 ///
    825 /// \headerfile <x86intrin.h>
    826 ///
    827 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
    828 ///
    829 /// \param __a
    830 ///    A 128-bit vector of [4 x float].
    831 /// \param __c
    832 ///    A 128-bit integer vector operand specifying how the values are to be
    833 ///    copied.
    834 ///    Bits [1:0]:
    835 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
    836 ///    returned vector
    837 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
    838 ///    returned vector
    839 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
    840 ///    returned vector
    841 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
    842 ///    returned vector
    843 ///    Bits [33:32]:
    844 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
    845 ///    returned vector
    846 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
    847 ///    returned vector
    848 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
    849 ///    returned vector
    850 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
    851 ///    returned vector
    852 ///    Bits [65:64]:
    853 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
    854 ///    returned vector
    855 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
    856 ///    returned vector
    857 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
    858 ///    returned vector
    859 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
    860 ///    returned vector
    861 ///    Bits [97:96]:
    862 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
    863 ///    returned vector
    864 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
    865 ///    returned vector
    866 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
    867 ///    returned vector
    868 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
    869 ///    returned vector
    870 /// \returns A 128-bit vector of [4 x float] containing the copied values.
    871 static __inline __m128 __DEFAULT_FN_ATTRS
    872 _mm_permutevar_ps(__m128 __a, __m128i __c)
    873 {
    874   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
    875 }
    876 
    877 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
    878 ///    specified by the 256-bit integer vector operand.
    879 ///
    880 /// \headerfile <x86intrin.h>
    881 ///
    882 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
    883 ///
    884 /// \param __a
    885 ///    A 256-bit vector of [8 x float].
    886 /// \param __c
    887 ///    A 256-bit integer vector operand specifying how the values are to be
    888 ///    copied.
    889 ///    Bits [1:0]:
    890 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
    891 ///    returned vector
    892 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
    893 ///    returned vector
    894 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
    895 ///    returned vector
    896 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
    897 ///    returned vector
    898 ///    Bits [33:32]:
    899 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
    900 ///    returned vector
    901 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
    902 ///    returned vector
    903 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
    904 ///    returned vector
    905 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
    906 ///    returned vector
    907 ///    Bits [65:64]:
    908 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
    909 ///    returned vector
    910 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
    911 ///    returned vector
    912 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
    913 ///    returned vector
    914 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
    915 ///    returned vector
    916 ///    Bits [97:96]:
    917 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
    918 ///    returned vector
    919 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
    920 ///    returned vector
    921 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
    922 ///    returned vector
    923 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
    924 ///    returned vector
    925 ///    Bits [129:128]:
    926 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
    927 ///    returned vector
    928 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
    929 ///    returned vector
    930 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
    931 ///    returned vector
    932 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
    933 ///    returned vector
    934 ///    Bits [161:160]:
    935 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
    936 ///    returned vector
    937 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
    938 ///    returned vector
    939 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
    940 ///    returned vector
    941 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
    942 ///    returned vector
    943 ///    Bits [193:192]:
    944 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
    945 ///    returned vector
    946 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
    947 ///    returned vector
    948 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
    949 ///    returned vector
    950 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
    951 ///    returned vector
    952 ///    Bits [225:224]:
    953 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
    954 ///    returned vector
    955 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
    956 ///    returned vector
    957 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
    958 ///    returned vector
    959 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
    960 ///    returned vector
    961 /// \returns A 256-bit vector of [8 x float] containing the copied values.
    962 static __inline __m256 __DEFAULT_FN_ATTRS
    963 _mm256_permutevar_ps(__m256 __a, __m256i __c)
    964 {
    965   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
    966 }
    967 
    968 /// \brief Copies the values stored in a 128-bit vector of [2 x double] as
    969 ///    specified by the immediate integer operand.
    970 ///
    971 /// \headerfile <x86intrin.h>
    972 ///
    973 /// \code
    974 /// __m128d _mm_permute_pd(__m128d A, const int C);
    975 /// \endcode
    976 ///
    977 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
    978 ///
    979 /// \param A
    980 ///    A 128-bit vector of [2 x double].
    981 /// \param C
    982 ///    An immediate integer operand specifying how the values are to be copied.
    983 ///    Bit [0]:
    984 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
    985 ///    returned vector
    986 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
    987 ///    returned vector
    988 ///    Bit [1]:
    989 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
    990 ///    returned vector
    991 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
    992 ///    returned vector
    993 /// \returns A 128-bit vector of [2 x double] containing the copied values.
    994 #define _mm_permute_pd(A, C) __extension__ ({ \
    995   (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
    996                                    (__v2df)_mm_setzero_pd(), \
    997                                    (C) & 0x1, ((C) & 0x2) >> 1); })
    998 
    999 /// \brief Copies the values stored in a 256-bit vector of [4 x double] as
   1000 ///    specified by the immediate integer operand.
   1001 ///
   1002 /// \headerfile <x86intrin.h>
   1003 ///
   1004 /// \code
   1005 /// __m256d _mm256_permute_pd(__m256d A, const int C);
   1006 /// \endcode
   1007 ///
   1008 /// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
   1009 ///
   1010 /// \param A
   1011 ///    A 256-bit vector of [4 x double].
   1012 /// \param C
   1013 ///    An immediate integer operand specifying how the values are to be copied.
   1014 ///    Bit [0]:
   1015 ///    0: Bits [63:0] of the source are copied to bits [63:0] of the
   1016 ///    returned vector
   1017 ///    1: Bits [127:64] of the source are copied to bits [63:0] of the
   1018 ///    returned vector
   1019 ///    Bit [1]:
   1020 ///    0: Bits [63:0] of the source are copied to bits [127:64] of the
   1021 ///    returned vector
   1022 ///    1: Bits [127:64] of the source are copied to bits [127:64] of the
   1023 ///    returned vector
   1024 ///    Bit [2]:
   1025 ///    0: Bits [191:128] of the source are copied to bits [191:128] of the
   1026 ///    returned vector
   1027 ///    1: Bits [255:192] of the source are copied to bits [191:128] of the
   1028 ///    returned vector
   1029 ///    Bit [3]:
   1030 ///    0: Bits [191:128] of the source are copied to bits [255:192] of the
   1031 ///    returned vector
   1032 ///    1: Bits [255:192] of the source are copied to bits [255:192] of the
   1033 ///    returned vector
   1034 /// \returns A 256-bit vector of [4 x double] containing the copied values.
