Home | History | Annotate | Download | only in massif
      1 //--------------------------------------------------------------------*/
      2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
      3 //--------------------------------------------------------------------*/
      4 
      5 /*
      6    This file is part of Massif, a Valgrind tool for profiling memory
      7    usage of programs.
      8 
      9    Copyright (C) 2003-2015 Nicholas Nethercote
     10       njn (at) valgrind.org
     11 
     12    This program is free software; you can redistribute it and/or
     13    modify it under the terms of the GNU General Public License as
     14    published by the Free Software Foundation; either version 2 of the
     15    License, or (at your option) any later version.
     16 
     17    This program is distributed in the hope that it will be useful, but
     18    WITHOUT ANY WARRANTY; without even the implied warranty of
     19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     20    General Public License for more details.
     21 
     22    You should have received a copy of the GNU General Public License
     23    along with this program; if not, write to the Free Software
     24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
     25    02111-1307, USA.
     26 
     27    The GNU General Public License is contained in the file COPYING.
     28 */
     29 
     30 //---------------------------------------------------------------------------
     31 // XXX:
     32 //---------------------------------------------------------------------------
     33 // Todo -- nice, but less critical:
     34 // - do a graph-drawing test
     35 // - make file format more generic.  Obstacles:
     36 //   - unit prefixes are not generic
     37 //   - preset column widths for stats are not generic
     38 //   - preset column headers are not generic
     39 //   - "Massif arguments:" line is not generic
     40 // - do snapshots on some specific client requests
     41 //     - "show me the extra allocations since the last snapshot"
     42 //     - "start/stop logging" (eg. quickly skip boring bits)
     43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
     44 //   Give each graph a title.  (try to do it generically!)
     45 // - make --show-below-main=no work
     46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
     47 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
     48 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
     49 // - With --stack=yes, want to add a stack trace for detailed snapshots so
     50 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
     51 //   possibly useful even with --stack=no? (Andi Yin)
     52 //
     53 // Performance:
     54 // - To run the benchmarks:
     55 //
     56 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
     57 //     time valgrind --tool=massif --depth=100 konqueror
     58 //
     59 //   The other benchmarks don't do much allocation, and so give similar speeds
     60 //   to Nulgrind.
     61 //
     62 //   Timing results on 'nevermore' (njn's machine) as of r7013:
     63 //
     64 //     heap      0.53s  ma:12.4s (23.5x, -----)
     65 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
     66 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
     67 //     konqueror 29.6s real  0:21.0s user
     68 //
     69 //   [Introduction of --time-unit=i as the default slowed things down by
     70 //   roughly 0--20%.]
     71 //
     72 // - get_XCon accounts for about 9% of konqueror startup time.  Try
     73 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
     74 //   Requires factoring out binary search code from various places into a
     75 //   VG_(bsearch) function.
     76 //
     77 // Todo -- low priority:
     78 // - In each XPt, record both bytes and the number of allocations, and
     79 //   possibly the global number of allocations.
     80 // - (Andy Lin) Give a stack trace on detailed snapshots?
     81 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
     82 //   than a certain size!  Because: "linux's malloc allows to set a
     83 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
     84 //   be handled directly by the kernel, and are guaranteed to be returned to
     85 //   the system when freed. So we needed to profile only blocks below this
     86 //   limit."
     87 //
     88 // File format working notes:
     89 
     90 #if 0
     91 desc: --heap-admin=foo
     92 cmd: date
     93 time_unit: ms
     94 #-----------
     95 snapshot=0
     96 #-----------
     97 time=0
     98 mem_heap_B=0
     99 mem_heap_admin_B=0
    100 mem_stacks_B=0
    101 heap_tree=empty
    102 #-----------
    103 snapshot=1
    104 #-----------
    105 time=353
    106 mem_heap_B=5
    107 mem_heap_admin_B=0
    108 mem_stacks_B=0
    109 heap_tree=detailed
    110 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    111  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    112   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
    113    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
    114     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
    115      n1: 5 0x8049821: (within /bin/date)
    116       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
    117 
    118 
    119 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
    120 t_events: B
    121 n 0 0 0 0 0
    122 n 0 0 0 0 0
    123 t1: 5 <string...>
    124  t1: 6 <string...>
    125 
    126 Ideas:
    127 - each snapshot specifies an x-axis value and one or more y-axis values.
    128 - can display the y-axis values separately if you like
    129 - can completely separate connection between snapshots and trees.
    130 
    131 Challenges:
    132 - how to specify and scale/abbreviate units on axes?
    133 - how to combine multiple values into the y-axis?
    134 
    135 --------------------------------------------------------------------------------Command:            date
    136 Massif arguments:   --heap-admin=foo
    137 ms_print arguments: massif.out
    138 --------------------------------------------------------------------------------
    139     KB
    140 6.472^                                                       :#
    141      |                                                       :#  ::  .    .
    142      ...
    143      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
    144    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
    145 
    146 Number of snapshots: 50
    147  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
    148 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
    149 --------------------------------------------------------------------------------  0              0                0                0             0            0
    150   1            345                5                5             0            0
    151   2            353                5                5             0            0
    152 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
    153 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
    154 #endif
    155 
    156 //---------------------------------------------------------------------------
    157 
    158 #include "pub_tool_basics.h"
    159 #include "pub_tool_vki.h"
    160 #include "pub_tool_aspacemgr.h"
    161 #include "pub_tool_debuginfo.h"
    162 #include "pub_tool_hashtable.h"
    163 #include "pub_tool_libcbase.h"
    164 #include "pub_tool_libcassert.h"
    165 #include "pub_tool_libcfile.h"
    166 #include "pub_tool_libcprint.h"
    167 #include "pub_tool_libcproc.h"
    168 #include "pub_tool_machine.h"
    169 #include "pub_tool_mallocfree.h"
    170 #include "pub_tool_options.h"
    171 #include "pub_tool_replacemalloc.h"
    172 #include "pub_tool_stacktrace.h"
    173 #include "pub_tool_threadstate.h"
    174 #include "pub_tool_tooliface.h"
    175 #include "pub_tool_xarray.h"
    176 #include "pub_tool_clientstate.h"
    177 #include "pub_tool_gdbserver.h"
    178 
    179 #include "pub_tool_clreq.h"           // For {MALLOC,FREE}LIKE_BLOCK
    180 
    181 //------------------------------------------------------------*/
    182 //--- Overview of operation                                ---*/
    183 //------------------------------------------------------------*/
    184 
    185 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
    186 // of detail, enough to tell how many bytes each line of code is responsible
    187 // for, more or less.  The main data structure is a tree representing the
    188 // call tree beneath all the allocation functions like malloc().
    189 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
    190 // the page level, and each page is treated much like a heap block.  We use
    191 // "heap" throughout below to cover this case because the concepts are all the
    192 // same.)
    193 //
    194 // "Snapshots" are recordings of the memory usage.  There are two basic
    195 // kinds:
    196 // - Normal:  these record the current time, total memory size, total heap
    197 //   size, heap admin size and stack size.
    198 // - Detailed: these record those things in a normal snapshot, plus a very
    199 //   detailed XTree (see below) indicating how the heap is structured.
    200 //
    201 // Snapshots are taken every so often.  There are two storage classes of
    202 // snapshots:
    203 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
    204 //   is to always have a certain number of temporary snapshots around.  So
    205 //   we take them frequently to begin with, but decreasingly often as the
    206 //   program continues to run.  Also, we remove some old ones after a while.
    207 //   Overall it's a kind of exponential decay thing.  Most of these are
    208 //   normal snapshots, a small fraction are detailed snapshots.
    209 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
    210 //   circumstances.  They are:
    211 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
    212 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
    213 //     in which case it will overwrite the peak snapshot.
    214 //   - User-requested snapshots:  These are done in response to client
    215 //     requests.  They are always kept.
    216 
    217 // Used for printing things when clo_verbosity > 1.
    218 #define VERB(verb, format, args...) \
    219    if (VG_(clo_verbosity) > verb) { \
    220       VG_(dmsg)("Massif: " format, ##args); \
    221    }
    222 
    223 //------------------------------------------------------------//
    224 //--- Statistics                                           ---//
    225 //------------------------------------------------------------//
    226 
    227 // Konqueror startup, to give an idea of the numbers involved with a biggish
    228 // program, with default depth:
    229 //
    230 //  depth=3                   depth=40
    231 //  - 310,000 allocations
    232 //  - 300,000 frees
    233 //  -  15,000 XPts            800,000 XPts
    234 //  -   1,800 top-XPts
    235 
    236 static UInt n_heap_allocs           = 0;
    237 static UInt n_heap_reallocs         = 0;
    238 static UInt n_heap_frees            = 0;
    239 static UInt n_ignored_heap_allocs   = 0;
    240 static UInt n_ignored_heap_frees    = 0;
    241 static UInt n_ignored_heap_reallocs = 0;
    242 static UInt n_stack_allocs          = 0;
    243 static UInt n_stack_frees           = 0;
    244 static UInt n_xpts                  = 0;
    245 static UInt n_xpt_init_expansions   = 0;
    246 static UInt n_xpt_later_expansions  = 0;
    247 static UInt n_sxpt_allocs           = 0;
    248 static UInt n_sxpt_frees            = 0;
    249 static UInt n_skipped_snapshots     = 0;
    250 static UInt n_real_snapshots        = 0;
    251 static UInt n_detailed_snapshots    = 0;
    252 static UInt n_peak_snapshots        = 0;
    253 static UInt n_cullings              = 0;
    254 static UInt n_XCon_redos            = 0;
    255 
    256 //------------------------------------------------------------//
    257 //--- Globals                                              ---//
    258 //------------------------------------------------------------//
    259 
    260 // Number of guest instructions executed so far.  Only used with
    261 // --time-unit=i.
    262 static Long guest_instrs_executed = 0;
    263 
    264 static SizeT heap_szB       = 0; // Live heap size
    265 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
    266 static SizeT stacks_szB     = 0; // Live stacks size
    267 
    268 // This is the total size from the current peak snapshot, or 0 if no peak
    269 // snapshot has been taken yet.
    270 static SizeT peak_snapshot_total_szB = 0;
    271 
    272 // Incremented every time memory is allocated/deallocated, by the
    273 // allocated/deallocated amount;  includes heap, heap-admin and stack
    274 // memory.  An alternative to milliseconds as a unit of program "time".
    275 static ULong total_allocs_deallocs_szB = 0;
    276 
    277 // When running with --heap=yes --pages-as-heap=no, we don't start taking
    278 // snapshots until the first basic block is executed, rather than doing it in
    279 // ms_post_clo_init (which is the obvious spot), for two reasons.
    280 // - It lets us ignore stack events prior to that, because they're not
    281 //   really proper ones and just would screw things up.
    282 // - Because there's still some core initialisation to do, and so there
    283 //   would be an artificial time gap between the first and second snapshots.
    284 //
    285 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
    286 // earlier due to new_mem_startup so this isn't relevant.
    287 //
    288 static Bool have_started_executing_code = False;
    289 
    290 //------------------------------------------------------------//
    291 //--- Alloc fns                                            ---//
    292 //------------------------------------------------------------//
    293 
    294 static XArray* alloc_fns;
    295 static XArray* ignore_fns;
    296 
    297 static void init_alloc_fns(void)
    298 {
    299    // Create the list, and add the default elements.
    300    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
    301                                        VG_(free), sizeof(HChar*));
    302    #define DO(x)  { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
    303 
    304    // Ordered roughly according to (presumed) frequency.
    305    // Nb: The C++ "operator new*" ones are overloadable.  We include them
    306    // always anyway, because even if they're overloaded, it would be a
    307    // prodigiously stupid overloading that caused them to not allocate
    308    // memory.
