Home | History | Annotate | Download | only in sensorservice
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <cutils/properties.h>
     18 
     19 #include <binder/AppOpsManager.h>
     20 #include <binder/BinderService.h>
     21 #include <binder/IServiceManager.h>
     22 #include <binder/PermissionCache.h>
     23 
     24 #include <gui/SensorEventQueue.h>
     25 
     26 #include <hardware/sensors.h>
     27 #include <hardware_legacy/power.h>
     28 
     29 #include <openssl/digest.h>
     30 #include <openssl/hmac.h>
     31 #include <openssl/rand.h>
     32 
     33 #include "BatteryService.h"
     34 #include "CorrectedGyroSensor.h"
     35 #include "GravitySensor.h"
     36 #include "LinearAccelerationSensor.h"
     37 #include "OrientationSensor.h"
     38 #include "RotationVectorSensor.h"
     39 #include "SensorFusion.h"
     40 #include "SensorInterface.h"
     41 
     42 #include "SensorService.h"
     43 #include "SensorEventAckReceiver.h"
     44 #include "SensorEventConnection.h"
     45 #include "SensorRecord.h"
     46 #include "SensorRegistrationInfo.h"
     47 
     48 #include <inttypes.h>
     49 #include <math.h>
     50 #include <sched.h>
     51 #include <stdint.h>
     52 #include <sys/socket.h>
     53 #include <sys/stat.h>
     54 #include <sys/types.h>
     55 #include <unistd.h>
     56 
     57 namespace android {
     58 // ---------------------------------------------------------------------------
     59 
     60 /*
     61  * Notes:
     62  *
     63  * - what about a gyro-corrected magnetic-field sensor?
     64  * - run mag sensor from time to time to force calibration
     65  * - gravity sensor length is wrong (=> drift in linear-acc sensor)
     66  *
     67  */
     68 
     69 const char* SensorService::WAKE_LOCK_NAME = "SensorService_wakelock";
     70 uint8_t SensorService::sHmacGlobalKey[128] = {};
     71 bool SensorService::sHmacGlobalKeyIsValid = false;
     72 
     73 #define SENSOR_SERVICE_DIR "/data/system/sensor_service"
     74 #define SENSOR_SERVICE_HMAC_KEY_FILE  SENSOR_SERVICE_DIR "/hmac_key"
     75 #define SENSOR_SERVICE_SCHED_FIFO_PRIORITY 10
     76 
     77 // Permissions.
     78 static const String16 sDump("android.permission.DUMP");
     79 
     80 SensorService::SensorService()
     81     : mInitCheck(NO_INIT), mSocketBufferSize(SOCKET_BUFFER_SIZE_NON_BATCHED),
     82       mWakeLockAcquired(false) {
     83 }
     84 
     85 bool SensorService::initializeHmacKey() {
     86     int fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_RDONLY|O_CLOEXEC);
     87     if (fd != -1) {
     88         int result = read(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
     89         close(fd);
     90         if (result == sizeof(sHmacGlobalKey)) {
     91             return true;
     92         }
     93         ALOGW("Unable to read HMAC key; generating new one.");
     94     }
     95 
     96     if (RAND_bytes(sHmacGlobalKey, sizeof(sHmacGlobalKey)) == -1) {
     97         ALOGW("Can't generate HMAC key; dynamic sensor getId() will be wrong.");
     98         return false;
     99     }
    100 
    101     // We need to make sure this is only readable to us.
    102     bool wroteKey = false;
    103     mkdir(SENSOR_SERVICE_DIR, S_IRWXU);
    104     fd = open(SENSOR_SERVICE_HMAC_KEY_FILE, O_WRONLY|O_CREAT|O_EXCL|O_CLOEXEC,
    105               S_IRUSR|S_IWUSR);
    106     if (fd != -1) {
    107         int result = write(fd, sHmacGlobalKey, sizeof(sHmacGlobalKey));
    108         close(fd);
    109         wroteKey = (result == sizeof(sHmacGlobalKey));
    110     }
    111     if (wroteKey) {
    112         ALOGI("Generated new HMAC key.");
    113     } else {
    114         ALOGW("Unable to write HMAC key; dynamic sensor getId() will change "
    115               "after reboot.");
    116     }
    117     // Even if we failed to write the key we return true, because we did
    118     // initialize the HMAC key.
    119     return true;
    120 }
    121 
    122 // Set main thread to SCHED_FIFO to lower sensor event latency when system is under load
    123 void SensorService::enableSchedFifoMode() {
    124     struct sched_param param = {0};
    125     param.sched_priority = SENSOR_SERVICE_SCHED_FIFO_PRIORITY;
    126     if (sched_setscheduler(getTid(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param) != 0) {
    127         ALOGE("Couldn't set SCHED_FIFO for SensorService thread");
    128     }
    129 }
    130 
    131 void SensorService::onFirstRef() {
    132     ALOGD("nuSensorService starting...");
    133     SensorDevice& dev(SensorDevice::getInstance());
    134 
    135     sHmacGlobalKeyIsValid = initializeHmacKey();
    136 
    137     if (dev.initCheck() == NO_ERROR) {
    138         sensor_t const* list;
    139         ssize_t count = dev.getSensorList(&list);
    140         if (count > 0) {
    141             ssize_t orientationIndex = -1;
    142             bool hasGyro = false, hasAccel = false, hasMag = false;
    143             uint32_t virtualSensorsNeeds =
    144                     (1<<SENSOR_TYPE_GRAVITY) |
    145                     (1<<SENSOR_TYPE_LINEAR_ACCELERATION) |
    146                     (1<<SENSOR_TYPE_ROTATION_VECTOR) |
    147                     (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR) |
    148                     (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR);
    149 
    150             for (ssize_t i=0 ; i<count ; i++) {
    151                 bool useThisSensor=true;
    152 
    153                 switch (list[i].type) {
    154                     case SENSOR_TYPE_ACCELEROMETER:
    155                         hasAccel = true;
    156                         break;
    157                     case SENSOR_TYPE_MAGNETIC_FIELD:
    158                         hasMag = true;
    159                         break;
    160                     case SENSOR_TYPE_ORIENTATION:
    161                         orientationIndex = i;
    162                         break;
    163                     case SENSOR_TYPE_GYROSCOPE:
    164                     case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
    165                         hasGyro = true;
    166                         break;
    167                     case SENSOR_TYPE_GRAVITY:
    168                     case SENSOR_TYPE_LINEAR_ACCELERATION:
    169                     case SENSOR_TYPE_ROTATION_VECTOR:
    170                     case SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR:
    171                     case SENSOR_TYPE_GAME_ROTATION_VECTOR:
    172                         if (IGNORE_HARDWARE_FUSION) {
    173                             useThisSensor = false;
    174                         } else {
    175                             virtualSensorsNeeds &= ~(1<<list[i].type);
    176                         }
    177                         break;
    178                 }
    179                 if (useThisSensor) {
    180                     registerSensor( new HardwareSensor(list[i]) );
    181                 }
    182             }
    183 
    184             // it's safe to instantiate the SensorFusion object here
    185             // (it wants to be instantiated after h/w sensors have been
    186             // registered)
    187             SensorFusion::getInstance();
    188 
    189             if (hasGyro && hasAccel && hasMag) {
    190                 // Add Android virtual sensors if they're not already
    191                 // available in the HAL
    192                 bool needRotationVector =
    193                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_ROTATION_VECTOR)) != 0;
    194 
    195                 registerSensor(new RotationVectorSensor(), !needRotationVector, true);
    196                 registerSensor(new OrientationSensor(), !needRotationVector, true);
    197 
    198                 bool needLinearAcceleration =
    199                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_LINEAR_ACCELERATION)) != 0;
    200 
    201                 registerSensor(new LinearAccelerationSensor(list, count),
    202                                !needLinearAcceleration, true);
    203 
    204                 // virtual debugging sensors are not for user
    205                 registerSensor( new CorrectedGyroSensor(list, count), true, true);
    206                 registerSensor( new GyroDriftSensor(), true, true);
    207             }
    208 
    209             if (hasAccel && hasGyro) {
    210                 bool needGravitySensor = (virtualSensorsNeeds & (1<<SENSOR_TYPE_GRAVITY)) != 0;
    211                 registerSensor(new GravitySensor(list, count), !needGravitySensor, true);
    212 
    213                 bool needGameRotationVector =
    214                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GAME_ROTATION_VECTOR)) != 0;
    215                 registerSensor(new GameRotationVectorSensor(), !needGameRotationVector, true);
    216             }
    217 
    218             if (hasAccel && hasMag) {
    219                 bool needGeoMagRotationVector =
    220                         (virtualSensorsNeeds & (1<<SENSOR_TYPE_GEOMAGNETIC_ROTATION_VECTOR)) != 0;
    221                 registerSensor(new GeoMagRotationVectorSensor(), !needGeoMagRotationVector, true);
    222             }
    223 
    224             // Check if the device really supports batching by looking at the FIFO event
    225             // counts for each sensor.
