Home | History | Annotate | Download | only in dec
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // main entry for the decoder
     11 //
     12 // Authors: Vikas Arora (vikaas.arora (at) gmail.com)
     13 //          Jyrki Alakuijala (jyrki (at) google.com)
     14 
     15 #include <stdlib.h>
     16 
     17 #include "./alphai.h"
     18 #include "./vp8li.h"
     19 #include "../dsp/dsp.h"
     20 #include "../dsp/lossless.h"
     21 #include "../dsp/yuv.h"
     22 #include "../utils/endian_inl.h"
     23 #include "../utils/huffman.h"
     24 #include "../utils/utils.h"
     25 
     26 #define NUM_ARGB_CACHE_ROWS          16
     27 
     28 static const int kCodeLengthLiterals = 16;
     29 static const int kCodeLengthRepeatCode = 16;
     30 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
     31 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
     32 
     33 // -----------------------------------------------------------------------------
     34 //  Five Huffman codes are used at each meta code:
     35 //  1. green + length prefix codes + color cache codes,
     36 //  2. alpha,
     37 //  3. red,
     38 //  4. blue, and,
     39 //  5. distance prefix codes.
     40 typedef enum {
     41   GREEN = 0,
     42   RED   = 1,
     43   BLUE  = 2,
     44   ALPHA = 3,
     45   DIST  = 4
     46 } HuffIndex;
     47 
     48 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
     49   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
     50   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
     51   NUM_DISTANCE_CODES
     52 };
     53 
     54 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
     55   0, 1, 1, 1, 0
     56 };
     57 
     58 #define NUM_CODE_LENGTH_CODES       19
     59 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
     60   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
     61 };
     62 
     63 #define CODE_TO_PLANE_CODES        120
     64 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
     65   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
     66   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
     67   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
     68   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
     69   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
     70   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
     71   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
     72   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
     73   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
     74   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
     75   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
     76   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
     77 };
     78 
     79 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
     80 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
     81 // distance) and lookup table sizes for them in worst case are 630 and 410
     82 // respectively. Size of green alphabet depends on color cache size and is equal
     83 // to 256 (green component values) + 24 (length prefix values)
     84 // + color_cache_size (between 0 and 2048).
     85 // All values computed for 8-bit first level lookup with Mark Adler's tool:
     86 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
     87 #define FIXED_TABLE_SIZE (630 * 3 + 410)
     88 static const int kTableSize[12] = {
     89   FIXED_TABLE_SIZE + 654,
     90   FIXED_TABLE_SIZE + 656,
     91   FIXED_TABLE_SIZE + 658,
     92   FIXED_TABLE_SIZE + 662,
     93   FIXED_TABLE_SIZE + 670,
     94   FIXED_TABLE_SIZE + 686,
     95   FIXED_TABLE_SIZE + 718,
     96   FIXED_TABLE_SIZE + 782,
     97   FIXED_TABLE_SIZE + 912,
     98   FIXED_TABLE_SIZE + 1168,
     99   FIXED_TABLE_SIZE + 1680,
    100   FIXED_TABLE_SIZE + 2704
    101 };
    102 
    103 static int DecodeImageStream(int xsize, int ysize,
    104                              int is_level0,
    105                              VP8LDecoder* const dec,
    106                              uint32_t** const decoded_data);
    107 
    108 //------------------------------------------------------------------------------
    109 
    110 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
    111   return (size >= VP8L_FRAME_HEADER_SIZE &&
    112           data[0] == VP8L_MAGIC_BYTE &&
    113           (data[4] >> 5) == 0);  // version
    114 }
    115 
    116 static int ReadImageInfo(VP8LBitReader* const br,
    117                          int* const width, int* const height,
    118                          int* const has_alpha) {
    119   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
    120   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    121   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
    122   *has_alpha = VP8LReadBits(br, 1);
    123   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
    124   return !br->eos_;
    125 }
    126 
    127 int VP8LGetInfo(const uint8_t* data, size_t data_size,
    128                 int* const width, int* const height, int* const has_alpha) {
    129   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
    130     return 0;         // not enough data
    131   } else if (!VP8LCheckSignature(data, data_size)) {
    132     return 0;         // bad signature
    133   } else {
    134     int w, h, a;
    135     VP8LBitReader br;
    136     VP8LInitBitReader(&br, data, data_size);
    137     if (!ReadImageInfo(&br, &w, &h, &a)) {
    138       return 0;
    139     }
    140     if (width != NULL) *width = w;
    141     if (height != NULL) *height = h;
    142     if (has_alpha != NULL) *has_alpha = a;
    143     return 1;
    144   }
    145 }
    146 
    147 //------------------------------------------------------------------------------
    148 
    149 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
    150                                        VP8LBitReader* const br) {
    151   int extra_bits, offset;
    152   if (distance_symbol < 4) {
    153     return distance_symbol + 1;
    154   }
    155   extra_bits = (distance_symbol - 2) >> 1;
    156   offset = (2 + (distance_symbol & 1)) << extra_bits;
    157   return offset + VP8LReadBits(br, extra_bits) + 1;
    158 }
    159 
    160 static WEBP_INLINE int GetCopyLength(int length_symbol,
    161                                      VP8LBitReader* const br) {
    162   // Length and distance prefixes are encoded the same way.
    163   return GetCopyDistance(length_symbol, br);
    164 }
    165 
    166 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
    167   if (plane_code > CODE_TO_PLANE_CODES) {
    168     return plane_code - CODE_TO_PLANE_CODES;
    169   } else {
    170     const int dist_code = kCodeToPlane[plane_code - 1];
    171     const int yoffset = dist_code >> 4;
    172     const int xoffset = 8 - (dist_code & 0xf);
    173     const int dist = yoffset * xsize + xoffset;
    174     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
    175   }
    176 }
    177 
    178 //------------------------------------------------------------------------------
    179 // Decodes the next Huffman code from bit-stream.
    180 // FillBitWindow(br) needs to be called at minimum every second call
    181 // to ReadSymbol, in order to pre-fetch enough bits.