    309    //
    310    // XXX: because we don't look at the first stack entry (unless it's a
    311    // custom allocation) there's not much point to having all these alloc
    312    // functions here -- they should never appear anywhere (I think?) other
    313    // than the top stack entry.  The only exceptions are those that in
    314    // vg_replace_malloc.c are partly or fully implemented in terms of another
    315    // alloc function: realloc (which uses malloc);  valloc,
    316    // malloc_zone_valloc, posix_memalign and memalign_common (which use
    317    // memalign).
    318    //
    319    DO("malloc"                                              );
    320    DO("__builtin_new"                                       );
    321    DO("operator new(unsigned)"                              );
    322    DO("operator new(unsigned long)"                         );
    323    DO("__builtin_vec_new"                                   );
    324    DO("operator new[](unsigned)"                            );
    325    DO("operator new[](unsigned long)"                       );
    326    DO("calloc"                                              );
    327    DO("realloc"                                             );
    328    DO("memalign"                                            );
    329    DO("posix_memalign"                                      );
    330    DO("valloc"                                              );
    331    DO("operator new(unsigned, std::nothrow_t const&)"       );
    332    DO("operator new[](unsigned, std::nothrow_t const&)"     );
    333    DO("operator new(unsigned long, std::nothrow_t const&)"  );
    334    DO("operator new[](unsigned long, std::nothrow_t const&)");
    335 #if defined(VGO_darwin)
    336    DO("malloc_zone_malloc"                                  );
    337    DO("malloc_zone_calloc"                                  );
    338    DO("malloc_zone_realloc"                                 );
    339    DO("malloc_zone_memalign"                                );
    340    DO("malloc_zone_valloc"                                  );
    341 #endif
    342 }
    343 
    344 static void init_ignore_fns(void)
    345 {
    346    // Create the (empty) list.
    347    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
    348                                         VG_(free), sizeof(HChar*));
    349 }
    350 
    351 // Determines if the named function is a member of the XArray.
    352 static Bool is_member_fn(const XArray* fns, const HChar* fnname)
    353 {
    354    HChar** fn_ptr;
    355    Int i;
    356 
    357    // Nb: It's a linear search through the list, because we're comparing
    358    // strings rather than pointers to strings.
    359    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
    360    // iterate through so it wasn't a good choice.
    361    for (i = 0; i < VG_(sizeXA)(fns); i++) {
    362       fn_ptr = VG_(indexXA)(fns, i);
    363       if (VG_STREQ(fnname, *fn_ptr))
    364          return True;
    365    }
    366    return False;
    367 }
    368 
    369 
    370 //------------------------------------------------------------//
    371 //--- Command line args                                    ---//
    372 //------------------------------------------------------------//
    373 
    374 #define MAX_DEPTH       200
    375 
    376 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
    377 
    378 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
    379 {
    380    switch (time_unit) {
    381    case TimeI:  return "i";
    382    case TimeMS: return "ms";
    383    case TimeB:  return "B";
    384    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
    385    }
    386 }
    387 
    388 static Bool   clo_heap            = True;
    389    // clo_heap_admin is deliberately a word-sized type.  At one point it was
    390    // a UInt, but this caused problems on 64-bit machines when it was
    391    // multiplied by a small negative number and then promoted to a
    392    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
    393 static SSizeT clo_heap_admin      = 8;
    394 static Bool   clo_pages_as_heap   = False;
    395 static Bool   clo_stacks          = False;
    396 static Int    clo_depth           = 30;
    397 static double clo_threshold       = 1.0;  // percentage
    398 static double clo_peak_inaccuracy = 1.0;  // percentage
    399 static Int    clo_time_unit       = TimeI;
    400 static Int    clo_detailed_freq   = 10;
    401 static Int    clo_max_snapshots   = 100;
    402 static const HChar* clo_massif_out_file = "massif.out.%p";
    403 
    404 static XArray* args_for_massif;
    405 
    406 static Bool ms_process_cmd_line_option(const HChar* arg)
    407 {
    408    const HChar* tmp_str;
    409 
    410    // Remember the arg for later use.
    411    VG_(addToXA)(args_for_massif, &arg);
    412 
    413         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
    414    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
    415 
    416    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
    417 
    418    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
    419 
    420    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
    421 
    422    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
    423       VG_(addToXA)(alloc_fns, &tmp_str);
    424    }
    425    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
    426       VG_(addToXA)(ignore_fns, &tmp_str);
    427    }
    428 
    429    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
    430       if (clo_threshold < 0 || clo_threshold > 100) {
    431          VG_(fmsg_bad_option)(arg,
    432             "--threshold must be between 0.0 and 100.0\n");
    433       }
    434    }
    435 
    436    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
    437 
    438    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
    439    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
    440    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
    441 
    442    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
    443 
    444    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
    445 
    446    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
    447 
    448    else
    449       return VG_(replacement_malloc_process_cmd_line_option)(arg);
    450 
    451    return True;
    452 }
    453 
    454 static void ms_print_usage(void)
    455 {
    456    VG_(printf)(
    457 "    --heap=no|yes             profile heap blocks [yes]\n"
    458 "    --heap-admin=<size>       average admin bytes per heap block;\n"
    459 "                               ignored if --heap=no [8]\n"
    460 "    --stacks=no|yes           profile stack(s) [no]\n"
    461 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
    462 "    --depth=<number>          depth of contexts [30]\n"
    463 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
    464 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
    465 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
    466 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
    467 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
    468 "                              or heap bytes alloc'd/dealloc'd [i]\n"
    469 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
    470 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
    471 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
    472    );
    473 }
    474 
    475 static void ms_print_debug_usage(void)
    476 {
    477    VG_(printf)(
    478 "    (none)\n"
    479    );
    480 }
    481 
    482 
    483 //------------------------------------------------------------//
    484 //--- XPts, XTrees and XCons                               ---//
    485 //------------------------------------------------------------//
    486 
    487 // An XPt represents an "execution point", ie. a code address.  Each XPt is
    488 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
    489 // the heap are represented by a single XTree.
    490 //
    491 // The root of the tree is 'alloc_xpt', which represents all allocation
    492 // functions, eg:
    493 // - malloc/calloc/realloc/memalign/new/new[];
    494 // - user-specified allocation functions (using --alloc-fn);
    495 // - custom allocation (MALLOCLIKE) points
    496 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
    497 // it makes the code simpler.
    498 //
    499 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
    500 // of an XTree (leaf nodes) are "bottom-XPTs".
    501 //
    502 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
    503 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
    504 // stack sub-traces.)  The number of XCons in an XTree is equal to the
    505 // number of bottom-XPTs in that XTree.
    506 //
    507 //      alloc_xpt       XTrees are bi-directional.
    508 //        | ^
    509 //        v |
    510 //     > parent <       Example: if child1() calls parent() and child2()
    511 //    /    |     \      also calls parent(), and parent() calls malloc(),
    512 //   |    / \     |     the XTree will look like this.
    513 //   |   v   v    |
    514 //  child1   child2
    515 //
    516 // (Note that malformed stack traces can lead to difficulties.  See the
    517 // comment at the bottom of get_XCon.)
    518 //
    519 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
    520 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
    521 // it as an SXTree, which is similar but omits some things it does not need,
    522 // and aggregates up insignificant nodes.  This is important as an SXTree is
    523 // typically much smaller than an XTree.
    524 
    525 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
    526 // allocations per Pt.
    527 
    528 typedef struct _XPt XPt;
    529 struct _XPt {
    530    Addr  ip;              // code address
    531 
    532    // Bottom-XPts: space for the precise context.
    533    // Other XPts:  space of all the descendent bottom-XPts.
    534    // Nb: this value goes up and down as the program executes.
    535    SizeT szB;
    536 
    537    XPt*  parent;           // pointer to parent XPt
    538 
    539    // Children.
    540    // n_children and max_children are 32-bit integers.  16-bit integers
    541    // are too small -- a very big program might have more than 65536
    542    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
    543    UInt  n_children;       // number of children
    544    UInt  max_children;     // capacity of children array
    545    XPt** children;         // pointers to children XPts
    546 };
    547 
    548 typedef
    549    enum {
    550       SigSXPt,
    551       InsigSXPt
    552    }
    553    SXPtTag;
    554 
    555 typedef struct _SXPt SXPt;
    556 struct _SXPt {
    557    SXPtTag tag;
    558    SizeT szB;              // memory size for the node, be it Sig or Insig
    559    union {
    560       // An SXPt representing a single significant code location.  Much like
    561       // an XPt, minus the fields that aren't necessary.
    562       struct {
    563          Addr   ip;
    564          UInt   n_children;
    565          SXPt** children;
    566       }
    567       Sig;
    568 
    569       // An SXPt representing one or more code locations, all below the
    570       // significance threshold.
    571       struct {
    572          Int   n_xpts;     // number of aggregated XPts
    573       }
    574       Insig;
    575    };
    576 };
    577 
    578 // Fake XPt representing all allocation functions like malloc().  Acts as
    579 // parent node to all top-XPts.
    580 static XPt* alloc_xpt;
    581 
    582 static XPt* new_XPt(Addr ip, XPt* parent)
    583 {
    584    // XPts are never freed, so we can use VG_(perm_malloc) to allocate them.
    585    // Note that we cannot use VG_(perm_malloc) for the 'children' array, because
    586    // that needs to be resizable.
    587    XPt* xpt    = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt));
    588    xpt->ip     = ip;
    589    xpt->szB    = 0;
    590    xpt->parent = parent;
    591 
    592    // We don't initially allocate any space for children.  We let that
    593    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
    594    // children anyway.
    595    xpt->n_children   = 0;
    596    xpt->max_children = 0;
    597    xpt->children     = NULL;
    598 
    599    // Update statistics
    600    n_xpts++;
    601 
    602    return xpt;
    603 }
    604 
    605 static void add_child_xpt(XPt* parent, XPt* child)
    606 {
    607    // Expand 'children' if necessary.
    608    tl_assert(parent->n_children <= parent->max_children);
    609    if (parent->n_children == parent->max_children) {
    610       if (0 == parent->max_children) {
    611          parent->max_children = 4;
    612          parent->children = VG_(malloc)( "ms.main.acx.1",
    613                                          parent->max_children * sizeof(XPt*) );
    614          n_xpt_init_expansions++;
    615       } else {
    616          parent->max_children *= 2;    // Double size
    617          parent->children = VG_(realloc)( "ms.main.acx.2",
    618                                           parent->children,
    619                                           parent->max_children * sizeof(XPt*) );
    620          n_xpt_later_expansions++;
    621       }
    622    }
    623 
    624    // Insert new child XPt in parent's children list.
    625    parent->children[ parent->n_children++ ] = child;
    626 }
    627 
    628 // Reverse comparison for a reverse sort -- biggest to smallest.
    629 static Int SXPt_revcmp_szB(const void* n1, const void* n2)
    630 {
    631    const SXPt* sxpt1 = *(const SXPt *const *)n1;
    632    const SXPt* sxpt2 = *(const SXPt *const *)n2;
    633    return ( sxpt1->szB < sxpt2->szB ?  1
    634           : sxpt1->szB > sxpt2->szB ? -1
    635           :                            0);
    636 }
    637 
    638 //------------------------------------------------------------//
    639 //--- XTree Operations                                     ---//
    640 //------------------------------------------------------------//
    641 
    642 // Duplicates an XTree as an SXTree.
