1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 // 5 // The inlining facility makes 2 passes: first caninl determines which 6 // functions are suitable for inlining, and for those that are it 7 // saves a copy of the body. Then inlcalls walks each function body to 8 // expand calls to inlinable functions. 9 // 10 // The debug['l'] flag controls the agressiveness. Note that main() swaps level 0 and 1, 11 // making 1 the default and -l disable. -ll and more is useful to flush out bugs. 12 // These additional levels (beyond -l) may be buggy and are not supported. 13 // 0: disabled 14 // 1: 40-nodes leaf functions, oneliners, lazy typechecking (default) 15 // 2: early typechecking of all imported bodies 16 // 3: allow variadic functions 17 // 4: allow non-leaf functions , (breaks runtime.Caller) 18 // 19 // At some point this may get another default and become switch-offable with -N. 20 // 21 // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying 22 // which calls get inlined or not, more is for debugging, and may go away at any point. 23 // 24 // TODO: 25 // - inline functions with ... args 26 // - handle T.meth(f()) with func f() (t T, arg, arg, ) 27 28 package gc 29 30 import ( 31 "cmd/internal/obj" 32 "fmt" 33 ) 34 35 // Used by caninl. 36 37 // Used by inlcalls 38 39 // Used during inlsubst[list] 40 var inlfn *Node // function currently being inlined 41 42 var inlretlabel *Node // target of the goto substituted in place of a return 43 44 var inlretvars *NodeList // temp out variables 45 46 // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods 47 // the ->sym can be re-used in the local package, so peel it off the receiver's type. 48 func fnpkg(fn *Node) *Pkg { 49 if fn.Type.Thistuple != 0 { 50 // method 51 rcvr := getthisx(fn.Type).Type.Type 52 53 if Isptr[rcvr.Etype] { 54 rcvr = rcvr.Type 55 } 56 if rcvr.Sym == nil { 57 Fatal("receiver with no sym: [%v] %v (%v)", fn.Sym, Nconv(fn, obj.FmtLong), rcvr) 58 } 59 return rcvr.Sym.Pkg 60 } 61 62 // non-method 63 return fn.Sym.Pkg 64 } 65 66 // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck 67 // because they're a copy of an already checked body. 68 func typecheckinl(fn *Node) { 69 lno := int(setlineno(fn)) 70 71 // typecheckinl is only for imported functions; 72 // their bodies may refer to unsafe as long as the package 73 // was marked safe during import (which was checked then). 74 // the ->inl of a local function has been typechecked before caninl copied it. 75 pkg := fnpkg(fn) 76 77 if pkg == localpkg || pkg == nil { 78 return // typecheckinl on local function 79 } 80 81 if Debug['m'] > 2 { 82 fmt.Printf("typecheck import [%v] %v { %v }\n", fn.Sym, Nconv(fn, obj.FmtLong), Hconv(fn.Func.Inl, obj.FmtSharp)) 83 } 84 85 save_safemode := safemode 86 safemode = 0 87 88 savefn := Curfn 89 Curfn = fn 90 typechecklist(fn.Func.Inl, Etop) 91 Curfn = savefn 92 93 safemode = save_safemode 94 95 lineno = int32(lno) 96 } 97 98 // Caninl determines whether fn is inlineable. 99 // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. 100 // fn and ->nbody will already have been typechecked. 