   1035 #define _mm256_permute_pd(A, C) __extension__ ({ \
   1036   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
   1037                                    (__v4df)_mm256_setzero_pd(), \
   1038                                    (C) & 0x1, ((C) & 0x2) >> 1, \
   1039                                    2 + (((C) & 0x4) >> 2), \
   1040                                    2 + (((C) & 0x8) >> 3)); })
   1041 
   1042 /// \brief Copies the values stored in a 128-bit vector of [4 x float] as
   1043 ///    specified by the immediate integer operand.
   1044 ///
   1045 /// \headerfile <x86intrin.h>
   1046 ///
   1047 /// \code
   1048 /// __m128 _mm_permute_ps(__m128 A, const int C);
   1049 /// \endcode
   1050 ///
   1051 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
   1052 ///
   1053 /// \param A
   1054 ///    A 128-bit vector of [4 x float].
   1055 /// \param C
   1056 ///    An immediate integer operand specifying how the values are to be copied.
   1057 ///    Bits [1:0]:
   1058 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
   1059 ///    returned vector
   1060 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
   1061 ///    returned vector
   1062 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
   1063 ///    returned vector
   1064 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
   1065 ///    returned vector
   1066 ///    Bits [3:2]:
   1067 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
   1068 ///    returned vector
   1069 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
   1070 ///    returned vector
   1071 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
   1072 ///    returned vector
   1073 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
   1074 ///    returned vector
   1075 ///    Bits [5:4]:
   1076 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
   1077 ///    returned vector
   1078 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
   1079 ///    returned vector
   1080 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
   1081 ///    returned vector
   1082 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
   1083 ///    returned vector
   1084 ///    Bits [7:6]:
   1085 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
   1086 ///    returned vector
   1087 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
   1088 ///    returned vector
   1089 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
   1090 ///    returned vector
   1091 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
   1092 ///    returned vector
   1093 /// \returns A 128-bit vector of [4 x float] containing the copied values.
   1094 #define _mm_permute_ps(A, C) __extension__ ({ \
   1095   (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
   1096                                   (__v4sf)_mm_setzero_ps(), \
   1097                                    (C) & 0x3, ((C) & 0xc) >> 2, \
   1098                                    ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6); })
   1099 
   1100 /// \brief Copies the values stored in a 256-bit vector of [8 x float] as
   1101 ///    specified by the immediate integer operand.
   1102 ///
   1103 /// \headerfile <x86intrin.h>
   1104 ///
   1105 /// \code
   1106 /// __m256 _mm256_permute_ps(__m256 A, const int C);
   1107 /// \endcode
   1108 ///
   1109 /// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
   1110 ///
   1111 /// \param A
   1112 ///    A 256-bit vector of [8 x float].
   1113 /// \param C
   1114 ///    An immediate integer operand specifying how the values are to be copied.
   1115 ///    Bits [1:0]:
   1116 ///    00: Bits [31:0] of the source are copied to bits [31:0] of the
   1117 ///    returned vector
   1118 ///    01: Bits [63:32] of the source are copied to bits [31:0] of the
   1119 ///    returned vector
   1120 ///    10: Bits [95:64] of the source are copied to bits [31:0] of the
   1121 ///    returned vector
   1122 ///    11: Bits [127:96] of the source are copied to bits [31:0] of the
   1123 ///    returned vector
   1124 ///    Bits [3:2]:
   1125 ///    00: Bits [31:0] of the source are copied to bits [63:32] of the
   1126 ///    returned vector
   1127 ///    01: Bits [63:32] of the source are copied to bits [63:32] of the
   1128 ///    returned vector
   1129 ///    10: Bits [95:64] of the source are copied to bits [63:32] of the
   1130 ///    returned vector
   1131 ///    11: Bits [127:96] of the source are copied to bits [63:32] of the
   1132 ///    returned vector
   1133 ///    Bits [5:4]:
   1134 ///    00: Bits [31:0] of the source are copied to bits [95:64] of the
   1135 ///    returned vector
   1136 ///    01: Bits [63:32] of the source are copied to bits [95:64] of the
   1137 ///    returned vector
   1138 ///    10: Bits [95:64] of the source are copied to bits [95:64] of the
   1139 ///    returned vector
   1140 ///    11: Bits [127:96] of the source are copied to bits [95:64] of the
   1141 ///    returned vector
   1142 ///    Bits [7:6]:
   1143 ///    00: Bits [31:0] of the source are copied to bits [127:96] of the
   1144 ///    returned vector
   1145 ///    01: Bits [63:32] of the source are copied to bits [127:96] of the
   1146 ///    returned vector
   1147 ///    10: Bits [95:64] of the source are copied to bits [127:96] of the
   1148 ///    returned vector
   1149 ///    11: Bits [127:96] of the source are copied to bits [127:96] of the
   1150 ///    returned vector
   1151 ///    Bits [1:0]:
   1152 ///    00: Bits [159:128] of the source are copied to bits [159:128] of the
   1153 ///    returned vector
   1154 ///    01: Bits [191:160] of the source are copied to bits [159:128] of the
   1155 ///    returned vector
   1156 ///    10: Bits [223:192] of the source are copied to bits [159:128] of the
   1157 ///    returned vector
   1158 ///    11: Bits [255:224] of the source are copied to bits [159:128] of the
   1159 ///    returned vector
   1160 ///    Bits [3:2]:
   1161 ///    00: Bits [159:128] of the source are copied to bits [191:160] of the
   1162 ///    returned vector
   1163 ///    01: Bits [191:160] of the source are copied to bits [191:160] of the
   1164 ///    returned vector
   1165 ///    10: Bits [223:192] of the source are copied to bits [191:160] of the
   1166 ///    returned vector
   1167 ///    11: Bits [255:224] of the source are copied to bits [191:160] of the
   1168 ///    returned vector
   1169 ///    Bits [5:4]:
   1170 ///    00: Bits [159:128] of the source are copied to bits [223:192] of the
   1171 ///    returned vector
   1172 ///    01: Bits [191:160] of the source are copied to bits [223:192] of the
   1173 ///    returned vector
   1174 ///    10: Bits [223:192] of the source are copied to bits [223:192] of the
   1175 ///    returned vector
   1176 ///    11: Bits [255:224] of the source are copied to bits [223:192] of the
   1177 ///    returned vector
   1178 ///    Bits [7:6]:
   1179 ///    00: Bits [159:128] of the source are copied to bits [255:224] of the
   1180 ///    returned vector
   1181 ///    01: Bits [191:160] of the source are copied to bits [255:224] of the
   1182 ///    returned vector
   1183 ///    10: Bits [223:192] of the source are copied to bits [255:224] of the
   1184 ///    returned vector
   1185 ///    11: Bits [255:224] of the source are copied to bits [255:224] of the
   1186 ///    returned vector
   1187 /// \returns A 256-bit vector of [8 x float] containing the copied values.