    226             bool batchingSupported = false;
    227             mSensors.forEachSensor(
    228                     [&batchingSupported] (const Sensor& s) -> bool {
    229                         if (s.getFifoMaxEventCount() > 0) {
    230                             batchingSupported = true;
    231                         }
    232                         return !batchingSupported;
    233                     });
    234 
    235             if (batchingSupported) {
    236                 // Increase socket buffer size to a max of 100 KB for batching capabilities.
    237                 mSocketBufferSize = MAX_SOCKET_BUFFER_SIZE_BATCHED;
    238             } else {
    239                 mSocketBufferSize = SOCKET_BUFFER_SIZE_NON_BATCHED;
    240             }
    241 
    242             // Compare the socketBufferSize value against the system limits and limit
    243             // it to maxSystemSocketBufferSize if necessary.
    244             FILE *fp = fopen("/proc/sys/net/core/wmem_max", "r");
    245             char line[128];
    246             if (fp != NULL && fgets(line, sizeof(line), fp) != NULL) {
    247                 line[sizeof(line) - 1] = '\0';
    248                 size_t maxSystemSocketBufferSize;
    249                 sscanf(line, "%zu", &maxSystemSocketBufferSize);
    250                 if (mSocketBufferSize > maxSystemSocketBufferSize) {
    251                     mSocketBufferSize = maxSystemSocketBufferSize;
    252                 }
    253             }
    254             if (fp) {
    255                 fclose(fp);
    256             }
    257 
    258             mWakeLockAcquired = false;
    259             mLooper = new Looper(false);
    260             const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    261             mSensorEventBuffer = new sensors_event_t[minBufferSize];
    262             mSensorEventScratch = new sensors_event_t[minBufferSize];
    263             mMapFlushEventsToConnections = new wp<const SensorEventConnection> [minBufferSize];
    264             mCurrentOperatingMode = NORMAL;
    265 
    266             mNextSensorRegIndex = 0;
    267             for (int i = 0; i < SENSOR_REGISTRATIONS_BUF_SIZE; ++i) {
    268                 mLastNSensorRegistrations.push();
    269             }
    270 
    271             mInitCheck = NO_ERROR;
    272             mAckReceiver = new SensorEventAckReceiver(this);
    273             mAckReceiver->run("SensorEventAckReceiver", PRIORITY_URGENT_DISPLAY);
    274             run("SensorService", PRIORITY_URGENT_DISPLAY);
    275 
    276             // priority can only be changed after run
    277             enableSchedFifoMode();
    278         }
    279     }
    280 }
    281 
    282 const Sensor& SensorService::registerSensor(SensorInterface* s, bool isDebug, bool isVirtual) {
    283     int handle = s->getSensor().getHandle();
    284     int type = s->getSensor().getType();
    285     if (mSensors.add(handle, s, isDebug, isVirtual)){
    286         mRecentEvent.emplace(handle, new RecentEventLogger(type));
    287         return s->getSensor();
    288     } else {
    289         return mSensors.getNonSensor();
    290     }
    291 }
    292 
    293 const Sensor& SensorService::registerDynamicSensorLocked(SensorInterface* s, bool isDebug) {
    294     return registerSensor(s, isDebug);
    295 }
    296 
    297 bool SensorService::unregisterDynamicSensorLocked(int handle) {
    298     bool ret = mSensors.remove(handle);
    299 
    300     const auto i = mRecentEvent.find(handle);
    301     if (i != mRecentEvent.end()) {
    302         delete i->second;
    303         mRecentEvent.erase(i);
    304     }
    305     return ret;
    306 }
    307 
    308 const Sensor& SensorService::registerVirtualSensor(SensorInterface* s, bool isDebug) {
    309     return registerSensor(s, isDebug, true);
    310 }
    311 
    312 SensorService::~SensorService() {
    313     for (auto && entry : mRecentEvent) {
    314         delete entry.second;
    315     }
    316 }
    317 
    318 status_t SensorService::dump(int fd, const Vector<String16>& args) {
    319     String8 result;
    320     if (!PermissionCache::checkCallingPermission(sDump)) {
    321         result.appendFormat("Permission Denial: can't dump SensorService from pid=%d, uid=%d\n",
    322                 IPCThreadState::self()->getCallingPid(),
    323                 IPCThreadState::self()->getCallingUid());
    324     } else {
    325         if (args.size() > 2) {
    326            return INVALID_OPERATION;
    327         }
    328         Mutex::Autolock _l(mLock);
    329         SensorDevice& dev(SensorDevice::getInstance());
    330         if (args.size() == 2 && args[0] == String16("restrict")) {
    331             // If already in restricted mode. Ignore.
    332             if (mCurrentOperatingMode == RESTRICTED) {
    333                 return status_t(NO_ERROR);
    334             }
    335             // If in any mode other than normal, ignore.
    336             if (mCurrentOperatingMode != NORMAL) {
    337                 return INVALID_OPERATION;
    338             }
    339             mCurrentOperatingMode = RESTRICTED;
    340             dev.disableAllSensors();
    341             // Clear all pending flush connections for all active sensors. If one of the active
    342             // connections has called flush() and the underlying sensor has been disabled before a
    343             // flush complete event is returned, we need to remove the connection from this queue.