    182 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
    183                                   VP8LBitReader* const br) {
    184   int nbits;
    185   uint32_t val = VP8LPrefetchBits(br);
    186   table += val & HUFFMAN_TABLE_MASK;
    187   nbits = table->bits - HUFFMAN_TABLE_BITS;
    188   if (nbits > 0) {
    189     VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
    190     val = VP8LPrefetchBits(br);
    191     table += table->value;
    192     table += val & ((1 << nbits) - 1);
    193   }
    194   VP8LSetBitPos(br, br->bit_pos_ + table->bits);
    195   return table->value;
    196 }
    197 
    198 // Reads packed symbol depending on GREEN channel
    199 #define BITS_SPECIAL_MARKER 0x100  // something large enough (and a bit-mask)
    200 #define PACKED_NON_LITERAL_CODE 0  // must be < NUM_LITERAL_CODES
    201 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
    202                                          VP8LBitReader* const br,
    203                                          uint32_t* const dst) {
    204   const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
    205   const HuffmanCode32 code = group->packed_table[val];
    206   assert(group->use_packed_table);
    207   if (code.bits < BITS_SPECIAL_MARKER) {
    208     VP8LSetBitPos(br, br->bit_pos_ + code.bits);
    209     *dst = code.value;
    210     return PACKED_NON_LITERAL_CODE;
    211   } else {
    212     VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
    213     assert(code.value >= NUM_LITERAL_CODES);
    214     return code.value;
    215   }
    216 }
    217 
    218 static int AccumulateHCode(HuffmanCode hcode, int shift,
    219                            HuffmanCode32* const huff) {
    220   huff->bits += hcode.bits;
    221   huff->value |= (uint32_t)hcode.value << shift;
    222   assert(huff->bits <= HUFFMAN_TABLE_BITS);
    223   return hcode.bits;
    224 }
    225 
    226 static void BuildPackedTable(HTreeGroup* const htree_group) {
    227   uint32_t code;
    228   for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
    229     uint32_t bits = code;
    230     HuffmanCode32* const huff = &htree_group->packed_table[bits];
    231     HuffmanCode hcode = htree_group->htrees[GREEN][bits];
    232     if (hcode.value >= NUM_LITERAL_CODES) {
    233       huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
    234       huff->value = hcode.value;
    235     } else {
    236       huff->bits = 0;
    237       huff->value = 0;
    238       bits >>= AccumulateHCode(hcode, 8, huff);
    239       bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
    240       bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
    241       bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
    242       (void)bits;
    243     }
    244   }
    245 }
    246 
    247 static int ReadHuffmanCodeLengths(
    248     VP8LDecoder* const dec, const int* const code_length_code_lengths,
    249     int num_symbols, int* const code_lengths) {
    250   int ok = 0;
    251   VP8LBitReader* const br = &dec->br_;
    252   int symbol;
    253   int max_symbol;
    254   int prev_code_len = DEFAULT_CODE_LENGTH;
    255   HuffmanCode table[1 << LENGTHS_TABLE_BITS];
    256 
    257   if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
    258                              code_length_code_lengths,
    259                              NUM_CODE_LENGTH_CODES)) {
    260     goto End;
    261   }
    262 
    263   if (VP8LReadBits(br, 1)) {    // use length
    264     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
    265     max_symbol = 2 + VP8LReadBits(br, length_nbits);
    266     if (max_symbol > num_symbols) {
    267       goto End;
    268     }
    269   } else {
    270     max_symbol = num_symbols;
    271   }
    272 
    273   symbol = 0;
    274   while (symbol < num_symbols) {
    275     const HuffmanCode* p;
    276     int code_len;
    277     if (max_symbol-- == 0) break;
    278     VP8LFillBitWindow(br);
    279     p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
    280     VP8LSetBitPos(br, br->bit_pos_ + p->bits);
    281     code_len = p->value;
    282     if (code_len < kCodeLengthLiterals) {
    283       code_lengths[symbol++] = code_len;
    284       if (code_len != 0) prev_code_len = code_len;
    285     } else {
    286       const int use_prev = (code_len == kCodeLengthRepeatCode);
    287       const int slot = code_len - kCodeLengthLiterals;
    288       const int extra_bits = kCodeLengthExtraBits[slot];
    289       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
    290       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
    291       if (symbol + repeat > num_symbols) {
    292         goto End;
    293       } else {
    294         const int length = use_prev ? prev_code_len : 0;
    295         while (repeat-- > 0) code_lengths[symbol++] = length;
    296       }
    297     }
    298   }
    299   ok = 1;
    300 
    301  End:
    302   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    303   return ok;
    304 }
    305 
    306 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
    307 // tree.
    308 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
    309                            int* const code_lengths, HuffmanCode* const table) {
    310   int ok = 0;
    311   int size = 0;
    312   VP8LBitReader* const br = &dec->br_;
    313   const int simple_code = VP8LReadBits(br, 1);
    314 
    315   memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
    316 
    317   if (simple_code) {  // Read symbols, codes & code lengths directly.
    318     const int num_symbols = VP8LReadBits(br, 1) + 1;
    319     const int first_symbol_len_code = VP8LReadBits(br, 1);
    320     // The first code is either 1 bit or 8 bit code.
    321     int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
    322     code_lengths[symbol] = 1;
    323     // The second code (if present), is always 8 bit long.
    324     if (num_symbols == 2) {
    325       symbol = VP8LReadBits(br, 8);
    326       code_lengths[symbol] = 1;
    327     }
    328     ok = 1;
    329   } else {  // Decode Huffman-coded code lengths.
    330     int i;
    331     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
    332     const int num_codes = VP8LReadBits(br, 4) + 4;
    333     if (num_codes > NUM_CODE_LENGTH_CODES) {
    334       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    335       return 0;
    336     }
    337 
    338     for (i = 0; i < num_codes; ++i) {
    339       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
    340     }
    341     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
    342                                 code_lengths);
    343   }
    344 
    345   ok = ok && !br->eos_;
    346   if (ok) {
    347     size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
    348                                  code_lengths, alphabet_size);
    349   }
    350   if (!ok || size == 0) {
    351     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
    352     return 0;
    353   }
    354   return size;
    355 }
    356 
    357 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
    358                             int color_cache_bits, int allow_recursion) {
    359   int i, j;
    360   VP8LBitReader* const br = &dec->br_;
    361   VP8LMetadata* const hdr = &dec->hdr_;
    362   uint32_t* huffman_image = NULL;
    363   HTreeGroup* htree_groups = NULL;
    364   HuffmanCode* huffman_tables = NULL;
    365   HuffmanCode* next = NULL;
    366   int num_htree_groups = 1;
    367   int max_alphabet_size = 0;
    368   int* code_lengths = NULL;
    369   const int table_size = kTableSize[color_cache_bits];
    370 
    371   if (allow_recursion && VP8LReadBits(br, 1)) {
    372     // use meta Huffman codes.
    373     const int huffman_precision = VP8LReadBits(br, 3) + 2;
    374     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
    375     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
    376     const int huffman_pixs = huffman_xsize * huffman_ysize;
    377     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
    378                            &huffman_image)) {
    379       goto Error;
    380     }
    381     hdr->huffman_subsample_bits_ = huffman_precision;
    382     for (i = 0; i < huffman_pixs; ++i) {
    383       // The huffman data is stored in red and green bytes.
    384       const int group = (huffman_image[i] >> 8) & 0xffff;
    385       huffman_image[i] = group;
    386       if (group >= num_htree_groups) {
    387         num_htree_groups = group + 1;
    388       }
    389     }
    390   }
    391 
    392   if (br->eos_) goto Error;
    393 
    394   // Find maximum alphabet size for the htree group.