101 func caninl(fn *Node) { 102 if fn.Op != ODCLFUNC { 103 Fatal("caninl %v", fn) 104 } 105 if fn.Func.Nname == nil { 106 Fatal("caninl no nname %v", Nconv(fn, obj.FmtSign)) 107 } 108 109 // If fn has no body (is defined outside of Go), cannot inline it. 110 if fn.Nbody == nil { 111 return 112 } 113 114 if fn.Typecheck == 0 { 115 Fatal("caninl on non-typechecked function %v", fn) 116 } 117 118 // can't handle ... args yet 119 if Debug['l'] < 3 { 120 for t := fn.Type.Type.Down.Down.Type; t != nil; t = t.Down { 121 if t.Isddd { 122 return 123 } 124 } 125 } 126 127 // Runtime package must not be race instrumented. 128 // Racewalk skips runtime package. However, some runtime code can be 129 // inlined into other packages and instrumented there. To avoid this, 130 // we disable inlining of runtime functions in race mode. 131 // The example that we observed is inlining of LockOSThread, 132 // which lead to false race reports on m contents. 133 if flag_race != 0 && myimportpath == "runtime" { 134 return 135 } 136 137 const maxBudget = 80 138 budget := maxBudget // allowed hairyness 139 if ishairylist(fn.Nbody, &budget) || budget < 0 { 140 return 141 } 142 143 savefn := Curfn 144 Curfn = fn 145 146 fn.Func.Nname.Func.Inl = fn.Nbody 147 fn.Nbody = inlcopylist(fn.Func.Nname.Func.Inl) 148 fn.Func.Nname.Func.Inldcl = inlcopylist(fn.Func.Nname.Name.Defn.Func.Dcl) 149 fn.Func.Nname.Func.InlCost = int32(maxBudget - budget) 150 151 // hack, TODO, check for better way to link method nodes back to the thing with the ->inl 152 // this is so export can find the body of a method 153 fn.Type.Nname = fn.Func.Nname 154 155 if Debug['m'] > 1 { 156 fmt.Printf("%v: can inline %v as: %v { %v }\n", fn.Line(), Nconv(fn.Func.Nname, obj.FmtSharp), Tconv(fn.Type, obj.FmtSharp), Hconv(fn.Func.Nname.Func.Inl, obj.FmtSharp)) 157 } else if Debug['m'] != 0 { 158 fmt.Printf("%v: can inline %v\n", fn.Line(), fn.Func.Nname) 159 } 160 161 Curfn = savefn 162 } 163 164 // Look for anything we want to punt on. 165 func ishairylist(ll *NodeList, budget *int) bool { 166 for ; ll != nil; ll = ll.Next { 167 if ishairy(ll.N, budget) { 168 return true 169 } 170 } 171 return false 172 } 173 174 func ishairy(n *Node, budget *int) bool { 175 if n == nil { 176 return false 177 } 178 179 switch n.Op { 180 // Call is okay if inlinable and we have the budget for the body. 181 case OCALLFUNC: 182 if n.Left.Func != nil && n.Left.Func.Inl != nil { 183 *budget -= int(n.Left.Func.InlCost) 184 break 185 } 186 if n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME { // methods called as functions 187 if n.Left.Sym.Def != nil && n.Left.Sym.Def.Func.Inl != nil { 188 *budget -= int(n.Left.Sym.Def.Func.InlCost) 189 break 190 } 191 } 192 if Debug['l'] < 4 { 193 return true 194 } 195 196 // Call is okay if inlinable and we have the budget for the body. 197 case OCALLMETH: 198 if n.Left.Type == nil { 199 Fatal("no function type for [%p] %v\n", n.Left, Nconv(n.Left, obj.FmtSign)) 200 } 201 if n.Left.Type.Nname == nil { 202 Fatal("no function definition for [%p] %v\n", n.Left.Type, Tconv(n.Left.Type, obj.FmtSign)) 203 } 204 if n.Left.Type.Nname.Func.Inl != nil { 205 *budget -= int(n.Left.Type.Nname.Func.InlCost) 206 break 207 } 208 if Debug['l'] < 4 { 209 return true 210 } 211 212 // Things that are too hairy, irrespective of the budget 213 case OCALL, OCALLINTER, OPANIC, ORECOVER: 214 if Debug['l'] < 4 { 215 return true 216 } 217 218 case OCLOSURE, 219 OCALLPART, 220 ORANGE, 221 OFOR, 222 OSELECT, 223 OSWITCH, 224 OPROC, 225 ODEFER, 226 ODCLTYPE, // can't print yet 227 ODCLCONST, // can't print yet 228 ORETJMP: 229 return true 230 } 231 232 (*budget)-- 233 234 return *budget < 0 || ishairy(n.Left, budget) || ishairy(n.Right, budget) || ishairylist(n.List, budget) || ishairylist(n.Rlist, budget) || ishairylist(n.Ninit, budget) || ishairylist(n.Nbody, budget) 235 } 236 237 // Inlcopy and inlcopylist recursively copy the body of a function. 