    344             for (size_t i=0 ; i< mActiveSensors.size(); ++i) {
    345                 mActiveSensors.valueAt(i)->clearAllPendingFlushConnections();
    346             }
    347             mWhiteListedPackage.setTo(String8(args[1]));
    348             return status_t(NO_ERROR);
    349         } else if (args.size() == 1 && args[0] == String16("enable")) {
    350             // If currently in restricted mode, reset back to NORMAL mode else ignore.
    351             if (mCurrentOperatingMode == RESTRICTED) {
    352                 mCurrentOperatingMode = NORMAL;
    353                 dev.enableAllSensors();
    354             }
    355             if (mCurrentOperatingMode == DATA_INJECTION) {
    356                resetToNormalModeLocked();
    357             }
    358             mWhiteListedPackage.clear();
    359             return status_t(NO_ERROR);
    360         } else if (args.size() == 2 && args[0] == String16("data_injection")) {
    361             if (mCurrentOperatingMode == NORMAL) {
    362                 dev.disableAllSensors();
    363                 status_t err = dev.setMode(DATA_INJECTION);
    364                 if (err == NO_ERROR) {
    365                     mCurrentOperatingMode = DATA_INJECTION;
    366                 } else {
    367                     // Re-enable sensors.
    368                     dev.enableAllSensors();
    369                 }
    370                 mWhiteListedPackage.setTo(String8(args[1]));
    371                 return NO_ERROR;
    372             } else if (mCurrentOperatingMode == DATA_INJECTION) {
    373                 // Already in DATA_INJECTION mode. Treat this as a no_op.
    374                 return NO_ERROR;
    375             } else {
    376                 // Transition to data injection mode supported only from NORMAL mode.
    377                 return INVALID_OPERATION;
    378             }
    379         } else if (!mSensors.hasAnySensor()) {
    380             result.append("No Sensors on the device\n");
    381         } else {
    382             // Default dump the sensor list and debugging information.
    383             //
    384             result.append("Sensor Device:\n");
    385             result.append(SensorDevice::getInstance().dump().c_str());
    386 
    387             result.append("Sensor List:\n");
    388             result.append(mSensors.dump().c_str());
    389 
    390             result.append("Fusion States:\n");
    391             SensorFusion::getInstance().dump(result);
    392 
    393             result.append("Recent Sensor events:\n");
    394             for (auto&& i : mRecentEvent) {
    395                 sp<SensorInterface> s = mSensors.getInterface(i.first);
    396                 if (!i.second->isEmpty() &&
    397                     s->getSensor().getRequiredPermission().isEmpty()) {
    398                     // if there is events and sensor does not need special permission.
    399                     result.appendFormat("%s: ", s->getSensor().getName().string());
    400                     result.append(i.second->dump().c_str());
    401                 }
    402             }
    403 
    404             result.append("Active sensors:\n");
    405             for (size_t i=0 ; i<mActiveSensors.size() ; i++) {
    406                 int handle = mActiveSensors.keyAt(i);
    407                 result.appendFormat("%s (handle=0x%08x, connections=%zu)\n",
    408                         getSensorName(handle).string(),
    409                         handle,
    410                         mActiveSensors.valueAt(i)->getNumConnections());
    411             }
    412 
    413             result.appendFormat("Socket Buffer size = %zd events\n",
    414                                 mSocketBufferSize/sizeof(sensors_event_t));
    415             result.appendFormat("WakeLock Status: %s \n", mWakeLockAcquired ? "acquired" :
    416                     "not held");
    417             result.appendFormat("Mode :");
    418             switch(mCurrentOperatingMode) {
    419                case NORMAL:
    420                    result.appendFormat(" NORMAL\n");
    421                    break;
    422                case RESTRICTED:
    423                    result.appendFormat(" RESTRICTED : %s\n", mWhiteListedPackage.string());
    424                    break;
    425                case DATA_INJECTION:
    426                    result.appendFormat(" DATA_INJECTION : %s\n", mWhiteListedPackage.string());
    427             }
    428             result.appendFormat("%zd active connections\n", mActiveConnections.size());
    429 
    430             for (size_t i=0 ; i < mActiveConnections.size() ; i++) {
    431                 sp<SensorEventConnection> connection(mActiveConnections[i].promote());
    432                 if (connection != 0) {
    433                     result.appendFormat("Connection Number: %zu \n", i);
    434                     connection->dump(result);
    435                 }
    436             }
    437 
    438             result.appendFormat("Previous Registrations:\n");
    439             // Log in the reverse chronological order.
    440             int currentIndex = (mNextSensorRegIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    441                 SENSOR_REGISTRATIONS_BUF_SIZE;
    442             const int startIndex = currentIndex;
    443             do {
    444                 const SensorRegistrationInfo& reg_info = mLastNSensorRegistrations[currentIndex];
    445                 if (SensorRegistrationInfo::isSentinel(reg_info)) {
    446                     // Ignore sentinel, proceed to next item.
    447                     currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    448                         SENSOR_REGISTRATIONS_BUF_SIZE;
    449                     continue;
    450                 }
    451                 if (reg_info.mActivated) {
    452                    result.appendFormat("%02d:%02d:%02d activated handle=0x%08x "
    453                            "samplingRate=%dus maxReportLatency=%dus package=%s\n",
    454                            reg_info.mHour, reg_info.mMin, reg_info.mSec, reg_info.mSensorHandle,
    455                            reg_info.mSamplingRateUs, reg_info.mMaxReportLatencyUs,
    456                            reg_info.mPackageName.string());
    457                 } else {
    458                    result.appendFormat("%02d:%02d:%02d de-activated handle=0x%08x package=%s\n",
    459                            reg_info.mHour, reg_info.mMin, reg_info.mSec,
    460                            reg_info.mSensorHandle, reg_info.mPackageName.string());
    461                 }
    462                 currentIndex = (currentIndex - 1 + SENSOR_REGISTRATIONS_BUF_SIZE) %
    463                         SENSOR_REGISTRATIONS_BUF_SIZE;
    464             } while(startIndex != currentIndex);
    465         }
    466     }
    467     write(fd, result.string(), result.size());
    468     return NO_ERROR;
    469 }
    470 
    471 //TODO: move to SensorEventConnection later
    472 void SensorService::cleanupAutoDisabledSensorLocked(const sp<SensorEventConnection>& connection,
    473         sensors_event_t const* buffer, const int count) {
    474     for (int i=0 ; i<count ; i++) {
    475         int handle = buffer[i].sensor;
    476         if (buffer[i].type == SENSOR_TYPE_META_DATA) {
    477             handle = buffer[i].meta_data.sensor;
    478         }
    479         if (connection->hasSensor(handle)) {
    480             sp<SensorInterface> si = getSensorInterfaceFromHandle(handle);
    481             // If this buffer has an event from a one_shot sensor and this connection is registered
    482             // for this particular one_shot sensor, try cleaning up the connection.
    483             if (si != nullptr &&
    484                 si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
    485                 si->autoDisable(connection.get(), handle);
    486                 cleanupWithoutDisableLocked(connection, handle);
    487             }
    488 
    489         }
    490    }
    491 }
    492 
    493 bool SensorService::threadLoop() {
    494     ALOGD("nuSensorService thread starting...");
    495 
    496     // each virtual sensor could generate an event per "real" event, that's why we need to size
    497     // numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT.  in practice, this is too
    498     // aggressive, but guaranteed to be enough.