    395   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    396     int alphabet_size = kAlphabetSize[j];
    397     if (j == 0 && color_cache_bits > 0) {
    398       alphabet_size += 1 << color_cache_bits;
    399     }
    400     if (max_alphabet_size < alphabet_size) {
    401       max_alphabet_size = alphabet_size;
    402     }
    403   }
    404 
    405   huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
    406                                                 sizeof(*huffman_tables));
    407   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
    408   code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
    409                                       sizeof(*code_lengths));
    410 
    411   if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
    412     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    413     goto Error;
    414   }
    415 
    416   next = huffman_tables;
    417   for (i = 0; i < num_htree_groups; ++i) {
    418     HTreeGroup* const htree_group = &htree_groups[i];
    419     HuffmanCode** const htrees = htree_group->htrees;
    420     int size;
    421     int total_size = 0;
    422     int is_trivial_literal = 1;
    423     int max_bits = 0;
    424     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
    425       int alphabet_size = kAlphabetSize[j];
    426       htrees[j] = next;
    427       if (j == 0 && color_cache_bits > 0) {
    428         alphabet_size += 1 << color_cache_bits;
    429       }
    430       size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
    431       if (size == 0) {
    432         goto Error;
    433       }
    434       if (is_trivial_literal && kLiteralMap[j] == 1) {
    435         is_trivial_literal = (next->bits == 0);
    436       }
    437       total_size += next->bits;
    438       next += size;
    439       if (j <= ALPHA) {
    440         int local_max_bits = code_lengths[0];
    441         int k;
    442         for (k = 1; k < alphabet_size; ++k) {
    443           if (code_lengths[k] > local_max_bits) {
    444             local_max_bits = code_lengths[k];
    445           }
    446         }
    447         max_bits += local_max_bits;
    448       }
    449     }
    450     htree_group->is_trivial_literal = is_trivial_literal;
    451     htree_group->is_trivial_code = 0;
    452     if (is_trivial_literal) {
    453       const int red = htrees[RED][0].value;
    454       const int blue = htrees[BLUE][0].value;
    455       const int alpha = htrees[ALPHA][0].value;
    456       htree_group->literal_arb =
    457           ((uint32_t)alpha << 24) | (red << 16) | blue;
    458       if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
    459         htree_group->is_trivial_code = 1;
    460         htree_group->literal_arb |= htrees[GREEN][0].value << 8;
    461       }
    462     }
    463     htree_group->use_packed_table = !htree_group->is_trivial_code &&
    464                                     (max_bits < HUFFMAN_PACKED_BITS);
    465     if (htree_group->use_packed_table) BuildPackedTable(htree_group);
    466   }
    467   WebPSafeFree(code_lengths);
    468 
    469   // All OK. Finalize pointers and return.
    470   hdr->huffman_image_ = huffman_image;
    471   hdr->num_htree_groups_ = num_htree_groups;
    472   hdr->htree_groups_ = htree_groups;
    473   hdr->huffman_tables_ = huffman_tables;
    474   return 1;
    475 
    476  Error:
    477   WebPSafeFree(code_lengths);
    478   WebPSafeFree(huffman_image);
    479   WebPSafeFree(huffman_tables);
    480   VP8LHtreeGroupsFree(htree_groups);
    481   return 0;
    482 }
    483 
    484 //------------------------------------------------------------------------------
    485 // Scaling.
    486 
    487 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
    488   const int num_channels = 4;
    489   const int in_width = io->mb_w;
    490   const int out_width = io->scaled_width;
    491   const int in_height = io->mb_h;
    492   const int out_height = io->scaled_height;
    493   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
    494   rescaler_t* work;        // Rescaler work area.
    495   const uint64_t scaled_data_size = (uint64_t)out_width;
    496   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
    497   const uint64_t memory_size = sizeof(*dec->rescaler) +
    498                                work_size * sizeof(*work) +
    499                                scaled_data_size * sizeof(*scaled_data);
    500   uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
    501   if (memory == NULL) {
    502     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
    503     return 0;
    504   }
    505   assert(dec->rescaler_memory == NULL);
    506   dec->rescaler_memory = memory;
    507 
    508   dec->rescaler = (WebPRescaler*)memory;
    509   memory += sizeof(*dec->rescaler);
    510   work = (rescaler_t*)memory;
    511   memory += work_size * sizeof(*work);
    512   scaled_data = (uint32_t*)memory;
    513 
    514   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
    515                    out_width, out_height, 0, num_channels, work);
    516   return 1;
    517 }
    518 
    519 //------------------------------------------------------------------------------
    520 // Export to ARGB
    521 
    522 // We have special "export" function since we need to convert from BGRA
    523 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
    524                   int rgba_stride, uint8_t* const rgba) {
    525   uint32_t* const src = (uint32_t*)rescaler->dst;
    526   const int dst_width = rescaler->dst_width;
    527   int num_lines_out = 0;
    528   while (WebPRescalerHasPendingOutput(rescaler)) {
    529     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
    530     WebPRescalerExportRow(rescaler);
    531     WebPMultARGBRow(src, dst_width, 1);
    532     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
    533     ++num_lines_out;
    534   }
    535   return num_lines_out;
    536 }
    537 
    538 // Emit scaled rows.
    539 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
    540                                 uint8_t* in, int in_stride, int mb_h,
    541                                 uint8_t* const out, int out_stride) {
    542   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
    543   int num_lines_in = 0;
    544   int num_lines_out = 0;
    545   while (num_lines_in < mb_h) {
    546     uint8_t* const row_in = in + num_lines_in * in_stride;
    547     uint8_t* const row_out = out + num_lines_out * out_stride;
    548     const int lines_left = mb_h - num_lines_in;
    549     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    550     assert(needed_lines > 0 && needed_lines <= lines_left);
    551     WebPMultARGBRows(row_in, in_stride,
    552                      dec->rescaler->src_width, needed_lines, 0);
    553     WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
    554     num_lines_in += needed_lines;
    555     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
    556   }
    557   return num_lines_out;
    558 }
    559 
    560 // Emit rows without any scaling.
    561 static int EmitRows(WEBP_CSP_MODE colorspace,
    562                     const uint8_t* row_in, int in_stride,
    563                     int mb_w, int mb_h,
    564                     uint8_t* const out, int out_stride) {
    565   int lines = mb_h;
    566   uint8_t* row_out = out;
    567   while (lines-- > 0) {
    568     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
    569     row_in += in_stride;
    570     row_out += out_stride;
    571   }
    572   return mb_h;  // Num rows out == num rows in.
    573 }
    574 
    575 //------------------------------------------------------------------------------
    576 // Export to YUVA
    577 
    578 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
    579                           const WebPDecBuffer* const output) {
    580   const WebPYUVABuffer* const buf = &output->u.YUVA;
    581 
    582   // first, the luma plane
    583   WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
    584 
    585   // then U/V planes
    586   {
    587     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
    588     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
    589     // even lines: store values
    590     // odd lines: average with previous values
    591     WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
    592   }
    593   // Lastly, store alpha if needed.