238 // Any name-like node of non-local class is marked for re-export by adding it to 239 // the exportlist. 240 func inlcopylist(ll *NodeList) *NodeList { 241 var l *NodeList 242 for ; ll != nil; ll = ll.Next { 243 l = list(l, inlcopy(ll.N)) 244 } 245 return l 246 } 247 248 func inlcopy(n *Node) *Node { 249 if n == nil { 250 return nil 251 } 252 253 switch n.Op { 254 case ONAME, OTYPE, OLITERAL: 255 return n 256 } 257 258 m := Nod(OXXX, nil, nil) 259 *m = *n 260 if m.Func != nil { 261 m.Func.Inl = nil 262 } 263 m.Left = inlcopy(n.Left) 264 m.Right = inlcopy(n.Right) 265 m.List = inlcopylist(n.List) 266 m.Rlist = inlcopylist(n.Rlist) 267 m.Ninit = inlcopylist(n.Ninit) 268 m.Nbody = inlcopylist(n.Nbody) 269 270 return m 271 } 272 273 // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any 274 // calls made to inlineable functions. This is the external entry point. 275 func inlcalls(fn *Node) { 276 savefn := Curfn 277 Curfn = fn 278 inlnode(&fn) 279 if fn != Curfn { 280 Fatal("inlnode replaced curfn") 281 } 282 Curfn = savefn 283 } 284 285 // Turn an OINLCALL into a statement. 286 func inlconv2stmt(n *Node) { 287 n.Op = OBLOCK 288 289 // n->ninit stays 290 n.List = n.Nbody 291 292 n.Nbody = nil 293 n.Rlist = nil 294 } 295 296 // Turn an OINLCALL into a single valued expression. 297 func inlconv2expr(np **Node) { 298 n := *np 299 r := n.Rlist.N 300 addinit(&r, concat(n.Ninit, n.Nbody)) 301 *np = r 302 } 303 304 // Turn the rlist (with the return values) of the OINLCALL in 305 // n into an expression list lumping the ninit and body 306 // containing the inlined statements on the first list element so 307 // order will be preserved Used in return, oas2func and call 308 // statements. 309 func inlconv2list(n *Node) *NodeList { 310 if n.Op != OINLCALL || n.Rlist == nil { 311 Fatal("inlconv2list %v\n", Nconv(n, obj.FmtSign)) 312 } 313 314 l := n.Rlist 315 addinit(&l.N, concat(n.Ninit, n.Nbody)) 316 return l 317 } 318 319 func inlnodelist(l *NodeList) { 320 for ; l != nil; l = l.Next { 321 inlnode(&l.N) 322 } 323 } 324 325 // inlnode recurses over the tree to find inlineable calls, which will 326 // be turned into OINLCALLs by mkinlcall. When the recursion comes 327 // back up will examine left, right, list, rlist, ninit, ntest, nincr, 328 // nbody and nelse and use one of the 4 inlconv/glue functions above 329 // to turn the OINLCALL into an expression, a statement, or patch it 330 // in to this nodes list or rlist as appropriate. 331 // NOTE it makes no sense to pass the glue functions down the 332 // recursion to the level where the OINLCALL gets created because they 333 // have to edit /this/ n, so you'd have to push that one down as well, 334 // but then you may as well do it here. so this is cleaner and 335 // shorter and less complicated. 336 func inlnode(np **Node) { 337 if *np == nil { 338 return 339 } 340 341 n := *np 342 343 switch n.Op { 344 // inhibit inlining of their argument 345 case ODEFER, OPROC: 346 switch n.Left.Op { 347 case OCALLFUNC, OCALLMETH: 348 n.Left.Etype = n.Op 349 } 350 fallthrough 351 352 // TODO do them here (or earlier), 353 // so escape analysis can avoid more heapmoves. 