1 /* 2 * MD4 hash implementation 3 * Copyright (c) 2006, Jouni Malinen <j (at) w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 */ 8 9 #include "includes.h" 10 11 #include "common.h" 12 #include "crypto.h" 13 14 #define MD4_BLOCK_LENGTH 64 15 #define MD4_DIGEST_LENGTH 16 16 17 typedef struct MD4Context { 18 u32 state[4]; /* state */ 19 u64 count; /* number of bits, mod 2^64 */ 20 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */ 21 } MD4_CTX; 22 23 24 static void MD4Init(MD4_CTX *ctx); 25 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len); 26 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx); 27 28 29 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 30 { 31 MD4_CTX ctx; 32 size_t i; 33 34 if (TEST_FAIL()) 35 return -1; 36 37 MD4Init(&ctx); 38 for (i = 0; i < num_elem; i++) 39 MD4Update(&ctx, addr[i], len[i]); 40 MD4Final(mac, &ctx); 41 return 0; 42 } 43 44 45 /* ===== start - public domain MD4 implementation ===== */ 46 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */ 47 48 /* 49 * This code implements the MD4 message-digest algorithm. 50 * The algorithm is due to Ron Rivest. This code was 51 * written by Colin Plumb in 1993, no copyright is claimed. 52 * This code is in the public domain; do with it what you wish. 53 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. 54 * 55 * Equivalent code is available from RSA Data Security, Inc. 56 * This code has been tested against that, and is equivalent, 57 * except that you don't need to include two pages of legalese 58 * with every copy. 59 * 60 * To compute the message digest of a chunk of bytes, declare an 61 * MD4Context structure, pass it to MD4Init, call MD4Update as 62 * needed on buffers full of bytes, and then call MD4Final, which 63 * will fill a supplied 16-byte array with the digest. 64 */ 65 66 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1) 67 68 69 static void 70 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]); 71 72 #define PUT_64BIT_LE(cp, value) do { \ 73 (cp)[7] = (value) >> 56; \ 74 (cp)[6] = (value) >> 48; \ 75 (cp)[5] = (value) >> 40; \ 76 (cp)[4] = (value) >> 32; \ 77 (cp)[3] = (value) >> 24; \ 78 (cp)[2] = (value) >> 16; \ 79 (cp)[1] = (value) >> 8; \ 80 (cp)[0] = (value); } while (0) 81 82 #define PUT_32BIT_LE(cp, value) do { \ 83 (cp)[3] = (value) >> 24; \ 84 (cp)[2] = (value) >> 16; \ 85 (cp)[1] = (value) >> 8; \ 86 (cp)[0] = (value); } while (0) 87 88 static u8 PADDING[MD4_BLOCK_LENGTH] = { 89 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 91 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 92 }; 93 94 /* 95 * Start MD4 accumulation. 96 * Set bit count to 0 and buffer to mysterious initialization constants. 97 */ 98 static void MD4Init(MD4_CTX *ctx) 99 { 100 ctx->count = 0; 101 ctx->state[0] = 0x67452301; 102 ctx->state[1] = 0xefcdab89; 103 ctx->state[2] = 0x98badcfe; 104 ctx->state[3] = 0x10325476; 105 } 106 107 /* 108 * Update context to reflect the concatenation of another buffer full 109 * of bytes. 110 */ 111 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) 112 { 113 size_t have, need; 114 115 /* Check how many bytes we already have and how many more we need. */ 116 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 117 need = MD4_BLOCK_LENGTH - have; 118 119 /* Update bitcount */ 120 ctx->count += (u64)len << 3; 121 122 if (len >= need) { 123 if (have != 0) { 124 os_memcpy(ctx->buffer + have, input, need); 125 MD4Transform(ctx->state, ctx->buffer); 126 input += need; 127 len -= need; 128 have = 0; 129 } 130 131 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */ 132 while (len >= MD4_BLOCK_LENGTH) { 133 MD4Transform(ctx->state, input); 134 input += MD4_BLOCK_LENGTH; 135 len -= MD4_BLOCK_LENGTH; 136 } 137 } 138 139 /* Handle any remaining bytes of data. */ 140 if (len != 0) 141 os_memcpy(ctx->buffer + have, input, len); 142 } 143 144 /* 145 * Pad pad to 64-byte boundary with the bit pattern 146 * 1 0* (64-bit count of bits processed, MSB-first) 147 */ 148 static void MD4Pad(MD4_CTX *ctx) 149 { 150 u8 count[8]; 151 size_t padlen; 152 153 /* Convert count to 8 bytes in little endian order. */ 154 PUT_64BIT_LE(count, ctx->count); 155 156 /* Pad out to 56 mod 64. */ 157 padlen = MD4_BLOCK_LENGTH - 158 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 159 if (padlen < 1 + 8) 160 padlen += MD4_BLOCK_LENGTH; 