    594   if (buf->a != NULL) {
    595     uint8_t* const a = buf->a + y_pos * buf->a_stride;
    596 #if defined(WORDS_BIGENDIAN)
    597     WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
    598 #else
    599     WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
    600 #endif
    601   }
    602 }
    603 
    604 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
    605   WebPRescaler* const rescaler = dec->rescaler;
    606   uint32_t* const src = (uint32_t*)rescaler->dst;
    607   const int dst_width = rescaler->dst_width;
    608   int num_lines_out = 0;
    609   while (WebPRescalerHasPendingOutput(rescaler)) {
    610     WebPRescalerExportRow(rescaler);
    611     WebPMultARGBRow(src, dst_width, 1);
    612     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
    613     ++y_pos;
    614     ++num_lines_out;
    615   }
    616   return num_lines_out;
    617 }
    618 
    619 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
    620                                 uint8_t* in, int in_stride, int mb_h) {
    621   int num_lines_in = 0;
    622   int y_pos = dec->last_out_row_;
    623   while (num_lines_in < mb_h) {
    624     const int lines_left = mb_h - num_lines_in;
    625     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
    626     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
    627     WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
    628     num_lines_in += needed_lines;
    629     in += needed_lines * in_stride;
    630     y_pos += ExportYUVA(dec, y_pos);
    631   }
    632   return y_pos;
    633 }
    634 
    635 static int EmitRowsYUVA(const VP8LDecoder* const dec,
    636                         const uint8_t* in, int in_stride,
    637                         int mb_w, int num_rows) {
    638   int y_pos = dec->last_out_row_;
    639   while (num_rows-- > 0) {
    640     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
    641     in += in_stride;
    642     ++y_pos;
    643   }
    644   return y_pos;
    645 }
    646 
    647 //------------------------------------------------------------------------------
    648 // Cropping.
    649 
    650 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
    651 // crop options. Also updates the input data pointer, so that it points to the
    652 // start of the cropped window. Note that pixels are in ARGB format even if
    653 // 'in_data' is uint8_t*.
    654 // Returns true if the crop window is not empty.
    655 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
    656                          uint8_t** const in_data, int pixel_stride) {
    657   assert(y_start < y_end);
    658   assert(io->crop_left < io->crop_right);
    659   if (y_end > io->crop_bottom) {
    660     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
    661   }
    662   if (y_start < io->crop_top) {
    663     const int delta = io->crop_top - y_start;
    664     y_start = io->crop_top;
    665     *in_data += delta * pixel_stride;
    666   }
    667   if (y_start >= y_end) return 0;  // Crop window is empty.
    668 
    669   *in_data += io->crop_left * sizeof(uint32_t);
    670 
    671   io->mb_y = y_start - io->crop_top;
    672   io->mb_w = io->crop_right - io->crop_left;
    673   io->mb_h = y_end - y_start;
    674   return 1;  // Non-empty crop window.
    675 }
    676 
    677 //------------------------------------------------------------------------------
    678 
    679 static WEBP_INLINE int GetMetaIndex(
    680     const uint32_t* const image, int xsize, int bits, int x, int y) {
    681   if (bits == 0) return 0;
    682   return image[xsize * (y >> bits) + (x >> bits)];
    683 }
    684 
    685 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
    686                                                    int x, int y) {
    687   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
    688                                       hdr->huffman_subsample_bits_, x, y);
    689   assert(meta_index < hdr->num_htree_groups_);
    690   return hdr->htree_groups_ + meta_index;
    691 }
    692 
    693 //------------------------------------------------------------------------------
    694 // Main loop, with custom row-processing function
    695 
    696 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
    697 
    698 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
    699                                    const uint32_t* const rows) {
    700   int n = dec->next_transform_;
    701   const int cache_pixs = dec->width_ * num_rows;
    702   const int start_row = dec->last_row_;
    703   const int end_row = start_row + num_rows;
    704   const uint32_t* rows_in = rows;
    705   uint32_t* const rows_out = dec->argb_cache_;
    706 
    707   // Inverse transforms.
    708   // TODO: most transforms only need to operate on the cropped region only.
    709   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
    710   while (n-- > 0) {
    711     VP8LTransform* const transform = &dec->transforms_[n];
    712     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
    713     rows_in = rows_out;
    714   }
    715 }
    716 
    717 // Special method for paletted alpha data.
    718 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
    719                                         const uint8_t* const rows) {
    720   const int start_row = dec->last_row_;
    721   const int end_row = start_row + num_rows;
    722   const uint8_t* rows_in = rows;
    723   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
    724   VP8LTransform* const transform = &dec->transforms_[0];
    725   assert(dec->next_transform_ == 1);
    726   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
    727   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
    728                                       rows_out);
    729 }
    730 
    731 // Processes (transforms, scales & color-converts) the rows decoded after the
    732 // last call.
    733 static void ProcessRows(VP8LDecoder* const dec, int row) {
    734   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
    735   const int num_rows = row - dec->last_row_;
    736 
    737   if (num_rows <= 0) return;  // Nothing to be done.
    738   ApplyInverseTransforms(dec, num_rows, rows);
    739 
    740   // Emit output.
    741   {
    742     VP8Io* const io = dec->io_;
    743     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
    744     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
    745     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
    746       // Nothing to output (this time).
    747     } else {
    748       const WebPDecBuffer* const output = dec->output_;
    749       if (WebPIsRGBMode(output->colorspace)) {  // convert to RGBA
    750         const WebPRGBABuffer* const buf = &output->u.RGBA;
    751         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
    752         const int num_rows_out = io->use_scaling ?
    753             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
    754                                  rgba, buf->stride) :
    755             EmitRows(output->colorspace, rows_data, in_stride,
    756                      io->mb_w, io->mb_h, rgba, buf->stride);
    757         // Update 'last_out_row_'.
    758         dec->last_out_row_ += num_rows_out;
    759       } else {                              // convert to YUVA
    760         dec->last_out_row_ = io->use_scaling ?
    761             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
    762             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
    763       }
    764       assert(dec->last_out_row_ <= output->height);
    765     }
    766   }
    767 
    768   // Update 'last_row_'.
    769   dec->last_row_ = row;
    770   assert(dec->last_row_ <= dec->height_);
    771 }
    772 
    773 // Row-processing for the special case when alpha data contains only one
    774 // transform (color indexing), and trivial non-green literals.
    775 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
    776   int i;
    777   if (hdr->color_cache_size_ > 0) return 0;
    778   // When the Huffman tree contains only one symbol, we can skip the
    779   // call to ReadSymbol() for red/blue/alpha channels.
    780   for (i = 0; i < hdr->num_htree_groups_; ++i) {
    781     HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
    782     if (htrees[RED][0].bits > 0) return 0;
    783     if (htrees[BLUE][0].bits > 0) return 0;
    784     if (htrees[ALPHA][0].bits > 0) return 0;
    785   }
    786   return 1;
    787 }
    788 
    789 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
    790   const int num_rows = row - dec->last_row_;
    791   const uint8_t* const in =
    792       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
    793   if (num_rows > 0) {
    794     ApplyInverseTransformsAlpha(dec, num_rows, in);
    795   }
    796   dec->last_row_ = dec->last_out_row_ = row;
    797 }
    798 
    799 //------------------------------------------------------------------------------
    800 // Helper functions for fast pattern copy (8b and 32b)
    801 
    802 // cyclic rotation of pattern word
    803 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
    804 #if defined(WORDS_BIGENDIAN)
    805   return ((V & 0xff000000u) >> 24) | (V << 8);
    806 #else
    807   return ((V & 0xffu) << 24) | (V >> 8);
    808 #endif
    809 }
    810 
    811 // copy 1, 2 or 4-bytes pattern
    812 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
    813                                            int length, uint32_t pattern) {
    814   int i;
    815   // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
    816   while ((uintptr_t)dst & 3) {
    817     *dst++ = *src++;
    818     pattern = Rotate8b(pattern);
    819     --length;
    820   }
    821   // Copy the pattern 4 bytes at a time.