354 case OCLOSURE: 355 return 356 } 357 358 lno := int(setlineno(n)) 359 360 inlnodelist(n.Ninit) 361 for l := n.Ninit; l != nil; l = l.Next { 362 if l.N.Op == OINLCALL { 363 inlconv2stmt(l.N) 364 } 365 } 366 367 inlnode(&n.Left) 368 if n.Left != nil && n.Left.Op == OINLCALL { 369 inlconv2expr(&n.Left) 370 } 371 372 inlnode(&n.Right) 373 if n.Right != nil && n.Right.Op == OINLCALL { 374 if n.Op == OFOR { 375 inlconv2stmt(n.Right) 376 } else { 377 inlconv2expr(&n.Right) 378 } 379 } 380 381 inlnodelist(n.List) 382 switch n.Op { 383 case OBLOCK: 384 for l := n.List; l != nil; l = l.Next { 385 if l.N.Op == OINLCALL { 386 inlconv2stmt(l.N) 387 } 388 } 389 390 // if we just replaced arg in f(arg()) or return arg with an inlined call 391 // and arg returns multiple values, glue as list 392 case ORETURN, 393 OCALLFUNC, 394 OCALLMETH, 395 OCALLINTER, 396 OAPPEND, 397 OCOMPLEX: 398 if count(n.List) == 1 && n.List.N.Op == OINLCALL && count(n.List.N.Rlist) > 1 { 399 n.List = inlconv2list(n.List.N) 400 break 401 } 402 fallthrough 403 404 default: 405 for l := n.List; l != nil; l = l.Next { 406 if l.N.Op == OINLCALL { 407 inlconv2expr(&l.N) 408 } 409 } 410 } 411 412 inlnodelist(n.Rlist) 413 switch n.Op { 414 case OAS2FUNC: 415 if n.Rlist.N.Op == OINLCALL { 416 n.Rlist = inlconv2list(n.Rlist.N) 417 n.Op = OAS2 418 n.Typecheck = 0 419 typecheck(np, Etop) 420 break 421 } 422 fallthrough 423 424 default: 425 for l := n.Rlist; l != nil; l = l.Next { 426 if l.N.Op == OINLCALL { 427 if n.Op == OIF { 428 inlconv2stmt(l.N) 429 } else { 430 inlconv2expr(&l.N) 431 } 432 } 433 } 434 } 435 436 inlnodelist(n.Nbody) 437 for l := n.Nbody; l != nil; l = l.Next { 438 if l.N.Op == OINLCALL { 439 inlconv2stmt(l.N) 440 } 441 } 442 443 // with all the branches out of the way, it is now time to 444 // transmogrify this node itself unless inhibited by the 445 // switch at the top of this function. 446 switch n.Op { 447 case OCALLFUNC, OCALLMETH: 448 if n.Etype == OPROC || n.Etype == ODEFER { 449 return 450 } 451 } 452 453 switch n.Op { 454 case OCALLFUNC: 455 if Debug['m'] > 3 { 456 fmt.Printf("%v:call to func %v\n", n.Line(), Nconv(n.Left, obj.FmtSign)) 457 } 458 if n.Left.Func != nil && n.Left.Func.Inl != nil { // normal case 459 mkinlcall(np, n.Left, n.Isddd) 460 } else if n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME { // methods called as functions 461 if n.Left.Sym.Def != nil { 462 mkinlcall(np, n.Left.Sym.Def, n.Isddd) 463 } 464 } 465 466 case OCALLMETH: 467 if Debug['m'] > 3 { 468 fmt.Printf("%v:call to meth %v\n", n.Line(), Nconv(n.Left.Right, obj.FmtLong)) 469 } 470 471 // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. 472 if n.Left.Type == nil { 473 Fatal("no function type for [%p] %v\n", n.Left, Nconv(n.Left, obj.FmtSign)) 474 } 475 476 if n.Left.Type.Nname == nil { 477 Fatal("no function definition for [%p] %v\n", n.Left.Type, Tconv(n.Left.Type, obj.FmtSign)) 478 } 479 480 mkinlcall(np, n.Left.Type.Nname, n.Isddd) 481 } 482 483 lineno = int32(lno) 484 } 485 486 func mkinlcall(np **Node, fn *Node, isddd bool) { 487 save_safemode := safemode 488 489 // imported functions may refer to unsafe as long as the 490 // package was marked safe during import (already checked). 