    643 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
    644 {
    645    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
    646    SizeT sig_child_threshold_szB;
    647    SXPt* sxpt;
    648 
    649    // Number of XPt children  Action for SXPT
    650    // ------------------      ---------------
    651    // 0 sig, 0 insig          alloc 0 children
    652    // N sig, 0 insig          alloc N children, dup all
    653    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
    654    // 0 sig, M insig          alloc 1, aggregate M
    655 
    656    // Work out how big a child must be to be significant.  If the current
    657    // total_szB is zero, then we set it to 1, which means everything will be
    658    // judged insignificant -- this is sensible, as there's no point showing
    659    // any detail for this case.  Unless they used --threshold=0, in which
    660    // case we show them everything because that's what they asked for.
    661    //
    662    // Nb: We do this once now, rather than once per child, because if we do
    663    // that the cost of all the divisions adds up to something significant.
    664    if (0 == total_szB && 0 != clo_threshold) {
    665       sig_child_threshold_szB = 1;
    666    } else {
    667       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
    668    }
    669 
    670    // How many children are significant?  And do we need an aggregate SXPt?
    671    n_sig_children = 0;
    672    for (i = 0; i < xpt->n_children; i++) {
    673       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    674          n_sig_children++;
    675       }
    676    }
    677    n_insig_children = xpt->n_children - n_sig_children;
    678    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
    679 
    680    // Duplicate the XPt.
    681    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
    682    n_sxpt_allocs++;
    683    sxpt->tag            = SigSXPt;
    684    sxpt->szB            = xpt->szB;
    685    sxpt->Sig.ip         = xpt->ip;
    686    sxpt->Sig.n_children = n_child_sxpts;
    687 
    688    // Create the SXPt's children.
    689    if (n_child_sxpts > 0) {
    690       Int j;
    691       SizeT sig_children_szB = 0, insig_children_szB = 0;
    692       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
    693                                        n_child_sxpts * sizeof(SXPt*));
    694 
    695       // Duplicate the significant children.  (Nb: sig_children_szB +
    696       // insig_children_szB doesn't necessarily equal xpt->szB.)
    697       j = 0;
    698       for (i = 0; i < xpt->n_children; i++) {
    699          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
    700             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
    701             sig_children_szB   += xpt->children[i]->szB;
    702          } else {
    703             insig_children_szB += xpt->children[i]->szB;
    704          }
    705       }
    706 
    707       // Create the SXPt for the insignificant children, if any, and put it
    708       // in the last child entry.
    709       if (n_insig_children > 0) {
    710          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
    711          // doesn't involve a call to dup_XTree().
    712          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
    713          n_sxpt_allocs++;
    714          insig_sxpt->tag = InsigSXPt;
    715          insig_sxpt->szB = insig_children_szB;
    716          insig_sxpt->Insig.n_xpts = n_insig_children;
    717          sxpt->Sig.children[n_sig_children] = insig_sxpt;
    718       }
    719    } else {
    720       sxpt->Sig.children = NULL;
    721    }
    722 
    723    return sxpt;
    724 }
    725 
    726 static void free_SXTree(SXPt* sxpt)
    727 {
    728    Int  i;
    729    tl_assert(sxpt != NULL);
    730 
    731    switch (sxpt->tag) {
    732     case SigSXPt:
    733       // Free all children SXPts, then the children array.
    734       for (i = 0; i < sxpt->Sig.n_children; i++) {
    735          free_SXTree(sxpt->Sig.children[i]);
    736          sxpt->Sig.children[i] = NULL;
    737       }
    738       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
    739       break;
    740 
    741     case InsigSXPt:
    742       break;
    743 
    744     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
    745    }
    746 
    747    // Free the SXPt itself.
    748    VG_(free)(sxpt);     sxpt = NULL;
    749    n_sxpt_frees++;
    750 }
    751 
    752 // Sanity checking:  we periodically check the heap XTree with
    753 // ms_expensive_sanity_check.
    754 static void sanity_check_XTree(XPt* xpt, XPt* parent)
    755 {
    756    tl_assert(xpt != NULL);
    757 
    758    // Check back-pointer.
    759    tl_assert2(xpt->parent == parent,
    760       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
    761 
    762    // Check children counts look sane.
    763    tl_assert(xpt->n_children <= xpt->max_children);
    764 
    765    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
    766    // children's sizes.  See comment at the bottom of get_XCon.
    767 }
    768 
    769 // Sanity checking:  we check SXTrees (which are in snapshots) after
    770 // snapshots are created, before they are deleted, and before they are
    771 // printed.
    772 static void sanity_check_SXTree(SXPt* sxpt)
    773 {
    774    Int i;
    775 
    776    tl_assert(sxpt != NULL);
    777 
    778    // Check the sum of any children szBs equals the SXPt's szB.  Check the
    779    // children at the same time.
    780    switch (sxpt->tag) {
    781     case SigSXPt: {
    782       if (sxpt->Sig.n_children > 0) {
    783          for (i = 0; i < sxpt->Sig.n_children; i++) {
    784             sanity_check_SXTree(sxpt->Sig.children[i]);
    785          }
    786       }
    787       break;
    788     }
    789     case InsigSXPt:
    790       break;         // do nothing
    791 
    792     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
    793    }
    794 }
    795 
    796 
    797 //------------------------------------------------------------//
    798 //--- XCon Operations                                      ---//
    799 //------------------------------------------------------------//
    800 
    801 // This is the limit on the number of removed alloc-fns that can be in a
    802 // single XCon.
    803 #define MAX_OVERESTIMATE   50
    804 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
    805 
    806 // Determine if the given IP belongs to a function that should be ignored.
    807 static Bool fn_should_be_ignored(Addr ip)
    808 {
    809    const HChar *buf;
    810    return
    811       ( VG_(get_fnname)(ip, &buf) && is_member_fn(ignore_fns, buf)
    812       ? True : False );
    813 }
    814 
    815 // Get the stack trace for an XCon, filtering out uninteresting entries:
    816 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
    817 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
    818 //   becomes:  a / b / main
    819 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
    820 // as an alloc-fn.  This is ok.
    821 static
    822 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
    823 {
    824    Int n_ips, i, n_alloc_fns_removed;
    825    Int overestimate;
    826    Bool redo;
    827 
    828    // We ask for a few more IPs than clo_depth suggests we need.  Then we
    829    // remove every entry that is an alloc-fn.  Depending on the
    830    // circumstances, we may need to redo it all, asking for more IPs.
    831    // Details:
    832    // - If the original stack trace is smaller than asked-for, redo=False
    833    // - Else if after filtering we have >= clo_depth IPs,      redo=False
    834    // - Else redo=True
    835    // In other words, to redo, we'd have to get a stack trace as big as we
    836    // asked for and remove more than 'overestimate' alloc-fns.
    837 
    838    // Main loop.
    839    redo = True;      // Assume this to begin with.
    840    for (overestimate = 3; redo; overestimate += 6) {
    841       // This should never happen -- would require MAX_OVERESTIMATE
    842       // alloc-fns to be removed from the stack trace.
    843       if (overestimate > MAX_OVERESTIMATE)
    844          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
    845 
    846       // Ask for more IPs than clo_depth suggests we need.
    847       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
    848                                    NULL/*array to dump SP values in*/,
    849                                    NULL/*array to dump FP values in*/,
    850                                    0/*first_ip_delta*/ );
    851       tl_assert(n_ips > 0);
    852 
    853       // If the original stack trace is smaller than asked-for, redo=False.
    854       if (n_ips < clo_depth + overestimate) { redo = False; }
    855 
    856       // Filter out alloc fns.  If requested, we automatically remove the
    857       // first entry (which presumably will be something like malloc or
    858       // __builtin_new that we're sure to filter out) without looking at it,
    859       // because VG_(get_fnname) is expensive.
    860       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
    861       for (i = n_alloc_fns_removed; i < n_ips; i++) {
    862          const HChar *buf;
    863          if (VG_(get_fnname)(ips[i], &buf)) {
    864             if (is_member_fn(alloc_fns, buf)) {
    865                n_alloc_fns_removed++;
    866             } else {
    867                break;
    868             }
    869          }
    870       }
    871       // Remove the alloc fns by shuffling the rest down over them.
    872       n_ips -= n_alloc_fns_removed;
    873       for (i = 0; i < n_ips; i++) {
    874          ips[i] = ips[i + n_alloc_fns_removed];
    875       }
    876 
    877       // If after filtering we have >= clo_depth IPs, redo=False
    878       if (n_ips >= clo_depth) {
    879          redo = False;
    880          n_ips = clo_depth;      // Ignore any IPs below --depth.
    881       }
    882 
    883       if (redo) {
    884          n_XCon_redos++;
    885       }
    886    }
    887    return n_ips;
    888 }
    889 
    890 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
    891 // Unless the allocation should be ignored, in which case we return NULL.
    892 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
    893 {
    894    static Addr ips[MAX_IPS];
    895    Int i;
    896    XPt* xpt = alloc_xpt;
    897 
    898    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
    899    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
    900 
    901    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
    902    // 'main' is marked as an alloc-fn.)
    903    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
    904       return NULL;
    905    }
    906 
    907    // Now do the search/insertion of the XCon.
    908    for (i = 0; i < n_ips; i++) {
    909       Addr ip = ips[i];
    910       Int ch;
    911       // Look for IP in xpt's children.
    912       // Linear search, ugh -- about 10% of time for konqueror startup tried
    913       // caching last result, only hit about 4% for konqueror.
    914       // Nb:  this search hits about 98% of the time for konqueror
    915       for (ch = 0; True; ch++) {
    916          if (ch == xpt->n_children) {
    917             // IP not found in the children.
    918             // Create and add new child XPt, then stop.
    919             XPt* new_child_xpt = new_XPt(ip, xpt);
    920             add_child_xpt(xpt, new_child_xpt);
    921             xpt = new_child_xpt;
    922             break;
    923 
    924          } else if (ip == xpt->children[ch]->ip) {
    925             // Found the IP in the children, stop.
    926             xpt = xpt->children[ch];
    927             break;
    928          }
    929       }
    930    }
    931 
    932    // [Note: several comments refer to this comment.  Do not delete it
    933    // without updating them.]
    934    //
    935    // A complication... If all stack traces were well-formed, then the
    936    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
    937    // size would always be equal to the sum of its children's sizes, which
    938    // is an excellent sanity check.
    939    //
    940    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
    941    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
    942    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
    943    // nor can we do sanity check an XPt's size against its children's sizes.
    944    // This is annoying, but must be dealt with.  (Older versions of Massif
    945    // had this assertion in, and it was reported to fail by real users a
    946    // couple of times.)  Even more annoyingly, I can't come up with a simple
    947    // test case that exhibit such a malformed stack trace, so I can't
    948    // regression test it.  Sigh.
    949    //
    950    // However, we can print a warning, so that if it happens (unexpectedly)
    951    // in existing regression tests we'll know.  Also, it warns users that
    952    // the output snapshots may not add up the way they might expect.
    953    //
    954    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
    955    if (0 != xpt->n_children) {
    956       static Int n_moans = 0;
    957       if (n_moans < 3) {
    958          VG_(umsg)(
    959             "Warning: Malformed stack trace detected.  In Massif's output,\n");
    960          VG_(umsg)(
    961             "         the size of an entry's child entries may not sum up\n");
    962          VG_(umsg)(
    963             "         to the entry's size as they normally do.\n");
    964          n_moans++;
    965          if (3 == n_moans)
    966             VG_(umsg)(
    967             "         (And Massif now won't warn about this again.)\n");
    968       }
    969    }
    970    return xpt;
    971 }
    972 
    973 // Update 'szB' of every XPt in the XCon, by percolating upwards.