    822   for (i = 0; i < (length >> 2); ++i) {
    823     ((uint32_t*)dst)[i] = pattern;
    824   }
    825   // Finish with left-overs. 'pattern' is still correctly positioned,
    826   // so no Rotate8b() call is needed.
    827   for (i <<= 2; i < length; ++i) {
    828     dst[i] = src[i];
    829   }
    830 }
    831 
    832 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
    833   const uint8_t* src = dst - dist;
    834   if (length >= 8) {
    835     uint32_t pattern = 0;
    836     switch (dist) {
    837       case 1:
    838         pattern = src[0];
    839 #if defined(__arm__) || defined(_M_ARM)   // arm doesn't like multiply that much
    840         pattern |= pattern << 8;
    841         pattern |= pattern << 16;
    842 #elif defined(WEBP_USE_MIPS_DSP_R2)
    843         __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
    844 #else
    845         pattern = 0x01010101u * pattern;
    846 #endif
    847         break;
    848       case 2:
    849         memcpy(&pattern, src, sizeof(uint16_t));
    850 #if defined(__arm__) || defined(_M_ARM)
    851         pattern |= pattern << 16;
    852 #elif defined(WEBP_USE_MIPS_DSP_R2)
    853         __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
    854 #else
    855         pattern = 0x00010001u * pattern;
    856 #endif
    857         break;
    858       case 4:
    859         memcpy(&pattern, src, sizeof(uint32_t));
    860         break;
    861       default:
    862         goto Copy;
    863         break;
    864     }
    865     CopySmallPattern8b(src, dst, length, pattern);
    866     return;
    867   }
    868  Copy:
    869   if (dist >= length) {  // no overlap -> use memcpy()
    870     memcpy(dst, src, length * sizeof(*dst));
    871   } else {
    872     int i;
    873     for (i = 0; i < length; ++i) dst[i] = src[i];
    874   }
    875 }
    876 
    877 // copy pattern of 1 or 2 uint32_t's
    878 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
    879                                             uint32_t* dst,
    880                                             int length, uint64_t pattern) {
    881   int i;
    882   if ((uintptr_t)dst & 4) {           // Align 'dst' to 8-bytes boundary.
    883     *dst++ = *src++;
    884     pattern = (pattern >> 32) | (pattern << 32);
    885     --length;
    886   }
    887   assert(0 == ((uintptr_t)dst & 7));
    888   for (i = 0; i < (length >> 1); ++i) {
    889     ((uint64_t*)dst)[i] = pattern;    // Copy the pattern 8 bytes at a time.
    890   }
    891   if (length & 1) {                   // Finish with left-over.
    892     dst[i << 1] = src[i << 1];
    893   }
    894 }
    895 
    896 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
    897                                      int dist, int length) {
    898   const uint32_t* const src = dst - dist;
    899   if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
    900     uint64_t pattern;
    901     if (dist == 1) {
    902       pattern = (uint64_t)src[0];
    903       pattern |= pattern << 32;
    904     } else {
    905       memcpy(&pattern, src, sizeof(pattern));
    906     }
    907     CopySmallPattern32b(src, dst, length, pattern);
    908   } else if (dist >= length) {  // no overlap
    909     memcpy(dst, src, length * sizeof(*dst));
    910   } else {
    911     int i;
    912     for (i = 0; i < length; ++i) dst[i] = src[i];
    913   }
    914 }
    915 
    916 //------------------------------------------------------------------------------
    917 
    918 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
    919                            int width, int height, int last_row) {
    920   int ok = 1;
    921   int row = dec->last_pixel_ / width;
    922   int col = dec->last_pixel_ % width;
    923   VP8LBitReader* const br = &dec->br_;
    924   VP8LMetadata* const hdr = &dec->hdr_;
    925   const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
    926   int pos = dec->last_pixel_;         // current position
    927   const int end = width * height;     // End of data
    928   const int last = width * last_row;  // Last pixel to decode
    929   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
    930   const int mask = hdr->huffman_mask_;
    931   assert(htree_group != NULL);
    932   assert(pos < end);
    933   assert(last_row <= height);
    934   assert(Is8bOptimizable(hdr));
    935 
    936   while (!br->eos_ && pos < last) {
    937     int code;
    938     // Only update when changing tile.
    939     if ((col & mask) == 0) {
    940       htree_group = GetHtreeGroupForPos(hdr, col, row);
    941     }
    942     VP8LFillBitWindow(br);
    943     code = ReadSymbol(htree_group->htrees[GREEN], br);
    944     if (code < NUM_LITERAL_CODES) {  // Literal
    945       data[pos] = code;
    946       ++pos;
    947       ++col;
    948       if (col >= width) {
    949         col = 0;
    950         ++row;
    951         if (row % NUM_ARGB_CACHE_ROWS == 0) {
    952           ExtractPalettedAlphaRows(dec, row);
    953         }
    954       }
    955     } else if (code < len_code_limit) {  // Backward reference
    956       int dist_code, dist;
    957       const int length_sym = code - NUM_LITERAL_CODES;
    958       const int length = GetCopyLength(length_sym, br);
    959       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
    960       VP8LFillBitWindow(br);
    961       dist_code = GetCopyDistance(dist_symbol, br);
    962       dist = PlaneCodeToDistance(width, dist_code);
    963       if (pos >= dist && end - pos >= length) {
    964         CopyBlock8b(data + pos, dist, length);
    965       } else {
    966         ok = 0;
    967         goto End;
    968       }
    969       pos += length;
    970       col += length;
    971       while (col >= width) {
    972         col -= width;
    973         ++row;
    974         if (row % NUM_ARGB_CACHE_ROWS == 0) {
    975           ExtractPalettedAlphaRows(dec, row);
    976         }
    977       }
    978       if (pos < last && (col & mask)) {
    979         htree_group = GetHtreeGroupForPos(hdr, col, row);
    980       }
    981     } else {  // Not reached
    982       ok = 0;
    983       goto End;
    984     }
    985     assert(br->eos_ == VP8LIsEndOfStream(br));
    986   }
    987   // Process the remaining rows corresponding to last row-block.