    499     const size_t vcount = mSensors.getVirtualSensors().size();
    500     const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
    501     const size_t numEventMax = minBufferSize / (1 + vcount);
    502 
    503     SensorDevice& device(SensorDevice::getInstance());
    504 
    505     const int halVersion = device.getHalDeviceVersion();
    506     do {
    507         ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
    508         if (count < 0) {
    509             ALOGE("sensor poll failed (%s)", strerror(-count));
    510             break;
    511         }
    512 
    513         // Reset sensors_event_t.flags to zero for all events in the buffer.
    514         for (int i = 0; i < count; i++) {
    515              mSensorEventBuffer[i].flags = 0;
    516         }
    517 
    518         // Make a copy of the connection vector as some connections may be removed during the course
    519         // of this loop (especially when one-shot sensor events are present in the sensor_event
    520         // buffer). Promote all connections to StrongPointers before the lock is acquired. If the
    521         // destructor of the sp gets called when the lock is acquired, it may result in a deadlock
    522         // as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
    523         // strongPointers to a vector before the lock is acquired.
    524         SortedVector< sp<SensorEventConnection> > activeConnections;
    525         populateActiveConnections(&activeConnections);
    526 
    527         Mutex::Autolock _l(mLock);
    528         // Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
    529         // rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
    530         // sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should
    531         // not be interleaved with decrementing SensorEventConnection::mWakeLockRefCount and
    532         // releasing the wakelock.
    533         bool bufferHasWakeUpEvent = false;
    534         for (int i = 0; i < count; i++) {
    535             if (isWakeUpSensorEvent(mSensorEventBuffer[i])) {
    536                 bufferHasWakeUpEvent = true;
    537                 break;
    538             }
    539         }
    540 
    541         if (bufferHasWakeUpEvent && !mWakeLockAcquired) {
    542             setWakeLockAcquiredLocked(true);
    543         }
    544         recordLastValueLocked(mSensorEventBuffer, count);
    545 
    546         // handle virtual sensors
    547         if (count && vcount) {
    548             sensors_event_t const * const event = mSensorEventBuffer;
    549             if (!mActiveVirtualSensors.empty()) {
    550                 size_t k = 0;
    551                 SensorFusion& fusion(SensorFusion::getInstance());
    552                 if (fusion.isEnabled()) {
    553                     for (size_t i=0 ; i<size_t(count) ; i++) {
    554                         fusion.process(event[i]);
    555                     }
    556                 }
    557                 for (size_t i=0 ; i<size_t(count) && k<minBufferSize ; i++) {
    558                     for (int handle : mActiveVirtualSensors) {
    559                         if (count + k >= minBufferSize) {
    560                             ALOGE("buffer too small to hold all events: "
    561                                     "count=%zd, k=%zu, size=%zu",
    562                                     count, k, minBufferSize);
    563                             break;
    564                         }
    565                         sensors_event_t out;
    566                         sp<SensorInterface> si = mSensors.getInterface(handle);
    567                         if (si == nullptr) {
    568                             ALOGE("handle %d is not an valid virtual sensor", handle);
    569                             continue;
    570                         }
    571 
    572                         if (si->process(&out, event[i])) {
    573                             mSensorEventBuffer[count + k] = out;
    574                             k++;
    575                         }
    576                     }
    577                 }
    578                 if (k) {
    579                     // record the last synthesized values
    580                     recordLastValueLocked(&mSensorEventBuffer[count], k);
    581                     count += k;
    582                     // sort the buffer by time-stamps
    583                     sortEventBuffer(mSensorEventBuffer, count);
    584                 }
    585             }
    586         }
    587 
    588         // handle backward compatibility for RotationVector sensor
    589         if (halVersion < SENSORS_DEVICE_API_VERSION_1_0) {
    590             for (int i = 0; i < count; i++) {
    591                 if (mSensorEventBuffer[i].type == SENSOR_TYPE_ROTATION_VECTOR) {
    592                     // All the 4 components of the quaternion should be available
    593                     // No heading accuracy. Set it to -1
    594                     mSensorEventBuffer[i].data[4] = -1;
    595                 }
    596             }
    597         }
    598 
    599         for (int i = 0; i < count; ++i) {
    600             // Map flush_complete_events in the buffer to SensorEventConnections which called flush
    601             // on the hardware sensor. mapFlushEventsToConnections[i] will be the
    602             // SensorEventConnection mapped to the corresponding flush_complete_event in
    603             // mSensorEventBuffer[i] if such a mapping exists (NULL otherwise).
    604             mMapFlushEventsToConnections[i] = NULL;
    605             if (mSensorEventBuffer[i].type == SENSOR_TYPE_META_DATA) {
    606                 const int sensor_handle = mSensorEventBuffer[i].meta_data.sensor;
    607                 SensorRecord* rec = mActiveSensors.valueFor(sensor_handle);
    608                 if (rec != NULL) {
    609                     mMapFlushEventsToConnections[i] = rec->getFirstPendingFlushConnection();
    610                     rec->removeFirstPendingFlushConnection();
    611                 }
    612             }
    613 
    614             // handle dynamic sensor meta events, process registration and unregistration of dynamic
    615             // sensor based on content of event.
    616             if (mSensorEventBuffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META) {
    617                 if (mSensorEventBuffer[i].dynamic_sensor_meta.connected) {
    618                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    619                     const sensor_t& dynamicSensor =
    620                             *(mSensorEventBuffer[i].dynamic_sensor_meta.sensor);
    621                     ALOGI("Dynamic sensor handle 0x%x connected, type %d, name %s",
    622                           handle, dynamicSensor.type, dynamicSensor.name);
    623 
    624                     if (mSensors.isNewHandle(handle)) {
    625                         const auto& uuid = mSensorEventBuffer[i].dynamic_sensor_meta.uuid;
    626                         sensor_t s = dynamicSensor;
    627                         // make sure the dynamic sensor flag is set
    628                         s.flags |= DYNAMIC_SENSOR_MASK;
    629                         // force the handle to be consistent
    630                         s.handle = handle;
    631 
    632                         SensorInterface *si = new HardwareSensor(s, uuid);
    633 
    634                         // This will release hold on dynamic sensor meta, so it should be called
    635                         // after Sensor object is created.
    636                         device.handleDynamicSensorConnection(handle, true /*connected*/);
    637                         registerDynamicSensorLocked(si);
    638                     } else {
    639                         ALOGE("Handle %d has been used, cannot use again before reboot.", handle);
    640                     }
    641                 } else {
    642                     int handle = mSensorEventBuffer[i].dynamic_sensor_meta.handle;
    643                     ALOGI("Dynamic sensor handle 0x%x disconnected", handle);
    644 
    645                     device.handleDynamicSensorConnection(handle, false /*connected*/);
    646                     if (!unregisterDynamicSensorLocked(handle)) {
    647                         ALOGE("Dynamic sensor release error.");
    648                     }
    649 
    650                     size_t numConnections = activeConnections.size();
    651                     for (size_t i=0 ; i < numConnections; ++i) {
    652                         if (activeConnections[i] != NULL) {
    653                             activeConnections[i]->removeSensor(handle);
    654                         }
    655                     }
    656                 }
    657             }
    658         }
    659 
    660 
    661         // Send our events to clients. Check the state of wake lock for each client and release the
    662         // lock if none of the clients need it.