161 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ 162 MD4Update(ctx, count, 8); 163 } 164 165 /* 166 * Final wrapup--call MD4Pad, fill in digest and zero out ctx. 167 */ 168 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) 169 { 170 int i; 171 172 MD4Pad(ctx); 173 if (digest != NULL) { 174 for (i = 0; i < 4; i++) 175 PUT_32BIT_LE(digest + i * 4, ctx->state[i]); 176 os_memset(ctx, 0, sizeof(*ctx)); 177 } 178 } 179 180 181 /* The three core functions - F1 is optimized somewhat */ 182 183 /* #define F1(x, y, z) (x & y | ~x & z) */ 184 #define F1(x, y, z) (z ^ (x & (y ^ z))) 185 #define F2(x, y, z) ((x & y) | (x & z) | (y & z)) 186 #define F3(x, y, z) (x ^ y ^ z) 187 188 /* This is the central step in the MD4 algorithm. */ 189 #define MD4STEP(f, w, x, y, z, data, s) \ 190 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) 191 192 /* 193 * The core of the MD4 algorithm, this alters an existing MD4 hash to 194 * reflect the addition of 16 longwords of new data. MD4Update blocks 195 * the data and converts bytes into longwords for this routine. 196 */ 197 static void 198 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]) 199 { 200 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; 201 202 #if BYTE_ORDER == LITTLE_ENDIAN 203 os_memcpy(in, block, sizeof(in)); 204 #else 205 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { 206 in[a] = (u32)( 207 (u32)(block[a * 4 + 0]) | 208 (u32)(block[a * 4 + 1]) << 8 | 209 (u32)(block[a * 4 + 2]) << 16 | 210 (u32)(block[a * 4 + 3]) << 24); 211 } 212 #endif 213 214 a = state[0]; 215 b = state[1]; 216 c = state[2]; 217 d = state[3]; 218 219 MD4STEP(F1, a, b, c, d, in[ 0], 3); 220 MD4STEP(F1, d, a, b, c, in[ 1], 7); 221 MD4STEP(F1, c, d, a, b, in[ 2], 11); 222 MD4STEP(F1, b, c, d, a, in[ 3], 19); 223 MD4STEP(F1, a, b, c, d, in[ 4], 3); 224 MD4STEP(F1, d, a, b, c, in[ 5], 7); 225 MD4STEP(F1, c, d, a, b, in[ 6], 11); 226 MD4STEP(F1, b, c, d, a, in[ 7], 19); 227 MD4STEP(F1, a, b, c, d, in[ 8], 3); 228 MD4STEP(F1, d, a, b, c, in[ 9], 7); 229 MD4STEP(F1, c, d, a, b, in[10], 11); 230 MD4STEP(F1, b, c, d, a, in[11], 19); 231 MD4STEP(F1, a, b, c, d, in[12], 3); 232 MD4STEP(F1, d, a, b, c, in[13], 7); 233 MD4STEP(F1, c, d, a, b, in[14], 11); 234 MD4STEP(F1, b, c, d, a, in[15], 19); 235 236 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); 237 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); 238 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); 239 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); 240 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); 241 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); 242 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); 243 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); 244 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); 245 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); 246 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); 247 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); 248 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); 249 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); 250 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); 251 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); 252 253 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); 254 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); 255 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); 256 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); 257 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); 258 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); 259 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); 260 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); 261 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); 262 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); 263 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); 264 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); 265 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); 266 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); 267 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); 268 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); 269 270 state[0] += a; 271 state[1] += b; 272 state[2] += c; 273 state[3] += d; 274 } 275 /* ===== end - public domain MD4 implementation ===== */ 276