    988   ExtractPalettedAlphaRows(dec, row);
    989 
    990  End:
    991   if (!ok || (br->eos_ && pos < end)) {
    992     ok = 0;
    993     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
    994                             : VP8_STATUS_BITSTREAM_ERROR;
    995   } else {
    996     dec->last_pixel_ = pos;
    997   }
    998   return ok;
    999 }
   1000 
   1001 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
   1002   assert(dec->incremental_);
   1003   dec->saved_br_ = dec->br_;
   1004   dec->saved_last_pixel_ = last_pixel;
   1005   if (dec->hdr_.color_cache_size_ > 0) {
   1006     VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
   1007   }
   1008 }
   1009 
   1010 static void RestoreState(VP8LDecoder* const dec) {
   1011   assert(dec->br_.eos_);
   1012   dec->status_ = VP8_STATUS_SUSPENDED;
   1013   dec->br_ = dec->saved_br_;
   1014   dec->last_pixel_ = dec->saved_last_pixel_;
   1015   if (dec->hdr_.color_cache_size_ > 0) {
   1016     VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
   1017   }
   1018 }
   1019 
   1020 #define SYNC_EVERY_N_ROWS 8  // minimum number of rows between check-points
   1021 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
   1022                            int width, int height, int last_row,
   1023                            ProcessRowsFunc process_func) {
   1024   int row = dec->last_pixel_ / width;
   1025   int col = dec->last_pixel_ % width;
   1026   VP8LBitReader* const br = &dec->br_;
   1027   VP8LMetadata* const hdr = &dec->hdr_;
   1028   HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
   1029   uint32_t* src = data + dec->last_pixel_;
   1030   uint32_t* last_cached = src;
   1031   uint32_t* const src_end = data + width * height;     // End of data
   1032   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
   1033   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
   1034   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
   1035   int next_sync_row = dec->incremental_ ? row : 1 << 24;
   1036   VP8LColorCache* const color_cache =
   1037       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
   1038   const int mask = hdr->huffman_mask_;
   1039   assert(htree_group != NULL);
   1040   assert(src < src_end);
   1041   assert(src_last <= src_end);
   1042 
   1043   while (src < src_last) {
   1044     int code;
   1045     if (row >= next_sync_row) {
   1046       SaveState(dec, (int)(src - data));
   1047       next_sync_row = row + SYNC_EVERY_N_ROWS;
   1048     }
   1049     // Only update when changing tile. Note we could use this test:
   1050     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
   1051     // but that's actually slower and needs storing the previous col/row.
   1052     if ((col & mask) == 0) htree_group = GetHtreeGroupForPos(hdr, col, row);
   1053     if (htree_group->is_trivial_code) {
   1054       *src = htree_group->literal_arb;
   1055       goto AdvanceByOne;
   1056     }
   1057     VP8LFillBitWindow(br);
   1058     if (htree_group->use_packed_table) {
   1059       code = ReadPackedSymbols(htree_group, br, src);
   1060       if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
   1061     } else {
   1062       code = ReadSymbol(htree_group->htrees[GREEN], br);
   1063     }
   1064     if (br->eos_) break;  // early out
   1065     if (code < NUM_LITERAL_CODES) {  // Literal
   1066       if (htree_group->is_trivial_literal) {
   1067         *src = htree_group->literal_arb | (code << 8);
   1068       } else {
   1069         int red, blue, alpha;
   1070         red = ReadSymbol(htree_group->htrees[RED], br);
   1071         VP8LFillBitWindow(br);
   1072         blue = ReadSymbol(htree_group->htrees[BLUE], br);
   1073         alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
   1074         if (br->eos_) break;
   1075         *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
   1076       }
   1077     AdvanceByOne:
   1078       ++src;
   1079       ++col;
   1080       if (col >= width) {
   1081         col = 0;
   1082         ++row;
   1083         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
   1084           process_func(dec, row);
   1085         }
   1086         if (color_cache != NULL) {
   1087           while (last_cached < src) {
   1088             VP8LColorCacheInsert(color_cache, *last_cached++);
   1089           }
   1090         }
   1091       }
   1092     } else if (code < len_code_limit) {  // Backward reference
   1093       int dist_code, dist;
   1094       const int length_sym = code - NUM_LITERAL_CODES;
   1095       const int length = GetCopyLength(length_sym, br);
   1096       const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
   1097       VP8LFillBitWindow(br);
   1098       dist_code = GetCopyDistance(dist_symbol, br);
   1099       dist = PlaneCodeToDistance(width, dist_code);
   1100       if (br->eos_) break;
   1101       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
   1102         goto Error;
   1103       } else {
   1104         CopyBlock32b(src, dist, length);
   1105       }
   1106       src += length;
   1107       col += length;
   1108       while (col >= width) {
   1109         col -= width;
   1110         ++row;
   1111         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
   1112           process_func(dec, row);
   1113         }
   1114       }
   1115       // Because of the check done above (before 'src' was incremented by
   1116       // 'length'), the following holds true.
   1117       assert(src <= src_end);
   1118       if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
   1119       if (color_cache != NULL) {
   1120         while (last_cached < src) {
   1121           VP8LColorCacheInsert(color_cache, *last_cached++);
   1122         }
   1123       }
   1124     } else if (code < color_cache_limit) {  // Color cache
   1125       const int key = code - len_code_limit;
   1126       assert(color_cache != NULL);
   1127       while (last_cached < src) {
   1128         VP8LColorCacheInsert(color_cache, *last_cached++);
   1129       }
   1130       *src = VP8LColorCacheLookup(color_cache, key);
   1131       goto AdvanceByOne;
   1132     } else {  // Not reached
   1133       goto Error;
   1134     }
   1135     assert(br->eos_ == VP8LIsEndOfStream(br));
   1136   }
   1137 
   1138   if (dec->incremental_ && br->eos_ && src < src_end) {
   1139     RestoreState(dec);
   1140   } else if (!br->eos_) {
   1141     // Process the remaining rows corresponding to last row-block.
   1142     if (process_func != NULL) {
   1143       process_func(dec, row);
   1144     }
   1145     dec->status_ = VP8_STATUS_OK;
   1146     dec->last_pixel_ = (int)(src - data);  // end-of-scan marker
   1147   } else {
   1148     // if not incremental, and we are past the end of buffer (eos_=1), then this
   1149     // is a real bitstream error.
   1150     goto Error;
   1151   }
   1152   return 1;
   1153 
   1154  Error:
   1155   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1156   return 0;
   1157 }
   1158 
   1159 // -----------------------------------------------------------------------------
   1160 // VP8LTransform
   1161 
   1162 static void ClearTransform(VP8LTransform* const transform) {
   1163   WebPSafeFree(transform->data_);
   1164   transform->data_ = NULL;
   1165 }
   1166 
   1167 // For security reason, we need to remap the color map to span
   1168 // the total possible bundled values, and not just the num_colors.
   1169 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
   1170   int i;
   1171   const int final_num_colors = 1 << (8 >> transform->bits_);
   1172   uint32_t* const new_color_map =
   1173       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
   1174                                 sizeof(*new_color_map));
   1175   if (new_color_map == NULL) {
   1176     return 0;
   1177   } else {
   1178     uint8_t* const data = (uint8_t*)transform->data_;
   1179     uint8_t* const new_data = (uint8_t*)new_color_map;
   1180     new_color_map[0] = transform->data_[0];
   1181     for (i = 4; i < 4 * num_colors; ++i) {
   1182       // Equivalent to AddPixelEq(), on a byte-basis.
   1183       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
   1184     }
   1185     for (; i < 4 * final_num_colors; ++i)
   1186       new_data[i] = 0;  // black tail.
   1187     WebPSafeFree(transform->data_);
   1188     transform->data_ = new_color_map;
   1189   }
   1190   return 1;
   1191 }
   1192 
   1193 static int ReadTransform(int* const xsize, int const* ysize,
   1194                          VP8LDecoder* const dec) {
   1195   int ok = 1;
   1196   VP8LBitReader* const br = &dec->br_;
   1197   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
   1198   const VP8LImageTransformType type =
   1199       (VP8LImageTransformType)VP8LReadBits(br, 2);
   1200 
   1201   // Each transform type can only be present once in the stream.