   1188 #define _mm256_permute_ps(A, C) __extension__ ({ \
   1189   (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
   1190                                   (__v8sf)_mm256_setzero_ps(), \
   1191                                   (C) & 0x3, ((C) & 0xc) >> 2, \
   1192                                   ((C) & 0x30) >> 4, ((C) & 0xc0) >> 6, \
   1193                                   4 + (((C) & 0x03) >> 0), \
   1194                                   4 + (((C) & 0x0c) >> 2), \
   1195                                   4 + (((C) & 0x30) >> 4), \
   1196                                   4 + (((C) & 0xc0) >> 6)); })
   1197 
   1198 #define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
   1199   (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
   1200                                            (__v4df)(__m256d)(V2), (M)); })
   1201 
   1202 #define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
   1203   (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
   1204                                           (__v8sf)(__m256)(V2), (M)); })
   1205 
   1206 #define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
   1207   (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
   1208                                            (__v8si)(__m256i)(V2), (M)); })
   1209 
   1210 /* Vector Blend */
   1211 #define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
   1212   (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
   1213                                    (__v4df)(__m256d)(V2), \
   1214                                    (((M) & 0x01) ? 4 : 0), \
   1215                                    (((M) & 0x02) ? 5 : 1), \
   1216                                    (((M) & 0x04) ? 6 : 2), \
   1217                                    (((M) & 0x08) ? 7 : 3)); })
   1218 
   1219 #define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
   1220   (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
   1221                                   (__v8sf)(__m256)(V2), \
   1222                                   (((M) & 0x01) ?  8 : 0), \
   1223                                   (((M) & 0x02) ?  9 : 1), \
   1224                                   (((M) & 0x04) ? 10 : 2), \
   1225                                   (((M) & 0x08) ? 11 : 3), \
   1226                                   (((M) & 0x10) ? 12 : 4), \
   1227                                   (((M) & 0x20) ? 13 : 5), \
   1228                                   (((M) & 0x40) ? 14 : 6), \
   1229                                   (((M) & 0x80) ? 15 : 7)); })
   1230 
   1231 static __inline __m256d __DEFAULT_FN_ATTRS
   1232 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
   1233 {
   1234   return (__m256d)__builtin_ia32_blendvpd256(
   1235     (__v4df)__a, (__v4df)__b, (__v4df)__c);
   1236 }
   1237 
   1238 static __inline __m256 __DEFAULT_FN_ATTRS
   1239 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
   1240 {
   1241   return (__m256)__builtin_ia32_blendvps256(
   1242     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
   1243 }
   1244 
   1245 /* Vector Dot Product */
   1246 #define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
   1247   (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
   1248                                  (__v8sf)(__m256)(V2), (M)); })
   1249 
   1250 /* Vector shuffle */
   1251 #define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
   1252         (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
   1253                                         (__v8sf)(__m256)(b), \
   1254                                         (mask) & 0x3, \
   1255                                         ((mask) & 0xc) >> 2, \
   1256                                         (((mask) & 0x30) >> 4) + 8, \
   1257                                         (((mask) & 0xc0) >> 6) + 8, \
   1258                                         ((mask) & 0x3) + 4, \
   1259                                         (((mask) & 0xc) >> 2) + 4, \
   1260                                         (((mask) & 0x30) >> 4) + 12, \
   1261                                         (((mask) & 0xc0) >> 6) + 12); })
   1262 
   1263 #define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
   1264         (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
   1265                                          (__v4df)(__m256d)(b), \
   1266                                          (mask) & 0x1, \
   1267                                          (((mask) & 0x2) >> 1) + 4, \
   1268                                          (((mask) & 0x4) >> 2) + 2, \
   1269                                          (((mask) & 0x8) >> 3) + 6); })
   1270 
   1271 /* Compare */
   1272 #define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
   1273 #define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
   1274 #define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
   1275 #define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
   1276 #define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
   1277 #define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
   1278 #define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
   1279 #define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
   1280 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
   1281 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
   1282 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
   1283 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
   1284 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
   1285 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
   1286 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
   1287 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
   1288 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
   1289 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
   1290 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
   1291 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
   1292 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
   1293 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
   1294 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
   1295 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
   1296 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
   1297 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
   1298 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
   1299 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
   1300 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
   1301 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
   1302 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