491 pkg := fnpkg(fn) 492 493 if pkg != localpkg && pkg != nil { 494 safemode = 0 495 } 496 mkinlcall1(np, fn, isddd) 497 safemode = save_safemode 498 } 499 500 func tinlvar(t *Type) *Node { 501 if t.Nname != nil && !isblank(t.Nname) { 502 if t.Nname.Name.Inlvar == nil { 503 Fatal("missing inlvar for %v\n", t.Nname) 504 } 505 return t.Nname.Name.Inlvar 506 } 507 508 typecheck(&nblank, Erv|Easgn) 509 return nblank 510 } 511 512 var inlgen int 513 514 // if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL. 515 // On return ninit has the parameter assignments, the nbody is the 516 // inlined function body and list, rlist contain the input, output 517 // parameters. 518 func mkinlcall1(np **Node, fn *Node, isddd bool) { 519 // For variadic fn. 520 if fn.Func.Inl == nil { 521 return 522 } 523 524 if fn == Curfn || fn.Name.Defn == Curfn { 525 return 526 } 527 528 if Debug['l'] < 2 { 529 typecheckinl(fn) 530 } 531 532 n := *np 533 534 // Bingo, we have a function node, and it has an inlineable body 535 if Debug['m'] > 1 { 536 fmt.Printf("%v: inlining call to %v %v { %v }\n", n.Line(), fn.Sym, Tconv(fn.Type, obj.FmtSharp), Hconv(fn.Func.Inl, obj.FmtSharp)) 537 } else if Debug['m'] != 0 { 538 fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) 539 } 540 541 if Debug['m'] > 2 { 542 fmt.Printf("%v: Before inlining: %v\n", n.Line(), Nconv(n, obj.FmtSign)) 543 } 544 545 saveinlfn := inlfn 546 inlfn = fn 547 548 ninit := n.Ninit 549 550 //dumplist("ninit pre", ninit); 551 552 var dcl *NodeList 553 if fn.Name.Defn != nil { // local function 554 dcl = fn.Func.Inldcl // imported function 555 } else { 556 dcl = fn.Func.Dcl 557 } 558 559 inlretvars = nil 560 i := 0 561 562 // Make temp names to use instead of the originals 563 for ll := dcl; ll != nil; ll = ll.Next { 564 if ll.N.Class == PPARAMOUT { // return values handled below. 565 continue 566 } 567 if ll.N.Op == ONAME { 568 ll.N.Name.Inlvar = inlvar(ll.N) 569 570 // Typecheck because inlvar is not necessarily a function parameter. 571 typecheck(&ll.N.Name.Inlvar, Erv) 572 573 if ll.N.Class&^PHEAP != PAUTO { 574 ninit = list(ninit, Nod(ODCL, ll.N.Name.Inlvar, nil)) // otherwise gen won't emit the allocations for heapallocs 575 } 576 } 577 } 578 579 // temporaries for return values. 580 var m *Node 581 for t := getoutargx(fn.Type).Type; t != nil; t = t.Down { 582 if t != nil && t.Nname != nil && !isblank(t.Nname) { 583 m = inlvar(t.Nname) 584 typecheck(&m, Erv) 585 t.Nname.Name.Inlvar = m 586 } else { 587 // anonymous return values, synthesize names for use in assignment that replaces return 588 m = retvar(t, i) 589 i++ 590 } 591 592 ninit = list(ninit, Nod(ODCL, m, nil)) 593 inlretvars = list(inlretvars, m) 594 } 595 596 // assign receiver. 597 var as *Node 598 if fn.Type.Thistuple != 0 && n.Left.Op == ODOTMETH { 599 // method call with a receiver. 600 t := getthisx(fn.Type).Type 601 602 if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Name.Inlvar == nil { 603 Fatal("missing inlvar for %v\n", t.Nname) 604 } 605 if n.Left.Left == nil { 606 Fatal("method call without receiver: %v", Nconv(n, obj.FmtSign)) 607 } 608 if t == nil { 609 Fatal("method call unknown receiver type: %v", Nconv(n, obj.FmtSign)) 610 } 611 as = Nod(OAS, tinlvar(t), n.Left.Left) 612 if as != nil { 613 typecheck(&as, Etop) 614 ninit = list(ninit, as) 615 } 616 } 617 618 // check if inlined function is variadic. 