   1202   if (dec->transforms_seen_ & (1U << type)) {
   1203     return 0;  // Already there, let's not accept the second same transform.
   1204   }
   1205   dec->transforms_seen_ |= (1U << type);
   1206 
   1207   transform->type_ = type;
   1208   transform->xsize_ = *xsize;
   1209   transform->ysize_ = *ysize;
   1210   transform->data_ = NULL;
   1211   ++dec->next_transform_;
   1212   assert(dec->next_transform_ <= NUM_TRANSFORMS);
   1213 
   1214   switch (type) {
   1215     case PREDICTOR_TRANSFORM:
   1216     case CROSS_COLOR_TRANSFORM:
   1217       transform->bits_ = VP8LReadBits(br, 3) + 2;
   1218       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
   1219                                                transform->bits_),
   1220                              VP8LSubSampleSize(transform->ysize_,
   1221                                                transform->bits_),
   1222                              0, dec, &transform->data_);
   1223       break;
   1224     case COLOR_INDEXING_TRANSFORM: {
   1225        const int num_colors = VP8LReadBits(br, 8) + 1;
   1226        const int bits = (num_colors > 16) ? 0
   1227                       : (num_colors > 4) ? 1
   1228                       : (num_colors > 2) ? 2
   1229                       : 3;
   1230        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
   1231        transform->bits_ = bits;
   1232        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
   1233        ok = ok && ExpandColorMap(num_colors, transform);
   1234       break;
   1235     }
   1236     case SUBTRACT_GREEN:
   1237       break;
   1238     default:
   1239       assert(0);    // can't happen
   1240       break;
   1241   }
   1242 
   1243   return ok;
   1244 }
   1245 
   1246 // -----------------------------------------------------------------------------
   1247 // VP8LMetadata
   1248 
   1249 static void InitMetadata(VP8LMetadata* const hdr) {
   1250   assert(hdr != NULL);
   1251   memset(hdr, 0, sizeof(*hdr));
   1252 }
   1253 
   1254 static void ClearMetadata(VP8LMetadata* const hdr) {
   1255   assert(hdr != NULL);
   1256 
   1257   WebPSafeFree(hdr->huffman_image_);
   1258   WebPSafeFree(hdr->huffman_tables_);
   1259   VP8LHtreeGroupsFree(hdr->htree_groups_);
   1260   VP8LColorCacheClear(&hdr->color_cache_);
   1261   VP8LColorCacheClear(&hdr->saved_color_cache_);
   1262   InitMetadata(hdr);
   1263 }
   1264 
   1265 // -----------------------------------------------------------------------------
   1266 // VP8LDecoder
   1267 
   1268 VP8LDecoder* VP8LNew(void) {
   1269   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
   1270   if (dec == NULL) return NULL;
   1271   dec->status_ = VP8_STATUS_OK;
   1272   dec->state_ = READ_DIM;
   1273 
   1274   VP8LDspInit();  // Init critical function pointers.
   1275 
   1276   return dec;
   1277 }
   1278 
   1279 void VP8LClear(VP8LDecoder* const dec) {
   1280   int i;
   1281   if (dec == NULL) return;
   1282   ClearMetadata(&dec->hdr_);
   1283 
   1284   WebPSafeFree(dec->pixels_);
   1285   dec->pixels_ = NULL;
   1286   for (i = 0; i < dec->next_transform_; ++i) {
   1287     ClearTransform(&dec->transforms_[i]);
   1288   }
   1289   dec->next_transform_ = 0;
   1290   dec->transforms_seen_ = 0;
   1291 
   1292   WebPSafeFree(dec->rescaler_memory);
   1293   dec->rescaler_memory = NULL;
   1294 
   1295   dec->output_ = NULL;   // leave no trace behind
   1296 }
   1297 
   1298 void VP8LDelete(VP8LDecoder* const dec) {
   1299   if (dec != NULL) {
   1300     VP8LClear(dec);
   1301     WebPSafeFree(dec);
   1302   }
   1303 }
   1304 
   1305 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
   1306   VP8LMetadata* const hdr = &dec->hdr_;
   1307   const int num_bits = hdr->huffman_subsample_bits_;
   1308   dec->width_ = width;
   1309   dec->height_ = height;
   1310 
   1311   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
   1312   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
   1313 }
   1314 
   1315 static int DecodeImageStream(int xsize, int ysize,
   1316                              int is_level0,
   1317                              VP8LDecoder* const dec,
   1318                              uint32_t** const decoded_data) {
   1319   int ok = 1;
   1320   int transform_xsize = xsize;
   1321   int transform_ysize = ysize;
   1322   VP8LBitReader* const br = &dec->br_;
   1323   VP8LMetadata* const hdr = &dec->hdr_;
   1324   uint32_t* data = NULL;
   1325   int color_cache_bits = 0;
   1326 
   1327   // Read the transforms (may recurse).
   1328   if (is_level0) {
   1329     while (ok && VP8LReadBits(br, 1)) {
   1330       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
   1331     }
   1332   }
   1333 
   1334   // Color cache
   1335   if (ok && VP8LReadBits(br, 1)) {
   1336     color_cache_bits = VP8LReadBits(br, 4);
   1337     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
   1338     if (!ok) {
   1339       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1340       goto End;
   1341     }
   1342   }
   1343 
   1344   // Read the Huffman codes (may recurse).
   1345   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
   1346                               color_cache_bits, is_level0);
   1347   if (!ok) {
   1348     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1349     goto End;
   1350   }
   1351 
   1352   // Finish setting up the color-cache
   1353   if (color_cache_bits > 0) {
   1354     hdr->color_cache_size_ = 1 << color_cache_bits;
   1355     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
   1356       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1357       ok = 0;
   1358       goto End;
   1359     }
   1360   } else {
   1361     hdr->color_cache_size_ = 0;
   1362   }
   1363   UpdateDecoder(dec, transform_xsize, transform_ysize);
   1364 
   1365   if (is_level0) {   // level 0 complete
   1366     dec->state_ = READ_HDR;
   1367     goto End;
   1368   }
   1369 
   1370   {
   1371     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
   1372     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
   1373     if (data == NULL) {
   1374       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1375       ok = 0;
   1376       goto End;
   1377     }
   1378   }
   1379 
   1380   // Use the Huffman trees to decode the LZ77 encoded data.
   1381   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
   1382                        transform_ysize, NULL);
   1383   ok = ok && !br->eos_;
   1384 
   1385  End:
   1386   if (!ok) {
   1387     WebPSafeFree(data);
   1388     ClearMetadata(hdr);
   1389   } else {
   1390     if (decoded_data != NULL) {
   1391       *decoded_data = data;
   1392     } else {
   1393       // We allocate image data in this function only for transforms. At level 0
   1394       // (that is: not the transforms), we shouldn't have allocated anything.
   1395       assert(data == NULL);
   1396       assert(is_level0);
   1397     }
   1398     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
   1399     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
   1400   }
   1401   return ok;
   1402 }
   1403 
   1404 //------------------------------------------------------------------------------
   1405 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
   1406 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
   1407   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
   1408   // Scratch buffer corresponding to top-prediction row for transforming the
   1409   // first row in the row-blocks. Not needed for paletted alpha.