   1303 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
   1304 
   1305 #define _mm_cmp_pd(a, b, c) __extension__ ({ \
   1306   (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
   1307                                 (__v2df)(__m128d)(b), (c)); })
   1308 
   1309 #define _mm_cmp_ps(a, b, c) __extension__ ({ \
   1310   (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
   1311                                (__v4sf)(__m128)(b), (c)); })
   1312 
   1313 #define _mm256_cmp_pd(a, b, c) __extension__ ({ \
   1314   (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
   1315                                    (__v4df)(__m256d)(b), (c)); })
   1316 
   1317 #define _mm256_cmp_ps(a, b, c) __extension__ ({ \
   1318   (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
   1319                                   (__v8sf)(__m256)(b), (c)); })
   1320 
   1321 #define _mm_cmp_sd(a, b, c) __extension__ ({ \
   1322   (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
   1323                                 (__v2df)(__m128d)(b), (c)); })
   1324 
   1325 #define _mm_cmp_ss(a, b, c) __extension__ ({ \
   1326   (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
   1327                                (__v4sf)(__m128)(b), (c)); })
   1328 
   1329 static __inline int __DEFAULT_FN_ATTRS
   1330 _mm256_extract_epi32(__m256i __a, const int __imm)
   1331 {
   1332   __v8si __b = (__v8si)__a;
   1333   return __b[__imm & 7];
   1334 }
   1335 
   1336 static __inline int __DEFAULT_FN_ATTRS
   1337 _mm256_extract_epi16(__m256i __a, const int __imm)
   1338 {
   1339   __v16hi __b = (__v16hi)__a;
   1340   return __b[__imm & 15];
   1341 }
   1342 
   1343 static __inline int __DEFAULT_FN_ATTRS
   1344 _mm256_extract_epi8(__m256i __a, const int __imm)
   1345 {
   1346   __v32qi __b = (__v32qi)__a;
   1347   return __b[__imm & 31];
   1348 }
   1349 
   1350 #ifdef __x86_64__
   1351 static __inline long long  __DEFAULT_FN_ATTRS
   1352 _mm256_extract_epi64(__m256i __a, const int __imm)
   1353 {
   1354   __v4di __b = (__v4di)__a;
   1355   return __b[__imm & 3];
   1356 }
   1357 #endif
   1358 
   1359 static __inline __m256i __DEFAULT_FN_ATTRS
   1360 _mm256_insert_epi32(__m256i __a, int __b, int const __imm)
   1361 {
   1362   __v8si __c = (__v8si)__a;
   1363   __c[__imm & 7] = __b;
   1364   return (__m256i)__c;
   1365 }
   1366 
   1367 static __inline __m256i __DEFAULT_FN_ATTRS
   1368 _mm256_insert_epi16(__m256i __a, int __b, int const __imm)
   1369 {
   1370   __v16hi __c = (__v16hi)__a;
   1371   __c[__imm & 15] = __b;
   1372   return (__m256i)__c;
   1373 }
   1374 
   1375 static __inline __m256i __DEFAULT_FN_ATTRS
   1376 _mm256_insert_epi8(__m256i __a, int __b, int const __imm)
   1377 {
   1378   __v32qi __c = (__v32qi)__a;
   1379   __c[__imm & 31] = __b;
   1380   return (__m256i)__c;
   1381 }
   1382 
   1383 #ifdef __x86_64__
   1384 static __inline __m256i __DEFAULT_FN_ATTRS
   1385 _mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
   1386 {
   1387   __v4di __c = (__v4di)__a;
   1388   __c[__imm & 3] = __b;
   1389   return (__m256i)__c;
   1390 }
   1391 #endif
   1392 
   1393 /* Conversion */
   1394 static __inline __m256d __DEFAULT_FN_ATTRS
   1395 _mm256_cvtepi32_pd(__m128i __a)
   1396 {
   1397   return (__m256d)__builtin_ia32_cvtdq2pd256((__v4si) __a);
   1398 }
   1399 
   1400 static __inline __m256 __DEFAULT_FN_ATTRS
   1401 _mm256_cvtepi32_ps(__m256i __a)
   1402 {
   1403   return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
   1404 }
   1405 
   1406 static __inline __m128 __DEFAULT_FN_ATTRS
   1407 _mm256_cvtpd_ps(__m256d __a)
   1408 {
   1409   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
   1410 }
   1411 
   1412 static __inline __m256i __DEFAULT_FN_ATTRS
   1413 _mm256_cvtps_epi32(__m256 __a)
   1414 {
   1415   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
   1416 }
   1417 
   1418 static __inline __m256d __DEFAULT_FN_ATTRS
   1419 _mm256_cvtps_pd(__m128 __a)
   1420 {
   1421   return (__m256d)__builtin_ia32_cvtps2pd256((__v4sf) __a);
   1422 }
   1423 
   1424 static __inline __m128i __DEFAULT_FN_ATTRS
   1425 _mm256_cvttpd_epi32(__m256d __a)
   1426 {
   1427   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
   1428 }
   1429 
   1430 static __inline __m128i __DEFAULT_FN_ATTRS
   1431 _mm256_cvtpd_epi32(__m256d __a)
   1432 {
   1433   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
   1434 }
   1435 
   1436 static __inline __m256i __DEFAULT_FN_ATTRS
   1437 _mm256_cvttps_epi32(__m256 __a)
   1438 {
   1439   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
   1440 }
   1441 
   1442 /* Vector replicate */
   1443 static __inline __m256 __DEFAULT_FN_ATTRS
   1444 _mm256_movehdup_ps(__m256 __a)
   1445 {
   1446   return __builtin_shufflevector(__a, __a, 1, 1, 3, 3, 5, 5, 7, 7);
   1447 }
   1448 
   1449 static __inline __m256 __DEFAULT_FN_ATTRS
   1450 _mm256_moveldup_ps(__m256 __a)
   1451 {
   1452   return __builtin_shufflevector(__a, __a, 0, 0, 2, 2, 4, 4, 6, 6);
   1453 }
   1454 
   1455 static __inline __m256d __DEFAULT_FN_ATTRS
   1456 _mm256_movedup_pd(__m256d __a)
   1457 {
   1458   return __builtin_shufflevector(__a, __a, 0, 0, 2, 2);
   1459 }
   1460 
   1461 /* Unpack and Interleave */
   1462 static __inline __m256d __DEFAULT_FN_ATTRS
   1463 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
   1464 {
   1465   return __builtin_shufflevector(__a, __b, 1, 5, 1+2, 5+2);
   1466 }
   1467 
   1468 static __inline __m256d __DEFAULT_FN_ATTRS
   1469 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
   1470 {
   1471   return __builtin_shufflevector(__a, __b, 0, 4, 0+2, 4+2);
   1472 }
   1473 
   1474 static __inline __m256 __DEFAULT_FN_ATTRS
   1475 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
   1476 {
   1477   return __builtin_shufflevector(__a, __b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
   1478 }
   1479 
   1480 static __inline __m256 __DEFAULT_FN_ATTRS
   1481 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
   1482 {
   1483   return __builtin_shufflevector(__a, __b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
   1484 }
   1485 
   1486 /* Bit Test */
   1487 static __inline int __DEFAULT_FN_ATTRS
   1488 _mm_testz_pd(__m128d __a, __m128d __b)
   1489 {
   1490   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
   1491 }
   1492 
   1493 static __inline int __DEFAULT_FN_ATTRS
   1494 _mm_testc_pd(__m128d __a, __m128d __b)
   1495 {
   1496   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
   1497 }
   1498 
   1499 static __inline int __DEFAULT_FN_ATTRS