    663         bool needsWakeLock = false;
    664         size_t numConnections = activeConnections.size();
    665         for (size_t i=0 ; i < numConnections; ++i) {
    666             if (activeConnections[i] != 0) {
    667                 activeConnections[i]->sendEvents(mSensorEventBuffer, count, mSensorEventScratch,
    668                         mMapFlushEventsToConnections);
    669                 needsWakeLock |= activeConnections[i]->needsWakeLock();
    670                 // If the connection has one-shot sensors, it may be cleaned up after first trigger.
    671                 // Early check for one-shot sensors.
    672                 if (activeConnections[i]->hasOneShotSensors()) {
    673                     cleanupAutoDisabledSensorLocked(activeConnections[i], mSensorEventBuffer,
    674                             count);
    675                 }
    676             }
    677         }
    678 
    679         if (mWakeLockAcquired && !needsWakeLock) {
    680             setWakeLockAcquiredLocked(false);
    681         }
    682     } while (!Thread::exitPending());
    683 
    684     ALOGW("Exiting SensorService::threadLoop => aborting...");
    685     abort();
    686     return false;
    687 }
    688 
    689 sp<Looper> SensorService::getLooper() const {
    690     return mLooper;
    691 }
    692 
    693 void SensorService::resetAllWakeLockRefCounts() {
    694     SortedVector< sp<SensorEventConnection> > activeConnections;
    695     populateActiveConnections(&activeConnections);
    696     {
    697         Mutex::Autolock _l(mLock);
    698         for (size_t i=0 ; i < activeConnections.size(); ++i) {
    699             if (activeConnections[i] != 0) {
    700                 activeConnections[i]->resetWakeLockRefCount();
    701             }
    702         }
    703         setWakeLockAcquiredLocked(false);
    704     }
    705 }
    706 
    707 void SensorService::setWakeLockAcquiredLocked(bool acquire) {
    708     if (acquire) {
    709         if (!mWakeLockAcquired) {
    710             acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_NAME);
    711             mWakeLockAcquired = true;
    712         }
    713         mLooper->wake();
    714     } else {
    715         if (mWakeLockAcquired) {
    716             release_wake_lock(WAKE_LOCK_NAME);
    717             mWakeLockAcquired = false;
    718         }
    719     }
    720 }
    721 
    722 bool SensorService::isWakeLockAcquired() {
    723     Mutex::Autolock _l(mLock);
    724     return mWakeLockAcquired;
    725 }
    726 
    727 bool SensorService::SensorEventAckReceiver::threadLoop() {
    728     ALOGD("new thread SensorEventAckReceiver");
    729     sp<Looper> looper = mService->getLooper();
    730     do {
    731         bool wakeLockAcquired = mService->isWakeLockAcquired();
    732         int timeout = -1;
    733         if (wakeLockAcquired) timeout = 5000;
    734         int ret = looper->pollOnce(timeout);
    735         if (ret == ALOOPER_POLL_TIMEOUT) {
    736            mService->resetAllWakeLockRefCounts();
    737         }
    738     } while(!Thread::exitPending());
    739     return false;
    740 }
    741 
    742 void SensorService::recordLastValueLocked(
    743         const sensors_event_t* buffer, size_t count) {
    744     for (size_t i = 0; i < count; i++) {
    745         if (buffer[i].type == SENSOR_TYPE_META_DATA ||
    746             buffer[i].type == SENSOR_TYPE_DYNAMIC_SENSOR_META ||
    747             buffer[i].type == SENSOR_TYPE_ADDITIONAL_INFO) {
    748             continue;
    749         }
    750 
    751         auto logger = mRecentEvent.find(buffer[i].sensor);
    752         if (logger != mRecentEvent.end()) {
    753             logger->second->addEvent(buffer[i]);
    754         }
    755     }
    756 }
    757 
    758 void SensorService::sortEventBuffer(sensors_event_t* buffer, size_t count) {
    759     struct compar {
    760         static int cmp(void const* lhs, void const* rhs) {
    761             sensors_event_t const* l = static_cast<sensors_event_t const*>(lhs);
    762             sensors_event_t const* r = static_cast<sensors_event_t const*>(rhs);
    763             return l->timestamp - r->timestamp;
    764         }
    765     };
    766     qsort(buffer, count, sizeof(sensors_event_t), compar::cmp);
    767 }
    768 
    769 String8 SensorService::getSensorName(int handle) const {
    770     return mSensors.getName(handle);
    771 }
    772 
    773 bool SensorService::isVirtualSensor(int handle) const {
    774     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    775     return sensor != nullptr && sensor->isVirtual();
    776 }
    777 
    778 bool SensorService::isWakeUpSensorEvent(const sensors_event_t& event) const {
    779     int handle = event.sensor;
    780     if (event.type == SENSOR_TYPE_META_DATA) {
    781         handle = event.meta_data.sensor;
    782     }
    783     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    784     return sensor != nullptr && sensor->getSensor().isWakeUpSensor();
    785 }
    786 
    787 int32_t SensorService::getIdFromUuid(const Sensor::uuid_t &uuid) const {
    788     if ((uuid.i64[0] == 0) && (uuid.i64[1] == 0)) {
    789         // UUID is not supported for this device.
    790         return 0;
    791     }
    792     if ((uuid.i64[0] == INT64_C(~0)) && (uuid.i64[1] == INT64_C(~0))) {
    793         // This sensor can be uniquely identified in the system by
    794         // the combination of its type and name.
    795         return -1;
    796     }
    797 
    798     // We have a dynamic sensor.
    799 
    800     if (!sHmacGlobalKeyIsValid) {
    801         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    802         ALOGW("HMAC key failure; dynamic sensor getId() will be wrong.");
    803         return 0;
    804     }
    805 
    806     // We want each app author/publisher to get a different ID, so that the
    807     // same dynamic sensor cannot be tracked across apps by multiple
    808     // authors/publishers.  So we use both our UUID and our User ID.
    809     // Note potential confusion:
    810     //     UUID => Universally Unique Identifier.
    811     //     UID  => User Identifier.
    812     // We refrain from using "uid" except as needed by API to try to
    813     // keep this distinction clear.
    814 
    815     auto appUserId = IPCThreadState::self()->getCallingUid();
    816     uint8_t uuidAndApp[sizeof(uuid) + sizeof(appUserId)];
    817     memcpy(uuidAndApp, &uuid, sizeof(uuid));
    818     memcpy(uuidAndApp + sizeof(uuid), &appUserId, sizeof(appUserId));
    819 
    820     // Now we use our key on our UUID/app combo to get the hash.