   1410   const uint64_t cache_top_pixels = (uint16_t)final_width;
   1411   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
   1412   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
   1413   const uint64_t total_num_pixels =
   1414       num_pixels + cache_top_pixels + cache_pixels;
   1415 
   1416   assert(dec->width_ <= final_width);
   1417   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
   1418   if (dec->pixels_ == NULL) {
   1419     dec->argb_cache_ = NULL;    // for sanity check
   1420     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1421     return 0;
   1422   }
   1423   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
   1424   return 1;
   1425 }
   1426 
   1427 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
   1428   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
   1429   dec->argb_cache_ = NULL;    // for sanity check
   1430   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
   1431   if (dec->pixels_ == NULL) {
   1432     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1433     return 0;
   1434   }
   1435   return 1;
   1436 }
   1437 
   1438 //------------------------------------------------------------------------------
   1439 
   1440 // Special row-processing that only stores the alpha data.
   1441 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
   1442   const int num_rows = row - dec->last_row_;
   1443   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
   1444 
   1445   if (num_rows <= 0) return;  // Nothing to be done.
   1446   ApplyInverseTransforms(dec, num_rows, in);
   1447 
   1448   // Extract alpha (which is stored in the green plane).
   1449   {
   1450     const int width = dec->io_->width;      // the final width (!= dec->width_)
   1451     const int cache_pixs = width * num_rows;
   1452     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
   1453     const uint32_t* const src = dec->argb_cache_;
   1454     int i;
   1455     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
   1456   }
   1457   dec->last_row_ = dec->last_out_row_ = row;
   1458 }
   1459 
   1460 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
   1461                           const uint8_t* const data, size_t data_size,
   1462                           uint8_t* const output) {
   1463   int ok = 0;
   1464   VP8LDecoder* dec;
   1465   VP8Io* io;
   1466   assert(alph_dec != NULL);
   1467   alph_dec->vp8l_dec_ = VP8LNew();
   1468   if (alph_dec->vp8l_dec_ == NULL) return 0;
   1469   dec = alph_dec->vp8l_dec_;
   1470 
   1471   dec->width_ = alph_dec->width_;
   1472   dec->height_ = alph_dec->height_;
   1473   dec->io_ = &alph_dec->io_;
   1474   io = dec->io_;
   1475 
   1476   VP8InitIo(io);
   1477   WebPInitCustomIo(NULL, io);  // Just a sanity Init. io won't be used.
   1478   io->opaque = output;
   1479   io->width = alph_dec->width_;
   1480   io->height = alph_dec->height_;
   1481 
   1482   dec->status_ = VP8_STATUS_OK;
   1483   VP8LInitBitReader(&dec->br_, data, data_size);
   1484 
   1485   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
   1486     goto Err;
   1487   }
   1488 
   1489   // Special case: if alpha data uses only the color indexing transform and
   1490   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
   1491   // method that only needs allocation of 1 byte per pixel (alpha channel).
   1492   if (dec->next_transform_ == 1 &&
   1493       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
   1494       Is8bOptimizable(&dec->hdr_)) {
   1495     alph_dec->use_8b_decode = 1;
   1496     ok = AllocateInternalBuffers8b(dec);
   1497   } else {
   1498     // Allocate internal buffers (note that dec->width_ may have changed here).
   1499     alph_dec->use_8b_decode = 0;
   1500     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
   1501   }
   1502 
   1503   if (!ok) goto Err;
   1504 
   1505   return 1;
   1506 
   1507  Err:
   1508   VP8LDelete(alph_dec->vp8l_dec_);
   1509   alph_dec->vp8l_dec_ = NULL;
   1510   return 0;
   1511 }
   1512 
   1513 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
   1514   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
   1515   assert(dec != NULL);
   1516   assert(last_row <= dec->height_);
   1517 
   1518   if (dec->last_pixel_ == dec->width_ * dec->height_) {
   1519     return 1;  // done
   1520   }
   1521 
   1522   // Decode (with special row processing).
   1523   return alph_dec->use_8b_decode ?
   1524       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
   1525                       last_row) :
   1526       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1527                       last_row, ExtractAlphaRows);
   1528 }
   1529 
   1530 //------------------------------------------------------------------------------
   1531 
   1532 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
   1533   int width, height, has_alpha;
   1534 
   1535   if (dec == NULL) return 0;
   1536   if (io == NULL) {
   1537     dec->status_ = VP8_STATUS_INVALID_PARAM;
   1538     return 0;
   1539   }
   1540 
   1541   dec->io_ = io;
   1542   dec->status_ = VP8_STATUS_OK;
   1543   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
   1544   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
   1545     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
   1546     goto Error;
   1547   }
   1548   dec->state_ = READ_DIM;
   1549   io->width = width;
   1550   io->height = height;
   1551 
   1552   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
   1553   return 1;
   1554 
   1555  Error:
   1556   VP8LClear(dec);
   1557   assert(dec->status_ != VP8_STATUS_OK);
   1558   return 0;
   1559 }
   1560 
   1561 int VP8LDecodeImage(VP8LDecoder* const dec) {
   1562   VP8Io* io = NULL;
   1563   WebPDecParams* params = NULL;
   1564 
   1565   // Sanity checks.
   1566   if (dec == NULL) return 0;
   1567 
   1568   assert(dec->hdr_.huffman_tables_ != NULL);
   1569   assert(dec->hdr_.htree_groups_ != NULL);
   1570   assert(dec->hdr_.num_htree_groups_ > 0);
   1571 
   1572   io = dec->io_;
   1573   assert(io != NULL);
   1574   params = (WebPDecParams*)io->opaque;
   1575   assert(params != NULL);
   1576 
   1577   // Initialization.
   1578   if (dec->state_ != READ_DATA) {
   1579     dec->output_ = params->output;
   1580     assert(dec->output_ != NULL);
   1581 
   1582     if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
   1583       dec->status_ = VP8_STATUS_INVALID_PARAM;
   1584       goto Err;
   1585     }
   1586 
   1587     if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
   1588 
   1589     if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
   1590 
   1591     if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
   1592       // need the alpha-multiply functions for premultiplied output or rescaling
   1593       WebPInitAlphaProcessing();
   1594     }
   1595     if (!WebPIsRGBMode(dec->output_->colorspace)) {
   1596       WebPInitConvertARGBToYUV();
   1597       if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
   1598     }
   1599     if (dec->incremental_) {
   1600       if (dec->hdr_.color_cache_size_ > 0 &&
   1601           dec->hdr_.saved_color_cache_.colors_ == NULL) {
   1602         if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
   1603                                 dec->hdr_.color_cache_.hash_bits_)) {
   1604           dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
   1605           goto Err;
   1606         }
   1607       }
   1608     }
   1609     dec->state_ = READ_DATA;
   1610   }
   1611 
   1612   // Decode.
   1613   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
   1614                        dec->height_, ProcessRows)) {
   1615     goto Err;
   1616   }
   1617 
   1618   params->last_y = dec->last_out_row_;
   1619   return 1;
   1620 
   1621  Err:
   1622   VP8LClear(dec);
   1623   assert(dec->status_ != VP8_STATUS_OK);
   1624   return 0;
   1625 }
   1626 
   1627 //------------------------------------------------------------------------------
   1628