   1500 _mm_testnzc_pd(__m128d __a, __m128d __b)
   1501 {
   1502   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
   1503 }
   1504 
   1505 static __inline int __DEFAULT_FN_ATTRS
   1506 _mm_testz_ps(__m128 __a, __m128 __b)
   1507 {
   1508   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
   1509 }
   1510 
   1511 static __inline int __DEFAULT_FN_ATTRS
   1512 _mm_testc_ps(__m128 __a, __m128 __b)
   1513 {
   1514   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
   1515 }
   1516 
   1517 static __inline int __DEFAULT_FN_ATTRS
   1518 _mm_testnzc_ps(__m128 __a, __m128 __b)
   1519 {
   1520   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
   1521 }
   1522 
   1523 static __inline int __DEFAULT_FN_ATTRS
   1524 _mm256_testz_pd(__m256d __a, __m256d __b)
   1525 {
   1526   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
   1527 }
   1528 
   1529 static __inline int __DEFAULT_FN_ATTRS
   1530 _mm256_testc_pd(__m256d __a, __m256d __b)
   1531 {
   1532   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
   1533 }
   1534 
   1535 static __inline int __DEFAULT_FN_ATTRS
   1536 _mm256_testnzc_pd(__m256d __a, __m256d __b)
   1537 {
   1538   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
   1539 }
   1540 
   1541 static __inline int __DEFAULT_FN_ATTRS
   1542 _mm256_testz_ps(__m256 __a, __m256 __b)
   1543 {
   1544   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
   1545 }
   1546 
   1547 static __inline int __DEFAULT_FN_ATTRS
   1548 _mm256_testc_ps(__m256 __a, __m256 __b)
   1549 {
   1550   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
   1551 }
   1552 
   1553 static __inline int __DEFAULT_FN_ATTRS
   1554 _mm256_testnzc_ps(__m256 __a, __m256 __b)
   1555 {
   1556   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
   1557 }
   1558 
   1559 static __inline int __DEFAULT_FN_ATTRS
   1560 _mm256_testz_si256(__m256i __a, __m256i __b)
   1561 {
   1562   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
   1563 }
   1564 
   1565 static __inline int __DEFAULT_FN_ATTRS
   1566 _mm256_testc_si256(__m256i __a, __m256i __b)
   1567 {
   1568   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
   1569 }
   1570 
   1571 static __inline int __DEFAULT_FN_ATTRS
   1572 _mm256_testnzc_si256(__m256i __a, __m256i __b)
   1573 {
   1574   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
   1575 }
   1576 
   1577 /* Vector extract sign mask */
   1578 static __inline int __DEFAULT_FN_ATTRS
   1579 _mm256_movemask_pd(__m256d __a)
   1580 {
   1581   return __builtin_ia32_movmskpd256((__v4df)__a);
   1582 }
   1583 
   1584 static __inline int __DEFAULT_FN_ATTRS
   1585 _mm256_movemask_ps(__m256 __a)
   1586 {
   1587   return __builtin_ia32_movmskps256((__v8sf)__a);
   1588 }
   1589 
   1590 /* Vector __zero */
   1591 static __inline void __DEFAULT_FN_ATTRS
   1592 _mm256_zeroall(void)
   1593 {
   1594   __builtin_ia32_vzeroall();
   1595 }
   1596 
   1597 static __inline void __DEFAULT_FN_ATTRS
   1598 _mm256_zeroupper(void)
   1599 {
   1600   __builtin_ia32_vzeroupper();
   1601 }
   1602 
   1603 /* Vector load with broadcast */
   1604 static __inline __m128 __DEFAULT_FN_ATTRS
   1605 _mm_broadcast_ss(float const *__a)
   1606 {
   1607   float __f = *__a;
   1608   return (__m128)(__v4sf){ __f, __f, __f, __f };
   1609 }
   1610 
   1611 static __inline __m256d __DEFAULT_FN_ATTRS
   1612 _mm256_broadcast_sd(double const *__a)
   1613 {
   1614   double __d = *__a;
   1615   return (__m256d)(__v4df){ __d, __d, __d, __d };
   1616 }
   1617 
   1618 static __inline __m256 __DEFAULT_FN_ATTRS
   1619 _mm256_broadcast_ss(float const *__a)
   1620 {
   1621   float __f = *__a;
   1622   return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
   1623 }
   1624 
   1625 static __inline __m256d __DEFAULT_FN_ATTRS
   1626 _mm256_broadcast_pd(__m128d const *__a)
   1627 {
   1628   return (__m256d)__builtin_ia32_vbroadcastf128_pd256(__a);
   1629 }
   1630 
   1631 static __inline __m256 __DEFAULT_FN_ATTRS
   1632 _mm256_broadcast_ps(__m128 const *__a)
   1633 {
   1634   return (__m256)__builtin_ia32_vbroadcastf128_ps256(__a);
   1635 }
   1636 
   1637 /* SIMD load ops */
   1638 static __inline __m256d __DEFAULT_FN_ATTRS
   1639 _mm256_load_pd(double const *__p)
   1640 {
   1641   return *(__m256d *)__p;
   1642 }
   1643 
   1644 static __inline __m256 __DEFAULT_FN_ATTRS
   1645 _mm256_load_ps(float const *__p)
   1646 {
   1647   return *(__m256 *)__p;
   1648 }
   1649 
   1650 static __inline __m256d __DEFAULT_FN_ATTRS
   1651 _mm256_loadu_pd(double const *__p)
   1652 {
   1653   struct __loadu_pd {
   1654     __m256d __v;
   1655   } __attribute__((__packed__, __may_alias__));
   1656   return ((struct __loadu_pd*)__p)->__v;
   1657 }
   1658 
   1659 static __inline __m256 __DEFAULT_FN_ATTRS
   1660 _mm256_loadu_ps(float const *__p)
   1661 {
   1662   struct __loadu_ps {
   1663     __m256 __v;
   1664   } __attribute__((__packed__, __may_alias__));
   1665   return ((struct __loadu_ps*)__p)->__v;
   1666 }
   1667 
   1668 static __inline __m256i __DEFAULT_FN_ATTRS
   1669 _mm256_load_si256(__m256i const *__p)
   1670 {
   1671   return *__p;
   1672 }
   1673 
   1674 static __inline __m256i __DEFAULT_FN_ATTRS
   1675 _mm256_loadu_si256(__m256i const *__p)
   1676 {
   1677   struct __loadu_si256 {
   1678     __m256i __v;
   1679   } __attribute__((__packed__, __may_alias__));
   1680   return ((struct __loadu_si256*)__p)->__v;
   1681 }
   1682 
   1683 static __inline __m256i __DEFAULT_FN_ATTRS
   1684 _mm256_lddqu_si256(__m256i const *__p)
   1685 {
   1686   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
   1687 }
   1688 
   1689 /* SIMD store ops */
   1690 static __inline void __DEFAULT_FN_ATTRS
   1691 _mm256_store_pd(double *__p, __m256d __a)
   1692 {
   1693   *(__m256d *)__p = __a;
   1694 }
   1695 
   1696 static __inline void __DEFAULT_FN_ATTRS
   1697 _mm256_store_ps(float *__p, __m256 __a)
   1698 {
   1699   *(__m256 *)__p = __a;
   1700 }
   1701 
   1702 static __inline void __DEFAULT_FN_ATTRS
   1703 _mm256_storeu_pd(double *__p, __m256d __a)
   1704 {
   1705   __builtin_ia32_storeupd256(__p, (__v4df)__a);
   1706 }
   1707 
   1708 static __inline void __DEFAULT_FN_ATTRS
   1709 _mm256_storeu_ps(float *__p, __m256 __a)
   1710 {
   1711   __builtin_ia32_storeups256(__p, (__v8sf)__a);
   1712 }
   1713 
   1714 static __inline void __DEFAULT_FN_ATTRS
   1715 _mm256_store_si256(__m256i *__p, __m256i __a)
   1716 {
   1717   *__p = __a;
   1718 }
   1719 
   1720 static __inline void __DEFAULT_FN_ATTRS
   1721 _mm256_storeu_si256(__m256i *__p, __m256i __a)
   1722 {