619 variadic := false 620 621 var varargtype *Type 622 varargcount := 0 623 for t := fn.Type.Type.Down.Down.Type; t != nil; t = t.Down { 624 if t.Isddd { 625 variadic = true 626 varargtype = t.Type 627 } 628 } 629 630 // but if argument is dotted too forget about variadicity. 631 if variadic && isddd { 632 variadic = false 633 } 634 635 // check if argument is actually a returned tuple from call. 636 multiret := 0 637 638 if n.List != nil && n.List.Next == nil { 639 switch n.List.N.Op { 640 case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH: 641 if n.List.N.Left.Type.Outtuple > 1 { 642 multiret = n.List.N.Left.Type.Outtuple - 1 643 } 644 } 645 } 646 647 if variadic { 648 varargcount = count(n.List) + multiret 649 if n.Left.Op != ODOTMETH { 650 varargcount -= fn.Type.Thistuple 651 } 652 varargcount -= fn.Type.Intuple - 1 653 } 654 655 // assign arguments to the parameters' temp names 656 as = Nod(OAS2, nil, nil) 657 658 as.Rlist = n.List 659 ll := n.List 660 661 // TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call? 662 if fn.Type.Thistuple != 0 && n.Left.Op != ODOTMETH { 663 // non-method call to method 664 if n.List == nil { 665 Fatal("non-method call to method without first arg: %v", Nconv(n, obj.FmtSign)) 666 } 667 668 // append receiver inlvar to LHS. 669 t := getthisx(fn.Type).Type 670 671 if t != nil && t.Nname != nil && !isblank(t.Nname) && t.Nname.Name.Inlvar == nil { 672 Fatal("missing inlvar for %v\n", t.Nname) 673 } 674 if t == nil { 675 Fatal("method call unknown receiver type: %v", Nconv(n, obj.FmtSign)) 676 } 677 as.List = list(as.List, tinlvar(t)) 678 ll = ll.Next // track argument count. 679 } 680 681 // append ordinary arguments to LHS. 682 chkargcount := n.List != nil && n.List.Next != nil 683 684 var vararg *Node // the slice argument to a variadic call 685 var varargs *NodeList // the list of LHS names to put in vararg. 686 if !chkargcount { 687 // 0 or 1 expression on RHS. 688 var i int 689 for t := getinargx(fn.Type).Type; t != nil; t = t.Down { 690 if variadic && t.Isddd { 691 vararg = tinlvar(t) 692 for i = 0; i < varargcount && ll != nil; i++ { 693 m = argvar(varargtype, i) 694 varargs = list(varargs, m) 695 as.List = list(as.List, m) 696 } 697 698 break 699 } 700 701 as.List = list(as.List, tinlvar(t)) 702 } 703 } else { 704 // match arguments except final variadic (unless the call is dotted itself) 705 var t *Type 706 for t = getinargx(fn.Type).Type; t != nil; { 707 if ll == nil { 708 break 709 } 710 if variadic && t.Isddd { 711 break 712 } 713 as.List = list(as.List, tinlvar(t)) 714 t = t.Down 715 ll = ll.Next 716 } 717 718 // match varargcount arguments with variadic parameters. 719 if variadic && t != nil && t.Isddd { 720 vararg = tinlvar(t) 721 var i int 722 for i = 0; i < varargcount && ll != nil; i++ { 723 m = argvar(varargtype, i) 724 varargs = list(varargs, m) 725 as.List = list(as.List, m) 726 ll = ll.Next 727 } 728 729 if i == varargcount { 730 t = t.Down 731 } 732 } 733 734 if ll != nil || t != nil { 735 Fatal("arg count mismatch: %v vs %v\n", Tconv(getinargx(fn.Type), obj.FmtSharp), Hconv(n.List, obj.FmtComma)) 736 } 737 } 738 739 if as.Rlist != nil { 740 typecheck(&as, Etop) 741 ninit = list(ninit, as) 742 } 743 744 // turn the variadic args into a slice. 