    974 static void update_XCon(XPt* xpt, SSizeT space_delta)
    975 {
    976    tl_assert(clo_heap);
    977    tl_assert(NULL != xpt);
    978 
    979    if (0 == space_delta)
    980       return;
    981 
    982    while (xpt != alloc_xpt) {
    983       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
    984       xpt->szB += space_delta;
    985       xpt = xpt->parent;
    986    }
    987    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
    988    alloc_xpt->szB += space_delta;
    989 }
    990 
    991 
    992 //------------------------------------------------------------//
    993 //--- Snapshots                                            ---//
    994 //------------------------------------------------------------//
    995 
    996 // Snapshots are done in a way so that we always have a reasonable number of
    997 // them.  We start by taking them quickly.  Once we hit our limit, we cull
    998 // some (eg. half), and start taking them more slowly.  Once we hit the
    999 // limit again, we again cull and then take them even more slowly, and so
   1000 // on.
   1001 
   1002 // Time is measured either in i or ms or bytes, depending on the --time-unit
   1003 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
   1004 // because we need to allow negative values to represent unset times.
   1005 typedef Long Time;
   1006 
   1007 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
   1008 
   1009 typedef
   1010    enum {
   1011       Normal = 77,
   1012       Peak,
   1013       Unused
   1014    }
   1015    SnapshotKind;
   1016 
   1017 typedef
   1018    struct {
   1019       SnapshotKind kind;
   1020       Time  time;
   1021       SizeT heap_szB;
   1022       SizeT heap_extra_szB;// Heap slop + admin bytes.
   1023       SizeT stacks_szB;
   1024       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
   1025    }                       // otherwise NULL.
   1026    Snapshot;
   1027 
   1028 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
   1029 static Snapshot* snapshots;            // Array of snapshots.
   1030 
   1031 static Bool is_snapshot_in_use(Snapshot* snapshot)
   1032 {
   1033    if (Unused == snapshot->kind) {
   1034       // If snapshot is unused, check all the fields are unset.
   1035       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
   1036       tl_assert(snapshot->heap_extra_szB == 0);
   1037       tl_assert(snapshot->heap_szB       == 0);
   1038       tl_assert(snapshot->stacks_szB     == 0);
   1039       tl_assert(snapshot->alloc_sxpt     == NULL);
   1040       return False;
   1041    } else {
   1042       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
   1043       return True;
   1044    }
   1045 }
   1046 
   1047 static Bool is_detailed_snapshot(Snapshot* snapshot)
   1048 {
   1049    return (snapshot->alloc_sxpt ? True : False);
   1050 }
   1051 
   1052 static Bool is_uncullable_snapshot(Snapshot* snapshot)
   1053 {
   1054    return &snapshots[0] == snapshot                   // First snapshot
   1055        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
   1056        || snapshot->kind == Peak;                     // Peak snapshot
   1057 }
   1058 
   1059 static void sanity_check_snapshot(Snapshot* snapshot)
   1060 {
   1061    if (snapshot->alloc_sxpt) {
   1062       sanity_check_SXTree(snapshot->alloc_sxpt);
   1063    }
   1064 }
   1065 
   1066 // All the used entries should look used, all the unused ones should be clear.
   1067 static void sanity_check_snapshots_array(void)
   1068 {
   1069    Int i;
   1070    for (i = 0; i < next_snapshot_i; i++) {
   1071       tl_assert( is_snapshot_in_use( & snapshots[i] ));
   1072    }
   1073    for (    ; i < clo_max_snapshots; i++) {
   1074       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
   1075    }
   1076 }
   1077 
   1078 // This zeroes all the fields in the snapshot, but does not free the heap
   1079 // XTree if present.  It also does a sanity check unless asked not to;  we
   1080 // can't sanity check at startup when clearing the initial snapshots because
   1081 // they're full of junk.
   1082 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
   1083 {
   1084    if (do_sanity_check) sanity_check_snapshot(snapshot);
   1085    snapshot->kind           = Unused;
   1086    snapshot->time           = UNUSED_SNAPSHOT_TIME;
   1087    snapshot->heap_extra_szB = 0;
   1088    snapshot->heap_szB       = 0;
   1089    snapshot->stacks_szB     = 0;
   1090    snapshot->alloc_sxpt     = NULL;
   1091 }
   1092 
   1093 // This zeroes all the fields in the snapshot, and frees the heap XTree if
   1094 // present.
   1095 static void delete_snapshot(Snapshot* snapshot)
   1096 {
   1097    // Nb: if there's an XTree, we free it after calling clear_snapshot,
   1098    // because clear_snapshot does a sanity check which includes checking the
   1099    // XTree.
   1100    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
   1101    clear_snapshot(snapshot, /*do_sanity_check*/True);
   1102    if (tmp_sxpt) {
   1103       free_SXTree(tmp_sxpt);
   1104    }
   1105 }
   1106 
   1107 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
   1108 {
   1109    Snapshot* snapshot = &snapshots[i];
   1110    const HChar* suffix;
   1111    switch (snapshot->kind) {
   1112    case Peak:   suffix = "p";                                            break;
   1113    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
   1114    case Unused: suffix = "u";                                            break;
   1115    default:
   1116       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
   1117    }
   1118    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
   1119       prefix, suffix, i,
   1120       snapshot->time,
   1121       snapshot->heap_szB,
   1122       snapshot->heap_extra_szB,
   1123       snapshot->stacks_szB
   1124    );
   1125 }
   1126 
   1127 // Cull half the snapshots;  we choose those that represent the smallest
   1128 // time-spans, because that gives us the most even distribution of snapshots
   1129 // over time.  (It's possible to lose interesting spikes, however.)
   1130 //
   1131 // Algorithm for N snapshots:  We find the snapshot representing the smallest
   1132 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
   1133 // We have to do this one snapshot at a time, rather than finding the (N/2)
   1134 // smallest snapshots in one hit, because when a snapshot is removed, its
   1135 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
   1136 // small, and it's not done very often.
   1137 //
   1138 // Once we're done, we return the new smallest interval between snapshots.
   1139 // That becomes our minimum time interval.
   1140 static UInt cull_snapshots(void)
   1141 {
   1142    Int  i, jp, j, jn, min_timespan_i;
   1143    Int  n_deleted = 0;
   1144    Time min_timespan;
   1145 
   1146    n_cullings++;
   1147 
   1148    // Sets j to the index of the first not-yet-removed snapshot at or after i
   1149    #define FIND_SNAPSHOT(i, j) \
   1150       for (j = i; \
   1151            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
   1152            j++) { }
   1153 
   1154    VERB(2, "Culling...\n");
   1155 
   1156    // First we remove enough snapshots by clearing them in-place.  Once
   1157    // that's done, we can slide the remaining ones down.
   1158    for (i = 0; i < clo_max_snapshots/2; i++) {
   1159       // Find the snapshot representing the smallest timespan.  The timespan
   1160       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
   1161       // snapshot A and B.  We don't consider the first and last snapshots for
   1162       // removal.
   1163       Snapshot* min_snapshot;
   1164       Int min_j;
   1165 
   1166       // Initial triple: (prev, curr, next) == (jp, j, jn)
   1167       // Initial min_timespan is the first one.
   1168       jp = 0;
   1169       FIND_SNAPSHOT(1,   j);
   1170       FIND_SNAPSHOT(j+1, jn);
   1171       min_timespan = 0x7fffffffffffffffLL;
   1172       min_j        = -1;
   1173       while (jn < clo_max_snapshots) {
   1174          Time timespan = snapshots[jn].time - snapshots[jp].time;
   1175          tl_assert(timespan >= 0);
   1176          // Nb: We never cull the peak snapshot.
   1177          if (Peak != snapshots[j].kind && timespan < min_timespan) {
   1178             min_timespan = timespan;
   1179             min_j        = j;
   1180          }
   1181          // Move on to next triple
   1182          jp = j;
   1183          j  = jn;
   1184          FIND_SNAPSHOT(jn+1, jn);
   1185       }
   1186       // We've found the least important snapshot, now delete it.  First
   1187       // print it if necessary.
   1188       tl_assert(-1 != min_j);    // Check we found a minimum.
   1189       min_snapshot = & snapshots[ min_j ];
   1190       if (VG_(clo_verbosity) > 1) {
   1191          HChar buf[64];   // large enough
   1192          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
   1193          VERB_snapshot(2, buf, min_j);
   1194       }
   1195       delete_snapshot(min_snapshot);
   1196       n_deleted++;
   1197    }
   1198 
   1199    // Slide down the remaining snapshots over the removed ones.  First set i
   1200    // to point to the first empty slot, and j to the first full slot after
   1201    // i.  Then slide everything down.
   1202    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
   1203    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
   1204    for (  ; j < clo_max_snapshots; j++) {
   1205       if (is_snapshot_in_use( &snapshots[j] )) {
   1206          snapshots[i++] = snapshots[j];
   1207          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
   1208       }
   1209    }
   1210    next_snapshot_i = i;
   1211 
   1212    // Check snapshots array looks ok after changes.
   1213    sanity_check_snapshots_array();
   1214 
   1215    // Find the minimum timespan remaining;  that will be our new minimum
   1216    // time interval.  Note that above we were finding timespans by measuring
   1217    // two intervals around a snapshot that was under consideration for
   1218    // deletion.  Here we only measure single intervals because all the
   1219    // deletions have occurred.
   1220    //
   1221    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
   1222    // peak snapshot) are uncullable.  If two uncullable snapshots end up
   1223    // next to each other, they'll never be culled (assuming the peak doesn't
   1224    // change), and the time gap between them will not change.  However, the
   1225    // time between the remaining cullable snapshots will grow ever larger.
   1226    // This means that the min_timespan found will always be that between the
   1227    // two uncullable snapshots, and it will be much smaller than it should
   1228    // be.  To avoid this problem, when computing the minimum timespan, we
   1229    // ignore any timespans between two uncullable snapshots.
   1230    tl_assert(next_snapshot_i > 1);
   1231    min_timespan = 0x7fffffffffffffffLL;
   1232    min_timespan_i = -1;
   1233    for (i = 1; i < next_snapshot_i; i++) {
   1234       if (is_uncullable_snapshot(&snapshots[i]) &&
   1235           is_uncullable_snapshot(&snapshots[i-1]))
   1236       {
   1237          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
   1238       } else {
   1239          Time timespan = snapshots[i].time - snapshots[i-1].time;
   1240          tl_assert(timespan >= 0);
   1241          if (timespan < min_timespan) {
   1242             min_timespan = timespan;
   1243             min_timespan_i = i;
   1244          }
   1245       }
   1246    }
   1247    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
   1248 
   1249    // Print remaining snapshots, if necessary.
   1250    if (VG_(clo_verbosity) > 1) {
   1251       VERB(2, "Finished culling (%3d of %3d deleted)\n",
   1252          n_deleted, clo_max_snapshots);
   1253       for (i = 0; i < next_snapshot_i; i++) {
   1254          VERB_snapshot(2, "  post-cull", i);
   1255       }
   1256       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
   1257          min_timespan, min_timespan_i-1, min_timespan_i);
   1258    }
   1259 
   1260    return min_timespan;
   1261 }
   1262 
   1263 static Time get_time(void)
   1264 {
   1265    // Get current time, in whatever time unit we're using.
   1266    if (clo_time_unit == TimeI) {
   1267       return guest_instrs_executed;
   1268    } else if (clo_time_unit == TimeMS) {
   1269       // Some stuff happens between the millisecond timer being initialised
   1270       // to zero and us taking our first snapshot.  We determine that time
   1271       // gap so we can subtract it from all subsequent times so that our
   1272       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
   1273       // bunch of symbols get read after the first snapshot is taken but
   1274       // before the second one (which is triggered by the first allocation),
   1275       // so when the time-unit is 'ms' we always have a big gap between the
   1276       // first two snapshots.  But at least users won't have to wonder why
   1277       // the first snapshot isn't at t=0.