   1723   __builtin_ia32_storedqu256((char *)__p, (__v32qi)__a);
   1724 }
   1725 
   1726 /* Conditional load ops */
   1727 static __inline __m128d __DEFAULT_FN_ATTRS
   1728 _mm_maskload_pd(double const *__p, __m128i __m)
   1729 {
   1730   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
   1731 }
   1732 
   1733 static __inline __m256d __DEFAULT_FN_ATTRS
   1734 _mm256_maskload_pd(double const *__p, __m256i __m)
   1735 {
   1736   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
   1737                                                (__v4di)__m);
   1738 }
   1739 
   1740 static __inline __m128 __DEFAULT_FN_ATTRS
   1741 _mm_maskload_ps(float const *__p, __m128i __m)
   1742 {
   1743   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
   1744 }
   1745 
   1746 static __inline __m256 __DEFAULT_FN_ATTRS
   1747 _mm256_maskload_ps(float const *__p, __m256i __m)
   1748 {
   1749   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
   1750 }
   1751 
   1752 /* Conditional store ops */
   1753 static __inline void __DEFAULT_FN_ATTRS
   1754 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
   1755 {
   1756   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
   1757 }
   1758 
   1759 static __inline void __DEFAULT_FN_ATTRS
   1760 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
   1761 {
   1762   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
   1763 }
   1764 
   1765 static __inline void __DEFAULT_FN_ATTRS
   1766 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
   1767 {
   1768   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
   1769 }
   1770 
   1771 static __inline void __DEFAULT_FN_ATTRS
   1772 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
   1773 {
   1774   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
   1775 }
   1776 
   1777 /* Cacheability support ops */
   1778 static __inline void __DEFAULT_FN_ATTRS
   1779 _mm256_stream_si256(__m256i *__a, __m256i __b)
   1780 {
   1781   __builtin_ia32_movntdq256((__v4di *)__a, (__v4di)__b);
   1782 }
   1783 
   1784 static __inline void __DEFAULT_FN_ATTRS
   1785 _mm256_stream_pd(double *__a, __m256d __b)
   1786 {
   1787   __builtin_ia32_movntpd256(__a, (__v4df)__b);
   1788 }
   1789 
   1790 static __inline void __DEFAULT_FN_ATTRS
   1791 _mm256_stream_ps(float *__p, __m256 __a)
   1792 {
   1793   __builtin_ia32_movntps256(__p, (__v8sf)__a);
   1794 }
   1795 
   1796 /* Create vectors */
   1797 static __inline__ __m256d __DEFAULT_FN_ATTRS
   1798 _mm256_undefined_pd()
   1799 {
   1800   return (__m256d)__builtin_ia32_undef256();
   1801 }
   1802 
   1803 static __inline__ __m256 __DEFAULT_FN_ATTRS
   1804 _mm256_undefined_ps()
   1805 {
   1806   return (__m256)__builtin_ia32_undef256();
   1807 }
   1808 
   1809 static __inline__ __m256i __DEFAULT_FN_ATTRS
   1810 _mm256_undefined_si256()
   1811 {
   1812   return (__m256i)__builtin_ia32_undef256();
   1813 }
   1814 
   1815 static __inline __m256d __DEFAULT_FN_ATTRS
   1816 _mm256_set_pd(double __a, double __b, double __c, double __d)
   1817 {
   1818   return (__m256d){ __d, __c, __b, __a };
   1819 }
   1820 
   1821 static __inline __m256 __DEFAULT_FN_ATTRS
   1822 _mm256_set_ps(float __a, float __b, float __c, float __d,
   1823               float __e, float __f, float __g, float __h)
   1824 {
   1825   return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
   1826 }
   1827 
   1828 static __inline __m256i __DEFAULT_FN_ATTRS
   1829 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
   1830                  int __i4, int __i5, int __i6, int __i7)
   1831 {
   1832   return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
   1833 }
   1834 
   1835 static __inline __m256i __DEFAULT_FN_ATTRS
   1836 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
   1837                  short __w11, short __w10, short __w09, short __w08,
   1838                  short __w07, short __w06, short __w05, short __w04,
   1839                  short __w03, short __w02, short __w01, short __w00)
   1840 {
   1841   return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
   1842     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
   1843 }
   1844 
   1845 static __inline __m256i __DEFAULT_FN_ATTRS
   1846 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
   1847                 char __b27, char __b26, char __b25, char __b24,
   1848                 char __b23, char __b22, char __b21, char __b20,
   1849                 char __b19, char __b18, char __b17, char __b16,
   1850                 char __b15, char __b14, char __b13, char __b12,
   1851                 char __b11, char __b10, char __b09, char __b08,
   1852                 char __b07, char __b06, char __b05, char __b04,
   1853                 char __b03, char __b02, char __b01, char __b00)
   1854 {
   1855   return (__m256i)(__v32qi){
   1856     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
   1857     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
   1858     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
   1859     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
   1860   };
   1861 }
   1862 
   1863 static __inline __m256i __DEFAULT_FN_ATTRS
   1864 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
   1865 {
   1866   return (__m256i)(__v4di){ __d, __c, __b, __a };
   1867 }
   1868 
   1869 /* Create vectors with elements in reverse order */
   1870 static __inline __m256d __DEFAULT_FN_ATTRS
   1871 _mm256_setr_pd(double __a, double __b, double __c, double __d)
   1872 {
   1873   return (__m256d){ __a, __b, __c, __d };
   1874 }
   1875 
   1876 static __inline __m256 __DEFAULT_FN_ATTRS
   1877 _mm256_setr_ps(float __a, float __b, float __c, float __d,
   1878                float __e, float __f, float __g, float __h)
   1879 {
   1880   return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
   1881 }
   1882 
   1883 static __inline __m256i __DEFAULT_FN_ATTRS
   1884 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
   1885                   int __i4, int __i5, int __i6, int __i7)
   1886 {
   1887   return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
   1888 }
   1889 
   1890 static __inline __m256i __DEFAULT_FN_ATTRS
   1891 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
   1892        short __w11, short __w10, short __w09, short __w08,
   1893        short __w07, short __w06, short __w05, short __w04,
   1894        short __w03, short __w02, short __w01, short __w00)
   1895 {
   1896   return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
   1897     __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
   1898 }
   1899 