    821     uint8_t hash[EVP_MAX_MD_SIZE];
    822     unsigned int hashLen;
    823     if (HMAC(EVP_sha256(),
    824              sHmacGlobalKey, sizeof(sHmacGlobalKey),
    825              uuidAndApp, sizeof(uuidAndApp),
    826              hash, &hashLen) == nullptr) {
    827         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    828         ALOGW("HMAC failure; dynamic sensor getId() will be wrong.");
    829         return 0;
    830     }
    831 
    832     int32_t id = 0;
    833     if (hashLen < sizeof(id)) {
    834         // We never expect this case, but out of paranoia, we handle it.
    835         // Our 'id' length is already quite small, we don't want the
    836         // effective length of it to be even smaller.
    837         // Rather than risk exposing UUIDs, we cripple dynamic sensors.
    838         ALOGW("HMAC insufficient; dynamic sensor getId() will be wrong.");
    839         return 0;
    840     }
    841 
    842     // This is almost certainly less than all of 'hash', but it's as secure
    843     // as we can be with our current 'id' length.
    844     memcpy(&id, hash, sizeof(id));
    845 
    846     // Note at the beginning of the function that we return the values of
    847     // 0 and -1 to represent special cases.  As a result, we can't return
    848     // those as dynamic sensor IDs.  If we happened to hash to one of those
    849     // values, we change 'id' so we report as a dynamic sensor, and not as
    850     // one of those special cases.
    851     if (id == -1) {
    852         id = -2;
    853     } else if (id == 0) {
    854         id = 1;
    855     }
    856     return id;
    857 }
    858 
    859 void SensorService::makeUuidsIntoIdsForSensorList(Vector<Sensor> &sensorList) const {
    860     for (auto &sensor : sensorList) {
    861         int32_t id = getIdFromUuid(sensor.getUuid());
    862         sensor.setId(id);
    863     }
    864 }
    865 
    866 Vector<Sensor> SensorService::getSensorList(const String16& opPackageName) {
    867     char value[PROPERTY_VALUE_MAX];
    868     property_get("debug.sensors", value, "0");
    869     const Vector<Sensor>& initialSensorList = (atoi(value)) ?
    870             mSensors.getUserDebugSensors() : mSensors.getUserSensors();
    871     Vector<Sensor> accessibleSensorList;
    872     for (size_t i = 0; i < initialSensorList.size(); i++) {
    873         Sensor sensor = initialSensorList[i];
    874         if (canAccessSensor(sensor, "getSensorList", opPackageName)) {
    875             accessibleSensorList.add(sensor);
    876         } else {
    877             ALOGI("Skipped sensor %s because it requires permission %s and app op %d",
    878                   sensor.getName().string(),
    879                   sensor.getRequiredPermission().string(),
    880                   sensor.getRequiredAppOp());
    881         }
    882     }
    883     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    884     return accessibleSensorList;
    885 }
    886 
    887 Vector<Sensor> SensorService::getDynamicSensorList(const String16& opPackageName) {
    888     Vector<Sensor> accessibleSensorList;
    889     mSensors.forEachSensor(
    890             [&opPackageName, &accessibleSensorList] (const Sensor& sensor) -> bool {
    891                 if (sensor.isDynamicSensor()) {
    892                     if (canAccessSensor(sensor, "getDynamicSensorList", opPackageName)) {
    893                         accessibleSensorList.add(sensor);
    894                     } else {
    895                         ALOGI("Skipped sensor %s because it requires permission %s and app op %" PRId32,
    896                               sensor.getName().string(),
    897                               sensor.getRequiredPermission().string(),
    898                               sensor.getRequiredAppOp());
    899                     }
    900                 }
    901                 return true;
    902             });
    903     makeUuidsIntoIdsForSensorList(accessibleSensorList);
    904     return accessibleSensorList;
    905 }
    906 
    907 sp<ISensorEventConnection> SensorService::createSensorEventConnection(const String8& packageName,
    908         int requestedMode, const String16& opPackageName) {
    909     // Only 2 modes supported for a SensorEventConnection ... NORMAL and DATA_INJECTION.
    910     if (requestedMode != NORMAL && requestedMode != DATA_INJECTION) {
    911         return NULL;
    912     }
    913 
    914     Mutex::Autolock _l(mLock);
    915     // To create a client in DATA_INJECTION mode to inject data, SensorService should already be
    916     // operating in DI mode.
    917     if (requestedMode == DATA_INJECTION) {
    918         if (mCurrentOperatingMode != DATA_INJECTION) return NULL;
    919         if (!isWhiteListedPackage(packageName)) return NULL;
    920     }
    921 
    922     uid_t uid = IPCThreadState::self()->getCallingUid();
    923     sp<SensorEventConnection> result(new SensorEventConnection(this, uid, packageName,
    924             requestedMode == DATA_INJECTION, opPackageName));
    925     if (requestedMode == DATA_INJECTION) {
    926         if (mActiveConnections.indexOf(result) < 0) {
    927             mActiveConnections.add(result);
    928         }
    929         // Add the associated file descriptor to the Looper for polling whenever there is data to
    930         // be injected.
    931         result->updateLooperRegistration(mLooper);
    932     }
    933     return result;
    934 }
    935 
    936 int SensorService::isDataInjectionEnabled() {
    937     Mutex::Autolock _l(mLock);
    938     return (mCurrentOperatingMode == DATA_INJECTION);
    939 }
    940 
    941 status_t SensorService::resetToNormalMode() {
    942     Mutex::Autolock _l(mLock);
    943     return resetToNormalModeLocked();
    944 }
    945 
    946 status_t SensorService::resetToNormalModeLocked() {
    947     SensorDevice& dev(SensorDevice::getInstance());
    948     dev.enableAllSensors();
    949     status_t err = dev.setMode(NORMAL);
    950     mCurrentOperatingMode = NORMAL;
    951     return err;
    952 }
    953 
    954 void SensorService::cleanupConnection(SensorEventConnection* c) {
    955     Mutex::Autolock _l(mLock);
    956     const wp<SensorEventConnection> connection(c);
    957     size_t size = mActiveSensors.size();
    958     ALOGD_IF(DEBUG_CONNECTIONS, "%zu active sensors", size);
    959     for (size_t i=0 ; i<size ; ) {
    960         int handle = mActiveSensors.keyAt(i);
    961         if (c->hasSensor(handle)) {
    962             ALOGD_IF(DEBUG_CONNECTIONS, "%zu: disabling handle=0x%08x", i, handle);
    963             sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
    964             if (sensor != nullptr) {
    965                 sensor->activate(c, false);
    966             } else {
    967                 ALOGE("sensor interface of handle=0x%08x is null!", handle);
    968             }
    969             c->removeSensor(handle);
    970         }
    971         SensorRecord* rec = mActiveSensors.valueAt(i);
    972         ALOGE_IF(!rec, "mActiveSensors[%zu] is null (handle=0x%08x)!", i, handle);
    973         ALOGD_IF(DEBUG_CONNECTIONS,
    974                 "removing connection %p for sensor[%zu].handle=0x%08x",
    975                 c, i, handle);
    976 
    977         if (rec && rec->removeConnection(connection)) {
    978             ALOGD_IF(DEBUG_CONNECTIONS, "... and it was the last connection");
    979             mActiveSensors.removeItemsAt(i, 1);
    980             mActiveVirtualSensors.erase(handle);
    981             delete rec;
    982             size--;
    983         } else {
    984             i++;
    985         }
    986     }
    987     c->updateLooperRegistration(mLooper);
    988     mActiveConnections.remove(connection);
    989     BatteryService::cleanup(c->getUid());
    990     if (c->needsWakeLock()) {
    991         checkWakeLockStateLocked();
    992     }
    993 }
    994 
    995 sp<SensorInterface> SensorService::getSensorInterfaceFromHandle(int handle) const {
    996     return mSensors.getInterface(handle);
    997 }
    998 
    999 
   1000 status_t SensorService::enable(const sp<SensorEventConnection>& connection,
   1001         int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
   1002         const String16& opPackageName) {
   1003     if (mInitCheck != NO_ERROR)
   1004         return mInitCheck;
   1005 
   1006     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1007     if (sensor == nullptr ||
   1008         !canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName)) {
   1009         return BAD_VALUE;
   1010     }
   1011 
   1012     Mutex::Autolock _l(mLock);
   1013     if ((mCurrentOperatingMode == RESTRICTED || mCurrentOperatingMode == DATA_INJECTION)
   1014            && !isWhiteListedPackage(connection->getPackageName())) {
   1015         return INVALID_OPERATION;
   1016     }
   1017 
   1018     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1019     if (rec == 0) {
   1020         rec = new SensorRecord(connection);
   1021         mActiveSensors.add(handle, rec);
   1022         if (sensor->isVirtual()) {
   1023             mActiveVirtualSensors.emplace(handle);
   1024         }
   1025     } else {
   1026         if (rec->addConnection(connection)) {
   1027             // this sensor is already activated, but we are adding a connection that uses it.