   1278       static Bool is_first_get_time = True;
   1279       static Time start_time_ms;
   1280       if (is_first_get_time) {
   1281          start_time_ms = VG_(read_millisecond_timer)();
   1282          is_first_get_time = False;
   1283          return 0;
   1284       } else {
   1285          return VG_(read_millisecond_timer)() - start_time_ms;
   1286       }
   1287    } else if (clo_time_unit == TimeB) {
   1288       return total_allocs_deallocs_szB;
   1289    } else {
   1290       tl_assert2(0, "bad --time-unit value");
   1291    }
   1292 }
   1293 
   1294 // Take a snapshot, and only that -- decisions on whether to take a
   1295 // snapshot, or what kind of snapshot, are made elsewhere.
   1296 // Nb: we call the arg "my_time" because "time" shadows a global declaration
   1297 // in /usr/include/time.h on Darwin.
   1298 static void
   1299 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
   1300               Bool is_detailed)
   1301 {
   1302    tl_assert(!is_snapshot_in_use(snapshot));
   1303    if (!clo_pages_as_heap) {
   1304       tl_assert(have_started_executing_code);
   1305    }
   1306 
   1307    // Heap and heap admin.
   1308    if (clo_heap) {
   1309       snapshot->heap_szB = heap_szB;
   1310       if (is_detailed) {
   1311          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1312          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
   1313          tl_assert(           alloc_xpt->szB == heap_szB);
   1314          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
   1315       }
   1316       snapshot->heap_extra_szB = heap_extra_szB;
   1317    }
   1318 
   1319    // Stack(s).
   1320    if (clo_stacks) {
   1321       snapshot->stacks_szB = stacks_szB;
   1322    }
   1323 
   1324    // Rest of snapshot.
   1325    snapshot->kind = kind;
   1326    snapshot->time = my_time;
   1327    sanity_check_snapshot(snapshot);
   1328 
   1329    // Update stats.
   1330    if (Peak == kind) n_peak_snapshots++;
   1331    if (is_detailed)  n_detailed_snapshots++;
   1332    n_real_snapshots++;
   1333 }
   1334 
   1335 
   1336 // Take a snapshot, if it's time, or if we've hit a peak.
   1337 static void
   1338 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
   1339 {
   1340    // 'min_time_interval' is the minimum time interval between snapshots.
   1341    // If we try to take a snapshot and less than this much time has passed,
   1342    // we don't take it.  It gets larger as the program runs longer.  It's
   1343    // initialised to zero so that we begin by taking snapshots as quickly as
   1344    // possible.
   1345    static Time min_time_interval = 0;
   1346    // Zero allows startup snapshot.
   1347    static Time earliest_possible_time_of_next_snapshot = 0;
   1348    static Int  n_snapshots_since_last_detailed         = 0;
   1349    static Int  n_skipped_snapshots_since_last_snapshot = 0;
   1350 
   1351    Snapshot* snapshot;
   1352    Bool      is_detailed;
   1353    // Nb: we call this variable "my_time" because "time" shadows a global
   1354    // declaration in /usr/include/time.h on Darwin.
   1355    Time      my_time = get_time();
   1356 
   1357    switch (kind) {
   1358     case Normal:
   1359       // Only do a snapshot if it's time.
   1360       if (my_time < earliest_possible_time_of_next_snapshot) {
   1361          n_skipped_snapshots++;
   1362          n_skipped_snapshots_since_last_snapshot++;
   1363          return;
   1364       }
   1365       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
   1366       break;
   1367 
   1368     case Peak: {
   1369       // Because we're about to do a deallocation, we're coming down from a
   1370       // local peak.  If it is (a) actually a global peak, and (b) a certain
   1371       // amount bigger than the previous peak, then we take a peak snapshot.
   1372       // By not taking a snapshot for every peak, we save a lot of effort --
   1373       // because many peaks remain peak only for a short time.
   1374       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
   1375       SizeT excess_szB_for_new_peak =
   1376          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
   1377       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
   1378          return;
   1379       }
   1380       is_detailed = True;
   1381       break;
   1382     }
   1383 
   1384     default:
   1385       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
   1386    }
   1387 
   1388    // Take the snapshot.
   1389    snapshot = & snapshots[next_snapshot_i];
   1390    take_snapshot(snapshot, kind, my_time, is_detailed);
   1391 
   1392    // Record if it was detailed.
   1393    if (is_detailed) {
   1394       n_snapshots_since_last_detailed = 0;
   1395    } else {
   1396       n_snapshots_since_last_detailed++;
   1397    }
   1398 
   1399    // Update peak data, if it's a Peak snapshot.
   1400    if (Peak == kind) {
   1401       Int i, number_of_peaks_snapshots_found = 0;
   1402 
   1403       // Sanity check the size, then update our recorded peak.
   1404       SizeT snapshot_total_szB =
   1405          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   1406       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
   1407          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
   1408       peak_snapshot_total_szB = snapshot_total_szB;
   1409 
   1410       // Find the old peak snapshot, if it exists, and mark it as normal.
   1411       for (i = 0; i < next_snapshot_i; i++) {
   1412          if (Peak == snapshots[i].kind) {
   1413             snapshots[i].kind = Normal;
   1414             number_of_peaks_snapshots_found++;
   1415          }
   1416       }
   1417       tl_assert(number_of_peaks_snapshots_found <= 1);
   1418    }
   1419 
   1420    // Finish up verbosity and stats stuff.
   1421    if (n_skipped_snapshots_since_last_snapshot > 0) {
   1422       VERB(2, "  (skipped %d snapshot%s)\n",
   1423          n_skipped_snapshots_since_last_snapshot,
   1424          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
   1425    }
   1426    VERB_snapshot(2, what, next_snapshot_i);
   1427    n_skipped_snapshots_since_last_snapshot = 0;
   1428 
   1429    // Cull the entries, if our snapshot table is full.
   1430    next_snapshot_i++;
   1431    if (clo_max_snapshots == next_snapshot_i) {
   1432       min_time_interval = cull_snapshots();
   1433    }
   1434 
   1435    // Work out the earliest time when the next snapshot can happen.
   1436    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
   1437 }
   1438 
   1439 
   1440 //------------------------------------------------------------//
   1441 //--- Sanity checking                                      ---//
   1442 //------------------------------------------------------------//
   1443 
   1444 static Bool ms_cheap_sanity_check ( void )
   1445 {
   1446    return True;   // Nothing useful we can cheaply check.
   1447 }
   1448 
   1449 static Bool ms_expensive_sanity_check ( void )
   1450 {
   1451    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
   1452    sanity_check_snapshots_array();
   1453    return True;
   1454 }
   1455 
   1456 
   1457 //------------------------------------------------------------//
   1458 //--- Heap management                                      ---//
   1459 //------------------------------------------------------------//
   1460 
   1461 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
   1462 // which is a foothold into the XCon at which it was allocated.  From
   1463 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
   1464 // decremented (at deallocation).
   1465 //
   1466 // Nb: first two fields must match core's VgHashNode.
   1467 typedef
   1468    struct _HP_Chunk {
   1469       struct _HP_Chunk* next;
   1470       Addr              data;       // Ptr to actual block
   1471       SizeT             req_szB;    // Size requested
   1472       SizeT             slop_szB;   // Extra bytes given above those requested
   1473       XPt*              where;      // Where allocated; bottom-XPt
   1474    }
   1475    HP_Chunk;
   1476 
   1477 static VgHashTable *malloc_list  = NULL;   // HP_Chunks
   1478 
   1479 static void update_alloc_stats(SSizeT szB_delta)
   1480 {
   1481    // Update total_allocs_deallocs_szB.
   1482    if (szB_delta < 0) szB_delta = -szB_delta;
   1483    total_allocs_deallocs_szB += szB_delta;
   1484 }
   1485 
   1486 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
   1487 {
   1488    if (heap_szB_delta < 0)
   1489       tl_assert(heap_szB >= -heap_szB_delta);
   1490    if (heap_extra_szB_delta < 0)
   1491       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
   1492 
   1493    heap_extra_szB += heap_extra_szB_delta;
   1494    heap_szB       += heap_szB_delta;
   1495 
   1496    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
   1497 }
   1498 
   1499 static
   1500 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
   1501                     Bool exclude_first_entry, Bool maybe_snapshot )
   1502 {
   1503    // Make new HP_Chunk node, add to malloc_list
   1504    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
   1505    hc->req_szB  = req_szB;
   1506    hc->slop_szB = slop_szB;
   1507    hc->data     = (Addr)p;
   1508    hc->where    = NULL;
   1509    VG_(HT_add_node)(malloc_list, hc);
   1510 
   1511    if (clo_heap) {
   1512       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
   1513 
   1514       hc->where = get_XCon( tid, exclude_first_entry );
   1515 
   1516       if (hc->where) {
   1517          // Update statistics.
   1518          n_heap_allocs++;
   1519 
   1520          // Update heap stats.
   1521          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
   1522 
   1523          // Update XTree.
   1524          update_XCon(hc->where, req_szB);
   1525 
   1526          // Maybe take a snapshot.
   1527          if (maybe_snapshot) {
   1528             maybe_take_snapshot(Normal, "  alloc");
   1529          }
   1530 
   1531       } else {
   1532          // Ignored allocation.
   1533          n_ignored_heap_allocs++;
   1534 
   1535          VERB(3, "(ignored)\n");
   1536       }
   1537 
   1538       VERB(3, ">>>\n");
   1539    }
   1540 
   1541    return p;
   1542 }
   1543 
   1544 static __inline__
   1545 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
   1546                                Bool is_zeroed )
   1547 {
   1548    SizeT actual_szB, slop_szB;
   1549    void* p;
   1550 
   1551    if ((SSizeT)req_szB < 0) return NULL;
   1552 
   1553    // Allocate and zero if necessary.
   1554    p = VG_(cli_malloc)( req_alignB, req_szB );
   1555    if (!p) {
   1556       return NULL;
   1557    }
   1558    if (is_zeroed) VG_(memset)(p, 0, req_szB);
   1559    actual_szB = VG_(cli_malloc_usable_size)(p);
   1560    tl_assert(actual_szB >= req_szB);
   1561    slop_szB = actual_szB - req_szB;
   1562 
   1563    // Record block.
   1564    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
   1565                 /*maybe_snapshot*/True);
   1566 
   1567    return p;
   1568 }
   1569 
   1570 static __inline__
   1571 void unrecord_block ( void* p, Bool maybe_snapshot )
   1572 {
   1573    // Remove HP_Chunk from malloc_list
   1574    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
   1575    if (NULL == hc) {
   1576       return;   // must have been a bogus free()
   1577    }
   1578 
   1579    if (clo_heap) {
   1580       VERB(3, "<<< unrecord_block\n");
   1581 
   1582       if (hc->where) {
   1583          // Update statistics.
   1584          n_heap_frees++;
   1585 
   1586          // Maybe take a peak snapshot, since it's a deallocation.
   1587          if (maybe_snapshot) {
   1588             maybe_take_snapshot(Peak, "de-PEAK");
   1589          }
   1590 
   1591          // Update heap stats.
   1592          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
   1593 
   1594          // Update XTree.
   1595          update_XCon(hc->where, -hc->req_szB);
   1596 
   1597          // Maybe take a snapshot.
   1598          if (maybe_snapshot) {
   1599             maybe_take_snapshot(Normal, "dealloc");
   1600          }
   1601 
   1602       } else {
   1603          n_ignored_heap_frees++;
   1604 
   1605          VERB(3, "(ignored)\n");
   1606       }
   1607 
   1608       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
   1609    }
   1610 
   1611    // Actually free the chunk, and the heap block (if necessary)
   1612    VG_(free)( hc );  hc = NULL;
   1613 }
   1614 
   1615 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
   1616 // ignored, but the realloc is not requested to be ignored, and we are
   1617 // shrinking the block, then we have to ignore the realloc -- otherwise we
   1618 // could end up with negative heap sizes.  This isn't a danger if we are
   1619 // growing such a block, but for consistency (it also simplifies things) we
   1620 // ignore such reallocs as well.