   1900 static __inline __m256i __DEFAULT_FN_ATTRS
   1901 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
   1902                  char __b27, char __b26, char __b25, char __b24,
   1903                  char __b23, char __b22, char __b21, char __b20,
   1904                  char __b19, char __b18, char __b17, char __b16,
   1905                  char __b15, char __b14, char __b13, char __b12,
   1906                  char __b11, char __b10, char __b09, char __b08,
   1907                  char __b07, char __b06, char __b05, char __b04,
   1908                  char __b03, char __b02, char __b01, char __b00)
   1909 {
   1910   return (__m256i)(__v32qi){
   1911     __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
   1912     __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
   1913     __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
   1914     __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
   1915 }
   1916 
   1917 static __inline __m256i __DEFAULT_FN_ATTRS
   1918 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
   1919 {
   1920   return (__m256i)(__v4di){ __a, __b, __c, __d };
   1921 }
   1922 
   1923 /* Create vectors with repeated elements */
   1924 static __inline __m256d __DEFAULT_FN_ATTRS
   1925 _mm256_set1_pd(double __w)
   1926 {
   1927   return (__m256d){ __w, __w, __w, __w };
   1928 }
   1929 
   1930 static __inline __m256 __DEFAULT_FN_ATTRS
   1931 _mm256_set1_ps(float __w)
   1932 {
   1933   return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
   1934 }
   1935 
   1936 static __inline __m256i __DEFAULT_FN_ATTRS
   1937 _mm256_set1_epi32(int __i)
   1938 {
   1939   return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
   1940 }
   1941 
   1942 static __inline __m256i __DEFAULT_FN_ATTRS
   1943 _mm256_set1_epi16(short __w)
   1944 {
   1945   return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
   1946     __w, __w, __w, __w, __w, __w };
   1947 }
   1948 
   1949 static __inline __m256i __DEFAULT_FN_ATTRS
   1950 _mm256_set1_epi8(char __b)
   1951 {
   1952   return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
   1953     __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
   1954     __b, __b, __b, __b, __b, __b, __b };
   1955 }
   1956 
   1957 static __inline __m256i __DEFAULT_FN_ATTRS
   1958 _mm256_set1_epi64x(long long __q)
   1959 {
   1960   return (__m256i)(__v4di){ __q, __q, __q, __q };
   1961 }
   1962 
   1963 /* Create __zeroed vectors */
   1964 static __inline __m256d __DEFAULT_FN_ATTRS
   1965 _mm256_setzero_pd(void)
   1966 {
   1967   return (__m256d){ 0, 0, 0, 0 };
   1968 }
   1969 
   1970 static __inline __m256 __DEFAULT_FN_ATTRS
   1971 _mm256_setzero_ps(void)
   1972 {
   1973   return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
   1974 }
   1975 
   1976 static __inline __m256i __DEFAULT_FN_ATTRS
   1977 _mm256_setzero_si256(void)
   1978 {
   1979   return (__m256i){ 0LL, 0LL, 0LL, 0LL };
   1980 }
   1981 
   1982 /* Cast between vector types */
   1983 static __inline __m256 __DEFAULT_FN_ATTRS
   1984 _mm256_castpd_ps(__m256d __a)
   1985 {
   1986   return (__m256)__a;
   1987 }
   1988 
   1989 static __inline __m256i __DEFAULT_FN_ATTRS
   1990 _mm256_castpd_si256(__m256d __a)
   1991 {
   1992   return (__m256i)__a;
   1993 }
   1994 
   1995 static __inline __m256d __DEFAULT_FN_ATTRS
   1996 _mm256_castps_pd(__m256 __a)
   1997 {
   1998   return (__m256d)__a;
   1999 }
   2000 
   2001 static __inline __m256i __DEFAULT_FN_ATTRS
   2002 _mm256_castps_si256(__m256 __a)
   2003 {
   2004   return (__m256i)__a;
   2005 }
   2006 
   2007 static __inline __m256 __DEFAULT_FN_ATTRS
   2008 _mm256_castsi256_ps(__m256i __a)
   2009 {
   2010   return (__m256)__a;
   2011 }
   2012 
   2013 static __inline __m256d __DEFAULT_FN_ATTRS
   2014 _mm256_castsi256_pd(__m256i __a)
   2015 {
   2016   return (__m256d)__a;
   2017 }
   2018 
   2019 static __inline __m128d __DEFAULT_FN_ATTRS
   2020 _mm256_castpd256_pd128(__m256d __a)
   2021 {
   2022   return __builtin_shufflevector(__a, __a, 0, 1);
   2023 }
   2024 
   2025 static __inline __m128 __DEFAULT_FN_ATTRS
   2026 _mm256_castps256_ps128(__m256 __a)
   2027 {
   2028   return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
   2029 }
   2030 
   2031 static __inline __m128i __DEFAULT_FN_ATTRS
   2032 _mm256_castsi256_si128(__m256i __a)
   2033 {
   2034   return __builtin_shufflevector(__a, __a, 0, 1);
   2035 }
   2036 
   2037 static __inline __m256d __DEFAULT_FN_ATTRS
   2038 _mm256_castpd128_pd256(__m128d __a)
   2039 {
   2040   return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
   2041 }
   2042 
   2043 static __inline __m256 __DEFAULT_FN_ATTRS
   2044 _mm256_castps128_ps256(__m128 __a)
   2045 {
   2046   return __builtin_shufflevector(__a, __a, 0, 1, 2, 3, -1, -1, -1, -1);
   2047 }
   2048 
   2049 static __inline __m256i __DEFAULT_FN_ATTRS
   2050 _mm256_castsi128_si256(__m128i __a)
   2051 {
   2052   return __builtin_shufflevector(__a, __a, 0, 1, -1, -1);
   2053 }
   2054 
   2055 /*
   2056    Vector insert.
   2057    We use macros rather than inlines because we only want to accept
   2058    invocations where the immediate M is a constant expression.
   2059 */
   2060 #define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
   2061   (__m256)__builtin_shufflevector( \
   2062     (__v8sf)(__m256)(V1), \
   2063     (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
   2064     (((M) & 1) ?  0 :  8), \
   2065     (((M) & 1) ?  1 :  9), \
   2066     (((M) & 1) ?  2 : 10), \
   2067     (((M) & 1) ?  3 : 11), \
   2068     (((M) & 1) ?  8 :  4), \
   2069     (((M) & 1) ?  9 :  5), \
   2070     (((M) & 1) ? 10 :  6), \
   2071     (((M) & 1) ? 11 :  7) );})
   2072 
   2073 #define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
   2074   (__m256d)__builtin_shufflevector( \
   2075     (__v4df)(__m256d)(V1), \
   2076     (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
   2077     (((M) & 1) ? 0 : 4), \
   2078     (((M) & 1) ? 1 : 5), \
   2079     (((M) & 1) ? 4 : 2), \
   2080     (((M) & 1) ? 5 : 3) );})
   2081 
   2082 #define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
   2083   (__m256i)__builtin_shufflevector( \
   2084     (__v4di)(__m256i)(V1), \
   2085     (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
   2086     (((M) & 1) ? 0 : 4), \
   2087     (((M) & 1) ? 1 : 5), \
   2088     (((M) & 1) ? 4 : 2), \
   2089     (((M) & 1) ? 5 : 3) );})
   2090 
   2091 /*
   2092    Vector extract.
   2093    We use macros rather than inlines because we only want to accept
   2094    invocations where the immediate M is a constant expression.