   1028             // Immediately send down the last known value of the requested sensor if it's not a
   1029             // "continuous" sensor.
   1030             if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE) {
   1031                 // NOTE: The wake_up flag of this event may get set to
   1032                 // WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
   1033 
   1034                 auto logger = mRecentEvent.find(handle);
   1035                 if (logger != mRecentEvent.end()) {
   1036                     sensors_event_t event;
   1037                     // It is unlikely that this buffer is empty as the sensor is already active.
   1038                     // One possible corner case may be two applications activating an on-change
   1039                     // sensor at the same time.
   1040                     if(logger->second->populateLastEvent(&event)) {
   1041                         event.sensor = handle;
   1042                         if (event.version == sizeof(sensors_event_t)) {
   1043                             if (isWakeUpSensorEvent(event) && !mWakeLockAcquired) {
   1044                                 setWakeLockAcquiredLocked(true);
   1045                             }
   1046                             connection->sendEvents(&event, 1, NULL);
   1047                             if (!connection->needsWakeLock() && mWakeLockAcquired) {
   1048                                 checkWakeLockStateLocked();
   1049                             }
   1050                         }
   1051                     }
   1052                 }
   1053             }
   1054         }
   1055     }
   1056 
   1057     if (connection->addSensor(handle)) {
   1058         BatteryService::enableSensor(connection->getUid(), handle);
   1059         // the sensor was added (which means it wasn't already there)
   1060         // so, see if this connection becomes active
   1061         if (mActiveConnections.indexOf(connection) < 0) {
   1062             mActiveConnections.add(connection);
   1063         }
   1064     } else {
   1065         ALOGW("sensor %08x already enabled in connection %p (ignoring)",
   1066             handle, connection.get());
   1067     }
   1068 
   1069     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1070     if (samplingPeriodNs < minDelayNs) {
   1071         samplingPeriodNs = minDelayNs;
   1072     }
   1073 
   1074     ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
   1075                                 "rate=%" PRId64 " timeout== %" PRId64"",
   1076              handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
   1077 
   1078     status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
   1079                                  maxBatchReportLatencyNs);
   1080 
   1081     // Call flush() before calling activate() on the sensor. Wait for a first
   1082     // flush complete event before sending events on this connection. Ignore
   1083     // one-shot sensors which don't support flush(). Ignore on-change sensors
   1084     // to maintain the on-change logic (any on-change events except the initial
   1085     // one should be trigger by a change in value). Also if this sensor isn't
   1086     // already active, don't call flush().
   1087     if (err == NO_ERROR &&
   1088             sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
   1089             rec->getNumConnections() > 1) {
   1090         connection->setFirstFlushPending(handle, true);
   1091         status_t err_flush = sensor->flush(connection.get(), handle);
   1092         // Flush may return error if the underlying h/w sensor uses an older HAL.
   1093         if (err_flush == NO_ERROR) {
   1094             rec->addPendingFlushConnection(connection.get());
   1095         } else {
   1096             connection->setFirstFlushPending(handle, false);
   1097         }
   1098     }
   1099 
   1100     if (err == NO_ERROR) {
   1101         ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
   1102         err = sensor->activate(connection.get(), true);
   1103     }
   1104 
   1105     if (err == NO_ERROR) {
   1106         connection->updateLooperRegistration(mLooper);
   1107         SensorRegistrationInfo &reg_info =
   1108             mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
   1109         reg_info.mSensorHandle = handle;
   1110         reg_info.mSamplingRateUs = samplingPeriodNs/1000;
   1111         reg_info.mMaxReportLatencyUs = maxBatchReportLatencyNs/1000;
   1112         reg_info.mActivated = true;
   1113         reg_info.mPackageName = connection->getPackageName();
   1114         time_t rawtime = time(NULL);
   1115         struct tm * timeinfo = localtime(&rawtime);
   1116         reg_info.mHour = timeinfo->tm_hour;
   1117         reg_info.mMin = timeinfo->tm_min;
   1118         reg_info.mSec = timeinfo->tm_sec;
   1119         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1120     }
   1121 
   1122     if (err != NO_ERROR) {
   1123         // batch/activate has failed, reset our state.