   1621 static __inline__
   1622 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
   1623 {
   1624    HP_Chunk* hc;
   1625    void*     p_new;
   1626    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
   1627    XPt      *old_where, *new_where;
   1628    Bool      is_ignored = False;
   1629 
   1630    // Remove the old block
   1631    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
   1632    if (hc == NULL) {
   1633       return NULL;   // must have been a bogus realloc()
   1634    }
   1635 
   1636    old_req_szB  = hc->req_szB;
   1637    old_slop_szB = hc->slop_szB;
   1638 
   1639    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
   1640    if (clo_heap) {
   1641       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
   1642 
   1643       if (hc->where) {
   1644          // Update statistics.
   1645          n_heap_reallocs++;
   1646 
   1647          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
   1648          if (new_req_szB < old_req_szB) {
   1649             maybe_take_snapshot(Peak, "re-PEAK");
   1650          }
   1651       } else {
   1652          // The original malloc was ignored, so we have to ignore the
   1653          // realloc as well.
   1654          is_ignored = True;
   1655       }
   1656    }
   1657 
   1658    // Actually do the allocation, if necessary.
   1659    if (new_req_szB <= old_req_szB + old_slop_szB) {
   1660       // New size is smaller or same;  block not moved.
   1661       p_new = p_old;
   1662       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
   1663 
   1664    } else {
   1665       // New size is bigger;  make new block, copy shared contents, free old.
   1666       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
   1667       if (!p_new) {
   1668          // Nb: if realloc fails, NULL is returned but the old block is not
   1669          // touched.  What an awful function.
   1670          return NULL;
   1671       }
   1672       VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
   1673       VG_(cli_free)(p_old);
   1674       new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
   1675       tl_assert(new_actual_szB >= new_req_szB);
   1676       new_slop_szB = new_actual_szB - new_req_szB;
   1677    }
   1678 
   1679    if (p_new) {
   1680       // Update HP_Chunk.
   1681       hc->data     = (Addr)p_new;
   1682       hc->req_szB  = new_req_szB;
   1683       hc->slop_szB = new_slop_szB;
   1684       old_where    = hc->where;
   1685       hc->where    = NULL;
   1686 
   1687       // Update XTree.
   1688       if (clo_heap) {
   1689          new_where = get_XCon( tid, /*exclude_first_entry*/True);
   1690          if (!is_ignored && new_where) {
   1691             hc->where = new_where;
   1692             update_XCon(old_where, -old_req_szB);
   1693             update_XCon(new_where,  new_req_szB);
   1694          } else {
   1695             // The realloc itself is ignored.
   1696             is_ignored = True;
   1697 
   1698             // Update statistics.
   1699             n_ignored_heap_reallocs++;
   1700          }
   1701       }
   1702    }
   1703 
   1704    // Now insert the new hc (with a possibly new 'data' field) into
   1705    // malloc_list.  If this realloc() did not increase the memory size, we
   1706    // will have removed and then re-added hc unnecessarily.  But that's ok
   1707    // because shrinking a block with realloc() is (presumably) much rarer
   1708    // than growing it, and this way simplifies the growing case.
   1709    VG_(HT_add_node)(malloc_list, hc);
   1710 
   1711    if (clo_heap) {
   1712       if (!is_ignored) {
   1713          // Update heap stats.
   1714          update_heap_stats(new_req_szB - old_req_szB,
   1715                           new_slop_szB - old_slop_szB);
   1716 
   1717          // Maybe take a snapshot.
   1718          maybe_take_snapshot(Normal, "realloc");
   1719       } else {
   1720 
   1721          VERB(3, "(ignored)\n");
   1722       }
   1723 
   1724       VERB(3, ">>> (%ld, %ld)\n",
   1725            (SSizeT)(new_req_szB - old_req_szB),
   1726            (SSizeT)(new_slop_szB - old_slop_szB));
   1727    }
   1728 
   1729    return p_new;
   1730 }
   1731 
   1732 
   1733 //------------------------------------------------------------//
   1734 //--- malloc() et al replacement wrappers                  ---//
   1735 //------------------------------------------------------------//
   1736 
   1737 static void* ms_malloc ( ThreadId tid, SizeT szB )
   1738 {
   1739    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1740 }
   1741 
   1742 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
   1743 {
   1744    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1745 }
   1746 
   1747 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
   1748 {
   1749    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
   1750 }
   1751 
   1752 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
   1753 {
   1754    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
   1755 }
   1756 
   1757 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
   1758 {
   1759    return alloc_and_record_block( tid, szB, alignB, False );
   1760 }
   1761 
   1762 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
   1763 {
   1764    unrecord_block(p, /*maybe_snapshot*/True);
   1765    VG_(cli_free)(p);
   1766 }
   1767 
   1768 static void ms___builtin_delete ( ThreadId tid, void* p )
   1769 {
   1770    unrecord_block(p, /*maybe_snapshot*/True);
   1771    VG_(cli_free)(p);
   1772 }
   1773 
   1774 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
   1775 {
   1776    unrecord_block(p, /*maybe_snapshot*/True);
   1777    VG_(cli_free)(p);
   1778 }
   1779 
   1780 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
   1781 {
   1782    return realloc_block(tid, p_old, new_szB);
   1783 }
   1784 
   1785 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
   1786 {
   1787    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
   1788 
   1789    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
   1790 }
   1791 
   1792 //------------------------------------------------------------//
   1793 //--- Page handling                                        ---//
   1794 //------------------------------------------------------------//
   1795 
   1796 static
   1797 void ms_record_page_mem ( Addr a, SizeT len )
   1798 {
   1799    ThreadId tid = VG_(get_running_tid)();
   1800    Addr end;
   1801    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1802    tl_assert(len >= VKI_PAGE_SIZE);
   1803    // Record the first N-1 pages as blocks, but don't do any snapshots.
   1804    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1805       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1806                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
   1807    }
   1808    // Record the last page as a block, and maybe do a snapshot afterwards.
   1809    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
   1810                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
   1811 }
   1812 
   1813 static
   1814 void ms_unrecord_page_mem( Addr a, SizeT len )
   1815 {
   1816    Addr end;
   1817    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1818    tl_assert(len >= VKI_PAGE_SIZE);
   1819    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
   1820       unrecord_block((void*)a, /*maybe_snapshot*/False);
   1821    }
   1822    unrecord_block((void*)a, /*maybe_snapshot*/True);
   1823 }
   1824 
   1825 //------------------------------------------------------------//
   1826 
   1827 static
   1828 void ms_new_mem_mmap ( Addr a, SizeT len,
   1829                        Bool rr, Bool ww, Bool xx, ULong di_handle )
   1830 {
   1831    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1832    ms_record_page_mem(a, len);
   1833 }
   1834 
   1835 static
   1836 void ms_new_mem_startup( Addr a, SizeT len,
   1837                          Bool rr, Bool ww, Bool xx, ULong di_handle )
   1838 {
   1839    // startup maps are always be page-sized, except the trampoline page is
   1840    // marked by the core as only being the size of the trampoline itself,
   1841    // which is something like 57 bytes.  Round it up to page size.
   1842    len = VG_PGROUNDUP(len);
   1843    ms_record_page_mem(a, len);
   1844 }
   1845 
   1846 static
   1847 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
   1848 {
   1849    // brk limit is not necessarily aligned on a page boundary.
   1850    // If new memory being brk-ed implies to allocate a new page,
   1851    // then call ms_record_page_mem with page aligned parameters
   1852    // otherwise just ignore.
   1853    Addr old_bottom_page = VG_PGROUNDDN(a - 1);
   1854    Addr new_top_page = VG_PGROUNDDN(a + len - 1);
   1855    if (old_bottom_page != new_top_page)
   1856       ms_record_page_mem(VG_PGROUNDDN(a),
   1857                          (new_top_page - old_bottom_page));
   1858 }
   1859 
   1860 static
   1861 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
   1862 {
   1863    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1864    ms_unrecord_page_mem(from, len);
   1865    ms_record_page_mem(to, len);
   1866 }
   1867 
   1868 static
   1869 void ms_die_mem_munmap( Addr a, SizeT len )
   1870 {
   1871    tl_assert(VG_IS_PAGE_ALIGNED(len));
   1872    ms_unrecord_page_mem(a, len);
   1873 }
   1874 
   1875 static
   1876 void ms_die_mem_brk( Addr a, SizeT len )
   1877 {
   1878    // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
   1879    // See ms_new_mem_brk for more details.
   1880    Addr new_bottom_page = VG_PGROUNDDN(a - 1);
   1881    Addr old_top_page = VG_PGROUNDDN(a + len - 1);
   1882    if (old_top_page != new_bottom_page)
   1883       ms_unrecord_page_mem(VG_PGROUNDDN(a),
   1884                            (old_top_page - new_bottom_page));
   1885 
   1886 }
   1887 
   1888 //------------------------------------------------------------//
   1889 //--- Stacks                                               ---//
   1890 //------------------------------------------------------------//
   1891 
   1892 // We really want the inlining to occur...
   1893 #define INLINE    inline __attribute__((always_inline))
   1894 
   1895 static void update_stack_stats(SSizeT stack_szB_delta)
   1896 {
   1897    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
   1898    stacks_szB += stack_szB_delta;
   1899 
   1900    update_alloc_stats(stack_szB_delta);
   1901 }
   1902 
   1903 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
   1904 {
   1905    if (have_started_executing_code) {
   1906       VERB(3, "<<< new_mem_stack (%lu)\n", len);
   1907       n_stack_allocs++;
   1908       update_stack_stats(len);
   1909       maybe_take_snapshot(Normal, what);
   1910       VERB(3, ">>>\n");
   1911    }
   1912 }
   1913 
   1914 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
   1915 {
   1916    if (have_started_executing_code) {
   1917       VERB(3, "<<< die_mem_stack (-%lu)\n", len);
   1918       n_stack_frees++;
   1919       maybe_take_snapshot(Peak,   "stkPEAK");
   1920       update_stack_stats(-len);
   1921       maybe_take_snapshot(Normal, what);
   1922       VERB(3, ">>>\n");
   1923    }
   1924 }
   1925 
   1926 static void new_mem_stack(Addr a, SizeT len)
   1927 {
   1928    new_mem_stack_2(len, "stk-new");
   1929 }
   1930 
   1931 static void die_mem_stack(Addr a, SizeT len)
   1932 {
   1933    die_mem_stack_2(len, "stk-die");
   1934 }
   1935 
   1936 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
   1937 {
   1938    new_mem_stack_2(len, "sig-new");
   1939 }
   1940 
   1941 static void die_mem_stack_signal(Addr a, SizeT len)
   1942 {
   1943    die_mem_stack_2(len, "sig-die");
   1944 }
   1945 
   1946 
   1947 //------------------------------------------------------------//
   1948 //--- Client Requests                                      ---//
   1949 //------------------------------------------------------------//
   1950 
   1951 static void print_monitor_help ( void )
   1952 {
   1953    VG_(gdb_printf) ("\n");
   1954    VG_(gdb_printf) ("massif monitor commands:\n");
   1955    VG_(gdb_printf) ("  snapshot [<filename>]\n");
   1956    VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
   1957    VG_(gdb_printf) ("      takes a snapshot (or a detailed snapshot)\n");
   1958    VG_(gdb_printf) ("      and saves it in <filename>\n");
   1959    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
   1960    VG_(gdb_printf) ("  all_snapshots [<filename>]\n");
   1961    VG_(gdb_printf) ("      saves all snapshot(s) taken so far in <filename>\n");
   1962    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
   1963    VG_(gdb_printf) ("\n");
   1964 }
   1965 
   1966 
   1967 /* Forward declaration.