   2095 */
   2096 #define _mm256_extractf128_ps(V, M) __extension__ ({ \
   2097   (__m128)__builtin_shufflevector( \
   2098     (__v8sf)(__m256)(V), \
   2099     (__v8sf)(_mm256_setzero_ps()), \
   2100     (((M) & 1) ? 4 : 0), \
   2101     (((M) & 1) ? 5 : 1), \
   2102     (((M) & 1) ? 6 : 2), \
   2103     (((M) & 1) ? 7 : 3) );})
   2104 
   2105 #define _mm256_extractf128_pd(V, M) __extension__ ({ \
   2106   (__m128d)__builtin_shufflevector( \
   2107     (__v4df)(__m256d)(V), \
   2108     (__v4df)(_mm256_setzero_pd()), \
   2109     (((M) & 1) ? 2 : 0), \
   2110     (((M) & 1) ? 3 : 1) );})
   2111 
   2112 #define _mm256_extractf128_si256(V, M) __extension__ ({ \
   2113   (__m128i)__builtin_shufflevector( \
   2114     (__v4di)(__m256i)(V), \
   2115     (__v4di)(_mm256_setzero_si256()), \
   2116     (((M) & 1) ? 2 : 0), \
   2117     (((M) & 1) ? 3 : 1) );})
   2118 
   2119 /* SIMD load ops (unaligned) */
   2120 static __inline __m256 __DEFAULT_FN_ATTRS
   2121 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
   2122 {
   2123   struct __loadu_ps {
   2124     __m128 __v;
   2125   } __attribute__((__packed__, __may_alias__));
   2126 
   2127   __m256 __v256 = _mm256_castps128_ps256(((struct __loadu_ps*)__addr_lo)->__v);
   2128   return _mm256_insertf128_ps(__v256, ((struct __loadu_ps*)__addr_hi)->__v, 1);
   2129 }
   2130 
   2131 static __inline __m256d __DEFAULT_FN_ATTRS
   2132 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
   2133 {
   2134   struct __loadu_pd {
   2135     __m128d __v;
   2136   } __attribute__((__packed__, __may_alias__));
   2137 
   2138   __m256d __v256 = _mm256_castpd128_pd256(((struct __loadu_pd*)__addr_lo)->__v);
   2139   return _mm256_insertf128_pd(__v256, ((struct __loadu_pd*)__addr_hi)->__v, 1);
   2140 }
   2141 
   2142 static __inline __m256i __DEFAULT_FN_ATTRS
   2143 _mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
   2144 {
   2145   struct __loadu_si128 {
   2146     __m128i __v;
   2147   } __attribute__((__packed__, __may_alias__));
   2148   __m256i __v256 = _mm256_castsi128_si256(
   2149     ((struct __loadu_si128*)__addr_lo)->__v);
   2150   return _mm256_insertf128_si256(__v256,
   2151                                  ((struct __loadu_si128*)__addr_hi)->__v, 1);
   2152 }
   2153 
   2154 /* SIMD store ops (unaligned) */
   2155 static __inline void __DEFAULT_FN_ATTRS
   2156 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
   2157 {
   2158   __m128 __v128;
   2159 
   2160   __v128 = _mm256_castps256_ps128(__a);
   2161   __builtin_ia32_storeups(__addr_lo, __v128);
   2162   __v128 = _mm256_extractf128_ps(__a, 1);
   2163   __builtin_ia32_storeups(__addr_hi, __v128);
   2164 }
   2165 
   2166 static __inline void __DEFAULT_FN_ATTRS
   2167 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
   2168 {
   2169   __m128d __v128;
   2170 
   2171   __v128 = _mm256_castpd256_pd128(__a);
   2172   __builtin_ia32_storeupd(__addr_lo, __v128);
   2173   __v128 = _mm256_extractf128_pd(__a, 1);
   2174   __builtin_ia32_storeupd(__addr_hi, __v128);
   2175 }
   2176 
   2177 static __inline void __DEFAULT_FN_ATTRS
   2178 _mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
   2179 {
   2180   __m128i __v128;
   2181 
   2182   __v128 = _mm256_castsi256_si128(__a);
   2183   __builtin_ia32_storedqu((char *)__addr_lo, (__v16qi)__v128);
   2184   __v128 = _mm256_extractf128_si256(__a, 1);
   2185   __builtin_ia32_storedqu((char *)__addr_hi, (__v16qi)__v128);
   2186 }
   2187 
   2188 static __inline __m256 __DEFAULT_FN_ATTRS
   2189 _mm256_set_m128 (__m128 __hi, __m128 __lo) {
   2190   return (__m256) __builtin_shufflevector(__lo, __hi, 0, 1, 2, 3, 4, 5, 6, 7);
   2191 }
   2192 
   2193 static __inline __m256d __DEFAULT_FN_ATTRS
   2194 _mm256_set_m128d (__m128d __hi, __m128d __lo) {
   2195   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2196 }
   2197 
   2198 static __inline __m256i __DEFAULT_FN_ATTRS
   2199 _mm256_set_m128i (__m128i __hi, __m128i __lo) {
   2200   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2201 }
   2202 
   2203 static __inline __m256 __DEFAULT_FN_ATTRS
   2204 _mm256_setr_m128 (__m128 __lo, __m128 __hi) {
   2205   return _mm256_set_m128(__hi, __lo);
   2206 }
   2207 
   2208 static __inline __m256d __DEFAULT_FN_ATTRS
   2209 _mm256_setr_m128d (__m128d __lo, __m128d __hi) {
   2210   return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2211 }
   2212 
   2213 static __inline __m256i __DEFAULT_FN_ATTRS
   2214 _mm256_setr_m128i (__m128i __lo, __m128i __hi) {
   2215   return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
   2216 }
   2217 
   2218 #undef __DEFAULT_FN_ATTRS
   2219 
   2220 #endif /* __AVXINTRIN_H */
   2221