   1124         cleanupWithoutDisableLocked(connection, handle);
   1125     }
   1126     return err;
   1127 }
   1128 
   1129 status_t SensorService::disable(const sp<SensorEventConnection>& connection, int handle) {
   1130     if (mInitCheck != NO_ERROR)
   1131         return mInitCheck;
   1132 
   1133     Mutex::Autolock _l(mLock);
   1134     status_t err = cleanupWithoutDisableLocked(connection, handle);
   1135     if (err == NO_ERROR) {
   1136         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1137         err = sensor != nullptr ? sensor->activate(connection.get(), false) : status_t(BAD_VALUE);
   1138 
   1139     }
   1140     if (err == NO_ERROR) {
   1141         SensorRegistrationInfo &reg_info =
   1142             mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex);
   1143         reg_info.mActivated = false;
   1144         reg_info.mPackageName= connection->getPackageName();
   1145         reg_info.mSensorHandle = handle;
   1146         time_t rawtime = time(NULL);
   1147         struct tm * timeinfo = localtime(&rawtime);
   1148         reg_info.mHour = timeinfo->tm_hour;
   1149         reg_info.mMin = timeinfo->tm_min;
   1150         reg_info.mSec = timeinfo->tm_sec;
   1151         mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
   1152     }
   1153     return err;
   1154 }
   1155 
   1156 status_t SensorService::cleanupWithoutDisable(
   1157         const sp<SensorEventConnection>& connection, int handle) {
   1158     Mutex::Autolock _l(mLock);
   1159     return cleanupWithoutDisableLocked(connection, handle);
   1160 }
   1161 
   1162 status_t SensorService::cleanupWithoutDisableLocked(
   1163         const sp<SensorEventConnection>& connection, int handle) {
   1164     SensorRecord* rec = mActiveSensors.valueFor(handle);
   1165     if (rec) {
   1166         // see if this connection becomes inactive
   1167         if (connection->removeSensor(handle)) {
   1168             BatteryService::disableSensor(connection->getUid(), handle);
   1169         }
   1170         if (connection->hasAnySensor() == false) {
   1171             connection->updateLooperRegistration(mLooper);
   1172             mActiveConnections.remove(connection);
   1173         }
   1174         // see if this sensor becomes inactive
   1175         if (rec->removeConnection(connection)) {
   1176             mActiveSensors.removeItem(handle);
   1177             mActiveVirtualSensors.erase(handle);
   1178             delete rec;
   1179         }
   1180         return NO_ERROR;
   1181     }
   1182     return BAD_VALUE;
   1183 }
   1184 
   1185 status_t SensorService::setEventRate(const sp<SensorEventConnection>& connection,
   1186         int handle, nsecs_t ns, const String16& opPackageName) {
   1187     if (mInitCheck != NO_ERROR)
   1188         return mInitCheck;
   1189 
   1190     sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1191     if (sensor == nullptr ||
   1192         !canAccessSensor(sensor->getSensor(), "Tried configuring", opPackageName)) {
   1193         return BAD_VALUE;
   1194     }
   1195 
   1196     if (ns < 0)
   1197         return BAD_VALUE;
   1198 
   1199     nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
   1200     if (ns < minDelayNs) {
   1201         ns = minDelayNs;
   1202     }
   1203 
   1204     return sensor->setDelay(connection.get(), handle, ns);
   1205 }
   1206 
   1207 status_t SensorService::flushSensor(const sp<SensorEventConnection>& connection,
   1208         const String16& opPackageName) {
   1209     if (mInitCheck != NO_ERROR) return mInitCheck;
   1210     SensorDevice& dev(SensorDevice::getInstance());
   1211     const int halVersion = dev.getHalDeviceVersion();
   1212     status_t err(NO_ERROR);
   1213     Mutex::Autolock _l(mLock);
   1214     // Loop through all sensors for this connection and call flush on each of them.
   1215     for (size_t i = 0; i < connection->mSensorInfo.size(); ++i) {
   1216         const int handle = connection->mSensorInfo.keyAt(i);
   1217         sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
   1218         if (sensor == nullptr) {
   1219             continue;
   1220         }
   1221         if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) {
   1222             ALOGE("flush called on a one-shot sensor");
   1223             err = INVALID_OPERATION;
   1224             continue;
   1225         }
   1226         if (halVersion <= SENSORS_DEVICE_API_VERSION_1_0 || isVirtualSensor(handle)) {
   1227             // For older devices just increment pending flush count which will send a trivial
   1228             // flush complete event.
   1229             connection->incrementPendingFlushCount(handle);
   1230         } else {
   1231             if (!canAccessSensor(sensor->getSensor(), "Tried flushing", opPackageName)) {
   1232                 err = INVALID_OPERATION;
   1233                 continue;
   1234             }
   1235             status_t err_flush = sensor->flush(connection.get(), handle);
   1236             if (err_flush == NO_ERROR) {
   1237                 SensorRecord* rec = mActiveSensors.valueFor(handle);
   1238                 if (rec != NULL) rec->addPendingFlushConnection(connection);
   1239             }
   1240             err = (err_flush != NO_ERROR) ? err_flush : err;
   1241         }
   1242     }
   1243     return err;
   1244 }
   1245 
   1246 bool SensorService::canAccessSensor(const Sensor& sensor, const char* operation,
   1247         const String16& opPackageName) {
   1248     const String8& requiredPermission = sensor.getRequiredPermission();
   1249 
   1250     if (requiredPermission.length() <= 0) {
   1251         return true;
   1252     }
   1253 
   1254     bool hasPermission = false;
   1255 
   1256     // Runtime permissions can't use the cache as they may change.
   1257     if (sensor.isRequiredPermissionRuntime()) {
   1258         hasPermission = checkPermission(String16(requiredPermission),
   1259                 IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid());
   1260     } else {
   1261         hasPermission = PermissionCache::checkCallingPermission(String16(requiredPermission));
   1262     }
   1263 
   1264     if (!hasPermission) {
   1265         ALOGE("%s a sensor (%s) without holding its required permission: %s",
   1266                 operation, sensor.getName().string(), sensor.getRequiredPermission().string());
   1267         return false;
   1268     }
   1269 
   1270     const int32_t opCode = sensor.getRequiredAppOp();
   1271     if (opCode >= 0) {
   1272         AppOpsManager appOps;
   1273         if (appOps.noteOp(opCode, IPCThreadState::self()->getCallingUid(), opPackageName)
   1274                         != AppOpsManager::MODE_ALLOWED) {
   1275             ALOGE("%s a sensor (%s) without enabled required app op: %d",
   1276                     operation, sensor.getName().string(), opCode);
   1277             return false;
   1278         }
   1279     }
   1280 
   1281     return true;
   1282 }
   1283 
   1284 void SensorService::checkWakeLockState() {
   1285     Mutex::Autolock _l(mLock);
   1286     checkWakeLockStateLocked();
   1287 }
   1288 
   1289 void SensorService::checkWakeLockStateLocked() {
   1290     if (!mWakeLockAcquired) {
   1291         return;
   1292     }
   1293     bool releaseLock = true;
   1294     for (size_t i=0 ; i<mActiveConnections.size() ; i++) {
   1295         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1296         if (connection != 0) {
   1297             if (connection->needsWakeLock()) {
   1298                 releaseLock = false;
   1299                 break;
   1300             }
   1301         }
   1302     }
   1303     if (releaseLock) {
   1304         setWakeLockAcquiredLocked(false);
   1305     }
   1306 }
   1307 
   1308 void SensorService::sendEventsFromCache(const sp<SensorEventConnection>& connection) {
   1309     Mutex::Autolock _l(mLock);
   1310     connection->writeToSocketFromCache();
   1311     if (connection->needsWakeLock()) {
   1312         setWakeLockAcquiredLocked(true);
   1313     }
   1314 }
   1315 
   1316 void SensorService::populateActiveConnections(
   1317         SortedVector< sp<SensorEventConnection> >* activeConnections) {
   1318     Mutex::Autolock _l(mLock);
   1319     for (size_t i=0 ; i < mActiveConnections.size(); ++i) {
   1320         sp<SensorEventConnection> connection(mActiveConnections[i].promote());
   1321         if (connection != 0) {
   1322             activeConnections->add(connection);
   1323         }
   1324     }
   1325 }
   1326 
   1327 bool SensorService::isWhiteListedPackage(const String8& packageName) {
   1328     return (packageName.contains(mWhiteListedPackage.string()));
   1329 }
   1330 
   1331 }; // namespace android
   1332 
   1333