   1968    return True if request recognised, False otherwise */
   1969 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
   1970 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
   1971 {
   1972    switch (argv[0]) {
   1973    case VG_USERREQ__MALLOCLIKE_BLOCK: {
   1974       void* p   = (void*)argv[1];
   1975       SizeT szB =        argv[2];
   1976       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
   1977                     /*maybe_snapshot*/True );
   1978       *ret = 0;
   1979       return True;
   1980    }
   1981    case VG_USERREQ__RESIZEINPLACE_BLOCK: {
   1982       void* p        = (void*)argv[1];
   1983       SizeT newSizeB =       argv[3];
   1984 
   1985       unrecord_block(p, /*maybe_snapshot*/True);
   1986       record_block(tid, p, newSizeB, /*slop_szB*/0,
   1987                    /*exclude_first_entry*/False, /*maybe_snapshot*/True);
   1988       return True;
   1989    }
   1990    case VG_USERREQ__FREELIKE_BLOCK: {
   1991       void* p = (void*)argv[1];
   1992       unrecord_block(p, /*maybe_snapshot*/True);
   1993       *ret = 0;
   1994       return True;
   1995    }
   1996    case VG_USERREQ__GDB_MONITOR_COMMAND: {
   1997      Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
   1998      if (handled)
   1999        *ret = 1;
   2000      else
   2001        *ret = 0;
   2002      return handled;
   2003    }
   2004 
   2005    default:
   2006       *ret = 0;
   2007       return False;
   2008    }
   2009 }
   2010 
   2011 //------------------------------------------------------------//
   2012 //--- Instrumentation                                      ---//
   2013 //------------------------------------------------------------//
   2014 
   2015 static void add_counter_update(IRSB* sbOut, Int n)
   2016 {
   2017    #if defined(VG_BIGENDIAN)
   2018    # define END Iend_BE
   2019    #elif defined(VG_LITTLEENDIAN)
   2020    # define END Iend_LE
   2021    #else
   2022    # error "Unknown endianness"
   2023    #endif
   2024    // Add code to increment 'guest_instrs_executed' by 'n', like this:
   2025    //   WrTmp(t1, Load64(&guest_instrs_executed))
   2026    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
   2027    //   Store(&guest_instrs_executed, t2)
   2028    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
   2029    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
   2030    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
   2031 
   2032    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
   2033    IRStmt* st2 =
   2034       IRStmt_WrTmp(t2,
   2035                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
   2036                                            IRExpr_Const(IRConst_U64(n))));
   2037    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
   2038 
   2039    addStmtToIRSB( sbOut, st1 );
   2040    addStmtToIRSB( sbOut, st2 );
   2041    addStmtToIRSB( sbOut, st3 );
   2042 }
   2043 
   2044 static IRSB* ms_instrument2( IRSB* sbIn )
   2045 {
   2046    Int   i, n = 0;
   2047    IRSB* sbOut;
   2048 
   2049    // We increment the instruction count in two places:
   2050    // - just before any Ist_Exit statements;
   2051    // - just before the IRSB's end.
   2052    // In the former case, we zero 'n' and then continue instrumenting.
   2053 
   2054    sbOut = deepCopyIRSBExceptStmts(sbIn);
   2055 
   2056    for (i = 0; i < sbIn->stmts_used; i++) {
   2057       IRStmt* st = sbIn->stmts[i];
   2058 
   2059       if (!st || st->tag == Ist_NoOp) continue;
   2060 
   2061       if (st->tag == Ist_IMark) {
   2062          n++;
   2063       } else if (st->tag == Ist_Exit) {
   2064          if (n > 0) {
   2065             // Add an increment before the Exit statement, then reset 'n'.
   2066             add_counter_update(sbOut, n);
   2067             n = 0;
   2068          }
   2069       }
   2070       addStmtToIRSB( sbOut, st );
   2071    }
   2072 
   2073    if (n > 0) {
   2074       // Add an increment before the SB end.
   2075       add_counter_update(sbOut, n);
   2076    }
   2077    return sbOut;
   2078 }
   2079 
   2080 static
   2081 IRSB* ms_instrument ( VgCallbackClosure* closure,
   2082                       IRSB* sbIn,
   2083                       const VexGuestLayout* layout,
   2084                       const VexGuestExtents* vge,
   2085                       const VexArchInfo* archinfo_host,
   2086                       IRType gWordTy, IRType hWordTy )
   2087 {
   2088    if (! have_started_executing_code) {
   2089       // Do an initial sample to guarantee that we have at least one.
   2090       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
   2091       // 'maybe_take_snapshot's internal static variables are initialised.
   2092       have_started_executing_code = True;
   2093       maybe_take_snapshot(Normal, "startup");
   2094    }
   2095 
   2096    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
   2097    else if (clo_time_unit == TimeMS) { return sbIn; }
   2098    else if (clo_time_unit == TimeB)  { return sbIn; }
   2099    else                              { tl_assert2(0, "bad --time-unit value"); }
   2100 }
   2101 
   2102 
   2103 //------------------------------------------------------------//
   2104 //--- Writing snapshots                                    ---//
   2105 //------------------------------------------------------------//
   2106 
   2107 #define FP(format, args...) ({ VG_(fprintf)(fp, format, ##args); })
   2108 
   2109 static void pp_snapshot_SXPt(VgFile *fp, SXPt* sxpt, Int depth,
   2110                              HChar* depth_str, Int depth_str_len,
   2111                              SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
   2112 {
   2113    Int   i, j, n_insig_children_sxpts;
   2114    SXPt* child = NULL;
   2115 
   2116    // Used for printing function names.  Is made static to keep it out
   2117    // of the stack frame -- this function is recursive.  Obviously this
   2118    // now means its contents are trashed across the recursive call.
   2119    const HChar* ip_desc;
   2120 
   2121    switch (sxpt->tag) {
   2122     case SigSXPt:
   2123       // Print the SXPt itself.
   2124       if (0 == depth) {
   2125          if (clo_heap) {
   2126             ip_desc =
   2127                ( clo_pages_as_heap
   2128                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
   2129                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
   2130                );
   2131          } else {
   2132             // XXX: --alloc-fns?
   2133 
   2134             // Nick thinks this case cannot happen. ip_desc would be
   2135             // conceptually uninitialised here. Therefore:
   2136             tl_assert2(0, "pp_snapshot_SXPt: unexpected");
   2137          }
   2138       } else {
   2139          // If it's main-or-below-main, we (if appropriate) ignore everything
   2140          // below it by pretending it has no children.
   2141          if ( ! VG_(clo_show_below_main) ) {
   2142             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
   2143             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
   2144                sxpt->Sig.n_children = 0;
   2145             }
   2146          }
   2147 
   2148          // We need the -1 to get the line number right, But I'm not sure why.
   2149          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, NULL);
   2150       }
   2151 
   2152       // Do the non-ip_desc part first...
   2153       FP("%sn%u: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
   2154 
   2155       // For ip_descs beginning with "0xABCD...:" addresses, we first
   2156       // measure the length of the "0xabcd: " address at the start of the
   2157       // ip_desc.
   2158       j = 0;
   2159       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
   2160          j = 2;
   2161          while (True) {
   2162             if (ip_desc[j]) {
   2163                if (':' == ip_desc[j]) break;
   2164                j++;
   2165             } else {
   2166                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
   2167             }
   2168          }
   2169       }
   2170       // It used to be that ip_desc was truncated at the end.
   2171       // But there does not seem to be a good reason for that. Besides,
   2172       // the string was truncated at the right, which is less than ideal.
   2173       // Truncation at the beginning of the string would have been preferable.
   2174       // Think several nested namespaces in C++....
   2175       // Anyhow, we spit out the full-length string now.
   2176       FP("%s\n", ip_desc);
   2177 
   2178       // Indent.
   2179       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
   2180       depth_str[depth+0] = ' ';
   2181       depth_str[depth+1] = '\0';
   2182 
   2183       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
   2184       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
   2185       // two reasons.  First, if we do it during dup_XTree, it can get
   2186       // expensive (eg. 15% of execution time for konqueror
   2187       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
   2188       // is present) in its sorted position, not at the end.
   2189       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
   2190                  SXPt_revcmp_szB);
   2191 
   2192       // Print the SXPt's children.  They should already be in sorted order.
   2193       n_insig_children_sxpts = 0;
   2194       for (i = 0; i < sxpt->Sig.n_children; i++) {
   2195          child = sxpt->Sig.children[i];
   2196 
   2197          if (InsigSXPt == child->tag)
   2198             n_insig_children_sxpts++;
   2199 
   2200          // Ok, print the child.  NB: contents of ip_desc will be
   2201          // trashed by this recursive call.  Doesn't matter currently,
   2202          // but worth noting.
   2203          pp_snapshot_SXPt(fp, child, depth+1, depth_str, depth_str_len,
   2204             snapshot_heap_szB, snapshot_total_szB);
   2205       }
   2206 
   2207       // Unindent.
   2208       depth_str[depth+0] = '\0';
   2209       depth_str[depth+1] = '\0';
   2210 
   2211       // There should be 0 or 1 Insig children SXPts.
   2212       tl_assert(n_insig_children_sxpts <= 1);
   2213       break;
   2214 
   2215     case InsigSXPt: {
   2216       const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
   2217       FP("%sn0: %lu in %d place%s below massif's threshold (%.2f%%)\n",
   2218          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, clo_threshold);
   2219       break;
   2220     }
   2221 
   2222     default:
   2223       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
   2224    }
   2225 }
   2226 
   2227 static void pp_snapshot(VgFile *fp, Snapshot* snapshot, Int snapshot_n)
   2228 {
   2229    sanity_check_snapshot(snapshot);
   2230 
   2231    FP("#-----------\n");
   2232    FP("snapshot=%d\n", snapshot_n);
   2233    FP("#-----------\n");
   2234    FP("time=%lld\n",            snapshot->time);
   2235    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
   2236    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
   2237    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
   2238 
   2239    if (is_detailed_snapshot(snapshot)) {
   2240       // Detailed snapshot -- print heap tree.
   2241       Int   depth_str_len = clo_depth + 3;
   2242       HChar* depth_str = VG_(malloc)("ms.main.pps.1",
   2243                                      sizeof(HChar) * depth_str_len);
   2244       SizeT snapshot_total_szB =
   2245          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
   2246       depth_str[0] = '\0';   // Initialise depth_str to "".
   2247 
   2248       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
   2249       pp_snapshot_SXPt(fp, snapshot->alloc_sxpt, 0, depth_str,
   2250                        depth_str_len, snapshot->heap_szB,
   2251                        snapshot_total_szB);
   2252 
   2253       VG_(free)(depth_str);
   2254 
   2255    } else {
   2256       FP("heap_tree=empty\n");
   2257    }
   2258 }
   2259 
   2260 static void write_snapshots_to_file(const HChar* massif_out_file,
   2261                                     Snapshot snapshots_array[],
   2262                                     Int nr_elements)
   2263 {
   2264    Int i;
   2265    VgFile *fp;
   2266 
   2267    fp = VG_(fopen)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
   2268                                     VKI_S_IRUSR|VKI_S_IWUSR);
   2269    if (fp == NULL) {
   2270       // If the file can't be opened for whatever reason (conflict
   2271       // between multiple cachegrinded processes?), give up now.
   2272       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
   2273       VG_(umsg)("       ... so profiling results will be missing.\n");
   2274       return;
   2275    }
   2276 
   2277    // Print massif-specific options that were used.