745 if variadic { 746 as = Nod(OAS, vararg, nil) 747 if varargcount == 0 { 748 as.Right = nodnil() 749 as.Right.Type = varargtype 750 } else { 751 vararrtype := typ(TARRAY) 752 vararrtype.Type = varargtype.Type 753 vararrtype.Bound = int64(varargcount) 754 755 as.Right = Nod(OCOMPLIT, nil, typenod(varargtype)) 756 as.Right.List = varargs 757 as.Right = Nod(OSLICE, as.Right, Nod(OKEY, nil, nil)) 758 } 759 760 typecheck(&as, Etop) 761 ninit = list(ninit, as) 762 } 763 764 // zero the outparams 765 for ll := inlretvars; ll != nil; ll = ll.Next { 766 as = Nod(OAS, ll.N, nil) 767 typecheck(&as, Etop) 768 ninit = list(ninit, as) 769 } 770 771 inlretlabel = newlabel_inl() 772 inlgen++ 773 body := inlsubstlist(fn.Func.Inl) 774 775 body = list(body, Nod(OGOTO, inlretlabel, nil)) // avoid 'not used' when function doesn't have return 776 body = list(body, Nod(OLABEL, inlretlabel, nil)) 777 778 typechecklist(body, Etop) 779 780 //dumplist("ninit post", ninit); 781 782 call := Nod(OINLCALL, nil, nil) 783 784 call.Ninit = ninit 785 call.Nbody = body 786 call.Rlist = inlretvars 787 call.Type = n.Type 788 call.Typecheck = 1 789 790 // Hide the args from setlno -- the parameters to the inlined 791 // call already have good line numbers that should be preserved. 792 args := as.Rlist 793 as.Rlist = nil 794 795 setlno(call, int(n.Lineno)) 796 797 as.Rlist = args 798 799 //dumplist("call body", body); 800 801 *np = call 802 803 inlfn = saveinlfn 804 805 // transitive inlining 806 // might be nice to do this before exporting the body, 807 // but can't emit the body with inlining expanded. 808 // instead we emit the things that the body needs 809 // and each use must redo the inlining. 810 // luckily these are small. 811 body = fn.Func.Inl 812 fn.Func.Inl = nil // prevent infinite recursion (shouldn't happen anyway) 813 inlnodelist(call.Nbody) 814 for ll := call.Nbody; ll != nil; ll = ll.Next { 815 if ll.N.Op == OINLCALL { 816 inlconv2stmt(ll.N) 817 } 818 } 819 fn.Func.Inl = body 820 821 if Debug['m'] > 2 { 822 fmt.Printf("%v: After inlining %v\n\n", n.Line(), Nconv(*np, obj.FmtSign)) 823 } 824 } 825 826 // Every time we expand a function we generate a new set of tmpnames, 827 // PAUTO's in the calling functions, and link them off of the 828 // PPARAM's, PAUTOS and PPARAMOUTs of the called function. 829 func inlvar(var_ *Node) *Node { 830 if Debug['m'] > 3 { 831 fmt.Printf("inlvar %v\n", Nconv(var_, obj.FmtSign)) 832 } 833 834 n := newname(var_.Sym) 835 n.Type = var_.Type 836 n.Class = PAUTO 837 n.Used = true 838 n.Name.Curfn = Curfn // the calling function, not the called one 839 n.Addrtaken = var_.Addrtaken 840 841 // This may no longer be necessary now that we run escape analysis 842 // after wrapper generation, but for 1.5 this is conservatively left 843 // unchanged. See bugs 11053 and 9537. 844 if var_.Esc == EscHeap { 845 addrescapes(n) 846 } 847 848 Curfn.Func.Dcl = list(Curfn.Func.Dcl, n) 849 return n 850 } 851 852 // Synthesize a variable to store the inlined function's results in. 853 func retvar(t *Type, i int) *Node { 854 n := newname(Lookupf("~r%d", i)) 855 n.Type = t.Type 856 n.Class = PAUTO 857 n.Used = true 858 n.Name.Curfn = Curfn // the calling function, not the called one 859 Curfn.Func.Dcl = list(Curfn.Func.Dcl, n) 860 return n 861 } 862 863 // Synthesize a variable to store the inlined function's arguments 864 // when they come from a