   2278    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
   2279    // -- this file format isn't as generic as Cachegrind's, so the
   2280    // implied genericity of "desc:" is bogus.
   2281    FP("desc:");
   2282    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
   2283       HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i);
   2284       FP(" %s", arg);
   2285    }
   2286    if (0 == i) FP(" (none)");
   2287    FP("\n");
   2288 
   2289    // Print "cmd:" line.
   2290    FP("cmd: ");
   2291    FP("%s", VG_(args_the_exename));
   2292    for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
   2293       HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
   2294       FP(" %s", arg);
   2295    }
   2296    FP("\n");
   2297 
   2298    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
   2299 
   2300    for (i = 0; i < nr_elements; i++) {
   2301       Snapshot* snapshot = & snapshots_array[i];
   2302       pp_snapshot(fp, snapshot, i);     // Detailed snapshot!
   2303    }
   2304    VG_(fclose) (fp);
   2305 }
   2306 
   2307 static void write_snapshots_array_to_file(void)
   2308 {
   2309    // Setup output filename.  Nb: it's important to do this now, ie. as late
   2310    // as possible.  If we do it at start-up and the program forks and the
   2311    // output file format string contains a %p (pid) specifier, both the
   2312    // parent and child will incorrectly write to the same file;  this
   2313    // happened in 3.3.0.
   2314    HChar* massif_out_file =
   2315       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
   2316    write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
   2317    VG_(free)(massif_out_file);
   2318 }
   2319 
   2320 static void handle_snapshot_monitor_command (const HChar *filename,
   2321                                              Bool detailed)
   2322 {
   2323    Snapshot snapshot;
   2324 
   2325    if (!clo_pages_as_heap && !have_started_executing_code) {
   2326       // See comments of variable have_started_executing_code.
   2327       VG_(gdb_printf)
   2328          ("error: cannot take snapshot before execution has started\n");
   2329       return;
   2330    }
   2331 
   2332    clear_snapshot(&snapshot, /* do_sanity_check */ False);
   2333    take_snapshot(&snapshot, Normal, get_time(), detailed);
   2334    write_snapshots_to_file ((filename == NULL) ?
   2335                             "massif.vgdb.out" : filename,
   2336                             &snapshot,
   2337                             1);
   2338    delete_snapshot(&snapshot);
   2339 }
   2340 
   2341 static void handle_all_snapshots_monitor_command (const HChar *filename)
   2342 {
   2343    if (!clo_pages_as_heap && !have_started_executing_code) {
   2344       // See comments of variable have_started_executing_code.
   2345       VG_(gdb_printf)
   2346          ("error: cannot take snapshot before execution has started\n");
   2347       return;
   2348    }
   2349 
   2350    write_snapshots_to_file ((filename == NULL) ?
   2351                             "massif.vgdb.out" : filename,
   2352                             snapshots, next_snapshot_i);
   2353 }
   2354 
   2355 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
   2356 {
   2357    HChar* wcmd;
   2358    HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */
   2359    HChar *ssaveptr;
   2360 
   2361    VG_(strcpy) (s, req);
   2362 
   2363    wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
   2364    switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots",
   2365                             wcmd, kwd_report_duplicated_matches)) {
   2366    case -2: /* multiple matches */
   2367       return True;
   2368    case -1: /* not found */
   2369       return False;
   2370    case  0: /* help */
   2371       print_monitor_help();
   2372       return True;
   2373    case  1: { /* snapshot */
   2374       HChar* filename;
   2375       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
   2376       handle_snapshot_monitor_command (filename, False /* detailed */);
   2377       return True;
   2378    }
   2379    case  2: { /* detailed_snapshot */
   2380       HChar* filename;
   2381       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
   2382       handle_snapshot_monitor_command (filename, True /* detailed */);
   2383       return True;
   2384    }
   2385    case  3: { /* all_snapshots */
   2386       HChar* filename;
   2387       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
   2388       handle_all_snapshots_monitor_command (filename);
   2389       return True;
   2390    }
   2391    default:
   2392       tl_assert(0);
   2393       return False;
   2394    }
   2395 }
   2396 
   2397 static void ms_print_stats (void)
   2398 {
   2399 #define STATS(format, args...) \
   2400       VG_(dmsg)("Massif: " format, ##args)
   2401 
   2402    STATS("heap allocs:           %u\n", n_heap_allocs);
   2403    STATS("heap reallocs:         %u\n", n_heap_reallocs);
   2404    STATS("heap frees:            %u\n", n_heap_frees);
   2405    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
   2406    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
   2407    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
   2408    STATS("stack allocs:          %u\n", n_stack_allocs);
   2409    STATS("stack frees:           %u\n", n_stack_frees);
   2410    STATS("XPts:                  %u\n", n_xpts);
   2411    STATS("top-XPts:              %u (%u%%)\n",
   2412       alloc_xpt->n_children,
   2413       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
   2414    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
   2415    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
   2416    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
   2417    STATS("SXPt frees:            %u\n", n_sxpt_frees);
   2418    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
   2419    STATS("real snapshots:        %u\n", n_real_snapshots);
   2420    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
   2421    STATS("peak snapshots:        %u\n", n_peak_snapshots);
   2422    STATS("cullings:              %u\n", n_cullings);
   2423    STATS("XCon redos:            %u\n", n_XCon_redos);
   2424 #undef STATS
   2425 }
   2426 
   2427 //------------------------------------------------------------//
   2428 //--- Finalisation                                         ---//
   2429 //------------------------------------------------------------//
   2430 
   2431 static void ms_fini(Int exit_status)
   2432 {
   2433    // Output.
   2434    write_snapshots_array_to_file();
   2435 
   2436    // Stats
   2437    tl_assert(n_xpts > 0);  // always have alloc_xpt
   2438 
   2439    if (VG_(clo_stats))
   2440       ms_print_stats();
   2441 }
   2442 
   2443 
   2444 //------------------------------------------------------------//
   2445 //--- Initialisation                                       ---//
   2446 //------------------------------------------------------------//
   2447 
   2448 static void ms_post_clo_init(void)
   2449 {
   2450    Int i;
   2451    HChar* LD_PRELOAD_val;
   2452    HChar* s;
   2453    HChar* s2;
   2454 
   2455    // Check options.
   2456    if (clo_pages_as_heap) {
   2457       if (clo_stacks) {
   2458          VG_(fmsg_bad_option)("--pages-as-heap=yes",
   2459             "Cannot be used together with --stacks=yes");
   2460       }
   2461    }
   2462    if (!clo_heap) {
   2463       clo_pages_as_heap = False;
   2464    }
   2465 
   2466    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
   2467    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
   2468    // platform-equivalent).  We replace it entirely with spaces because then
   2469    // the linker doesn't complain (it does complain if we just change the name
   2470    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
   2471    // before tool initialisation, so this seems the best way to do it.
   2472    if (clo_pages_as_heap) {
   2473       clo_heap_admin = 0;     // No heap admin on pages.
   2474 
   2475       LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
   2476       tl_assert(LD_PRELOAD_val);
   2477 
   2478       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
   2479       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
   2480       tl_assert(s2);
   2481 
   2482       // Now find the vgpreload_massif-$PLATFORM entry.
   2483       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
   2484       tl_assert(s2);
   2485 
   2486       // Blank out everything to the previous ':', which must be there because
   2487       // of the preceding vgpreload_core-$PLATFORM entry.
   2488       for (s = s2; *s != ':'; s--) {
   2489          *s = ' ';
   2490       }
   2491 
   2492       // Blank out everything to the end of the entry, which will be '\0' if
   2493       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
   2494       for (s = s2; *s != ':' && *s != '\0'; s++) {
   2495          *s = ' ';
   2496       }
   2497    }
   2498 
   2499    // Print alloc-fns and ignore-fns, if necessary.
   2500    if (VG_(clo_verbosity) > 1) {
   2501       VERB(1, "alloc-fns:\n");
   2502       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
   2503          HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
   2504          VERB(1, "  %s\n", *fn_ptr);
   2505       }
   2506 
   2507       VERB(1, "ignore-fns:\n");
   2508       if (0 == VG_(sizeXA)(ignore_fns)) {
   2509          VERB(1, "  <empty>\n");
   2510       }
   2511       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
   2512          HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
   2513          VERB(1, "  %d: %s\n", i, *fn_ptr);
   2514       }
   2515    }
   2516 
   2517    // Events to track.
   2518    if (clo_stacks) {
   2519       VG_(track_new_mem_stack)        ( new_mem_stack        );
   2520       VG_(track_die_mem_stack)        ( die_mem_stack        );
   2521       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
   2522       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
   2523    }
   2524 
   2525    if (clo_pages_as_heap) {
   2526       VG_(track_new_mem_startup) ( ms_new_mem_startup );
   2527       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
   2528       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
   2529 
   2530       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
   2531 
   2532       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
   2533       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
   2534    }
   2535 
   2536    // Initialise snapshot array, and sanity-check it.
   2537    snapshots = VG_(malloc)("ms.main.mpoci.1",
   2538                            sizeof(Snapshot) * clo_max_snapshots);
   2539    // We don't want to do snapshot sanity checks here, because they're
   2540    // currently uninitialised.
   2541    for (i = 0; i < clo_max_snapshots; i++) {
   2542       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
   2543    }
   2544    sanity_check_snapshots_array();
   2545 }
   2546 
   2547 static void ms_pre_clo_init(void)
   2548 {
   2549    VG_(details_name)            ("Massif");
   2550    VG_(details_version)         (NULL);
   2551    VG_(details_description)     ("a heap profiler");
   2552    VG_(details_copyright_author)(
   2553       "Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote");
   2554    VG_(details_bug_reports_to)  (VG_BUGS_TO);
   2555 
   2556    VG_(details_avg_translation_sizeB) ( 330 );
   2557 
   2558    VG_(clo_vex_control).iropt_register_updates_default
   2559       = VG_(clo_px_file_backed)
   2560       = VexRegUpdSpAtMemAccess; // overridable by the user.
   2561 
   2562    // Basic functions.
   2563    VG_(basic_tool_funcs)          (ms_post_clo_init,
   2564                                    ms_instrument,
   2565                                    ms_fini);
   2566 
   2567    // Needs.
   2568    VG_(needs_libc_freeres)();
   2569    VG_(needs_command_line_options)(ms_process_cmd_line_option,
   2570                                    ms_print_usage,
   2571                                    ms_print_debug_usage);
   2572    VG_(needs_client_requests)     (ms_handle_client_request);
   2573    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
   2574                                    ms_expensive_sanity_check);
   2575    VG_(needs_print_stats)         (ms_print_stats);
   2576    VG_(needs_malloc_replacement)  (ms_malloc,
   2577                                    ms___builtin_new,
   2578                                    ms___builtin_vec_new,
   2579                                    ms_memalign,
   2580                                    ms_calloc,
   2581                                    ms_free,
   2582                                    ms___builtin_delete,
   2583                                    ms___builtin_vec_delete,
   2584                                    ms_realloc,
   2585                                    ms_malloc_usable_size,
   2586                                    0 );
   2587 
   2588    // HP_Chunks.
   2589    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
   2590 
   2591    // Dummy node at top of the context structure.
   2592    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
   2593 
   2594    // Initialise alloc_fns and ignore_fns.
   2595    init_alloc_fns();
   2596    init_ignore_fns();
   2597 
   2598    // Initialise args_for_massif.
   2599    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
   2600                                 VG_(free), sizeof(HChar*));
   2601 }
   2602 
   2603 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
   2604 
   2605 //--------------------------------------------------------------------//
   2606 //--- end                                                          ---//
   2607 //--------------------------------------------------------------------//
   2608