multiple return call. 865 func argvar(t *Type, i int) *Node { 866 n := newname(Lookupf("~arg%d", i)) 867 n.Type = t.Type 868 n.Class = PAUTO 869 n.Used = true 870 n.Name.Curfn = Curfn // the calling function, not the called one 871 Curfn.Func.Dcl = list(Curfn.Func.Dcl, n) 872 return n 873 } 874 875 var newlabel_inl_label int 876 877 func newlabel_inl() *Node { 878 newlabel_inl_label++ 879 n := newname(Lookupf(".inlret%.6d", newlabel_inl_label)) 880 n.Etype = 1 // flag 'safe' for escape analysis (no backjumps) 881 return n 882 } 883 884 // inlsubst and inlsubstlist recursively copy the body of the saved 885 // pristine ->inl body of the function while substituting references 886 // to input/output parameters with ones to the tmpnames, and 887 // substituting returns with assignments to the output. 888 func inlsubstlist(ll *NodeList) *NodeList { 889 var l *NodeList 890 for ; ll != nil; ll = ll.Next { 891 l = list(l, inlsubst(ll.N)) 892 } 893 return l 894 } 895 896 func inlsubst(n *Node) *Node { 897 if n == nil { 898 return nil 899 } 900 901 switch n.Op { 902 case ONAME: 903 if n.Name.Inlvar != nil { // These will be set during inlnode 904 if Debug['m'] > 2 { 905 fmt.Printf("substituting name %v -> %v\n", Nconv(n, obj.FmtSign), Nconv(n.Name.Inlvar, obj.FmtSign)) 906 } 907 return n.Name.Inlvar 908 } 909 910 if Debug['m'] > 2 { 911 fmt.Printf("not substituting name %v\n", Nconv(n, obj.FmtSign)) 912 } 913 return n 914 915 case OLITERAL, OTYPE: 916 return n 917 918 // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. 919 920 // dump("Return before substitution", n); 921 case ORETURN: 922 m := Nod(OGOTO, inlretlabel, nil) 923 924 m.Ninit = inlsubstlist(n.Ninit) 925 926 if inlretvars != nil && n.List != nil { 927 as := Nod(OAS2, nil, nil) 928 929 // shallow copy or OINLCALL->rlist will be the same list, and later walk and typecheck may clobber that. 930 for ll := inlretvars; ll != nil; ll = ll.Next { 931 as.List = list(as.List, ll.N) 932 } 933 as.Rlist = inlsubstlist(n.List) 934 typecheck(&as, Etop) 935 m.Ninit = list(m.Ninit, as) 936 } 937 938 typechecklist(m.Ninit, Etop) 939 typecheck(&m, Etop) 940 941 // dump("Return after substitution", m); 942 return m 943 944 case OGOTO, OLABEL: 945 m := Nod(OXXX, nil, nil) 946 *m = *n 947 m.Ninit = nil 948 p := fmt.Sprintf("%s%d", n.Left.Sym.Name, inlgen) 949 m.Left = newname(Lookup(p)) 950 951 return m 952 } 953 954 m := Nod(OXXX, nil, nil) 955 *m = *n 956 m.Ninit = nil 957 958 if n.Op == OCLOSURE { 959 Fatal("cannot inline function containing closure: %v", Nconv(n, obj.FmtSign)) 960 } 961 962 m.Left = inlsubst(n.Left) 963 m.Right = inlsubst(n.Right) 964 m.List = inlsubstlist(n.List) 965 m.Rlist = inlsubstlist(n.Rlist) 966 m.Ninit = concat(m.Ninit, inlsubstlist(n.Ninit)) 967 m.Nbody = inlsubstlist(n.Nbody) 968 969 return m 970 } 971 972 // Plaster over linenumbers 973 func setlnolist(ll *NodeList, lno int) { 974 for ; ll != nil; ll = ll.Next { 975 setlno(ll.N, lno) 976 } 977 } 978 979 func setlno(n *Node, lno int) { 980 if n == nil { 981 return 982 } 983 984 // don't clobber names, unless they're freshly synthesized 985 if n.Op != ONAME || n.Lineno == 0 { 986 n.Lineno = int32(lno) 987 } 988 989 setlno(n.Left, lno) 990 setlno(n.Right, lno) 991 setlnolist(n.List, lno) 992 setlnolist(n.Rlist, lno) 993 setlnolist(n.Ninit, lno) 994 setlnolist(n.Nbody, lno) 995 } 996